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Summary 

The paper focuses on recent developments in the use of fibre reinforced polymers 

(FRPs) in reinforced and prestressed concrete applications.  The influence of the FRP 

material properties on the design of concrete structures is considered and applications 

are discussed in conjunction with the structural function of the FRP reinforcement.  The 

review includes examples of the practical implementation of the technology and 

addresses important durability issues.   

 

A number of future considerations/research needs are identified and the requirement for 

the provision of standard, sustainable and cost-effective FRP solutions is highlighted.  It 

is concluded that although there have been significant advances in our knowledge of the 

behaviour of FRP-concrete structures, the timeframe in which FRPs will no longer be 

considered as new materials remains ambiguous. 
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Introduction 

 

For years the aerospace industry has used fibre composite sheets to form aircraft 

components but, to date, fibre reinforced polymers (FRPs) have not realised their 

potential in construction applications.  Contributing factors include the perceived 

expense and a lack of confidence on the part of clients and designers. 

 

As the initial cost of FRPs is higher than that of steel, it is clear that we need to look for 

applications where there are distinct advantages over conventional materials.  For 

example, FRPs are light-weight and, for the most part, very durable.  Hence, these 

materials fare well on the basis of lower construction and long-term maintenance costs.  

 

The process of instilling confidence in clients and designers is more difficult to 

evaluate.  Current world air traffic has reached a level of over 3 trillion passenger-

revenue kilometres per year and the replacement age of passenger aircraft is on average 

between 20-30 years [1].  In the Airbus A320, FRP composites make up approximately 

15% of the structure [2].  Growth in the use of high performance materials in the 

aerospace industry continues and an estimated 40% of an Airbus A380 will be 

manufactured using advanced composites and advanced metallic materials [3].  Yet the 

construction industry remains hesitant.  The ongoing development of codes and 

guidelines will help to encourage use.  However, even with the enormous potential of 

the technology, the integration of these novel materials into mainstream civil 

engineering remains a challenge.  

 

In the following, FRP material developments and general design issues will be 

discussed.  Reinforced and prestressed concrete applications, durability aspects and 

practical applications will be considered.  In addition, future research needs will be 

examined and a number of conclusions drawn. 

 

Material developments  

 

The term, fibre reinforced polymers describes a group of materials composed of organic 

or inorganic fibres embedded in a polymer matrix.  For many construction applications 
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a material with a high strength and stiffness is required.  Hence, the most commonly 

used reinforcing fibres are glass, aramid and carbon.  To date, matrix materials have 

been primarily thermoset resins such as polyesters, epoxies and vinylesters.  A review 

of these FRP material properties can be found elsewhere [4].  It is worth noting that 

FRPs are elastic and do not yield. 

 

There have been developments in the use of thermoplastic matrix materials such as 

polypropylene and nylon.  These are distinctly different from thermosets in that, when 

cured, thermosets are cross-linked and the reaction is irreversible.  In contrast, 

thermoplastics are not cross-linked and thus, the reaction process is reversible upon 

heating and cooling [5].  One advantage of thermoplastic resin matrices is that a greater 

speed of production can be realised.  For example, Winistoerfer [6] describes a 

pultrusion process for the manufacture of a unidirectional carbon fibre reinforced nylon 

tape where production speeds of 60 m/min were achieved.   

 

As sustainability issues become increasingly important, the recycling possibilities of 

thermoplastic matrices are also expected to be attractive.  Each year four billion plastic 

bottles enter the UK’s domestic waste system and the vast majority are not recycled; 

95% of these bottles are thermoplastic-based systems and could potentially be reused 

[7].  To address this issue, Cantwell investigated the properties of glass fibre/recycled 

polyethylene terephthalate (PET) laminates and concluded that recycled thermoplastics 

have significant potential as matrix materials [7].  A study on the use of recycled 

acrylonitrite butadiene styrene (ABS), a material obtained as the shredder residue from 

computer and monitor housings, came to a similar conclusion [8].  In the study, the 

performance of chopped glass fibre reinforced (25% by weight) virgin ABS, recycled 

ABS or virgin/recycled blended specimens was compared.  Even though the tensile 

capacity (in the region of 60 to 70 MPa) and the tensile stiffness (between 6.5 and 6.7 

GPa) of all the chopped fibre specimens were relatively low (at least for construction 

applications), the recycled polymers retained more than 85% of their virgin tensile, 

bending and compressive strength and stiffness properties.  Furthermore, the 

incorporation of unidirectional fibres would help to increase the tensile strength and 

stiffness of the recycled composite.   
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Although promising, the long-term behaviour of fibre reinforced thermoplastic 

composites in infrastructure remains an area for further investigation.  Particular 

concerns include the bond behaviour, the performance at high temperatures and creep 

(particularly above the glass transition temperature). 

 

Recent fibre initiatives include a new high modulus PBO fibre with a tensile capacity of 

5.8 GPa and a Young’s Modulus of 280 GPa [9].  However, at least at the moment, 

these fibres remain expensive.  Other investigations have considered the use of hybrid 

reinforcement.  Hybrid systems include rods with particular fibre geometries (e.g. fibres 

braided around an internal core), and/or a combination of fibre types with different 

strain capacities [10], [11].  The motivation for using hybrid systems is either to 

combine more expensive fibres with cheaper fibres and/or to obtain a bi-linear load 

deformation plot.  Although the load deformation plots of these hybrid systems often 

show an elastic portion and then a region where a relatively constant (or even 

increasing) load is sustained with large deformations, this behaviour does not 

necessarily indicate a ductile system.  The energy put into these fibres is stored 

elastically, rather than being absorbed plastically, and so the energy is released when the 

fibres break.  Hence, any system that relies on fibres rupturing at different stages, does 

not result in true ductility.  In addition, the price for this ‘pseudo-ductility’ tends to be a 

loss in efficiency.  

 

General design issues 

 

As the properties of FRPs are fundamentally different from those of steel, the 

underlying assumptions of conventional design methods based on the use of steel 

reinforcing materials must be re-examined.  

 

Three main aspects are highlighted in this section: code developments, the use of under-

or over-reinforced sections and the bond behaviour. 
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CODE DEVELOPMENTS 

 

There have been a number of key advances in the development of guidelines and codes 

for the use of FRP reinforcement for concrete.  Documents such as The Institution of 

Structural Engineers Interim Design Guidance [12], the Japanese Ministry of 

Construction Guidelines of FRP Reinforced Concrete Building Structures [13] and the 

American Concrete Institute ACI-440 document [14] are devoted to the use of passive 

FRP reinforcement for concrete.  The remit of the Fédération Internationale du Béton 

(fib) Task Group 9.3 includes both reinforced and prestressed concrete structures.  

Similarly, publications such as the Japanese Recommendation for Design and 

Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials 

[15], the Canadian Highway Bridge Design Code [16] and the proposed Canadian 

Standards Association document CSA-S806, Design and Construction of Building 

Components with Fibre Reinforced Polymers (publication date late 2001) [17] consider 

both reinforced and prestressed FRP reinforcement.  Such documents will do a great 

deal to encourage designers to consider advanced materials for concrete reinforcement. 

 

It is recognised that for the use of FRPs to grow, both standardisation and the ongoing 

development of design guidelines are essential.  This represents a particular challenge to 

code writers since the use of FRPs is a relatively recent initiative.  Furthermore, there 

remains a certain dichotomy in the code development for new technologies.  On one 

hand, codes by their nature tend to be conservative.  On the other hand, if FRPs are 

penalised with excessively stringent safety factors, the economics of using FRPs will be 

adversely affected.  It will be therefore important to re-evaluate early guidelines to 

reflect the knowledge and confidence gained through increasing standardisation, 

research, usage and applications. 

 

DESIGN PHILOSOPHY – TO UNDER OR OVER REINFORCE 

SECTIONS? 

 

Steel-reinforced and prestressed concrete structures are designed to be under-reinforced.  

With increasing load, the steel yields, large deformations ensue and finally failure is due 
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to concrete crushing.  The behaviour is ductile.  In the case of FRP reinforced structures, 

both the failure of the tendon and concrete crushing are brittle failure modes.   

 

It is likely that FRP reinforced structures will be designed to be over-reinforced.  The 

behaviour in the concrete is therefore critical and a greater understanding of the 

concrete compressive failure strain and the failure limits on the rotation at a concrete 

hinge is required.  Possible means of enhancing the strain capacity by confining the 

concrete compression zone will be addressed in a later section. 

 

BOND BEHAVIOUR 

 

When used as internal reinforcement for concrete, the bond at the interface between an 

FRP rod and concrete is of the utmost importance.  The bond behaviour will have a 

direct influence on both the serviceability and ultimate limit states.   

 

A significant amount of work has been devoted to this aspect and a comprehensive 

review paper was published in 1995 [18].  An important conclusion was that greater 

insight into the mechanism of FRP-concrete bond was necessary and that the bond 

mechanisms were likely to differ from those of steel.   

 

FRP manufacturers have tried to improve the bond by providing surface deformations in 

the outer resin layer, wrapping fibres around the rod surface, coating the rods with sand, 

using braiding techniques or forming twisted rods.  However, one of the big problems 

with the diversity and number of available FRP profiles is that the bond characteristics 

of each type of rod will be different.  Numerous possible bond slip laws for FRP 

reinforcement have been proposed [19] but it is clear that for any particular rod, the 

material properties, geometric configuration and surface profile will have a significant 

influence on the bond properties. 

 

Passive versus prestressed reinforcement  

 

In general, the Young’s modulus of commonly used FRPs is lower than that of steel.  

Hence, in concrete with passive FRP reinforcement, serviceability limits will often 
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control the design of a member.  Prestressed concrete takes greater advantage of the 

high strength and strain capacity of the FRP materials and represents a more efficient 

use of the technology [20].  Nevertheless, passive reinforcement may be cost-effective 

where aspects such as the light-weight or non-magnetic properties of FRPs are 

important, or for structures subjected to severe exposure conditions such as bridge decks 

in countries where deicing salts are used extensively.  

 

In the following, both reinforced and prestressed concrete applications will be 

considered with respect to the structural function of the FRP reinforcement.  

 

Passive reinforcement for concrete 

 

LONGITUDINAL TENSILE REINFORCEMENT  

 

As discussed, serviceability limits will often dictate the design of a reinforced concrete 

member with internal FRP tensile reinforcement.  In particular, deflection criteria and 

crack width limits are of importance. 

 

In ACI 318 (for concrete structures with conventional steel reinforcement), short-term 

deflections are calculated by considering Branson’s equation for an effective moment of 

inertia [21].  A similar approach has been used in the ACI 440 document (for concrete 

structures with FRP reinforcement) except that factors have been included in the 

formulae to account for the different modulus and also the different bond conditions of 

FRP bars [14].  Other approaches have considered sub-dividing the length of a beam 

into cracked and uncracked sections and then considering the relevant second moment 

of areas [22], [23]. 

 

The crack widths of FRP reinforced beams are likely to be greater than those of an 

equivalent steel reinforced structure. However, unlike steel, which is susceptible to 

corrosion, FRPs are durable.  Hence, a limit on the maximum crack width is more a case 

of aesthetics.  The Japanese Recommendation is that, for structures in public view 

(without steel reinforcement), the allowable crack width should be less than 0.5 mm 

[15].   
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The use of FRP reinforcement will potentially result in a smaller concrete contribution 

to the shear resistance of a beam.  The reasons are two-fold.  In the first instance, the 

dowel strength of FRPs can be relatively low: for GFRP it was estimated to be between 

7.5% and 14% of the ultimate tensile strength [24].  Secondly, since the FRP modulus 

of elasticity can also be fairly low, larger shear cracks are expected which will result in 

a reduction of the shear resistance due to aggregate interlock.  The concrete contribution 

to the shear capacity of the member would be reduced accordingly.  

 

SHEAR STIRRUPS 

 

FRPs stirrups can be formed in a number of ways.  The most common method for 

thermoset FRPs is to wrap the pultruded material in its uncured state around a mandrel 

with the requisite stirrup dimensions.  A continuous hoop spiral is then formed and, 

after curing, the spiral can be cut into individual stirrups.  Another means is to filament 

wind thermoset resin impregnated fibres around a mandrel but with a very steep fibre 

angle.  The box section is left to cure and the stirrups are formed by slicing the cured 

box into thin sections [25].  However, there have been problems with this method when 

aramid fibres are used as there is difficulty in cutting through the cured section.   

 

An alternative to these processes is the in-situ manufacture of stirrups using a method 

similar to resin transfer molding (RTM) [26].  In this system, a bundle of uni-

directional fibres are covered with a plastic tube.  The fibre bundle is flexible and can be 

formed into almost any shape.  Once the requisite shape is obtained, a thermoset resin is 

injected in the space between the fibres and the tube.  The resin cures and hardens to 

form a rigid stirrup.  However, it is not clear what the influence of the smooth outer tube 

will be on the performance of the stirrup as internal shear reinforcement for concrete.   

 

A further production method, for FRPs with a thermoplastic matrix, is to form a stirrup 

by locally heating a straight bar and bending the bar into the required shape [27].  The 

fibre alignment at the bends is an issue in both the RTM and thermoplastic systems. 

 

A loss of efficiency when using FRP stirrups has been observed due to the stress 

concentrations in the corners of the stirrups.  This reduction appears to be a function of 
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the ratio of the bend radius to bar diameter.  An equation based on a regression analysis 

of results including carbon, aramid and glass fibre specimens suggests that for r/d ratios 

of 3, 5 and 7 tensile strengths of approximately 45%, 55% and 65% that of the straight 

tensile strengths would be achieved.  However, it is noted that the fibre type, resin 

material and bending method will all affect the results [15].  These factors were further 

highlighted where it was found that for a bent bar to achieve 50% of the tensile 

capacity, a minimum r/d ratio of 4 was required for GFRP stirrups and one type of 

CFRP stirrup whilst an r/d ratio of at least 7 was required for another type of CFRP 

stirrup [28].  Again, differences in the fibre alignment at the bends would be a 

contributing factor. 

 

A further issue is the appropriate analysis of reinforced concrete beams with FRP 

stirrups.  Since the materials are elastic, the strain in the stirrup is important and 

traditional plastic methods such as the truss analogy are not valid.  Nevertheless, to date, 

the analysis methods proposed for code implementation tend to be based on the truss 

analogy.  However, in the equation for the stirrup contribution, the steel yield stress is 

replaced with the strain in the FRP multiplied by the Young’s Modulus of the FRP 

material.  For example, the strain in the FRP stirrup is limited to 0.0025 in the IstructE 

guidelines [12] or 0.002 in ACI 440 (although there is a further limit on the stress in the 

stirrup to ensure premature failure in the bend portion does not occur) [14].  

 

One of the few existing analysis methods that considers the actual average stresses and 

strains in reinforced concrete is the Modified Compression Field Theory [29].  Although 

this theory is only applicable for cross-sections away from disturbed regions, it has been 

found to give good predictions for the shear behaviour of beams with internal FRP 

reinforcement [30], [31].  

 

LONGITUDINAL COMPRESSION REINFORCEMENT 

 

Kobayashi and Fujisaki found that the compressive capacities of carbon, aramid and 

glass FRPs were approximately 30-50%, 10% and 30-40% of the tensile strengths 

respectively [32].  Therefore, in many cases, it is unlikely that the use of FRPs in 

compression will be a viable application of these materials.  Indeed the ACI 440 
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recommendations suggest that the strength of FRP rods in compression should be 

ignored [14].  Nevertheless, if an engineer seeks to design a structural member solely 

with FRP reinforcement, or when load reversals are expected, there may be cases where 

the FRP is required to carry compressive forces. 

 

CONFINING REINFORCEMENT  

 

As discussed, the behaviour of the concrete in the compressive zone is of the utmost 

importance if structures with FRP reinforcement are designed to be over-reinforced.  If 

the concrete is confined in the compressive zone then a more ductile failure can be 

achieved (see Figure 1).   

 

It has been shown that by including FRP spirals in concrete compression specimens, an 

enhancement of the concrete compressive strain capacity can be realised [33], [34].  

The enhancement is a function of the pitch, geometry, diameter and stiffness of the 

spiral. 

 

The concept was applied in the design of a cable stayed footbridge in Denmark (see 

Figure 2).  The Herning Footbridge deck was reinforced partly with CFRP and partly 

with stainless steel reinforcement.  In addition, the deck was prestressed with unbonded 

prestressed CFRP tendons and the horizontal component of the CFRP stay cable forces.  

The CFRP reinforced section of deck was designed to be over-reinforced and additional 

CFRP stirrups were placed in the compression zone to provide confinement to the 

concrete.  Significant compressive strains and rotations would therefore be expected 

prior to failure due to concrete crushing [35]. 

 

Other applications for FRP confining reinforcement would be hoop ties in columns [36] 

and for sustaining bursting stresses that are prevalent in anchorage zones in prestressed 

concrete [37].  
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2-DIMENSIONAL GRID REINFORCEMENT FOR SLABS 

 

Matthys and Taerwe tested a number of concrete slabs with 2-dimensional FRP grid 

reinforcement in one-way bending [38].  They found that in order to ensure an adequate 

stiffness for deflection control, higher reinforcement ratios and/or section depths were 

required.  For the most part, deflection control was more critical than crack control but, 

as would be expected, the cracking was influenced by the bond characteristics of the 

CFRP grid.   

 

For FRP grid-reinforced slabs with a similar strength to that of a steel-reinforced 

reference slab, the punching load was lower.  However, when an FRP-reinforced slab 

was designed to have a similar cracked stiffness to that of the reference steel-reinforced 

slabs (as will be necessary for serviceability reasons), the punching shear resistance was 

comparable [39].  Again, the bond behaviour was important. 

 

The fibre placement at the joints is a further consideration and CFRP grid joints with a 

woven pattern, a cross ply arrangement or a combined layout (a mix of cross ply layers 

and layers placed to form a cruciform geometry where the fibre tows did not cross 

through the joint) have been investigated [40].  The fibre orientation at the joints 

resulted in different joint stiffnesses and led to differences in the deflection behaviour of 

concrete slabs reinforced with FRP grids. 

 

OTHER STRUCTURAL FORMS 

 

The use of profiled FRPs to function as combined stay-in place formwork and 

reinforcement has been considered.  Circular FRP tubes have been proposed to act 

jointly as formwork and confining reinforcement for columns [41], [42] and standard 

pultruded double T-sections with a continuous base have been tested for use as 

formwork/reinforcement for beams [43]. 
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Prestressed longitudinal reinforcement for concrete 

 

Prestress cables can be in the form of FRP tendons or fibre ropes. FRP tendons have 

been used both as bonded or unbonded tendons whereas fibre ropes are used solely as 

unbonded internal or external stressed tensile elements.  

 

PRETENSIONED AND POST-TENSIONED TENDONS; GENERAL 

CONSIDERATIONS  

 

One issue in the use of post-tensioned tendons is the anchorage.  Stress concentrations 

in the anchorage can lead to premature failure.  It is therefore important to consider not 

only the capacity of a tendon but also the load rating of the actual tendon with 

anchorage system. At the moment, many of the tendon anchorages tend to be 

proprietary and a particular system is used for a particular type of prestress tendon.   

Typical anchorage systems include cast or mechanical wedging systems.  In the case of 

the former, it is likely that the tendon would be cut to length and the anchorages 

attached to the tendon prior to delivery to site.  An overview of some of the available 

anchorage systems for FRP tendons can be found in a paper on ground anchors [44].  A 

system for anchoring aramid fibre ropes has also been described elsewhere [45].  

 

Pretensioned internal tendons have the advantage that the long-term anchorage is 

provided through the bond between the FRP tendon and concrete.  However, as 

discussed earlier, the bond mechanisms are potentially different from those of steel and 

are dependent on the FRP and the surface profile.  This was highlighted in an 

investigation of the transfer bond stresses of small diameter (approximately 4 mm) 

braided and spiral wound aramid FRP bars [46].  Based on the experimental results, the 

inferred bond shear stress of the braided bar was a maximum at the beam end and 

decreased over a length of 515 mm (although a distance of less than 200 mm was 

required to transfer 95% of the force).  In contrast, the spiral wound bar seemed to 

exhibit a locking behaviour and indeed the predicted bond stress increased over a 

distance of approximately 50 mm.  The long-term integrity of the bond is important and 

again the relevant values for the particular tendon must be considered.  
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Creep rupture is a cumulative damage effect and is a function of the sustained stress 

during the lifetime of the structure.  The time to creep rupture is a function of the initial 

stress, the type of fibre and matrix, the alkaline environment and the temperature [47].  

GFRP is particularly susceptible to deterioration under high stress levels and alkaline 

environments and is therefore not recommended for use in pretensioned or cement 

based grouted post-tensioned applications [16].  

 

INTERNAL BONDED PRESTRESSED TENDONS FOR CONCRETE 

 

The bond between the tendon and concrete will have significant effects on the 

behaviour of a FRP prestressed concrete beam.  When a tendon is fully bonded there 

will be a strain concentration in the section of tendon that spans a crack.  If the FRP 

tendon has a high bond strength then only limited debonding will occur on either side of 

the crack location.  As the crack displacement takes place over a short length of tendon, 

high tendon stresses develop and only limited rotations can occur before the tendon will 

snap.  There is thus a high ultimate moment capacity, but a low rotational capacity.   

 

The other extreme is to use unbonded tendons.  Large rotations can occur at crack 

locations but, since the tendon is unbonded, only a few cracks form in the concrete.  The 

beam is therefore predisposed to a failure in the concrete due to the large rotations that 

occur at a limited number of concrete hinges.  Such beams exhibit large rotations but a 

low ultimate moment capacity.   

 

The alternative is to use tendons that are partially bonded to the concrete. Partial 

bonding allows for some bond breakdown on either side of a crack and enables a 

designer to optimise both the ultimate load and the rotation capacity requirements. The 

principle was demonstrated by testing in flexure a number of small scale pretensioned 

concrete beams with aramid FRP tendons [48].  Beams with fully bonded, unbonded or 

partially bonded tendons were considered.  Partial bonding was achieved by either using 

tendons that were intermittently bonded and unbonded along the length of the tendon 

(partial bond 1) or by using tendons with a limited bond capacity (partial bond 2).  The 

study showed that by carefully designing the bond parameters, beams with both a high 

rotation capacity and a high moment capacity can be obtained (see Figure 3).   
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The importance of bond between a tendon and concrete was further highlighted in an 

investigation of the influence of combining unbonded CFRP tendons with passive 

stainless steel reinforcement [49] and also in one of the few studies on continuous 

beams [50].  In the latter study, Maissen tested a two-span continuous beam with 

prestressed CFRP tendons and the behaviour was compared with that of a similar beam 

with a steel tendon.  The passive reinforcement in the hinge regions was the same in 

both cases and the ultimate capacity of the CFRP and steel tendons similar.  It was 

noted that the CFRP beam exhibited higher rotations and a higher ultimate load capacity 

than the steel prestressed beam.  A key factor was that, in the CFRP beam, the bond 

between the CFRP wires and the grout was rather weak.  This enabled some debonding 

to take place at crack locations.  In addition, since there was a significant strain capacity 

in excess of the initial prestress, failure did not occur immediately after the formation of 

the first hinge.  Hence, although there were fewer cracks than in the steel prestressed 

beam, quasi-elastic hinges formed and large loads and rotations were achieved.   

 

When using stressed FRP tensile reinforcement, the contribution of the tendon to the 

shear resistance of a beam through dowel action is an issue.  As the tendons are highly 

anisotropic, there is potentially a propensity for the tendon to rupture at an inclined 

crack.  Combined shear and tensile stresses may reduce the component of force that is 

available for carrying tensile stress and this should be considered in design [51].  

 

A system has been proposed where CFRP tendons with a relatively low prestress level 

are cast into concrete prisms and then used as precast, pretensioned reinforcing elements 

[52].  The prestressed prisms are cast into rectangular beam sections and used as tensile 

reinforcement.  Beams containing 42 42 2350 mm long prisms prestressed to a level of 

13.5 MPa exhibited smaller deflections and crack widths than those of equivalent beams 

with passive CFRP reinforcement (at a load of approximately 40% of ultimate, the 

deflections were four times smaller and the crack widths three times smaller).  A further 

advantage is that the prisms can be pre-fabricated.  However, whether the prisms will 

prove feasible for longer tendon lengths is questionable as handling and installation 

difficulties may arise  
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EXTERNAL UNBONDED PRESTRESSED TENDONS FOR CONCRETE 

 

The corrosion of the steel tendons plagued early attempts at external prestressing.  In 

particular, smoke from steam locomotives corroded the bars of the first externally steel 

prestressed concrete bridge (Dischinger’s bridge at Aue, 1936) [53].  Protection of 

external steel tendons remains a challenge and the excellent durability characteristics of 

non-metallic tendons will be an asset.  Furthermore, as the tendons are external to the 

structure, the monitoring and testing of the tendons is greatly facilitated.   

 

Aramid fibre ropes have been used in both new construction and also to upgrade 

existing structures [54].  A study by Leung considered beams with the novel 

combination of external prestressed aramid fibre ropes and internal FRP spiral 

confinement hoops in the compression zone [33].  

 

A further innovative post-tensioning system has been proposed by Winistoerfer where 

layers of thin carbon-nylon tape are wrapped around pin anchors [6].  The outer-most 

tape layer is fusion bonded (nylon is a thermoplastic) to the next outer-most layer but 

the inner layers remain non-laminated.  In this way, the through thickness stress 

concentrations that are prevalent in the bends of laminated sections (see section on shear 

stirrups) are reduced.  Furthermore, as the tendon forms a closed loop, the tendon 

anchorage system is self-contained. 

 

Durability 

 

The long-term durability of FRPs remains a difficult issue to address. The design life of 

a typical civil engineering structure is between 50-100 years, yet the use of FRPs in 

construction is a relatively recent initiative.  Thus, only a limited amount of long-term 

data exists.   

 

Researchers have proposed carrying out accelerated tests to extrapolate long-term data 

from short-term test results [55].  In a typical accelerated test, the materials are 

subjected to elevated temperatures and/or highly alkaline solutions and the time to 

failure is monitored.  These relatively short tests are then used to infer the lifetime of the 
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material.  Although accelerated tests can produce valuable results, there is a concern 

that they do not always accurately reflect the environment of the materials under service 

conditions.  In particular, the actual deterioration mechanisms may differ from those 

prevalent in the accelerated tests.  Kinloch [56] aptly highlights the possible 

contradiction (albeit when referring to the accelerated testing of adhesives) by posing 

the question, When did boiling an egg ever produce a chicken? 

 

Fibre composites tend to be more durable than bare fibres.  For example, Uomoto [57] 

found that after the immersion of bare carbon, aramid and glass fibres in a NaOH 

solution at 40  C for 120 days, the fibre strength retention was 95%, 92% and 15 % 

respectively.  Similar tests on 6 mm round CFRP, AFRP and GFRP rods showed a 

strength retention of 100%, 98% and 29% respectively.  However, if we rely on the 

resin to protect the fibres and to act as a load transfer medium, then the durability of the 

resin also takes on great importance.  Tests by Benmokrane et al showed that the 

durability of GFRP bars with a vinylester resin was much better than that of a bar with a 

polyester matrix [58].  Another study determined that polyester resin was unsuitable for 

long-term stressed concrete applications [59].  

 

Serious concerns have been raised about the suitability of GFRP in alkali environments 

such as concrete e.g. [57], [60].  Even bars of alkali resistant (AR) glass fibres in either 

vinylester or polyester matrices have been found to deteriorate when subjected to 

alkaline conditions [61].  After the immersion of the AR bars in an alkaline solution 

(ph12) of Ca(OH)2 at 25 C for 6 months, strength losses of 20.8% for the 10 mm 

polyester bars and 12.7% for the 10 mm vinylester bars were recorded.  Higher losses 

were noted at higher temperatures.  Bars were also embedded in concrete beams and 

subjected to a deicing salt solution for a period of two years.  When tested in flexure, 

the losses were 29.5% and 31% for the 10 mm AR polyester and vinylester bars 

respectively.   

 

Some authors e.g. [59], [62] have suggested GFRP can be suitable for use as internal 

reinforcement for concrete (with appropriate safety factors) but this remains a moot 

point.  One innovative way to mitigate the exposure of the glass fibres to an alkaline 

environment is to use a non-alkaline cement material [63]. 
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Cracking of concrete may occur due to thermal incompatibilities between certain FRP 

rods and concrete.  The longitudinal thermal expansion coefficients for aramid, carbon 

and glass are around –6  10
-6

 / C, 0 / C, 10  10
-6

 / C respectively [15].  However, 

the transverse coefficient of thermal expansion can much higher.  Matthys et al carried 

out a study of thermal cracking of AFRP bars in concrete and found that an increased 

cover was required to mitigate this effect [64].  A later study by Sen et al considered 

both thermal and moisture effects and suggested that the moisture uptake of the fibre 

and matrix was the more critical factor [65].  The research showed that the high 

moisture absorption limit for AFRP made the material particularly susceptible to 

inducing detrimental cracking in concrete. 

 

A great deal of research is being carried out on durability issues and in 1998 a 

conference devoted to the Durability of Fiber Reinforced Polymer (FRP) Composites 

for Construction was held in Sherbrooke, Canada.  The conference papers covered a 

wide range of topics (some of which have been referred to in this section) and included 

a general overview of research that considered the resistance of glass, aramid and 

carbon fibres to alkalis, water and UV effects [66]. Aspects such as possible bond 

deterioration, freeze-thaw behaviour, performance at high temperatures and long-term 

deflections are also important.  A further review paper on durability issues can be found 

elsewhere [67]. 

 

It appears that differences in the test methods, resins, fibre properties, fibre coatings, 

fibre layout and manufacturing processes will all influence the measured durability 

characteristics.  There is an urgent need to quantify these influences in order to obtain 

results that are reliable, repeatable and consistent.   

 

Applications 

 

A summary of a number of recent applications in Europe, Japan, USA and Canada has 

been highlighted in special journal issues devoted to advanced composite materials.  

Readers are referred to a recent Structural Engineering International issue on advanced 

materials [68] and annual issues of Concrete International under the heading of FRP 
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Around the World [69] and Fiber Reinforced Polymer Reinforcement [70].  

Applications discussed range from the use of CFRP tendons as bridge cables in 

Switzerland to CFRP shear stirrups in bridge decks in Canada [68], from carbon fibre 

prestressed piles in the USA to GFRP shotcrete reinforcement for underground 

petroleum storage facilities in Japan [69] and from GFRP reinforced barrier walls in 

Canada to bridge beams with internal CFRP prestressed tendons in the USA [70]. 

 

Future considerations/Research needs 

 

There is an increasing focus on quantifying the economics and cost/benefit aspects of 

FRP reinforcing systems e.g. [71].  Savings in terms of construction, installation and 

long-term maintenance costs are expected to offset a higher initial cost.  However, many 

projects are tendered on a lowest first-cost basis and a low priority is given to 

maintaining a structure throughout the design lifetime.  A further obstacle is that 

savings in items such as long-term maintenance are difficult to calculate and heavily 

dependent on assumed interest rates.  

 

With a greater use of FRPs it is expected that economies of scale will contribute to 

reducing the cost of the materials.  The establishment of optimal supply chains will also 

play a role in the overall economics.  There is an additional question regarding whether 

it is more important to establish the market share for FRPs rather than each 

manufacturer focussing on their individual product.  This aspect is connected to a 

growing awareness of the need for standardisation within the FRP market.  At the 

moment, each particular company produces and markets their particular product.  

However, there can be great variations in parameters such as the FRP constituent 

materials and manufacturing methods which hinders the extrapolation of one set of test 

results to another product [72].  

 

Sustainable development is of paramount importance and the energy requirements in the 

production of the constituent materials, the manufacture and installation of the FRP 

reinforcement and ultimately the disposal of the materials will be an issue.  In using 

FRPs we are seeking to provide long-term solutions, thus methods of ascertaining the 

condition (or for that matter even the location!) of FRP bars embedded in concrete are 
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required.  Structural monitoring systems where fibre-optic Bragg gratings are attached 

to FRP tendons may provide long-term data on the in-situ performance of FRP 

reinforcement [73].  However, these systems rely on continuous monitoring and are not 

widespread. 

 

Technology transfer between industries will be beneficial and there is much to be 

gained in learning from the experience in the marine, offshore and aerospace industries.   

 

FRPs are reaching a critical stage of development.  As with any innovation, there are 

still questions to be answered.  Furthermore, it is wrong to advocate FRPs as the only 

viable reinforcing material for concrete.  There will be applications where FRPs provide 

a superior solution but equally there will be cases where other materials are more 

appropriate.  The foundations for the widespread implementation of FRPs already exist; 

all that remains is the necessary vision to implement the technology. 
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Figure 1 – Schematic diagram of compressive stress-strain curves for confined and 
unconfined concrete 
 
 

 
 
Figure 2 – Photo of Herning Footbridge (Courtesy of COWI Consulting 
Engineers) 
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Figure 3 – Influence of bond on load-deflection behaviour 
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