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1 Introduction

Trends have been widely studied and used for more than half a century (e.g., Jones, 1943;

Anderson, 1971; Hamilton, 2017; Andrews and McDermott, 1995; Phillips, 2001, 2005, 2007,

2009). There is no doubt that time trends exist in many data sets from different fields, so that

how to model time effects always plays a crucial role in data–driven science (e.g., economics,

finance, ecology, geology, etc.). In some applications, like climate modelling, the trend is the

object of interest. In other applications, like some in macroeconomics, interest focuses on the

fluctuations about the trend, which is why so many applied works start from detrending the

data. Either way, it is important to have a good methodology for dealing with the trend.

There are several general approaches to trend modelling that have widespread appeal for

practitioners. Specifically: (1) unit roots and stochastic trends; (2) global deterministic time

trends involving a linear term t and/or a quadratic term t2 (e.g., Feng and Serletis, 2008, Eq.

13 and 19); (3) local deterministic trends under the nonparametric setting, which capture slowly

varying long run components (e.g., Engle and Rangel, 2008; Hafner and Linton, 2010); etc.

For the third approach, the Hodrick–Prescott filter widely deployed in macroeconomics is best

interpreted as fitting such a trend model to the level of the series (Phillips and Jin, 2015).

However, not much work has been done to examine the correct functional form in the para-

metric global trend model, with linear or quadratic being the dominant choices. This issue has

been raised by Phillips (2007) and Robinson (2012), where power trends have been studied un-

der parametric frameworks. On the other hand, the nonparametric trend literature confines its

attention to the case where the trend is bounded as the sample size increases, which puts some

limits on its applicability. We consider the following model:

yt = g(τt)t
θ0 + εt, (1.1)

where τt = t/T with t = 1, . . . , T , εt is a stationary mixing error process, g(·) is an unknown but

smooth function, and θ0 is an unknown parameter defined on a compact set Θ with θ0 ≥ 0. The

component g(·) can capture nonlinear trend of a quite varied nature, so long as it is bounded

and smoothly varying, whereas the global trend part tθ0 allows the outcome variable to increase

without bound as the horizon lengthens. The error term εt is allowed to be weakly dependent and

can represent short term “cyclical” behavior that we do not model or estimate. We start from

(1.1), and further discuss more generalised settings as well as the associated issues in Section

B.3 of the online supplementary file. Our model extends the parametric global trend models

considered in1 Phillips (2007) and Robinson (2012) and the nonparametric local trend model

1Phillips (2007) considers multiple regressions with many forms of slowly varying regression functions, which
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that underpins a lot of statistical trend fitting. In this paper, we are interested in estimating θ0

and g(·) from a time series dataset {y1, . . . , yT}. Sornette (2003) proposes deterministic trend

and cusp models for modelling stock market crashes with both global trend and bounded trend,

but the models are parametric.

We comment briefly on the stochastic trend literature. A markedly different approach is

provided by unobserved components models from the state space literature; see Harvey (1989)

for a comprehensive overview. In these models, the trend is stochastic in nature. It is hard to

compare this approach with ours in theoretical terms, since the two approaches are nonnested,

although in practice they achieve similar objectives. The pure random walk model implies linear

growth in both mean and variance, so by itself is not well suited to describe the flexible trend

we propose. From a practical point of view, the two methods offer alternative ways to flexibly

estimate the trend behaviour of a time series. In the unobserved components model, the flexibil-

ity comes through small stochastic innovations in the components earmarked as trend and the

cycle. Our model in contrast owes its flexibility to the nonparametric nature of the deterministic

component function. Dahlhaus (1997) introduces a class of locally stationary processes, which

combines deterministic local trends with stochastic variation, see also Giraitis, Kapetanios and

Yates (2014) who consider a time–varying coefficient model with stochastic variation.

We summarize our contributions: (1) This is the first paper to combine the global and slowly–

changing local time trends together; (2) This study provides the practitioner from a variety of

fields with a new nonparametric trending method to examine, capture, and remove time effects;

(3) We provide the tools to test for the presence of such effects and to estimate its components.

The structure of this paper is as follows. In Section 2 we present the regularity conditions we

use in the paper. In Section 3 we propose two hypothesis tests for evaluating the nested para-

metric and nonparametric models. In Section 4 we propose estimators of both trend components

and investigate their asymptotic properties. We provide some simulation studies in Section 5

that examine the finite sample performance of the proposed tests and estimation methods. In

Section 6 we discuss some potential extensions and issues. Section 7 concludes. Mathematical

proofs of the main results are given in Appendix A. Finally, in the online supplementary file of

this paper available at Cambridge Journals Online (journals.cambridge.org/ect), we apply our

methodology to study global mean sea level and U.S. GDP data. There can also be found the

omitted proofs of the main text and some additional material.

Before proceeding to Section 2, it is convenient to introduce some notation that will be

used throughout this paper. The symbol →P denotes convergence in probability; →D denotes

could not be fully covered in this study. Robinson (2012) considers multiple nonlinear power function regressions.
We refer interested readers to these two papers for more details.

2



convergence in distribution; bac means the largest integer not exceeding a; K(·) and h represent

a symmetric kernel function and a corresponding bandwidth of the kernel method, respectively;

moreover, Kh (u) = 1
h
K
(
u
h

)
.

2 Regularity Conditions

We make the following assumptions we will use to derive our results.

Assumption 1:

1. 0 ≤ θ0 ∈ Θ, and Θ is a compact set defined on R. g(·) is second order differentiable on

[0, 1], and satisfies that supu∈[0,1] |g(u)| <∞, infθ∈[0,1]

∣∣∣∫ 1

0
uθ0+θg(u)du

∣∣∣ > 0,

and sup(θ,u)∈Θ×[h,1]

∣∣∣d[uθ+θ0g(u)]
du

∣∣∣ <∞ for the same h defined in Assumption 1.4 below.

2. {εt |t = 1, . . . , T} is an α–mixing error process with mixing coefficients {α(i) |i = 1, 2, . . .}
such that

∑∞
i=1[α(i)]

δ
2+δ < ∞ for some δ > 0 satisfying maxt≥1E|εt|2+δ/2 < ∞, where

α(i) = supj supA∈Fj−∞, B∈F∞j+i
|Pr(A∩B)−Pr(A) Pr(B)| and Fkj is the sigma field generated

by {εt |j ≤ t ≤ k}. Moreover, for t ≥ 1, E[εt] = 0 and E|εt|2 = σ2
t ≤ c0 <∞.

3. Let K(·) be a function that is symmetric and defined on [−1, 1]. Assume further that

K(1)(u) is uniformly bounded on [−1, 1],
∫ 1

−1
K(u)du = 1 and

∫ 1

−1
|u|K(u)du <∞.

4. For the bandwidth sequence h, suppose that h = O(T−ν) for some 0 < ν < 1
2
.

Assumption 1.2*:

Suppose that {εt} satisfies either one of the following conditions:

1. For t ≥ 2, let E[εt |Ft] = 0, where Ft ≡ σ(ε1, ε2, . . . , εt−1). In addition, E [ε2
t |Ft] = σ2

t ≤
c0 <∞ almost surely, and maxt≥1E[ε4

t ] <∞.

2. Let Assumption 1.2 hold. Moreover, let
∑T

t=2

∑t−1
s=1 γ(t− s)ωTt ωTs → 0 as T →∞, where

γ(j) = E[ε1ε1+j] and ωTt = g(τt) ln(t)√∑T
t=1 σ

2
t g

2(τt) [ln t]2
.

Compared to the conditions employed by some of the relevant literature (e.g., Vogt, 2012;

Phillips, Li and Gao, 2017), one main difference is that we have to take the power term into

consideration when using the kernel method below. This is why we require θ0 ≥ 0 in Assumption

1.1, which is harsher than θ0 > −1
2

adopted in Robinson (2012) for a parametric model. We will

further discuss this issue in detail in Section 4. We also impose some conditions on g(·), which
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are quite standard. Assumptions 1.1–1.4 are standard in the literature (e.g., Fan and Yao, 2003,

Section 2.6).

Assumption 1.2* is a stronger version of Assumption 1.2, and is used only to establish asymp-

totic properties for the proposed tests in Section 3 below. Assumption 1.2*.1 is a martingale

type of condition, and is similar to Assumption A.2 of Su and Chen (2013) and Assumption A.4

of Su, Jin and Zhang (2015). Meanwhile, it allows for the heteroskedasticity, and is analogous to

Assumption A1 of Fan and Li (1996). To model more complicated deterministic heteroskedas-

ticity, we refer interested readers to, for example, Section 3.3 of Gao (2007). Assumption 1.2*.2

allows for certain types of weak autocorrelation, and is verifiable in many situations, including

the case where {εt} follows an ARMA setting.

Either of the two conditions of Assumption 1.2* ensures that the summation of the interaction

terms,
∑T

t=2

∑t−1
s=1 γ(t− s)ωTt ωTs, will not create any difficulty while estimating the asymptotic

variance in the proof of Theorem 3.1. Although one indeed can consistently estimate the corre-

lation between εt and εs for any fixed ` = t− s ≥ 1 (Fan and Yao, 2003, Chapter 2), one cannot

recover, for example,
∑T

t=2

∑t−1
s=1 γ(t−s)ωTt ωTs as a whole in general without imposing stronger

restrictions.

Sections 3 and 4 together provide the main asymptotic results of the paper. In Section 3

we provide two tests of the leading special cases of (1.1). In Section 4 we provide estimation

methodology for (1.1). We point out the failure of some intuitive methods in Section 4.1, we

discuss how to achieve consistent estimation in general in Section 4.2, and we study the detailed

consistent estimators of g(·) and θ0 based on the least squares method defined in Section 4.3.

3 Two Testing Issues

We first consider two hypothesis tests:

(a). Testing θ0:

{
H0 : θ0 = 0

H1 : θ0 > 0;
(3.1)

(b). Testing g(·):

{
H∗0 : g(τ) is a constant function

H∗1 : g(τ) is a non–constant function.
(3.2)

If we fail to reject either of these null hypotheses, everything goes back to some well studied

models. (a) Failure to reject H0 gives the model yt = g(τt) + εt, which, for example, is a special

case of Robinson (1997) and Dong and Linton (2018). In addition, yt = g(τt)+εt nests yt = a0+εt

as a special case. One can follow Section 3.2 to further test whether g(·) is a constant function,
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and the procedure can be much simplified. (b) Failure to reject H∗0 leads to yt = β0 t
θ0 + εt,

which has been studied in Phillips (2007) and Robinson (2012).

If both null hypotheses are rejected by the data (at an appropriate significance level), then

we may conclude that the general model (1.1) holds or at least we cannot work with either of the

(already treated) special cases. In the next subsections we present tests of the two hypotheses

(3.1) and (3.2).

3.1 Testing θ0

If g were known, the Gaussian log–likelihood would be proportional toQT (θ) =
∑T

t=1

(
yt − g(τt)t

θ
)2

,

which yields the score function

∂QT (θ)

∂θ
=

1

T

T∑
t=1

(
yt − g(τt)t

θ
)
g(τt)t

θ ln t.

Under the null of (3.1), this reduces to ∂QT (θ)
∂θ

∣∣
θ=0

= 1
T

∑T
t=1 (yt − g(τt)) g(τt) ln t. In practice,

since g(·) is unknown, we replace g(·) by a kernel based nonparametric estimator ĝ(·). However,

we noticed that using the full sample to construct the test will result in two leading terms

cancelling with each other, so that further difficulties will arise when deriving the asymptotic

distribution. In order to avoid this technical problem, we use sample splitting: we use the

even numbered observations to estimate g(·) and we evaluate the score function using the odd

numbered observations.2 Thus, the final version of the score function considered is

ST =
1

T/2

∑
t odd

(yt − ĝ(τt)) ĝ(τt) ln t, (3.3)

where ĝ(u) =
∑
t evenKh(u−τt)yt∑
t evenKh(u−τt) .

Based on the above discussion, a formal hypothesis test is described in the next theorem.

Theorem 3.1. Let Assumptions 1.1, 1.2*, 1.3 and 1.4 hold.

1. In addition, supu∈[0,1] |
∂g(u)
∂u
| <∞. Under the null hypothesis of (3.1), as T →∞,

L̂M =

1
2
√
T

∑
t odd (yt − ĝ(τt)) ĝ(τt) ln t{

1
T

∑T
t=1 [g̃(τt) ln t]2 ẽ2

t

}1/2
→D N(0, 1),

2One can also use the even indexed sample to construct ST of (3.3), and estimate ĝ(·) with the odd indexed
sample. Theoretically speaking, both methods of splitting sample lead to the same asymptotic distribution in
Theorem 3.1. However, it may cause some difference when using real data, so, in applied works, one may try
both methods to see if they reach the same conclusion, which is exactly what we do in the empirical study. We
thank one referee for raising this possible confusion due to splitting sample.
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where ẽt = yt − g̃(τt), and g̃(u) =
∑T
t=1Kh(u−τt)yt∑T
t=1Kh(u−τt)

.

2. Under the alternative hypothesis of (3.1), as T →∞, L̂M →∞.

We will further provide a generalized version of the test (i.e., H0 : θ0 = a vs. H1 : θ0 > a) with

discussion on establishing inference for θ0 in Section 6 after providing the consistent estimators

of θ0 and g(·) in Section 4.

3.2 Testing g(·)

We now consider the hypothesis (3.2). Notice that, under H∗0 , we have a parametric model of

the form yt = β0 t
θ0 + εt, and the unknown parameters (β0, θ0) can be estimated by

(β̂, θ̂) = arg min
(β,θ)

T∑
t=1

(
yt − β tθ

)2
, (3.4)

which has been fully studied in Phillips (2007) and Robinson (2012).

We now propose a multiscale test of the form proposed by Gao and Hawthorne (2006):

L̂ = max
h∈H

L(h) with L(h) =

∑T
t=1

∑T
s=1, 6=tK

(
τt−τs
h

)
ês êt√∑T

t=1

∑T
s=1,6=tK

2
(
τt−τs
h

)
ê2
s ê

2
t

, (3.5)

where H = {h = hmaxa
k : h ≥ hmin, k = 0.1, 2, . . .} with 0 < hmin < hmax and 0 < a < 1,

and êt = yt − β̂ tθ̂. The associated critical values can be obtained by the following bootstrap

procedure.

1. For t = 1, . . . , T , generate y∗t = β̂ tθ̂ + êtut, where ut’s are sampled randomly from some

mean zero unit variance distribution, such as N(0, 1).

2. Use {y∗t |t = 1, . . . , T} to implement (3.4) in order to obtain (β̃, θ̃), and compute the

statistic L∗ by replacing yt and (β̂, θ̂) with y∗t and (β̃, θ̃), respectively, in (3.5).

3. Repeat the above steps to produce J versions of L∗ denoted by {L∗j |j = 1, . . . , J},
which is used to construct the empirical bootstrap distribution function, that is, F ∗(w) =
1
J

∑J
j=1 1(L∗j ≤ w). Further use the empirical bootstrap distribution function to estimate

the asymptotic critical value, lα.

Theorem 3.2. Let Assumptions 1.1, 1.2*.1, 1.3, and 1.4 hold. For H of (3.5), suppose that

c0[ln(lnT )]−1 = hmax > hmin ≥ T−ϑ > 0 with some constants c0 and ϑ such that 0 < ϑ < 1
3
.
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1. Under the null of (3.2), L(h)→D N(0, 1), and limT→∞ Pr(L̂ > lα) = α;

2. Under the alternative of (3.2), limT→∞ Pr(L̂ > lα) = 1.

Theorem 3.2 follows from developments similar to the earlier studies by Fan and Li (1996)

and Li (1999). The second conclusion of Theorem 3.2 is the same as that of Proposition 1 of Gao

and Hawthorne (2006). The same principle of this nonparametric test has also been employed

in Su and Chen (2013) and Su et al. (2015) to study panel data models.

We will examine the finite sample performance of Theorems 3.1 and 3.2 in the simulation

study of Section 5.

4 Estimation Method and Theory

We now consider estimating (1.1) for the case where θ0 > 0 and g(·) is a non–constant function.

For all (θ, u), the profile least squares estimator of g(u) is defined as

ĝ(u, θ) =

[
T∑
t=1

t2θKh (u− τt)

]−1 T∑
t=1

tθytKh (u− τt) . (4.1)

The key question is how to recover θ0. Once we have obtained a consistent estimator for θ0, we

need only to plug it in (4.1) to estimate g(u). We first explain why two intuitive least squares

methods fail to deliver consistent estimates of θ0.

4.1 Failure of Some Intuitive Methods

First, we may use the global profile method (e.g., Robinson, 2012; Dong, Gao and Tjøstheim,

2016), with objective function defined as follows:

QT (θ) =
T∑
t=1

(
yt − tθĝ(τt, θ)

)2
, (4.2)

where ĝ(u, θ) is denoted in (4.1). According to Lemma 4.1 below, we find that

tθĝ(τt, θ) = tθtθ0−θg(τt)(1 + oP (1)) = tθ0g(τt)(1 + oP (1)),

where θ disappears from the leading term and only appears in the residual. Thus, it would be

difficult to recover θ0 from (4.2), as the first order limit of QT (θ) does not depend on θ.
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Alternatively, we may use a local profile method, following Section 6 of Phillips (2007). Define

the objective function for any given u as

QT (β, θ |u) =
n∑
t=1

(
yt − β tθ

)2
Kh (τt − u) . (4.3)

For all u, the estimators
(
β̂(u), θ̂(u)

)
are obtained by minimizing QT (β, θ |u). Finally, the

estimator of θ0 is obtained by θ̂ =
∫ 1

0
θ̂(u)ψ(u)du, where ψ(·) serves as a weight function.

Note that, to minimize QT (β, θ |u), the first order conditions ∂QT (β,θ |u)
∂β

∣∣∣
(β,θ)=(β̂(u),θ̂(u))

= 0 and

∂QT (β,θ |u)
∂θ

∣∣∣
(β,θ)=(β̂(u),θ̂(u))

= 0 must hold, and the first equation yields

β̂(u) =

[
T∑
t=1

t2θ̂(u)Kh (u− τt)

]−1 T∑
t=1

tθ̂(u)ytKh (u− τt) ,

which has the same form as (4.1), and indicates that the leading term of QT (β̂(u), θ̂(u) |u) is

independent of θ̂(u) by the same discussion under (4.2). In other words, we can find different

θ’s belonging to Θ (say, θ̂1(u) and θ̂2(u)) to ensure QT (β̂(u), θ̂1(u) |u) and QT (β̂(u), θ̂2(u) |u) are

asymptotically equivalent. This concludes why the second approach fails.

We leave the numerical examination of these two methods in the online supplementary file of

this paper, as they are not our main focus.

4.2 Consistent Estimation

We first provide a result about the performance of the profiled g estimator, which supports our

estimation strategy for θ0.

Lemma 4.1. Consider ĝ(u, θ) defined by (4.1), and let Assumption 1 hold. In addition, (1) let

BT (θ0) = [θ0 − M
lnT

, θ0 + M
lnT

], where M is a positive constant; (2) let Bε1(h) = [(1 + ε1)h, 1],

where ε1 is a sufficiently small positive constant. As T →∞,

sup
(θ,u)∈BT (θ0)×Bε1 (h)

∣∣ĝ(u, θ)− (uT )θ0−θg(u)
∣∣ = OP

( √
lnT

T
1
2

+θ0h
1
2

+2θ0

)
+O(hmin{2θ0,1}).

The constant ε1 controls the minimum value that u is permitted to take, and serves the same

purpose as C1 of Theorem 4.2 of Vogt (2012). Lemma 4.1 indicates that ĝ(u, θ) with θ ∈ BT (θ0)

is a consistent estimator of g(u) subject to a constant term (uT )θ0−θ, which is not guaranteed to

be 1 if θ is very close to the boundary of BT (θ0). In Section 4.3, we show that θ̂ defined by (4.6)
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indeed falls in BT (θ0) with probability approaching one in Theorem 4.2, and further deal with

the unknown constant in Theorem 4.3.

We next explain in general terms our estimation strategy for model (1.1) and some issues

that arise. By Lemma 4.1, we write uθĝ(u, θ) ' uθ0T θ0−θg(u), so that∫ (
uθĝ(u, θ)

)2
du ' T 2θ0−2θ

∫
u2θ0g2(u)du

⇒ 1

lnT 2
ln

∫ (
uθĝ(u, θ)

)2
du ' (θ0 − θ) + eT

⇒
(

1

lnT 2
ln

∫ (
uθĝ(u, θ)

)2
du

)2

' (θ0 − θ)2 + e′T , (4.4)

where eT , e
′
T are O(1/ lnT ).3 Moreover, the expectation of the “true error term” of (4.4) (i.e.,

eT ) is not 0, but goes to 0 at the rate 1
lnT

. This reveals why we achieve only a slow rate 1
lnT

in Theorem 4.2 below. The verification can easily be done considering the traditional OLS

estimator, so it is omitted. Last but not least, although eT serves as an error term and converges

to 0 asymptotically, eT itself is not random at all and is made of deterministic components. That

is why the first result of Theorem 4.4 is a constant instead of a distribution.

4.3 Asymptotic Results for Least Squares Method

We focus on the least squares method due to its popularity and simplicity. It allows for the

possibility that g(·) may take negative values. Define the objective function

RT (θ) =

λT · ln
 1

T

T∑
t=bThc+1

τ 2θ
t ĝ(τt, θ)

2
2

, (4.5)

where λT = 1
lnT

serves as a normalizer, and ĝ(·, ·) is defined in (4.1). The estimator of θ0 is given

by

θ̂ = arg min
θ∈Θ

RT (θ). (4.6)

Other methods like least absolute deviations or quantile regression deserve to be considered in

separate papers. We leave them to future research.

Remark: Further to our discussion of Section 4.2, the term τ 2θ
t in (4.5) serves the purpose of

solving a technical issue when recovering the normalizer of Theorem 4.4. A short explanation

3Note that we can also take absolute value rather than squared value in the last step of (4.4), which then
would lead to a least absolute deviations estimator.
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is that without τ 2θ
t , the term 1

T

∑T
t=bThc+1

∂ĝ(τt,θ0)
∂θ

will yield a simple average 1
T

∑T
t=bThc+1 τ

−2θ0
t

in the denominator, when considering the score function generated by (4.5). Intuitively, one

may think that 1
T

∑T
t=bThc+1 τ

−2θ0
t converges to

∫ 1

0
u−2θ0du, however, it is not the case given the

assumption on θ0, because
∫ 1

0
u−2θ0du does not exist for θ0 >

1
2
.

We summarize the corresponding asymptotic results in the next theorem.

Theorem 4.2. Suppose that Assumption 1 holds. As T →∞,

1. θ̂ →P θ0;

2. θ̂ − θ0 = OP

(
1

lnT

)
;

3. supu∈Bε1 (h)

∣∣∣ĝ(u, θ̂)− (uT )θ0−θ̂g(u)
∣∣∣ = OP

( √
lnT

T
1
2+θ0h

1
2+2θ0

)
+ O(hmin{2θ0,1}), where Bε1(h) is

defined in Lemma 4.1.

Before proceeding further, we explain two issues. Firstly, we consider the difference between

our nonparametric model and some parametric models. Having said why we achieve only a slow

rate 1
lnT

for (4.6) in the end of Section 4.2, we now show why for parametric models one need not

take the logarithm, so that fast rates can be achieved. Consider a simple model even without an

error term, say yt = τ θ0t . Simple calculation yields

QT (θ) =
1

T

T∑
t=1

(yt − τ θt )2 =
1

T

T∑
t=1

τ 2θ0
t − 2

T

T∑
t=1

τ θ0+θ
t +

1

T

T∑
t=1

τ 2θ
t

=

(∫ 1

0

u2θ0du− 2

∫ 1

0

uθ0+θdu+

∫ 1

0

u2θdu

)
· (1 + o(1))

=

(
1

2θ0 + 1
− 2

θ0 + θ + 1
+

1

2θ + 1

)
· (1 + o(1))

=
2(θ0 − θ)2

(2θ0 + 1)(θ0 + θ + 1)(2θ + 1)
· (1 + o(1)) (4.7)

under minor restrictions. By the right hand side of (4.7), we can conclude that:

1. Without requiring any transformation, QT (θ) of (4.7) converges to a function having a

unique minimum at θ = θ0 asymptotically;

2. For θ0 ≤ −1
2
, the limit of QT (θ) no longer reaches its minimum value at θ = θ0. That is

one reason why Robinson (2012) only considers the power term on (−1
2
,∞).
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Secondly, we take a careful look at the estimation of g(·), and explain the identification issue

of g(·) mentioned under Lemma 4.1. Consider the following distance between (θ, g) and (θ∗, f)

DT{(θ, g), (θ∗, f)} =
T∑
t=1

{
g(τt)t

θ − f(τt)t
θ∗
}2

=
T∑
t=1

{
T θg(τt)τ

θ
t − T θ

∗
f(τt)τ

θ∗

t

}2
.

Based on Theorem 4.2, we let θ = θ∗ + M
lnT

with M being a constant. Then we can write

DT{(θ, g), (θ∗, f)} =
T∑
t=1

{
T θ
∗
eMg(τt)τ

θ
t − T θ

∗
f(τt)τ

θ∗

t

}2

= T 2θ∗
T∑
t=1

τ 2θ∗

t

{
eMg(τt)τ

M/ lnT
t − f(τt)

}2

,

so any sequence fT (u) = eMg(u)uM/ lnT will set this objective function exactly zero.

In order to identify the unknown constant, we let |g(1)| = 1 in the rest of this paper. For those

functions g(·) not satisfying |g(1)| = 1, we are essentially recovering a rescaled version of g(u)

below, i.e., g(u) = g(u)/|g(1)| given g(1) 6= 0. See Dong and Linton (2018) for similar settings

on the functional component. To further establish the normality, we define for all u ∈ (0, 1)

η̂T =
1

T

T∑
t=bThc+1

τ 2θ̂
t g̃(τt), g̃(u) = (uT )− logT |ĝ(1,θ̂)|ĝ(u, θ̂),

Σ̂ =
1

Th

T∑
t=bThc+1

(
yt − tθ̂ ĝ(τt, θ̂)

)2

K2

(
u− τt
h

)
,

κ1T (θ̂, u) = |ĝ(1, θ̂)|−1 ·
( T∑
t=1

t2θ̂Kh(u− τt)
)−1

T∑
t=1

tθ̂+θ0g(τt)Kh (u− τt)− g(u). (4.8)

Theorem 4.3. Let Assumption 1 hold, and further let σ2
t = σ2(τt) for t ≥ 1. For ∀u ∈ (0, 1),

as T →∞,

1. T θ0+
1
2 h

1
2 uθ̂

η̂T

√
Σ̂

(
ĝ(u,θ̂)

|ĝ(1,θ̂)|
− g(u)− κ1T (θ̂, u)

)
→D N(0, 1), where κ1T (θ̂, u) = OP (h).

2. Suppose further supθ∈Θ

∣∣∣d2[wθ+θ0g(w)]
dw2

∣∣∣
w=u

∣∣∣ < ∞, and h = O(T−ν) with 0 < ν ≤ 1 − 2+θ0
2.5+2θ0

.

Then κ1T (θ̂, u) = OP (h2).

The fact that limT→∞ |η̂T | = |
∫ 1

0
u2θ0g(u)du| > 0 has been verified in the proof of Theorem

4.2. The bias term κ1T (θ̂, u) is due to the use of the smoothing method, and the extra conditions

required by the second result of Theorem 4.3 make certain that κ1T (θ̂, u) will have the usual

order OP (h2) as in the literature of nonparametric regression (e.g., Vogt, 2012).

11



We are now ready to consider the asymptotic distribution of θ̂. By (4.6), Theorem 4.2 and

the Mean Value Theorem, we write

0 = (lnT )
∂RT (θ)

∂θ

∣∣∣
θ=θ̂

= (lnT )
∂RT (θ)

∂θ

∣∣∣
θ=θ0

+
∂2RT (θ)

∂θ2

∣∣∣
θ=θ̃
· (lnT )(θ̂ − θ0), (4.9)

where θ̃ lies between θ̂ and θ0. We summarize the asymptotic results in the next theorem.

Theorem 4.4. Let Assumption 1 hold. As T →∞,

1. (lnT )(θ̂ − θ0)→P ln
∣∣∣∫ 1

0
u2θ0g(u)du

∣∣∣;
2. Given

∣∣∣∫ 1

0
u2θ0g(u)du

∣∣∣ 6= 1, lnT
ln |η̂T |

(θ̂ − θ0)→P 1, where η̂T has been defined in (4.8).

Theorem 4.4 shows that the limit of (lnT )(θ̂ − θ) is a constant rather than a distribution,

which confirms our discussion at the end of Section 4.2. Moreover, without the terms A1, A3 and

A5 in the proof of Theorem 4.4, the right hand side of (A.9) would lead to asymptotic normality

as in Theorem 6.3 of Phillips (2007) and Theorem 3 of Robinson (2012). However, these terms

cannot be removed using a bias correction procedure for our nonparametric model, so we state

Theorem 4.4 as it is. In order to conduct inference on θ0, we further provide Corollary 6.2 in

Section 6.2, in which we provide a confidence interval for θ0 under some strong restrictions.

5 Numerical Studies

We next conduct some simulation studies to examine the asymptotic results established in Sec-

tions 3 and 4. Due to space limitations, we report some selected results below and provide extra

results in the online supplementary file of this paper. Throughout this paper, we stick to the

Epanechnikov kernel only.

5.1 Testing θ0

To examine the hypothesis test provided in Section 3.1 and account for the heteroskedasticity,

the data generating process (DGP) is yt = g(τt)t
θ0 +εt, where εt is independently generated from

N(0, σ2
t ), and σ2

t is drawn from a uniform distribution U(1, 2.25). We consider the following cases

under different sample sizes in order to evaluate the size and power of the test.

• Case 1 – Size: θ0 = 0

1. Case 1.1: g(w) = exp(w2/2); Case 1.2: g(w) = w2 + 1

12



• Case 2 – Power: θ0 = 0.3, 0.5, 0.7

1. Case 2.1: g(w) = exp(w2/2); Case 2.2: g(w) = w2 + 1

For each generated data set, we calculate L̂M of Theorem 3.1, and let αLM = 1(L̂M > 1.6449)

(i.e., rejecting the null at 5% significant level), where 1(·) is an indicator function. After J

replications, we calculate the simple average ᾱLM = 1
J

∑J
j=1 αLM,j, where αLM,j stands for the

value of αLM at the jth replication. We choose J = 1000. In view of (B.15) of the online

supplementary file, the estimation error reaches the minimum value when h = O
((

lnT
T

)1/3
)

.

Thus, we let h =
(

lnT
T

)1/3
, which is the “optimal” one under the null subject to an unknown

constant. We plot the values of ᾱLM (i.e., rejection rate) at different sample sizes in Figures 5.1

and 5.2 instead of reporting them in tables.
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Figure 5.1: Testing θ0: Case 1 – Size
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Figure 5.2: Testing θ0: Case 2 – Power

According to Figures 5.1 and 5.2, the proposed test in general has good finite sample perfor-

mance. In addition, Figure 5.2 suggests that as θ0 gets far away from the null, the power tends

to get improved. It should be expected, because when θ0 is closer to 0, we would need more data

to distinguish θ0 and 0.
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5.2 Testing g(·)

In this subsection, we study the test proposed in Section 3.2. It is worthwhile to mention that the

principle of this test is in fact not new and has been well studied in the literature, so interested

readers can refer to the previous studies (e.g., Fan and Li, 1996; Gao and Hawthorne, 2006; Li,

1999; Su and Chen, 2013; Su et al., 2015) for more detailed and systematic simulation studies

on the finite sample performance of this type of test.

The main DGP is still yt = g(τt)t
θ0 + εt, where εt is independently generated from N(0, σ2

t ),

and σ2
t is drawn from a uniform distribution U(1, 2.25). In order to examine the size and power,

we consider the following cases.

• Case 1 – Size: g(w) ≡ 1 and θ0 = 0.5, 1

• Case 2 – Power: θ0 = 0.5, 1

1. Case 2.1: g(w) = exp(w2/2); Case 2.2: g(w) = w2 + 1

For each generated data set, we calculate the statistic value by (3.5), and 95% critical values

by Theorem 3.2 based on 299 bootstrap replications. Similar to the above subsection, if we

reject the null at 5% significant level for the jth data set, we then record αL,j = 1, otherwise

αL,j = 0. After J replications, we calculate the simple average ᾱL = 1
J

∑J
j=1 αL,j. Again, we

choose J = 1000, and plot the values of ᾱL at different sample sizes in Figures 5.3 and 5.4 below.
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Figure 5.3: Testing g(·): Case 1 – Size

The size is still as good as expected by Figure 5.3, while, according to Figure 5.4, the power

of the test is much better than what we see from the previous subsection.
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Figure 5.4: Testing g(·): Case 2 – Power

5.3 Evaluation of the Estimates

Before proceeding further, we firstly provide a bandwidth selection procedure based on Theorem

4.2.4

• Bandwidth Selection: It is easy to see that the rate of convergence of Theorem 4.2.2

will reach the minimum value at h = O
(
T
− 1+2θ0

3+4θ0 · (lnT )
1

3+4θ0

)
for θ0 ≥ 1

2
, and at h =

O
(
T
− 1+2θ0

1+8θ0 · (lnT )
1

1+8θ0

)
for 0 < θ0 <

1
2
. In view of this relationship, we adopt the following

iteration procedure, which yields an “optimal” bandwidth up to an unknown constant.

Provide an initial bandwidth (say h0 = T−1/3) to start the iteration process. For the kth

(k ≥ 1) iteration, use hk−1 obtained from the (k − 1)th iteration to calculate θ̂k. Stop

iteration, if |θ̂k− θ̂k−1| ≤ ε, where ε is sufficiently small (e.g., 10−6) and serves as a stopping

criteria. Otherwise, update the bandwidth by hk = T
− 1+2θ̂k

3+4θ̂k · (lnT )
1

3+4θ̂k for θ̂k ≥ 1
2
, and

hk = T
− 1+2θ̂k

1+8θ̂k · (lnT )
1

1+8θ̂k for 0 < θ̂k <
1
2
. Then proceed to the (k + 1)th iteration.

In order to examine the above bandwidth selection procedure as well as the asymptotic

results of Section 4.3, the DGP is specified as yt = g(τt)t
θ0 + εt, where we let θ0 be 0.4 and

0.8 respectively. εt = 0.5 εt−1 + N(0, 1) and g(u) = 3(u − 1)2 + 1. We recover θ0 by (4.6), and

4While designing the Monte Carlo study, we also tried to use the traditional cross–validation method to select

the bandwidth. The criteria function is defined by CV (h) =
∑T
t=bThc+1 (yt − ŷ−t)2 , where ŷ−t = tθ̂−t ĝ−t(τt, θ̂−t),

and θ̂−t and ĝ−t(τt, θ̂) are obtained by (4.6) and (4.1) respectively but leaving the tth observation out. However, the
minimization process always causes our Matlab program to break down, not to mention that the cross–validation
method is practically time–consuming. The possible reason is as follows. Suppose we search the optimal h on the
set (0, T−ν0 ], where ν0 is a sufficiently small positive number. It is not hard to see that both θ̂−t and ĝ−t(τt, θ̂)

will yield consistent estimates, which then suggests that ŷ−t = tθ̂−t ĝ−t(τt, θ̂−t) converges to tθ0g(τt) by Lemma

4.1. In this case, the leading term of the cross–validation criteria function becomes
∑T
t=bThc+1

(
yt − tθ0g(τt)

)2
in which the terms in the bracket are independent of h, so that the minimization process never converges to a
possible solution.

As one referee kindly pointed out the popularity of the cross–validation method in applied research, we would
like to share our experience and provide possible explanation here.
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estimate g(τt) for t = bThc + 1, . . . , T by g̃(u) = (uT )− lnT |ĝ(1,θ̂)|ĝ(u, θ̂) as specified in (4.8). In

addition, we calculate lnT
ln |η̂T |

(θ̂ − θ0) − 1 in order to examine Theorem 4.4. For each generated

series {yt}, three squared errors are recorded: seθ = (θ̂ − θ0)2, se∗θ =
(

lnT
ln |η̂T |

(θ̂ − θ0)− 1
)2

, and

seg = 1
T−bThc

∑T
t=bThc+1 (g̃(τt)− g(τt))

2. After repeating the aforementioned procedure J times,

we calculate the corresponding root mean squared errors, and label them as RMSEθ, RMSE∗θ

and RMSEg, respectively.5

Finally, we let J = 1000, T = 100, 200, 400 and h = hopt, T
−1/3, T−1/5, T−1/8, where “hopt”

is obtained by the procedure mentioned in the beginning of this subsection. The results are

reported in Table 5.1. For h = hopt, T
−1/3, all RMSEs decrease, when the sample size increases.

For h = T−1/5 and θ0 = 0.8, RMSE∗θ increases when the sample size increases. For h = T−1/8,

RMSEg increases when the sample size increases. It suggests that h = hopt, T
−1/3 should be

preferred practically when using our model and method. As expected, hopt in general provides

relatively good estimates in terms of RMSEg and RMSEθ. Although hopt does not yield the

best estimate in terms of RMSE∗θ, the difference only happens at the second or third decimal, so

negligible.

Table 5.1: Simulation Results

RMSEg RMSEθ RMSE∗θ
h \ T 100 200 400 100 200 400 100 200 400

θ0 = 0.4 hopt 0.120 0.088 0.059 0.048 0.036 0.028 0.328 0.289 0.232

T−1/3 0.116 0.086 0.059 0.053 0.040 0.031 0.265 0.230 0.183

T−1/5 0.103 0.097 0.089 0.098 0.076 0.058 0.111 0.080 0.055

T−1/8 0.057 0.076 0.090 0.155 0.121 0.097 0.107 0.098 0.093

θ0 = 0.8 hopt 0.075 0.055 0.038 0.134 0.115 0.101 0.100 0.095 0.090

T−1/3 0.083 0.065 0.049 0.136 0.116 0.102 0.092 0.088 0.085

T−1/5 0.130 0.130 0.124 0.164 0.137 0.117 0.017 0.019 0.024

T−1/8 0.081 0.111 0.133 0.205 0.169 0.142 0.038 0.038 0.035

6 Extensions with Discussion

In this section, we discuss some potential extensions with the corresponding issues. Due to space

limitations, the associated proofs and simulation studies of these extensions are provided in the

5Take RMSEθ as an example. It is calculated by RMSEθ =
(

1
J

∑J
j=1 seθ,j

)1/2
, where seθ,j stands for the value

of seθ obtained from the jth replication.
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online supplementary file of this paper.

6.1 Extension 1

So far, we have been considering 0 ≤ θ0 <∞ for our nonparametric case, which is stricter than

the requirement of the parametric case of Robinson (2012). We now explain how to account for

the case where θ0 ∈ (−1
2
, 0). In view of the development of Lemma B.2, it is not hard to see

that if we sacrifice the range of u that ĝ(u, θ) (defined by (4.1)) is permitted to take, then we

can allow the wider range for θ0.

Corollary 6.1. Consider ĝ(u, θ) defined by (4.1), let Assumption 1 hold, and relax the restriction

of θ0 to −1
2
< θ0 < ∞. In addition, (1) let BT (θ0) = [θ0 − M

lnT
, θ0 + M

lnT
], where M is a positive

constant; (2) let Bc0 = [c0, 1], where 0 < c0 < 1 is a positive constant. As T →∞,

sup
(θ,u)∈BT (θ0)×Bc0

∣∣ĝ(u, θ)− (uT )θ0−θg(u)
∣∣ = OP

( √
lnT

T
1
2

+θ0h
1
2

+2θ0

)
+O(h).

Then, we can rewrite the objective function (4.5) as

RT (θ) =

λT · ln
 1

T

T∑
t=bTc0c+1

τ 2θ
t ĝ(τt, θ)

2
2

. (6.1)

The estimator of θ0 is still θ̂ = arg minθ RT (θ). All the main theorems still hold after minor

modification. However, in this case, 100 c0% data are not used at all, and as a consequence, we

can no longer estimate g(u) for 0 < u < c0.

6.2 Extension 2

We now provide a more generalized version of (3.1), which also indicates how to carry out

inference about θ0. To be precise, the test is specified as follows:

H0 : θ0 = a vs. H1 : θ0 > a, (6.2)

where a is a positive constant. For example a = 1 is commonly adopted in some applied settings.

For this test, we are able to state the next result.

Corollary 6.2. Let Assumptions 1.1, 1.2*, 1.3 and 1.4 hold, and suppose h2T 2a lnT → 0.
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1. Under the null of (6.2), as T →∞,

L̂M =

√
T ∗

2
ST{

1
T ∗

∑
t∈Bh [êtĝ(τt)ta ln t]2

}1/2
→D N(0, 1), (6.3)

where êt = yt − ĝ(τt), Bh = {t |bc0T c ≤ t ≤ b(1 − h)T c}, T ∗ is the cardinality of Bh,

c0 ∈ (0, 1) is a fixed constant and

ST =
1

T ∗/2

∑
t odd∈Bh

(yt − ĝ(τt)t
a) ĝ(τt)t

a ln t,

ĝ(u) =

[ ∑
t even∈Bh

t2aKh (u− τt)

]−1 ∑
t even∈Bh

taytKh (u− τt) . (6.4)

2. Under the alternative of (6.2), as T →∞, L̂M →∞.

Suppose that the condition h2T 2a lnT → 0 is satisfied, and let θα be the largest value of a

satisfying L̂M ≤ zα. By Corollary 6.2, we can construct a (1 − 2α)/2 coverage interval for θ0

of model (1.1) as [θ̂, θα], where θ̂ is obtained by (4.6). If 2θ̂ − θα ≥ 0, then [2θ̂ − θα, θα] further

provides a (1− 2α) coverage interval.

Remark: In view of the development of Theorem 3.1 and Corollary 6.2, if a higher–order kernel

is employed (i.e.,
∫
uξK(u)du > 0 for a given ξ > 2 and

∫
ujK(u)du = 0 for j < ξ) and g is

smooth enough and satisfies sup(θ,u)∈Θ×[c0,1−h]

∣∣∣∂ξ[uθ+θ0g(u)]
∂uξ

∣∣∣ < ∞, the condition h2T 2a lnT → 0

can be further relaxed to hξT 2a lnT → 0. In this case, we can establish the inference for θ0 in a

wider range. However, how to fully solve the inference issue for θ0 remains unknown.

6.3 Extension 3

In some applications it is of interest to allow for the effect of covariates. Consider a generalized

trending model of the form

yt = f(xt, τt) + g(τt)t
θ0 + εt, (6.5)

where xt is a d× 1 vector including all the observable regressors, f(·, ·) is an unknown function,

and the other variables are defined in the same way as (1.1).

For model (6.5), the main results of this paper still hold.

Corollary 6.3. Under Assumptions 1 and 2, consider model (6.5), and obtain θ̂ and ĝ(u, θ) by

(4.6) and (4.1), respectively. As T →∞,
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1. θ̂ − θ0 = OP

(
1

lnT

)
;

2. supu∈Bε1 (h)

∣∣∣ĝ(u, θ̂)− (uT )θ0−θ̂g(u)
∣∣∣ = OP

(
1

T θ0h2θ0

)
+O(hmin{2θ0,1}), where Bε1(h) is defined

in Lemma 4.1.

Assumption 2 is stated in the online supplementary file of this paper right before the detailed

proofs of this corollary.

However, there are some issues when recovering f(·). For example, (1) Vogt (2012) argues

that f(xt, τt) suffers the curse of dimensionality, so one can decompose f(xt, τt) to an additive

form f(xt, τt) =
∑d

j=1 fj(xt,j, τt) with xt = (xt,1, . . . , xt,d)
′ in order to bypass this issue, which is

exactly what Dong and Linton (2018) do in their paper; (2) Phillips et al. (2017) point out that

the usual asymptotic methods and limit theory of kernel estimation break down when f(xt, τt)

has a linear form of f(xt, τt) = x′tf(τt) with xt being an integrated process; and so forth. We

leave detailed analysis of f(·, ·) to future studies.

Apart from the above extensions, we point out that Baek, Cho and Phillips (2015) and Cho

and Phillips (2018) develop omnibus specification tests using general power functions and power

trends, including specification tests for order estimation in polynomial regressions. An extension

following Baek et al. (2015) and Cho and Phillips (2018) may be doable.

7 Conclusion

In summary, this paper provides the practitioner from a variety of fields with a new nonparametric

trending method to examine, capture, and remove time effects. We firstly study two hypothesis

tests. Then we consider the case where both of these special cases are not supported by the data.

We provide consistent estimators and their corresponding asymptotic properties in the general

model. Moreover, we examine the proposed hypothesis tests, estimation methods through both

simulated and real data examples.

Finally, we acknowledge some limitations in the end of this paper, which may guide our future

research. We assume smoothness on g(·), but it may be possible to extend the methodology to

consider a finite number of trend breaks or discontinuities in g(·), see Delgado and Hidalgo (2000).

Likewise the global trend may be subject to some breaks, Bai and Perron (1998). In addition,

the specification does not nest the commonly–used parametric specifications (e.g., Phillips, 2007;

Robinson, 2012), and the inference on the key parameter θ0 is not fully solved.
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Appendix A

In this appendix, we provide the proofs for Theorems 4.2–4.4. The rest of the proofs are given in the

online supplementary file of this paper. In addition, we provide some empirical studies, extra discussion

and simulation studies in the online supplementary file.

Proof of Theorem 4.2:

(1). Firstly, we show θ̂ →P θ0. By Lemmas 4.1 and B.2, write

RT (θ) =

λT · ln
 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

2
2

=

λT · ln
 1

T

T∑
t=bThc+1

τ2θ
t (τtT )θ0−θg(τt)

2
2

· (1 + oP (1))

=

2(θ0 − θ) + λT · ln

 1

T

T∑
t=bThc+1

τ θ0+θ
t g(τt)

2
2

· (1 + oP (1))

= 4(θ0 − θ)2 · (1 + oP (1)).

Thus, θ̂ →P θ0 follows immediately.

(2). After establishing the consistency, we focus on the rate of convergence. Note that RT (θ) =

λ2
TR
∗
T (θ), where R∗T (θ) =

{
ln
[

1
T

∑T
t=bThc+1 τ

2θ
t ĝ(τt, θ)

]2
}2

. As λT is independent of θ, we simply focus

on R∗T (θ) below. More specifically, we show that for any given ε > 0, there exists a sufficiently large

positive constant C such that

lim inf
T

Pr {R∗T (θ0 + λTC) > R∗T (θ0)} ≥ 1− ε, (A.1)

lim inf
T

Pr {R∗T (θ0 − λTC) > R∗T (θ0)} ≥ 1− ε. (A.2)

Both (A.1) and (A.2) holding true implies with probability at least 1 − ε that there exists a local

minimum in the interval UT (θ0) = [θ0−λTC, θ0 +λTC]. Hence, there exists a local minimizer such that
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θ̂ − θ0 = OP (λT ). The above argument is in line with the same spirit as the proof of Lemma A.1 of

Wang and Xia (2009).

Write

R∗T (θ)−R∗T (θ0) =

ln

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

2
2

−

ln

 1

T

T∑
t=bThc+1

τ2θ0
t ĝ(τt, θ0)

2
2

=

2(θ0 − θ) lnT + ln

 1

T

T∑
t=bThc+1

τ θ0+θ
t g(τt)

2
2

· (1 + oP (1))

−

ln

 1

T

T∑
t=bThc+1

τ2θ0
t g(τt)

2
2

· (1 + oP (1))

≈ 4(θ0 − θ)2(lnT )2 + 2(θ0 − θ)(lnT ) · ln

 1

T

T∑
t=bThc+1

τ θ0+θ
t g(τt)

2

+

ln

 1

T

T∑
t=bThc+1

τ θ0+θ
t g(τt)

2
2

−

ln

 1

T

T∑
t=bThc+1

τ2θ0
t g(τt)

2
2

:= 4B1T (θ) + 2B2T (θ) +B3T (θ)−B4T (θ0),

where the definitions of B1T (θ), B2T (θ), B3T (θ) and B4T (θ0) should be obvious; the second equality

follows from Lemma 4.1; and we use ≈ in the third step due to dropping the term (1 + oP (1)).

Note that, for
∣∣∣∫ 1
h u

θ0+θg(u)du
∣∣∣2, as h→ 0,

∣∣∣∫ 1
h u

θ0+θg(u)du
∣∣∣ > 0 by Assumption 1.1, and

∣∣∣∣∫ 1

h
uθ0+θg(u)du

∣∣∣∣2 ≤ ∫ 1

0
u2(θ0+θ)du

∫ 1

0
g2(u)du ≤ O(1)

∫ 1

0
u2(θ0+θ)du

= O(1)
u2(θ0+θ)+1

∣∣1
0

2(θ0 + θ) + 1
≤ O(1)

1

2 infθ∈Θ(θ0 + θ) + 1
<∞. (A.3)

Thus, it is easy to know B2T (θ) = OP (|θ0− θ| · lnT ). Similarly, we can show B3T (θ) = OP (1) uniformly

in θ. B4T (θ0) is independent of θ, so ignored.

Based on the above development, we obtain that for θ = θ0 ± λTC

R∗T (θ)−R∗T (θ0) = 4C2 ± 2C ·OP (1) +OP (1),

which indicates that (A.1) and (A.2) hold true with sufficiently large C. The proof of the second result

is now complete.

(3). By Lemma 4.1 and the second result of this theorem, the third result follows. �

Proof of Theorem 4.3:
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(1). In order to establish the normality of g(u) for ∀u ∈ (0, 1), write

|ĝ(1, θ̂)|−1 · ĝ(u, θ̂)− g(u) = |ĝ(1, θ̂)|−1 ·

(
T∑
t=1

t2θ̂Kh (u− τt)

)−1 T∑
t=1

tθ̂+θ0g(τt)Kh (u− τt)− g(u)

+ |ĝ(1, θ̂)|−1 ·

(
T∑
t=1

t2θ̂Kh (u− τt)

)−1 T∑
t=1

tθ̂εtKh (u− τt)

:= A1 +A2,

where the definitions of A1 and A2 should be obvious.

After noting that u is fixed, it is easy to show that A1 = OP (h) by proofs similar to (4) and

(5) of Lemma B.2 (but much simpler). We then just need to focus on the normalized version of∑T
t=1 t

θ̂εtKh (u− τt) and write

1

T

T∑
t=1

τ θ̂t εtKh (u− τt) =
1

T

T∑
t=1

τ θ0t εtKh (u− τt) +
1

T

T∑
t=1

(
τ θ̂t − τ

θ0
t

)
εtKh (u− τt) := B1 +B2.

To investigate B2, denote BT (θ) = 1
T

∑T
t=1 τ

θ
t εtKh (u− τt) and it is easy to see that the first derivative

of BT (θ) is B
(1)
T (θ) = 1

T

∑T
t=1 τ

θ
t (ln τt)εtKh (u− τt), which is identical to the term considered in (3) of

Lemma B.2. Then we can write

B2 = BT (θ̂)−BT (θ0) = (θ̂ − θ0) ·B(1)
T (θ∗) = (θ̂ − θ0) ·OP

(
(lnT )

3
2

√
Th

)
,

where θ∗ lies between θ0 and θ̂; the second equality follows from the Mean Value Theorem; and the

third equality follows from (3) of Lemma B.2.

By some standard arguments of time series analysis (e.g., Section 2.6.4 of Fan and Yao, 2003), we

can prove
√
ThB1 →D N(0,Σ∗), where

Σ∗ = lim
T→∞

1

Th

T∑
t=1

T∑
s=1

τ θ0t τ
θ0
s K

(
w − τt
h

)
K

(
w − τs
h

)
E[εtεs].

Further note that we have

1

Th

T∑
t=1

T∑
s=1

τ θ0t τ
θ0
s K

(
u− τt
h

)
K

(
u− τs
h

)
E[εtεs]

=
1

Th

T∑
t=1

τ2θ0
t K2

(
u− τt
h

)
E[ε2

t ] +
2

Th

T∑
t=2

t−1∑
s=1

τ θ0t τ
θ0
s K

(
u− τt
h

)
K

(
u− τs
h

)
E[εtεs]

=
1

Th

T∑
t=1

τ2θ0
t K2

(
u− τt
h

)
σ2(τt) +

2

Th

T∑
t=2

t−1∑
s=1

τ θ0t τ
θ0
s K

(
u− τt
h

)
K

(
u− τs
h

)
E[εtεs]

:= V1T + V2T . (A.4)
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It is easy to show that as T →∞, V1T = (1 + o(1))σ2(u)u2θ0
∫ 1
−1K

2(x)dx. Note that V2T is equivalent

to the second term on the right hand side of (A.4) of Su, Chen and Ullah (2009). Using the truncation

technique employed in (A.4)–(A.7) of Su et al. (2009), we obtain that |V2T | = o(1). Furthermore, by

the first result of Theorem 4.4 (the details are temporarily omitted for now, as the order of these proofs

does not matter), |ĝ(1, θ̂)| = T θ0−θ̂ →P

∣∣∣∫ 1
0 u

2θ0g(u)du
∣∣∣−1

, and simple calculation yields

η̂T =
1

T

T∑
t=bThc+1

τ2θ̂
t g(τt) +

1

T

T∑
t=bThc+1

τ2θ̂
t (g̃(τt)− g(τt))

=
1

T

T∑
t=bThc+1

τ2θ̂
t g(τt) + oP (1) =

∫ 1

0
u2θ0g(u)du+ oP (1), (A.5)

where g̃ has been defined in the body of this theorem; and the last equality follows from development

similar to (B.8).

Based on the above analyses, the first result follows.

(2). Using the extra conditions imposed for the second result of this theorem, it is easy to show the

second result follows. �

Before proving Theorem 4.4, we denote some variables for notational simplicity and provide some

discussions.

Ω = lim
T→∞

T∑
t=1

T∑
s=1

E[VtVs], Vt = V1t + V2t, V1t = − 1

T 3/2

T∑
u=bThc+1

τ θ0u εuKh(τu − τt),

V2t =
1

T 3/2 lnT

T∑
v=bThc+1

τ θ0v (ln τv)εtKh(τv − τt). (A.6)

We now verify the existence of Ω. Simple algebra shows that ln τt
lnT = −(1− ln t

lnT ), so V2t is a rescaled

version of V1t. Thus, we just focus on
∑T

t=1

∑T
s=1E[V1tV1s] for the purpose of demonstration. Note

that it is easy to obtain

∫ 1

h
Kh(w − u)dw =


∫ 1
−cK(w)dw, u = h+ ch ∈ [h, 2h) (i.e., c ∈ [0, 1))

1, u ∈ [2h, 1− h]∫ c
−1K(w)dw, u = 1− ch ∈ (1− h, 1] (i.e., c ∈ [0, 1))

, (A.7)

which indicates 0 ≤ supu∈[0,1]

∫ 1
h Kh(w − u)dw ≤ 1. Thus, for

∑T
t=1

∑T
s=1E[V1tV1s], we have

T∑
t=1

T∑
s=1

E[V1tV1s] =
1

T 3

T∑
s1=1

T∑
s2=1

T∑
t1=bThc+1

T∑
t2=bThc+1

E[εs1εs2 ]τ θ0s1 τ
θ0
s2Kh(τt1 − τs1)Kh(τt2 − τs2)
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=
1

T

T∑
s1=1

T∑
s2=1

E[εs1εs2 ]τ θ0s1 τ
θ0
s2

∫ 1

h
Kh(w − τs1)dw

∫ 1

h
Kh(w − τs2)dw + o(1),

where the second equality follows from the definition of the Riemann integral; and the right hand side

converges by (A.7) and standard arguments of time series analysis.

Proof of Theorem 4.4:

(1). By (B.2), it is easy to obtain that 1

T

T∑
u=bThc+1

τ2θ
u

∂ĝ(τu, θ)

∂θ
+

2

T

T∑
u=bThc+1

τ2θ
u ĝ(τu, θ) ln τu

∣∣∣θ=θ0
= − 2

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1

∑T
s=1(t

√
s)2θ0sθ0g(τs)Kh(τu − τt)Kh(τu − τs) ln t[∑T

t=1 t
2θ0Kh(τu − τt)

]2

− 2

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1

∑T
s=1(t

√
s)2θ0εsKh(τu − τt)Kh(τu − τs) ln t[∑T
t=1 t

2θ0Kh(τu − τt)
]2

+
1

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1 t

2θ0g(τt)Kh(τu − τt) ln t∑T
t=1 t

2θ0Kh(τu − τt)

+
1

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1 t

θ0εtKh(τu − τt) ln t∑T
t=1 t

2θ0Kh(τu − τt)

+
2

T

T∑
u=bThc+1

(ln τu)τ2θ0
u

∑T
t=1 t

2θ0g(τt)Kh(τu − τt)∑T
t=1 t

2θ0Kh(τu − τt)

+
2

T

T∑
u=bThc+1

(ln τu)τ2θ0
u

∑T
t=1 t

θ0εtKh(τu − τt)∑T
t=1 t

2θ0Kh(τu − τt)

:= −2A1 − 2A2 +A3 +A4 + 2A5 + 2A6, (A.8)

where the definitions of A1 to A6 should be obvious.

Focus on T θ0+
1
2

lnT (−2A2 +A4 + 2A6) first. By repeatedly using Lemma B.2, we are able to write

T θ0+ 1
2

lnT
(−2A2 +A4 + 2A6)

= −(1 + o(1)) · T
1
2

lnT
· 2

T

T∑
u=bThc+1

(ln τu + lnT )
1

T

T∑
t=1

τ θ0t εtKh(τu − τt)

+ (1 + o(1)) · T
1
2

lnT
· 1

T

T∑
u=bThc+1

1

T

T∑
t=1

τ θ0t εtKh(τu − τt)(ln τt + lnT )

+ (1 + o(1)) · T
1
2

lnT
· 2

T

T∑
u=bThc+1

ln τu
T

T∑
t=1

τ θ0t εtKh(τu − τt)
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= (1 + oP (1)) · 1

T 3/2

T∑
u=bThc+1

T∑
t=1

{
−2τ θ0t εtKh(τu − τt) + τ θ0t εtKh(τu − τt)

}

+ (1 + oP (1)) · 1

T 3/2 lnT

T∑
u=bThc+1

T∑
t=1

τ θ0t (ln τt)εtKh(τu − τt)

= (1 + oP (1)) ·
T∑
t=1

Vt, (A.9)

where Vt has been defined in (A.6).

We then can use the large block and small block technique (e.g., Fan and Yao, 2003) to show that∑T
t=1 Vt →D N(0,Ω), where Ω has been defined in (A.6). Thus, we know that

−2A2 +A4 + 2A6 = OP

(
lnT

T θ0+ 1
2

)
. (A.10)

To further simplify the notation, let ξT = 1
T

∑T
t=bThc+1 τ

2θ0
t ĝ(τt, θ0), and it is easy to know that

ξT →P

∫ 1

0
u2θ0g(u)du. (A.11)

Thus, rearranging (4.9) using the decomposition (A.8) gives[
∂2RT (θ)

∂θ2

∣∣∣
θ=θ̃

]−1{−4λ2
T · ln ξ2

T

ξT
· (lnT )(−2A2 +A4 + 2A6)

}
= (lnT )

{
(θ̂ − θ0)−

[
∂2RT (θ)

∂θ2

∣∣∣
θ=θ̃

]−1
4λ2

T · ln ξ2
T

ξT
(2A1 −A3 − 2A5)

}
. (A.12)

Note that (A.10) and (7) of Lemma B.3 together imply[
∂2RT (θ)

∂θ2

∣∣∣
θ=θ̃

]−1{−4λ2
T · ln ξ2

T

ξT
· (lnT )(−2A2 +A4 + 2A6)

}
= OP

(
1

T θ0+ 1
2

)
.

Thus, we can further simplify (A.12) to obtain

(lnT )(θ̂ − θ0) = (lnT )

[
∂2RT (θ)

∂θ2

∣∣∣
θ=θ̃

]−1
4λ2

T · ln ξ2
T

ξT
(2A1 −A3 − 2A5) +OP

(
1

T θ0+ 1
2

)
= λT

ln |ξT |
ξT

(2A1 −A3 − 2A5) +OP

(
1

T θ0+ 1
2

)
. (A.13)

Below we just need to focus on A1, A3 and A5. Start from A1.

A1 =
1

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1

∑T
s=1 τ

2θ0
t τ2θ0

s g(τs)Kh(τu − τt)Kh(τu − τs)(ln τt + lnT )[∑T
t=1 τ

2θ0
t Kh(τu − τt)

]2
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= (lnT ) · 1

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1

∑T
s=1 τ

2θ0
t τ2θ0

s g(τs)Kh(τu − τt)Kh(τu − τs)[∑T
t=1 τ

2θ0
t Kh(τu − τt)

]2

+
1

T

T∑
u=bThc+1

τ2θ0
u

∑T
t=1

∑T
s=1 τ

2θ0
t τ2θ0

s g(τs)Kh(τu − τt)Kh(τu − τs) ln τt[∑T
t=1 τ

2θ0
t Kh(τu − τt)

]2

:= A11 +A12.

By Lemma B.2 and the definition of the Riemann integral, simple calculation yields

A11 = (lnT )

∫ 1

0
g(u)du+ o(1) and A12 =

∫ 1

0
u2θ0g(u)(lnu)du+ o(1).

Therefore, A1 = (lnT )
∫ 1

0 u
2θ0g(u)du+

∫ 1
0 u

2θ0g(u)(lnu)du+ o(1). Similarly, we can show that

A3 = (lnT )

∫ 1

0
u2θ0g(u)du+

∫ 1

0
u2θ0g(u)(lnu)du+ o(1),

A5 =

∫ 1

0
u2θ0g(u)(lnu)du+ o(1).

By the analyses of A1, A3 and A5, we obtain that

2A1 −A3 − 2A5 = (lnT )

∫ 1

0
u2θ0g(u)du · (1 +OP (λT )). (A.14)

In connection with (A.13) and (A.11), we can conclude that

(lnT )(θ̂ − θ0) =
ln |ξT |
ξT

∫ 1

0
u2θ0g(u)du+OP (λT ) = ln

∣∣∣∣∫ 1

0
u2θ0g(u)du

∣∣∣∣+ oP (1),

where the existence of ln
∣∣∣∫ 1

0 u
2θ0g(u)du

∣∣∣ has been verified in the proof of Theorem 4.2. Thus, the proof

of the first result of this theorem is now complete.

(2). The second result follows from (A.5) straight away. �
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some extra simulation studies.

Appendix B

B.1 Empirical Study

We provide two case studies in this section. Firstly, we focus on the global mean sea level (GMSL). Then

we move on to investigate the U.S. GDP data.

B.1.1 Global Mean Sea Level

The data is collected from CSIRO1, and is recorded in millimetres originally. As shown in Figure B.1, the

range of raw data covering years 1880 to 2005 is from -169.9 to 37.6, and has a strong time trend. Note that

although our model (1.1) and the model of Robinson (2012) (i.e., (B.1) below) are defined on t = 1, . . . , T ,

both models in fact have y0 = 0 if t = 0 is permitted. Therefore, we shift the data set vertically to let y0

(i.e., the value of year 1880) be 0 for better fit.
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Figure B.1: Global Mean Sea Level

1http://www.cmar.csiro.au/sealevel/index.html
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We first implement the two hypothesis tests of Section 3. The detailed testing procedures are identical

to the simulation section, so we do not repeat them again for conciseness. Table B.1 below summarizes the

statistic values of two tests and the corresponding decisions at 95% significant level.2

Table B.1: Results of Two Tests

Statistic Value Decision

Testing θ0 3.57 Reject

Testing g(·) 2.44 Reject

Based on Table B.1, we have enough evidence to move on to consider model (1.1) for the case where

θ0 > 0 and g is a non–constant function. Hereafter, we always refer to our nonparametric method as NM.

We select the bandwidth (referred to as hopt) by the procedure given in the simulation section. In order to

check the sensitivity of our nonparametric approach, we use two more bandwidths hleft = hopt − 0.03 and

hright = hopt + 0.03 to implement the nonparametric regression below.

For the purpose of comparison, we also consider a parametric setting following Robinson (2012) (referred

to as Para–R hereafter) of the form:

yt =

d∑
j=1

βjt
θ0,j + εt, (B.1)

and estimate θ0 = (θ0,1, . . . , θ0,d)
′ and β0 = (β1, . . . , βd)

′ of (B.1) by the approach of Robinson (2012). It is

noteworthy that how to choose the value of d is still an open question. However, in our study, we always get

a warning from Matlab saying “Matrix is close to singular or badly scaled” when d ≥ 2. Therefore, we set

d = 1 throughout this study, which essentially gives a model of Phillips (2007).

We report the estimation results of both methods in Table B.2, and plot the estimated g0 under three

choices of bandwidth in Figure B.2. It is clear that the estimation results of θ0 and g0 are quite stable with

respect to the choice of bandwidth.

Table B.2: Estimation Results for Section 4

h θ0 β0

NM (hopt) 0.1666 0.8527 –

NM (hleft) 0.1366 0.8529 –

NM (hright) 0.1966 0.8521 –

Para–R – 1.0000 0.4676

By plotting the estimation residuals for t = [Th] + 1, . . . , T in Figure B.3, it is easy to see that the

residuals of NM indeed are smaller than those of Para–R.

Finally, we take a look at the out–sample root mean squared errors (OSRMSE) of both methods, and

they are specifically calculated as follows.

2Using the odd numbered observations to estimate g(·) and evaluating the score function with the even numbered
observations gives the statistic value 2.54. Either way, we reject the null hypothesis.
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Figure B.2: Estimation of g0
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Figure B.3: Estimation Residuals

OSRMSE =

√√√√1

5

4∑
j=0

(
yTj − ŷTj

)
,

where Tj = T − j, and ŷTj is obtained by using sample {yt |t = 1, . . . , Tj − 1} for both methods. As how to

calculate ŷTj is obvious for Para–R, we omit the details. Below we explain how to obtain ŷTj using the NM

method. Specifically, the objective function is specified as follows.

RTj (θ) =

λTj · ln
 1

Tj

Tj−1∑
t=bTjhc+1

(
t

Tj

)2θ

ĝTj (τt, θ)

2


2

,

where ĝTj (u, θ) =
[∑Tj−1

t=1 t2θKh (u− τt)
]−1∑Tj−1

t=1 tθytKh (u− τt) . Thus, ŷTj = T
θ̂Tj
j ĝTj (1, θ̂), where θ̂Tj =

argminθRTj (θ). We summarise the results in the next table. In this case, Para–R slightly outperforms NM

method.
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Table B.3: Out–Sample Root Mean Squared Errors

NM Para–R

11.86 9.28
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Figure B.4: U.S. GDP Data (1947 Q1 - 2016 Q3)

B.1.2 U.S. GDP

We now provide a case study by investigating U.S. GDP data, which are collected from the Bureau of

Economic Analysis, U.S. Department of Commerce3, and are recorded in billions of 2016 U.S. dollars. As

shown in Figure B.4, the range of raw data covering 1947 Q1 to 2016 Q3 is from 243 to 18,675, and has a

strong nonlinear time trend.

We repeat the testing and estimation procedures as we do for the GMSL. Table B.4 below summarizes

the statistic values of two tests and the corresponding decisions at the 95% significance level.4

Table B.4: Results of Two Tests

Statistic Value Decision

Testing θ0 2.16 Reject

Testing g(·) 26.24 Reject

We report the estimation results in Table B.5, and plot the estimated g0 under three choices of bandwidth

in Figure B.5.

The estimation residuals for t = [Th] + 1, . . . , T (also considered as detrended series) are plotted in

Figure B.6. It is easy to see that the residuals of NM are indeed smaller than those of Para–R, and both

methods reveal the trending heteroskedasticity in the residuals. Moreover, if we consider the above procedure

as a detrending process, fluctuations about the trend are the true focus. It is then interesting to see that

3https://bea.gov/national
4Using the odd numbered observations to estimate g(·) and evaluating the score function with the even numbered

observations gives the statistic value 2.46. Still, we reject the null hypothesis.
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Table B.5: Estimation Results

h θ0 β0

NM (hopt) 0.1001 1.4653 –

NM (hleft) 0.0701 1.4650 –

NM (hright) 0.1301 1.4656 –

Para–R – 2.5844 0.0092

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

Figure B.5: Estimation of g0

both methods clearly reveal (1) Early 1980s recession5, (2) Recession of the early 1990s6, (3) Stock market

downturn of 20027, and (4) Global financial crisis8 (GFS) in the history of the U.S. For the first three, both

methods agree with each other well in terms of starting and ending date, but Para–R suggests that the GFS

is still going on during 2014–2016, which is contradictory to the economic prevailing climate of these three

years of the U.S. (Maria and Wen, 2015).

Finally, we summarise the results of OSRMSE in the next table, and in this case, NM outperforms

Para–R.

Table B.6: Out–Sample Root Mean Squared Errors

NM Para–R

594 671

5The early 1980s recession describes the severe global economic recession affecting much of the developed world
in the late 1970s and early 1980s.

6The recession of the early 1990s describes the period of economic downturn affecting much of the world in the
late 1980s and early 1990s.

7In 2001, stock prices took a sharp downturn in stock markets across the U.S., Canada, Asia, and Europe.
8It began in 2007 with a crisis in the subprime mortgage market in the U.S., and developed into a full–blown

international banking crisis in 2008. The crisis was followed by a global economic downturn, the Great Recession.
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Figure B.6: Detrended U.S. GDP

B.2 Proofs

This subsection includes preliminary lemmas with the associated development and omitted proofs of the main

text. Before proceeding further, we prepare some notations for later use. Let ΛT,h(u, θ) =
∑T
t=1 t

2θKh(u−τt).
Simple calculation shows that

∂ĝ(u, θ)

∂θ
= −2Λ−2

T,h(u, θ)

[
T∑
t=1

T∑
s=1

(t
√
s)2θysKh(u− τt)Kh(u− τs) ln t

]

+Λ−1
T,h(u, θ)

[
T∑
t=1

tθytKh(u− τt) ln t

]
;

∂2ĝ(u, θ)

∂θ2
= 8Λ−3

T,h(u, θ)

[
T∑
t=1

T∑
s=1

T∑
r=1

(ts
√
r)2θyrKh(u− τt)Kh(u− τs)Kh(u− τr)(ln t)(ln s)

]

−4Λ−2
T,h(u, θ)

[
T∑
t=1

T∑
s=1

(t
√
s)2θysKh(u− τt)Kh(u− τs)(ln t) ln(t

√
s)

]

−2Λ−2
T,h(u, θ)

[
T∑
t=1

T∑
s=1

(t
√
s)2θysKh(u− τt)Kh(u− τs)(ln t)(ln s)

]

+Λ−1
T,h(u, θ)

[
T∑
t=1

tθytKh(u− τt)(ln t)2

]
;

∂RT (θ)

∂θ
= 4λ2

T

ln

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

2
 ·

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

−1
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·

 1

T

T∑
t=bThc+1

τ2θ
t

∂ĝ(τt, θ)

∂θ
+

2

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ) ln τt

 ;

∂2RT (θ)

∂θ2
= −4λ2

T

ln

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

2
 ·

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

−2

·

 1

T

T∑
t=bThc+1

τ2θ
t

∂ĝ(τt, θ)

∂θ
+

2

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ) ln τt


2

+4λ2
T

ln

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

2
 ·

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

−1

·

 1

T

T∑
t=bThc+1

τ2θ
t

∂2ĝ(τt, θ)

∂2θ
+

4

T

T∑
t=bThc+1

τ2θ
t

∂ĝ(τt, θ)

∂θ
ln τt +

4

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)(ln τt)

2


+8λ2

T

 1

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ)

−2

·

 1

T

T∑
t=bThc+1

τ2θ
t

∂ĝ(τt, θ)

∂θ
+

2

T

T∑
t=bThc+1

τ2θ
t ĝ(τt, θ) ln τt


2

. (B.2)

B.2.1 Preliminary Lemmas with Associated Proofs

Recall that we consider the case where θ0 > 0 and g is a non-constant function in Section 3, and we will not

repeat this again in the following development.

Lemma B.1.

1. Let {Xt, t ≥ 1} be a zero-mean α-mixing process satisfying Pr(|Xt| ≤ b) = 1 for all t ≥ 1. Then for

each integer q ∈ [1, n2 ] and each ε > 0, we have

Pr

(∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ > nε

)
≤ 4 exp

(
−8−1ε2q[v(q)]−2

)
+ 22

(
1 + 4bε−1

)1/2
qα (bT/(2q)c) ,

where v2(q) = 2
p2σ

2(q) + bε
2 with p = T

2q and

σ2(q) = max
1≤j≤2q−1

E
{

(bjpc+ 1− jp)Xbjpc+1 +Xbjpc+2 + · · ·+Xb(j+1)pc

+((j + 1)p− b(j + 1)pc)Xb(j+1)pc+1

}2
;

2. 1
T

∑T
t=1 ln t = lnT − 1 + o(1), as T →∞.

Lemma B.2. Let Assumption 1 hold, and define

c̃ =

 1, u ∈ [h, 1− h]∫ c
−1
K(w)dw, u = 1− ch ∈ (1− h, 1] (i.e., c ∈ [0, 1))

.

As T →∞,
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1. supu∈[0,1]

∣∣∣ 1
T

∑T
t=1 τt

θεtKh(u− τt)
∣∣∣ = OP

(√
lnT
Th

)
for ∀θ ∈ Θ;

2. sup(θ,u)∈Θ×[0,1]

∣∣∣ 1
T

∑T
t=1 τt

θεtKh(u− τt)
∣∣∣ = OP

(√
lnT
Th

)
;

3. sup(θ,u)∈Θ×[0,1]

∣∣ 1
T

∑n
t=1 τt

θ(ln τt)εtKh(u− τt)
∣∣ = OP

(
(lnT )

3
2√

Th

)
;

4. sup(θ,u)∈Θ×[h,1]

∣∣∣ 1
T

∑T
t=1 τ

θ+θ0
t g(τt)Kh (τt − u)− c̃uθ+θ0g(u)

∣∣∣ = O(h);

5. sup(θ,u)∈Θ×Bε1 (h)

∣∣∣ 1
T

∑T
t=1 τ

2θ
t Kh (τt − u)− c̃u2θ

∣∣∣ = OP (1)hmin{2c∗,1}, where Bε1(h) has been defined

in Lemma 4.1, and c∗ = min{θ∈Θ} θ > 0;

6. supθ∈U(θ0) |vT (θ)− v(θ)| = o(1), where U(θ0) is a sufficiently small compact set that θ0 belongs to,

vT (θ) = 1
T

∑T
t=1 τ

θ0+θ
t g(τt) and v(θ) =

∫ 1

0
uθ0+θg(u)du.

Lemma B.3. Under Assumption 1, as T →∞,

1. 1
T

∑T
t=bThc+1 τ

2θ
t

∂2ĝ(τt,θ)
∂θ2

∣∣∣
θ=θ̃

= (lnT )2φ1 + 2(lnT )φ2 + φ3 + oP (1),

2. 1
T

∑T
t=bThc+1 τ

2θ
t

∂ĝ(τt,θ)
∂θ

∣∣∣
θ=θ̃

= −(lnT )φ1 − φ2 + oP (1),

3. 1
T

∑T
t=bThc+1 τ

2θ
t

∂ĝ(τt,θ)
∂θ ln τt

∣∣∣
θ=θ̃

= −(lnT )φ2 − φ3 + oP (1),

4. 1
T

∑T
t=bThc+1 τ

2θ
t ĝ(τt, θ)

∣∣
θ=θ̃

= φ1 + oP (1),

5. 1
T

∑T
t=bThc+1 τ

2θ
t ĝ(τt, θ) ln τt

∣∣
θ=θ̃

= φ2 + oP (1),

6. 1
T

∑T
t=bThc+1 τ

2θ
t ĝ(τt, θ)(ln τt)

2
∣∣
θ=θ̃

= φ3 + oP (1),

7. ∂2RT (θ)
∂θ2

∣∣∣
θ=θ̃

= 8 + oP (1),

where φ1 to φ3 are defined by (B.8) to (B.10) respectively; and θ̃ is defined in (4.9) of the main text.

Proof of Lemma B.1:

(1). The detailed proof can be seen in Bosq (1998), thus omitted.

(2). Write

1

T

T∑
t=1

ln t =
1

T

T∑
t=1

(ln τt + lnT ) =

∫ 1

0

(lnu)du+ o(1) + lnT

= u(lnu)
∣∣1
0
−
∫ 1

0

ud(lnu) + o(1) + lnT = −1 + o(1) + lnT,

where the second equality follows from the definition of the Riemann integral. The proof is complete. �

Proof of Lemma B.2:

(1). Let l(T ) be any positive function satisfying that l(T )→∞ as T →∞. By the same arguments as

(B.10) and (B.11) of Chen et al. (2012), it suffices to prove that for ∀θ ∈ Θ

8



sup
u∈[0,1]

∣∣∣∣∣ 1

T

T∑
t=1

τt
θεtKh(u− τt)

∣∣∣∣∣ = oP

(
l(T )

√
lnT

Th

)
.

In order to do so, we cover [0, 1] by a finite number of subintervals {Bi} that are centred at bi and of

length κT = o(h2). Denote UT as the number of such subintervals, which immediately gives UT = O(κ−1
T ).

Below, we take κT = [l(T )]1−v ·
√

lnT
Th · h

2 for a sufficiently large v, which satisfies v ≤ 2 + δ/2 and δ is

defined in Assumption 1.2. Write

sup
u∈[0,1]

∣∣∣∣∣ 1

T

T∑
t=1

τθt Kh (u− τt) εt

∣∣∣∣∣
≤ max

1≤i≤UT
sup
u∈Bi

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
u− τt
h

)
εt −

1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
εt

∣∣∣∣∣
+ max

1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
εt

∣∣∣∣∣
:= Π1T + Π2T ,

where the definitions of Π1T and Π2T should be obvious.

For Π1T ,

Π1T = max
1≤i≤UT

sup
u∈Bi

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
u− τt
h

)
εt −

1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
εt

∣∣∣∣∣
≤ max

1≤i≤UT
sup
u∈Bi

1

Th

T∑
t=1

τθt ·
∣∣∣∣u− bih

·K(1) (u∗) εt

∣∣∣∣ ≤ O(1) max
1≤i≤UT

sup
u∈Bi

κT
h2

1

T

T∑
t=1

τθt |εt|

= OP (1)
κT
h2
·
∫ 1

0

uθdu · E|εt| = OP

(
[l(T )]1−v

√
lnT

Th

)

=
1

[l(T )]v
OP

(
l(T )

√
lnT

Th

)
= oP

(
l(T )

√
lnT

Th

)
,

where u∗ lies between u−τt
h and bi−τt

h ; the first inequality follows from the Mean Value Theorem; the

second equality follows from the definition of the Riemann integral; and the third equality follows from the

construction of κT .

For Π2T , we use a truncation technique, so for the same v above denote ε̃t = εt · I[|εt| ≤ T 1/vl(T )] and

ε̃ct = εt − ε̃t, where I[·] is the indicator function. Thus, we obtain that

Π2T ≤ max
1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
ε̃t

∣∣∣∣∣+ max
1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
ε̃ct

∣∣∣∣∣ := Π2T,1 + Π2T,2,

where the definitions of Π2T,1 and Π2T,2 should be obvious.

For Π2T,2, write

Pr

(
Π2T,2 ≥ εl(T )

√
lnT

Th

)

= Pr

(
max

1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
ε̃ct

∣∣∣∣∣ ≥ εl(T )

√
lnT

Th

)
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≤ Pr

(
max

1≤i≤UT
max

1≤t≤T

1

h
τθt K

(
bi − τt
h

)
|ε̃ct | ≥ εl(T )

√
lnT

Th

)

= Pr

(
max

1≤i≤UT
K

(
bi − τt
h

)
max

1≤t≤T
τθt |ε̃ct | ≥ εl(T )

√
h lnT

T

)

≤ Pr

(
max

1≤t≤T
|ε̃ct | ≥ 0

)
≤

T∑
t=1

Pr
(
|εt| > T 1/vl(T )

)
≤

T∑
t=1

E|εt|v

[l(T )]vT
= O(1)

1

[l(T )]v
= o(1),

where the third equality follows from the existence of E|εt|v due to v ≤ 2 + δ/2 and Assumption 1.2.

For Π2T,1, write

Π2T,1 = max
1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
(ε̃t − E[ε̃t] + E[ε̃t])

∣∣∣∣∣
≤ max

1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
(ε̃t − E[ε̃t])

∣∣∣∣∣+ max
1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
E[εt − ε̃ct ]

∣∣∣∣∣
= max

1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
(ε̃t − E[ε̃t])

∣∣∣∣∣+ max
1≤i≤UT

∣∣∣∣∣ 1

Th

T∑
t=1

τθt K

(
bi − τt
h

)
E[ε̃ct ]

∣∣∣∣∣
:= Π2T,11 + Π2T,12.

By the proof given for Π2T,2, we know that Π2T,12 = o

(
l(T )

√
lnT
Th

)
. Thus, we focus on Π2T,11. Observe

that ∣∣∣∣ 1

Th
· τθt K

(
bi − τt
h

)
(ε̃t − E[ε̃t])

∣∣∣∣ ≤ O(1)T 1/v−1l(T )h−1 = O(1)ξ,

where ξ = T 1/v−1l(T )h−1.

Then, for any ε > 0, letting l(·) and v satisfy l(T ) → ∞ and T 1−2/vh
[l(T )]4·lnT → ∞ and applying Lemma B.1

with

q =
T

2p
, p =

1

ε[l(T )]2

√
T 1−2/vh

lnT
, ε1 = εT−1l(T )

√
lnT

Th
, and

2σ2(q)

p2
+
ξε1
2
≤ O(1)

T 2hp
,

we have

Pr (Π2T,11 > Tε1) = Pr

(
Π2T,1 > εl(T )

√
lnT

Th

)

≤ O(1)κ−1
T exp

(
−
ε2[l(T )]2q lnT

T 3h
O(1)
T 2hp

)
+O(1)κ−1

T

(
1 +

4ξ

ε1

)1/2

qα(bT/(2q)c)

≤ O(1)κ−1
T exp

(
−O(1)ε2[l(T )]2 lnT

)
+O(1)κ−1

T

(
1 +

4ξ

ε1

)1/2

qα(bT/(2q)c).

By the same arguments under (B.16) of Chen et al. (2012), we obtain Π2T,11 = oP

(
l(T )

√
lnT
Th

)
.
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Based on the analyses of Π2T,1 and Π2T,2, Π2T = oP

(
l(T )

√
lnT
Th

)
. In connection with the analysis of

Π1T , the proof is complete.

(2). As in the first result of this lemma, it suffices to show that

√
Th

l(T )
√

lnT
· sup

(θ,u)∈Θ×[0,1]

∣∣∣∣∣ 1

T

T∑
t=1

τt
θεtKh(u− τt)

∣∣∣∣∣ = oP (1) ,

where l(T ) is an arbitrary positive function satisfying that l(T )→∞ as T →∞. Below, we use Lemma A2

of Newey and Powell (2003) to prove this result.

Step 1 : Θ × [0, 1] is a compact subspace of R2 with the Euclidean norm, which verifies condition (i) of

Lemma A2 of Newey and Powell (2003).

Step 2 : For ∀θ ∈ Θ, supu∈[0,1]

√
Th

l(T )
√

lnT

∣∣∣ 1
T

∑T
t=1 τt

θεtKh(u− τt)
∣∣∣ = oP (1) holds by result (1) of this

lemma. Thus, we immediately obtain that for ∀(θ, u) ∈ Θ× [0, 1]

√
Th

l(T )
√

lnT

∣∣∣∣∣ 1

T

T∑
t=1

τt
θεtKh(u− τt)

∣∣∣∣∣ = oP (1) .

Step 3 : Condition (iii) of Lemma A2 of Newey and Powell (2003) holds apparently in this case.

By Step 1 -Step 3, the second result of this lemma holds.

(3). The proof is the same as (1) and (2) of this lemma combined, so is therefore omitted.

(4). Divide Θ× [h, 1] into the following two subsets: Case 1: (θ, u) ∈ Θ× [h, 1− h];

Case 2: (θ, u) ∈ Θ× (1− h, 1].

For Case 1, write

sup
(θ,u)∈Θ×[h,1−h]

∣∣∣∣∣ 1

Th

T∑
t=1

τθ+θ0t g(τt)K

(
τt − u
h

)
− uθ+θ0g(u)

∣∣∣∣∣
= sup

(θ,u)∈Θ×[h,1−h]

∣∣∣∣ 1h
∫ 1

0

wθ+θ0g(w)K

(
w − u
h

)
dw +O

(
1

Th

)
− uθ+θ0g(u)

∣∣∣∣
= sup

(θ,u)∈Θ×[h,1−h]

∣∣∣∣∣
∫ (1−u)/h

−u/h
m1(u+ wh)K(w)dw +O

(
1

Th

)
− uθ+θ0g(u)

∣∣∣∣∣
= sup

(θ,u)∈Θ×[h,1−h]

∣∣∣∣∫ 1

−1

(
m1(u) +m

(1)
1 (ũ)wh

)
K(w)dw +O

(
1

Th

)
− uθ+θ0g(u)

∣∣∣∣
= sup

(θ,u)∈Θ×[h,1−h]

∣∣∣∣∫ 1

−1

m
(1)
1 (ũ)whK(w)dw +O

(
1

Th

)∣∣∣∣
= O(h) +O

(
1

Th

)
= O(h),

where ũ lies between u and u+ wh; m1(u) = uθ+θ0g(u); the first equality follows from the definition of the

Riemann integral; the third equality follows from the Taylor expansion and the fact that K(w) is defined on

[−1, 1]; the fifth equality follows from Assumption 1.1; and the sixth equality follows from Assumption 1.4.
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For Case 2, (θ, u) ∈ Θ× (1− h, 1] is equivalent to (θ, c) ∈ Θ× [0, 1) with u = 1− ch. Before proceeding

further, note that for u∗ lying between u and u+ wh with w ∈ [−1, c], we have

1− 2h ≤ u− h ≤ u∗ ≤ u+ ch = 1. (B.3)

Thus, we can write

sup
(θ,c)∈Θ×[0,1)

∣∣∣∣∣ 1

Th

T∑
t=1

τθ+θ0t g(τt)K

(
τt − u
h

)
− uθ+θ0g(u)

∫ c

−1

K(w)dw

∣∣∣∣∣
= sup

(θ,c)∈Θ×[0,1)

∣∣∣∣∣
∫ (1−u)/h

−u/h
m1(u+ wh)K(w)dw +O

(
1

Th

)
− uθ+θ0g(u)

∫ c

−1

K(w)dw

∣∣∣∣∣
= sup

(θ,c)∈Θ×[0,1)

∣∣∣∣∫ c

−1

(
m1(u) +m

(1)
1 (ũ)wh

)
K(w)dw +O

(
1

Th

)
− uθ+θ0g(u)

∫ c

−1

K(w)dw

∣∣∣∣
= sup

(θ,c)∈Θ×[0,1)

∣∣∣∣∫ c

−1

m
(1)
1 (ũ)whK(w)dw +O

(
1

Th

)∣∣∣∣
= O(h) +O

(
1

Th

)
= O(h),

where ũ lies between u and u+wh; m1(w) = wθ+θ0g(w); the first equality follows from the definition of the

Riemann integral; the second equality follows from the Taylor expansion and the construction of u = 1− ch;

the fourth equality follows from (B.3) and Assumption 1.1; and the fifth equality follows from Assumption

1.4.

Based on the above analysis, the result follows.

(5). Similar to result (4) of this lemma, divide Bε1(h) into the following two subsets: Case 1: B1(h) ≡ [(1 + ε1)h, 1− h];

Case 2: B2(h) ≡ (1− h, 1].

Before considering Case 1, note that for u∗ lying between u and u+wh with u ∈ B1(h) with w ∈ [−1, 1],

we have

ε1h ≤ (1 + ε1)h− h ≤ u− h ≤ u∗ ≤ u+ h ≤ 1. (B.4)

Thus,

sup
(θ,u)∈Θ×B1(h)

|(u∗)2θ−1h| =

 supθ∈Θ(ε1h)2c∗−1h = O(h2c∗), for θ ∈ Θ ∩ (0, 1
2 )

h, for θ ∈ Θ ∩ [ 1
2 ,∞)

= OP (1)hmin{2c∗,1}, (B.5)

where c∗ = min{θ∈Θ} θ and c∗ > 0. Then we are able to write

sup
(θ,u)∈Θ×B1(h)

∣∣∣∣∣ 1

Th

T∑
t=1

τ2θ
t K

(
τt − u
h

)
− u2θ

∣∣∣∣∣
= sup

(θ,u)∈Θ×B1(h)

∣∣∣∣ 1h
∫ 1

0

w2θK

(
w − u
h

)
dw +O

(
1

Th

)
− u2θ

∣∣∣∣
12



= sup
(θ,u)∈Θ×B1(h)

∣∣∣∣∣
∫ (1−u)/h

−u/h
(u+ wh)2θK(w)dw +O

(
1

Th

)
− u2θ

∣∣∣∣∣
= sup

(θ,u)∈Θ×B1(h)

∣∣∣∣∫ 1

−1

(
u2θ + 2θũ2θ−1wh

)
K(w)dw +O

(
1

Th

)
− u2θ

∣∣∣∣
= sup

(θ,u)∈Θ×B1(h)

∣∣∣∣∫ 1

−1

2θũ2θ−1whK(w)dw +O

(
1

Th

)∣∣∣∣
= O(hmin{2c∗,1}) +O

(
1

Th

)
= O(hmin{2c∗,1}),

where ũ lies between u and u + wh; the first equality follows from the definition of the Riemann integral;

the third equality follows from the Mean Value Theorem and the fact that K(w) is defined on [−1, 1]; and

the fifth equality follows from (B.5).

Again, (θ, u) ∈ Θ×B2(h) is equivalent to (θ, c) ∈ Θ× [0, 1) with u = 1− ch. For Case 2, write

sup
(θ,c)∈Θ×[0,1)

∣∣∣∣∣ 1

Th

T∑
t=1

τ2θ
t K

(
τt − u
h

)
− u2θ

∫ c

−1

K(w)dw

∣∣∣∣∣
= sup

(θ,c)∈Θ×[0,1)

∣∣∣∣∣
∫ (1−u)/h

−u/h
w2θK(w)dw +O

(
1

Th

)
− u2θ

∫ c

−1

K(w)dw

∣∣∣∣∣
= sup

(θ,c)∈Θ×[0,1)

∣∣∣∣∫ c

−1

(
u2θ + 2θũ2θ−1wh

)
K(w)dw +O

(
1

Th

)
− u2θ

∫ c

−1

K(w)dw

∣∣∣∣
= sup

(θ,c)∈Θ×[0,1)

∣∣∣∣∫ c

−1

2θũ2θ−1whK(w)dw +O

(
1

Th

)∣∣∣∣ = O(h) +O

(
1

Th

)
= O(h),

where ũ lies between u and u + wh; the first equality follows from the definition of the Riemann integral;

the second equality follows from Taylor expansion and the construction of u = 1 − ch; the fourth equality

follows from (B.3); and the fifth equality follows from Assumption 1.4.

Therefore, the result follows.

(6). Step 1 : For ∀θ ∈ U(θ0), it is easy to know vT (θ) − v(θ) = o(1) by the definition of the Riemann

integral.

Step 2 : Note that it is easy to know
∫ 1

0
(lnu)4du < ∞ using integration by parts. We now verify the

continuity of v(θ).

|v(θ1)− v(θ2)| =
∣∣∣∣∫ 1

0

(uθ0+θ1 − uθ0+θ2)g(u)du

∣∣∣∣ =

∣∣∣∣(θ1 − θ2) ·
∫ 1

0

uθ
∗
g(u)(lnu)du

∣∣∣∣
≤ |θ1 − θ2|

{∫ 1

0

u2θ∗du ·
∫ 1

0

g2(u)(lnu)2du

}1/2

= |θ1 − θ2|
{

1

2θ∗ + 1
u2θ∗+1

∣∣∣1
0

}1/2{∫ 1

0

g2(u)(lnu)2du

}1/2

= |θ1 − θ2|
{

1

2θ∗ + 1
u2θ∗+1

∣∣∣1
0

}1/2{∫ 1

0

g4(u)du ·
∫ 1

0

(lnu)4du

}1/4

= O(|θ1 − θ2|), (B.6)

where θ∗ lies between θ0 + θ1 and θ0 + θ2; the second equality follows from the Mean Value Theorem;

the first inequality follows from the Cauchy Schwarz inequality; the fifth equality follows from Assumption
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1.1 and the fact that we point out in the beginning of this step. In connection with Step 1, we obtain

|vT (θ1)− vT (θ2)| ≤ O(1)|θ1 − θ2|.
Recall that U(θ0) is a compact subspace of R with the Euclidean norm. By Step 1 -Step 2 and a proof

similar to Lemma A2 of Newey and Powell (2003), the result follows immediately. �

Recall that we have defined vT (·) and v(·) in (6) of Lemma B.2, so write∣∣∣vT (θ̂)− v(θ0)
∣∣∣ ≤ ∣∣∣vT (θ̂)− v(θ̂)

∣∣∣+
∣∣∣v(θ̂)− v(θ0)

∣∣∣ = oP (1), (B.7)

where
∣∣∣vT (θ̂)− v(θ̂)

∣∣∣ = oP (1) follows from (6) of Lemma B.2, and
∣∣∣v(θ̂)− v(θ0)

∣∣∣ = oP (1) follows from (B.6).

In addition, by Theorem 4.2, we have |θ̂ − θ| lnT = OP (1). Thus, we know the next limit exists:

φ1 = plimT→∞T
θ0−θ̃ · 1

T

T∑
t=bThc+1

τθ0+θ̃
t g(τt) = α̃0

∫ 1

0

u2θ0g(u)du, (B.8)

where θ̃ is defined in (4.9), and α̃0 = plimT→∞T
θ0−θ̃.

Similarly, the next two limits exist:

φ2 = plimT→∞T
θ0−θ̃ · 1

T

T∑
t=bThc+1

τθ0+θ̃
t g(τt) ln τt = α̃0

∫ 1

0

u2θ0g(u)(lnu)du, (B.9)

φ3 = plimT→∞T
θ0−θ̃ · 1

T

T∑
t=bThc+1

τθ0+θ̃
t g(τt)(ln τt)

2 = α̃0

∫ 1

0

u2θ0g(u)(lnu)2du. (B.10)

With (B.8) to (B.10) in hand, we are now ready to prove the next lemma.

Proof of Lemma B.3:

(1). Recall that we have defined ∂2ĝ(u,θ)
∂θ2 and ΛT,h(u, θ) in the beginning of this supplementary file. Write

1

T

T∑
t=bThc+1

τ2θ
t

∂2ĝ(τt, θ)

∂θ2

∣∣∣
θ=θ̃

=
8

T

T∑
t=bThc+1

τ2θ̃
t Λ−3

T,h(τt, θ̃)

[
T∑
u=1

T∑
s=1

T∑
r=1

(us
√
r)2θ̃yrKh(τt − τu)Kh(τt − τs)Kh(τt − τr)(lnu)(ln s)

]

− 4

T

T∑
t=bThc+1

τ2θ̃
t Λ−2

T,h(τt, θ̃)

[
T∑
r=1

T∑
s=1

(r
√
s)2θ̃ysKh(τt − τr)Kh(τt − τs)(ln r) ln(r

√
s)

]

− 2

T

T∑
t=bThc+1

τ2θ̃
t Λ−2

T,h(τt, θ̃)

[
T∑
r=1

T∑
s=1

(r
√
s)2θ̃ysKh(τt − τr)Kh(τt − τs)(ln r)(ln s)

]

+
1

T

T∑
t=bThc+1

τ2θ̃
t Λ−1

T,h(τt, θ̃)

[
T∑
s=1

sθ̃ysKh(τt − τs)(ln s)2

]
:= 8A1 − 4A2 − 2A3 +A4,

where the definitions of A1 to A4 should be obvious.
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We now consider A1 to A4 one by one. Firstly, further decompose A1 as follows:

A1 =
1

T

T∑
t=bThc+1

τ2θ̃
t T−6θ̃−3

[
1

T

T∑
s=1

τ2θ̃
s Kh(τt − τs)

]−3

·T 5θ̃+θ0+3

[
1

T 3

T∑
u=1

T∑
s=1

T∑
r=1

(τuτs)
2θ̃τ θ̃+θ0r g(τr)Kh(τt − τu)Kh(τt − τs)Kh(τt − τr)(lnu)(ln s)

]

+
1

T

T∑
t=bThc+1

τ2θ̃
t T−6θ̃−3

[
1

T

T∑
s=1

τ2θ̃
s Kh(τt − τs)

]−3

·T 5θ̃+3

[
1

T 3

T∑
u=1

T∑
s=1

T∑
r=1

(τuτs)
2θ̃τ θ̃r εrKh(τt − τu)Kh(τt − τs)Kh(τt − τr)(lnu)(ln s)

]
:= A11 +A12,

where the definitions of A11 and A12 should be clear.

For A11, write

A11 =
1

T

T∑
t=bThc+1

τ2θ̃
t T−6θ̃−3

[
1

T

T∑
s=1

τ2θ̃
s Kh(τt − τs)

]−3

·T 5θ̃+θ0+3

[
1

T 3

T∑
u=1

T∑
s=1

T∑
r=1

(τuτs)
2θ̃τ θ̃+θ0r g(τr)Kh(τt − τu)Kh(τt − τs)Kh(τt − τr)(lnu)(ln s)

]

= T θ0−θ̃(1 + oP (1)) · 1

T

T∑
t=bThc+1

τ2θ̃
t τ−6θ̃

t

·

[
1

T

T∑
u=1

τ2θ̃
u (lnu)Kh(τt − τu)

]2 [
1

T

T∑
u=1

τ θ̃+θ0u g(τu)Kh(τt − τu)

]

= T θ0−θ̃(1 + oP (1)) · 1

T

T∑
t=bThc+1

τθ0−3θ̃
t g(τt)

[
1

T

T∑
u=1

τ2θ̃
u (ln τu + lnT )Kh(τt − τu)

]2

= T θ0−θ̃(lnT )2(1 + oP (1))
1

T

T∑
t=bThc+1

τθ0−3θ̃
t g(τt)

[
1

T

T∑
u=1

τ2θ̃
u Kh(τt − τu)

]2

+2T θ0−θ̃(lnT )(1 + oP (1))
1

T

T∑
t=bThc+1

τθ0−3θ̃
t g(τt)

·

[
1

T

T∑
u=1

τ2θ̃
u (ln τu)Kh(τt − τu)

][
1

T

T∑
u=1

τ2θ̃
u Kh(τt − τu)

]

+T θ0−θ̃(1 + oP (1))
1

T

T∑
t=bThc+1

τθ0−3θ̃
t g(τt)

[
1

T

T∑
u=1

τ2θ̃
u (ln τu)Kh(τt − τu)

]2

= T θ0−θ̃(lnT )2(1 + oP (1))
1

T

T∑
t=bThc+1

τθ0+θ̃
t g(τt)

+2T θ0−θ̃(lnT )(1 + oP (1))
1

T

T∑
t=bThc+1

τθ0+θ̃
t g(τt) ln τt
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+T θ0−θ̃(1 + oP (1))
1

T

T∑
t=bThc+1

τθ0+θ̃
t g(τt)(ln τt)

2

= (lnT )2φ1 + 2(lnT )φ2 + φ3 + oP (1), (B.11)

where the second, third and fifth equalities follow from (4) and (5) of Lemma B.2; and the last equality

follows from (B.8) to (B.10) and the definition of the Riemann integral.

Similar to the analysis of A11, we have

A12 = OP (1)T−θ̃(lnT )2 · 1

T

T∑
t=bThc+1

τ2θ̃
t

[
1

T

T∑
s=1

τ2θ̃
s Kh(τt − τs)

]−3

·

[
1

T 3

T∑
u=1

T∑
s=1

T∑
r=1

(τuτs)
2θ̃τ θ̃r εrKh(τt − τu)Kh(τt − τs)Kh(τt − τr)

]

= OP (1)T−θ0T θ0−θ̃(lnT )2 · 1

T

T∑
t=bThc+1

[
1

T

T∑
r=1

τ θ̃r εrKh(τt − τr)

]

= OP

(
T−θ0(lnT )2

√
lnT√
Th

)
= OP

(
1

T θ0
· (lnT )5/2

√
Th

)
,

where the second equality follows from (5) of Lemma B.2; and the third equality follows from (2) of Lemma

B.2 and Theorem 4.2.

Based on the development of A11 and A12, we immediately obtain that

A1 = (lnT )2φ1 + 2(lnT )φ2 + φ3 + oP (1) .

Similarly, we have

A2 =
1

T

T∑
t=bThc+1

t2θ̃T−4θ̃−2

[
1

T

T∑
s=1

τ2θ̃
s Kh(τt − τs)

]−2

·T 3θ̃+θ0+2

[
1

T 2

T∑
r=1

T∑
s=1

τ2θ̃
r τ θ̃s ysKh(τt − τr)Kh(τt − τs)(ln r)

(
ln r +

1

2
ln s

)]

=
3

2

[
(lnT )2φ1 + 2(lnT )φ2 + φ3

]
+ oP (1) ,

A3 = (lnT )2φ1 + 2(lnT )φ2 + φ3 + oP (1) ,

A4 = (lnT )2φ1 + 2(lnT )φ2 + φ3 + oP (1) .

Based on the above development, simple calculation yields the first result of this lemma.

(2). We now consider 1
T

∑T
t=bThc+1 τ

2θ
t

∂ĝ(τt,θ)
∂θ

∣∣
θ=θ̃

and write

1

T

T∑
t=bThc+1

τ2θ
t

∂ĝ(τt, θ)

∂θ

∣∣∣
θ=θ̃

=
−2

T

T∑
t=bThc+1

τ2θ̃
t

[
T∑
u=1

u2θ̃Kh(τt − τu)

]−2 [ T∑
u=1

T∑
s=1

(u
√
s)2θ̃ysKh(τt − τu)Kh(τt − τs) lnu

]
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+
1

T

T∑
t=bThc+1

τ2θ̃
t

[
T∑
u=1

u2θ̃Kh(τt − τu)

]−1 [ T∑
u=1

uθ̃yuKh(τt − τu) lnu

]
:= −2A1 +A2,

where the definitions of A1 and A2 should be obvious.

For A1, write

A1 = (1 + oP (1))T−4θ̃−2 1

T

T∑
t=bThc+1

τ−2θ̃
t

[
T∑
u=1

T∑
s=1

(u
√
s)2θ̃g(τs)s

θ0Kh(τt − τu)Kh(τt − τs) lnu

]

+(1 + oP (1))T−4θ̃−2 1

T

T∑
t=bThc+1

τ−2θ̃
t

[
T∑
u=1

T∑
s=1

(u
√
s)2θ̃εsKh(τt − τu)Kh(τt − τs) lnu

]

=
(1 + oP (1))T θ0−θ̃(lnT )

T

T∑
t=bThc+1

τ−2θ̃
t

[
1

T 2

T∑
u=1

T∑
s=1

τ2θ̃
u τ θ̃+θ0s g(τs)Kh(τt − τu)Kh(τt − τs)

]

+
(1 + oP (1))T θ0−θ̃(lnT )

T

T∑
t=bThc+1

τ−2θ̃
t

[
1

T 2

T∑
u=1

T∑
s=1

(τu
√
τs)

2θ̃εsKh(τt − τu)Kh(τt − τs)

]

+
(1 + oP (1))T θ0−θ̃

T

T∑
t=bThc+1

τ−2θ̃
t ·

[
1

T 2

T∑
u=1

T∑
s=1

τ2θ̃
u τ θ̃+θ0s g(τs)Kh(τt − τu)Kh(τt − τs) ln τu

]

+
(1 + oP (1))T θ0−θ̃

T

T∑
t=bThc+1

τ−2θ̃
t ·

[
1

T 2

T∑
u=1

T∑
s=1

(τu
√
τs)

2θ̃εsKh(τt − τu)Kh(τt − τs) ln τu

]
= (lnT )φ1 + φ2 + oP (1) ,

where the first equality follows from (5) of Lemma B.2; and the third equality follows the development similar

to (B.11). Similarly, we can show that A2 = (lnT )φ1 +φ2 +oP (1) . Based on the above development, simple

calculation yields the second result of this lemma.

(3). We now consider 1
T

∑T
t=bThc+1 τ

2θ
t

∂ĝ(τt,θ)
∂θ ln τt

∣∣
θ=θ̃

and write

1

T

T∑
t=bThc+1

τ2θ
t

∂ĝ(τt, θ)

∂θ
ln τt

∣∣∣
θ=θ̃

=
−2

T

T∑
t=bThc+1

(ln τt)τ
2θ̃
t

[
T∑
u=1

u2θ̃Kh(τt − τu)

]−2 [ T∑
u=1

T∑
s=1

(u
√
s)2θ̃ysKh(τt − τu)Kh(τt − τs) lnu

]

+
1

T

T∑
t=bThc+1

(ln τt)τ
2θ̃
t

[
T∑
u=1

u2θ̃Kh(τt − τu)

]−1 [ T∑
u=1

uθ̃yuKh(τt − τu) lnu

]
:= −2A1 +A2,

where the definitions of A1 and A2 should be obvious.

For A1, write

A1 = (1 + oP (1))T−4θ̃−2 1

T

T∑
t=bThc+1

(ln τt)

∑T
u=1

∑T
s=1(u

√
s)2θ̃g(τs)s

θ0Kh(τt − τu)Kh(τt − τs) lnu

τ2θ̃
t
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+(1 + oP (1))T−4θ̃−2 1

T

T∑
t=bThc+1

(ln τt)

∑T
u=1

∑T
s=1(u

√
s)2θ̃εsKh(τt − τu)Kh(τt − τs) lnu

τ2θ̃
t

= (lnT )φ2 + φ3 + oP (1) ,

where the first equality follows from (5) of Lemma B.2; and the second equality follows the development

similar to (B.11). Similarly, we can show that A2 = (lnT )φ2 +φ3 +oP (1) . Based on the above development,

simple calculation yields the third result of this lemma.

(4)-(6). Similar to the proofs given for (2)-(3) of this lemma, (4)-(6) of this lemma follow.

(7). By (1)-(6) of this lemma, simple calculation immediately gives ∂2RT (θ)
∂θ2

∣∣∣
θ=θ̃

= 8 + oP (1). The proof

is now complete. �

B.2.2 Proofs of Section 4

Proof of Lemma 4.1:

(1). For notational simplicity, let B := BT (θ0)×Bε1(h). Write

sup
(θ,u)∈B

∣∣ĝ(u, θ)− (uT )θ0−θg(u)
∣∣

≤ sup
(θ,u)∈B

1

T θ

∣∣∣∣∣∣
(

1

T

T∑
t=1

τt
2θKh(u− τt)

)−1

1

T

T∑
t=1

τt
θεtKh(u− τt)

∣∣∣∣∣∣
+ sup

(θ,u)∈B
T θ0−θ

∣∣∣∣∣∣
(

1

T

T∑
t=1

τt
2θKh(u− τt)

)−1

1

T

T∑
t=1

τt
θ+θ0g(τt)Kh(u− τt)− (uT )θ0−θg(u)

∣∣∣∣∣∣
:= A1 +A2,

where the definitions of A1 and A2 should be obvious.

Firstly, note that two simple facts are

sup
θ∈BT (θ0)

(
1

h

)θ−θ0
≤ sup
θ∈BT (θ0)

T |θ−θ0| = O(1) and h
1

lnT = O(T−ν)
1

lnT = O(1). (B.12)

We then consider A1 and A2 respectively. Start from A1.

A1 = OP

(√
lnT

Th

)
sup

(θ,u)∈B
T−θu−2θ ≤ OP

(√
lnT

Th

){
sup

θ∈BT (θ0)

h−2θ

}{
sup

θ∈BT (θ0)

T−θ

}

= OP

(√
lnT

Th

)
T−θ0h−2θ0

{
sup

θ∈BT (θ0)

h2θ0−2θ

}{
sup

θ∈BT (θ0)

T θ0−θ

}
= O

( √
lnT

T
1
2 +θ0h

1
2 +2θ0

)
, (B.13)

where the first equality follows from (2) and (5) of Lemma B.2; and the third equality follows from (B.12).

For A2, write

A2 = sup
(θ,u)∈B

T θ0−θ
∣∣∣u−2θ(1 +OP (hmin{2b0,1})) · uθ0+θg(u)(1 +OP (h))− (uT )θ0−θg(u)

∣∣∣
= OP (1) sup

θ∈BT (θ0)

T θ0−θhmin{2b0,1} = OP (1) sup
θ∈BT (θ0)

T θ0−θhmin{2(θ0− M
lnT ),1}

= O
(
hmin{2θ0,1}

)
, (B.14)
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where b0 = min{θ |θ ∈ BT (θ0)} = θ0 − M
lnT ; the first equality follows from (4) and (5) of Lemma B.2; and

the fourth equality follows from (B.12).

Based on the development of A1 and A2, the proof is complete. �

B.2.3 Proofs of Section 3

It is worthy mentioning that the proof of Theorem 3.1 is relatively straightforward after establishing Theorem

4.2 to Theorem 4.4, though Theorem 3.1 is the first asymptotic result of the main text.

Proof of Theorem 3.1:

(1). By the development similar to (A.19) of Wang and Xia (2009), it is easy to obtain that under the

null

sup
u∈[0,1]

|ĝ(u)− g(u)| = OP

(√
lnT√
Th

)
+OP (h). (B.15)

We then take a further look at (3.3), and write

ST = − 1

T/2

∑
t odd

[−εt + ĝ(τt)− g(τt)] · [ĝ(τt)− g(τt) + g(τt)] ln t

=
1

T/2

∑
t odd

εtg(τt) ln t+
1

T/2

∑
t odd

εt · [ĝ(τt)− g(τt)] ln t

− 1

T/2

∑
t odd

[ĝ(τt)− g(τt)] g(τt) ln t− 1

T/2

∑
t odd

[ĝ(τt)− g(τt)]
2

ln t

:= ST,1 + ST,2 − ST,3 − ST,4, (B.16)

where the definitions of ST,1 to ST,4 should be obvious. Since it is easy to show that ST,2 = oP (ST,1) and

ST,4 = oP (ST,1), we focus on ST,1 − ST,3 below:

ST,1 − ST,3 =
1

T/2

∑
t odd

εtg(τt) ln t− 1

T/2

∑
t odd

[ĝ(τt)− g(τt)] g(τt) ln t

=
1

T/2

∑
t odd

εtg(τt) ln t− 1

T/2

∑
t odd

∑
s evenKh(τt − τs)εs∑
s evenKh(τt − τs)

g(τt) ln t

− 1

T/2

∑
t odd

[∑
s evenKh(τt − τs)g(τs)∑

s evenKh(τt − τs)
− g(τt)

]
g(τt) ln t

=
1

T/2

∑
t odd

εtg(τt) ln t− 1

T/2

∑
t even

εt
∑
s odd

Kh(τt − τs)∑
j evenKh(τj − τs)

g(τs) ln s

+oP (1)

=
1

T/2

∑
t odd

εtg(τt) ln t− 1 + oP (1)

T/2

∑
t even

εtg(τt) ln t+ oP (1)

=
1

T/2

∑
t odd

εtg(τt) ln t− 1 + oP (1)

T/2

∑
t even

εtg(τt) ln t+ oP (1), (B.17)

where the fourth equality follows from

g(τt) ln t−
∑
s odd

Kh(τt − τs)∑
j evenKh(τj − τs)

g(τs) ln s = oP (1)
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uniformly in t by the proof similar to those given for Theorem 4.4 of the main text.

Based on (B.17), if Assumption 1.2*.1 holds, we immediately obtain that L̂M →D N(0, 1).

Based on (B.17), if Assumption 1.2*.2 holds, we obtain that

L̂M →D N(0, 1 + σ2
1)

by using, for example, Theorem 2.21 of Fan and Yao (2003), where σ2
1 = limT→∞

2
σ2
ε

∑T
t=2

∑t−1
s=1 γ(t −

s)ωTtωTs, and ωTt has been defined in Assumption 1.2*.2. Invoking the condition that
∑T
t=2

∑t−1
s=1 γ(t −

s)ωTtωTs = o(1) gives σ2
1 = 0. Thus, L̂M →D N(0, 1).

The proof is now complete.

(2). We now consider what happens under the alternative hypothesis, i.e., θ0 > 0. For ∀u ∈ (0, 1), we

have

|ĝ(u)| =

∣∣∣∣∣
∑T
t=1Kh(u− τt)yt∑T
t=1Kh(u− τt)

∣∣∣∣∣ =

∣∣∣∣∣
∑T
t=1Kh(u− τt)g(τt)t

θ0∑T
t=1Kh(u− τt)

+

∑T
t=1Kh(u− τt)εt∑T
t=1Kh(u− τt)

∣∣∣∣∣
=

∣∣∣∣∣T θ0 ·
∑T
t=1Kh(u− τt)g(τt)τ

θ0
t∑T

t=1Kh(u− τt)

∣∣∣∣∣+ oP (1) = T θ0 ·
(
uθ0 |g(u)|+ oP (1)

)
+ oP (1)

→P ∞. (B.18)

In connection with (B.16), it is easy to see that ST,4 is the true leading term due to the involvement of a

quadratic term. Then by definition, L̂M →∞ under the alternative hypothesis, as T →∞. �

Proof of Theorem 3.2:

By Theorems 1 and 2 of Robinson (2012), it is easy to show that θ̂ − θ0 = OP (Tχ−θ0−
1
2 ) and β̂ − β0 =

OP ((lnT )Tχ−θ0−
1
2 ) for any given sufficiently small χ > 0. Then the proof of Theorem 3.2 follows from the

development of Gao and Hawthorne (2006), thus omitted. �

B.2.4 Proofs of Section 6

Proof of Corollary 6.1:

The proofs are a simplified version of the development of Lemma B.2 and Lemma 4.1, so omitted. �

Proof of Corollary 6.2:

(1). By the proof of Lemma 4.1, a faster rate of convergence for ĝ(u, a) under the null can be achieved

as follows:

sup
u∈[c,1−h]

|ĝ(u, a)− g(u)| = OP

( √
lnT

T
1
2 +ah

1
2

)
+O(h2). (B.19)

Then, for ST defined in (6.4), write

ST = − 1

T ∗/2

∑
t odd∈Bh

[−εt + ĝ(τt)t
a − g(τt)t

a] · [ĝ(τt)− g(τt) + g(τt)] t
a ln t

=
2

T ∗

∑
t odd∈Bh

εtg(τt)t
a ln t+

2

T ∗

∑
t odd∈Bh

εt · [ĝ(τt)− g(τt)] t
a ln t
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− 2

T ∗

∑
t odd∈Bh

[ĝ(τt)− g(τt)] g(τt)t
2a ln t− 2

T ∗

∑
t odd∈Bh

[ĝ(τt)− g(τt)]
2
t2a ln t

:= ST,1 + ST,2 − ST,3 − ST,4. (B.20)

Similar to the proof of Theorem 3.1, it is easy to show that
√
T ∗ST,2 and

√
T ∗ST,4 are negligible, and

ST,1 − ST,3 can be rewritten as

ST,1 − ST,3 =

(
2

T ∗

∑
t odd∈Bh

εtg(τt)t
a ln t− 2 + oP (1)

T ∗

∑
t even∈Bh

εtg(τt)t
a ln t

)
· (1 + oP (1)) (B.21)

provided h2T 2a lnT → 0. Thus, the first result follows immediately.

(2). The proof of the second result follows from a procedure identical to (B.18), thus omitted. �

We now provide Assumption 2 before going through the detailed proofs of Corollary 6.3.

Assumption 2:

Suppose that f(·, ·) and {xt |t = 1, . . . , T} satisfy one of the following three cases.

1. {xt |t = 1, . . . , T} is a strictly stationary and α–mixing error process with a density p(w). Moreover,

sup(w,u)∈Rd×[0,1] p(w)∂f(w,u)
∂u <∞ and E

[
supu∈[0,1] |f(x1, u)|

]
<∞; or

2. {xt |t = 1, . . . , T} is a locally stationary process.9 Let f(·, ·) be uniformly bounded and satisfy that

|f(x1, u)− f(x2, u)| ≤M‖x1 − x2‖ for ∀u ∈ [0, 1], where M is a positive constant; or

3. (a) Let f(·, ·) be uniformly bounded, and xt = xt−1 + wt for t ≥ 1 and ‖x0‖ = OP (1);

(b) Let wt =
∑∞
j=0 ψjεt−j, where

∑∞
j=0 j‖ψj‖ <∞ and ψ :=

∑∞
j=0 ψj 6= 0;

(c) Let {εj | −∞ < j <∞} be a sequence of i.i.d. random variables having an absolutely continuous

distribution with respect to the Lebesgue measure and satisfying E[ε1] = 0d×1, E[ε1ε
′
1] = Id,

E‖ε1‖q <∞ for some q > 4. The characteristic function of ε1 is integrable.

Proof of Corollary 6.3:

First, we point out one simple fact below:

∫ (1−u)/h

−u/h
K(w)dw =


1, u ∈ [h, 1− h]∫ c
−1
K(w)dw, u = 1− ch with c ∈ [0, 1)∫ 1

−cK(w)dw, u = ch with c ∈ [0, 1)

.

Therefore, it is easy to know that

9We adopt the following definition for a locally stationary process (cf., Vogt, 2012; Dong and Linton, 2018):

Definition B.4. The process {xt |t = 1, . . . , T} is locally stationary if for each rescaled time point u ∈ [0, 1] there
exists an associated process {xt(u) |t = 1, . . . , T} with the following two properties:

(a) {xt(u) |t = 1, . . . , T}is strictly stationary with density fu(w);

(b) It holds that ‖xt − xt(u)‖r ≤
(
|τt − u|+ T−1

)
Ut(u) a.s., where τt = t/T , {Ut(u)} is a process of positive

variables satisfying E|Ut(u)|ρ < C for some ρ > 0 and C < ∞ independent of u, t, and T . Moreover, ‖ · ‖r
denotes an arbitrary norm on Rd.
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sup
u∈[0,1]

=

∫ (1−u)/h

−u/h
K(w)dw = O(1). (B.22)

Before proceeding further, we show sup(θ,u)∈Θ×[0,1]

∣∣∣ 1
T

∑T
t=1 τ

θ
t f(xt, τt)Kh(u− τt)

∣∣∣ = OP (1) under all three

conditions of Assumption 2.

Case 1: Under Assumption 2.1, we have

E

[
sup

(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt f(xt, τt)Kh(u− τt)
∣∣∣]

≤
∫

sup
(θ,u)∈Θ×[0,1]

1

T

T∑
t=1

τθt |f(w, τt)|Kh(u− τt)p(w)dw

≤ O(1)

∫
sup
u∈[0,1]

1

T

T∑
t=1

|f(w, τt)|Kh(u− τt)p(w)dw

= O(1)

∫
sup
u∈[0,1]

∫ 1

0

|f(w1, w2)|p(w1)Kh(u− w2)dw2dw1

= O(1)

∫
sup
u∈[0,1]

∫ (1−u)/h

−u/h
|f(w1, u+ w2h)|p(w1)K(w2)dw2dw1

= O(1)

∫
sup
u∈[0,1]

|f(w1, u)|
∫ (1−u)/h

−u/h
K(w2)dw2 p(w1)dw1

≤ O(1)

∫
sup
u∈[0,1]

|f(w, u)|p(w)dw = O(1),

where the second inequality follows from the fact that 0 ≤ τθ ≤ 1 uniformly; the first equality follows from

the definition of the Riemann integral; the third and fourth equalities follows from Assumption 2.1.; the

third inequality follows from (B.22).

Therefore, sup(θ,u)∈Θ×[0,1]

∣∣∣ 1
T

∑T
t=1 τ

θ
t f(xt, τt)Kh(u− τt)

∣∣∣ = OP (1) under Assumption 2.1.

Case 2: Let Assumption 2.2 hold. Note that by the definition of a locally stationary process, it is easy

to know that Ut(u) = OP (1) uniformly in t and u. Write

sup
(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt f(xt, τt)Kh(u− τt)
∣∣∣

≤ sup
(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt (f(xt, τt)− f(xt(τt), τt))Kh(u− τt)
∣∣∣

+ sup
(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt f(xt(τt), τt)Kh(u− τt)
∣∣∣ := A1 +A2,

where the definitions of A1 and A2 should be obvious.

For A1, we have

A1 = sup
(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt (f(xt, τt)− f(xt(τt), τt))Kh(u− τt)
∣∣∣

≤ O(1) sup
(θ,u)∈Θ×[0,1]

1

T

T∑
t=1

τθt ‖xt − xt(τt)‖Kh(u− τt)
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≤ O(1) sup
(θ,u)∈Θ×[0,1]

1

T 2

T∑
t=1

τθt Ut(τt)Kh(u− τt) ≤ O(1)
1

T 2h

T∑
t=1

Ut(τt) ≤ OP (1)
1

Th
.

where the first inequality follows from Assumption 2.2; the second inequality follows from the definition of

a locally stationary process; and the fourth inequality follows from the fact (i.e., Ut(τt) = OP (1)) that we

point out in the beginning of Case 2.

For A2, it is easy to obtain that

E[A2] = E

[
sup

(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt f(xt(τt), τt)Kh(u− τt)
∣∣∣]

≤ sup
(θ,u)∈Θ×[0,1]

1

T

T∑
t=1

Kh(u− τt) = O(1) sup
u∈[0,1]

1

h

∫ 1

0

Kh(u− w)dw

= O(1) sup
u∈[0,1]

∫ (1−u)/h

−u/h
K(w)dw = O(1),

where the first inequality follows from Assumption 2.2; and the second equality follows from the definition

of the Riemann integral; and the fourth equality follows from (B.22).

Thus, we can conclude that sup(θ,u)∈Θ×[0,1]

∣∣∣ 1
T

∑T
t=1 τ

θ
t f(xt, τt)Kh(u− τt)

∣∣∣ = OP (1).

Case 3: Let Assumption 2.3 hold. Construct a νT satisfying that νT →∞ and νT /(Th)→ 0. By Lemma

C.5 of Dong et al. (2016), we know that, for sufficiently large t, xt/
√
t has a pdf function φt(w), which is

uniformly bounded in both t and w.

E

[
sup

(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=1

τθt f(xt, τt)Kh(u− τt)
∣∣∣]

= E

[
sup

(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

νT∑
t=1

τθt f(xt, τt)Kh(u− τt)
∣∣∣]

+E

[
sup

(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=νT+1

τθt f(xt, τt)Kh(u− τt)
∣∣∣]

= O(1)
νT
Th

+ E

[
sup

(θ,u)∈Θ×[0,1]

∣∣∣ 1

T

T∑
t=νT+1

τθt f

(√
t · xt√

t
, τt

)
Kh(u− τt)

∣∣∣]

≤ O(1)
νT
Th

+
1

T

T∑
t=νT+1

∫
sup

(θ,u)∈Θ×[0,1]

τθt |f(
√
tw, τt)|Kh(u− τt)φt(w)dw

≤ O(1)
νT
Th

+ sup
u∈[0,1]

1

T

T∑
t=1

Kh(u− τt)
∫
φt(w)dw = O(1),

where the second inequality follows from Assumption 2.3; and the last equality follows from (B.22) and the

fact that φt(w) is a density function.

Thus, we have sup(θ,u)∈Θ×[0,1]

∣∣∣ 1
T

∑T
t=1 τ

θ
t f(xt, τt)Kh(u− τt)

∣∣∣ = OP (1) under all three conditions of As-

sumption 2. Then both results of this corollary can be verified by exactly the same procedure as documented

in Appendix A of this paper. �
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B.3 Potential Issues

In this subsection we consider two potential issues.

B.3.1 Issue 1

Building on Robinson (2012), one intuitive extension might be

yt =

d∑
j=1

gj(τt)t
θ0,j + εt, (B.23)

where gj(·) for j = 1, . . . , d are unknown functions, and θ0 = (θ0,1, . . . , θ0,d)
′ is defined on a compact set

Θ ⊂ Rd and θ0,1 < . . . < θ0,d.

However, using nonparametric methods to estimate model (B.23) suffers from certain identification issues.

We consider the kernel method here, and discuss the sieve method in Section B.3.2 below. To make the

explanation clearer and simpler, suppose θ0 is known. For ∀u ∈ (0, 1), the kernel based OLS estimator of

G(u) = (g1(u), . . . , gd(u))′ is

Ĝ(u) =

(
T∑
t=1

ztz
′
tKh (u− τt)

)−1 T∑
t=1

ztytKh (u− τt) , (B.24)

where zt = (tθ0,1 , . . . , tθ0,d)′. Normalize the matrix in the inverse of (B.24) as follows:

D−1
θ0

T∑
t=1

ztz
′
tKh (u− τt)D−1

θ0
, (B.25)

where Dθ0 = diag{T 1/2+θ0,1 , . . . , T 1/2+θ0,d}. The (i, j)th element of (B.25) with 1 ≤ i, j ≤ d can be easily

calculated:

1

Th

T∑
t=1

τ
θ0,i+θ0,j
t K

(
u− τt
h

)
= uθ0,i+θ0,j (1 + o(1)), (B.26)

which suggests that (B.25) can be rewritten as

D−1
θ0

T∑
t=1

ztz
′
tKh (u− τt)D−1

θ0
= (uθ0,1 , . . . , uθ0,d)′(uθ0,1 , . . . , uθ0,d)(1 + o(1)). (B.27)

However, the right hand side of (B.27) is obviously not invertible, i.e., (B.24) is not well defined.

The key difference between parametric and nonparametric models lies in the use of the kernel function.

For parametric cases, the kernel function is not present in (B.24), so it yields

1

T

T∑
t=1

τ
θ0,i+θ0,j
t =

∫ 1

0

uθ0,i+θ0,jdu · (1 + o(1)) =
1

θ0,i + θ0,j + 1
· (1 + o(1)). (B.28)

Thereby, the limit of D−1
θ0

∑T
t=1 ztz

′
tD
−1
θ0

is a Cauchy matrix, and is invertible under certain restrictions. One

referee suggested that the matrix rotation technique employed by Phillips et al. (2017) may be helpful to

solve this problem. We thank the referee for the suggestion, and now point out the key difference between

their model and (B.23). While Phillips et al. (2017) rotate their matrix
∑T
t=1 xtxtKh(u − τt), there are no
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parameters θ0,j ’s existing as the unknown power terms. If θ0,j ’s were known, we can implement the rotation

to solve the singularity problem. However, as θ0,j ’s are parameters of interest, θ0,j ’s existing in the rotation

matrix will require more involved matrix operations. It is unclear whether one can estimate all θ0,j ’s and

G(u) after the rotation. The question raised in this extension is in fact more challenging, although (B.23)

looks simple and its majority components are deterministic.

For model (B.23), though it is hard to fully recover all the components, we can at least consistently

estimate the power and coefficient function of the leading term (i.e., θd and gd(·)). Rewrite (B.23) as

yt = gd(τt)t
θ0,d + et, where et =

∑d−1
j=1 gj(τt)t

θ0,j + εt. We can use (4.6) and (4.1) to consistently estimate

θ0,d and gd(·) respectively. The reason is that while deriving the asymptotics, we need a term T θ0,d to

normalize tθ0,d , and it simultaneously gets
∑d−1
j=1 gj(τt)t

θ0,j smoothed out due to the fact that θ0,1 < . . . <

θ0,d. This is exactly why we can establish Corollary 6.3. Certainly, the rates of convergence depend on

maxj∈{1,...,d−1}{θ0,d−θ0,j} = θ0,d−θ0,d−1 in this case. One may think that it is then possible to recover θ0,j

and gj(·) recursively. For example, estimate θ0,d−1 and gd−1(·) after removing tθ̂d ĝd(τt) from yt, and repeat

this process until we estimate all the components of model (B.23). However, by doing so, the biases due to

the plug–in procedure will be substantial and stop us further establishing consistent estimators for θ0,d−1

and gd−1(·). How to consistently estimate the other components of model (B.23) is still an open question.

Finally, we would like to point out that rather than estimating gj(·)’s and θ0,j ’s, one may follow Cho

and Phillips (2018) and Baek et al. (2015) to establish hypothesis tests. It is worth mentioning that Phillips

(2007), Cho and Phillips (2018) and Baek et al. (2015) involve estimating a power of a polynomial term, but

an extension involving estimating the unknown powers of multiple polynomial terms may not be an easy job

as discussed above.

B.3.2 Issue 2

We now explain the failure of a sieve based OLS method. Still consider yt = g(τt)t
θ0 + εt. Further assume

θ0 is known. Following Newey (1997), we can expand g(·) by power series on a certain support as follows:

T−θ0yt = T−θ0
k−1∑
i=0

ciτ
i
t t
θ0 + T−θ0

∞∑
i=k

ciτ
i
t t
θ0 + T−θ0εt

=

k−1∑
i=0

ciτ
i+θ0
t +

∞∑
i=k

ciτ
i+θ0
t + T−θ0εt.

In view of (B.28), it is easy to obtain

1

T

T∑
t=1

(τθ0t , τ
θ0+1
t , . . . , τθ0+k−1

t )(τθ0t , τ
θ0+1
t , . . . , τθ0+k−1

t )′

=

{
1

2θ0 + i+ j + 1

}
k×k
· (1 + o(1)) (B.29)

for 0 ≤ i, j ≤ k − 1 under proper restrictions on k and T . As k diverges, the right hand side of (B.29) is

asymptotically singular, which indicates that the sieve based OLS method does not work for model (1.1) in

general. Certainly, the choice of basis functions plays an important role; however, it is not clear to us which

series can solve the ill–posed problem at this stage.
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B.4 Extra Numerical Studies

B.4.1 Simulation Results for Section 4.1

The DGP is identical to Section 5.3, and we take θ0 = 0.4 as an example.

In order to examine the failure of the two methods proposed in Section 4.1 and compare with the

results in Section 5, we recover θ0 by minimizing (4.2) and (4.3) respectively, and then estimate g(τt) for

t = bThc+ 1, . . . , T by (4.1). To put all methods on equal footing, we change (4.2) and (4.3) respectively to

QT (θ) =

T∑
t=bThc+1

(
yt − tθĝ(τt, θ)

)2
, (B.30)

QT (β, θ |u) =

T∑
t=bThc+1

(
yt − β tθ

)2
Kh (τt − u) . (B.31)

For (B.31), we obtain {θ̂(τt) |t = bThc + 1, . . . , T} as explained in Section 4.1, and further calculate the

estimate of θ0 by θ̂ = 1
T−bThc

∑T
t=bThc+1 θ̂(τt). We refer to these two methods as W1 and W2, and calculate

their RMSEs in the same way as explained in the main text. As shown in Table B.7, both W1 and W2

perform rather poorly, which supports our argument in Section 4.1.

Table B.7: Simulation Results for Section 4.1

RMSEθ RMSEg

h \ T 100 200 400 100 200 400

W1 T−1/3 0.399 0.399 0.400 6.152 8.644 12.073

T−1/5 0.395 0.397 0.399 5.895 8.341 11.638

T−1/8 0.380 0.387 0.392 5.562 7.824 10.908

W2 T−1/3 0.310 0.330 0.343 4.127 6.135 8.733

T−1/5 0.322 0.341 0.361 4.247 6.225 9.354

T−1/8 0.269 0.316 0.338 3.343 5.385 7.937

B.4.2 Simulation Results for Corollary 6.1

The DGP is yt = g(τt)t
θ0 + εt, where θ0 = −0.35, g(τ) = 3(τ − 1)2 + 1, and εt ∼ i.i.d. N(0, 1). We firstly

estimate θ0 as explained in the main section, and then estimate g(u) for u = bTc0c+ 1, . . . , T . By Corollary

6.1, the bandwidth selection procedure reduces to the following one.

• Bandwidth Selection: Provide an initial bandwidth (say h0 = T−1/3) to start the iteration process.

For the kth (k ≥ 1) iteration, use hk−1 obtained from the (k − 1)th iteration to calculate θ̂k. Stop

iteration, if |θ̂k − θ̂k−1| ≤ ε, where ε is sufficiently small (e.g., 10−6) and serves as a stopping criteria.

Otherwise, update the bandwidth by hk = T
− 1+2θ̂k

3+4θ̂k · (lnT )
1

3+4θ̂k . Then proceed to the (k + 1)th

iteration.

Without loss of generality, we focus on hopt only and let c0 = 0.5. Since half of the data is thrown away,

we choose T = 500, 1000. As shown in Table B.8, the estimates are fairly accurate, and the RMSEs decrease

as T goes up.
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Table B.8: Simulation Results for Corollary 6.1

RMSEθ RMSEg

T = 500 T = 1000 T = 500 T = 1000

0.107 0.075 0.396 0.365

B.4.3 Simulation Results for Corollary 6.2

The DGP is yt = exp(τt)t
θ0 + εt and εt ∼ i.i.d. N(0, 1), and consider θ0 = 0.2, 0.4, 0.6, 0.8, 1. The

bandwidth is set to h = ( lnT/2
T/2 )7/10, and we let c0 = 0.3 without loss of generality. As the Epanechnikov

kernel having order 2 requires h2T 2θ0 lnT → 0, we would expect that the size of the test will go wrong when

θ0 ≥ 0.7. For simplicity, we report the size based on 1000 replications in Figure B.7. The power test can be

done as in Section 5.1, so we do not pursue it further.
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Figure B.7: Size at Nominal Significant Level

As expected, for θ0 = 0.2, 0.4, 0.6, the size is reasonably well controlled. For θ0 = 0.8, 1, the test is clearly

undersized. As the value of θ0 increases, it can be seen that the consequence of violating h2T 2θ0 lnT → 0

becomes more obvious, so it corroborates our arguments on the requirement of h2T 2θ0 lnT → 0.

B.4.4 Simulation Results for Corollary 6.3

We now examine Corollary 6.3 and the potential issue discussed in Section B.3.

Specifically, we adopt the following DGPs:

DGP 1: yt = f(xt, τt) + g(τt)t
θ0 + εt with g(u) = 3(u− 1)2 + 1,

DGP 2: yt = f(xt, τt) + g(τt)t
θ0 + εt with g(u) = 3|u− 1|0.7 + 1. (B.32)

The error terms follow εt ∼ i.i.d. N(0, 1). Without loss of generality, we set d = 1, so f(·, ·) and {xt} are

generated as follows:
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• Case 1 (Stationary): f(x, u) = |x|+ 5 sin(u · π), and xt follows an AR(1) process xt = 0.5xt−1 + vt;

• Case 2 (Nonstationary): f(x, u) = exp
{
−x2

}
+ 5 sin(u · π), and xt follows an integrated process

xt = xt−1 + vt.

In both cases, x0 ∼ N(0, 1) and vt ∼ i.i.d. N(0, 1).

We estimate θ0 and g(·) by our nonparametric method as explained in Section 5 (referred to as NM),

and W1 and W2 methods documented above, and report RMSEs in Tables B.9 and B.10 below.

Table B.9: (DGP1, Case 1)

RMSEθ RMSEg

h \ T 200 500 1000 200 500 1000

NM T−2/5 0.100 0.091 0.085 0.102 0.053 0.033

T−1/3 0.106 0.094 0.086 0.038 0.022 0.016

T−1/5 0.126 0.106 0.095 0.086 0.094 0.092

T−1/8 0.158 0.130 0.114 0.097 0.128 0.139

W1 T−2/5 0.300 0.300 0.300 5.451 7.449 9.452

T−1/3 0.300 0.300 0.300 5.338 7.381 9.422

T−1/5 0.300 0.300 0.300 4.948 6.872 8.839

T−1/8 0.300 0.300 0.300 4.802 6.491 8.233

W2 T−2/5 0.274 0.268 0.267 4.696 6.057 7.486

T−1/3 0.277 0.280 0.279 4.671 6.492 8.117

T−1/5 0.262 0.279 0.286 3.913 5.940 7.995

T−1/8 0.243 0.272 0.282 3.333 5.349 7.212

Table B.10: (DGP1, Case 2)

RMSEθ RMSEg

h \ T 200 500 1000 200 500 1000

NM T−2/5 0.102 0.092 0.085 0.094 0.048 0.028

T−1/3 0.107 0.094 0.086 0.038 0.022 0.017

T−1/5 0.128 0.107 0.095 0.087 0.095 0.093

T−1/8 0.160 0.131 0.114 0.097 0.128 0.139

W1 T−2/5 0.300 0.300 0.300 5.357 7.384 9.404

T−1/3 0.300 0.300 0.300 5.252 7.323 9.378

T−1/5 0.300 0.300 0.300 4.871 6.820 8.801

T−1/8 0.300 0.300 0.300 4.729 6.443 8.198

W2 T−2/5 0.273 0.267 0.267 4.575 5.926 7.413

T−1/3 0.276 0.280 0.279 4.559 6.437 8.057

T−1/5 0.265 0.278 0.286 3.909 5.860 7.960

T−1/8 0.241 0.272 0.282 3.241 5.284 7.150

As can be seen, the procedure of recovering θ0 and g(·) is not affected by f(·, ·) and {xt |t = 1, . . . , T}
too much, which indicates that one can implement our procedure to detrend the data set in a better fashion

practically.
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B.4.5 Simulation Results for Section B.3

Below we focus on DGPs 1 and 2 under Case 1 of Section B.4.4 in order to examine the issue raised in Section

B.3. Apart from our proposed method, we also use the sieve based OLS method (referred to as SOLS). In

particular, we use power series {1, u, u2, . . .} to approximate g(u) in our simulation study (cf., Newey, 1997).

Specifically, the new objective function is

QT (θ) =

T∑
t=1

(
yt − tθĝk(τt, θ)

)2
, (B.33)

where ĝk(τt, θ) = z′tĈ(θ), zt = (1, τ1
t , . . . , τ

k−1
t )′, and

Ĉ(θ) =

(
T∑
t=1

[
tθzt

]
·
[
tθzt

]′)−1 T∑
t=1

[
tθzt

]
yt.

In order to demonstrate our arguments under (B.29), we set the truncation parameter to k = 2, 3, 5, 10, 15.

For the purpose of comparison, we set the bandwidth to h = 1/k when implementing our method.10 The

RMSEs are calculated following the identical procedure of Section 5.3 of the main text.

In Table B.11, it is not surprising to see the best estimate comes from the SOLS method with k = 3, as

this choice of power series perfectly fits the DGP 1. However, when we increase the value of the truncation

parameter, the matrix in the inverse is getting closer to singular as explained under (B.29), which is also

confirmed by Matlab over the simulation study which warns continuously saying “Matrix is close to singular

or badly scaled”.

Table B.11: (DGP 1, Case 1)

RMSEθ RMSEg

h, k \ T 200 500 1000 200 500 1000

NM h = 1/2 0.154 0.137 0.126 0.101 0.118 0.126

h = 1/3 0.124 0.112 0.103 0.082 0.112 0.125

h = 1/5 0.108 0.098 0.091 0.029 0.049 0.065

h = 1/10 0.101 0.092 0.085 0.082 0.028 0.015

h = 1/15 0.100 0.091 0.085 0.104 0.043 0.019

SOLS k = 2 0.300 0.300 0.300 4.749 6.423 8.088

k = 3 0.016 0.005 0.003 0.103 0.036 0.017

k = 5 0.059 0.019 0.009 0.662 0.246 0.131

k = 10 0.240 0.212 0.199 1.088 1.235 1.310

k = 15 0.324 0.316 0.123 1.218 1.476 0.968

Although the power series may work well with a relatively small truncation parameter when g(·) is a

certain polynomial function, it may not work well for the case where the powers of polynomial functions are

not integers, which is confirmed by the simulation study for DGP 2. In Table B.12, we see that the results

10The setting of h = 1/k is indeed reasonable. As for a nonparametric model yt = g(xt) + et with t = 1, . . . , T ,

it is easy to see that the leading terms of the rates of convergence are
√

kd

T
and 1√

Thd
for the sieve based method

and the kernel based method, respectively, under certain restrictions, where k is the truncation parameter, h is the
bandwidth, and d is the dimension of xt.
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of SOLS generally perform worse than our proposed method, which indicates that the choice of the basis

functions indeed matters. However, at this stage, it is not clear which particular class of basis functions can

potentially solve the problem discussed under (B.29).

Table B.12: (DGP 2, Case 1)

RMSEθ RMSEg

h, k \ T 200 500 1000 200 500 1000

NM h = 1/2 0.072 0.065 0.059 0.922 0.942 0.952

h = 1/3 0.043 0.040 0.038 0.864 0.898 0.913

h = 1/5 0.031 0.030 0.028 0.669 0.720 0.743

h = 1/10 0.026 0.026 0.025 0.415 0.480 0.509

h = 1/15 0.026 0.025 0.024 0.294 0.364 0.394

SOLS k = 2 0.187 0.187 0.187 1.246 1.404 1.501

k = 3 0.213 0.219 0.221 4.522 6.073 7.539

k = 5 0.186 0.171 0.165 3.881 4.212 4.690

k = 10 0.273 0.285 0.200 1.663 2.039 1.872

k = 15 0.267 0.257 0.200 1.613 1.982 1.873
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