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Abstract
This paper sets up a statistical framework for modeling realised

volatility (RV ) using a Dynamic Conditional Score (DCS) model. It
first shows how a preliminary analysis of RV, based on fitting a linear
Gaussian model to its logarithm, confirms the presence of long memory
effects and suggests a two component dynamic specification. It also
indicates a weekly pattern in the data and an analysis of squared resid-
uals suggests the presence of heteroscedasticity. Furthermore working
with a Gaussian model in logarithms facilitates a comparison with
the popular Heterogeneous Autoregression (HAR), which is a simple
way of accounting for long memory in RV. Fitting the two component
specification with leverage and a day of the week effect is then carried
out directly on RV with a Generalised Beta of the second kind (GB2)
conditional distribution. Estimating logRV with an Exponential Gen-
eralised Beta of the second kind (EGB2) distribution gives the same
result. The EGB2 model is then fitted with heteroscedasticity and its
forecasting performance compared with that of HAR. There is a small
gain from using the DCS model. However, its main attraction is that
it gives a comprehensive description of the properties of the data and
yields multi-step forecasts of the conditional distribution of RV.
Keywords: EGARCH; GB2 distribution; HARmodel; heteroscedas-

ticity; long memory; weekly volatility pattern.

1 Introduction

This paper sets up a general model for realized variance (RV) based on a
distribution that is coherent for non-negative variables. The dynamics de-
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pend on the score of the conditional distribution. Score-driven models were
developed in Harvey (2013) and Creal et al (2013) where they were called
DCS and GAS models respectively. The contribution of this paper is to show
how the score-driven approach provides an integrated framework for volatil-
ity modeling and how its application to RV yields new insights, as well as
giving forecasts which are as good as, if not better, than those obtained from
existing techniques. As well as giving a comprehensive description of the
properties of the data, it able to provide multi-step forecasts of the condi-
tional distribution of RV.
A preliminary analysis of RV can be carried out by fitting a linear Gaussian

model to its logarithm. (This has an additional attraction of yielding smoothed
estimates of the underlying level of the series.) In our example, this analy-
sis confirms the two component specification that has often been found in
GARCH and EGARCHmodels and at the same time reveals a weekly pattern
in RV. It also clarifies the relationship with the popular Heterogeneous Au-
toregression (HAR) model, devised by Corsi (2009) and Müller et al (1997),
which is a simple approximation to the high-order autoregression implied by
long memory. Fitting the two component specification is then carried out di-
rectly on RV with a Generalised Beta distribution of the second kind (GB2)
conditional distribution. The Burr, Pareto and log-logistic are all special
cases of GB2 and the F distribution is closely related. These distributions
have fat tails but the DCS model handles extreme values robustly. Estimat-
ing a GB2 for RV is equivalent to estimating a model for its logarithm with an
Exponential GB2 (EGB2) distribution. The EGB2 provides further insights
into the overall picture because it has the normal distribution as a limiting
case. Furthermore it is easily extended to allow for heteroscedasticity.
Finally we comment on the relevance of our findings for the multivariate

score-driven models for RV covariance matrices proposed by Opshoor et al
(2016).

2 Statistical framework

This section sets out a coherent statistical framework for modeling RV that
respects the non-negativity of the observations and the tendency of variance
to increase with the level; see Corsi et al (2008) and Taylor (2005, p 335-7).
When volatility is estimated from RV, it may be calibrated for returns by

re-estimating the constant from the standardized returns assuming a distri-
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bution, such as generalized-t. The resulting estimates of scale, or standard
deviation, are then used to give forecasts based on the conditional distrib-
ution of returns; compare Brownlees and Gallo (2006) or Harvey (2013, p
180-1).

2.1 Dynamic location/scale model

A dynamic location/scale model for a non-negative variable is

yt = εtµtpt−1, t = 1, ...T, (1)

where the random variable εt has unit mean. In the MEM model of En-
gle and Gallo (2006), the conditional mean, µtpt−1, follows a GARCH-type
process and has to be constrained to be positive. Estimation is by maximum
likelihood (ML), based on the conditional distribution, f(yt | Yt−1).
An equivalent model can be formulated in terms of scale, αtpt−1, in which

case yt = εtαtpt−1, where E(εt), unlike E(εt), is not equal to one, unless
the distribution is exponential. However, E(εt) is easily found. With an
exponential link function for the scale,

yt = εt exp(λtpt−1), t = 1, ...T, (2)

where the logarithm of scale, λtpt−1, is unconstrained. The structure is the
same as that of EGARCH, as in Harvey (2013, chs 4 and 5) and Harvey
and Lange (2017), and much of the theory is the same: hence the name
Beta-GB2-EGARCH. First-order dynamics for λtpt−1 take the form

λt+1|t = ω(1− φ) + φλt|t−1 + κut, (3)

where ut is the score of the conditional distribution of yt. As with EGARCH,
|φ| < 1 ensures stationarity and there is no need to restrict parameters to be
non-negative. When the distribution is fat-tailed, the score is bounded. This
makes it possible to show the model is invertibility subject to restrictions on
κ.
Taking logarithms in (2) gives

ln yt = xt = λtpt−1 + ln εt (4)

so λtpt−1 now becomes location. A distribution for εt implies a distribu-
tion for ln εt, so the model can, in principle, be estimated in levels or logs.
Comparison of the likelihoods requires a Jacobian term to account for the
transformation.
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2.2 GB2 conditional distribution

The usual form of the GB2 density, as given in Kleiber and Kotz (2003,
p.187) and Harvey (2013, ch 5), is

f(y) =
υ(y/α)υξ−1

αB(ξ, ς) [(y/α)υ + 1]
ξ+ς

, α, υ, ξ, ς > 0, (5)

where α is the scale parameter, υ, ξ and ς are shape parameters and B(ξ, ς)
is the beta function. The standardized GB2, as it appears in (2), is

f(εt) =
υευξ−1t

B(ξ, ς) [ευt + 1]ξ+ς
, υ, ξ, ς > 0.

The score wrt the logarithm of scale is

∂ ln ft
∂λtpt−1

= ut = υ(ξ + ς)bt(ξ, ς)− υξ, (6)

where

bt(ξ, ς) =
(yte

−λtpt−1)υ

(yte−λtpt−1)υ + 1
, t = 1, ..., T, (7)

is distributed as beta(ξ, ς); see Harvey (2013, ch 5). As y → ∞, the score
approaches an upper bound of η = υς, whereas the lower bound of −υξ is
obtained when y = 0.

Remark 1 The GB2 distribution can be reparameterized so that the (upper)
tail index, η, replaces ς, that is we define η = υς. The generalized gamma
(GG) is then obtained as a limiting case as η →∞ by replacing α by ϕη1/υ.
The Weibull is a special case of GG in which ξ = 1 ( and a special case of
Burr as η →∞) while setting υ = 1 gives the gamma distribution. The chi-
square is a special case of standardized gamma and a limiting case of the F
distribution. The score for GG is unbounded and for gamma it is yte−λtpt−1−ξ
so the response is linear.

The asymptotic distribution of the ML estimator is given in Harvey (2013,
ch 5). When, as is usually the case, κ is positive, a suffi cient condition for
the model to be invertible is that

κ <
4(1 + φ)

υ2(ξ + ς)
(8)
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for all values in the parameter space; see Appendix.
Taking the logarithm of a GB2 gives the exponential GB2 (EGB2) dis-

tribution. The EGB2 is symmetric when ξ = ς. It includes normal, when
ξ = ς → ∞, Laplace, when ξ = ς → 0, and logistic, when ξ = ς = 1; see
McDonald and Xu (1995) and Caivano and Harvey (2014).
If y is distributed as GB2(α, υ, ξ, ς) and x = ln y, the PDF of the EGB2

variate x is

f(x;µ, υ, ξ, ς) =
υ exp{ξ(x− λ)υ}

B(ξ, ς)(1 + exp{(x− λ)υ})ξ+ς . (9)

The logarithm of scale in GB2, that is λ, becomes a location parameter in
EGB2. Furthermore υ is now a scale parameter, but ξ and ς are still shape
parameters and they determine skewness and kurtosis. The distribution has
light (exponential) tails. All moments exist with the mean equal to λ +
υ−1[ψ(ξ) − ψ(ς)] and the standard deviation given by σ = h/υ, where h2 =
ψ′(ξ) + ψ′(ς), with ψ and ψ′ denoting the digamma and trigamma functions
respectively. The distribution is positively (negatively) skewed when ξ > ς
(ξ < ς) and its kurtosis decreases as ξ and ς increase; excess kurtosis does
not exceed six.
Although υ is a scale parameter in (9), it is the inverse of what would be

considered a more conventional measure of scale. Scale is better defined as
the standard deviation

σ = h/υ, where h =
√
ψ′(ξ) + ψ′(ς), (10)

leading to

ut = σ2
∂ ln ft
∂λ

= σh[(ξ + ς)bt(ξ, ς)− ξ], (11)

where

bt(ξ, ς) =
e(xt−λtpt−1)h/σ

e(xt−λtpt−1)h/σ + 1
, t = 1, ..., T. (12)

Note that bt(ξ, ς) is as in the GB2, that is (7), but with υ replaced by h/σ
and yt exp(−λtpt−1) replaced by exp(xt − λtpt−1). Hence the score is bounded
as |x| → ∞.
The inclusion of σ2 in (11) means that letting ς = ξ → ∞ yields ut →

xt − λtpt−1 ; see Caivano and Harvey (2014). The DCS model is then the
innovations form of the Kalman filter for a Gaussian unobserved components
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model, which in the first-order case, (3), is

xt = µt + εt, ξt ∼ NID(0, σ2ξ), t = 1, . . . , T,

µt+1 = φµt + ηt, ηt ∼ NID(0, σ2η),

whereNID(0, σ2) denotes normally and independently distributed with mean
zero and variance σ2 and E(ξtηs) = 0 for all t, s.
Although the invertibility constraint, (8), is often not restrictive in prac-

tice, it clearly creates diffi culties as ξ and ς become bigger. However, when
ut is defined as in (11), the invertibility condition is∣∣φ− κh2(ξ + ς)/4

∣∣ < 1.

For a (log) logistic distribution, when ξ = ς = 1, the invertibility condition
is |φ− 1. 645κ| < 1. As ς = ξ → ∞, it is shown1 in the appendix that the
standard invertibility condition for a Gaussian model is obtained, that is
|φ− κ| < 1; see Harvey (2013, p 67). When κ > 0

κ <
4(1 + φ)

h2(ξ + ς)
(13)

which yields κ < 1 + φ for the Gaussian model.

2.3 Dynamic components

Instead of capturing long memory by a fractionally integrated process, two
components may be used. For RV (and range), the leverage term is governed
by sgn(−rt), where rt denotes mean-adjusted returns; see Harvey (2013, pp
178-9). Thus

λt|t−1 = ω + λ1,t|t−1 + λ2,t|t−1, (14)

λi,t+1|t = φi λi,t|t−1 + κi ui,t + κ∗i sgn(−rt) (ut + 1), i = 1, 2.

The score curve from the RV model is rotated and, when the distribution
of (mean-adjusted) returns is symmetric, the expectation of the composite
variable driving the dynamic equation is zero. Identifiability requires φ1 6= φ2,
together with κ1 6= 0 or κ∗1 6= 0 and κ2 6= 0 or κ∗2 6= 0. An attraction of the

1If ς → ∞ while ξ remains fixed at a finite value, establishing whether the model is
invertible appears not to be straightforward.

6



two-component DCS model is that the leverage effect can differ in the long
and short run.
Other components may be added. Here we employ a seasonal component

γt|t−1 so
λt|t−1 = ω + λ1,t|t−1 + λ2,t|t−1 + γt|t−1, (15)

where γt|t−1 is as in Harvey (2013, p 79-80), that is

γt|t−1 = z′tαt|t−1 (16)

αt+1|t = αt|t−1 + κtut,

where zt picks out the current season. In season j we set κj = κ, where κ is
a non-negative unknown parameter, whereas κi = −κ/(s− 1) for i 6= j. The
amounts by which the seasonal effects change therefore sum to zero. The filter
treating the elements of α1|0 as parameters. (There are s−1 free parameters
because they sum to zero.) In the present application the ‘seasons’are days
of the (working) week, so s = 5. The exponential link function prevents the
scale from becoming negative.
A randomwalk level can be extended so as to mirror an integrated random

walk (IRW) in a UC model, that is

λ1,t+1|t = λ1,t|t−1 + λβ1,t|t−1

λβ1,t+1|t = λβ1,t|t−1 + κut.

In a Gaussian UC model the IRW yields a smooth trend when the Kalman
filter ans smoother (KFS) is applied.

2.4 Long memory, Fractional integration and HAR

The standard HAR model, as in Corsi (2009), takes the form

ŷh,t+h = µ+ βdyt + βwyw,t + βmym,t + ζh,t+h, (17)

where yt is RV, yw,t =
(∑5

i=1 yt−i/5
)
, ym,t =

(∑22
i=1 yt−i/22

)
and ŷh,t+h is

the h-day cumulative average for h = 1, 2, .. Usually h = 1 in which case
ŷh,t+h = yt+1. The disturbance term is ζh,t+h. The coeffi cients are estimated
by regression. The weekly and monthly averages approximate the kind of
lag structure found with long memory and are seen a simple alternative to a
fractionally integrated model.
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Remark 2 In the reparametrization of Patton and Sheppard (2015) the model
specification has the second term consisting of only the realized volatilities be-
tween lags 2 and 5, and the third term consisting of only the realized volatili-
ties between lag 6 and 22. If the Patton and Sheppard parameters are denoted
with a star, then β∗d = βd + (1/5)βw + (1/22)βm, β

∗
w = (4/5)βw + (4/22)βm

and β∗m = (17/22)βm. The sum of the coeffi cients is the same.

As set up in (17), the HAR is a regression model for a variable that is
intrinsically positive, with a standard deviation that, in a GB2 framework, is
proportional to the location. Working in logarithms, particularly when h = 1,
this stabilizes the variance2; see also Corsi et al (2008) and Corsi and Reno
(2012). In this case the y′ts in the summations of (17) are replaced by their
logarithms. The fact that the model for logarithms, (4), is additive makes
aggregation more appealing because the (conditional) variance is constant.

3 Data Description and preliminary analysis

The simplest estimator of RV in day t is

RVt =
m∑
i=1

r2t,i, t = 1, ...., T,

where rt,i is the return in the i-th subperiod in the day; see, for example,
Andersen et al (2003). The current study uses RV based on high-frequency
index transaction prices from FTSE 100, DAX, S&P 500 and NASDAQ. The
dataset is the one used by Patton and Sheppard (2015) and is constructed
from five-minute intraday returns in the Oxford Man Institute library3. The
observations are for weekdays, with public holidays assumed to be the same
as the previous day. The starting date, 3rd January 2000, corresponds to the
first non-weekend/holiday date in the U.S. The end is May 23, 2017. The
sample size is therefore T = 4536.
When ln εt in (4) is not too far from normality4, fitting a linear state

space model may be a convenient way of finding a suitable specification

2Weighted least squares (WLS), as used by Patton and Sheppard (2015), is better than
OLS, but it still does not acknowledge that the conditional distribution cannot possibly
be normal.

3We use the variable ‘rv5’from https://realized.oxford-man.ox.ac.uk.
4When the GB2 distribution reduces to GG, that is ς = ∞, but ξ is finite, the EGB2
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Figure 1: Correlogram of log of FTSE RV

for a dynamic model based on the conditional EGB2 distribution. This is
easily done using the STAMP package of Koopman et al (2008). Smoothed
estimates of volatility, that is estimates constructed from two-sided filters,
are readily available. Taking logarithms also facilitates a comparison with
HAR.
The preliminary analysis is carried out with FTSE RV, but the analysis

of the other indices leads to similar conclusions. The first 23 observations
were dropped so as to enable a comparison to be made with HAR. The long
memory features are apparent in the ACF of its logarithm shown in Figure 1.
Hence the decision to fit two components. In any case, fitting only one AR(1)
component gives a very high portmanteau statistic, Q(67), at 410 and the
first-order residual autocorrelation is also high at r(1) = 0.078. When two
AR(1) components are included, r(1) reduces to 0.033, butQ is still very high
and correlations at lags of ten, fifteen and twenty (but not five) are apparent

is negatively skewed and the excess kurtosis goes to six as ξ → 0. Taking logarithms may
be less appealing in such cases. A better option for QML is to model yt with a gamma
distribution and a linear response function.

9



in the residual ACF shown in Figure 2. Furthermore the associated spectrum
shows a clear peak at 2/5 and at its harmonic 4/5. Thus there is strong
evidence for a day of the week effect. The model is therefore augmented by
including a weekly seasonal component as in (16). The seasonals appear to be
fixed and the seasonal test statistic, which is asymptotically χ25 under the null
of no seasonal effect, is 203.2. The day of the week coeffi cients are -0.132,
-0.052, -0.002, 0.088 and 0.098. Thus Thursday and Friday exhibit much
higher volatility than the other days, with Monday being particularly low5.
The short-term component has a coeffi cient of 0.75 which when combined
with a long-run coeffi cient close to unity implies a long memory pattern for
the ACF. With the seasonal included, the implied weights in the filter are as
in Figure 3.
There is no evidence of first-order serial correlation as r(1) = 0.007 and

although the 117.5 value for Q(70) is statistically significant at conventional
levels its value is not excessive given the large sample size. The only real
failure of the model is in the distribution of the residuals: there is positive
skewness and excess kurtosis of about 2.6.
The HAR model does rather well given its simplicity but Q(67) is high6

at 230.9 and the prediction error variance is 0.240 compared with 0.230 for
the unobserved component model. The sum of the coeffi cients is 0.96 and
in the Patton-Sheppard form, the estimates of β∗d, β

∗
w and β

∗
m are 0.46, 0.38

and 0.12 respectively; compare the weights in Figure 3.
The Gaussian model allows smoothing. If the first component is modelled

as an integrated random walk (IRW), that is

λ1,t+1 = λ1,t + λβ1,t, λβ1,t+1 = λβ1,t + ζt,

the smoothed estimates are as shown in Figure 4.

4 Location/scale DCS model

Estimating a model with a conditional GB2 distribution with the parameters
υ, ζ and ξ can be problematic. We therefore focus on the Burr distribution,

5The realised measures in the Oxford library are explicitly constructed so as to ignore
any extreme movements in the first few minutes of the trading day, which may be caused
by large overnight volatility.

6This is only partly explained by the failure to take account of the day of the week
effect.
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Figure 2: ACF and spectrum of residuals from fitting a RW and AR1 to
lnRV
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Figure 3: Filter weights for linear Gaussian model for lnFTSErv

in which ξ = 1, and what we call the balanced GB2 where ξ = ς. The log-
logistic distribution is a special case of both Burr and balanced GB2 in which
ς = ξ = 1, whereas the generalized Pareto distribution is a special case of
Burr with υ = 1. The logarithm of the balanced GB2 has a symmetric EGB2
distribution which, as noted earlier, goes to a normal distribution as ξ, ς →∞
meaning that the GB2 becomes lognormal. Finally the F -distribution with
(ν1, ν2) degrees of freedom, is a special case of balanced GB2 in which υ = 1
and ξ = ς = ν1/2 = ν2/2, but more generally, (ν1/ν2)F is GB2(ν1/2, ν2/2).
Based on the specification suggested by the preliminary analysis, we fit-

ted these distributions with two autoregressive components. The Weibull
is included for comparison. It is not a fat-tailed distribution, but like the
lognormal, it can be obtained from GB2 as a limiting case. Table 1 shows
the FTSE results, where, according to the AIC and BIC information crite-
ria, Burr is best, whereas Table 2 for S & P 500 shows balanced GB2 to be
better. The results for DAX and NASDAQ, which are available on request,
show DAX leaning towards Burr and NASDAQ preferring balanced GB2.
The estimate of ς for FTSE is around 0.8 which implies positive skewness
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Figure 4: Smoothed estimates when long-run component is an IRW and
short-run component is an AR(1).
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and excess kurtosis for the EGB2. The implied EGB2 values for excess kur-
tosis and skewness are 2.76 and 0.54, which are close to the values for the
residuals reported in the previous section.
The values of the tail indices are similar for all four markets, but tend to

be lower for the Burr distribution. For example with FTSE the upper (lower)
indices for Burr and balanced are 3.33 (3.89) and 4.48 (4.48) for balanced.
The F-distribution does well, particularly when the balanced GB2 is best
overall. The estimated υ in balanced GB2 is typically greater than one and
the estimates of ξ are ς correspondingly smaller than those reported for F ; as
a result the tail indices are of a similar magnitude. In the log-logistic, where
ξ and ς are constrained to be unity, it is υ that adjusts to give comparable tail
indices. Although the fit of the log-logistic is good, the hypothesis that υ = 1
is rejected for all markets by Wald tests on the balanced GB2 estimates. The
fit with distributions from the generalized gamma class, such as Weibull, is
poor.
The Kolmogorov-Smirnov test is informative for comparing the distrib-

utional fit. When a formal test is carried out at a nominal 5% significance
level, it tends to reject most of the distributions, an exception being the bal-
anced GB2 for S&P. However, such rejections may not be surprising given
the large sample size.
The low tail indices found in the best GB2 models indicate that the log-

normal distribution gives an inferior fit and this is confirmed by the goodness
of fit statistics; for FTSE the log-likelihood is 42,067 which is well below the
log-likelihood of 42,136 obtained for the balanced GB2 where ξ = ς = 1.76
rather than infinity. For S&P, the lognormal log-likelihood is 40,312, again
well below balanced GB2. The fit for Pareto is much worse than lognormal
and like Weibull it is not considered further.
The seasonality does not show up clearly in residuals from fitting a non-

seasonal location/scale model to levels, that is yt/ exp(λt|t−1). However, the
ACFs of scores from the models reported in Tables 1 and 2 yield results
similar to those for the ACF of the Gaussian UC model in Figure 2. This is
because the scores for GB2 and EGB2 are the same and the Gaussian model
is not too far away from a balanced EGB2 with moderate size tail indices.
The results in Table 3 show the parameter estimates for each index with

the best-fitting distribution. The dynamic equation now includes a seasonal
component and the two autoregressive components incorporate leverage ef-
fects. Taking logarithms and fitting a corresponding EGB2 gives the same
estimates and score residuals. The seasonal pattern is similar to that re-
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Figure 5: FTSE: ACFs of scores for absolute values of residuals from preferred
lnRV model (top left hand) plus ACFs of scores for tail parameters.

vealed by the preliminary modelling and the leverage effect is stronger in the
short-term component, a finding that is not unusual for returns or range; see
Harvey and Lange (2018) and Harvey (2013, pp 176-81).
Table 4 shows the day of the week effect. In all cases there is very little

movement with the estimate of κs being zero in three cases. For the US
indices the most volatile days are Wednesday and Thursday, whereas for the
European indices it is Thursday and Friday.

5 Heteroscedasticity and a Changing Tail In-
dex

Although the residuals from the preferred Gaussian model have relatively
little serial correlation, this is not true for their squares or absolute values:
Figure 5 clearly indicates heteroscedasticity.
For fixed ξ and ς, the scale of the EGB2 is 1/υ. An exponential link
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function, that is υ = exp(−υ), yields

∂ ln ft/∂υ = (ξ + ς)εtbt − ξεt − 1, (18)

where εt = (xt − λt|t−1)/ exp(υ) and

bt =
exp εt

1 + exp εt
.

The score is symmetric but unbounded7; see Figure 2 in Caivano and Harvey
(2014).
Parameterizing in terms of lnσ, gives

∂ ln ft/∂ lnσ = ut = h(ξ + ς)εtbt − hξεt − 1, (19)

where εt is (xt − λt|t−1)/σ = εt/h. Caivano and Harvey (2014, p 566) show
that in the limit as ξ = ς →∞, ut = (xt− λt|t−1)2/σ2− 1, which is the score
for a Gaussian EGARCH model. At the other extreme, when ξ = ς = 0, the
score is

√
2
∣∣xt − λt|t−1∣∣ /σ − 1.

How should heteroscedasticity in the logarithm of a variable that is al-
ready subject to changing variance be interpreted? As was noted earlier, the
(upper) tail index for a GB2 is η = υς. Thus for a fixed value of ς, a dynamic
υ implies that η is dynamic. It also might imply that the lower tail index,
υξ, is dynamic. We could let the tail indices be dynamic and keep υ fixed.
Setting ξ = ς and letting ς = exp(−ς) so ς = − ln ς, gives

∂ ln ft/∂ς = 2ςψ(ς)− 2ςψ(2ς)− ςεt − 2ς ln(1− bt). (20)

This score is symmetric. Figure ?? compares ∂ ln ft/∂ς and ∂ ln ft/∂υ for
ς = ξ = 1. The response is similar in this case. If ξ = ς is not assumed,

∂ ln ft/∂ς = ςψ(ς)− ςψ(ς + ξ)− ς ln(1− bt) (21)

and, as can be seen from the graph, the (dashed) curve is asymmetric with
large positive (negative) observations lowering (raising) the value of ς. Figure
5 shows that the ACF of this score, like that of the lower tail, gives little
indication of any serial correlation8.

7Gen-t parameterized as in Harvey and Lange (2017) does have a bounded score for
this parameter but tail index is fixed.

8This is somewhat surprising (??) as the sum of the scores equals the score for both.
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Estimation of the GB2/EGB2 with a two component location/scale, sea-
sonal dummies and dynamic υ, captured by a first-order equation for υt|t−1,
gives the results shown in Table 5. In all cases apart from DAX, the dynamic
effects in υt|t−1 are short-lived with the AR coeffi cient only slightly bigger
than 0.5. Nevertheless, the information criteria in Table 6 indicate that their
inclusion improves the fit. Furthermore there is a big reduction in the value
of the portmanteau statistis for υ, but not by enough to completely eliminate
the residual heteroscedasticity.

Remark 3 Corsi et al (2008) introduce heteroscedasticity into a model for
logRV using GARCH combined with a normal inverse Gaussian distribution
(NIG). The score-driven approach is more easily developed with EGB2 dis-
tribution.

6 Forecasting

In order to compare the forecasting performance of the DCS models with the
HAR model, we identified two time periods of five months, one with large
market fluctuations, labelled High Volatility Period, and one of relatively
quiet market conditions, the Low Volatility Period. The High Volatility Pe-
riod, between the 01/10/2008 and the 31/03/2009, covers the 2008 financial
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crisis and includes the announcement of the bankruptcy of Lehman Brothers.
The Low Volatility period is between the 01/02/2005 and the 29/07/2005.
Models for each period were estimated using all the observations up to the
beginning of the the period. Then one step ahead forecasts were computed
for all the forecasting period.
The models compared are the location/scale DCS Seasonal EGARCH

model, with and without heteroscedasticity (dynamic υt|t−1), the HAR model
in levels, as defined9 by Patton and Sheppard (2015), and the HAR model
in logarithms, as defined by Corsi (2009). The one step ahead forecasts
for the mean of the GB2 model are obtained by making a modification to
the forecast of the scale; see Harvey (2013, p163). In the general case with
heteroscedasticity

ỹt+1|t =
Γ
(
ξ + 1/υT+1|T

)
Γ
(
ς + 1/υT+1|T

)
Γ (ξ) Γ (ς)

eλt+1|t , t = T + 1, ..., T + T ∗,

where T ∗ denoted the number of observations in the forecasting period. When
the HAR model is estimated in logarithms. In the latter case, the standard
lognormal correction factor is used to give ŷT+1|T = exp

(
x̂T+1|T + σ̂2/2

)
.

In Table 7 the forecasting accuracy is measured in terms of Root Mean
Squared Forecast Errors (RMSFE) andMean Absolute Forecast Errors (MAFE)
which are presented as percentages with respect to the standard DCS Sea-
sonal EGARCHmodel. The significance of differences in forecasting accuracy
is assessed from the p-values of the Diebold and Mariano (1995) test for equal
expected loss of forecasts based on the proposed model versus each competi-
tor. Finally, we have included the results for the predictive likelihood; see
Mitchell and Wallis (2011).
The results in Table 7 show that the DCS model easily beats the HAR

models according to predictive likelihood. This is what matters if we are
concerned with the full distribution; see, for example, Corsi et al (2008, p 73).
Comparisons based on RMFSE and MAFE are less clear cut: although DCS
beats HAR in most cases, the differences are rarely statistically significant.
In periods of Low Volatility the DCS forecasts better than the HAR on the
European indices whereas for High Volatility regimes it forecasts better on
the American indexes. In summary although HAR is generally diffi cult to
beat when the criterion is RMSFE or MAFE, the DCS model is certainly not

9They allow for heteroscedasticity by Weighted Least Squares, with weights given by
the residuals from an initial OLS estimation.
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worse and may be slightly better. What is clear, however, is that the HAR
performs better when formulated in logarithms.
In all the cases the predictive likelihood is the highest for the DCS mod-

els, always slightly in favour of the heteroscedastic EGB2 (DCS-υt|t−1). As
might be expected, HAR is much better in logarithms. This is because in
levels the assumption of normality, even after removing the heteroscedastic-
ity by weighted least squares, is still not a good one for observations which
are strictly positive and skewed to the right (upwards) with a heavy upper
tail. As was observed in Section 3, assuming normality for lnRV , thereby
implicitly assuming that RV is lognormal, is not unreasonable as an approx-
imation.
In order to assess the relevance of accurately describing the predictive

density, we looked at the upper quantiles. This is analogous to computing
Value at Risk (VaR) for a return. For the DAX index, the Burr distribution
gave the best fit and in this case the quantile function takes a particularly
simple form, with the probability that RV is in the upper 100α% given by
ξuα
(
ỹT+1|T

)
= 1 − exp

(
λT+1|T

) (
α−1/ς − 1

)1/υT+1|T . Comparing these quan-
tile for α = 0.10 and 0.25 with the corresponding quantiles for HAR (in
logs), it seems that the HAR quantiles are consistently higher. This suggests
an unreasonable hedge in a portfolio to protect against volatility risk and a
tendency to overestimate a volatility spillover effect in a systemic risk assess-
ment. These are implications that go beyond the simple point forecast which
has been extensively highlighted in the literature, and should be considered
carefully by risk managers and policy makers.
Table 7 also includes results for the HAR-with-Jumps (HARJ) and Continuous-

HAR (CHAR) models proposed by Andersen et al. (2007). These are based
on the idea that the total variation of RV can be decomposed into a contin-
uous and discontinuous component, that is a ‘jump’component. Following
Barndorff-Nielsen and Shephard (2004), this decomposition can be imple-
mented through the Bi-Power Variation (BPV), defined as

BPVt = zt =
π

2

M−1∑
i=1

|rti | |rti−1| .

The series on BPV for the four indices come from the same Oxford Man
Realized Library dataset as was used before. The CHAR model replaces RV
by BPV in the right hand side of the levels HAR specification, so that
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yh,t+h = µ+ βdzt + βwzw,t + βmzm,t + ζh,t+h. (22)

The HARJ model adds a jump variable, Jt = max {yt − zt, 0}, to the stan-
dard HAR giving

yh,t+h = µ+ βdyt + βwyw,t + βmym,t + βJJt + ζh,t+h. (23)

The performance of both CHAR and HARJ is dissappointing. Perhaps for-
mulations designed for the logarithm of RV will fare better.

7 Conclusion

A location/scale DCS model for RV, formulated with a GB2 distribution in
levels, or equivalently an EGB2 distribution in logarithms, is able to capture
the mains features of the data. It is statistically coherent and can model
long memory, through a two component structure, and asymmetric response
(leverage) in a straightforward and transparent manner. The asymptotic
theory for the ML estimator is as in Harvey (2013, ch 5), but here we show an
additional result which indicates that invertibility for models with parameters
that tend to arise in practice is unlikely to be a problem.
Working in logarithms is useful in that the normal distribution is a lim-

iting case of EGB2 and preliminary investigation is easily carried out using
linear state space models. For RV data on the four indices FTSE, DAX, S&P
and Nasdaq, preliminary analyis reveals a day of the week pattern, as well
as long memory effects. The more general score-driven models can handle
these effects and are able to introduce leverage into both short and long run
components. The best fitting distributions are found to be the Burr and the
balanced GB2, where the two shape parameters are set equal, resulting in
a symmetric distribution for lnRV and a normal distribution as a limiting
case. Both Burr and balanced GB2 both have only two parameters in addi-
tion to those required to model dynamic location/scale. The F -distribution
also gives a relatively good fit to RV, even though it is not the best. How-
ever, it does generalize the most easily to the modelling of an N ×N realized
volatility covariance matrix as in Opschoor et al (2017).
Heteroscedasticity, or Volatility of Volatility (‘Vol of Vol’) as described

by Corsi (2008), is detected in lnRV and can be modeled within the frame-
work of an EGB2 distribution. We note that such heteroscedasticity implies
dynamic tail indices in the corresponding GB2 distributions.
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The forecasting performance of the models was assessed using HAR as a
benchmark. HAR performs much better in logarithms than in levels, because
in levels it fails to match the empirical distribution of the residuals. The point
is worth stressing because some researchers, such as Patton and Sheppard
(2015) and Bollerslev, Patton and Quaedvlieg (2016), continue to make a
case for modeling in levels. When formulated in logarithms, the HAR model
forecasts well, but it rarely beats the the DCS model in terms of RMSE
or MAE. Furthermore the DCS model captures the conditional distribution
more accurately. The difference is reflected in the upper quantiles, and we
argue that this may have implications for risk management; compare the
use of score-driven models proposed by Lucas et al. (2016) for forecasting
implied default probabilities in Credit Default Swap (CDS) prices.
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Appendix on invertibility
Let

Λt(ψ) := sup |xt| ,
where xt = dλt+1|t/dλt|t−1 = φ + κ(∂ut/∂λtpt−1). Blasques et al (2018) show
that a suffi cient condition for invertibility is E ln Λ0(ψ) < 0 over all admissi-
ble ψ.
For GB2

∂ut
∂λtpt−1

= u′t = −υ2(ξ + ς)bt(1− bt).

Thus
xt = φ+ κu′t = φ− κυ2(ξ + ς)bt(1− bt)

The maximum of bt(1− bt) is 1/4 and so the model is invertible if we ensure∣∣φ− κυ2(ξ + ς)/4
∣∣ < 1 (24)

Hence

− 4(1− φ)

υ2(ξ + ς)
< κ <

4(1 + φ)

υ2(ξ + ς)

These bounds appear to place a constraint on the magnitude of ξ and
ς. However, this diffi culty can be avoided by analysing the EGB2 with the
forcing variable defined as in (11). Then

−σ2∂
2
t ln ft

∂λ2tpt−1
= h2(ξ + ς)bt(1− bt)

and since the maximum of bt(1− bt) is again 1/4, the invertibility condition
is ∣∣φ− κh2(ξ + ς)/4

∣∣ < 1;

compare (24). For a logistic distribution, when ξ = ς = 1, the invertibility
condition is |φ− 1. 645κ| < 1. As ς = ξ → ∞, the distribution becomes
normal and since, as noted in Caivano and Harvey (2014, Lemma 1, p 560),
ςh2 = ξh2 → 2, it follows that h2(ξ+ ς)/4→ 1 and the standard invertibility
condition for a Gaussian model is obtained, that is |φ− κ| < 1; see Harvey
(2013, p 67).
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1. Tables

Table 1: Realized Volatility of FTSE 100 Index

Distribution Shape Components Fit
ξ υ ς ω φ1 κ1 φ2 κ2 Logl AIC BIC K-S Test

GB2 ξ = ς
1.763 2.543 1.763 -8.827 0.999 0.036 0.842 0.058

42,135.76 - 84,257.52 - 84,212.58
0.027

(0.136) (0.085) (0.136) (0.415) (0.001) (0.007) (0.040) (0.006) (0.002)

Burr
1 3.893 0.856 -8.796 0.999 0.033 0.867 0.056

42,130.52 - 84,247.03 - 84,202.09
0.020

- (0.022) (0.048) (0.383) (0.001) (0.006) (0.030) (0.006) (0.052)

Log-Logistic
1 3.676 1 -8.764 0.999 0.034 0.862 0.056

42,125.46 - 84,238.92 - 84,200.40
0.023

- (0.012) - (0.387) (0.001) (0.006) (0.033) (0.006) (0.020)

F ν1 = ν2
4.494 1 4.494 -8.919 0.999 0.039 0.814 0.062

42,099.74 - 84,187.48 - 84,148.96
0.041

(0.020) - (0.020) (0.469) (0.002) (0.007) (0.049) (0.007) (0.000)

Pareto
1 1 39.499 -9.789 0.991 0.141 0.580 0.207

40,012.12 - 80,012.24 - 79,973.72
0.284

- - (0.187) (0.236) (0.004) (0.030) (0.174) (0.033) (0.000)

Weibull
1 1.330 ∞ -9.688 0.992 0.023 0.667 0.131

40,433.65 - 80,855.29 - 80,816.77
0.167

- (0.008) - (0.073) (0.001) (0.003) (0.050) (0.011) (0.000)

Table 2: Realized Volatility of S&P 500 Index

Distribution Shape Components Fit
ξ υ ς ω φ1 κ1 φ2 κ2 Logl AIC BIC K-S Test

GB2 ξ = ς
3.234 1.450 3.234 -9.546 0.994 0.058 0.781 0.091

40,337.42 -80,660.84 -80,615.90
0.016

(0.220) (0.126) (0.220) (0.277) (0.003) (0.010) (0.045) (0.010) (0.176)

Burr
1 3.271 0.798 -9.617 0.994 0.061 0.762 0.082

40,320.62 -80,627.25 -80,582.31
0.013

- (0.023) (0.048) (0.287) (0.003) (0.009) (0.047) (0.009) (0.432)

Log-Logistic
1 2.997 1 -9.567 0.994 0.059 0.779 0.086

40,310.28 -80,608.56 -80,570.04
0.026

- (0.012) - (0.298) (0.003) (0.010) (0.046) (0.010) (0.004)

F ν1 = ν2
3.153 1 3.153 -9.544 0.994 0.058 0.782 0.093

40,334.40 -80,656.81 -80,618.29
0.029

(0.020) - (0.020) (0.274) (0.003) (0.010) (0.045) (0.010) (0.001)

Pareto
1 1 45.402 -9.518 0.996 0.090 0.821 0.238

38,880.68 -77,749.37 -77,710.85
0.223

- - (0.235) (0.319) (0.003) (0.025) (0.048) (0.028) (0.000)

Weibull
1 1.292 ∞ -9.388 0.997 0.022 0.793 0.170

39,203.06 -78,394.11 -78,355.59
0.109

- (1.292) - (0.165) (0.001) (0.003) (0.020) (0.009) (0.000)
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Table 3: Estimation results from location/scale DCS Seasonal EGARCH with Leverage Effect

Index Shape Components Fit
ξ υ ς ω φ1 κ1 κ1l φ2 κ2 κ2l Logl AIC BIC

FTSE 100

1 3.930 0.841 -8.754 0.999 0.030 0.000 0.886 0.052 0.019
42,158.09 - 84,298.19 - 84,240.41- (0.022) (0.047) (0.385) (0.001) (0.004) (0.003) (0.020) (0.005) (0.004)

1 4.038 0.825 -8.740 0.999 0.029 0.000 0.888 0.052 0.018
42,250.85 - 84,473.70 - 84,383.82

- (0.022) (0.047) (0.396) (0.001) (0.004) (0.003) (0.019) (0.005) (0.004)

DAX

1 3.695 0.877 -7.788 1.000 0.037 0.004 0.838 0.056 0.027
38,632.90 - 77,283.06 - 77,225.28

- (0.056) (0.081) (0.591) (0.001) (0.005) (0.004) (0.036) (0.006) (0.005)
1 3.831 0.828 -8.472 0.998 -0.033 -0.011 0.986 0.114 0.033

38,695.46 - 77,362.92 - 77,273.04
- (0.018) (0.032) (0.066) (0.000) (0.002) (0.000) (0.000) (0.005) (0.001)

S&P

2.605 1.652 2.605 -8.935 1.000 0.040 0.000 0.848 0.092 0.051
40,418.58 - 80,819.16 - 80,761.38

(0.184) (0.108) (0.184) (3.574) (0.011) (0.010) (0.020) (0.022) (0.010) (0.018)
2.143 1.878 2.143 -8.842 1.000 0.041 0.000 0.848 0.090 0.052

40,466.58 - 80,905.17 - 80,815.29
(0.168) (0.102) (0.168) (1.603) (0.005) (0.007) (0.010) (0.022) (0.008) (0.010)

Nasdaq

2.497 1.978 2.497 -8.195 1.000 0.035 0.001 0.779 0.089 0.026
40,440.10 - 80,862.21 - 80,804.43

(0.178) (0.105) (0.178) (0.405) (0.001) (0.006) (0.003) (0.032) (0.006) (0.004)
2.361 2.076 2.361 -8.130 1.000 0.032 0.001 0.807 0.086 0.026

40,507.59 - 80,987.18 - 80,897.30
(0.169) (0.101) (0.169) (0.412) (0.001) (0.005) (0.003) (0.026) (0.006) (0.004)
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Table 4: Estimation results from location/scale DCS Seasonal EGARCH with Leverage Effect - Seasonal Component

Index Seasonal
κs γ1 γ2 γ3 γ4 γ5

FTSE 100
0.001 -0.119 -0.029 0.031 0.043 0.075
(0.001) (0.020) (0.015) (0.021) (0.026) -

DAX
0.000 -0.113 -0.044 0.004 0.081 0.072
(0.000) (0.007) (0.016) (0.012) (0.007) -

S&P
0.000 -0.129 -0.006 0.063 0.069 0.003
(0.002) (0.075) (0.015) (0.014) (0.068) -

Nasdaq
0.001 -0.114 -0.045 0.122 0.045 -0.007
(0.000) (0.031) (0.034) (0.028) (0.028) -
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Table 5: Estimation results from location/scale DCS-H Seasonal EGARCH

Index Shape Components
ξ υ ζ ωυ φυ κυ ωλ φλ1 κλ1 κλ1l φλ2 κλ2 κλ2l

FTSE 100

1 4.034 0.825 -8.699 1.000 0.029 0.000 0.887 0.052 0.018
- (0.022) (0.047) (0.386) (0.001) (0.004) (0.003) (0.019) (0.005) (0.004)
1 0.817 -1.400 0.510 0.045 -8.620 1.000 0.028 0.000 0.892 0.049 0.018
- (0.047) (0.023) (0.139) (0.009) (0.366) (0.001) (0.004) (0.003) (0.017) (0.005) (0.004)

DAX

1 3.800 0.851 -7.792 1.000 0.036 0.004 0.846 0.056 0.025
- (0.022) (0.049) (0.523) (0.001) (0.005) (0.004) (0.028) (0.005) (0.004)
1 0.851 -1.322 0.985 0.008 -7.810 1.000 0.035 0.004 0.857 0.054 0.023
- (0.049) (0.029) (0.009) (0.003) (0.473) (0.001) (0.004) (0.003) (0.026) (0.005) (0.004)

S&P 500

2.017 1.947 2.017 -8.408 1.000 0.039 -0.001 0.866 0.090 0.052
(0.153) (0.094) (0.153) (0.723) (0.002) (0.006) (0.006) (0.018) (0.007) (0.007)
2.161 2.161 -0.627 0.531 0.037 -8.703 1.000 0.039 0.001 0.860 0.085 0.049
(0.157) (0.157) (0.095) (0.132) (0.008) (0.813) (0.003) (0.005) (0.006) (0.020) (0.006) (0.004)

Nasdaq 100

2.443 2.032 2.443 -7.716 1.000 0.029 0.001 0.837 0.089 0.026
(0.173) (0.103) (0.173) (0.378) (0.020) (0.006) (0.004) (0.001) (0.005) (0.003)
2.742 2.742 -0.646 0.556 0.044 -8.139 1.000 0.030 0.001 0.820 0.081 0.026
(0.175) (0.175) (0.102) (0.092) (0.007) (0.367) (0.001) (0.005) (0.003) (0.024) (0.005) (0.004)4



Table 6: Goodness of Fit

Index Fit
Model Logl AIC BIC Qυ (5) Qυ (20)

FTSE 100
DCS 42,236.70 - 84,447.39 - 84,363.93

122.455 157.988
(0.000) (0.000)

DCS-H 42,270.43 - 84,508.86 - 84,406.14
53.705 84.469
(0.000) (0.000)

DAX
DCS 38,727.42 - 77,426.83 - 77,336.95

131.337 209.129
(0.000) (0.000)

DCS-H 38,748.30 - 77,464.60 - 77,361.88
73.715 95.681
(0.000) (0.000)

S&P 500
DCS 40,466.07 - 80,904.14 - 80,814.26

112.195 188.159
(0.000) (0.000)

DCS-H 40,481.79 - 80,931.59 - 80,828.87
22.111 78.503
(0.000) (0.000)

Nasdaq 100
DCS 40,505.39 - 80,982.79 - 80,892.91

157.272 246.286
(0.000) (0.000)

DCS-H 40,539.83 - 81,047.66 - 80,944.93
24.458 86.623
(0.000) (0.000)
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Table 7: Forecasting results on RV for location/scale DCS and HAR.

01/02/2005-29/07/2005 01/10/2008-31/03/2009
Index Low Vol High Vol

DCS DCS-H HAR Levels HAR Log CHAR HARJ DCS DCS-H HAR Levels HAR Log CHAR HARJ

FTSE

RMSFE 1.000 1.002 1.094 1.010 1.111 1.128 1.000 1.000 1.022 0.992 1.045 1.054
MAFE 1.000 0.996 1.560 1.098 1.795 1.585 1.000 1.000 1.050 0.995 1.148 1.096

D-M Test RMSE Vs DCS -
1.345 -1.605 -2.553 -1.752 -1.413

-
0.034 -0.391 0.364 -0.631 -0.622

(0.179) (0.109) (0.011) (0.080) (0.158) (0.973) (0.696) (0.716) (0.528) (0.534)

D-M Test RMSE Vs DCS-H - -
-1.569 -2.036 -1.717 -1.392

- -
-0.388 0.399 -0.625 -0.621

(0.117) (0.042) (0.086) (0.164) (0.698) (0.690) (0.532) (0.535)
Predictive Likelihood 1,925.10 1,922.38 1,404.07 1,890.31 1,396.93 1,402.01 1,375.22 1,376.00 1,038.24 1,361.11 1,045.56 1,023.70

DAX

RMSFE 1.000 1.001 1.094 1.004 1.068 1.319 1.000 1.024 1.066 1.032 1.016 1.080
MAFE 1.000 1.005 1.322 1.080 1.408 1.624 1.000 1.031 1.087 1.006 1.069 1.133

D-M Test RMSE Vs DCS -
0.281 -1.127 -0.176 -1.749 -2.246

-
1.880 -1.299 -1.460 -0.279 -1.328

(0.779) (0.260) (0.860) (0.080) (0.025) (0.060) (0.194) (0.144) (0.780) (0.184)

D-M Test RMSE Vs DCS-H - -
-1.125 -0.138 -1.741 -2.246

- -
-0.794 -0.427 0.130 -0.884

(0.261) (0.890) (0.082) (0.025) (0.427) (0.669) (0.897) (0.377)
Predictive Likelihood 1,710.92 1,711.87 1,317.49 1,698.67 1,317.39 1,315.22 1,310.37 1,310.95 617.40 1,299.38 670.13 599.49

S&P

RMSFE 1.000 1.007 1.057 1.029 1.007 1.216 1.000 1.014 1.049 1.009 1.001 1.100
MAFE 1.000 1.011 1.065 1.024 1.029 1.231 1.000 0.996 1.067 1.014 1.048 1.133

D-M Test RMSE Vs DCS -
1.375 -1.677 -1.031 -0.212 -4.200

-
1.120 -0.759 -0.396 0.017 -0.839

(0.169) (0.094) (0.303) (0.832) (0.000) (0.263) (0.448) (0.692) (0.986) (0.402)

D-M Test RMSE Vs DCS-H - -
-1.545 -0.804 0.002 -4.151

- -
-0.538 0.263 0.218 -0.713

(0.122) (0.421) (0.998) (0.000) (0.591) (0.793) (0.828) (0.476)
Predictive Likelihood 1,710.92 1,711.87 1,317.49 1,698.67 1,317.39 1,315.22 1,259.00 1,261.87 -1,096.13 1,257.26 - 956.97 -1,259.93

Nasdaq

RMSFE 1.000 1.011 1.044 1.030 1.100 1.056 1.000 1.033 1.048 1.007 1.019 1.052
MAFE 1.000 1.020 1.078 1.048 1.179 1.084 1.000 1.010 1.086 1.042 1.099 1.097

D-M Test RMSE Vs DCS -
1.028 -1.242 -1.087 -2.203 -1.638

-
1.508 -0.584 -0.170 -0.294 -0.597

(0.304) (0.214) (0.277) (0.028) (0.102) (0.132) (0.559) (0.865) (0.769) (0.551)

D-M Test RMSE Vs DCS-H - -
-1.035 -0.753 -2.150 -1.462

- -
-0.171 0.494 0.172 -0.203

(0.301) (0.451) (0.032) (0.144) (0.865) (0.622) (0.864) (0.839)
Predictive Likelihood 1,713.32 1,717.33 1,340.90 1,712.65 1.337.11 1.340.69 1.336.05 1,337.74 911.94 1,328.90 950.74 910.06
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