
Submission PDF

Non-canonical mitochondrial unfolded protein
response impairs placental oxidative phosphorylation
in early-onset pre-eclampsia
Hong Wa Yung1, Francesca Colleoni1, Emilie Dommett1, Tereza Cindrova-Davies1, John Kingdom2, Andrew J Murray1and
Graham J Burton1

1. Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge,
Cambridgeshire, United Kingdom, CB2 3EG. 2. Department of Obstetrics and Gynaecology, Unversity of Toronto, Mount Sinai Hospital, 600 University
Avenue 3-904, Toronto, Ontario, Canada M5G 1X5

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Pre-eclampsia is a dangerous complication of pregnancy, especially
when it presents <34 week’s gestation (PE<34wk). It is a major
cause of maternal and fetal morbidity and mortality, and also
increases the risk of cardio-metabolic diseases in later life for both
mother and offspring. Placental oxidative stress induced by de-
fective placentation sits at the epicentre of the pathophysiology.
The placenta is susceptible to activation of the unfolded protein
response (UPR), and we hypothesised this may affect mitochon-
drial function. We first examined mitochondrial respiration before
investigating evidence of mitochondrial UPR (UPRmt) in placentas
of PE<34wk patients. Reduced placental oxidative phosphoryla-
tion (OXPHOS) capacity measuredin situwas observed despite no
change in protein or mRNA levels of electron transport chain
complexes. These results were fully recapitulated by subjecting
trophoblast cells to repetitive hypoxia-reoxygenation, and were
associated with activation of a non-canonical UPRmtpathway; the
quality-control protease CLPP, central to UPRmtsignal transduc-
tion, was reduced, while the co-chaperone, TID1, was increased.
Transcriptional factor ATF5, which regulates expression of key
UPRmtgenes including HSP60 and GRP75 (also known as mtHSP70),
showed no nuclear translocation. Induction of the UPRmtwith
methacycline reduced OXPHOS capacity, while silencingCLPP was
sufficient to reduce OXPHOS capacity, membrane potential, and
promoted mitochondrial fission. CLPP was negatively regulated
by the PERK-eIF2αarm of the endoplasmic reticulum UPR pathway,
independent of ATF4. Similar changes in the UPRmtpathway were
observed in placentas from PE<34wk patients. Our results identify
UPRmtas a novel therapeutic target for restoration of placental
function in early-onset pre-eclampsia.
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Introduction
Pre-eclampsia (PE) is a hypertensive disorder that occurs in 3-
5% of human pregnancies in developed countries (1), and is a
major cause of maternal and neonatal mortality and morbidity.
Two subtypes of the disorder are recognized based on the time of
clinical onset (2). Early-onset PE (<34 weeks’ gestational age) is
typically initiated by defective placentation in otherwise healthy
women, and is characterized by reduced utero-placental blood
flow that results in an abnormal angiogenic profile in the maternal
blood and high systemic vascular resistance. By contrast, in late-
onset disease the pathophysiology is thought to centre around
interactions between normal senescence of the placenta and a
maternal genetic predisposition to cardiovascular and metabolic
disease (2-4).

In the canonical pathway of placenta-mediated disease,
the pathogenesis is triggered by chronic low-grade ischaemia-
reperfusion injury to the placental villi, and is perpetuated by
oxidative stress in the trophoblast epithelial compartment in
direct contact with the maternal blood (5, 6). This layer shows
morphological changes indicative of stress, including distorted

microvilli, dilated cisternae of endoplasmic reticulum and areas
of focal necrosis (7). At the molecular level there is accompa-
nying evidence of senescence (8), reduced secretion of the pro-
angiogenic protein placenta growth factor (PlGF) and increased
secretion of the sFlt-1 receptor that acts as an antagonist of VEGF
(9). Measurement of these proteins in maternal blood is now
central to the clinical diagnosis of the disease (10, 11).

While the molecular basis of these key changes is not fully
understood, much is known regarding the effects of oxidative
stress on trophoblast cellular functions. Accumulation of oxida-
tively damaged unfolded/misfolded proteins is potentially toxic
to cells and so protective organelle-specific signalling pathways,
generically referred to as unfolded protein responses (UPRs),
are activated. UPRs are present in all cellular compartments
capable of protein synthesis, including the cytoplasm (UPRcyto),
mitochondria (UPRmt) and endoplasmic reticulum (UPRER).
The UPR is a homeostatic mechanism that aims to restore cellular
functions or to remove damaged cells (12). Increasing evidence
demonstrates cross-talk between the UPRER and UPRmt (13) act-
ing through mitochondria-associated ER membranes and Ca2+

homeostasis. Our group was the first to demonstrate activation of
the placental UPRER in early-onset pre-eclampsia (14). Here, we

Significance

Pre-eclampsia endangers the lives and wellbeing of mother
and baby. The syndrome is associated with placental dys-
function. High demand for energy to support active nutri-
ent transport and hormone production increases placental
susceptibility to mitochondrial stress. Here, we investigate
mitochondrial activity and explore stress-response pathways
in pre-eclamptic placentas. We demonstrate activation of non-
canonical mitochondrial unfolded protein response (UPRmt)
pathways associated with reduced CLPP, a key protease in
UPRmt signalling, that compromises mitochondrial respira-
tion. The changes can be recapitulated in trophoblast cells by
hypoxia-reoxygenation. Either activation of UPRmtor knock-
down of CLPP is sufficient to reduce mitochondrial respiration.
Translation of CLPP is negatively regulated by the endoplasmic
reticulum UPR pathway. Understanding mitochondrial stress
provides new insights into the pathophysiology of early-onset
pre-eclampsia.
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Fig. 1. Reduction of OXPHOS capacity in mitochondria with intact ETC com-
plexes subunits in PE<34 wk placentas. (A) Placental mitochondria from pre-
eclampsia appear swollen, with distorted cristae and less elongated, more
rounded profiles suggestive of a high incidence of fission compared to con-
trols. Red arrowhead indicates normal mitochondrion. Inset image illustrates
enlarged mitochondria with distorted cristae (arrows). The images were
taken at either 5000X or 7800X. (B) Reduction of mitochondrial OXPHOS
capacity in the PE<34wk placenta. Respirometry was used tomeasure activity
of ETC complexes after addition of glutamate and malate (GML) indicating
leak respiration; ADP (GMP) indicating complex I oxidative phosphorylation;
rotenone + succinate (SP) indicating complex II respiration; TMPD +Ascorbate
(TmAsP) corresponding to complex IV respiration. Respiratory control ratio
(RCR) was calculated as the ratio of GMP:GML. Results are presented as
mean±SEM, n for NTC = 7 & PE<34 wk = 12. * P<0.05; ** P<0.01. (C & D)
No alteration of ETC complex subunit protein levels and constant citrate
synthase in the PE<34 wk placenta compared to NPTC. (C) Western blots.
(D) Quantitative data after normalization to citrate synthase (CS). Data are
presented as mean±SEM, n=7. “a” and “b” indicate significant change (P<0.05)
in NPTC vs NTC andNTC vs PE<34wk respectively. Two-tail unpaired Student’s
t-test was used for statistical analysis except in (E) where one-way ANOVA
with Tukey's multiple comparisons test was employed.

sought evidence of the UPRmt, and its impact on mitochondrial
respiration.

In comparison to the UPRER, the signalling pathways in-
volved in the UPRmt are poorly understood (15). The UPRmt

is particularly active in cells with high production of reactive
oxygen species, high rates of mitochondrial biogenesis and de-
fective mitochondria (16, 17). The majority of mitochondrial
proteins are synthesized in the cytosol, and nascent polypep-
tides translocate into the matrix (18). They undergo chaperone-
assisted folding into their active conformation and assembly
into multi-protein units, such as electron transport chain (ETC)
complexes (18). An evolutionarily conserved chaperone system
that includes HSP60/HSP10 and GRP75/TID1 (also known as
mtHSP70/DNAJA3) and proteases is involved in the folding and
quality control processes, respectively (19).

HSP60 facilitates folding of nascent polypeptides, while
GRP75 binds to misfolded polypeptides, assisting their refolding.
During refolding, TID1, a co-chaperone, stimulates the ATPase
activity of GRP75 (20). The mitochondrial protein degradation
machinery is mainly mediated by two key quality-control pro-
teases, CLPP and paraplegin, each with different substrate pref-
erences. In C.elegans, ClpXP, an AAA+ protease equivalent to
mammalian CLPP, is at the core of the UPRmt signalling trans-
duction. This protease degrades misfolded/unfolded proteins into
short peptides that are extruded to the cytosol (21), where they
activate ATFS-1 (Activating Transcription Factor associated with
Stress, also known as ZC376.7). This in turn translocates to the
nucleus and facilitates expression of mitochondrial chaperones
and proteases (21, 22). While similar transcriptional responses to
UPRmt have been described in mammalian cells (23), the pathway
sensing unfolded/misfolded proteins is unknown. A recent study
identified activating transcription factor 5 (ATF5), a member of

the cAMP response-element binding protein (CREB) family, as
regulating mitochondrial chaperones HSP60 and GRP75, and
proteases CLPP and LONP (24). Furthermore, ATF4, which
belongs to the same CREB family and is a downstream effector of
the UPRER PERK/eIF2α pathway, acts as a key regulator of the
mitochondrial stress response in mammals (25). These findings
illustrate the close interplay between the UPRER and UPRmt.
Hence, it is likely they are co-activated under stress conditions.
If mitochondrial function is severely impaired, mitophagy is acti-
vated to clear damaged organelles (13).

Here, we first characterized the extent of mitochondrial dys-
function in placentas from early-onset PE. Next, we elucidated
potential regulatory mechanisms involved in the UPRmt pathway
using an in vitro model involving repetitive hypoxia-reoxygenation
(rHR) of trophoblast-like BeWo cells (4, 26). We manipulated
the UPRmt to investigate its impact on mitochondrial function
and relationship with the UPRER pathway. Finally, we explored
activation of the UPRmt pathway in placental samples from pre-
eclamptic patients.

Results
Reduction of oxidative phosphorylation capacity in placentas of
early-onset pre-eclampsia

Swelling is a hallmark of mitochondrial dysfunction. There-
fore, we first examined placental mitochondrial ultrastructure.
Fewer normal elongated, rod-shaped mitochondria, and more
abnormal swollen profiles with distorted cristae were observed in
the syncytiotrophoblast of early-onset pre-eclamptic (PE<34 wk)
placentas compared with normotensive controls (NTC) (Fig. 1A,
arrows in inset image). The presence of occasional mitochondria
with normal morphology (Fig. 1A, red arrowhead) indicated the
latter changes were not fixation artefacts, nor universal. We also
observed a larger number of rounded, short mitochondrial pro-
files in the PE<34 wk placentas, suggesting possible mitochon-
drial fragmentation (Fig. 1A). These changes were associated
with dilation of the endoplasmic reticulum (ER), indicating loss
of homeostasis within the cisternae in the PE<34wk placentas.

Next, we evaluated mitochondrial function using respirom-
etry. Previous studies addressing mitochondrial oxidative phos-
phorylation (OXPHOS) activity in placentas from pre-eclamptic
pregnancies have been limited to either primary trophoblast
cells or to isolated mitochondria (27, 28). Instead, we used
thawed cryopreserved placental villous samples permeabilised
using saponin, in which the mitochondria are retained in their
normal cytoplasmic relationships (29). Oxygen consumption was
measured using Clark-type oxygen electrodes (29), and 12 PE<34
wk and 7 NTC placental samples compared (Table 1). Although
normotensive preterm control placentas (NPTC) are, in princi-
ple, an ideal control, those available are not stress-free owing to
the clinical conditions that triggered spontaneous or iatrogenic
preterm delivery. In particular, most preterm placentas have
been exposed to ischaemia-reperfusion during vaginal delivery,
a potent stimulus of oxidative and ER stress (30). Non-laboured
caesarean-delivered NTPC placentas from healthy pregnancies
are virtually impossible to obtain due to the rarity of indicated
non-labour caesarean delivery at comparable gestation ages to
women delivering with PE at <34 weeks.

In the presence of malate and glutamate, as substrates
for the N-pathway via complex I (GMP), and with N, N, N′,
N′-tetramethyl-p-phenylenediamine (TMPD) and ascorbate as
non-physiological electron donors for Complex IV (TmAsP),
OXPHOS respiration was more than 60% lower (P<0.05 and
P<0.01, respectively) in PE<34 wk placentas compared with
NTC (Fig. 1B). Additionally, LEAK respiration via the N-
pathway (GML) was 52% lower (P<0.05); however, there was
no difference in the respiratory control ratio (RCR) (Fig. 1B).
Moreover, OXPHOS respiration supported by succinate as a
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Table 1. : Clinical characteristics of placentas for respirometry

NTC (n=7) PE<34 wk (n=12) P-value

Gestational Age (wk) 39.3±1.2 30.7±1.8 P<0.001
Systolic Blood Pressure 123±8.9 166.2±11.4 P<0.001
Diastolic Blood Pressure 79.5±3.3 101.8±7.2 P<0.001
Birth Weight (g) 3350±376 1142±310 P<0.001
Placental Weight (g) 458±50 185±56 P<0.001

Table 2. : Clinical characteristics of placentas for Western blotting analysis

NPTC (n=7) NTC (n=7) PE<34 wk (n=7) P-value
NPTC vs PE NTC vs PE

Gestational Age (wk) 29.4±3.3 39.3±0.4 30.3±1.1 ns P<0.001
Systolic Blood Pressure 115.9±9.9 124±7.9 163±13.9 P<0.001 P<0.001
Diastolic Blood Pressure 75.1±10.2 72±10.6 101.9±4.7 P<0.001 P<0.001
Birth Weight (g) 1373±690 3680±392 991±80 ns P<0.001
Placental Weight (g) 249±67 566±173 171±30 P<0.05 P<0.001

Fig. 2. Repetitive hypoxia-reoxygenation recapitulates the mitochondrial
changes observed in the PE<34 wk placenta. BeWo cells were subjected
to rHR for 48 h. (A) rHR reduces OXPHOS capacity supported by substrates
for N-pathway via complex I (GMP), S-pathway via complex II (SP) and non-
physiological electron donors to complex IV (TmAsP). After addition of
substrates, rate of oxygen consumption of cells was measured and data
are presented as mean±SEM, n=4, * P<0.05 (Two-tailed paired t-test). B)
rHR reduces mitochondrial membrane potential. Cells were stained with
MitoTracker Red before being fixed, permeabilized, and stainedwith nuclear
dye DAPI. Images were taken with confocal microscopy with 400X magni-
fication. Scale bar = 50 μm. (C & D) Expression of ETC complexes subunits
does not alter under rHR. The level of 5 ETC subunits was quantified using
OXPHOS antibody cocktail. Data were normalized to CS before expressing as
a relative ratio to normoxic control, which was set as 1. Data are presented as
mean±SEM, n=4. No significant change of all ETC complexes subunits (One-
way ANOVAwith Holm-Sidak's multiple comparisons test). 20N indicates cells
were incubated under normoxic conditions with 20% O2 for 24 or 48 h;
1/20HR indicates cells were exposed to a 6 h cyclic pattern of 1% and 20%
O2 for 24 or 48 h.

substrate for the S-pathway via complex II (SP) was decreased by
32% (P=0.082) between PE<34 wk placentas and NTC.

Next, ETC complexes were evaluated at the molecular level.
Muralimanoharan et al. reported that subunits of ETC complexes
were reduced in placentas from late-onset (∼38 wk) PE (27). As

NTC and PE<34 wk placentas showed significant differences in
gestational age and placental mitochondrial content may alter as
pregnancy progresses, normotensive preterm control placentas
(NPTC) were also evaluated (Table 2). These were considered
valid controls as it is unlikely that protein levels of the complexes
change significantly during the duration of labour. ETC com-
plexes were assayed using an antibody cocktail to quantify rep-
resentative subunits by western blot. The subunits detected were
NDUFB8 (complex I), SDHB (complex II), UQCRC2 (complex
III), MT-CO1 (complex IV) and ATP5F1A (ATP synthase), since
these subunits are labile when the complex is not assembled.
Levels of all complex subunits were unaltered in PE<34 wk
placentas, with the exception of UQCRC2, which was ∼50 %
lower in PE placentas compared with NTC (P<0.05), though
not different to NPTC (Figs. 1C & D). Citrate synthase was
used to normalize ETC subunits as it is a putative biomarker
of mitochondrial content (31, 32). There were no differences in
citrate synthase among NPTC, NTC and PE<34 wk placentas;
however, its level showed greater variability in PE placentas (Figs.
1C & D). RNA-seq was used to investigate the expression of all
97 ETC complex subunit genes. Only a small number of genes
showed significant variation by ∼20 % compared to NTC (See SI
Appendix, fig. S1).

Repetitive hypoxia-reoxygenation recapitulates OXPHOS ca-
pacity changes observed in the PE<34wk placentas

Placental oxidative stress induced by ischemia-reperfusion
resulting from insufficient spiral arteries remodelling is thought
to be central to the pathophysiology of early-onset pre-eclampsia
(6)￼. By fluctuating the oxygen concentration between 1 %
(hypoxia) and 20 % (reoxygenation) in 6 h cycles, we were able to
activate the UPRER in trophoblast-like cells to a similar severity
to that observed in the placenta in PE<34 (4)￼. In the present
study, the same model was used to investigate whether repetitive
hypoxia-reoxygenation (rHR) could induce equivalent changes
related to the mitochondrial dysfunction as observed in vivo, and
to explore the molecular mechanisms suppressing mitochondrial
activity in BeWo cells.

Mitochondrial respiration was examined in rHR-treated cells.
OXPHOS capacity was 48% lower (P<0.05) with malate and
glutamate as substrates (N-pathway through complex I, GMP),
and 55 % lower (P<0.05) with succinate as a substrate (S-pathway
through complex II, SP) (Fig. 2A). In addition, rHR-treated cells
showed a 26 % (P<0.05) reduction in Complex IV-supported
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Fig. 3. Repetitive hypoxia-reoxygenation activates a non-canonical mito-
chondrial unfolded protein response pathways. (A & B) rHR triggers non-
canonical UPRmt pathway. BeWo cells were subjected to rHR for 24 and 48
h. Western blot was used for measurement expression of UPRmt molecular
markers CLPP, paraplegin, TID1, HSP60 and GRP75, and citrate synthase (CS).
Data were normalized to CS and are expressed as mean±SEM, n=5. * P<0.05;
** P<0.01 (Two tailed paired t-test at either 24 h or 48 h). (C - E) No increase
in cellular expression but decreased nuclear translocation of ATF5 under
rHR. Cells were exposed to 48 h of rHR. Western blot was used to quantify
ATF5 while immunocytochemistry and subcellular fractionation was used to
show its cellular localisation. Data are presented as mean±SEM, n=3-4. *
P<0.05; ** P<0.01 (Two-way ANOVA with Sidak’s multiple comparisons test).
Magnification = 200X; scale bar = 200 μm. (F)Potential conformation change
of ETC complexes.Isolated mitochondria were subjected to immunoprecip-
itation with conformation-sensitive mitoprofile complex II antibody to pull
out complex II before resolving in SDS-PAGE gel. Silver staining was used
to reveal 4 subunits of complex II. 20N indicates cells were incubated under
normoxic conditions with 20% O2 for 24 or 48 h; 1/20HR indicates cells were
exposed to a 6 h cyclic pattern of 1% and 20% O2 for 24 or 48 h.

respiration (TmAsP) (Fig. 2A). Loss of OXPHOS capacity was
associated with a reduction in mitochondrial membrane potential
as indicated by MitoTracker Red fluorescence (Fig. 2B). We then
investigated compromise of ETC subunit proteins using the OX-
PHOS antibody cocktail. None of the five representative subunits
showed down-regulation (Figs. 2C & D), and the level of citrate
synthase remained constant (Figs. 2C & D). RNA-seq was used
to assess the expression of all 97 ETC subunits gene in the rHR-
treated BeWo cells, with most genes showing 5-30 % variation in
expression (See SI Appendix, fig. S2). Expression of SDHB and
UQCRC2 decreased by 39 % and 22 % (P<0.001), respectively,
despite the fact that protein levels remained constant (Fig. 2D &
See SI Appendix, fig. S2).

Activation of non-canonical mitochondrial unfolded protein
response (UPRmt) in rHR-treated cells

Several regulatory components link the UPR with mitochon-
drial regulation and function (13). Therefore, the activation of
mitochondrial UPR (UPRmt) in the rHR-treated cells was in-
vestigated. rHR treatment up-regulated and down-regulated the
UPRmt biomarkers TID1 and CLPP by 33 % (P<0.01) and 27

Fig. 4. Activation of UPRmt impairs mitochondrial OXPHOS capacity.Cells
were treated with the UPRmt inducer methacycline for 24 h or 72 h. (A-
C) Methacycline suppresses levels of mitochondrial CS and CLPP proteases
and ETC complex subunits, but not chaperones and ATP synthase in a dose-
dependent manner. (A) Expression of CLPP, paraplegin, TID1, HSP60, GRP75
and CS were measured by western blot. (B) Band intensity of mitochondrial
chaperones and OXPHOS complexes subunits was quantified before express-
ing as a relative ratio to untreated control, which was set as 1. (C)Data were
normalized to CS before expressing as a relative ratio to untreated control,
which was set as 1. In B & C, data are presented as mean±SEM, n=3 and
were analysed using a two-way ANOVA with Tukey’s multiple comparison
test. “a, b, c and d” indicate statistically significant changes at methacycline
concentrations of 0, 5, 10 or 20 μM respectively. (D) Methacycline promotes
phosphorylation of eIF2α. There was a dose-dependent increase of phospho-
rylation with increasing concentration of methacycline. The increase P-eIF2α
is closely associated with the decrease of CLPP protein. Band intensity of P-
eIF2α and eIF2αwas quantified, the ratio between phosphorylated and total
was calculated before expressing as a relative ratio to untreated control,
which was set as 1. (E & F) Prolonged treatment wth methacycline inhibits
expression of ETC complex subunits selectively. Cells were incubated with
sublethal dosage of methacycline (20 μM) for 72 h. Data are expressed as
relative ratio to the untreated control, which was set as 1, and are presented
as mean±SEM, n=3.Ponceau S staining was used to show equal loading
in western blot. (G) Methacycline reduces OXPHOS capacity supported by
substrates for N-pathway via complex I (GMP), S-pathway via complex II
(SP) and non-physiological electron donors to complex IV (TmAsP). Data are
presented as mean±SEM, n=4, as the amount of oxygen being consumed
by 106 of cells per min. For F & G above, P<0.05 is considered statistically
significant. * P<0.05; ** P<0.01 undertwo-tailed paired Student’s t-test.

% (P<0.01), respectively, after 24 h (Figs. 3A and B). Prolonged
challenge up to 48 h caused no further change (Figs. 3A &
B). Other UPRmt biomarkers, HSP60, GRP75 and paraplegin
remained constant throughout the 48 h challenge. There was only
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Fig. 5. Knockdown of CLPP gene suppresses complex II expression, inhibits
OXPHOS capacity and promotes mitochondrial fission. CLPP was knocked
down by small RNA interference either for 48 h (A) or subsequent sub-
culturing for additional 72 h (B-E) prior to experimentation. (A) Short-term
down-regulation of CLPP reduces complex II (SDHB) expression. Western
blot was used to measure ETC complexes subunits with OXPHOS antibody
cocktail. Data were normalized to CS and are presented as mean±SEM, n=3.
(B) Long-term suppression of CLPP protein reduces activity of complex II.
Respirometry was used to measure oxygen consumption in both SiCon and
SiCLPP-transfected cells. Data were normalized to cell density and expressed
as mean±SEM, n=6. * P<0.05. (C) Loss of CLPP protein diminishes mito-
chondrial membrane potential and promotes fragmentation. Mitochondrial
membrane potential was measured by MitoTracker Red in cells prior to
fixation, and nuclei were counterstained with DAPI. Images were taken
under confocal microscope. Scale bar = 20 μm. Insets are digital zoom-
in images. (D) Reduction of CLPP facilitates mitochondrial fission. Western
blot was used to quantify expression of mitochondrial fission and fusion
markers, DRP1 and OPA1 respectively. Data are presented as mean±SEM,
n=3. * P<0.05. (E) Chronic loss of CLPP decreases mitochondrial density and
promotes UPRmt. Western blotting was used to measure citrate synthase
and UPRmt biomarkers. Data were normalized to CS and are presented as
mean±SEM, n=4. * P<0.05. All data were analysed by two-tailed paired
Student’s t-test.

a minimal degree of cell death (<1 %) observed after 48 h. We
observed a subtle reduction of citrate synthase by 15 % at 24 h,
but not at 48 h (Fig. 3B). The transcription factor ATF5 regulates
mammalian UPRmt gene expression, including HSP60, GRP75
and CLPP (24). However, neither changes in the cellular level
nor nuclear localisation of ATF5 were observed in rHR-treated
cells (Figs. 3C & D), but subcellular fractionation indicated a
significant down-regulation of both cytosolic and nuclear ATF5
by 19 % (P<0.05) and 28 % (P<0.01) respectively (Fig. 3E & See
SI Appendix, fig. S3), indicating the presence of ATF5 in other
cellular organelles.

Activation of the UPRmt indicates potential accumulation
of unfolded/misfolded proteins in the mitochondrial matrix.
However, it is technically challenging to detect misfolded sub-
units of the ETC complexes directly. Therefore, an indirect ap-
proach based on immunoprecipitation was adopted, in which a
conformation-sensitive antibody was used to pull-down the target
protein. We selected complex II as the target protein as it contains
only 4 subunits (SDHA, SDHB, SDHC and SDHD). An anti-
Complex II Mitoprofile antibody was used for immunoprecipita-

Fig. 6. Prolonged rather than acute UPRER suppresses CLPP expres-
sion in a severity-dependent manner through a PERK/eIF2α but ATF4-
independent pathway. Tunicamycin was used to activate UPRER for 24 or
48 h. (A) Prolonged UPRER suppresses CLPP in the absence of change of
other UPRmt markers. Cells were treated with tunicamycin ranging from 0.31
to 2.5 μg/mL for 24 h or 0.16 to 1.25 μg/mL for 48 h. Levels of CLPP were
normalized to CS. The relative levels of P-eIF2α/eIF2α and CLPP were plotted
against concentrations of tunicamycin at both 24 and 48 h, and a linear
regression line fitted. (B) A strong correlation between P-eIF2α/eIF2α ratio
and CLPP. Scatter plot was constructed between P-eIF2α/eIF2α and CLPP,
and a linear regression line fitted. (C) Phosphorylated eIF2α suppresses CLPP.
Cells were subjected to a dose-response treatment with salubrinal for 24 h.
The levels of CLPP, TID1 and HSP60 were normalized to CS before plotting
against the concentration of salubrinal. “a” P<0.05 compared to untreated
control.(D)Down-regulation of CLPP by salubrinal is at the transcriptional
level. qRT-PCR was used to measure CLPP transcripts. Data are presented as
mean±SEM, n=3. * P<0.05. (E) Inhibition of eIF2α phosphorylation restores
CLPP. Cells were treated with tunicamycin (0.63 μg/mL) with or without
the PERK-specific inhibitor GSK2606414 for 48 h. Data are presented as
mean±SEM, n=4. * P<0.05. (F & G)ER stress-mediated down-regulation of
CLPP is independent of ATF4. qRT-PCR was used to measure CLPP transcripts.
Data are presented as mean±SEM, n=4. (H) Phosphorylation status of eIF2α
regulates CLPP translation. Knockdown of ATF4 reduced phosphorylation
eIF2α and was accompanied by an increase of CLPP in the absence of CLPP
transcript change. Data are presented as mean±SEM, n=5, * P<0.05; **
P<0.01. Statistical analysis was performed using a two-tailed paired Student’s
t-test.

tion in isolated mitochondrial lysates of BeWo cells. Less SDHB
was detected in the immunoprecipitated complex II (Fig. 3F)
while no change was observed in the denatured gel (Fig. 2D),
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Fig. 7. Existence of non-canonical UPRmt pathway in the PE<34 wk
placenta. A) UPRmt biomarkers, TID1, GRP75 and CLPP are localised mainly
in the syncytiotrophoblast (arrows) and there is a down-regulation and up-
regulation of CLPP and TID1 respectively in the PE<34 wk placenta. Scale bar
= 100 μm. (B & C) Low-grade activation of UPRmt is detected in the PE<34
wk placentas. Expression of five UPRmt markers was examined by Western
blot. Ponceau S staining was used as a loading control. Band intensities
were quantified and normalized to citrate synthase, and are presented as
mean±SEM, n=7. ** P<0.01. (D) CLPP transcript is reduced in the PE<34
wk placentas. Quantitative real-time RT-PCR was used to measure CLPP
transcript level. Data are presented as mean±SEM, n=7. (E) Elevation of
ATF5 expression in the PE<34 wk placentas. Expression of ATF5 protein was
quantified by Western blot. Both β-actin and Ponceau S staining was used
as loading controls. Band intensities were quantified and normalized to β-
actin, and are presented as mean±SEM, n=7. ** P<0.01. (F) ATF5 does not
translocate into nuclei of the PE<34 wk placentas. Immunohistochemical
stainingwas used to show cellular localisation of ATF5. Upper panel is at 100X
magnification, scale bar = 100 μm; Lower panel is at 200Xmagnification, scale
bar = 50 μm. Inset images show nuclear staining of ATF5 in the NTC (black
arrows), but perinuclear staining (green arrows) in the PE<34 wk placentas.
All data were analysed by two-tailed unpaired Student’s t-test.

suggesting possible misfolding of ETC subunits. Further studies
will be required to confirm this novel finding.

UPRmt suppresses mitochondrial oxidative OXPHOS activity
Next, we investigated whether activation of the UPRmt is

sufficient to modulate OXPHOS capacity. A number of agents
capable of inducing the UPRmt have been identified through a
screen in C.elegans (33). However, their efficacy in mammalian
cells is unknown. Therefore, we chose the most promising, metha-
cycline, and tested it on BeWo cells. A dose-response study of
methacycline up to 40 μM for 24 h revealed that the chaperones
HSP60, GRP75 and TID1, and paraplegin did not change, while
the protease CLPP reduced significantly (P<0.01) after 40 μM.
However, citrate synthase also showed down-regulation by 50%
(P<0.01) at 40 μM (Figs. 4A & B). After normalisation to CS,
levels of TID1, HSP60, GRP75 and paraplegin (P<0.01) were
increased after 40 μM of methacycline, whereas CLPP was un-
changed (Fig. 4C). These results confirm that methacycline can

induce UPRmt in BeWo cells and low CS protein level may im-
plicate loss of mitochondrial content. Interestingly, methacycline
treatment also induced a dose-dependent activation of phospho-
rylation of eIF2α and was closely correlated with reduction of
CLPP protein (Fig. 4D).

To study the effect of UPRmt on mitochondrial activity, BeWo
cells were incubated at a lower concentration of methacycline (20
μM) for a longer period of 72 h. In this case, methacycline did not
affect citrate synthase (Figs. 4E & F). However, the treatment did
suppress levels of NDUFB8, UQCRC2 and MT-CO1 by 44 %, 33
% and 66 % (P<0.01, P<0.05 & P<0.01) respectively (Figs. 4E
& F). OXPHOS capacity was measured in methacycline-treated
cells after 72 h incubation and complex I (GMP)-, complex II
(SP)-, and complex IV (TmAsP)-supported oxidative phospho-
rylation were reduced by 56 % (P<0.05), 73 % (P<0.01) and
36 % (P<0.05), respectively (Fig. 4G). A comparison between
OXPHOS capacities (Fig. 4G) and their corresponding complex
subunit protein levels (Fig. 4F) revealed that the decreased mi-
tochondrial respiration with substrates for the N-pathway via
complex I and electron donors for complex IV could be accounted
for by the reduction of protein levels. For complex II, there was
no significant change in protein level whilst mitochondrial respi-
ration via the S-pathway through complex II decreased over 70 %,
(P<0.01), suggesting that another mechanism may be involved.
This may be due to incorrect quaternary structure, associated with
the UPRmt, or alternatively electron flow along the S-pathway
might be impaired downstream at complex IV, possibly related
to altered mitochondrial supercomplex assembly (34).

Down-regulation of CLPP is sufficient to compromise mito-
chondrial function

To investigate whether reduction of CLPP affects OX-
PHOS capacity, induces mitochondrial dysfunction, and activates
UPRmt, small interfering RNA (siRNA) was used to knockdown
CLPP in BeWo cells. There was >95 % reduction of CLPP pro-
tein after 48 h of transfection (Fig. 5A). Interestingly, short-term
down-regulation of CLPP affected complex II, with expression
of the subunit SDHB reduced by over 35 % (P<0.05), whilst
the other four complexes subunits detected by the OXPHOS
antibody cocktail remained unchanged (Fig. 5A). Citrate synthase
also showed a reduction in the SiCLPP-transfected cells, but the
change did not reach statistical significance (Fig. 5A). There was
no change in mitochondrial membrane potential or morphology
(See SI Appendix, fig. S4A). In order to investigate the long-term
consequence of CLPP knockdown on mitochondrial function,
after 48 h of transfection SiCLPP-transfected cells were sub-
cultured for an additional 72 h. CLPP protein was persistently
suppressed by over 95 % throughout (See SI Appendix, fig. S4B).
Respirometry analysis revealed that both complex I- (GMP), II-
(SP) and IV- (TmAsP) supported oxidative phosphorylation were
reduced by 20-50 % (P<0.05) (Fig. 5B).

MitoTracker Red fluorescence showed strong staining in the
elongated tubular network of mitochondria in control (SiCon)
cells, while knockdown of CLPP produced a fragmented pat-
tern with weaker staining except for few “hot spots” which had
high membrane potential, indicating partial loss of mitochondrial
membrane potential (Fig. 5C). Serial confocal microscopy images
eliminated a potential artefact arising from the orientation of the
mitochondria (See SI Appendix, fig. S4C). Mitochondria undergo
dynamic fusion or fission in response to stimuli or stress. Indeed,
there was a 37 % (P<0.05) increase in the fission protein, DRP1,
and a 47 % (P<0.05) decrease of the fusion protein, OPA1, after
normalisation to citrate synthase in the SiCLPP-transfected cells
(Fig. 5D). Long-term suppression of CLPP expression reduced
citrate synthase (P<0.05). After normalisation to citrate synthase,
GRP75 was found to be up-regulated (P<0.05) (Fig. 5E), suggest-
ing potential accumulation of misfolded proteins and activation of
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UPRmt. These results indicate a dynamic change of mitochondrial
function, morphology and density in response to low CLPP.

UPRER regulates CLPP expression through eIF2α at both
transcriptional and translational level in an ATF4-dependent
pathway

Increasing evidence demonstrates an interplay between the
UPRER and UPRmt (13, 22). Coincidently, activation of UPRmt

by methacycline is associated with increased P-eIF2α and reduced
CLPP. Therefore, we investigated the relationship between the
UPRER in down-regulation of CLPP in trophoblast-like cells.
Tunicamycin inhibits initiation of N-linked glycosylation in the
ER lumen, and is a widely used and highly specific UPRER

inducer with minimal direct effects on mitochondria. The drug
was used in BeWo cells to perform both dose-response and time-
course analyses. The UPRER biomarkers P-eIF2α and GRP78
increased gradually with rising concentrations of tunicamycin
(Fig. 6A, right upper graph). There was no change in CLPP
after 24 h, but after 48 h of incubation there was a strong neg-
ative correlation (R2=0.9418) between the level and the con-
centration of tunicamycin (Fig. 6A, right lower graph). Other
UPRmt biomarkers were unchanged. Indeed, there was a strong
correlation (R2=0.7806) between the P-eIF2α/eIF2α ratio and
CLPP levels (Fig. 6B). Therefore, we investigated the potential
role of the PERK/eIF2α/ATF4 pathway in regulation of CLPP
expression and/or protein level. Salubrinal inhibits dephospho-
rylation of eIF2α, and causes elevation of P-eIF2α in the ab-
sence of the UPRER (35). Administration of salubrinal led to a
dose-dependent down-regulation of CLPP without any change in
TID1, HSP60 and citrate synthase after 48 h (Fig. 6C). Next, we
investigated whether the effect is mediated by transcriptional or
translational regulation. CLPP mRNA was also reduced under
salubrinal as measured by qRT-PCR, indicating transcriptional
regulation (Fig. 6D). To further confirm the role of eIF2α in
suppression of CLPP expression, we inhibited the upstream ki-
nase of eIF2α, PERK, with the specific inhibitor, GSK2606414
(36). Results presented in Figure 6E showed that application
of GSK2606414 inhibited phosphorylation of eIF2α induced by
tunicamycin, and partially restored CLPP protein level (P<0.05).

ATF4 and CHOP are transcription factors, and downstream
effectors of the PERK/eIF2α pathway. CHOP has been shown to
up-regulate, rather than suppress CLPP expression (37). There-
fore, we investigated the role of ATF4 in suppression of CLPP
expression using siRNA. SiATF4 transfection greatly suppressed
the increase in ATF4 in response to tunicamycin, but failed
to restore CLPP transcript levels (Figs. 6F & G). Suppression
of ATF4 decreased levels of phosphorylated eIF2α by ∼30 %
(P<0.01) and was accompanied by a 1.1 fold increase of CLPP
protein (P<0.05), despite no change in CLPP mRNA in SiATF4-
transfected cells in the presence of tunicamycin (Fig. 6H). These
results indicate ATF4 is not involved in the negative regulation of
CLPP expression, but do suggest translational regulation of CLPP
by the phosphorylation status of eIF2α.

Similar activation of non-canonical UPRmt pathway in
PE<34 wk placentas

Finally, we examined evidence of activation of this non-
canonical UPRmt pathway, which precipitates mitochondrial dys-
function, in PE<34 wk placentas. Activation of the placental
UPRER in early-onset pre-eclampsia is principally immunolo-
calised to the syncytiotrophoblast and endothelial cells (38).
Therefore, immunohistochemistry was first used to identify the
cell-types that display activation of the UPRmt. Indeed, the
UPRmt was largely restricted to the syncytiotrophoblast (Fig. 7A).
Punctate staining for TID1, GRP75 and CLPP was observed,
typical of mitochondrial localisation (Fig. 7A). In PE<34 wk
placentas, the staining for TID1 and GRP75 was increased and
unchanged respectively. CLPP staining was less intense in the

syncytiotrophoblast (Fig. 7A, bottom panel) in the PE<34 wk
placentas.

Western blotting was then used to quantitate expression of
UPRmt biomarkers. NPTC placentas were excluded as the labour
process strongly activates UPRER pathways (30). Indeed, the
UPRmt biomarkers were also increased in those placentas, al-
though the differences did not reach statistical significance (See
SI Appendix, fig. S5). The co-chaperone TID1, showed a 2-
fold (P<0.01) increase in PE<34wk placentas compared to NTC
(Figs. 7B & C). Additionally, the two key mitochondrial chap-
erones, HSP60 and GRP75, were unchanged while the quality
control proteases CLPP and paraplegin showed trends towards
a decrease (Figs. 7B & C). CLPP was further quantified at
the gene level by quantitative RT-PCR, and showed a trend
towards a ∼20 % decrease (P=0.078) in PE<34wk placentas
(Fig. 7D). When considering the significance of these results,
it must be remembered that the syncytiotrophoblast where the
UPRmt biomarkers are almost exclusively expressed represents
only ∼30% of villous volume. Consequently, changes in this cell
type will not necessarily be accurately reflected in villous lysates.

Despite no change in ATF5 in rHR-treated cells, in PE<34
wk placentas we observed a 2.6 fold increase in ATF5 protein
(P<0.01; Fig. 7E). However, immunostaining of ATF5 was mainly
observed in the syncytioplasm and nuclear localisation was largely
absent (Fig. 7F). Additionally, there was some perinuclear stain-
ing of ATF5 in the cytotrophoblast cells, identified by their large
nuclear features (Fig. 7F). Failure of ATF5 to translocate into the
nucleus may explain the lack of increase in its target genes HSP60
and GRP75 under mitochondrial stress. To conclude, these results
are very similar to the rHR-treated BeWo cells.

Discussion
Mitochondrial dysfunction has been widely reported in placentas
of complicated pregnancies, including pre-eclampsia (39), and
may contribute to the pathophysiology. In this study, we first
demonstrated a reduction of mitochondrial respiration in situ
and showed that this could be recapitulated by exposure of
trophoblast-like cells to repetitive hypoxia-reoxygenation chal-
lenge. We then elucidated activation of a non-canonical UPRmt

pathway in the challenged cells. The key mitochondrial quality-
control protease, CLPP, was down-regulated, while the co-
chaperone TID1 was elevated. We demonstrated that activa-
tion of the UPRmt pathway in vitro is sufficient to modulate
mitochondrial respiration, and that depletion of CLPP inhibits
OXPHOS capacity and facilitates mitochondrial fission. We also
identified translational regulation of CLPP by the PERK/eIF2α
signalling independent of ATF4 in the UPRER pathway. Finally,
we observed evidence of activation of the same pathways in
placental samples from early-onset pre-eclampsia. We have pre-
viously demonstrated that UPRER pathways are not activated
in placentas from late-onset pre-eclampsia (4) above the levels
seen in normotensive controls. Indeed, there is also no change in
UPRmt markers (See SI Appendix, fig. S6).

In the current literature, the majority of studies in pre-
eclampsia have focused on changes in placental mitochondrial
content, and results have been inconsistent (39). This may be
due to the difficulty in assessing content, as there are no reli-
able markers of mitochondrial number other than ultrastructural
analysis (32). Indeed, functional approaches, which were used in
the present study, are more appropriate. Only a few studies have
attempted to investigate the mechanisms underlying mitochon-
drial dysfunction using either isolated primary trophoblast cells
or mitochondria isolated from pre-eclamptic placentas (27, 28).
These are not ideal models as the data do not reflect the activity
of mitochondria in situ. A recent study measured mitochondrial
respiration in late-onset pre-eclamptic placental tissues in situ
(40). Unfortunately, the placental samples were obtained from
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a mixture of caesarean and vaginal deliveries, making it difficult
to interpret the results for labour-induced oxidative damage can
compromise mitochondrial function (41). In our study, all term
control and pre-eclamptic placental tissues were obtained from
non-laboured caesarean deliveries.

Ischemia-reperfusion resulting from insufficient remodelling
of the uterine spiral arteries has been proposed as the major
trigger of placental oxidative and ER stress in early-onset pre-
eclampsia (4, 6). Here, we were able to recapitulate the in vivo
molecular changes in mitochondrial function in the PE<34 wk
placentas with the repetitive hypoxia-reoxygenation model of
trophoblast-like BeWo cells cultured under 5.5 mM glucose (4).
Culturing cells at 5.5 mM physiological glucose level is crucial
in rHR to avoid metabolic acidosis due to the high glucose con-
centrations in routine commercially available culture media (42).
This rHR model may therefore provide a useful tool for studying
the placental stress occurring in early-onset pre-eclampsia.

The mechanism by which the UPRmt suppresses mitochon-
drial respiration in rHR is unclear. However, down-regulation
of the quality control protease CLPP, which is involved in pro-
teostasis, and high expression of co-chaperone TID1 in rHR-
treated cells provide possible explanations. Knockdown of CLPP
decreases ETC complex II SDHB expression and also inhibits
OXPHOS capacity (Fig. 6). These results are consistent with the
study by Cole et al. in which genetic knockdown of CLPP impaired
ETC Complex II and oxidative phosphorylation in OCI-AML2
cells (43). On the other hand, TID1 can interact directly with ETC
complex I and suppress its activity (44). These findings illustrate
the direct regulatory role of UPRmt pathway in mitochondrial
OXPHOS capacity and function. Interestingly, we found that
knockdown of TID1 suppressed, while knockdown of the protease
CLPP stimulated, ER stress induced by tunicamycin (See SI
Appendix, fig. S4D). These findings suggest that low CLPP and
high TID1 levels may form a feedback loop between the UPRmt

and UPRER. Therefore, the role of up-regulation of TID1 in
mitochondrial function in the rHR-treated cells deserves further
investigation.

Activation of the UPRmt in our samples appeared to be asso-
ciated with mitochondrial fragmentation or fission, and presumed
removal by mitophagy. These changes may reflect attempts to
recycle damaged organelles (45, 46). Data on placentas from
pre-eclampsia are contradictory, since both an increase (28) and
decrease in the fusion protein OPA1 (47) have been reported.
This variation may reflect differences in the degree and duration
of the stress in the respective patient groups, for low stress levels
increase fusion and/or decrease fission, whereas high stress levels
stimulate the opposite (48).

We did not include the clpp-/- transgenic mouse model in this
study because of the major structural differences between the
rodent and human placenta that make it impossible to interpret
equivalent UPRmt findings in the mouse. In human placenta, the
syncytiotrophoblast of the placental villi performs both endocrine
and nutrient exchange functions. By contrast, the mouse placenta
is composed of two highly specialised regions, the junctional
zone for endocrine activity, and the labyrinth zone for nutrient
exchange. Due to its high demand of energy for active transport
of nutrients, the labyrinth zone has the highest mitochondrial
activity (49). Therefore, this zone is susceptible to the UPRmt,
but is relatively insensitive to the UPRER due to the low density of
endoplasmic reticulum (50). Conversely, the UPRER exists only in
the junctional zone that has a high synthetic and secretory activity
of peptide hormones (50). In the pre-eclamptic placenta, the
UPRmt is localised exclusively to the syncytiotrophoblast, where
it co-localises with the UPRER (38). This allows the PERK-eIF2α
of UPRER pathway to negatively regulate CLPP gene and pro-
tein expression. Therefore, the phenomenon of a non-canonical
UPRmt pathway in human placenta is unlikely to be replicated in

the mouse because UPRER and UPRmt are selectively activated
in two different regions and cell types.

Furthermore, in the siCLPP-treated BeWo cells, we observed
down-regulation of complex I, III and IV subunits. A study by
Szczepanowska et al showed that in clpp-/- mouse the effect of
CLPP on expression of mitochondrial ETC subunits appears to
be closely related to the respiratory activity of the cells concerned.
Thus, they observed no change of ETC complex subunits as
recognized by the OXPHOS antibody cocktail in the liver, a
decrease of complex IV subunit in the heart, and a reduction
of both complex III and IV subunits in skeletal muscles (51).
Therefore, the higher the mitochondrial activity, the stronger the
effect of CLPP in suppressing mitochondrial protein expression.
Indeed, loss of CLPP decreases formation of mitoribosomes,
thereby diminishing mitochondrial protein synthesis (51). Hence,
the effect of CLPP knockdown on ETC complexes may be differ-
ent in the human and murine placenta. Nonetheless, clpp-/- mice
show a partially embryonic lethality and surviving pups exhibit
growth retardation and die prematurely in adulthood, indicative
of placental insufficiency (52).

In CLPP knockdown cells, mitochondrial fragmentation was
only observed 5 days after transfection (Fig. 5D & See SI Ap-
pendix, fig. S4A). Some of the fragmented mitochondria still
maintained a high membrane potential. Interestingly, a recent
study suggested that mitochondrial stress-mediated ATP deple-
tion facilitates generation of “hot spots” across the mitochon-
drial network (44). Within those “hot spots”, the mitochondrial
membrane potential is maintained, thereby partially restoring
OXPHOS capacity and maintaining ATP production. The unique
structure of the syncytiotrophoblast, with no lateral cell bound-
aries, will permit free movement of organelles and metabolites
between “hot spots” and areas where mitochondrial function is
impaired. Hence, integrity and function may be preserved to a
greater degree than in unicellular tissues.

The UPRER and UPRmt pathways are closely linked (13),
and activating one pathway is likely to trigger the other. Our
results revealed that the duration of the ER stress insult, rather
than its severity, is a key component in activation of the UPRmt

pathway. There may be additional interactions between the ER
and mitochondria, as ATF4, a downstream transcription factor in
the PERK arm of the UPRER pathway controls expression of the
ubiquitin ligase Parkin, a key regulator of mitochondrial function
and dynamics (53). The transcription factor CHOP, the other
PERK downstream effector, also positively regulates expression
of key genes in the UPRmt pathway, including HSP60, TID1 and
CLPP (23). In this study, we also revealed the potential role
of eIF2α in both transcriptional and translational regulation of
CLPP expression and protein synthesis in an ATF4-independent
pathway. Genes with a universal open reading frame (uORF) or
an IRES sequence in their promoter can bypass eIF2α regulation
(54, 55). No uORFs were found in the promoter region of CLPP
gene up to -123 bp of the 5’UTR, suggesting potential translation
attenuation upon phosphorylation of eIF2α. Upon severe stress
with irreversible cellular damage, this mechanism provides a
negative feedback that attenuates the UPRmt protective pathway,
thereby activating mitochondrial-mediated apoptosis to eliminate
the cells.

ATF5 was increased in the placental samples from pre-
eclampsia but not in the rHR-treated cells. The reason(s) be-
hind this difference is unclear. ATF5 has been shown to be
regulated by CHOP (56). However, although CHOP was found
to localise in the nuclei of the rHR-treated cells (See SI Ap-
pendix, fig. S7) and the syncytiotrophoblast of the placenta from
early-onset preeclampsia (14), ATF5 was only increased in the
placenta, suggesting another inhibitory mechanism likely inter-
acts with CHOP in regulating ATF5 expression under hypoxia-
reoxygenation. Nonetheless, in neither case was there nuclear
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localisation of ATF5, which may explain why there was no in-
crease in the folding and quality control chaperones HSP60 and
GRP75, typical biomarkers for activation of UPRmt. It is unclear
why ATF5 did not translocate. In our recent study, application of
a PERK inhibitor suppressed ATF4 nuclear localisation, thereby
preventing its suppression of MMP2 gene expression (57). Due
to the similarity between ATF4 and ATF5, changes in ATF5
phosphorylation status may be crucial for its nuclear localisation.
Indeed, ATF5 was recently demonstrated to be phosphorylated
by Nemo-like kinase (58). Therefore, further investigation is
required to explore the regulatory mechanisms involved in ATF5
nuclear localisation.

To conclude, we provide evidence of UPRmt activation in
the placenta from cases of early-onset pre-eclampsia, and have
elucidated potential mechanisms for the UPRmt pathway in the
modulation of mitochondrial OXPHOS capacity. We also provide
evidence of an additional regulatory mechanism of the UPRmt

pathway through PERK/eIF2α arm of UPRER pathway. A sum-
mary diagram is presented in supplementary figure 8 (See SI
Appendix, fig. S8). Therefore, targeting cellular UPR pathways,
both UPRER and UPRmt, could provide a new therapeutic inter-
vention for early-onset preeclampsia. For example, the taurine
conjugated bile acid, tauroursodeoxycholic (TUDCA), is being
tested to alleviate the UPRER in diabetes.

Materials and Methods
SI Materials and Methods include description of the following items: Chem-
icals and reagents; cell culture; repetitive hypoxia-reoxygenation; RNAi
knockdown of genes; mitoTracker Red staining and confocal microscopy;
immunofluroscence; electron microscopy; quantitative real-time RT-PCR;
RNA sequencing, immunoblot analysis and subcellular fractionation (See SI
Appendix, Materials and Methods).

Study population and placental sample collection
The placental samples were obtained from the Research Centre for

Women’s and Infants’Health BioBank at the Lunenfeld-TanenbaumResearch
Institute at Mount Sinai Hospital, University of Toronto, in conjunction with
the hospital’s Placenta Clinic. Eligible subjects were invited to participate in
the study and provided written informed consent. This study was reviewed
and approved by the Human Subjects Review Committee of Mount Sinai
Hospital (MSH REB #10-0128-E). Pre-eclampsia was defined as new-onset
hypertension (≥140/90 mmHg) observed on at least two separate occasions,
6 h or more apart, combined with proteinuria (a 24 h urine sample showing
≥ 300 mg/24 h). Only placentas from early-onset cases (<34 wk) were used
in the study. One control group (NTC) was from healthy normotensive term
patients that displayed no abnormalities on routine ultrasound examination.
All pre-eclamptic and NTC placentas studied were delivered by non-laboured
caesarean section. Another normotensive preterm control group (NPTC) was
collected from pregnancies complicated by conditions including acute chori-
onic vasculitits, acute chorioamnionitis and acute funisitis. These placentas
were delivered vaginally. Women who smoked cigarettes or had chronic
hypertension, diabetes mellitus or pre-existing renal disease were excluded.

For each placenta, four to six small pieces of tissue from separate lobules
were rinsed three times in saline, blotted dry and snap-frozen in liquid N2
within 10 min of delivery; the samples were stored at -80°C.

The cryopreservation of placental tissues for mitochondrial respirometry
were described previously (29). In brief, 3 pieces of villous samples (∼10 mg
each) were biopsied from placentas, washed in PBS and immersed in 200 μl of
cryopreservation medium containing 0.21 M mannitol, 0.07 M sucrose, 30%
DMSO, pH 7.0) and allowed to permeate for 30 sec before being snap-frozen
in liquid N2 and transferred to -80

oC until later analysis.
Mitochondrial respirometry
Respirometry was performed using Clark-type oxygen electrodes as

described previously (29, 59).
Placental tissues
Placental samples from seven normotensive term control (NTC) and

twelve early-onset pre-eclampsia (PE<34 wk) were used for respirometry
study and their clinical characteristics are presented in Table 1. As expected,
there were significant differences between the two groups in gestational
age at delivery, systolic and diastolic blood pressures, as well as placental
and birth weights.

Before respirometry, the frozen placental tissue was thawed by mixing
with pre-warmed thawing medium (45oC) containing 0.25 M sucrose and
0.01 M Tris-HCl, pH 7.5 at a ratio of 4:1 (medium:tissue) and incubated in
a 45oC water bath for approximately 20 sec. Immediately upon thawing, the
tissues were transferred to tubes containing chilled BIOPS buffer containing
10 mM EGTA buffer, 0.1 mM free calcium, 20 mM imidazole, 20 mM taurine,
50 mM K-MES, 0.5 mM DTT, 6.56 mM MgCl2, 5.77 mM ATP, 15 mM phos-
phocreatine, pH 7.1. The placental tissue was permeabilized in 1 ml of BIOPS

containing 250 μg/ml saponin for 20min at 4oCwith continualmixing. Tissues
werewashed twice for 5min at 4oC in respiration buffer (0.5mMEGTA, 3mM
MgCl2, 60 mM C12H21KO12, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES,
110 mM sucrose, 1 mg/ml BSA, pH 7.1) with continual mixing. The tissue was
then ready for respirometry.

For respirometry, 30 mg of cryopreserved/thawed placenta were
placed in a water-jacketed oxygen electrode chamber (MitoCell) at 37°C
(Strathkelvin Instruments Ltd, Glasgow, UK) equilibrated to atmospheric
O2, and the chamber was sealed. After permeabilisation of the plasma mem-
brane with saponin, LEAK state respiration rates were first acquired in the
presence of 10 mM glutamate and 5 mM malate (GML), before OXPHOS
state respiration was stimulated by the addition of 2 mM ADP (GMP). At
this point, cytochrome c was added to check for mitochondrial membrane
integrity (10 mM). Next, complex I was inhibited by the addition of 0.5
µM rotenone and 10 mM succinate was added and OXPHOS respiration
related to complex II (SP) was recorded. Electron transport was then inhibited
at complex III by addition of 5 µM antimycin A. Complex IV-supported
respiration (TmAsP) was stimulated by addition of 0.5 mM TMPD and 2 mM
ascorbate, and oxygen consumption induced by auto-oxidation was assessed
after inhibition of complex IV by sodium azide (100 mM). Subtraction from
the rate of oxygen consumption prior to azide addition gave the complex
IV supported respiration. Finally, placental fragments were removed from
the electrode chambers, blotted and dried for 48 h at 80 °C to obtain
dry weights. Respiratory control ratio (RCR) was calculated as the ratio of
ADP-coupled respiration (GMP) which is the rate of oxygen consumption in
the phosphorylated state after addition of ADP (GMP) divided by the rate
of oxygen consumption in the presence of substrates without ADP (GML),
referred to as leak respiration. RCR reflects the coupling efficiency of ADP-
stimulated respiration and can be used to assess mitochondrial membranes
integrity.

BeWo-NG cells
In brief, cells were trypsinized with 0.05 % trypsin-EDTA (ThermoFisher

scientific). The cell pellet was resuspended in BIOPS buffer containing 0.5mM
EGTA, 3 mM MgCl2.6H2O, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 1
mg/ml BSA, 60 mM potassium-lactobionate, 110 mM mannitol, 0.3 mM DTT,
pH 7.1). Density of cell suspensions was determined using a haemocytometer
and 106 cells were added to a final volume of 500 µL respiratory medium
containing 0.5 mM EGTA, 3 mM MgCl2, 60 mM C12H21KO12, 20 mM taurine,
10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 1 mg/ml BSA, pH 7.1
and transferred to the MitoCells at 37°C. Cell membranes were selectively
permeabilized with saponin (50 µg/ml) for 5 min, before mitochondrial
respiration was measured. A substrate/inhibitor titration was used. Initially,
10 mM glutamate and 5 mM malate were added to the chambers, and
LEAK state respiration was recorded (GML). OXPHOS state respiration was
stimulated by the addition of 2mMADP (GMP). Next, complex I was inhibited
by the addition of 0.5 µM rotenone, before 10 mM succinate was added
and OXPHOS respiration recorded (SP). Electron transport was then inhibited
at complex III by addition of 5 µM antimycin A. Complex IV-supported
respiration (TmAsP) was stimulated by addition of 0.5 mM TMPD and 2 mM
ascorbate, and oxygen consumption induced by auto-oxidation was assessed
after inhibition of complex IV by sodium azide (100 mM). Subtraction from
the rate of oxygen consumption prior to azide addition gave the complex IV
supported respiration.

Between experiments using either placental tissue or BeWo-NG cells,
oxygen electrode chambers were washed for at least 60 min with 100 %
ethanol, and then several timeswithwater to remove any trace of respiratory
inhibitors.

Statistical analysis
Differences were tested using a number of statistical analyses, including

two tail paired student t-test, one-way ANOVA with Holm-Sidak's multiple
comparisons test or two-way ANOVA with Tukey’s multiple comparison test
according to the experimental design with P≤0.05 considered significant.
Correlations between proteins or genes were tested using the Pearson
correlation, with P≤0.05 considered significant. Power regression lines were
fitted to display the relationship with R2 value. All statistical analyses were
performed using GraphPad Prism v 6.0.
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