
REPORT

Detecting cryptic clinically relevant structural
variation in exome-sequencing data increases
diagnostic yield for developmental disorders
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Summary
Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic dis-

eases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing

with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome

sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs

undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interro-

gates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with

severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in

genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants

determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21

and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of

particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in

MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed

by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.
Structural variation (SV) includes a diverse collection of

genomic rearrangements such as copy number variation

(CNV), mobile element insertions (MEIs), inversions,

translocations, and others.1 Depending on population

ancestry and technology used, the typical human genome

harbors between 7,000 and 25,000 polymorphic SVs, with

the majority constituting bi-allelic CNVs andMEIs.2 While

most SVs have minimal, if any, functional impact, SVs

have been recognized as causative variants in congenital

disorders.3–5

In diagnostic testing of suspected genetic disorders, SVs

are often identified using chromosomal microarrays

(CMAs) which offer a low-cost albeit low-resolution

method for the identification of large CNVs (typically

>20 kbp in length for genic regions). CMAs are still widely

used by diagnostic laboratories despite the increasing

maturity of genome sequencing-based tools for SV discov-

ery6 and the wealth of clinically ascertained exome-

sequencing (ES) data already generated for the ascertain-

ment of single-nucleotide variants (SNVs) and small

insertions/deletions (indels).7 There are several reasons

for this. First, the cost, computational power, and infor-

matics complexity necessary for genome sequencing-based
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diagnostics is still a barrier to many public and private

healthcare providers.8 Second, current ES-based SV-discov-

ery approaches focus on methods that interrogate

sequencing coverage to identify regions of copy number

variation within one genome compared to others.9 As

such, ascertainment is typically limited to CNVs of size

>10 kbp, with resolution largely a factor of the sequencing

depth and the density and number of baits in the ES assay,

analogous to probes in CMAs. Thus, despite potentially of-

fering improvements in CNVascertainment over CMAs, ES

as a tool for the assessment of diagnostic SVs has been slow

to enter the clinic.10

Consequently, individuals with genetic abnormalities

smaller than the discovery resolution of CMA or standard

SV-ES approaches (>10 kbp) but larger than variants able

to be accurately called using typical SNV/indel-based ap-

proaches (<50 bp)11 often remain undetected, here termed

‘‘cryptic.’’ To address this unmet need, we have developed

the tool InDelible, which examines ES data for split read

pairs indicative of SV breakpoints. We decided to focus

on split reads because the formation of unique junction se-

quences is a shared characteristic of a broad range of

different classes of SVs. We applied InDelible to ES data
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Figure 1. InDelible SV discovery in ES
data
InDelible processes one ES sample pro-
vided in BAM or CRAM format via six pri-
mary steps (tan boxes). First, alignment
files are queried for all reads where part of
the aligned sequence matches the refer-
ence genome and the other does not (i.e.,
split reads; Fetch). Next, reads are clustered
(Aggregate) and scored using a random for-
est model15 trained using a variant truth
set (Score; see Figure S1 and supplemental
material and methods for more detail).
Split reads are then merged within clusters
across individuals to determine the longest
quality junction sequence and mapped
back to the genome with bwa mem16 and
to a set of curated repeats with blastn.17

These alignments are then used to
determine breakpoint frequency, likely breakpoints, length, and structural variant class (i.e., deletion, duplication, insertion, etc.; Data-
base). Split read clusters are subsequently annotated with population frequency and intersection with genomic functional annotations,
such as protein-coding genes (Annotate). Finally, clusters are assessed for presence or absence in parental samples, where available, to
determine inheritance status and identify likely de novo variants (denovo). All of these commands can be run on one sample via the
‘‘Complete’’ command (blue box). InDelible also includes the ‘‘Train’’ command to train a new random forest model from user-provided
labeled training data.
generated from 13,438 probands with severe develop-

mental disorders (DDs) recruited as part of the Deciphering

Developmental Disorders (DDD) study. Approximately

29% of DDD probands harbor a pathogenic de novo muta-

tion in a gene known to be associated with DD7 and have

been previously assessed for a wide range of variant classes

such as coding,7 noncoding,12 and splice site13 SNVs and

indels, multinucleotide variants,14 mobile element inser-

tions,3 and copy number variants (unpublished data). As

such, the DDD study represents an ideal opportunity to

demonstrate the additive diagnostic potential of identifica-

tion of SVs at scale using split-read information.

InDelible variant discovery and analysis proceeds in

several steps (Figure 1; detailed description in supple-

mental material and methods). In summary, InDelible

identifies split reads, aggregates them into clusters at the

same genomic location, filters these clusters to remove

technical artifacts and retain likely genetic variants, and

then combines unaligned portions of split reads and

maps them to the genome to characterize the nature of

the variant. InDelible also calculates the frequency of

each split-read cluster across a population of individuals

to facilitate the filtering of variants on the basis of minor

allele frequency.

InDelible is coded in Python, uses the pysam (see web re-

sources) library for sequence alignment file manipulation

(Table S1), and works on bwa-aligned BAM or CRAM

format files.18 We have designed InDelible to be scalable

for datasets comprising individual probands tomulti-thou-

sand sample cohorts and our estimates suggest that, to

analyze a dataset of 1,000 trios, InDelible would require

approximately 1556 CPU h, or 15.6 h of real time on a

100-core compute cluster (Figure S2). Additionally, for

easy implementation on cloud compute platforms, we

have made InDelible available as a Docker image (see
The American Jour
supplemental material and methods and data and code

availability).

We benchmarked InDelible against GATK11 and

Manta,19 another SV detector which utilizes split reads,

for variants across a range of allele frequencies and sizes.

First, we ran these callers on ES data generated for a control

individual by the Genome in a Bottle Consortium.20,21 We

then used the gold-standard variant dataset provided by

the Genome in a Bottle Consortium for the same individ-

ual, which amalgamates variant-call data across several

data types including whole genome short-, linked-, and

long-read sequencing, to assess recall and specificity of

the resulting ES calls for each algorithm (Figure S3;

supplemental material and methods). When using ES

data, InDelible equals or exceeds the recall of both GATK

and Manta for variants between 21 and 10 kbp in length,

the variant space InDelible was targeted to identify. Rela-

tive to InDelible, GATK and Manta had 81.7% and 15.0%

recall for deletions >20 bp in length, respectively, and

86.9% and 8.2% recall for insertions >20 bp in length,

respectively. In this same experiment InDelible has moder-

ately increased false discovery rates compared to GATK

(Figure S3). These issues can likely be attributed to

InDelible being designed for maximum sensitivity in clin-

ical sequencing data and can likely be abrogated via the

design of better hard filters when analyzing population-

level variants and/or retraining the random forest using

training data from population-level datasets.

A key objective for the design of InDelible was to identify

de novo variants potentially causative of a proband’s disor-

der. As such, variants are primarily filtered on: (1) the

population frequency of the split read cluster to remove

variants too common to be plausibly causative of a rare dis-

order, (2) absence in unaffected parents (when available),

and (3) intersection of variant breakpoints with the coding
nal of Human Genetics 108, 2186–2194, November 4, 2021 2187



sequences of known-disease-associated genes. Defining the

precise molecular structure of SVs from short read

sequencing data can be challenging, and evenminor errors

in breakpoint precision can have large consequences on

interpretation (e.g., in- versus out-of-frame indels). Hence,

we opted to identify all variants which intersect relevant

DD-associated genes for further manual curation rather

than relying on generic variant interpretation tools.

To evaluate the utility of InDelible for diagnostic ana-

lyses, we applied InDelible to identify putatively diagnostic

variants in 13,438 probands recruited to the DDD study.

Probands were exome sequenced either with both parents

(trios, n ¼ 9,848) or with one or both parents absent (non-

trios, n ¼ 3,590). We first identified split reads and split

read clusters (Figure 1) to ascertain 353,313,108 redundant

split read clusters across all probands. Random forest

filtering resulted in retention of 30,667,420 high-quality,

redundant split read clusters across all probands, or 8.7%

of originally ascertained loci (supplemental material and

methods, Figure S4). After cluster filtering, we merged all

retained clusters into a set of 1,954,642 non-redundant

split read clusters across all 13,438 probands, with

1,342,050 (68.7%) clusters found only in one proband

(Figure S5). Clusters were evenly distributed across all chro-

mosomes as a function of chromosome length (r2 ¼ 0.739;

Figure S6). Retained clusters were then annotated with pu-

tative breakpoints, intersecting gene(s), and population

frequency. InDelible was also able to determine the

missing 50 or 30 breakpoint, variant length, and variant

type (i.e., deletion, duplication, MEI, etc.) of 199,932

(10.2%) clusters (supplemental material and methods).

Of the clusters which InDelible was able to resolve to a spe-

cific variant type, 65.7% were simple deletions/duplica-

tions, with the remainder comprising complex events,

MEIs, translocations/segmental duplications, and non-

templated insertions (Figure S7). Ascertainment of variant

type and length are dependent on sequencing depth and

population frequency (Figure S5) but are optimized for

the length of variants InDelible is best suited to identify

(�20–500 bp; Figure S8). This specificity is best demon-

strated when restricting to clusters that are plausibly

associated with DDD study participant phenotype (see

below); InDelible accurately resolves both breakpoints,

length, and variant type for 86.3% (126/146) of such clus-

ters (Table S2).

We next restricted our variant set to rare (call frequency

< 0.04%) clusters found only in or near (here defined as

within 510 bp of any exon) the coding sequence of 399

dominant or X-linked DD-associated genes from the

Developmental Disorders Genotype-to-Phenotype data-

base (DDG2P).22 Variants identified within individuals

sequenced as a parent-offspring trio were then also as-

sessed for de novo status. Filtering on allele frequency, in-

heritance, and gene intersection resulted in a preliminary

set of 260 candidate indels and SVs across all 13,438 pro-

bands (Figure 2A; Table S2; supplemental material and

methods). Based onmanual variant inspection,23 we deter-
2188 The American Journal of Human Genetics 108, 2186–2194, Nov
mined that 2/260 (0.8%) were erroneously annotated to

have intersected a mono-allelic DD gene, 17/260 (6.5%)

candidate de novo events were likely to be present in a

parent (i.e., parental false negatives), and 23/260 (8.8%)

were unlikely to be real variants (i.e., offspring false posi-

tives). Four probands contributed 52.2% of false positive

variants, indicating that sample selection and/or addi-

tional sample-level QC could further lower the false posi-

tive rate of InDelible (Figure 2A; Table S2).

Following variant quality control, we further curated

variants for those likely to be associated with a proband

phenotype (Figure 2A). We considered variants with a

non-Finnish European minor allele frequency of R1 3

10�4 (19/260; 7.3%) in the Genome Aggregation Database

(gnomAD)1,24 or presence in other unrelated individuals

within DDD (20/260; 7.7%) as unlikely to be the cause of

the child’s disorder. Additionally, variants confined to in-

trons or 50/30 UTRs were also defined as variants of uncer-

tain significance and were not considered further (33/

260; 12.7%). This final round of filtering left 146 SVs and

large indels which could plausibly explain a proband

phenotype (56 from probands sequenced as trios, 90

from non-trio probands).

We next sought to determine the sensitivity of InDelible

to clinically relevant variants ascertained using alternative

methods. DDD has already identified (across both trio and

non-trio probands) 1,853 rare, plausibly pathogenic vari-

ants with a net size difference R1 bp (i.e., non-SNVs) in

the same DDG2P gene set defined above7—variants poten-

tially detectable with a split read-based method such as that

employed by InDelible. The majority of these variants are

private or low-allele frequency small indels between 1 and

10 bp in size (1,218/1,853; 65.7%) or large CMA or ES-ascer-

tained CNVs R10 kbp in length (410/1,853; 22.1%;

Figure 2B). As anticipated due to the low number of split

reads at variant breakpoints as variant size decreases,

InDelible performed poorly in identification of very short

variants %10 bp with an overall sensitivity of 1.4%

(Figure 2C). Sensitivity improved as a function of variant

size, peaking at 48.3% sensitivity for variants between 21

and 50 bp, but dropped again for variantsR100 bp. To bet-

ter understand why InDelible missed such variants, we

manually curated the 34 potentially pathogenic variants be-

tween 21 and 500 bp not identified by InDelible. We found

that InDelible missed variants for three primary reasons.

First, these potentially pathogenic variants include some

higher-frequency variants that are too common to be plau-

sibly pathogenic whose true allele frequency was underesti-

mated previously, but have now been more accurately

determined by InDelible and thus subsequently filtered

out (n ¼ 12/34; 35.3%). Second, several variants have low

split read support (i.e., <5 reads) despite being located in

high-coverage regions and were thus excluded by our strin-

gent filtering approach (n¼ 11/34; 32.4%). Third, as variant

size increases, it becomesmore likely that the breakpoints of

SVs which impact coding sequence lie outside of ES target

regions (i.e., within intronic and intergenic sequences).
ember 4, 2021



Figure 2. SV ascertainment in the DDD
study with InDelible
(A) Breakdown of putative variant conse-
quences for all 260 variants identified in
this study delineated by whether or not
the proband was sequenced with both par-
ents (trio, tan) or not (proband only, dark
green). Light gray and dark gray boxes
represent erroneous variants and variants
unlikely to be associated with a proband
phenotype, respectively.
(B) Total number of DDD variants reported
to referring clinicians via the DECIPHER
platform among DDD probands with a
net size change R1 bp.
(C) Sensitivity of InDelible to DDD vari-
ants reported to referring clinicians via
the DECIPHER platform among various
variant size bins.
(D) Categorization of InDelible-ascer-
tained variants into previously known (or-
ange) versus those novel (brown) to this
study based on size.
(E) Distribution of variants unique to
InDelible throughout the genome. Shown
in the outer plot are the total number of
InDelible variants per gene, with genes
that have multiple previously undetected
variants labeled. Displayed in the inner
plot are the total number of variants for
each SV type identified.
Ergo, such variants are refractory to identification with

split reads and likely to be missed by any split-read caller

(n ¼ 6/34; 17.6%). Combined, these three explanations ac-

count for 85.3% of variants between 21 and 500 bp missed

by InDelible. While variants with breakpoints outside of

sequencing baits are invisible to InDelible, additional fine-

tuning of InDelible’s filtering parameters could, in theory,

output variants with lower split read support or variants

with higher allele frequencies.

These 63 previously undetected variants (four of which

were ascertained by an earlier version of InDelible and

included as part of a previous DDD publication25) that

impact known DD-associated genes (Table S2) are

composed primarily of deletions and duplications (50/63;

79.4%) but also includes variants with diverse mutational

mechanisms such as MEIs, complex rearrangements, and

dispersed duplications/translocations (Figure 2E). 25 of

these variants were observed in trio probands, with
The American Journal of Human Genetics 1
parental data supporting a de novo

origin for all of these variants. InDel-

ible was particularly effective at iden-

tifying variants between 21 and

500 bp in size (Figure 2D); 30 previ-

ously undetected variants (47.6% of

InDelible-specific variants) lie within

this size range and represent a 42.9%

increase in putatively pathogenic var-

iants 21–500 bp in length among

DDD probands (Figure 2D). We also
identified six genes with multiple previously undetected

SVs among unrelated individuals, of which the most recur-

rently affected was MECP2, the causal gene of Rett syn-

drome (Figure 2E).26

From an initial round of clinical review, based on inter-

secting gene(s) and associated phenotypes, we concluded

that nine (14.3%) of these 63 previously undetected vari-

ants were unlikely to explain the referred proband’s

phenotype, and were thus excluded from future analysis

(Table S2). We next attempted PCR validation of the 54 pu-

tatively pathogenic variants (supplemental material and

methods). Of the variants for which conclusive validation

results could be obtained, 23/23 (100%) were confirmed as

true positives, either by the obvious presence of a mutant

band of expected size with gel electrophoresis or by

follow-up capillary sequencing where the gel result was un-

certain (Table S2). For variants for which PCR was possible,

we also confirmed that 10/10 (100%) putative de novo
08, 2186–2194, November 4, 2021 2189



Figure 3. Clustered SVs in MECP2 cause
diverse phenotypes
(A) Shown is a cartoon representation of
the gene MECP2, with stop-gained (black
circles) and missense (gray circles) de novo
SNVs identified in DDD trios. Each circle
represents one proband, with recurrent
variants represented by stacks of circles.
Below the MECP2 gene model, we have
shown the seven variants identified by
InDelible as well as the single whole gene
deletion previously identified via CMA
(proband 279220; arrows indicate this
variant extends beyond the scale shown
in the diagram). Sizes adjacent to variants
represent the difference in number of refer-
ence and alternate bases in the indicated
DDD study participant genome. We have
indicated that the variant in DDD study
participant 258223 only incorporates
non-references bases (i.e., an insertion)
with an asterisk. Variants are colored by
their classification in (B). All InDelible-as-
certained variants overlap the same
326 bp region in the last exon of MECP2.
(B) Diverse proband phenotypes among
MECP2 SV carriers. Each proband carrying
a MECP2 SV from (A) is shown on the x
axis, with phenotypes annotated by the
referring clinician shown on the y axis.
Filled black circles represent when a corre-
sponding proband displays the corre-
sponding phenotype. Colored boxes on
the top of the plot represent the diverse
phenotypes we identified following clin-
ical review. The y axis marginal histogram
represents the number of times the corre-
sponding phenotype was observed among
our SV probands.
variants identified in trio probands were indeed absent

from both parents.

All 54 plausible pathogenic variants were reported to

referring clinicians and clinically interpreted by two senior

clinical geneticists; 30/54 (55.6%) were classified as patho-

genic or likely pathogenic by both clinical geneticists

(Table S2). Of these variants, those identified in non-trio

probands (n ¼ 31/54 plausibly pathogenic variants) for

which inheritance status is unavailable, were less likely to

be interpreted as being pathogenic (Fisher’s p ¼ 0.006).

This finding is corroborated by the difference in the pro-

portion of in-frame versus out-of-frame deletions and du-

plications %50 bp between trio and non-trio probands;

80.0% of deletions and duplications are in-frame for

non-trios versus 19.0% for trios (Fisher’s p ¼ 1.5 3 10�6;

Figure S9). This is consistent with population-level obser-

vations: out-of-frame deletions and duplications are typi-

cally under stronger negative selection than in-frame vari-

ants27 and an increased proportion of in-frame variants in

non-trio probands is suggestive of a greater proportion be-

ing benign. The difference is likely attributable to the

absence of parental data leading to the inclusion of rare

benign inherited variants that are unlikely to be filtered

out using population variation data (e.g., gnomAD1,24).
2190 The American Journal of Human Genetics 108, 2186–2194, Nov
Overall, de novo variants identified by InDelible represent

0.7% (18/2592) of all confirmed diagnoses among trio pro-

bands in the DDD study.

InDelible identified a total of seven confirmed de novo

variants R20 bp in length affecting MECP2 (Figures 2E

and 3A), all predicted to be protein truncating. As expected

and in accordance with known sex bias among individuals

with Rett syndrome,28 all variants were ascertained from

female probands. Out of these seven probands, two have

phenotypes that could be described as consistent with

typical Rett syndrome presentation.28 Through in-depth

clinical curation of HPO terms (see supplemental material

and methods), we grouped probands with putative loss-of-

function mutations caused by SVs in MECP2 into four cat-

egories (Figure 3B). Cases identified by InDelible thus

represent the wide variety of diverse clinical presentations

that can result from disruption of the C terminus of

MECP229 and include previously observed MECP2-associ-

ated phenotypes such as early-onset seizures and Angel-

man-like symptoms (Table S3; Figure 3B).30

Interestingly, all five of our MECP2 variants in probands

without typical Rett syndrome presentation overlapped

the same 326 bp region located within the final coding

exon and, aside from a previously ascertained whole
ember 4, 2021



gene deletion (proband 279220), do not overlap with puta-

tively pathogenic SNVs identified within the DDD study

(Figure 3A). The SV-specific region corresponds to an area

of low sequence complexity and has been previously ascer-

tained as hyper-mutable by several studies.29,31 The molec-

ular function of this region ofMECP2 is poorly understood

and it is uncertain as to the consequences that our

described variants may have on protein structure beyond

decreasing transcript abundance and/or overall protein

stability.29

The seven de novo MECP2 variants constitute 28.0% (7/

25) of all novel de novo variants identified by InDelible

and 35.0% (7/20) of all confirmed de novo protein-trun-

cating or gene-deleting variants of MECP2 in the DDD

study7 (Figure 3A).

As several publications have shown that rare, inherited

variants are also important in the genetic architecture of

developmental disorders,32 we next sought to examine

whether InDelible could be used to identify such variants.

We repeated our filtering as described above but limited to

variants found in only a single proband with split read sup-

port from either parent (supplemental material and

methods). This approach identified a total of 145 variants

within the coding sequence of mono-allelic DD genes. As

expected based on our analysis of variants in probands

sequenced without their parents (Figure S9), a large propor-

tion of inherited variants we identified were balanced/in-

frame deletions or duplications with uncertain effect on

the target protein (50; 34.5%). Others either primarily over-

lapped noncoding sequence, were found in an individual

with a more likely diagnostic variant, were large duplica-

tions which only partially overlapped the gene of interest,

were already identified based on an alternate breakpoint

as part of our de novo analysis, or were also identified in con-

trol individuals at high enough allele frequencies to be

considered unlikely to be associated with an individual’s

phenotype.1,24 Initial filtering based on these criteria left a

remainder of 17 variants for clinical interpretation.

Of the remaining inherited variants, seven were already

identified via other approaches and reported to referring

clinicians with six considered as likely benign and one as

likely pathogenic. The remaining ten variants were

referred to the same two senior clinician geneticists as for

our de novo analysis detailed above (Table S4). Of these

ten variants, all but one were unlikely to be involved in in-

dividual phenotype. The sole remaining inherited variant,

an out-of-frame deletion in KAT6B, was identified in a pro-

band-mother pair and was deemed a variant of uncertain

consequence upon initial clinical review. Follow-up with

the referring clinician regarding the mother’s phenotype

determined that the mother did not exhibit any features

of the proband’s disorder. As such, this variant was deemed

to be likely benign. Combined, these data show that

InDelible is effective at identifying rare, inherited variants

but that the overall diagnostic yield may be low.

Here we present the development and application of

InDelible, a tool designed for the rapid assessment of ES
The American Jour
data for breakpoints of rare, pathogenic cryptic SVs

involved in single-gene disorders (Figure 1). We applied

InDelible to 13,438 proband genomes sequenced as part

of the DDD study and identified a total of 146 candidate

pathogenic variants impacting genes associated with

dominant or X-linked DD (Figure 2A, Table S2). Of these

146 variants, 63 were not previously identified in DDD

probands, despite the wide range of SVand InDel detection

algorithms that have previously been deployed on this

cohort.7,25 Notably, we increased the number of putatively

diagnostic variants among DDD probands 21–500 bp in

length by 42.9% (Figure 2D). Through conservative clinical

assessment of these 63 variants, we determined that 30

(47.6%) of our previously undetected variants were consid-

ered likely causative of proband phenotype—of particular

interest was the large number of protein-truncating SVs

we identified in MECP2 (Figure 3).

The variant size range which InDelible interrogates is

complementary to other approaches commonly used for

variant discovery from ES data.9,11 While other previously

described algorithms have also attempted to mine split

read information for structural variant detection,11,19,33

they have different properties that preclude meaningful

comparison with InDelible.11 Some have been trained

primarily on genome sequencing data rather than ES

data,19,33 others do not explicitly assess de novo status,

and many are not readily scalable to a dataset of �10,000

trios. As such, we have built InDelible to be scalable to

many thousands of samples (Figure S2).

Other studies have previously noted that �10% of all

MECP2 variants in probands ascertained based on presen-

tation of Rett-associated phenotypes were deletions31,34

and a large number of pathogenic or likely pathogenic var-

iants in ClinVar fall within the same region of MECP2 that

we detail in this manuscript. These observations, com-

bined with the diverse phenotypes that this study has

identified (Figure 3B), further complicate the clinical inter-

pretation of variants disrupting MECP2. In particular, the

work of Guy et al.29 found that slight differences between

the size and sequence context of deletions in the C-termi-

nal domain ofMECP2 can have significant ramifications in

RNA/protein expression. Additionally, Huppke et al.35

found that skewed X-inactivation could play a role in the

severity of MECP2 presentation. Further work is needed

to understand how different classes of mutation lead to

diverse phenotypes in individuals with MECP2 loss-of-

function variants. However, most importantly and exem-

plifying the additive power of InDelible, if not applied to

the DDD study, 20.6% of DDD probands with clinically

relevant MECP2 variants would not have received a diag-

nosis for their disorder.

InDelible was designed to detect variant breakpoints

missed by other approaches in ES data from individuals

with DDs. This has three major ramifications for the design

of InDelible and the variants discussed as part of this study.

First, as the primary cause of DDs is highly penetrant domi-

nant de novo variants,7 InDelible variant discovery was
nal of Human Genetics 108, 2186–2194, November 4, 2021 2191



Figure 4. Added diagnostic PTV yield of
InDelible
Total number of de novo PTVs (y axis) ascer-
tained in DD-associated genes when using
InDelible alone, or in combination with a
subset of three additional algorithms
(GATK,11 XHMM,9 or MELT3,36). Percent-
ages represent the proportion of all PTVs
specific to InDelible (green text) or
XHMM (orange text) for each bar. The red
line and axis label indicates the maximum
number of de novo PTVs identified in DD-
associated genes among 9,848 DDD trio
probands if combining data from all four
algorithms (n ¼ 1,285 variants).
focused on identifying such variants from a defined list of

genes known to be associated with DDs.22 As briefly

demonstrated above for rare inherited variation, this does

not preclude the use of InDelible to identify variants acting

through other modes of inheritance; InDelible will iden-

tify variants across the entire allele frequency spectrum

and outside of the provided gene list as part of the primary

output.

Second, theDDDcohorthasbeenpreviously investigated

for a broader range of variant classes (using both different

assays and algorithms) than most ES studies. For ES-based

CNVdiscovery from read-depth,DDDapplied four separate

algorithms to build a joint call set (unpublished data). Thus,

the added diagnostic value of running InDelible is probably

under-estimated in the DDD study compared to other ES

studies and/or common clinical sequencing practices

whichwouldbeunlikely to utilize complex joint-calling ap-

proaches such as our own. To quantify the added diagnostic

value of running InDelible across different settings by a user

seeking to run a minimal number of algorithms, we esti-

mated the proportion of unique PTVs InDelible would

find if used alone or jointly with other algorithms targeting

a breadthof variant types (SNVs, indels, large deletions, and

MEIs; supplemental material and methods).3,9,11 Overall,

and when using other approaches, InDelible-specific vari-

ants will likely represent between 2%–3% of all PTVs in a

given cohort (Figure 4). This observation strongly implies

that workflows that do not incorporate algorithms capable

of detecting this class of cryptic variation are likely to

achieve only 97%–98% sensitivity for pathogenic PTVs.

Finally, we note that InDelible is unlikely to be more

effective than currently available tools when applied to

genome-sequencing data. In ES, discordant read pairs are

typically much less informative for detecting SVs than in

genome sequencing due to the inherent properties of the

data. In genome sequencing, data combining split and

discordant read-pair information is a better means to iden-

tify most SV types.

InDelible provides a rapid framework for the assessment

of ES data for intermediate-length pathogenic SVs of

diverse mutational origins. Our results show that through

a combination of enhanced algorithm design, variant

annotation, and clinical interpretation, ongoing interroga-
2192 The American Journal of Human Genetics 108, 2186–2194, Nov
tion of well-studied datasets will continue to yield

improved diagnoses.
Data and code availability

Sequencing, phenotype data, and variant calls for all data in

this paper are accessible via the European Genome-phenome

Archive (EGA) under study EGAS00001000775. InDelible is

available at the InDelible GitHub repository, https://github.com/

HurlesGroupSanger/indelible. All code and data used to generate

figures and results in this manuscript are located at the following

GitHub repository: https://github.com/HurlesGroupSanger/indelible_

paper. A Docker image of InDelible is available at the following

GitHub repository: https://github.com/wtsi-hgi/indelible-docker/

tree/master.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.09.010.
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