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1 Introduction

There are generally two approaches to model the volatility of asset returns. GARCH-type

models (e.g., Engle (1982), Bollerslev (1986) and Nelson (1991)) regard the volatility as

solely determined by past observations. Stochastic volatility (SV) models (e.g., Heston

(1993)), on the other hand, treat the volatility as a separate stochastic process. Nelson

(1990) establishes the weak convergence of GARCH-type models to continuous time SV

models when the length of the discrete time intervals between observations goes to zero.

Duan (1997) extends the weak convergence for a wide class of GARCH-type models. In

addition, Drost and Werker (1996) use the temporal aggregation properties to derive the

diffusion limits for the class of weak GARCH-type models.

Politis (1995) and Breitung and Hafner (2016) argue that most GARCH-type and SV

models make inefficient use of all available information for volatility estimation since they

ignore the (arguably most important) information in the current observation. To address

this issue, Smetanina (2017) proposes the RT-GARCH model which incorporates current

return innovation into the volatility process. Specifically,

σ2t = α+ βσ2t−1 + γr2t−1 + ψε2t , (1.1)

where rt ≡ St − St−1 = σtεt and εt are i.i.d.(0, 1) symmetric random variables with finite

fourth moment. σ2
t is not deterministic conditional on the σ-algebra Ft−1 generated by all

available information up to time t−1. Setting γ = 0, (1.1) reduces to a special case of the

contemporaneous stochastic autoregressive volatility (SARV) model of Andersen (1994).

Therefore, RT-GARCH can be regarded as a hybrid of GARCH and SV models. Unlike

most SV models, RT-GARCH has analytical expressions for both the likelihood function

and conditional variance of returns. Separately, Breitung and Hafner (2016) propose a

model where they use the log squared current return innovation to drive the log volatility

process. Their model is closely related to E-GARCH and can be viewed as a special case

of the contemporaneous exponential stochastic autoregressive volatility (E-SARV) model

of Taylor (1994). However, their model is only useful for volatility nowcast. Forecast is

not available in their model. Ding (2021) proposes the stochastic heteroskedastic autore-

gressive volatility (SHARV) model which allows for conditional heteroskedasticity in the

volatility while incorporating the current observation into volatility estimate. He shows

that SHARV retains all the advantages of RT-GARCH and Breitung and Hafner’s (2016)

model while having the usual GARCH diffusion limit.

While the properties of RT-GARCH and Breitung and Hafner’s (2016) model are well

studied in discrete time, it remains to derive their diffusion limits in order to understand

their asymptotic properties in continuous time. In this paper, we employ the approach of

Duan (1997) to derive the diffusion limit of RT-GARCH. As we will see, the diffusion limit

only exists if we introduce an auxiliary process to state the system in a Markovian form.

This is because the joint process (St, σ
2
t ) under RT-GARCH is not Markov, only (rt, σ

2
t ) is
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Markov. We show that the volatility in the diffusion limit follows an Ornstein-Uhlenbeck

(OU)-type process. Since OU-type processes permit negative values, this is an undesirable

feature. Moreover, the diffusion limit is difficult to interpret and lacks compatibility with

existing asset pricing theories. As a result, we suggest that the SHARV model can address

this issue since it has the usual GARCH diffusion limit.

The rest of the paper is structured as follows. In section 2, we derive the diffusion

limit of RT-GARCH. In section 3, we discuss the specifications for the auxiliary process.

Section 4 concludes. All proofs are presented in appendix A and the diffusion limit of

Breitung and Hafner’s (2016) model is included in appendix B.

2 Main result

We refer to section 2 of Nelson (1990) for a detailed discussion on the weak convergence

of Markov chains to diffusion processes. The joint process (St, σ
2
t ) under RT-GARCH is

not Markov since σ2
t is Ft-measurable and depends on rt−1 ≡ St−1 − St−2. This can be

seen upon expressing (1.1) as an ARMA(1, 1) process,

σ2t = α+ ψ(1 + κγ) + (β + γ)σ2t−1 + ψ(ε2t − 1) + γzt−1, (2.1)

where κ = Eε4t −1 and zt = r2t −σ2
t −κψ. It is easy to see that zt is a martingale difference

sequence (MDS). In contrast, the joint process (St, σ
2
t+1) under GARCH is Markov and

σ2
t+1, which is Ft-measurable, follows an AR(1) process. Naturally, we would expect the

diffusion limit of (2.1) to have a continuous time ARMA(1, 1) structure. However, to our

knowledge, there is no literature yet on the weak convergence of an ARMA(1, 1) process

to a continuous time equivalence. As a result, we can only establish the weak convergence

for the joint process (St, σ
2
t , r

2
t ). Since the joint distribution of (St, σ

2
t ) for RT-GARCH

is not the same as that of (St, σ
2
t+1) for GARCH, the diffusion limit of RT-GARCH will

not nest that of GARCH as a special case even though RT-GARCH nests GARCH by

setting γ = 0 in discrete time. The situation is somewhat similar to the diffusion limit

of GARCH(p, q) discussed in Duan (1997) where r2t−i and σ2
t−j for i, j > 1 destroys the

Markov structure. To state the system in a Markovian form, he specifies some auxiliary

processes for each of the r2t−i and σ2
t−j in the approximating GARCH process.1 We will

adopt his approach by specifying an auxiliary process for r2t−1. This will in turn, modify

the rescaled RT-GARCH process.

Before deriving the diffusion limit, we first change some notations by letting Vt ≡ σ2
t

and Rt ≡ σ2
t ε

2
t for RT-GARCH for reasons of clarity which will become clear later. Next

1The approximation scheme of Duan (1997) differs from that of Nelson (1990) in that Nelson (1990) let
the parameters vary with h in different rates while Duan (1997) scales the (conditionally) deterministic
variables by h and the stochastic parts by

√
h while keeping the parameters fixed. The results are albeit

equivalent since they are different representations of the law of large numbers and functional central limit
theorem.
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we discuss why it is necessary to introduce an auxiliary process into RT-GARCH. Recall

the rescaled GARCH process of Duan (1997),

∆hSkh =
√
hhσkhεkh, (2.2)

∆hσ
2
(k+1)h = hα+ h(β + γ − 1)hσ

2
kh +

√
hγ(ε2kh − 1)hσ

2
kh, (2.3)

where εkh ∼ N(0, 1) and ∆hXkh = hXkh − hX(k−1)h. We use the left subscript to indicate

that the state variables depend on the choice of h. The information set F̂kh for GARCH

is generated by hS0, ..., hSkh and hσ
2
0, ..., hσ

2
(k+1)h. It is easy to check that hσ

2
kh > 0 almost

surely for all 0 < h ≤ 1. Nelson (1990) and Duan (1997) show that under regularity

conditions, as h ↓ 0, the joint process (hSt, hσ
2
t ) which is obtained by setting hSkh = hSt

and hσ
2
(k+1)h = hσ

2
t with probability one for kh ≤ t < (k + 1)h, converges weakly to the

joint process (St, σ
2
t ) which satisfies

dSt = σtdW1,t (2.4)

dσ2t = (α+ (β + γ − 1)σ2t )dt+
√

2γσ2t dW2,t, (2.5)

where W1,t and W2,t are two independent standard Brownian motions, independent of the

initial points (S0, σ
2
0). Since RT-GARCH nests GARCH as a special case, it is tempting

to rescale RT-GARCH in a similar fashion:

∆hVkh = h(α+ ψ) + h(β + γ − 1)hV(k−1)h +
√
hγ(ε2(k−1)h − 1)hV(k−1)h +

√
hψ(ε2kh − 1). (2.6)

For RT-GARCH, Fkh is generated by hS0, ..., hSkh and hV0, ..., hVkh. (2.6) nests (2.3) as a

special case by setting ψ = 0. Note that hVkh fails to be positive with probability one since

the term h(α+ψ)−
√
hψ can be negative for some 0 ≤ h < 1. hVkh is clearly not Markov,

therefore, in order to apply the weak convergence results for Markov chains, we should

treat hVkhε
2
kh as a state variable rather than an error term. The scaling factor

√
h for

hV(k−1)h(ε
2
(k−1)h−1) is also problematic. This is because h−1E[∆hVkh|F(k−1)h]→∞ as h ↓ 0

since h−1/2hV(k−1)h(ε
2
(k−1)h−1)→∞ as h ↓ 0 conditional on F(k−1)h, that is, we cannot find

a diffusion process whose drift term matches the limit of the conditional mean of ∆hVkh per

unit time. Consequently, we have to rescale hV(k−1)h(ε
2
(k−1)h−1) by h on the right hand side

(RHS) of (2.6) instead. In contrast, limh↓0 h
−1E[∆hσ

2
(k+1)h|F̂(k−1)h] = α+ (β + γ− 1)hσ

2
kh

for GARCH. Even if we could find a continuous process Vt as the diffusion limit of hVkh,

hVkhε
2
kh would have a diffusion limit Vtε

2
t which does not have a continuous sample path

since ε2t is a pure jump process. As a result, we cannot apply the diffusion approximation

theorem of Stroock and Varadhan (1979). To overcome this, we can replace hVkhε
2
kh by a

‘smoothed’ version to ensure the sample path continuity.

Having discussed the issues with rescaling RT-GARCH, we proceed by introducing an

auxiliary process hRkh which is a function of hVkhε
2
kh to replace the squared return in the
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volatility process. Let the joint process (hSkh, hVkh, hRkh) be given by

P
(
(hS0, hV0, hR0) ∈ Γ

)
= vh(Γ) for any Γ ∈ B(R3), (2.7)

∆hSkh =
√
h
√
|hVkh|εkh, (2.8)

∆hVkh = h(α+ ψ) + h(β − 1)hV(k−1)h + hγ · hR(k−1)h +
√
hψ(ε2kh − 1), (2.9)

lim
h↓0

E[(∆hRkh)i|hV(k−1)h = V, hR(k−1)h = R] = bi(V,R) for i = 1, 2, (2.10)

lim
h↓0

E[∆hVkh∆hRkh|hV(k−1)h = V, hR(k−1)h = R] = b3(V,R), (2.11)

lim
h↓0

E[∆hSkh∆hRkh|F(k−1)h] = 0, (2.12)

lim
h↓0

E[(∆hRkh)2+δ|F(k−1)h] = 0 for some δ > 0, (2.13)

where εkh ∼ N(0, 1), B(Rn) denote the Borel sets on Rn, vh(·) is a probability measure

on (R3, B(R3)) and the functions

b(S, V,R) ≡


0

α+ ψ + (β − 1)V + γR

b1(V,R)

 , (2.14)

a(S, V,R) ≡


|V | 0 0

0 2ψ2 b3(V,R)

0 b3(V,R) b2(V,R)

 , (2.15)

satisfy the nonexplosion condition of either Nelson (1990) or Hafner et al. (2017) or both

and one or more of conditions A, B, C and D of Nelson (1990). In addition, we require

that 1Rk = 1Vkε
2
k, that is, the auxiliary process is exactly the return process when h = 1

to keep in-line with RT-GARCH in discrete time. However, for h < 1, (2.9) is not exactly

a rescaled version of (2.6) since hRkh 6= hVkhε
2
kh in general. Consequently, (2.9) no longer

nests GARCH when ψ = 0. Note that we have taken the absolute value of hVkh on the

RHS of (2.8) to ensure that hSkh is real-valued. Regardless of the exact specification of

∆hRkh, the process hVkh will always converge to the same type of diffusion process since

hR(k−1)h is fixed at time (k − 1)h. Since our primary interest is the diffusion limit of hVkh,

the arbitrariness in the choice of hRkh is not a major issue.

Theorem 2.1. Let (hSkh, hVkh, hRkh) satisfy (2.7) - (2.10). Let hSt = hSkh, hVt = hVkh

and hRt = hRkh with probability one for kh ≤ t < (k + 1)h. If (hS0, hV0, hR0)
d−→

(S0, V0, R0) as h ↓ 0, then (hSt, hVt, hRt) ⇒ (St, Vt, Rt) as h ↓ 0, where ‘⇒’ denotes

the weak convergence and the joint process (St, Vt, Rt) satisfies

dSt =
√
|Vt|dW1,t (2.16)

dVt =
(
α+ ψ + (β − 1)Vt + γRt

)
dt+

√
2ψdW2,t, (2.17)

dRt = b1(Vt, Rt)dt+
√
b2(Vt, Rt)(ρtdW2,t +

√
1− ρ2tdW3,t), (2.18)
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P
(
(S0, V0, R0) ∈ Γ

)
= v0(Γ) for any Γ ∈ B(R3), (2.19)

where W1,t, W2,t and W3,t are three independent standard Brownian motions, independent

of (S0, V0, R0) and ρt = b3(Vt, Rt)/(
√

2ψ
√
b2(Vt, Rt)).

From (2.16), Vt follows an OU-type with an explanatory variable Rt. Therefore, Vt fails

to be positive with probability one. Consequently, we have to take the absolute value of Vt

to ensure that St is real-valued. It is not surprising that (2.17) does not nest the GARCH

diffusion as a special case since (2.9) does not nest (2.3) as a special case except when h =

1. By the Meyer-Tanaka formula (Protter, 2004), we have d|Vt| = sign(Vt)dVt + dL0
t (Vt)

where L0
t (Vt) is the local time of Vt at zero. Regardless of the specification of hRkh, the

process hVkh will always converge weakly to an OU-type process as long as the diffusion

limit exists and ψ 6= 0. The diffusion process in Theorem 2.1 is difficult to interpret and

lacks compatibility with existing asset pricing theories.

To understand why the diffusion limit of RT-GARCH cannot nest GARCH as a special

case, recall that the randomness comes from hr
2
kh for GARCH, whereas for RT-GARCH,

hr
2
kh is (conditional) deterministic. For GARCH, it is the joint process (hSkh, hσ

2
(k+1)h), not

(hSkh, hσ
2
kh), that converges weakly to (St, σ

2
t ) given in (2.4) and (2.5) as h ↓ 0.2 In fact,

since hσ
2
kh is F(k−1)h-measurable, the conditional distribution of (hSkh, hσ

2
kh) degenerates

to (hSkh, σ
2) for some σ2 which coincides with RT-GARCH when ψ = 0. Therefore, the

diffusion limit of the joint process (hSkh, hσ
2
(k+1)h) is not the same as that of (hSkh, hσ

2
kh)

since the weak convergence concerns the entire sample path. A better way to understand

this is to consider a different parameterisation of GARCH used by Corradi (2000):

∆hSkh =
√
hhσ(k−1)hεkh, (2.20)

∆hσ
2
kh = hα+ h(β + γ − 1)hσ

2
(k−1)h +

√
hγ(ε2kh − 1)hσ

2
(k−1)h. (2.21)

In this case, hσ
2
kh is Fkh-measurable and

√
hhσ

2
kh is the conditional variance of returns at

time kh instead of (k− 1)h. The joint process (hSkh, hσ
2
kh) converges weakly to the usual

GARCH diffusion as h ↓ 0 by proposition 2.1 of Corradi (2000). However, RT-GARCH

does not nest this specification of GARCH as a special case even when h = 1 since ∆1St

in (2.20) is scaled by 1σt−1 not 1σt.

3 Specifications for the auxiliary process

We next consider some specifications for the auxiliary process hRkh using the approach

of Duan (1997). Recall the auxiliary system of a GARCH(p, q) process given in (51) of

Duan (1997), Φt+1 = A+ (B +Ct)φt +Dt, and the corresponding rescaled GARCH(p, q)

2To be more rigorous, for GARCH, it is the joint process (hSt, hσ
2
t ) where hSkh = hSt and hσ

2
(k+1)h =

hσ
2
t with probability one for kh ≤ t < (k + 1)h that converges weakly to (St, σ

2
t ) as h ↓ 0.
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process given in (53) of Duan (1997),

∆hΦ(k+1)h = h(A+EDkh)+
(
h(B+ECkh−I)+

√
h(Ckh−ECkh)

)
hΦkh+

√
h(Dkh−EDkh),

where I is the identity matrix. For example, a GARCH(1, 2) process is given by[
φt+1

φtε
2
t

]
=

[
α

0

]
+
([β γ2

0 0

]
+

[
γ1ε

2
t 0

ε2t 0

] )[ φt

φt−1ε
2
t−1

]
,

where φt ≡ σ2
t . The rescaled GARCH(1, 2) is then given by[

∆hφ(k+1)h

∆hφkhε
2
kh

]
= h

[
α

0

]
+
(
h

[
β + γ1 − 1 γ2

1 −1

]
+
√
h

[
γ1(ε

2
kh − 1) 0

ε2kh − 1 0

] )[
hφkh

hφ(k−1)hε
2
(k−1)h

]
.

Using this approach, we can treat RT-GARCH similar to a GARCH(1, 2) process since

r2t−1 is Ft−1-measurable in both models. Let ΦT
t+1 = (Vt, Rt), A

T = (α, 0), Ct = 02,2,

B =

[
β γ

0 0

]
and Dt =

[
ψε2t

Vtε
2
t

]
,

then the corresponding rescaled RT-GARCH is given by∆hVkh

∆hRkh

 = h

 α+ ψ

E[hVkhε
2
kh|F(k−1)h]

+ h

β − 1 γ

0 −1

hV(k−1)h
hR(k−1)h


+
√
h

 ψ(ε2kh − 1)

hVkhε
2
kh − E[hVkhε

2
kh|F(k−1)h]

 .
(3.1)

It is easy to check that (3.1) becomes (1.1) upon setting h = 1 and k = t.

Theorem 3.1. Let (hSkh, hVkh, hRkh) satisfy (2.7) – (2.8) and (3.1). Let hSt = hSkh,

hVt = hVkh and hRt = hRkh with probability one for kh ≤ t < (k+1)h. If (hS0, hV0, hR0)
d−→

(S0, V0, R0) as h ↓ 0, then (hSt, hVt, hRt) ⇒ (St, Vt, Rt) as h ↓ 0 and the joint process

(St, Vt, Rt) satisfies

dSt =
√
|Vt|dW1,t (3.2)

dVt =
(
α+ ψ + (β − 1)Vt + γRt

)
dt+

√
2ψdW2,t, (3.3)

dRt = (Vt −Rt)dt+
√

2VtdW2,t, (3.4)

P
(
(S0, V0, R0) ∈ Γ

)
= v0(Γ) for any Γ ∈ B(R3), (3.5)

where W1,t and W2,t are two independent standard Brownian motions, independent of

(S0, V0, R0).

Corradi (2000) shows that there exists an alternative approximation scheme which

leads to a degenerate diffusion limit for GARCH. Specifically, Nelson (1990) and Duan

(1997) scale the stochastic parts of the approximating process by
√
h. If we scale the
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stochastic parts by h instead of
√
h, we end up with a degenerate diffusion limit.3 We

next show that this approximation scheme also leads to a degenerate diffusion limit for

RT-GARCH. Moreover, we show that the volatility is positive with probability one for

both the approximating process and diffusion limit under this scheme.

Let the joint process (hSkh, hVkh, hRkh) be given by

∆hSkh =
√
h
√
hVkhεkh, (3.6)∆hVkh

∆hRkh

 = h

α
0

+ h

β − 1 γ

0 −1

hV(k−1)h
hR(k−1)h

+ h

 ψε2kh

hVkhε
2
kh

 , (3.7)

with initial points given in (2.7). It is easy to check that (3.7) becomes (1.1) upon setting

h = 1 and k = t. Moreover, both hVkh and hRkh are positive almost surely. As a result,

we do not need to take the absolute value of hVkh on the RHS of (3.6).

Theorem 3.2. Let (hSkh, hVkh, hRkh) satisfy (2.7) and (3.6) – (3.7). Let hSt = hSkh,

hVt = hVkh and hRt = hRkh with probability one for kh ≤ t < (k+1)h. If (hS0, hV0, hR0)
d−→

(S0, V0, R0) as h ↓ 0, then (hSt, hVt, hRt) ⇒ (St, Vt, Rt) as h ↓ 0 and the joint process

(St, Vt, Rt) satisfies

dSt =
√
VtdWt (3.8)

dVt =
(
α+ ψ + (β − 1)Vt + γRt

)
dt, (3.9)

dRt = (Vt −Rt)dt, (3.10)

P
(
(S0, V0, R0) ∈ Γ

)
= v0(Γ) for any Γ ∈ B(R3), (3.11)

where Wt is a standard Brownian motions, independent of (S0, V0, R0).

In appendix B, we show that Breitung and Hafner’s (2016) model converges weakly

to the same diffusion limit as the E-GARCH model without leverage effect. Therefore,

Breitung and Hafner’s (2016) model has a more theoretically appealing diffusion limit

compared to RT-GARCH but at the expense that volatility forecasts are not available for

their model. In contrast, the stochastic heteroskedastic autoregressive volatility (SHARV)

model of Ding (2021) retains all the advantages of RT-GARCH while having the same

diffusion limit as (GJR-)GARCH. As a result, this paper provides additional theoretical

justifications for the preference of SHARV over RT-GARCH.

4 Conclusion

In this paper, we have derived the diffusion limit of RT-GARCH. In doing so, we have

answered the question where RT-GARCH stands in between GARCH and SV models.

3In this case, the law of large number applies to the stochastic part, instead of the functional central
limit theorem.
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The diffusion limit of RT-GARCH is not well-defined unless we introduce an auxiliary

process and consequently, it does not nest GARCH. Moreover, the diffusion limit of RT-

GARCH lacks compatibility with existing asset pricing theories and the volatility fails to

be positive with probability one unless it comes from a degenerate diffusion. Therefore,

it is hard to justify RT-GARCH as the true data generating process. We suggest that the

SHARV model can serve as the remedy for the issues with RT-GARCH. We point out

that since RT-GARCH follows an ARMA(1, 1) process, it would be useful to establish the

weak convergence of an ARMA(1, 1) to a continuous time analogue. In this way, we no

longer need to introduce an auxiliary process to state RT-GARCH in a Markov system.

A Proofs

Throughout this section we assume kh ≤ t < (k+ 1)h for each 0 < h ≤ 1 unless specified

otherwise.

Proof of Theorem 2.1. The joint process (hSkh, hVkh, hRkh) is Markov. Therefore, to prove

Theorem 2.1, it suffices to verify Assumptions 1–4 of Nelson (1990). Assumption 3 of the

convergence in distribution of initial points is already assumed in the theorem.

To verify Assumption 1, note that
√
|hVkh|εkh is an odd function of εkh. It then follows

immediately that
√
|hVkh|εkh is an MDS. Therefore,

lim
h↓0

h−1E[∆hS(k+1)h|Fkh] = 0. (A.1)

lim
h↓0

h−1E[∆hV(k+1)h|Fkh] = α+ ψ + (β − 1)V + γR, (A.2)

and the limit of h−1E[∆hR(k+1)h|Fkh] is given in (2.10). Denote hV̂kh ≡ h(α+ψ) + h(β −
1)hVkh + hγ · hRkh = O(h). since ε2kh ≥ 0 with probability one,

E[|hV(k+1)h|ε2(k+1)h|Fkh] = E[|(hVkh + hV̂kh)ε
2
(k+1)h +

√
hψ(ε4(k+1)h − ε2(k+1)h)||Fkh].

By the triangular inequality,

|hVkh + hV̂kh| −
√
hψE[|ε4(k+1)h − ε

2
(k+1)h|] ≤ E[|hV(k+1)h|ε2(k+1)h|Fkh]

≤ |hVkh + hV̂kh|+
√
hψE[|ε4(k+1)h − ε

2
(k+1)h|].

Therefore,

lim
h↓0

h−1E[(∆hS(k+1)h)2|Fkh] = lim
h↓0

E[|hV(k+1)h|ε2(k+1)h|Fkh] = |V |. (A.3)

For hVkh,

lim
h↓0

h−1E[(∆hV(k+1)h)2|Fkh] = lim
h↓0

(
2ψ2 + h(α+ ψ)2 + h(β − 1)2hV

2
kh + hγ2hR

2
kh

+ 2h(α+ ψ)(β − 1)hVkh + 2h(α+ ψ)γ · hRkh + 2hγ(β − 1)hVkh · hRkh
)

= 2ψ2.
(A.4)
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The limit of h−1E[(∆hR(k+1)h)
2|Fkh] is given in (2.10). Finally,

E[∆hV(k+1)h∆hS(k+1)h|Fkh] = (hV̂kh −
√
hψ)E[

√
|hV(k+1)h|ε(k+1)h|Fkh]

+
√
hψE[

√
|hV(k+1)h|ε3(k+1)h|Fkh].

Since
√
|hVkh|εikh are odd functions of εkh for all odd i, they are all MDS and therefore,

lim
h↓0

h−1E[∆hV(k+1)h∆hS(k+1)h|Fkh] = 0. (A.5)

The limits of h−1E[∆hV(k+1)h∆hR(k+1)h|Fkh] and h−1E[∆hS(k+1)h∆hR(k+1)h|Fkh] are given

in (2.11) and (2.12). (A.3) - (A.5) and (2.10) - (2.12) imply the following instantaneous co-

variance matrix of a(S, V,R) which is given in (2.15). Taking the Cholesky decomposition

of a(S, V,R), we obtain the following diffusion matrix of (St, Vt, Rt):
√
|V | 0 0

0
√

2ψ 0

0 ρ
√
b2(V,R)

√
(1− ρ2)b2(V,R)

 ,
where ρ = b3(V,R)/(

√
2ψ
√
b2(V,R)).

It is straightforward though tedious to check that the limits of the conditional fourth

moments of ∆hSkh and ∆hVkh per unit time are zero. Together with (2.13), Assumptions

1 and 2 of Nelson (1990) are verified.

Finally, the distributional uniqueness of the weak solution to (2.16) - (2.19) is satisfied

by the assumptions on the coefficient matrix a(S, V,R) and b(S, V,R). Assumption 4 of

Nelson (1990) is thus verified.

Proof of Theorem 3.1. We need only to update the limits of the first two conditional

moments of ∆hR(k+1)h per unit time as well as its cross moment with the increments of

the other two state variables per unit time. First note that

E[hV(k+1)hε
2
(k+1)h|Fkh] = hVkh+2

√
hψ+h

(
α+ψ+(β−1)hVkh+γ ·hRkh

)
= hVkh+O(

√
h). (A.6)

Therefore,

lim
h↓0

h−1E[∆hR(k+1)h|Fkh] = V −R. (A.7)

Similarly it is easy but tedious to show that

E[hV
2
(k+1)hε

4
(k+1)h|Fkh] = 3hV

2
kh +O(

√
h).

Therefore,

lim
h↓0

h−1E[(∆hR(k+1)h)2|Fkh] = lim
h↓0

(
E[hV

2
(k+1)hε

4
(k+1)h|Fkh]− hV

2
kh +O(

√
h)
)

= lim
h↓0

(
2 · hV 2

kh +O(
√
h)
)

= 2V 2.
(A.8)
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For the cross moments, first note that

lim
h↓0

h−1E[∆hR(k+1)h∆hS(k+1)h|Fkh] = lim
h↓0

(
(hVkh − hRkh)E[∆hS(k+1)h|Fkh]

+ E[
√
|hV(k+1)h|hV(k+1)hε

3
(k+1)h|Fkh]− hVkhE[

√
|hV(k+1)h|ε(k+1)h|Fkh]

)
= 0,

(A.9)

using (A.1), (A.6) and the fact that the last two terms in the second equality of (A.9) are

odd functions of ε(k+1)h and therefore, are MDS. It is easy to show that

E[hV(k+1)hε
4
(k+1)h|Fkh] = 3 · hVkh +O(

√
h). (A.10)

Therefore,

lim
h↓0

h−1E[∆hR(k+1)h∆hV(k+1)h|Fkh] = lim
h↓0

(
ψ(E[hV(k+1)hε

4
(k+1)h|Fkh]

− E[hV(k+1)hε
2
(k+1)h|Fkh +O(h)] = 2ψV,

(A.11)

using (A.6) and (A.10).

(A.8), (A.9), (A.11) together with (A.3) - (A.5) imply the following instantaneous

covariance matrix 
|V | 0 0

0 2ψ2 2ψV

0 2ψV 2V 2

 , (A.12)

Taking the Cholesky decomposition of (A.12), we obtain the following diffusion matrix,
√
|V | 0 0

0
√

2ψ 0

0
√

2V 0

 . (A.13)

(A.13) together with (A.7) imply (3.4).

It is straightforward to check that the limits of the conditional fourth moments of

∆hRkh. Finally, the existence and uniqueness of strong solution to the diffusion system

(3.2) - (3.5) follows exactly the argument of Theorem 3 of Duan’s (1997). Theorem 3.1

then follows.

Proof of Theorem 3.2. It suffices to update the first two conditional moments of ∆hV(k+1)h

and ∆hR(k+1)h as well as their cross moments per unit time under the new approximation

scheme. (A.2) is still valid. Since

E[hV(k+1)hε
2
(k+1)h|Fkh] = hVkh + h

(
3ψ + (β − 1)hVkh + γ · hRkh

)
= hVkh +O(h),

(A.7) also holds. For the conditional second moments,

lim
h↓0

h−1E[(∆hV(k+1)h)2|Fkh] = lim
h↓0

(
2hψ2 + h(α+ ψ)2 + h(β − 1)2hV

2
kh + hγ2hR

2
kh

+ 2h(α+ ψ)(β − 1)hVkh + 2h(α+ ψ)γ · hRkh + 2hγ(β − 1)hVkh · hRkh
)

= 0.
(A.14)
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and

lim
h↓0

h−1E[(∆hR(k+1)h)2|Fkh] = lim
h↓0

(
hE[hV

2
(k+1)hε

4
(k+1)h|Fkh] + h · hR2

kh

− 2hE[hV(k+1)hε
2
(k+1)h|Fkh]hRkh

)
= 0.

(A.15)

Finally, for the cross moments,

lim
h↓0

h−1E[∆hR(k+1)h∆hS(k+1)h|Fkh] = lim
h↓0

(
− E[∆hS(k+1)h|Fkh]hRkh

+
√
hE[
√
|hV(k+1)h|hV(k+1)hε

3
(k+1)h|Fkh]

)
= 0,

(A.16)

and

lim
h↓0

h−1E[∆hR(k+1)h∆hV(k+1)h|Fkh] = 0. (A.17)

Theorem 3.2 then follows immediately.

B Diffusion limit of Breitung and Hafner (2016)

Breitung and Hafner’s (2016) model (without leverage effect) is given by

rt ≡ St − St−1 = σtξt, (B.1)

log σ2t = α+ β log σ2t−1 + φzt, (B.2)

where ξt are i.i.d.(0, 1) and zt = log ξ2t −E log ξ2t . Compared to RT-GARCH and SHARV,

Breitung and Hafner’s (2016) model does not give an analytical expression for the condi-

tional variance of returns since exp (φ log ξ2t ) 6= ξ2φt unless φ is an integer. Consequently,

volatility forecasts are not available for their model.4 Therefore, (B.1) - (B.2) is less ap-

pealing than RT-GARCH and SHARV from an empirical point of view. As Breitung and

Hafner (2016) point out, the main purpose of (B.1) - (B.2) is for volatility nowcasting.

Unlike RT-GARCH, their model does not nest E-GARCH as a special case. Define the

rescaled joint process (hSkh, log hσ
2
kh) as follows,

hSkh = hS(k−1)h +
√
hhσkhξkh, (B.3)

log hσ
2
kh = log hσ

2
(k−1)h + hα+ h(β − 1) log hσ

2
(k−1)h +

√
hφzkh, (B.4)

where ξkh ∼ N(0, 1). It is straightforward to check (B.3) - (B.4) become (B.1) - (B.2) by

setting h = 1 and k = t. Moreover, log ξ2kh follow the log-chi square distribution defined

in Pav (2015) with one degree of freedom. The first moment is given by log 2 + ϕ(1/2),

where ϕ(·) is the digamma function, i.e., the derivative of the log gamma function. The

cumulant generating function of log ξ is given by

K(n) = n log 2 + log Γ(1/2 + n)− log Γ(1/2), (B.5)

4If we restrict φ = 1, then E[exp(φ log ξ2t )] = 1. However, empirical estimates of Breitung and Hafner
(2016) suggest φ is much smaller than 1.
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where Γ(·) is the gamma function.

Define C = φE[log ξ2kh]. Using the fact that hrkh is an MDS (Breitung and Hafner,

2016) and zkh has zero mean,

lim
h↓0

h−1E[∆hS(k+1)h|Fkh] = 0, (B.6)

lim
h↓0

h−1E[∆ log hσ
2
(k+1)h|Fkh] = α+ (β − 1) log σ2, (B.7)

The limits of the second moments per unit time are given by

lim
h↓0

h−1E[(∆hS(k+1)h)2|Fkh] = lim
h↓0

{
exp

(
log hσ

2
kh + h

(
α+ (β − 1) log hσ

2
kh

)
−
√
hC
)

· E[exp(
√
hφ log ξ2(k+1)h)ξ2(k+1)h|Fkh]

}
.

(B.8)

Expanding exp(
√
hφ log ξ2(k+1)h) inside the expectation on the RHS of (B.8) and using the

fact E[| logn ξ2|] <∞ for all integer n > 0,5 we have by Cauchy–Schwarz inequality,

E[|ξ2 logn ξ2|] ≤
√

Eξ4E[log2n ξ2] <∞.

Therefore, (B.8) becomes

lim
h↓0

h−1E[(∆hS(k+1)h)2|Fkh] = σ2. (B.9)

Similarly,

lim
h↓0

h−1E[(∆ log hσ
2
(k+1)h)2|Fkh] = lim

h↓0

{
h
(
α2 + (β − 1)2 log2 hσ

2
kh

)
+ φ2Ez2(k+1)h

+
√
h
(
2α(β − 1) log hσ

2
kh + 2αφEz(k+1)h

+ 2(β − 1)φ log hσ
2
khEz(k+1)h]

)}
= φ2Ez2,

(B.10)

where Ez2 can be calculated from the cumulant generating function (B.5) and is finite.

Finally, the limit of the cross moment per unit time is given by

lim
h↓0

h−1E[(∆(log hσ
2
(k+1)h)(hS(k+1)h)|Fkh] = φE[hσ(k+1)hξ(k+1)h log ξ2(k+1)h|Fkh]

+ lim
h↓0

√
h
(
α+ (β − 1) log hσ

2
kh

)
E[hσ(k+1)hξ(k+1)h|Fkh].

(B.11)

Since hS(k−1)h − hSkh is an MDS, the second term on the RHS of (B.11) is zero. For the

first term, note hσ(k+1)hξ(k+1)h log ξ2(k+1)h is an odd function of a symmetric around zero

random variable ξ(k+1)h. Therefore, it is also an MDS and (B.11) equals zero.

It is easy to verify the fourth moments per unit time go to zero as h ↓ 0. Therefore,

if (hS0, log hσ
2
0)⇒ (S0, log σ2

0), then the joint process (hSkh, log hσ
2
kh) converges weakly to

a diffusion process which satisfies

dSt = σtdW1,t, (B.12)

5This is evident from the cumulant generating function (B.5) since the digamma function is infinitely
differentiable and the m-th derivative is the polygamma function of order m.
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d log σ2t =
(
α+ (β − 1) log σ2t

)
dt+ φ

√
Ez2dW2,t, (B.13)

where W1,t and W2,t are two independent Brownian motions. The distributional unique-

ness is satisfied upon noting (B.12) - (B.13) are equivalent to (3.18) - (3.19) of Nelson

(1990), the diffusion limit of E-GARCH and φ
√
Ez2 <∞.
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