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Abstract 

 
Evaluating Artificial Intelligence in Breast Cancer Screening  

Dr Sarah Elizabeth Hickman 

 

This thesis evaluates the application and performance of artificial intelligence (AI) in breast cancer 

screening.  

Breast cancer screening is conducted on a population scale using mammographic imaging for the 

earlier detection of breast cancer and has been shown to reduce mortality. A shortage of trained 

radiologists, as well as the demands of double reading, mean an approach to alleviate pressures 

within the breast screening workflow is sought. In addition, interval cancers occur at an estimated 

rate of 3.7/1000 women screened in the UK, thus methods to improve the sensitivity of screening 

and detect cancers earlier are also needed. Advances in AI over the past decade have demonstrated 

comparable performance to human readers and could provide a method for an adapted screening 

workflow to improve both efficiency and efficacy of screening. However, the 2021 National 

Screening Committee (NSC) report concluded that there was insufficient evidence to support the 

adoption of AI into the UK breast screening programme.  

This thesis aims to fill the gaps in evidence highlighted in the NSC report for the performance of AI 

algorithms within a UK breast cancer screening population, as well as explore the various potential 

workflow deployment approaches of AI in the screening programme.  

I start by conducting a systematic review and meta-analysis of the current literature investigating the 

performance of stand-alone AI applications in breast cancer screening for detection and diagnosis as 

well as triage approaches. I then describe the creation of a large scale independent medical imaging 

database which is used in the studies throughout this thesis. The remainder of the thesis describes 

the results of three retrospective studies evaluating three different commercial AI algorithms. The 

first study assesses the ability of AI to detect interval cancers at the previous screen. The second 

study investigates the performance of AI as a stand-alone screen reader. The third study evaluates 

the proportion of cases identified for both high sensitivity rule out and high specificity rule in triage, 

as well as the proportion of cancers missed at these thresholds.  

Overall the results of this thesis will inform discussions around the use of AI in the UK breast 

screening programme as well as the design of future prospective trials.  
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Chapter 1 – Introduction   

1.1 Breast cancer  

1.1.1 Breast cancer overview 

Breast cancer is the most common malignancy diagnosed in women with 2.3 million new diagnoses 

globally each year1. Approximately 1 in every 8 women will be diagnosed with breast cancer in their 

lifetime, such that it accounts for 15.2% of all new cancers diagnosed in the UK, with 45,000 women 

diagnosed each year2,3. It is the leading cause of cancer related death amongst women as well as the 

fifth leading cause of cancer death world-wide, equating to 685,000 deaths in 20201,3–5. Risk factors 

for the development of breast cancer include; female sex, age, lifestyle (e.g. alcohol and smoking), 

family history, genetic mutations (e.g. BReast CAncer gene (BRCA)), increased breast density, history 

of breast disease, hormone exposure and expression, and radiation exposure 1,6,7. Breast cancer can 

be detected through two routes. The first is through symptomatic presentation where a woman 

presents with a painless lump, skin changes or nipple discharge1. The second route is asymptomatic 

detection as part of a screening programme using imaging, most commonly mammography, leading 

to the earlier detection of cancer before the onset of symptoms3.   

Breast cancer is a heterogeneous disease with a diverse range of morphological imaging features as 

well as biological and molecular tumour sub-types8. The complexity of this disease means a targeted 

response at each stage of the care pathway, in which imaging has key role, is required to achieve the 

best outcomes. Survival rates continue to improve with advances in screening, imaging techniques 

for diagnosis and monitoring as well as the development of novel and targeted therapies for 

treatment9. The five year survival rate is around 85.0% in the UK, however it is only 26.2% for 

women diagnosed with stage four disease10,11. The early detection of breast cancer, through 

methods such as mammographic screening is proven to reduce both morbidity and mortality1,7,12,13.  

1.1.2 Breast cancer classification 

Breast cancer can be characterised by histopathological type, grade, immunohistochemical profile 

and gene expression, as well as anatomical extent / staging3,7. Correct classification allows for the 

prediction of response to treatment as well as overall prognostication of survival, by using tools such 

as Adjuvant online, PREDICT and the Nottingham prognostic index, thus, allowing for the targeted 

selection of treatment which can range from radiotherapy, chemotherapy, hormone therapy, 

targeted biological therapy, and surgery3,14. 
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Most breast cancers arise from the epithelial lining of the terminal ductal lobular unit (TDLU) and are 

invasive cancers, either invasive ductal carcinoma or invasive lobular carcinoma, Figure 1-1. Invasive 

carcinomas extend beyond the basement membrane into the surrounding tissues and can 

potentially metastasise. Invasive ductal carcinomas (IDC), or as it is otherwise known invasive 

carcinoma of no special type (NST), is the most common type (70-80%) of breast cancer, whereas 5-

15% of breast cancers are invasive lobular carcinomas14–17. The precursor to invasive carcinoma is 

non-invasive carcinoma where the cancer cells have not spread beyond the originating structure and 

remain ‘in-situ’3,6. 

Figure 1-1 – Breast cancer anatomy. Showing the different anatomical and histological structures, as well as 
the types of cancers that arise from these structures. DCIS: Ductal carcinoma in situ, LCIS: Lobular carcinoma in 
situ, TDLU: Terminal ductal lobular unit. Adapted from Harbeck et al3 and Feng et al6. 

 
Histological type classification is made using the tumour cell type, architectural features and the 

immunohistochemical profile14. The World Health Organization (WHO) classification of tumours 

series fifth edition, published in 2019, divides breast cancers into the following two main histological 

type categories; invasive breast carcinoma of NST and invasive breast carcinomas of special type18,19. 

Invasive breast carcinoma of NST includes; pleomorphic, oncocytic, lipid-rich, glycogen-rich clear cell, 

sebaceous, osteoclast-like stromal giant cells, or carcinomas with choriocarcinomatous or melanotic 

patterns, as well as medullary features which are considered tumour-infiltrating lymphocyte rich 

invasive breast carcinoma of NST (TIL-rich IBC-NST). Invasive breast carcinomas of special type 

includes: lobular, tubular, cribriform, metaplastic, apocrine, mucinous, papillary, and 

micropapillary18,20. Tumours can also be of mixed type, such that they contain multiple subtypes and 
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the proportion of each should be reported16. Histological type alone does not provide enough 

information regarding the true heterogeneity seen in breast cancers and thus the additional 

classification categories are used for prognostication to determine treatments and predict survival.  

Tumour grade provides information regarding the degree of differentiation of the tumour cells from 

normal breast epithelial cells17. The histological grading system used by breast pathologists is the 

Nottingham Grading System (NGS), which was developed by Elston and Ellis and modified from the 

Scarff-Bloom Richardson grading system14,21. The NGS grading system assesses three components of 

tumour morphology (in invasive cancers only): tubule formation, nuclear pleomorphism, and mitotic 

count17. Each component is scored from 1-3 and adding these scores together gives the total count 

which relates to the overall grade (grade 1 = scores 3-5, grade 2 = scores 6-7, and grade 3 = scores 8-

9)22. Grade 3 tumours are often larger and grow more rapidly leading to a worse prognosis17.  

St. Gallen International Expert Consensus molecular subtype definitions, classify breast cancer into 

five categories based on results of immunohistochemistry for the following markers: oestrogen 

receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 receptor (HER2 / 

ERBB2) as well as Ki-67 which is a proliferation marker protein3,23–26. The five categories are outlined 

in Table 1-1. Luminal A is the most common subtype and has the best prognosis out of the five 

categories.  

Subtype ER PR HER2 Ki-67 Prognosis 
Luminal A + + - Low Good 

Luminal B (HER2 -) 
Luminal B (HER2 +) 

+ 
+ 

+ 
+ 

- 
+ 

High 
High 

Intermediate 
Poor 

Triple negative (Basal) - - - High Poor 
HER2-enriched - - + Moderate-High Poor 

Normal-like + + - Low Intermediate 
Table 1-1 – Breast cancer molecular subtypes classification. +: Positive, - : Negative. Adapted from Dai et al23, 
Harbeck et al3 and Feng et al6.  

 
An anatomical staging classification system published by the American Joint Committee on Cancer 

(AJCC) uses the extent of the primary tumour (Tis to T4), regional lymph nodes (N0 to N3) and 

metastases (M0 or M1), resulting in a TMN status which relates to the five stage categories (0-IV)27. 

The eighth edition, published in 2017 of the AJCC classification system incorporated changes to 

account for the prognostic stage, which includes; tumour grade using the NGS, biomarkers, and 

multigene panels (e.g. Oncotype DX)27–29. The incorporation of this prognostic information can result 

in a ‘stage migration’, such that triple negative cancers (ER -, PR -, HER2 -) or grade 3 cancers would 

be ‘upstaged’ and HER2 positive or grade 1 cancers would be ‘downstaged’.  

Future classification, using techniques such as next generation sequencing, will allow for the 

identification of additional breast cancer sub-types to further tailor treatment approaches30.  



 24 

1.2 Breast cancer screening   

1.2.1 Breast cancer screening programmes  

Population based screening programmes are designed around the ten Wilson and Jungner principles, 

published by the WHO in 1968 and subsequent modifications of these principles31. National 

screening programmes are conducted to identify certain diseases in an asymptomatic population, 

for earlier diagnosis and to facilitate prompt treatment32. Breast cancer screening aims to “maximise 

the success of treatment, reducing mortality from breast cancer”33. Most European countries as well 

as many countries across the globe have either a national or regional population breast cancer 

screening programme24. Though it is recognised that these types of organised screening 

programmes are limited to high-income countries34. The ‘Marmot review’ 2012 and recent meta-

analyses of randomised control trials estimate a 15-30% reduction in mortality due to 

mammographic screening35,36. A study published by Duffy et al in 2020 found in a Swedish screening 

population a 34% reduction in 10-year mortality through participation in screening which was 

independent to changes in treatment37. However, the risk of harm from screening such as false 

positives resulting in subsequent increase in patient anxiety, overdiagnosis (estimated at 11-19%), 

and overtreatment, whilst difficult to truly gauge, needs to be balanced against the benefits of 

screening36,38,39. 

This research thesis primarily considers the UK National Health Service Breast Screening Programme 

(NHSBSP). Following the recommendations of the ‘Forrest Report’ 1986, the NHSBSP commenced in 

1988, with women aged 50-64 years old screened every three years with a one view mediolateral 

oblique (MLO) screen film mammogram read by a single reader40–42. The NHSBSP has evolved over 

time and now uses two-view full field digital mammograms (FFDM) as well as double reading of each 

mammogram. Women aged 50-70 years old are invited to attend every three years at one of the 

seventy-five screening units across the UK43. Women can also self-refer after the age of 70 years old 

and continue with screening every three years. This deviates from the current European Commission 

Initiative on Breast Cancer (ECIBC) guidelines, where screening is recommended for women age 50-

69 years old every two years, women aged 70-74 every three years and every two to three years for 

women aged 45-49 years old38,44,45. Guidance from the American College of Radiology (ACR) and 

Society of Breast Imaging (SBI) differs too. ACR SBI recommend annual mammography is to start at 

the age of 40 years old46. A summary of the variations between different screening programmes and 

committee recommendations are shown in Table 1-2.  
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 Interval Age Modality 
UK43 Triennial 50-70+ FFDM 

Sweden47 Biennial 40-74 FFDM 
Netherlands48 Biennial 50-75 FFDM 

Norway49 Biennial 50-69 FFDM 

Australia50 
Opt-in 40-49 FFDM 

Biennial 50-74 FFDM 
Opt-in 74+ FFDM 

China51 

Annual-Triennial 20-39 Examination 
(self-exam monthly) 

Annual-Biennial 
Annual 40-69 

FFDM + *USS 
Examination 

(self-exam monthly) 

Annual 70+ Examination 
(self-exam monthly) 

    

ECIBC44,45 
Biennial / Triennial 45-49 FFDM 

Biennial 50-69 FFDM 
Triennial 70-74 FFDM 

ACR46 Annual 40+ FFDM 

USPSTF52 Individual decision 40-49 FFDM 
Biennial 50-74 FFDM 

CTFPHC53 Shared decision 40-49 FFDM 
Biennial / Triennial 50-74 FFDM 

Table 1-2 – Breast cancer screening programmes and committee recommendations. Detailing the 
recommendations for the frequency, age and modality of screening from different screening programmes and 
screening committee recommendations. Adapted from Clift et al39. ACR: American College of Radiology, 
CTFPHC: Canadian Task Force on Preventive Health Care, ECIBC: European Commission Initiative on Breast 
Cancer (ECIBC), FFDM: Full field digital mammography, USS: Ultrasound, USPSTF: US Preventive Services Task 
Force. *In patients with dense breasts only.  

 
Approximately 2.5 million women aged 50-70 years old are invited for screening as part of the 

NHSBSP each year, with 1.8 million women attending screening (~71% uptake) and 66,000 (~3.7%) 

being recalled to attend an assessment clinic33,54. The NHSBSP has set a standard to ensure the 

number of women recalled to assessment is not too high through maximising specificity. The recall 

rate is set at an acceptable level of 10% for prevalent (first round of screening) and 7% for incident 

(not first round of screening) screens, as well as an achievable level of 7% for prevalent and 5% for 

incident screens33. Each year ~15,000 cancers are diagnosed through screening (0.8% women 

screened) and the NHSBSP has set an age standardised detection ratio for invasive cancer of ≥ 1.00 

for acceptable and ≥ 1.40 for achievable, in women age 50-70 years old33,54. The screening 

programme aims to detect clinically significant cancers to reduce mortality, such that it is important 

screening programmes detect small cancers, which are defined by the NHSBSP as an invasive cancer 

< 15mm. The NHSBSP standard is set at an age standardised detection ratio of ≥ 1.00 for acceptable 
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and ≥ 1.40 for achievable regarding the detection of small invasive cancers. Approximately 51.9% of 

invasive cancers detected through screening are small33,54.  

In the NHSBSP each mammogram is read on 5-megapixel monitors by two expert readers55. Every 

reader must report 5,000 mammograms each year and also undertake the PERsonal perFORmance 

in Mammographic Screening (PERFORMS) assessment to monitor reader standards56. Double 

reading can either be blinded (independent) such that the readers are unable to see the other 

reader’s decision or unblinded (dependent) so that the readers are able to see each other’s decision. 

Where there is discordance between readers arbitration / consensus reading takes place by a third 

reader or group of readers. Double reading is shown to pick up an additional 9% of cancers 

compared to single reading55,57. However, there is a national shortage of screen readers in the UK 

with this shortage expected to increase over the next five years58. 

A women’s life time risk of developing breast cancer is ~11%59. In the UK breast screening is 

currently adapted for those with a high risk (> 30% lifetime risk) of breast cancer, where women are 

offered annual magnetic resonance imaging (MRI) and / or mammography depending on their age38. 

Moderate risk (17-30% lifetime risk) women are also offered annual mammography59. Further risk 

adaptation using breast density, polygenic risk scores as well as risk prediction models is currently 

being investigated and discussed later in this chapter.  

1.2.2 Mammography  

A mammogram is an image of the breast acquired using low energy x-rays and mammography is the 

primary imaging technique used world-wide for breast cancer screening. The process of x-ray 

production in mammography is as follows; electrons are released from a filament via a process of 

thermionic emission and are then accelerated away from the negatively charged cathode across the 

vacuum tube towards the positively charged anode. The tube voltage is the potential difference 

between the anode and cathode which causes the acceleration of the electrons across the tube 

towards the anode when they are emitted60. The electrons then hit the rotating anode target (which 

can be made out of a number of materials e.g. tungsten, molybdenum, or rhodium) which causes 

the emission of x-rays through Bremsstrahlung radiation61. The anode is rotated to dissipate the heat 

generated by the bombardment of electrons. These x-rays are then directed towards the patient via 

a window in the lead shielding. Low and high energy photons are removed via a filter as well as the 

beam is focused using a collimator, as shown in Figure 1-2. The x-ray beam is attenuated differently 

by different tissues in the body giving contrast in the resulting image. X-rays are attenuated to a 

greater degree by denser fibroglandular tissue than by fatty tissue such that dense fibroglandular 

tissue appears whiter in the x-ray image. The same is true of many lesions and microcalcifications 

which is why mammography is an appropriate imaging modality for screening. The target / filter 
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combination and the exposure factors (tube voltage, tube current and exposure time) can be 

adjusted to increase the image quality whilst maintaining an acceptable level of dose for each 

woman. The recommended dose per mammogram according to the National Diagnostic Reference 

Levels (NRLs) is 2.5 mGy / mean glandular dose62. 

Figure 1-2 – Production of x-rays diagram. Showing the different components of an x-ray machine for 
mammography. Adapted from Radiology Cafe60.  

 
A mammogram is made up of the craniocaudal (CC) and MLO views of the right and left breast, 

creating a two-view mammogram63. Mammography is held to high technical quality standards to 

ensure the images are of adequate quality to allow for interpretation and minimising errors64. These 

standards include ensuring there are no skin folds, blurring or artefacts included in the image as well 

as ensuring that the whole breast is included and the nipple is in profile in at least one view. 

Methods to ensure the whole breast is included entail using the posterior nipple line (PNL) and 

making sure the inframammary angle is included in the MLO view, as shown in Figure 1-3. Common 

mammographic signs of cancer are a; irregular ill-defined mass, spiculated mass, microlobulated 

mass, asymmetry, fine linear pleomorphic microcalcification, and architectural distortion. 
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Figure 1-3 – Example of a two-view full field digital mammogram (FFDM). Image quality markers are shown 
for the posterior nipple line, inframammary angle and the nipple in profile. CC: craniocaudal, MLO: 
mediolateral oblique, PNL: posterior nipple line.  

 
1.2.3 Mammographic breast density 

Mammographic breast density is a radiographic representation of fibroglandular tissue (fibrous 

connective tissue (stroma), and glandular tissue (terminal ductal lobular units)) to fatty tissue 

proportion in the breast, where density is represented by areas that are radiopaque38,65. Variations 

in density between individuals occur due to genetic predisposition, ethnicity as well as due to 

changes in weight, nutrition, hormone exposure / expression, and age66,67. It is not only the amount 

and distribution, but also the heterogeneity, and texture of the fibroglandular tissue that is 

important68. Breast density can be measured from mammographic images using visual methods 

(ACR Breast Imaging-Reporting and Data System (BI-RADS) 5th edition lexicon (2013) / Visual 

Analogue Scale (VAS) / Wolfe classification (1976) / Boyd classification (1995) / Tabar classification 

(1997)), which are subjective, thus there is inter and intra-reader variability in reporting68–71. When 

using the BI-RADS lexicon the greatest discordance is reported in the middle two categories (b and 

c)72,73. The greatest proportion of the screening women’s mammographic breast density is also 

represented in these middle two categories of BI-RADS breast density (b and c)74,75. Four different 

FFDM images demonstrating the four BI-RADS breast density categories are shown in Figure 1-4.  
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Figure 1-4 – Examples of breast imaging-reporting and data system (BI-RADS) 5th edition mammographic 
breast density categories. a) Almost entirely fatty, b) scattered areas of fibroglandular density, c) 
heterogeneously dense, d) extremely dense.  

 
Alternatively, breast density can be measured using semi-automated or fully automated systems, 

which provide a more consistent output76. Planimetry, semi-automated thresholding techniques 

(Cumulus and Medena) and fully automated systems (VolparaTM and QuantraTM) can be used with 

varying levels of human interaction to provide quantitative measures of mammographic breast 

density68,77. Fully automated systems, such as VolparaTM and QuantraTM, provide density as either an 

area or volumetric breast density (VBD) measure. These quantitative measures can then be mapped 

into the BI-RADS density categories. Previous studies have shown variable agreement between 

automated systems and radiologists density assessment (k = 0.46-0.57)78. In addition, these 

measurements can be affected by positioning, radiographic factors such as kVp (tube voltage) and 

mAs (tube current and exposure time) as well as the incorporation of nonstandard views38,76. Most 

automated systems require raw (“for processing”) FFDM data, which is not kept routinely due to 

storage space requirements. A raw image is proportional to the x-ray attenuation detector signal. 

The raw FFDM is then processed to create “for presentation” images by the mammography vendors 

algorithm68. New deep learning (DL) density systems have started to use the processed FFDM images 

to calculate mammographic breast density79–82. Lehman et al demonstrated good agreement (k = 

0.85; 95% CI 0.84-0.86) and acceptance (90%) with radiologists when implementing a new DL density 

algorithm in clinical practice, reviewing > 10,000 mammograms82,83. When this model was then 

externally validated there was a high rate of agreement by both academic (94.9%) and community 

(90.7%) radiologists84.  

Increased breast density reduces the sensitivity of mammography as overlapping fibroglandular 

tissue can obscure the detection of a breast cancer (known as “masking”). Sensitivity reduces from 

75.0-98.0% to 30.4-66.0% from the highest to lowest BI-RADS categories (a to d)85,86. Breast density 
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is also an independent risk factor for developing breast cancer87,88. A systematic review and meta-

analysis of forty-two studies demonstrated the relative risk of developing breast cancer was 2.9 and 

4.6 in women with a Percentage Mammographic Density (PMD) of 50-74% and ≥ 75% respectively, 

relative to women with PMD < 5%87,89. VAS (OR 4.4 (95% CI 2.7-7.0)), Densitas % (OR 2.17 (95% CI 

1.41-3.33)), Volpara % (OR 2.42 (95% CI 1.56-3.78)) and BI-RADS (OR 2.3 (95% CI 1.9-2.8)) measures 

have shown to be strong predictors of breast cancer risk78,79.  

Legislation passed by the USA Congress in 2019 requires the mandatory reporting of density as part 

of the USA breast screening programme90,91. Women classified as having dense breasts (BI-RADS c or 

d) in USA screening are recommended to discuss with their doctor if they should undergo additional 

imaging, as a cancer could have potentially been obscured by the dense breast tissue38. In 2022 the 

European Society of Breast Imaging (EUSOBI) recommended that women “should be informed about 

their breast density” and that women aged 50-70 with “extremely dense breasts” should be offered 

screening breast MRI “every 2 to 4 years”92.  

1.2.4 Risk prediction  

Opportunities for risk adapted screening by using different measures for risk stratification as well as 

different imaging modalities or screening frequencies for cancer detection are currently under 

investigation38,93. Methods for risk stratification include using breast density alone, which involves 

triaging the women in the highest density categories (c and d) for supplemental imaging with more 

sensitive imaging modalities (e.g. MRI or ultrasound)94. Alternatively mammographic breast density 

can be incorporated into in to risk prediction models (e.g. Tyrer-Cuzick (TC)) to increase the 

predictive power; TC + BI-RADS OR 1.55 (95% CI 1.33-1.80), TC + Volpara VBD OR 1.40 (95% CI 1.21-

1.61) vs TC alone 1.27 (95% CI 1.14-1.40))95,96. Yala et al demonstrated their DL model (Mirai), which 

uses the mammographic imaging data only and no additional risk prediction fields, achieved a one-

year cancer risk prediction C-index of 0.75-0.84 at seven separate sites in four continents when used 

alone compared to the TC C-index of 0.62, which was tested on data from only one USA site93. 

Furthermore, using the data from one USA site and thresholding Mirai at the TC specificity of 85.2%, 

Mirai achieved a sensitivity of 39.7% (95% CI 32.9%-46.5%) compared to TC which achieved a 

sensitivity of 22.9% (95% CI 15.9%-29.6%)93. However, Mirai was both developed and tested only on 

Hologic mammograms and so further generalisability testing using different mammographic vendors 

is required to account for variability of post-processing93.  

Polygenic risk scores can be calculated through sequencing a pre-defined panel of single nucleotide 

polymorphisms97. The incorporation of polygenic risk scores into risk prediction models (e.g. TC or 

Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA)) 

resulted in improved risk stratification accuracy (area under the receiver operating characteristic 
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curve (AUROC) 0.691 to 0.697)98, however it can also lead to overestimation of risk in certain risk 

categories (e.g. high risk expected to observed number of cases (E/O) 1.54 (0.81-2.29)).  

A collaborative approach using breast density, polygenic risk scores, and risk prediction models / DL 

models is likely to further increase the accuracy of screening risk statification38,94,96,97,99. With 

increasing accuracy the feasibility and cost-effectiveness of risk stratified screening also improves38.  

1.2.5 Interval cancers  

Interval cancers (ICs) are defined as those occurring between the screening round (“a breast cancer 

diagnosed in the interval between scheduled screening episodes in women who have been screened 

and issued with a normal screening result”)38,100,101 . An estimated 6,000 ICs occur in the NHSBSP 

each year with the average time to diagnosis of 644 days, such that the highest proportions are 

diagnosed in the second (42.0%) and third years (39.0%) after screening102,103. Updated Public Health 

England (PHE) guidance in 2017, requires all ICs to be reviewed in order to ascertain whether or not 

a cancer had been missed at the original screen read33. A score is applied (1) normal / benign 

(77.0%), (2) uncertain (16.0%), and (3) suspicious (7.0%), with a ‘duty of candour’ requiring all 

patients to be informed of a suspicious finding33. ICs are often of higher grade and lesion size 

compared to screen detected cancers and therefore have a worse prognosis103. Increased 

mammographic breast density is associated with increased risk of IC development101,104–106. ICs are a 

key measure of the performance of a screening programme and the NHSBSP has set an acceptable IC 

rate target of 0.65/ per 1000 women screened in the first 12 months, 1.40/ per 1000 12-24 months 

and 1.65/ per 1000 24-36 months, which has increased to reflect the changes in incidence 

overtime33,100,101. Therefore, in total a rate of 3.7/ per 1000 ICs is expected in the NHSBSP.  

 
1.3 Artificial intelligence in breast cancer screening  

1.3.1 Introduction to artificial intelligence   

Alan Turing first proposed the question, “Can machines think?”, in 1950107. The term Artificial 

Intelligence (AI) is thought to have first been used in 1956 at the Dartmouth Summer Research 

Project on Artificial Intelligence108. Progression in the field of AI has recently accelerated due to the 

availability of large datasets, sufficient computing power as well as a growing interest and funding to 

develop algorithms to automate everyday tasks. AI is an umbrella term for Machine Learning (ML) 

and DL disciplines as show in Figure 1-5. AI is the theory and development of computer systems able 

to perform tasks normally requiring human intelligence, such as visual perception and decision-

making. AI is strictly defined by ISO/IEC TR 24028:2020 as the “capability of an engineered system to 

acquire, process and apply knowledge and skills”109,110. ML is a ‘sub-field’ of AI, where algorithms 

learn and improve autonomously through the provision of data, without ‘explicit programming’111. 
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Examples of traditional ML techniques include; support vector machines, k nearest neighbours, 

principal component analysis, and decision trees. DL is a subset of ML that uses multiple algorithms 

working in a neural network architecture with many layers to extract high level features from data 

and carry out hierarchical learning112.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5 – Artificial intelligence (AI) hierarchy of terms. Image used with permission of the National Breast 
Imaging Academy e-LfH programme. 

 
DL has been applied to computer vision tasks using Convolutional Neural Networks (CNNs) achieving 

good performance. The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is seen as 

the catalyst for this innovation where the AlexNet algorithm reduced the error rate in an image 

recognition task to 15.3%, improving the error rate compared to the team that came second, whose 

achieved an error rate was 26.2%113. CNN algorithms are increasingly being applied to every day 

image recognition tasks such as self-driving cars, facial recognition, and automated text translation. 

A typical CNN consists of multiple layers. The first layer is the input layer. Next there are the 

convolutional, detector, pooling and fully connected layers, which are the hidden layers. Lastly, 

there is the output layer. In the input layer an image is provided to the algorithm. Next in the 

convolution layers a kernel passes over the image to extract high level features111. An activation 

function can then be applied in the detector layer, such as a rectified linear unit (ReLU) where all 

negative values in the feature map are replaced with a zero-value adding nonlinearity to the data. 

The feature map is then passed to the pooling operation (e.g. max pooling, sum pooling or average 

pooling) for feature reduction / down sampling, providing translation invariance. This map is then 

passed to the fully connected layer where a classifier function (e.g. softmax activation function) is 

applied. There can be hundreds of hidden layers in a CNN112,114. The output from the algorithm is 

then provided in the output layer as a classification result. Iterative adjustments of the algorithm 
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take place through a loss error function and back-propagation processes in training. An overview of a 

CNN architecture is shown in Figure 1-6. 

 

Figure 1-6 – Overview of the architecture of a Convolutional Neural Network (CNN). Adapted from National 
Breast Imaging Academy – Computer-Aided Detection (CAD) and Artificial Intelligence (AI) module.  

 
Radiology is a digitally advanced field of medicine as well as being a mainly visual-based specialty, 

with ~45 million radiological images reported each year in England (the most common of which is 

plain film x-rays with ~1.86 million reported annually)115. Thus, radiological image interpretation is a 

prime candidate for the application of DL to aid in automating radiology tasks. CNNs have been used 

in detection, diagnosis, and segmentation-based tasks in radiology111. Medical images, such as 

mammograms, do differ from everyday images. They are of higher resolution, for example 

mammograms contain between 2600 x 2000 pixels, and the area to be detected (disease) in medical 

images is a relatively small area of the total image. Moreover, mammograms are more complex than 

natural images due to the high variability in patterns, the difference in features and task 

requirements, making this a challenging task116,117. Imaging data for training is becoming increasingly 

available, such as the ImageNet database which contains over 15 million labelled natural images, 

however there is still a limitation in the availability of ethically approved curated medical image 

datasets118. To overcome this limitation algorithms can first be pre-trained on datasets such as the 

ImageNet, or other publicly available imaging datasets, and then re-trained on representative 

medical imaging data through transfer learning. Algorithm training can take place by supervised, 

semi-supervised, or unsupervised approaches requiring varying levels of data annotation. In 

supervised learning, detailed lesion level annotations and labels are provided, whereas in 

unsupervised learning no annotations or labels are provided and the algorithm itself identifies the 

pertinent image features from which to classify the image. Semi-supervised learning provides a 
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hybrid approach111,114. Such labels also provide the “ground truth” when testing algorithms 

performance. This ground truth is seen as the absolute outcome of a case, and can consist of expert 

radiologist annotation, time follow-up or histopathological outcome.  

van Leeuwen et al reported that there are over 100 Conformité Européenne (CE) marked AI products 

for a radiological application in 2021, however only 36 had peer-review evidence, and of the 

available publications 49% of studies were performed “independently from the vendor”109. Kim et al 

reported that only 6% of published studies relating to the evaluation of AI algorithms were 

performed by external validation, such that the AI was tested on data from a separate institution 

(geographical) or time period (temporal) from the training data119. Thus, further unbiased evidence 

provided from large external studies conducted independently of the commercial vendor are needed 

across the radiology AI field.  

1.3.2 History of computer aided detection systems in breast cancer screening  

Research into the use of Computer Aided Detection (CAD), also known as CADe systems, in medical 

imaging commenced in the 1960s, with the first CAD mammography system (Hologic R2 (Image 

Checker M1000)) receiving FDA clearance in 1998120. Traditional CAD systems, based on hand-

crafted features, provided prompts for radiologist such as a D symbol for calcification and a * symbol 

for mass to mark areas of increased suspicion in order to reduce reader oversight, acting as a 

“second-look”. These initial systems had high sensitivity for calcifications (98.0-100%) and could also 

detect masses (88.0-92.0% sensitivity), but few could detect features of asymmetry or 

distortion121,122. A high number of false positive prompts, due to low specificity, resulted in reader 

fatigue, distraction, and loss in confidence of CAD systems. Thus, overall performance when using a 

CAD system is dependent on the decision-making process of the reader, the accuracy of the system, 

and the interaction between the two123,124. There is also the possibility of over reliance on the system 

leading to a loss in synergy between the computer system and human reader required to maintain a 

high level of sensitivity, as lesions could be overlooked if not marked125. In 2008 between 74.0-91.4% 

of USA mammograms were read using a CAD based system in conjunction with a single reader, and 

an updated survey in 2016 found 92.3% of screening centres used CAD systems126,127. However, the 

adoption of CAD systems has been limited across other screening programmes in the world, 

including the NHSBSP, due to the effect of increasing recall rates and thus deemed lack of cost 

effectiveness128. Lehman et al investigated the use of CAD in the USA screening system, Breast 

Cancer Surveillance Consortium, between 2003 and 2009 and demonstrated a reduction in 

sensitivity when using CAD, from 87.3% without CAD to 85.3% with CAD as well as an increase in 

recall rate when 495,818 mammograms were interpreted with CAD and 129,807 without CAD, by 

271 radiologists at 66 facilities125. A pooled analysis of ten studies (2001-2008), Taylor et al (2008), 
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demonstrated that single reading plus CAD vs single reading resulted in a significant increase in recall 

rates (OR 1.10, 95% CI 1.09 - 1.12, P < 0.001), and that double reading with consensus / arbitration 

resulted in a significant improvement in recall rates compared to single reading plus CAD129. CAD 

systems demonstrated a varied performance for cancer detection, and in the pooled analysis as part 

of the review, no statistically significant difference in cancer detection rate was found (OR 1.04, 95% 

CI 0.96-1.13, p = 0.35)129. CAD systems also face the same reduction in sensitivity due to increased 

mammographic density that human readers incur and CAD prompts have been shown to increase 

overall reading time by approximately 10-20 seconds130–132.  

1.3.3 Deep Learning applications to breast cancer screening   

The traditional CAD systems are now being superseded by DL CAD algorithms which have improved 

sensitivity and specificity for the detection of cancers133. The majority of DL algorithms with Federal 

Drug Agency (FDA) or CE mark approval are for clinical decision support system (CDSS) applications, 

similar to traditional CAD systems where the algorithm supports the reader by providing prompt 

suggestion to locate the cancer. However, there are multiple other applications of the latest DL CAD 

systems for mammography interpretation to aid readers and improve the efficiency and efficacy of 

breast screening, which are shown in Figure 1-7. These include the use of DL CAD systems as stand-

alone readers for DL CAD triage (CADt), to prioritise work lists and pre-populate image reports for 

normal studies to improve programme efficiency. Studies have shown that these DL CADt systems 

can operate as stand-alone readers to both rule out a high proportion of normal cases (17.0%-

60.0%) whilst missing a small proportion of cancer cases (0.0-7.0%), as well as rule in a small 

proportion of cases (1.0-5.0%) highly suspicious of cancer (13.0%-32.0% next round (NRCs) and ICs) 

for further assessment134,135. In addition, DL CAD detection and diagnosis (CADe+x) algorithms could 

operate as stand-alone systems to replace a reader in a double reading system. This approach has 

the potential to improve both efficiency as well as efficacy, as these systems could replace one 

reader as well as reduce the rate of ICs. A study by Lång et al found 11.2% of ICs could be detected at 

the screening mammogram when the DL CADe+x algorithm was set at a 4.0% recall rate. As outlined 

earlier in this chapter (section 1.2.3 and 1.2.4), DL density algorithms could potentially be used to 

risk stratify the population for adapted screening and the application of supplemental imaging. 

These DL algorithms could either be used alone or in combination with other risk information, such 

as mammographic breast density, polygenic risk scores and other risk prediction models.  
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Figure 1-7 – Application of Deep Learning (DL) Computer Aided Detection (CAD) algorithms to breast cancer 
screening. Image used with permission of the National Breast Imaging Academy e-LfH programme.  

 
The UK National Screening Committee (NSC) report 2021 on the “Use of artificial intelligence for 

mammographic image analysis in breast cancer screening – Rapid review and evidence map” did 

“not recommend using AI in the NHSBSP”136. This was due to: a lack of evidence relating the 

accuracy of AI in clinical practice, the varying reported performance of AI in different settings, the 

lack of UK based evidence, lack of quality evidence, and lack of evidence pertaining to AI 

performance for different types of breast cancer as well as performance in different groups of 

women (e.g. “different ethnic groups”)136. All studies included in the report were of high risk of bias 

using the QUADAS-2 tool for assessment and the authors recommended the importance of external 

validation using geographically different datasets as well as pre-specified test thresholds to limit 

bias. All evidence provided in the report was retrospective and the report highlighted that a number 

of studies used enriched cancer cohorts for testing. Enriched cohorts consist of an increased cancer 

proportion which is “atypical of a screening population”, this was defined in the report as a cancer 

percentage of more than 3.0%. A repeat review was recommended for 1-3 years’ time from the date 

of publication to review the latest evidence.  

The 2016 “Digital Mammography Dialogue on Reverse Engineering Assessment and Methods” (DM 

DREAM) challenge, although not conducted using UK data, did provide an external validation study 

on a large representative cohort, from two different countries and screening programmes, for the 

testing of multiple DL algorithms137. The DREAM challenge included 126 different teams, who each 

developed their own DL CADe+x algorithm for the prediction of cancer development within the next 

12 months. The curated datasets consisted of 144,231 and 166,578 screening FFDMs, with prior 
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exams and clinical information available, from a USA (Kaiser Permanente Washington (KPW)) and 

Swedish (Karolinska Institute (KI)) screening site respectively137. 1.1% of the mammograms in the 

KPW and KI datasets were cancers and no image level annotations were available. Each image was 

assigned a binary image label ground truth from histopathology results (cancer) or follow-up of ≥ 12 

months (normal)133. The KPW dataset as well as other publicly available datasets were used for 

model training. The top twenty algorithms were evaluated using the KI dataset. The top performing 

algorithm on the KPW dataset also achieved the top performance on the KI dataset demonstrating 

the generalisability of this algorithm. No challenge algorithm outperformed reader performance 

when the threshold was set at single reader sensitivity (77.1%), with the top performing algorithm 

achieving a specificity of 88.0% compared to the single reader specificity of 96.7%. Hybridisation of 

the best performing algorithms into the challenge ensemble method, achieved a specificity of 92.5% 

(at the single reader sensitivity (77.1%))137.  

It is important to identify the limitations of a DL CAD algorithms to enable the radiologist to be 

vigilant prior to implementation in clinical workflow. The latest systems are still susceptible to the 

limitations that both traditional CAD and human readers face, such as the reduction in sensitivity 

with increasing breast density138. The true impact of these latest systems on reading time, recall 

rates, biopsy rates, cost effectiveness and cancer detection are unknown and prospective 

evaluations are required to fully assess the clinical impact of DL CAD algorithms on breast cancer 

screening targets. It is also pertinent that DL CAD algorithms do not exacerbate the potential harms 

of screening such as overdiagnosis, overtreatment and false positive recalls to assessment which 

lead to patient anxiety. Lastly, the gaps in evidence highlighted by the UK NSC report 2021 are 

required to be addressed before DL CAD algorithms are introduced into the NHSBSP.  

 

1.4 Thesis aims and outline  

The focus of this thesis is the evaluation of AI algorithms (specifically DL CAD algorithms) for breast 

cancer screening applications. The developments in DL means that AI algorithms have been created 

for numerous mammography screen reading tasks. However, more evidence is needed to determine 

the best way to evaluate and monitor these AI algorithms to ensure acceptable performance for 

deployment into breast screening programmes as well as which applications of AI algorithms are 

most suitable for breast cancer screening in different countries. In this thesis, three different 

commercial AI algorithms are evaluated using a large retrospective dataset from two NHSBSP sites 

for three different proposed AI algorithm applications in breast cancer screening. For consistency 

each AI algorithm is assigned a unique identifier (DL-ID) for this thesis which remains consistent 

throughout all chapters.  
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The main aims of this thesis are:  

1. To investigate the performance of AI algorithms for stand-alone reader applications in breast 

cancer screening, through a systematic review and meta-analysis, to determine the current 

performance achieved, the datasets used in testing, as well as gaps in reported evidence.  

2. To develop a representative UK screening mammographic imaging database that can be 

used for retrospective benchmark testing of AI algorithms. 

3. To investigate the performance of three AI algorithms for the detection of ICs in breast 

cancer screening. 

4. To benchmark the performance of three AI algorithms to be used as a stand-alone reader as 

well as in collaboration with human readers for breast cancer screening.  

5. To evaluate the performance of three AI algorithms to triage low priority cases that do not 

require human reading as well as high priority cases that can bypass reading to enhanced 

assessment, whilst maintaining an acceptable sensitivity and specificity.  

Chapter 1 provided an overview of breast cancer and breast cancer screening as well as the main 

image screening technique of mammography. In addition, the history of CAD systems in breast 

cancer screening programmes and the advances in DL methods that underpin the latest AI algorithm 

approaches to breast cancer screening were discussed. 

Chapter 2 covers the ethical, legal and regulatory challenges surrounding the use of AI algorithms in 

breast cancer screening and the development of medical imaging databases required to evaluate AI 

algorithm performance.  

Chapter 3 is a systematic review and meta-analysis of the stand-alone applications of AI algorithms 

in breast cancer screening. The diagnostic performances of different AI algorithms are compared and 

the databases used for testing, study methodology and reporting quality are evaluated.  

Chapter 4 outlines the construction and contents of a mammographic medical imaging database 

which is subsequently used in Chapters 5-7 for testing the performance of different AI algorithms.  

Chapter 5 presents the results from an experiment to evaluate the performance of AI algorithms for 

IC detection. This chapter also investigates the use of different thresholding methods to identify the 

operating point for each AI algorithm.  

Chapter 6 details the results from an experiment to investigate the performance of AI algorithms for 

detection and diagnosis as a stand-alone reader compared to human reader performance. It also 

evaluates the sub-groups of cancers detected by each AI algorithm.  

Chapter 7 describes the results from an experiment to use AI algorithms in a triage-based task for 

both normal and highly suspicious case identification. In addition, the cancers missed by each 

algorithm are reviewed. 
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Chapter 8 summarises the research presented in this thesis and its implications. This is followed by a 

section on the recommended direction of future work. 
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Chapter 2 – Adoption of artificial intelligence in breast imaging: 

evaluation, ethical constraints and limitations 

 

This chapter explores how artificial intelligence (AI) is being applied and evaluated in breast imaging. 

Key ethical and legal challenges at the algorithm, data and clinical levels which need to be 

considered for the implementation of AI in everyday breast screening are discussed. The barriers and 

limitations currently facing this field from a technical, clinical and governance perspective are also 

outlined.  

Contents of this chapter have been published in British Journal of Cancer139.  

 

2.1 Introduction 

In breast oncology, a multidisciplinary team approach is essential, with imaging playing a key role in 

the care pathway for the screening, diagnosis, staging, monitoring and follow-up of malignancies. 

Novel imaging techniques of increasing complexity have resulted in longer reporting times. This, 

coupled with a shortage of radiologists and exponential growth in imaging requests, has led to an 

increasing demand on radiology departments. Recently, there has been a huge interest in using 

Artificial Intelligence (AI) for breast imaging to address these pressures, in a speciality where timing 

is critical and resources are finite140.  

The term AI covers both machine learning and deep learning141. It is the advances in deep learning 

for image interpretation that have resulted in the massive growth in interest for use in breast 

imaging112. AI applications can be broken down into two categories, Figure 2-1. 

Figure 2-1 – Broad and narrow artificial intelligence (AI) applications to breast imaging. 

 
The first category is “broad AI”, which lends itself to the administrative and organisational tasks 

within the imaging pathway. These systems can be used to replace repetitive and routine tasks such 

as appointment booking, contrast adjustment and image quality checks. The second category is 
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“narrow AI”, which covers computer-aided detection (CADe), diagnosis (CADx), and triaging worklists 

(CADt) as well as predicting treatment response and segmenting lesions112. These AI systems can be 

used as aids for clinicians or be used autonomously. Ultimately these AI solutions aim to improve the 

patient’s outcomes as well as the healthcare system’s efficiency. The latest advances in computer 

processing and the increased availability of data have been pivotal for developing AI-CAD (CADe and 

CADx) systems142,138.  

It is important to remain vigilant to the potential bias and ethical questions that arise when using 

this technology as well as the challenges of incorporating such systems into pre-existing 

workflows143,144. These overarching challenges need to be explored in order to facilitate discussion 

and drive engagement by clinicians, computer scientists, responsible national agencies and National 

Health Service (NHS) Trusts145.  

This article reviews how AI has been applied and evaluated using breast imaging as an exemplar. We 

then consider the ethical and legal challenges at the algorithm, data and clinical levels. Lastly, we 

discuss the barriers and limitations currently facing this field from a technical, clinical and 

governance perspective.  

 

2.2 Evaluation of artificial intelligence in breast imaging   

2.2.1 Retrospective evaluation  

Retrospective testing on internal or external datasets is essential when assessing new AI tools for 

clinical imaging142,146. An algorithm is often trained and tested on an internal dataset which has been 

divided into an 80:20 split146. This means that the training data is not used to test the algorithm 

otherwise this would result in bias and an overestimation in performance147. Ideally external 

datasets consisting of new unseen data which has not been used for algorithm development are 

used to ascertain the generalisability of an algorithm in different populations with images from 

different manufacturers (see Ethical and legal constraints – Algorithm level for more 

information)146,148. It is also important to distinguish between testing that is conducted internally (by 

the AI developers) and externally (by an independent institution). External testing can limit bias and 

also allow for the comparison of multiple algorithms with similar applications149.  

Data that is representative of the population, structured, annotated and ready to use is limited, 

existing in only a small number of institutions, Table 2-1150. New imaging portals and repositories, 

such as the Health Data Research Innovation Gateway, have been set-up to try to address these data 

gaps and are key to developing a data ecosystem to meet the demand151. Principles such as FAIR 

(Findability, Accessibility, Interoperability, and Reusability), aim to guide data extraction as well as 

long-term management and sharing, in order to obtain the “maximum benefit” from datasets152. 
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However, a balance must be found in this ecosystem between the implementation of FAIR principles 

and the often-strict controls put in place by Information Governance teams and ethics committees 

when creating imaging repositories.  

Dataset Country Year of 
studies 

Modality Number 
cases 

Number 
images 

The Mammographic Image Analysis 
Society Digital Mammogram 

Database 
(MIAS)153 

UK 1994 SF-MG 
 

161  
 

322 
 

Curated Breast Imaging Subset of 
the Digital Database for Screening 

Mammography 
(CBIS-DDSM)154  

USA  1999 
(updated 

2016) 

SF-MG 
 

1566 
 

10239  
 

Investigation of Serial Studies to 
Predict Your Therapeutic Response 

with Imaging and moLecular 
Analysis 

(ISPY1 (ACRIN 6657))155  

USA 2002-2006 MRI 222 386528 

InBreast156  Portugal  2008-2010 FFDM 115  410 
Cohort of Screen-Aged Women 

(CSAW)157 
Sweden 2008-2015 FFDM 499807  

 
>2000000 

The OPTIMAM Mammography 
Image Database 

(OMI-DB)150  

UK 2010-2019 FFDM 151403  
 

>2000000 

New York University Breast Cancer 
Screening Dataset 
(NYU BCSD v1.0)158 

USA 2010-2017 FFDM 141473  
 

1001093 

Breast Cancer Digital Repository 
(BCDR)159  

Portugal  NA SF-MG 
FFDM 

1010724  3703 
3612 

The Cancer Genome Atlas Breast 
Invasive Carcinoma  

(TCGA-BRCA)160 

USA NA MRI 
MG 

139 230167 

Table 2-1 – Datasets publicly and privately available for breast imaging. FFDM: Full Field Digital 
Mammography, MG: Mammography, MRI: Magnetic Resonance Imaging, NA: Not Available, SF: Screen Film. 

 
The performance of an algorithm can be compared against two outcomes, 1) the ground truth and 2) 

the radiologist’s performance146,147. The ground truth or “gold standard” is seen as the ‘absolute’ 

outcome of a case (for example cancer or no cancer) but variations of the ground truth between 

healthcare systems occur due to differences in standard of care guidelines, histopathology reporting 

criteria, imaging procedures conducted (e.g. use of Magnetic Resonance Imaging (MRI) versus 

ultrasound) and screening frequency (e.g. range from 12-36 months). The radiologist’s performance 

sets a “clinically relevant threshold” for AI performance to be compared against and is essential to 

understand the potential impact of using such systems in real-time workflows (for example double 

reading in the UK breast screening programme)148,161,162. However, in screening when using the 
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radiologists assessment as the gold standard, there is potential to introduce bias in favour of the 

radiologist, where only those patients recalled by the radiologist can be diagnosed by the AI. When 

trying to prove the superior performance of AI compared to radiologists, interval cancers need to be 

included in testing sets. Experienced radiologists’ reports should also be included to allow for the 

comparison against representative programme reader performance, and not just prove that the AI is 

superior to average or non-specialist performance. Algorithms need to meet or exceed these 

thresholds in order to show a potential benefit before their adoption into healthcare systems is 

considered.   

 
2.2.2 Prospective evaluation   

Whilst testing on retrospective datasets provides a ‘snapshot’ of possible performance, the nuances 

of medical pathways cannot be underestimated. Prospective testing in real-time is essential to fully 

understand the influence of AI on human performance and the interaction between the two142. 

There are few prospective studies on the use of AI in radiology, Table 2-2, with a recent systematic 

review only reporting one randomised trial registration and two non-randomised prospective studies 

in radiology163.  

AI Country Imaging 
modality 

Stage of care 
pathway 

Estimated 
completion 

Trial ID 
(ClinicalTrials.gov) 

Samsung  
(Seoul, South 

Korea) 
S-Detect™ 

China Ultrasound Diagnosis February 
2020 

NCT03887598 
 

Unknown  
 

China Mammography Detection & 
Diagnosis  

November 
2020 

NCT03708978  

Unknown  Russia Mammography  
(+ others) 

Detection December 
2020 

NCT04489992 

Unknown  China ABUS Screening August 2025 NCT04527510 
 

Kheiron  
(London, UK) 

Mia™ 

UK  
 

Mammography Screening  Unknown Unknown – part 
of the AI 

Award144,164 
Table 2-2 – Prospective studies for the use of artificial intelligence (AI) in breast imaging. ABUS: Automated 
Breast Ultrasound. 

 
To ensure the clarity of reporting results from these studies, pre-existing reporting standards have 

been adapted and include the Consolidated Standards of Reporting Trials-AI (CONSORT-AI), Standard 

Protocol Items: Recommendations for Interventional Trials-AI (SPIRIT-AI) and the Checklist for 

Artificial Intelligence in Medical Imaging (CLAIM)165–167. The Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis-Machine Learning (TRIPOD-ML) and 
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Standards for Reporting Diagnostic Accuracy Studies–AI (STARD-AI) are also currently under 

development, Table 2-3168,169.  

 Publication 
date 

Application Number of 
items 

Link 

CONSORT
-AI165 

2020 Randomised 
trials 

25 original  
14 new  

https://www.equator-
network.org/reporting-

guidelines/consort-artificial-intelligence/ 
SPIRIT 
-AI166 

2020 Clinical trial 
protocols 

51 original  
15 new 

https://www.equator-
network.org/reporting-guidelines/spirit-

artificial-intelligence/ 
CLAIM167 2020 AI studies in 

radiology 
42  https://pubs.rsna.org/doi/full/10.1148/r

yai.2020200029 
TRIPOD 
-ML168 

Pending Clinical 
prediction 

model 
evaluation 

- https://www.tripod-statement.org 

STARD 
-AI169 

Pending Diagnostic 
accuracy 
studies 

- - 

Table 2-3 – Reporting criteria adapted for artificial intelligence (AI) studies. 

 
Performance of AI is often measured in terms of sensitivity, specificity, area under the reciver 

operating characteristic curve (AUROC) and computation time (time taken to process data). Where 

AI is used by a radiologist, the effect on performance is measured in the same way (sensitivity, 

specificity, and AUROC) with the additional measure of reading time by the radiologist. The AUROC 

provides a summary estimate of diagnostic accuracy, taking into account both the sensitivity and 

specificity to demonstrate how well the algorithm can differentiate between cancer or not cancer 

across all thresholds170. It provides a measure between 0 and 1, where a higher score means a better 

classification146. However, the AUROC is subject to certain pitfalls. It is not “intuitive” to interpret 

clinically, and theoretically algorithms with different sensitivities and specificities can have the same 

AUROC170. Therefore, alternative measures such as “net benefit” have been proposed as well as 

routine reporting of sensitivity and specificity, which allow for direct clinical comparison170. Lastly, 

for both the algorithm alone and when used by the clinician, the effect on nationally reported 

standards (e.g. cancer detection rate, recall rates, tumour size and lymph node status) should be 

evaluated as part of prospective studies146.  

2.2.3 Key considerations for clinical evaluation    

Screening AI systems could be cost-effective by improving early detection of important “killer” 

cancers (higher grade) potentially improving long term survival. However, the substantial investment 

of AI development, IT infrastructure, and continuous monitoring need to be costed, therefore cost-

effectiveness requires careful evaluation147,171. The ease of integrating AI into pre-existing hospital 
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systems, such as radiology information systems and Picture Archiving and Communications Systems 

(PACS), health-records and administrative systems, is a another key consideration162,171. Wider 

measures for clinical evaluation to also include are patient acceptability and effect on uptake of 

screening programmes as well as the training required for radiologists to be able to use and 

interpret AI tools54.   

Continuous monitoring to ensure adherence to national standards needs to be in place to observe 

both static and adaptive (‘learning on the fly’) AI when used in real-time workflows (see Ethical and 

legal constraints – Algorithm level for more information)162,172.  Each hospital could have an 

infrastructure to evaluate and monitor algorithms, but this is unlikely to be feasible in many 

hospitals due to the data storage requirements and lack of technical expertise and resources to set 

up such an environment. A centralised testing system at designated centres using pre-set national 

standard thresholds for different AI algorithm applications, would be a more sustainable approach.  

As outlined above, the steps in the evaluation pathway of AI are clear, requiring retrospective, 

prospective and continuous real-time testing. However, the caveats of testing such as how to access 

suitable datasets and defining “clinically relevant thresholds” still need to be agreed. In the UK NHSX 

has set-up ‘AI Labs’ to begin conducting centralised and standardised testing procedures173,174. 

 

2.3 The breast imaging pathway and AI 

2.3.1 Screening 

AI has been used in radiology since the 1990’s with initial CADe tools in mammographic screening 

prompting readers to look again at areas of concern in the image128. More recent AI systems can 

now meet and exceed the performance of radiologists for stand-alone cancer detection in screening 

mammography, achieving a sensitivity from 0.562 to 0.819 with a specificity of 0.843 to 0.966 (set at 

first reader specificity)138,149. However, this is not the case for all national screening programmes137. 

In a retrospective international crowdsource competition, the performance of multiple algorithms 

was compared on a standardised test set from Sweden. An ensemble algorithm was built by 

concatenating the eight best individual performing algorithms, which was shown to outperform the 

top single algorithm, but not the clinicians performance137.   

In the UK 2.2 million mammograms are taken each year and read by two radiologists, putting a high 

demand on an already stretched workforce54,140. The majority of screening mammograms are 

normal54,175. A more efficient method is sought whilst maintaining current cancer detection and 

recall standards. AI can now reliably triage ‘normal’ mammograms (47% to 60%), which would mean 

that these would not need to be reviewed by two or possibly even one radiologist134,135. Whilst 

estimated to only miss up to 7% of cancers, the CADt algorithms could drastically improve the 
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efficiency of breast screening. However, questions remain around what an acceptable miss rate 

would be for algorithms when used in routine screening.  

AI tools previously used for mammography have been adapted for other screen imaging techniques 

such as Digital Breast Tomosynthesis (DBT), which has longer reading times that can be decreased by 

around 50% using AI176. MRI is used for the screening of high-risk women, particularly those with a 

familial risk of breast cancer or BRCA1/BRCA2 carriers. Deep learning algorithms can find visual 

patterns in images and have been used to detect and diagnose breast cancer to produce a fully 

automated MRI AI-CAD system177–179. 

2.3.2 Risk stratification  

Screening can be tailored according to a woman’s breast cancer risk. Risk factors for developing 

breast cancer include breast density, family history, lifestyle factors (e.g., alcohol and smoking), 

genetic mutations, hormone exposure and expression180,181. Breast cancers can also go undetected 

due to dense breast tissue obscuring the view of a cancer on a mammogram, called ‘Masking’68. AI 

density measures can provide quantitative scores or category scores such as BI-RADS, which can 

provide a more consistent interpretation than a radiologist68,182. It may be possible for the latest 

density tools to detect women who are at the highest risk of ‘masking’ and more likely to develop a 

cancer that could progress to later stage disease68. Automated breast density can also be 

incorporated into existing prediction models (BOADICEA and Tyrer-Cuzick) to improve performance 

and assist in the implementation of targeted screening as well as the use of supplemental imaging182. 

The ‘Measurement Challenge’ aims to compare automated density measures which have been 

shown to overcome the inconsistencies in human reporting as well as being able to predict breast 

cancer risk183. 

2.3.3 Monitoring and prognostication  

MRI is routinely used in the monitoring of response to neoadjuvant chemotherapy, with patients 

imaged before, during, and after treatment. Deep learning algorithms have been implemented to 

evaluate pathological complete response to chemotherapy using post-treatment MRI with an 

AUROC of 0.98184, which could affect the extent of post-treatment surgery, or potentially reduce the 

need for surgical excision at all. A number of studies have used deep learning to identify features 

from pre-treatment MRI that are predictive of response in an unsupervised fashion185–187. Early 

prediction of response to different types of chemotherapy could avoid unnecessary toxicity and cost 

from ineffective treatment as well as enable a more personalised approach to treatment. AI has also 

been used in prognostication to predict recurrence (Oncotype DX recurrence score) from MRI188. 

However, given the moderate accuracy of these techniques (0.77-0.93), further work is required 

before their integration into clinical practice.  
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The evidence base for the performance and possible applications of AI to breast imaging is rapidly 

evolving. Systems acting as stand-alone readers show promise in decreasing workload, whilst 

systems to predict treatment response could guide tailored treatment strategies. In addition, 

systems to identify those at greatest risk of a cancer being missed or developing cancer may aid in 

the application of a targeted screening approach.  

 

2.4 Ethical and legal constraints    

2.4.1 Guidance level   

The Department for Health and Social Care, and international collaborations such as the Global 

Partnership on Artificial Intelligence, have developed guidance for implementing digital technology 

including AI189. They highlight the need for oversight and continued patient involvement to guide the 

development of “human-centric” AI which is essential to maintain the trust of the public, and avoid a 

repeat of previous controversies such as inappropriate data sharing190–192.    

2.4.2 Algorithm level  

There is a danger of innate latent bias built into certain systems, especially if these have been 

developed on datasets that underrepresent certain populations (with a lack of diversity in age, 

ethnicity and socioeconomic background) and therefore lack the ability to generalise193. This could 

be further compounded by the limited diversity within the scientific workforce itself which under 

represents the “interests and needs of the population as a whole”194. Outcomes based on pre-

existing inequalities could be exacerbated by the skewed outcome being fed back into the algorithm, 

creating negative reinforcement, thus limiting the fairness of an algorithm193. This can lead to 

algorithmic decisions that amplify discrimination and health inequalities. The data used in testing 

should therefore encompass a representative relevant population and the components of the 

dataset used explicitly reported alongside the results. A recent paper provides an example of such 

documentation, where an AI-CAD mammography algorithm trained on data from South Korea, USA 

and UK primarily using data from GE machines, achieved the best performance compared to other 

algorithms (sensitivity (81.9%) at the reader specificity (96.6%)), when tested on data from Sweden 

on only Hologic machines, demonstrating generalisability149. Algorithms also have the ability to 

‘learn on the fly’, that over time become more biased due to ‘performance drift’, thus potentially 

limiting their generalisability172,194. ‘Learning on the fly’ could potentially be beneficial to adjust 

algorithms to the local systems in which they are being used but this will also require close 

observation through regular audits to monitor for detrimental ‘performance drift’147,162.  

Transparency around how an algorithm reaches a decision, its architecture and source code 

availability is often limited by intellectual property clauses to protect proprietary information174. The 
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opaqueness of an algorithm’s deduction can be clarified by using saliency maps, which highlight (e.g. 

heatmap) the part of the image which the algorithm has used to make its decision, ensuring that the 

algorithm is using at the correct part of the image to make its clinical deduction and not “noise” in 

the image such as a clip, artifact or label195. Initial checks built into the algorithm, ensuring the image 

is of sufficient technical quality from which to deduce an interpretation similar to the checks 

performed by radiologists, is also an important step for robust interpretation. A reliable algorithm 

providing consistent, clear and reproducible results, so as not to cause ambiguity in decision making, 

is key to improving confidence in these systems.   

2.4.3 Who controls the data? 

In the UK there is an understanding that NHS Trusts will govern, control and use patient data in an 

anonymised format to conduct research for patient benefit143,196. There is also an understanding that 

patient data will be protected and overseen by Information Governance teams at NHS Trusts144,173.  

Extracting data from the fragmented silos of the NHS remains a challenging task due to the lack of 

interoperability between systems197. Data relating to an individual’s health is defined as ‘special 

category’ data and requires additional procedures and safeguards including data minimisation, 

proportionality, and necessity198–200. Data from which an individual can be recognised is termed 

Personal Identifiable Data (PID). This data is often pseudonymised or de-identified for healthcare 

research to remove identifiers and replace them with a new random identifier (e.g., Trial ID), 

ensuring privacy is upheld201. 

Where consent from individuals for data use cannot be feasibly obtained, provisions are in place to 

obtain access to PID in order to create large datasets202. Regulation has emphasised the importance 

of Patient and Public Involvement (PPI) when using patient data for research, especially in the 

context of unconsented data use202. Feedback provided by PPI can be used to enhance the 

communication between the public and healthcare sector, particularly around the distribution of a 

data notification and objection mechanism174,202. Studies carried out by organisations such as the 

Welcome Trust show that the public acknowledge a lack of understanding and hesitancy regarding 

the uses of health data, particularly when data is shared with and accessed by commercial 

companies203. National data opt-outs, proposed as part of the Caldicott Review (2016), give patients 

the option for their data to not be processed204. Recently the National Data Guardian opened a 

consultation to revisit the seven Caldicott principles that guide the use of PID and to ensure that 

public ‘expectations’ should be considered when using confidential information205. However, 

additional steps need to be taken to inform and educate the public around data use in healthcare so 

they can be empowered to explore these options.  
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The expected economic trade-off within the NHS in terms of financial payment, shareholding 

position or fees for product procurement should be outlined as part of a national policies. Allowing 

for the potential benefits from sharing valuable NHS data when collaborating with the commercial 

sector to be realised147,189. It is important to ensure this benefit is fairly distributed across the whole 

of the NHS to avoid widening gaps in available resources at different Trusts145,197.  

Linked data across multiple fields such as imaging, genetic and clinical records are of increasing 

importance for the development of risk prediction models for both prognosis and treatment 

response. Higher accuracy has been achieved by algorithms when multiple data types are used in 

training to provide ‘rich’ risk factor information206. Conversely, an understanding of how much data 

is too much data is required. For example, linking genetics, demographics, home monitoring, smart 

watch data may mean data is no longer de-identified. In addition, it must be understood that even 

data collected in large quantities may still be unrepresentative due to a the lack of access to 

healthcare and ability to participate in research for different populations194.  

Data provenance, whilst currently not at the forefront of discussions, could become an increasingly 

tangled web to unwind. Individual Trust data that is currently being used for training algorithms 

could at the same time be incorporated into the development of centralised evaluation datasets, 

resulting in a concealed overlap. The ability to track data back to the source and see all of its uses 

since it left the source via a flag-based system is needed. However, such systems do not currently 

exist and would not be easy to integrate, let alone to apply to data which has already been 

processed.  

2.4.4 Clinical level     

Clinical acumen must not be lost. AI and clinicians must work in tandem so that if one system fails 

(e.g. AI) the safety-net of the other system (e.g. radiologists) is in place to avoid harm. However, 

when AI systems operate alongside clinicians there is a possibility of the clinician becoming over 

dependent and automation bias to occur145,193. In addition, radiologists might become distracted by 

prompts from AI, increasing reading time and potentially adversely affecting reader performance125.  

Where these systems are designed to act independently, human supervision via ‘pit-stop’ analysis of 

a select cohort of patients, in an audit like fashion, is essential in order to maintain patient safety. 

The logging and reporting of errors is a potential area of AI automation where human oversight 

required for the monitoring of AI will necessitate vast amounts of time and resources. Nonetheless 

in time automation might replace certain aspects of entire jobs. This is juxtaposed against the 

creation of jobs in the field of healthcare informatics, to create datasets and facilitate the 

incorporation of AI into hospitals174,191. A potential overarching benefit from automation could be 
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that more time is freed up for clinician interaction with patients and interventions such as image 

guided biopsies.  

A broader question exists around notifying patients when AI is used in making diagnostic and 

treatment decisions. Will a patient feel worse if a cancer is missed by an AI tool compared to a 

human reader? Another consideration is that in certain healthcare systems the prediction of cancer 

risk could impact patient insurance policies as well as patient mental health by causing anxiety. 

Therefore, prior to calculations such as the risk of developing a disease, should the patient have to 

approve this analysis following counselling by a healthcare professional, similar to procedures 

currently provided for genetic testing? 

Overall, these ethical and legal dilemmas should not be underestimated and the provision of 

guidance from national agencies to tackle these, taking into account views from patients, 

commercial companies and clinicians, is essential. 

 
2.5 Practical challenges and limitations    

2.5.1 Technical level  

Whilst the NHS has state-of-the-art scanners and treatments, it is also still reliant on certain record 

systems that are paper-based. Thus, technological advancement is a pivotal challenge facing the NHS 

to allow for the integration of new technology and the flexibility for exporting data on a mass 

scale207. Modifications to IT capabilities and digitisation of records is vital and should allow for 

communication and coordination between Trusts207,208. The NHS is also a tightly sealed system; 

however, companies will need access to update and modify their algorithms. Conversely, caution is 

needed when opening up systems due increasing the vulnerability to “cyber-attacks”209. How this 

external access is overseen and governed is a current technical and logistical challenge.  

While the majority of data processing within the NHS at present occurs onsite, ‘big data’ processing 

for image analysis requires the procurement of Graphical Processing Units (GPUs) at Trusts or within 

cloud-based systems, which may entail the processing of data offsite207. In addition, capacity for 

larger data storage is needed for the curation of datasets and the storage of additional image 

analysis provided by algorithms. A lack of clarity still exists around suitable environments and 

encryption for data storage as well as the level of de-identification required. When de-identifying 

imaging data it is necessary to retain data that is essential for image viewing, such as the private 

Digital Imaging and Communications in Medicine (DICOM) tags, whilst ensuring all PID is removed210. 

As imaging becomes more advanced it is important to ensure that patients cannot be re-identified 

via the possibilities of image reconstruction, such as reconstructing facial features from Computer 

Tomography (CT) or MRI head scans.  
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2.5.2 Clinical level  

A new multidisciplinary team will need to be developed and trained including clinical scientists and 

informaticians to work with clinicians to incorporate AI analysis into care decisions143,211. Advancing 

and generating new technical expertise will require access to training programmes and retention of 

highly skilled staff who currently re-locate to industry174,212. Programmes such as the NHS Digital 

Academy are designed to upskill healthcare professionals in areas of digital health as well as 

leadership and management as part of a national learning programme143,211. The training of 

radiologists is also set to change with the recent incorporation of AI into the national curriculum213. 

An openness from commercial companies to disclose the limitations of their algorithms and training 

radiologists how to interpret these is vital145,194. The use of AI itself to train radiologists or even 

provide continuous performance monitoring of radiologists are possibilities that need further 

exploration. Conversely whether the adoption of such technology will require radiologists to reach a 

higher level of performance to keep ahead of AI, is subject to ongoing speculation.  

2.5.3 Governance level  

Worldwide healthcare systems are moving forward at great pace to try utilise this technology with 

national funding efforts to develop an AI healthcare ‘ecosystem’. In the UK, this has been facilitated 

by collaborations from the Accelerated Access Collaborative and NHSX with the formation of the 

NHS AI labs173,174. The same two bodies have also partnered with the NIHR (National Institute for 

Health Research) for the provision of an AI Award, to spur investment into promising commercial 

companies164.  

The recently published NHSX ‘Buyers Guide’ provides a much needed resource for Trusts when 

procuring AI technology147. A proposed checklist also published alongside the buyer’s guide gives 

Trusts a procedure to help ensure vital steps of due diligence are taken, such as setting up insurance 

cover. However, the overall cost benefit of implementing such systems is limited in its evidence base 

and more robust evidence is needed to ensure systems are cost-effective.  

The legal accountability of algorithms has been at the forefront of healthcare professionals’ 

questions, as no clear guidance has been produced189. Discussions around the use of AI alongside a 

radiologist point towards the ultimate responsibility lying with the clinicians, but no specifics have 

been detailed as to how this would fit with NHS indemnity144,145. For both clinical decision support 

systems working alongside the radiologist and independent stand-alone systems, further guidance 

as to the accountability of the companies who developed the algorithm and NHS Trusts using the AI 

is needed. Reviews of “accidents” and “near misses” arising from the use of AI should be included in 

department discrepancy meetings. How this is then fed back to companies, to facilitate algorithm 

improvement, needs to be thought through before such events occur. 



 52 

 
2.6 Conclusion     

There are many steps to be taken by an array of national agencies, professional bodies and 

individual NHS Trusts before AI will become common place in breast oncological imaging to help 

mitigate the growing pressures facing radiology. Whilst promise is shown with algorithms across a 

range of imaging modalities reaching and in certain cases exceeding human performance, and even 

performing tasks not feasible for an individual, independent prospective testing against national 

benchmarks is needed.  

Technical integration and upskilling the healthcare workforce is essential for AI adoption. The 

different ethical and legal dilemmas at the algorithm, data and clinical level should continue to be 

discussed and guidance updated for healthcare professionals to follow. Further research is needed 

not only to understand the health economic implications and testing required to ensure that 

systems are working by meeting the required performance thresholds, but also that latent bias is 

avoided. Lastly, the legal accountability should be clearly stated for companies and healthcare 

professionals when using such systems.  
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Chapter 3 – Machine learning for workflow applications in screening 

mammography: systematic review and meta-analysis 

 
Advances in computer processing and improvements in data availability have led to the 

development of machine-learning (ML) techniques for mammographic imaging. This chapter 

systematically evaluates the literature for the performance of stand-alone ML applications for the 

screening mammography workflow. Retrospective studies demonstrate the performance of stand-

alone ML applications in screening mammography can reach reader performance and provide a 

mechanism for case triage, which merits investigation with prospective studies.  

Contents of this chapter have been published in Radiology133 and presented at the European 

Congress of Radiology 2021  [abstract number - #C- 14869]. 

 
 
3.1 Introduction 

There are now more than five Food and Drug Administration approved algorithms for 

mammographic interpretation, primarily to be used as clinical decision support systems214. Research 

has demonstrated that these machine-learning (ML) computer-aided detection (CAD) algorithms can 

reach and even exceed clinician performance, providing an independent definitive output (case level 

decision) on 2D standard-view mammography (mediolateral oblique and cranial caudal) data, Figure 

3-1112,215. This could allow for ML stand-alone computer-aided detection (CADe) and computer-aided 

diagnosis (CADx), or, when ML algorithms are set at a high sensitivity, for the automated case-based 

computer-aided triage (CADt) of mammograms within the screen reading workflow216.   

Figure 3-1 – Multi-time (left) and multi-view (right) point data that are produced by 2D standard-view 
mammography and can be analysed at different levels. 
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Many countries have implemented breast screening to detect cancer at an earlier stage, albeit with 

differing screening processes, such as single reading in the USA and double reading in many 

European countries, with screening starting at varied ages (40-50 years) and differing intervals 

between screening (annual, biannual and triannual)45,74,175,217. Mammography remains the most 

common imaging modality used, although its cost-effectiveness is debated due to false-positive 

findings, overdiagnosis, and false—negative findings (interval cancers)36,218. Human readers (for 

example radiologists and reporting radiographers in the UK) are under increasing pressure due to 

increasing workloads, demands from busy clinics, strict screening program targets as well as staff 

shortages140. Alternatives to double reading of mammograms are being sought to further alleviate 

pressure, including single reading using CAD prompts, stand-alone ML algorithms with a second 

reader or CADt triage with various reader combinations215.  

Studies investigating the use of traditional CAD mammography systems demonstrated no significant 

improvement in reader performance and, although sensitivity was similar to that of double reading, 

given the increase in recall rates these systems were deemed not cost-effective125,128. Additional 

limitations of traditional CAD systems include; high rates of false-positive prompts, limited 

reproducibility of prompts, increased reading time as well as a CAD preference for calcification 

detection over soft-tissue masses and architectural distortion219,220. Traditional CAD systems were 

trained using handcrafted features extracted from human delineations. The latest ML methods can 

use pre-trained deep learning networks and automatically delineated cancer regions via iterative 

interactive software to rely upon learned features, and have the potential to overcome the 

limitations of traditional CAD systems. However, how these new ML systems should be used in real-

time workflows is still unclear. One route could be to improve efficiency of the workflow by 

operating as stand-alone systems. Although the performance expected by such stand-alone ML 

applications in a screening workflow is yet to be agreed upon, a system should meet a “clinically 

relevant threshold”161. In general, recall rates should not be increased due to the huge impact on 

workload, thus algorithms with lower specificity would require human intervention to reduce 

recalls139,161. Therefore, making a definitive decision on whether current systems reach the standard 

required for routine workflow use is challenging.   

We conducted a systematic review and meta-analysis to investigate whether or not ML algorithms 

(CADe and CADx) are as sensitive and specific as radiologists in detecting breast cancer in subjects 

undergoing screening mammography. In addition, we evaluated the application of stand-alone ML 

algorithms (CADt) used in breast cancer screening for mammography interpretation and the impact 

of ML algorithms if adopted into clinical practice. Furthermore, we aimed to identify areas of bias 

and gaps in the reported evidence. Appendix 1 contains a glossary of terms.  
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3.2 Materials and methods 

This systematic review and meta-analysis was reported in accordance with the Preferred Reporting 

Items for Systematic Reviews and Meta-analysis for Diagnostic Test Accuracy (PRISMA-DTA) 

guidance221. The review protocol was registered on PROSPERO (CRD42019156016), Appendix 2.   

3.2.1 Literature search 

Digital literature databases including Ovid-EMBASE, Ovid-MEDLINE, Scopus, Web of Science, and 

CENTRAL were searched from January 2012 to September 2020, with the final search conducted on 

September 3, 2020 to include the advancements in ML algorithms for medical image interpretation 

and increased mammographic data availability142,215. Hand searches of included article references, a 

gray literature search of computer science databases (DBLP computer science bibliography, ACM 

Digital Library, and IEEE Xplore Digital Library), and a search of a pre-print literature database (arXiv) 

were also conducted for the same time period. The search strategy is detailed in Appendix 3. 

3.2.2 Study selection  

To limit bias, all publication types and all study designs were included, with no language restriction 

or dataset age limit applied. Eligibility criteria included women imaged using mammography for 

screening or diagnosis of breast cancer and a ML algorithm applied as stand-alone workflow 

application (CADe and CADx or CADt) with sufficient information reported for the performance of 

stand-alone ML algorithms and reader performance, or the simulated impact on reader performance 

and workflow to allow for comparison. Any ground truth (e.g., histopathology) was accepted. 

Because data are available at multiple levels, Figure 3-1, we included algorithms only if they 

provided an interpretation at the case or exam level to enable comparison with clinician 

performance as reported in screening programmes.  

Two independent reviewers undertook the initial title and abstract screening (SEH., a physician with 

2 years’ experience, then one of EPVL, CL, YRI., medical students) with discordance arbitration by a 

third reviewer (EPVL, CL, YRI) with independent full text review (SEH and RW., a radiologist with 11 

years’ experience) and discordance arbitration by a third reviewer (FJG., a senior radiologist with 

over 30 years’ experience).  

3.2.3 Data extraction  

A pre-designed data-extraction spreadsheet was used by the reviewers (SEH and RW) and checked 

by a third reviewer (AIAR., a computer scientist with 4 years’ experience), Appendix 4. Results were 

only extracted for studies where algorithm performance was compared to readers or the impact on 

reader workflow and performance was reported. If studies reported multiple stand-alone 

algorithms, results for all algorithms were extracted. 
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3.2.4 Meta-analysis  

For the meta-analysis, CADe and CADx algorithm performance was evaluated by adapting the 

method described in Liu et al142. The primary meta-analysis compared the best performing algorithm 

of each study, at the test stage using screening mammography data, with the performance of 

readers. Details of the primary meta-analysis study selection are available in Appendix 5. The 

secondary meta-analysis extended the primary meta-analysis and compared the performance of all 

reported algorithms and readers in all stand-alone CADe and CADx studies which used external 

datasets (for addressing the generalisation capabilities of the techniques), with no limitations of 

ground truth.  

3.2.5 Quality assessment  

Risk of bias and quality assessment of all included studies took place using Quality Assessment of 

Diagnostic Accuracy Studies-2 (QUADAS-2)222,223 and Prediction model Risk Of Bias ASsessment Tool 

(PROBAST)224 by two reviewers (SEH and RW), with discussion between reviewers to resolve 

discordance. Signalling questions for QUADAS-2 were adapted for ML studies. PROBAST questions 

were adapted using the technique in Nagendran et al163. However, as our review focused on 

mammography ML, applicability was assessed in all fields except the predictor field.  

The Checklist for Artificial Intelligence in Medical Imaging (CLAIM)167 guide was used by two 

reviewers (SEH and AIAR), with discussion between reviewers to resolve discordance. An overall 

reporting score for all parameters was generated as well as for eight key fields identified, and 

common areas under-reported were documented.   

3.2.6 Statistical analysis  

All statistical analyses were implemented in R (version 4.0.3; R Project for Statistical Computing, 

Vienna, Austria)225 using the ‘mada’226 and ‘boot’227 packages. Normal and benign exams were 

combined and 2x2 contingency tables were created by calculating true-positive, true-negative,  

false-positive, and false-negative findings from the reported dataset characteristics and sensitivity 

and specificity provided, ensuring there was an integer (whole) number of cases. The heterogeneity 

of the included studies in the quantitative analysis was measured using the I2 and Cochrane Q test, 

where high heterogeneity was defined by I2 > 50% and p < 0.05 for Cochrane Q test. The estimated 

pooled sensitivity, specificity, and area under the receiver operator characteristic (AUROC) curve 

were calculated for both readers and ML algorithms using a bivariate random effects model by 

Reitsma et al228 with 95.0% CIs. Bootstrapping with 100 iterations was used to generate 95.0% CI for 

AUROC and a t-test was used to compare the ML algorithm and reader sensitivity and specificity, 

with a p-value < 0.05 indicating a significant difference. Summary receiver operating characteristic 
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plots were constructed for both primary and secondary analyses for pooled reader and ML algorithm 

performance. 

 

3.3 Results 

3.3.1 Statistical selection and data extraction  

A PRISMA diagram, Figure 3-2, demonstrates the study inclusion process. The search of electronic 

literature databases and computer science databases returned 7629 records. Removal of duplicates 

resulted in 4318 records. 4286 records were excluded following the screening of titles and abstracts, 

the remaining 32 full texts were reviewed, and 14 articles were included in the qualitative review. 

References of included studies can be found in Appendix 6. 

From the included 14 articles, 8 studies reported a stand-alone CADe and CADx algorithm 

performance, and 7 studies reported the use of a CADt system. 1 article reported on both stand-

alone CADe and CADx and CADt. 5 studies for stand-alone CADe and CADx provided enough 

information to be included in the primary meta-analysis and 6 studies for the secondary meta-

analysis, (algorithm [n = 17] and reader [n = 15]).  

The included articles were published between 2017 and 2020, with 3/14 (21%) articles published on 

a pre-print platform (arXiv). A total of 16 algorithms including 12 unique algorithms were included in 

this review, with 2 algorithms reported multiple times using different versions. 

All included studies were conducted retrospectively. Generalizability was demonstrated in 4 studies 

where algorithms were tested on datasets from a different country to the training dataset. All 

datasets used for reader comparison testing were private. 8/14 (57%) articles evaluated algorithms 

on external datasets only, with a further 2/14 (14%) articles using both internal and external 

datasets. Cancer prevalence within testing datasets varied from 0.6% to 50.0% and the total testing 

dataset size ranged from 240 exams to 113,663 cases (*cohort size simulated using bootstrapping). 

The comparator of readers ranged in number (4-101), experience (1-44 years), and specialization 

(general or breast) for all studies. The algorithms code was available in 9/14 (64%) articles. 

Commonly used architectures included ResNet, RetinaNet and MobileNet, which are all a type of 

convolutional neural network. This included algorithms that were commercially available in 6/14 

(43%) articles or where code was available on a public repository in 3/14 (21%) articles.  
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Independent CADt studies reported that between 17%-91% of normal mammograms could be 

identified, while missing 0%-7% of cancers, Tables 3-1 and 3-2. For CADe and CADx tasks, 8 studies 

reported the algorithms' AUROCs between 0.69 and 0.96, Tables 3-3 and 3-4. 

Figure 3-2 – Preferred Reporting Items for Systematic Reviews and Meta-analysis for Diagnostic Test 
Accuracy (PRISMA-DTA) flow diagram. For studies included in the identification, de-duplication, screening, and 
data-extraction stages of this review. CADe: computer-aided detection, CADx: computer-aided diagnosis, CADt: 
computer-aided triage, ML: Machine Learning, WOS: Web of Science. *Studies could have been excluded for 
multiple reasons.  
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Sensitivity: 
90.1% (172 of 
191; 95% CI: 

86.0%, 94.3%); 
Specificity: 

94.2% (24 814 
of 26 349; 95% 

CI: 94.0%, 
94.6%) 

GitHub 
(https://githu
b.com/yala/O
ncoNet_publi

c)  

 
McKinney 

2020138 
 

Nature 

DL: 
ensemble 

ResNet-(V2-50 
and V1-50), 

MobileNetV2, 
RetinaNet 

Triage 
normals  

Patient 
Level 

UK: Training = (13 
918); Validation = 

(62 866) 
 

USA: Training = 
(55.0% of 22 225); 

Validation = (15.0% 
of 22 225) 

Retrospective 
*Internal 
/ External 

UK NPV  
99.9% 

 
USA NPV 

99.9% 

UK  
51 

(5 – 20+ years) 
 

USA  
(1 – 30 years) 

UK  
double  

 
 

USA  
single 

Hold-out 
method   

UK  
41.0% 

 
USA  

35.0% 

ML (vs Reader): 
ΔAUROC = 

+0.115 (CI 0.06-
0.18, p < 0.001); 

FP reduction 
(5.7% and 
1.2%); FN 

reduction (9.4% 
and 2.7%) 

(USA and UK) 

NA 

Balta  
2020230 

 

Proceedings 
of SPIE 

*DL Unclear 
Architecture   
Commercial 

System 
Transpara 
(v 1.6.0) 

*Triage 
normals to 

single 
reading 

Patient 
Level 

*Unclear 
The commercial 

system was directly 
used  

Retrospective *Internal 
/ External 7 6 Germany 

double  
External 

Validation (32.6%) 

(0.0%)  
 

ML decreased: 
recall rate  
11.8% (p < 

0.001); 
PPV 10.5% (p < 

0.001) 

Commercially 
available 

(https://scree
npoint-

medical.com/
in-practice/) 

Dembrower 
2020134 

Lancet 
Digital 
Health 

*DL Unclear 
Architecture   
Commercial 

System 
Lunit  

(v 5.5.0) 

Triage 
normals 

Patient 
Level 

Training  
[170 230] Retrospective  External NA NA  Sweden 

double 
External 

Validation > 60.0% 

Missed cancer 
at 60.0%,  

70.0%,  
80.0%: 
(0.0% 

0.3% (CI 0.0-
4.3) 

2.6% (CI 1.1-
5.4)) 

Commercially 
available 

(https://www
.lunit.io) 
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Table 3-1 – Computer aided triage (CADt) algorithm details and results. Algorithm performance compared to reader performance for all included studies. a) screening 
mammograms, b) screening mammograms used from screening recalled cases c) screening and diagnostic mammograms. AUROC: Area Under the receiver operating 
characteristic curve,  CV: Cross Validation, DL: Deep Learning, FN: False Negative, FNR: False Negative Rate, FP: False Positive, FPR: False Positive Rate, ML: Machine 
Learning, N: number, NPV: Negative Predictive Value, NA: information not available, PPV: Positive Predictive Value, TN: True Negative, TP: True Positive, v: Version. * caveat 
or another reported format. 

 
 
 

CA
Dt

 

b)               

Kyono [2] 
2018231 arXiv 

DL: 
InceptionResN

etV2, Multi-
Task Learning 

 
*Triage all 

cases 
 

Patient 
Level 

 
(Training 90.0%, 

Validation 10.0%)  
 

(100.0% = 7 162) 
 

Retrospective Internal 

Least patients 
seen by 

radiologist 
without 

degrading 
radiologists 
FPR or FNR 

 
*Detail 

provided in 
Kyono [1] 

2019 
 

*Single 
multi-
reader 

Hold-out 
method 

 
(42.8%) 

 

Cohen's Kappa 
= 0.716; F1 -

Score = 0.757; 
TP = 120; TN = 

803; FP = 41; FN 
= 36 

NA 

Kyono [1] 
2019232 

 

Journal of 
the 

American 
College of 
Radiology 

DL: 
 *Inception 
ResNetV2 
Multi-Task 
Learning 

Triage 
normals 

Patient 
Level 

*Unclear 
Training = (5 060)  

+   
8/10 fold training + 
1/10 fold validation 

out of (2 000) 

Retrospective Internal 
NPV  

> 99.0% 
> 30 

(> 2 years) 

*Single 
multi-
reader 

10 – fold 
CV 

34.0% (CI: 
25.0%-
43.0%)  

 
Low 

prevalence: 
91.0% (CI: 

88.0%-
94.0%) 

*NPV  
< 99.0% NA 

c)                 

 
Rodriguez-Ruiz 

[2] 
2019135 

 

European 
Radiology 

*DL Unclear 
Architecture   
Commercial 

System 
Transpara 
(v 1.4.0) 

Triage 
normals 

Patient 
Level 

*Unclear  
data partition for 

Training and 
Validation out of 

[189 000] 

Retrospective 

 
 

*Internal 
/ External 

 
 

5 
 

2 

101 
(52.0% USA, 

48.0% Europe) 
further detail 
provided in 

Rodriguez-Ruiz 
[1] 2019 

Single 
multi-
reader 

External 
validation 

Threshold 
of 5 = 
47.0% 

 
Threshold 

of 2 = 
17.0% 

  Threshold of 5 
=  

(7.0%) 
 

  Threshold of 2 
= 

(1.0%) 

Commercially 
available 

(https://scree
npoint-

medical.com/
in-practice/) 
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Reference 

a) 
Test Database 

Test Data 
Internal / 
External  

Test Data 
Country 

Test Data  
N Centres 

Test Data  
Year of 
Studies 

Test Data  
N Images (Cases) 

[Exams] 

Test Data  
N Cancer 

Images (Cases) 
[Exams] 

Test Data 
Vendor 

Test Data  
SF / FFDM 

Test Data 
Processed 

Test Data  
Screen / 

Diagnostic 
Mammograms 

Test Data Age 
of Patients 

Test 
Data 

Density 

Test Data 
Ground 
Truth 

CA
D

t 

 
Yala 

2019229 
 

Private Internal USA 1 2009 - 2016 

 
26 540 
(7 176) 

 

191 
(187) 

(2.6%) 
Hologic FFDM Processed Screen 

(mean 57.8 
years)  

(SD ± 10.9) 
Yes HP / FU > 1 

year 

 
McKinney 

2020138 
 

 
OPTIMAM 
(Private) 

+ 
Northwestern 

Memorial 
Hospital 
(Private) 

 

Internal  

 
UK, 
USA 

 

 
 

UK 
2 

 
USA  

1 
 
 

 
UK 

2012 - 2015 
 

USA 
2001 - 2018 

 

 
 

UK: (*25 856) 
 

USA: (*3 097) 
 
 

UK: (*414)  
(1.6%) 

 
USA: (*686)  

(22.2%) 

Hologic, GE, 
Siemens FFDM Processed Screen NA 

Yes  
*USA 
only 

HP / FU > 1 
year 

Balta  
2020230 

 
Private External* Germany 1 2018 [17 895] (114)  

(0.6%) 
Hologic, 
Siemens FFDM 

 
NA 

 
Screen 

 
NA 

 

 
NA 

 
HP / no FU  

Dembrower 
2020134 

CSAW 
(Private) External Sweden 1 2009 - 2015 

 
 

(7 364) 
(simulated  

75 534) 

 
(547) 

(0.7%) 
Hologic FFDM 

 
NA 

 
Screen 

40 – 74 
(median 53.6) 

(IQR 15.4) 
Yes  HP / FU > 2 

years 
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Table 3-2 – Computer aided triage (CADt) test set data characteristics of all included studies. a) screening mammograms, b) screening mammograms used from screening 
recalled cases c) screening and diagnostic mammograms. CSAW: Cohort of Screen Aged Women, DBT: Digital Breast Tomosynthesis, FFDM: Full Field Digital Mammography, 
FHx: Family History, FU: Follow-up, HP: Histopathology, N: number, NA:  information not available, OPTIMAM: OPTIMAM Medical Image Database, SD: Standard Deviation, 
SF: Screen Film, TOMMY: TOMosynthesis with digital MammographY. *caveat or another reported format.  

 

 

CA
D

t 

b)               

Kyono [2] 
2018231 

 
TOMMY 
(Private) 

 

Internal UK 6 NA (1 000) (156)  
(15.6%) NA FFDM Processed 

Screen 
(Recalled for 

assessment and 
FHx) 

40 - 73 Yes 

*HP / 3 x 
reader 

review of 2D 
and DBT 

Kyono [1] 
2019232 

 

TOMMY 
(Private) Internal UK 6 NA 

 
*Unclear 

1/10 fold out of 
(2 000) 

 

(300) 
(15.0%) NA FFDM Processed 

Screen 
(Recalled for 

assessment and 
FHx) 

40 - 73 Yes 

HP / 3 x 
reader 

review of 2D 
and DBT 

c)               

Rodriguez-Ruiz 
[2] 

2019135 
 

Private 
 

External  
 

Seven 
countries, 

further 
detail 

provided in 
Rodriguez-

Ruiz [1] 
2019 

NA NA [2 654] [653] 
[24.6%] 

GE, Hologic, 
Sectra, 

Siemens 
FFDM Processed 

*Both  
(50.0% screen, 
50.0% clinical) 

Detail 
provided in 
Rodriguez-

Ruiz [1] 2019 

NA HP / FU > 1 
year 



 63 

 

 

 

 
 

Reference 
a) 

Journal 

 
Machine 
Learning 

Technique 
 

Task Decision 

N 
Development  

Images (Cases) 
[Exams] 

Retrospective 
/ Prospective 

Testing 

Internal / 
External 
Testing 

Test N Reader 
(Experience) 

Test 
Reader 
Country 
Format  

Test Validation 
Method 

AUROC 
ML  
vs  

Reader 

Sensitivity 
ML 
vs 

 Reader 

Specificity 
ML 
vs  

Reader 

Code 
Available 
(Location) 

CA
D

e 
 a

nd
  C

AD
x  

 
Geras 

2017116 
 

arXiv DL: 
Customised CNN SAID Per case 

Training  
721 186 [164 224] 

Validation 
108 276 [24 552] 

Retrospective Internal 
 

4 
 

Single -
multi-
reader 

Hold-out 
method 

 
macAUC 

0.688  
vs 

0.704 
 

NA NA 

GitHub 
(https://gith
ub.com/nyu
kat/BIRADS_

classifier) 

 
Lotter 

2019233 
 

arXiv 
DL: 

(ResNet-50 + 
RetinaNet) 

SAID Per case (97 769) Retrospective *Internal 
/ External 

5 
(2 - 15 years) 

Single -
multi-
reader 

External 
validation 

+ 
Bootstrapping 

 
	†Test 1 

ML: 0.95 (CI 
0.92, 0.97) 

 
Test 2 ML: 

0.77 (CI 
0.71, 0.82) 

 

†Test 
1.+14.2% (CI 

9.2%-18.5%, p 
< 0.001) 
ML over 
Reader 

 
Test 2. +17.5% 

(CI 6.0%-
26.2%, p < 
0.001) ML 

over Reader 

†Test 1.  
+24.0% (CI 

17.4%-30.4%, 
p < 0.001) ML 
over Reader 

 
Test 2. +16.2% 

(CI 7.3%-
24.6%, p < 
0.001) ML 

over Reader 

NA 

 
Rodriguez-Ruiz 

[3] 2019234 
 

Radiology 

*DL Unclear 
Architecture   
Commercial 

System 
Transpara 
 (v 1.3.0)  

SAID Per case 

 
*Unclear data 

partition 
for Training and 
Validation out of  

[18 000] 
 

Retrospective *Internal 
/ External 

14 
(11 specialists, 
3 – 25 years) 

Single -
multi-
reader 

External 
validation 

0.89 
vs 

0.87 
(p = 0.33) 

 
83.0% (CI 

81.0%-85.0%) 
*Reader only 

 

 
77.0% (CI 

75.0%-79.0%)  
*Reader only  

 

Commerciall
y available 

(https://scre
enpoint-

medical.co
m/in-

practice/) 

 
 
 
 
 
 



 64 

CA
D

e 
 a

nd
  C

AD
x 

 
McKinney 

2020138 
 

Nature 

DL: 
ensemble 

ResNet-(V2-50 
and V1-50), 

MobileNetV2, 
RetinaNet 

SAID Per case  

UK: Training  
(13 918); Validation 

(62 866) 
 

US: Training  
(55.0% of 22 225); 

Validation  
(15.0% of 22 225) 

Retrospective *Internal 
/ External 

UK  
51 

(5 - 20+ years) 
 
 

USA  
(1 – 30 years) 

 
Reader study 

6  
(4 – 15 years) 

UK  
double  

 
 

USA  
single  

 
 

Reader 
study  

single – 
multi- 
reader 

Hold-out 
method   

+  
External 

validation 

ML UK: 
AUROC = 

0.89 (CI 0.87 
- 0.91) 

USA 
(w/training 

UK+US): 
AUROC = 
0.81 (CI 

0.79-0.83) 
†(UK 

training 
only: 

AUROC = 
0.76 (CI 

0.73-0.78)) 
 

Reader 
study ML vs 

Reader: 
ΔAUROC = 
+0.115 (CI 

0.06-0.18, p 
< 0.001) 

†(+8.1%, p < 
0.001)  

 
ML 

improvement 
% over Reader 

range [min- 
max]: [0.0-9.4]  

†(+3.5%, p = 
0.02) 

 
ML 

improvement 
% over Reader 

range [min- 
max]:  

[-3.4-5.7] 

*NA 

 
Schaffter 
2020137 

 

JAMA 
Open 

Network 

DL: 
CEM Ensemble  

(8 networks 
including VGG, 
Faster- RCNN) 

 
DL: Customised 
VGG network   

SAID Per case 

 
KPW  

(59 923) 
[100 974] 

 
+  
 

DDSM  
 

+ 
 

Other datasets (e.g. 
OPTIMAM) 

Retrospective External 

USA  
screen readers 

 
Sweden 

screen readers 

USA  
single 

 
Sweden 
double 

(*reporte
d single 

first 
reader) 

Hold-out 
method   

+  
External 

validation 

 
KPW (CEM) 

0.90  
(Top 

performing) 
0.86 

 
†KI (CEM) 

0.92  
(Top 

Preforming 
model) 0.90 

 

KPW  
*Reader 

sensitivity 
85.9%  

  
†KI   

*First reader  
77.1%,  
Reader 

consensus 
83.9%  

 

 
KPW (CEM) 

76.1%  
(Top 

performing) 
66.3%  

vs 
90.5%  

 
†KI (CEM)  

92.5% 
(Top 

performing 
model) 
88.0%,  
81.2% 

vs  
*†First 
reader  
96.7%, 
Reader 

consensus 
98.5%  

 

GitHub 
(https://gith
ub.com/Sag

e-
Bionetworks
/DigitalMam
mographyEn

semble) 
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CA
D

e 
 a

nd
  C

AD
x 

Salim  
2020149 

JAMA 
Oncology 

DL:  
(1) ResNet34 
(2) MobileNet 
(3) Unknown 

SAID Per case 

(1) 752 000  
(2) 239 000 
(3) 112 000 

 

Retrospective External 

 
Sweden 

screen readers 
25 1st reader, 
20 2nd reader 

Sweden 
double  

 
External 

validation 
+ 

Bootstrapping  
 

(1) 0.96 
(2) 0.92 
(3) 0.92 

ML:  
(1) †81.9% (p 

= 0.03) (p = 
0.11) 

(2) 67.0% 
(3) 67.4%  

vs  
†First reader 

77.4%,  
Reader 

consensus 
85.0% 

ML:  
(1)	†96.6% 

(2) 96.6% 
(3) 96.7%  

vs  
†First reader 

96.6%,  
Reader 

consensus 
98.5% 

NA 

b)             
   

Rodriguez-Ruiz 
[1] 

2019235 
 

Journal of 
the 

National 
Cancer 

Institute 

*DL Unclear 
Architecture   
Commercial 

System 
Transpara 
(v 1.4.0) 

SAID Per case 

 
*Unclear data 

partition 
for Training and 
Validation out of  

[189 000] 
 

Retrospective *Internal 
/ External 

101 
*95 for 

sensitivity and 
specificity 

(1 – 44 years) 

Single -
multi-
reader 

External 
validation 

†0.84 (CI 
0.82-0.86) 

vs 
0.81 (CI 0.79 

-0.84) 

†75.0%–
86.0%  

vs  
76.0%–84.0% 

†49.0% – 
79.0% 

*Clinician 
specificity 

Commerciall
y available 

(https://scre
enpoint-

medical.co
m/in-

practice/) 

c)           	 	 	  

 
Kim 

2019236 
 

Lancet 
Digital 
Health 

DL: 
 (ResNet-34) 
Commercial 

System 
Lunit  

SAID Per case 
Total [166 968] 

Training [152 693] 
Validation [14 275] 

Retrospective *Internal 
/ External 

 
14 

(7 specialists,  
> 6 months) 

 

Single - 
multi-
reader 

External 
validation 

0.94 (CI 
0.92–0.97) 

vs 
0.81 (CI 

0.77–0.85, p 
< 0.001) 

88.8%  
vs  

75.3% 
(p < 0.001) 

81.9%  
vs  

72.0% 
(p = 0.002) 

Commerciall
y available 

(https://ww
w.lunit.io) 

Table 3-3 – Computer aided detection (CADe) and Computer aided diagnosis (CADx) algorithm details and results. Algorithm performance compared to reader 
performance for all included studies. a) Screening mammograms, b) screening and diagnostic mammograms c) mammography and ultrasound used for screening. CEM: 
Challenge Ensemble Method, CI: Confidence Interval, CV: Cross Validation, DL: Deep Learning, DDSM: Digital Database for Screening Mammography, KPW: Kaiser 
Permanente Washington, N: number, NPV: Negative Predictive Value, NA: information not available, OPTIMAM: OPTIMAM Medical Image Database, SAID: Stand-alone AI 
Detection, v: Version. * caveat or other reported format. † The results of studies included in the primary meta-analysis.  
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Reference 
a) 

Test Database 
Test Data 
Internal / 
External  

Test Data 
Country 

Test 
Data N 
Centres 

Test Data 
Year of 
Studies 

Test Data  
N Images (Cases) 

[Exams] 

Test Data  
N Cancer 
Images 
(Cases) 
[Exams] 

Test Data 
Vendor 

Test Data  
SF / FFDM 

Test Data 
Processed 

Test Data 
Screen / 

Diagnostic 
Mammogram

s 

Test Data Age of 
Patients 

Test 
Data 

Density 

Test Data  
Ground Truth 

CA
D

e 
an

d 
CA

D
x  

 
Geras 

2017116 
 

NYU 
(Private) Internal USA 5 2010 - 2016 

 
[500]  

 
NA NA FFDM Processed Screen 

19 - 99 
(mean 57.2) 

(SD 11.6) 
NA *BIRADS score 

(0, 1, 2) 

 
Lotter 

2019233 
 

Private External USA 1 2011 - 2014 

Test 1. (“Index”) 
[285] 

 
Test 2. (“Pre-index 

12-24 month 
prior”) [274] 

 

Test 1. [131]  
[46.0%] 

 
Test 2. [120] 

[43.8%] 
 

 
NA 

 
FFDM Processed Screen NA NA HP / FU > 1 

year 

 
Rodriguez-Ruiz 

[3] 2019234 
 

Private External USA,  
Europe 

USA  
1 
 

Europe  
1 

USA  
2013 – 2017 

 
Europe 

2014 - 2015 

 
[240] 

 

[100] 
[41.7%] 

Hologic, 
Siemens FFDM Processed Screen 39 – 89 

(mean 61.0) Yes HP / FU > 1 
year 

 
McKinney 

2020138 
 
 

OPTIMAM 
(Private) 

+ 
Northwestern 

Memorial 
Hospital 
(Private) 

 

*Internal 
/ External 

USA, 
UK 

 
UK 
2 
 

USA 
1 
 

UK 
2012 - 2015 

 
USA 

2001 - 2018 
 

UK: (25 856) 
 
 

USA: (3 097) 
 
 

Reader study USA 
(*500) 

 

UK: (414) 
(1.6%) 

 
US: (686) 
(22.2%) 

 
Reader study 
USA (*125) 

(25.0%) 

GE, Hologic, 
Siemens FFDM Processed Screen NA 

Yes 
*USA 
only 

HP / FU > 1 
year 

 
Schaffter 
2020137 

 

KPW 
(Private) 

 
KI 

(Private) 

*Internal 
/ External 

USA, 
Sweden 

KPW  
 1  
 

KI  
2 

KPW  
NA 

 
KI  

2008 - 2012 

 KPW  
(25 657)  
[43 257] 

 
KI  

(*68 008)  
[166 578] 

KPW  
(283)  

(1.1%) 
 

KI  
(*780)  
(1.1%) 

NA FFDM Processed Screen 

 
KPW  

40 - 74 
(mean 58.4) 

(SD 9.7) 
 

KI  
40 - 74 

(mean 53.3) 
(SD 9.4) 

NA HP / FU > 1 
year 
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Table 3-4 – Computer aided detection (CADe) and Computer aided diagnosis (CADx) test set data characteristics of all included studies a) Screening mammograms, b) 
screening and diagnostic mammograms c) mammography and ultrasound used for screening. CSAW: Cohort of Screen Aged Women, FFDM: Full Field Digital 
Mammography, FU: Follow-up, HP: Histopathology, KI: Karolinska Institute, KPW: Kaiser Permanente Washington, N: number, NA: information not available, NYU: New 
York University, OPTIMAM: OPTIMAM Medical Image Database, SD: Standard Deviation, SF: Screen Film. *caveat or other reported format.  

 

 

 

 

CA
D

e 
an

d 
CA

D
x 

Salim  
2020149 

CSAW 
(Private) External Sweden 1 2008 - 2015 

(8 805)  
(Simulated 113 

663) 

(739)  
(Simulated 

0.7%) 
Hologic FFDM Processed Screen  40 - 74  

(median 54.5) Yes HP / FU > 2 
years 

 
b) 
 

        
       

Rodriguez-Ruiz 
[1] 

2019235 
 

Private External 

Sweden, 
UK, 

Netherlands
, USA, Italy, 

Spain, 
Austria 

NA NA 

 
[2 652]  

 
[*2 389] *for 

sensitivity and 
specificity 

 

[653]  
[24.6%] 

 
[*610] 

[24.6%] 

GE, Hologic, 
Sectra, 

Siemens 
FFDM Processed 

*Both  
(Some 

unilateral 
only) 

30 - 92 Yes HP / FU > 1 
year 

 
c) 

 
    

           

 
Kim 

2019236 
 

Private *External South Korea 2 2009 - 2018 [320] [160] 
[50.0%] 

GE, 
Hologic 

FFDM NA 
Screen 

(*including 
US) 

(mean 53.2) 
(SD 10·0) 

Yes 
*Mammograp

hy / USS 
detected + HP 
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3.3.2 Quality assessment   

The PROBAST and QUADAS-2 tools were applied to all included articles in this review, and summary 

results of assessments are shown in Figure 3-3 and Appendix 7. Applying both tools identified a high 

risk of bias for analysis, as well as high bias and applicability concerns for the index test, participants 

and patient selection, Figure 3-3. Reasons for high bias and applicability include 8/14 (57%) articles 

with cancer-enriched cohorts, 5/14 (36%) articles that tested the algorithm on an internal dataset, 

and 3/14 (21%) articles that did not pre-set the algorithm threshold in CADt studies. According to 

PROBAST assessment, articles were reported to have an overall low (7%), unclear (7%), and high risk  

(86%) of bias.  

Figure 3-3 – (a) Prediction model Risk Of Bias ASsessment Tool (PROBAST) and (b) Quality Assessment of 
Diagnostic Accuracy Studies-2 (QUADAS-2) assessment. For 14 included articles, each category is represented 
as a percentage of the number of articles that have high, low, or unclear levels of bias. 

 
Critical appraisal of the reporting quality in the 14 included articles using the 42 parameters of 

CLAIM, found scores ranging from 22 to 34, with an average total score of 30/42 (71%). The points 
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most commonly under-reported included robustness or sensitivity analysis, methods for 

explainability or interpretability, and protocol registration. Methods for explainability (e.g., saliency 

maps) to provide transparency of the algorithm’s deduction were reported in 3 articles. Only 50% of 

articles reported all eight key fields, Figure 3-4. 

Figure 3-4 – Checklist for Artificial Intelligence in Medical Imaging (CLAIM) assessment. Results for 14 articles 
included in this review across 8 key categories identified from the checklist. A score of 1 was provided if 
complete information was provided, and 0 where no information was provided. The x-axis indicates the 
percentage of articles in the review which included information about the eight key categories detailed in the y-
axis. 

 
3.3.3 Statistical analysis 

Low heterogeneity was found for both algorithms and readers in the primary and the secondary 

analyses (I2 0.0%-0.6% and Cochrane Q test p = 0.45-0.78).  

An estimated 185,252 cases from 3 countries with > 39 readers were included in the primary meta-

analysis. The pooled summary estimates for sensitivity, specificity, and AUROC were 75.4% (95% CI 

65.6-83.2), 90.6% (95% CI 82.9-95.0), and 0.89 (95% CI 0.84-0.98), respectively for ML algorithms. 

For readers, the pooled sensitivity, specificity, and AUROC were 73.0% (95% CI 60.7-82.6), 88.6% 

(95% CI 72.4-95.8), and 0.85 (95% CI 0.78-0.97), respectively, Figure 3-5. The differences in sensitivity 

and specificity were not statistically significant, p-value = 0.11 and 0.40 respectively. Algorithms 

performance thresholds were set at the reported reader sensitivity / specificity in 4 studies.  

When including all available results from CADe and CADx studies conducted using external datasets 

that provided a direct comparison between ML algorithms and readers for a secondary meta-

analysis, the pooled sensitivity, specificity, and AUROC was 80.4% (95% CI 75.5-84.6), 82.1% (95% CI 

72.7-88.8), and 0.86 (95% CI 0.84-0.90) for algorithms. For readers the pooled sensitivity, specificity, 

and AUROC was 78.5% (95% CI 73.8-82.5), 82.6% (95% CI 69.2-90.9), and 0.84 (95% CI 0.81-0.88), 

Figure 3-5. The differences in sensitivity and specificity were not statistically significant, p-value = 
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0.70 and 0.73 respectively. Summary tables and additional information are available in Appendix 8-

11. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-5 – Summary Receiver Operating Characteristic (ROC) curves (a) in 5 studies for the included 
algorithm and b) reader results reported for the top performing machine learning (ML) algorithm tested on an 
external data set, compared to reader performance for computer-aided detection (CADe) and computer-aided 
diagnosis (CADx) applications, with a ground truth of > 1 year follow-up and histopathology. Primary meta-
analysis) (c) For 17 algorithm reported results and d) 15 reader reported results from included studies for CADe 
and CADx applications tested externally. Seconday meta-analysis). The black line represents sROC, the blue line 
represents confidence interval, the red dot represents the summary estimate, and the black crosses represent 
the individual results. 

 
3.4 Discussion 

We found the performance of mammography screening algorithms is reaching equivalence to 

readers in stand-alone CADe and CADx tasks. Comparing our results to two recently published reader 

performance studies demonstrated that while the pooled sensitivity of algorithms (75.4%) was 

higher than that of  pooled readers (73.0%) and single reading in Sweden (73.0%)175, it was inferior 

to both single reading in USA (86.9%)74 and double reading with consensus in Sweden (85.0%)175. The 

a) 

c) 

b) 

d) 



 

 71 

pooled specificity of algorithms (90.6%) was superior to pooled readers (88.6%) and single reading in 

USA (88.9%)74, but inferior to both single (96.0%) and double reading with consensus in Sweden 

(98.0%)175. Therefore, further improvements are needed to make sure ML systems meet the 

‘clinically relevant thresholds’ of current reader performance and screening programme targets. Our 

findings are similar to a systematic review and meta-analysis comparing deep learning applications 

across all medical imaging to “health-care professionals”, who came to a similar conclusion and 

highlighted the importance of continued external testing142.  

Algorithms are also performing tasks not feasible by readers such as high-volume normal case triage, 

with no detrimental change when reader performance was extrapolated in an adapted screening 

workflow (using machine only reading of cases assigned to be normal as an alternative to single or 

double reading)215. However, the acceptable “miss” rate for a system, similar to the interval cancer 

targets, should be agreed and specified for machine only reading of normal mammograms before 

clinical adoption. The biggest barrier may be public understanding of the concept of acceptable 

“misses”.  

No prospective studies have yet been reported, many studies are still conducted with retrospective 

internal testing, and few studies are conducted by an independent party where multiple algorithms 

are cross-compared using external datasets149. In addition, most of the studies used enriched cancer 

cohorts for testing, which do not include the class imbalance of cancers to healthy controls in 

screening. Thus, these datasets may not provide a realistic representation from which to infer model 

performance in clinical implementation limiting generalisability, clinical applicability and feasibility of 

workflow translation. Our findings highlight the need for well-designed prospective randomised and 

non-randomised controlled trials to be conducted across different breast screening programmes. 

These prospective studies should include representative case proportions, to replicate the class 

imbalance in screening, with readers of varying experience interacting with ML algorithm outputs 

within the clinical workflow. This will allow performance to be assessed as well as technological 

feasibility, reading time, reader acceptability and effect on reader performance139. Prospective 

studies investigating ML applications for mammographic screening are currently underway in the 

UK, Norway, Sweden, China and Russia with results pending237–239. 

Most articles were from 2019 onwards, reflecting the exponential growth in publications since major 

milestones such as the ImageNet118 and DREAM112,240 challenges. Although the computer codes were 

available in 64.0% of articles, only 21.0% of code was available on an open-source platform. 

However, the provision of code alone does not result in a deployable model including training 

weights as well as the threshold at which the algorithm performance was determined, limiting 
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reproducibility and transparency241,242. Large datasets were used for testing but the majority of these 

are private, which limits the ability to replicate results.     

Two commonly used tools for bias assessment found high risk of bias due to cancer enriched 

cohorts, use of internal datasets as well as due to the algorithm threshold in triage studies not being 

pre-set. Therefore, these results may not be applicable and generalisable to all breast screening 

populations223. We applied a specific Artificial Intelligence (AI) medical imaging reporting guideline 

(CLAIM), to critically appraise AI medical imaging literature. It should be noted that CLAIM was 

published after more than half of the articles in this review were published. Therefore, we have not 

presented the results of each individual study but have used this as a foundation to find 

underreported areas within the current literature, as well as confirm the applicability of CLAIM for 

ML mammography studies167.  

3.4.1 Limitations 

The meta-analysis was limited by both the small number of eligible studies and because the 

contingency tables were constructed using reported sensitivity, specificity, total cases and malignant 

cases to provide estimated integers (whole numbers) for calculating true-positives, true-negatives, 

false-positives, and false-negatives. The primary meta-analysis included studies where reader 

performance did not reach the level reported in national screening standards, therefore it is possible 

that the relative improved performance of ML algorithms is overestimated, and the performance of 

readers is underestimated as part of this analysis. The primary analysis also used only the highest 

performing (based on test performance) algorithm if multiple algorithms were tested, and therefore 

may be slightly biased towards the selected algorithms. The secondary meta-analysis incorporated 

multiple algorithms and readers from the same study, on the same population, which could 

potentially lead to overrepresentation. Therefore, the results from the meta-analysis should be 

interpreted with caution. Lastly, for the secondary meta-analysis both screening and diagnostic 

mammograms were included in studies, as well as in one study women were screened using 

mammography and ultrasound, both of which would impact on the expected performance metrics. 

 

3.5 Conclusion 

There is a growing evidence base that stand-alone ML performance is comparable to reader 

performance and that ML can undertake triage tasks at a volume and speed not feasible for human 

readers. Although only retrospective trials have been conducted, the potential for algorithms to 

perform at the level of or even exceed the performance of a reader within the real-time breast 

screening workflow is realistic. However, further robust prospective data is critical to understanding 

where algorithm thresholds are set and are required to examine the interaction between human 
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readers and algorithms, as well as the effect on reader performance and patient outcomes over 

time.   
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Chapter 4 – Developing a mammographic imaging database – The 

Cambridge Cohort – Mammography East Anglia Digital Imaging 

Archive 

4.1 Aims 

In this chapter the design, construction, governance, and content of The Cambridge Cohort – 

Mammography East Anglia Digital Imaging Archive (CC-MEDIA) is outlined. The CC-MEDIA database 

aims to provide extensive clinical metadata and multiple imaging episode data, fulfilling a need for a 

large-scale, external representative UK breast screening dataset for benchmarking. This allows for 

reproducible, independent testing and feedback of Artificial Intelligence (AI) models being 

developed for breast cancer screening. As a result of this work setting up the CC-MEDIA database, 

the methods and procedures developed have informed the University of Cambridge and Cambridge 

University Hospitals NHS Foundation Trust research ethics procedures regarding medical imaging 

databases. Contents of this chapter have been presented at the 2021 British Society of Breast 

Radiology Annual Scientific Conference243. 

 

4.2 Introduction  

Medical imaging has become an integral part of patients care, with 45.2 million imaging tests taking 

place between September 2018 to September 2019 in the UK115. The visual field of radiology lends 

itself to AI research, for both the visual task at hand as well as due to the abundance of medical 

imaging data available. High quality medical imaging databases are therefore increasingly important 

for AI algorithm development and testing. The 2022 Goldacre report highlighted the importance of 

development of Trusted Research Environments (TRE) to fully utilise the digital data available within 

the National Health Service (NHS). The report acknowledged the current complex and convoluted 

ethical approval and governance required as well as the necessary expertise to build large reusable 

datasets244. Initiatives across medical imaging research have led to the development of large imaging 

databases for chest x-ray (MIMIC-CXR), MRI knee (MRNet) CT head (RSNA 2019 brain haemorrhage 

challenge), and mammography (CSAW)157,245–247.  Early mammographic imaging databases date back 

to 1994 but only contained a very small volume of digitised screen film images, from the USA and 

UK248,249. Recent mammographic imaging databases contain data in Full Field Digital Mammography 

(FFDM) Digital Imaging and Communications in Medicine (DICOM) format, from countries around 

the world at a larger scale of > 1,000,000 images157,158,250. The increase in data availability in the last 

ten years has contributed to the development of more accurate algorithms as well as allowing for 

the reproducibility and generalizability testing of AI algorithms in different screening programmes. 
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Mammographic imaging databases now contain a diverse range of mammography machine 

manufacturers, screening programmes (annual, biennial, triennial), and countries (UK, Sweden, USA, 

Spain, Portugal), as detailed in Table 4-1.  

Dataset Country Year SF / 
FFDM 

Cases Density Age Annotations 

MIAS248 
 

UK 1994 SF 161 
(I = 322) 
(C = ~52) 

Y NA Y 

DDSM249 USA 1998-
1999 

SF 2620 
(I = 10480) 
(C = 914) 

Y NA Y 

CBIS-DDSM 
251,252 

USA 2016 SF 1644 
(I = 10239) 
(C = 758) 

Y NA Y 

InBreast 
156,253 

Portugal 2008-
2010 

FFDM 115 
(I = 410) 
(C = NA) 

Y NA Y 

BCDR-FM 
254,255 

Portugal 
+ Spain 

2009-
2013 

SF 1010 
(I = 2702) 
(C = NA) 

Y 20-90 Y 

BCDR-DM 
254,255 

Portugal 
+ Spain  

2009-
2013 

FFDM 724 
(I = 3612) 
(C = NA) 

Y 27-92 Y 

OMI-DB250 UK 2011-
2020 

FFDM + 
DBT + 
MRI 

172282 
(I > 3000000) 

(C = 8586) 

Y 30-84 Y 

CSAW157 Sweden 2008-
2015 

FFDM 499807 
(I > 2000000) 
(C = 10582) 

NA 40-74 Y 

NYU BCSD 
v1.0158 

USA 2010-
2017 

FFDM 141473 
(I > 1000000) 
(C = 1221*) 

Y 16-99 Y 

EMBED256 
 

USA 2013-
2020 

FFDM + 
DBT 

115910 
(I > 3000000) 

(C = 3733) 

Y > 18 Y 

Table 4-1 – Mammographic imaging database characteristics. BCDR: Breast Cancer Digital Repository, CBIS-
DDSM: Curated Breast Imaging Subset of DDSM, CSAW: Cohort of Screen-Aged Women, C: Cancers, DDSM: 
Digital Database for Screening Mammography, DBT: Digital breast tomosynthesis, DM: Digital mammography, 
EMBED: EMory BrEast imaging Dataset, FFDM: Full field digital mammography, FM: Film mammography, I: 
Images, MIAS: The Mammographic Image Analysis Society Digital Mammogram Database, NYU BCSD: New 
York University Breast Cancer Screening Dataset, NA: Not available, OMI-DB: The Optimam Mammography 
Image Database, SF: Screen film, Y: Yes. *breasts not cases.  

 
Different levels of data are available for mammography images (case level, exam level, per breast 

level, per image level) with certain datasets also providing image level annotations either via 

bounding box or pixel level regions of interest. The ground truth of the data is an important 

component of medical imaging databases. Routinely in breast screening AI testing the ground truth 
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is set at two levels. For a case to be defined as ‘normal’ there has to be a sufficient time interval with 

an outcome of a normal screen, and for ‘cancers’ there should be a histopathological diagnosis 

outcome.  

The NHS Breast Screening Programme (BSP) is a three yearly (triennial) breast screening programme, 

inviting women aged 50-70 to participate and using a two-view FFDM. Due to NHSBSP age extension 

trial (AgeX), running from 2011 to 2016, women aged 47-49 years old were also invited to screening. 

In addition, women aged more than 70 years old can self-refer into the screening programme54,257. 

The NHSBSP is carried out at seventy-five sites across the country within the NHS system that allows 

for women to be tracked over time and linkage between different data sources using personal 

identification numbers (NHS number). All mammograms are double read by two expert readers (e.g. 

radiologists, consultant radiographers, and breast clinicians) either independently or dependently.  

The CC-MEDIA database captures the true distribution of the NHSBSP by consecutively collecting 

screening mammograms for women aged more than 47 years old who attended screening at two 

NHSBSP sites between 2011 and 2020. Thus, facilitating the independent testing of multiple AI 

algorithms, for different breast screening applications using large, representative cohorts with 

extensive follow up to allow for accurate ground truth identification.    

 

4.3 Methods  

4.3.1 Database approval   

Ethical approval for this database was obtained from the Health Research Authority (HRA) 

Confidentiality Advisory Committee (CAG), HRA Research Ethics Committee (REC) and Public Health 

England (PHE) Research Advisory Committee (RAC). IRAS Reference – 258761. 

• HRA REC - reference 20/LO/0104 – approval date 03/04/2020 

• PHE RAC - reference BSPRAC_090 – approval date 03/04/2020 

• HRA CAG - reference 20/CAG/0009 – approval date 11/06/2020 

A formal agreement was put in place between Cambridge and Norwich hospital trusts relating to the 

use of data within this database. Consent was not obtained from individual patients for the creation 

and use of this database, as the data that is retained within the final Trial Database is in a de-

identified format and Section 251 approval was received from the HRA CAG committee. The 

database has received initial 5-year approval until 2025 and yearly reports are submitted to the 

ethics committees to maintain support.  

4.3.2 Database governance    

The database is overseen by The Cambridge Cohort Database Access Committee (DAC). The DAC 

ensures that the management of the databases is in line with current regulations for data 
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governance and patient safety. The DAC includes; the principal investigators, representatives from 

the breast screening units and data managers at both sites, research governance leads at the 

university and hospital, as well as a lay member. The DAC is responsible for reviewing applications 

for data access by internal and external sources as well as determining the terms of access given. As 

the data is unconsented and sensitive, data is not routinely released to external institutions. If 

requests for processing using a small volume of data is approved by the DAC, e.g. for the specific 

purpose of company AI tool validation on Philips data, a data sharing agreement is put in place and 

the small volume of data [n = ~100 cases] is re-anonymised and transferred via a secure process (e.g. 

secure file transfer protocol (SFTP)). 

4.3.3 Patient and public involvement work     

Throughout the development of this database extensive patient and public involvement (PPI) work 

has been undertaken to ensure the views of the patients included in this database and those of the 

general public are taken into account regarding the management and use of their data. The 

feedback received from our PPI events has improved the way we explain to people how their patient 

data is used as part of this research. It also improved explanations regarding how data moves from 

the hospital to the university, who has access to the data, and how the data is then used in a de-

identified format (where all the information that could be used to identify an individual has been 

removed or amended). Exploring patient acceptability of different aspects of data use has helped 

ensure we are working both within the public’s expectations as well as in line with national ethical 

requirements. All the PPI work was carried out with the support and guidance of the National 

Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre (BRC) PPI 

team.  

The first PPI activity was a formal review by the NHIR Cambridge BRC PPI panel of the project lay 

summary (15/11/2019). The NHIR Cambridge BRC PPI panel is a group of around 60 members of the 

general public from Cambridge and the surrounding areas who are interested in research. They 

provide their thoughts and opinions on research projects based on their own personal experiences. 

Seven panel members reviewed the lay summary and provided feedback. This included clarifying the 

terms used in our patient facing material to make these more accessible, for example providing an 

explanation around the term “de-identified”. They also raised queries around data flows, and 

commercial involvement, and how commercial companies will access the data. Following on from 

this initial activity a Cambridge Science Festival public forum was held on 9th March 2020 to gain 

insights into the public’s views on “Harnessing Big Clinical Data In Medicine. Can AI Improve Breast 

Cancer Screening?”. Thirty-seven members of the public attended, 58.0% were female and 42.0% 

male, of which 53.0% were aged 18-29, 22.0% aged 30-49, and 26.0% were aged more than 50 years 
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old. Throughout the session responses to questions were collected from the audience using 

TurningPoint software (which uses interactive clickers to record anonymised results). This interactive 

feedback helped to understand how certain terms were phrased and where further explanation 

should be provided for the complex flow of data in this research. The audience was asked about the 

acceptability of different organisations having access to the database, such as the university, 

hospital, and commercial companies. There was a high proportion of agreement for the university 

and hospital with 63.9% of the audience strongly agreeing and 16.7% agreeing, however a mixed 

picture for the commercial companies with only 18.8% strongly agreeing and 28.1% agreeing, Figure 

4-1.  

Figure 4-1 – Cambridge Science Festival Event questions. a) “Would you support the use of your medical 
images by a hospital or university (in a fully anonymised format, stored in a secure location) to be used for 
developing algorithms without your consent?”,  b) “Would you support the use of your medical images by a 
commercial company (in a fully anonymised format, stored in a secure location) to be used for developing 
algorithms without your consent?” 

 
Based on the questions outlined in Figure 4-1, further work was carried out to clarify the role of 

commercial companies in this research. Such that de-identified data would only be released in small 

proportions to external companies, and that the data would be held securely within the University of 

Cambridge so that the algorithms are brought to the data and only those with approved access could 

see and use the data. A glossary of commonly used terms was developed for our project following 

this event to be used for future PPI communication as well as an anonymised report which 

summarised results from our question-and-answer sessions was submitted HRA REC, HRA CAG and 

PHE RAC for initial ethical approval.  

A national patient survey called “The AI Survey - The use of patient data in breast cancer screening 

artificial intelligence research” was conducted in October 2021. The survey was disseminated 

through the NIHR Cambridge BRC team, Independent Cancer Patient Voices (ICPV), Breast Cancer 

Now, Addenbrookes Cancer Patient Partnership Group, and Cancer Research UK, to patients; eligible 

for breast screening, those who have previously attended breast screening, or have been previously 

a) b) 
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diagnosed with breast cancer. The survey was hosted using the university Qualtrics platform from 

27/10/2020 to 31/01/2021. In total 46 responses were received. The survey highlighted areas for 

further improvement surrounding the terms used and layout of the patient facing material. We were 

able to demonstrate the improved clarity of the updated lay summary. In addition, the acceptability 

of the data fields collected in the database, Figure 4-2. Patients were very likely to accept the use of 

all fields to be collected in the database. However, 2.0%-6.1% of patients were unlikely or very 

unlikely to accept the use of family history or additional healthcare information e.g. information 

relating to other health conditions such as medication.  

 
Figure 4-2 – National patient survey question regarding acceptability of data fields. “How likely are you to 
accept the secure storage and use for research (algorithm testing and development) of each field of your de-
identified healthcare data?”. 

Figure 4-3 – National patient survey questions regarding commercial involvement. “Would you accept the 
use of your healthcare data (securely stored in a de-identified format without your consent) for algorithm 
testing research in the following circumstances:” 
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However, we acknowledged the lay summary was felt to be too long and so we produced a shorter 

version with all the key information still included. Similar results to those found at the science 

festival public forum were found in the survey regarding “Would you accept the use of your 

healthcare data (securely stored in a de-identified format without your consent) for algorithm 

testing research in the following circumstances”, Figure 4-3. Further supporting the acceptance of 

bringing the algorithms to data approach that was taken in this research.  

Follow-up small discussion forum groups were held via Zoom in January and February 2021 for 

people who contacted the research team following the survey. These discussions highlighted that 

there is hesitancy regarding commercial involvement in this research, mainly regarding concerns 

over data privacy. However, there was also an understanding of the need to involve commercial 

companies to enable this type of research to progress, and for the implementation of such 

technology within the NHS. Panel members noted the increased public awareness and acceptance of 

commercial collaborations within healthcare research, following the work to develop vaccines during 

the Covid-19 pandemic. The work involving commercial companies was further clarified in patient 

facing documents, such as which information commercial companies will have access to and how 

this access would be controlled. Those who attended the Zoom events kindly helped in further 

developing the updated versions of patient facing material and all documentation was made 

available on the University’s departmental website.  

4.3.4 Database sites   

Two sites in East Anglia, England, participated in the creation of the CC-MEDIA imaging database:  

• Cambridge (Cambridge University Hospitals NHS Foundation Trust, including Cambridge 

Breast Unit)  

• Norwich (Norfolk and Norwich University Hospitals NHS Foundation Trust, including Norwich 

Breast Unit) 

The average round length for screening at both sites is 34-36 months. Neither site participated in the 

AgeX trial, however screening was offered to those aged 47 years and older in the region within the 

study time period.  

Cambridge breast screening implements double reading of all mammograms, with the second reader 

able to see the outcome from the first reader, thus reading is dependant. Arbitration takes place for 

all cases recalled as well as for cases where there is discordance between the two initial readers, 

with a panel of up to four readers. During the Covid-19 pandemic Cambridge breast screening was 

paused twice, once from 23/03/2020 to 16/07/2020, and secondly from 11/01/2021 to 22/02/2021. 

Norwich breast screening uses double reading of all mammograms, with the second reader not 

being able to see the outcome from the first reader, thus reading is independent. Arbitration takes 
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place only for cases where there is discordance between readers, with an average panel size of five 

readers. During the Covid-19 pandemic Norwich breast screening was paused from 20/03/2020 to 

16/07/2020.  

When using the database; the first reader was used as the independent reader to be combined with 

the algorithm, arbitration was determined if there was a disagreement between readers, and trainee 

readers were replaced with trained readers to allow comparison using both sites’ data. 

4.3.5 Database creation   

The database consists of cases age greater than or equal to 47 years old, who attended screening 

between 2011 to 2020. Data was collected at two NHSBSP sites (Cambridge and Norwich) to create a 

centrally stored database for external testing of multiple AI algorithms. Patients who attended 

routine screening (triennial) as well as patients who attended high risk screening and subsequently 

were transferred to routine screening were incorporated into this database. The main sources of 

information were obtained from; picture archiving and communication system (PACS) for Digital 

Imaging and Communications in Medicine (DICOM) image data as well as DICOM header and tags, 

National Breast Screening System (NBSS) for breast screening metadata and Electronic Health 

Records (EHR) – EPIC / LARDR  – for additional clinical metadata, Figure 4-4. A screening episode is 

defined as the anything that occurs from the time a woman is invited to screening, the screen itself 

and any assessments, as well as diagnoses and treatments that occur as a consequence of screening. 

Outcomes for all case episodes were followed up using data from the NBSS until April 2022. 

Figure 4-4 – Data flow of the CC-MEDIA data collection. DICOM: Digital imaging and communications in 
medicine, EHR: Electronic health records, HPC RFS: High performance computing research file store, NBSS: 
National breast screening system, NHSBSP: National health service breast screening programme, PACS: Picture 
archiving and communication system. Adapted from Halling-Brown et al250. 
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An environment was set up within the NHS firewall at each hospital site to facilitate the transfer of 

images from PACS to a secure store (using code developed by Dr Andrew Priest, Medical Physicist at 

Cambridge University Hospital NHS Foundation Trust) which entailed; a static IP address, MATLAB 

(The Mathworks, Inc., Natick, Massachusetts, United States. http://www.mathworks.com, version 

2019a) with the Image Processing Toolbox, and the DCMTK tool kit (echoscu, findscu, movescu, 

storescu) (version 3.6.2 and 3.6.4)258. Cases were identified from NBSS using existing and new 

project specific Crystal Report queries (developed by Sue Hudson, PAS Consulting London). The 

personal identifiers (NHS number and study date) from NBSS were then used to query PACS and 

then retrieve the DICOM image data into the on-hospital-site secure store. DICOM imaging data 

included the standard two-view processed (“for presentation”) mammogram screening images as 

well as available additional views and raw (“for processing”) data. All the images were stored in a 

compressed Joint Photographic Experts Group (JPEG) lossless format. All image data, including the 

DICOM header and tag information was de-identified by adapting the basic profile provided in 

DICOM PS3.15, such that all identifiable information was removed (Appendix 12)259. Caution was 

taken when handling latent identifiers, such as date of screening, in order to ensure anonymity was 

achieved whilst retaining longitudinal information.  

Additional NBSS Crystal Report queries were used to extract clinical metadata from NBSS for the 

whole screening episode. The clinical metadata fields from NBSS provided a ground truth for each 

case. The clinical metadata was de-identified using Python (Python Software Foundation, 

http://www/python.org, version 3.8)260 based scripts (developed by Dr Lorena Escudero Sánchez, 

Research Associate at University of Cambridge) and Excel (Microsoft Corporation, 

https://office.microsoft.com/excel) functions within the on-site secure store.  

The de-identification processes for both the image data and clinical metadata occurred prior to the 

transfer of any data from the hospital site. The study nomenclature allows for the easy tracking and 

re-joining of data for analysis, where each case is assigned a trial ID (case ID), exam ID and image ID, 

Figure 4-5.  
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Figure 4-5 – Nomenclature of case de-identification within the CC-MEDIA database. The site code varied for 
Cambridge (CC05 or CC06) and Norwich (CC07 or CC08). The trial code was randomly assigned for each case. 
The exam code increased sequentially for each episode. Series number was taken from the DICOM series tag. 
MGP: Mammographic processed, MGR: Mammographic raw. LCC: Left craniocaudal, RCC: Right craniocaudal, 
RMLO: Right mediolateral oblique, LMLO: Left mediolateral oblique.  

 
All data was then encrypted in the on-hospital-site secure store, using Advance Encryption Standard 

(AES)-256 encryption, and subsequently transferred to the University of Cambridge high 

performance computing (HPC) research file store (RFS). A look up key store remained at each site 

within a separate area in the on-hospital-site secure store to allow for additional data linkage whilst 

building the database. Following the completion of the database this look up key store will be 

securely held by the principal investigator at each site.  

Once the image data was transferred the DICOM headers and tags were extracted from the image 

data using the DCMTK dcmdump utility (version 3.6.5)258. The DICOM dump data was then adapted 

into an image metadata file using MATLAB code (developed by Dr Nicholas Payne, Research 

Associate at University of Cambridge). The DICOM metadata files were then stored in the HPC RFS 

alongside the de-identified DICOM image data and clinical metadata.  

When collecting the image data firstly all interval cancers (ICs) and screen detected cancers (SDCs) 

from both sites were collected from 2011-2020. Secondly a set of cases that were age and year 

matched to the ICs in the database were extracted.  

All cases from specified year cohorts were consecutively collected, following the completion of the 

cancer retrieval (ICs and SDCs). The most recent year cohort with a complete follow-up time period 
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was collected first, hence starting with 2017 from both Cambridge and Norwich. Subsequently year 

cohorts were collected in a specific order at each site to avoid overlap with existing databases 

(The Optimam Mammography Image Database (OMI-DB)) where data had previously been collected. 

Data was collected from Cambridge by the OMI-DB database team between 2012-2016250.  

Thus to date the six sets of data have been extracted are: 

• CC05 – Cambridge ICs and year and age matched normal controls 2011-2020 

• CC06 – Cambridge SDCs 2011-2020 

• CC06 – Cambridge year cohorts 2017-2018 

• CC07 - Norwich ICs and year and age matched normal controls 2011-2020 

• CC08 – Norwich SDCs 2011-2020 

• CC08 – Norwich year cohorts 2014-2018 

Figure 4-6 – Timeline of mammography data changes over time at Cambridge and Norwich National Health 
Service Breast Screening Programme (NHSBSP) sites. SF: Screen film, OMI-DB: The Optimam Mammography 
Image Database, FU: Follow-up, FFDM: Full field digital mammography, NBSS: National breast screening 
system. *Only at Cambridge site.  

 
When using the image cases in studies, first the cohort was identified using the clinical metadata file 

and then all images for the cases were copied and unencrypted in a separate area on the secure HPC 

RFS store to retain the completeness of the original data. Figure 4-6 details the important changes at 

the database sites over the study time period. Due to the change from SF mammograms to FFDM in 

2011/2012 at both sites there was limited availability of image data over this time period. In 

addition, raw data was only collected at Cambridge and only between 2014 and 2019. 
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4.4 Results   

4.4.1 Database image content   

Image data collection started on 11/12/2020 and is ongoing. The information reported in this 

chapter is up to date as of 05/05/2022.  

Total Norwich 
2014 

Norwich 
2015 

Norwich 
2016 

Norwich 
2017 

Cambridge 
2017 

Norwich 
2018 

Cambridge 
2018 

Exams 27214 28926 25915 22936 18803 26901 21218 
Images 116013 122878 107043 94492 151917 110185 171521 

Manufacture        
GE 27210 

(99.99%) 
28926 
(100%) 

25915 
(100%) 

22936 
(100%) 

297 
(1.6%) 

26901 
(100%) 

372 
(1.8%) 

Philips 0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

18506 
(98.4%) 

0 
(0.0%) 

20846 
(98.2%) 

Fujifilm 4 
(0.01%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

FFDM        
 Raw FFDM 

images  
154 

(0.13%) 
259 

(0.21%) 
212 

(0.20%) 
243 

(0.26%) 
75972 

(50.01%) 
0 

(0.0%) 
85735 

(49.99%) 
 Processed 

FFDM images 
115859 

(99.87%) 
122619 

(99.79%) 
106831 

(99.80%) 
94249 

(99.74%) 
75945 

(49.99%) 
110185 
(100%) 

85786 
(50.01%) 

Breast 
Implants 

       

 Implant 
images 

768 
(0.7%) 

1247 
(1.0%) 

1482 
(1.4%) 

1169 
(1.2%) 

1894 
(1.3%) 

2958 
(2.7%) 

251 
(1.2%) 

Age at 
Screening 

       

47-49 3033 
(11.2%) 

2613 
(9.0%) 

2307 
(8.9%) 

106 
(0.5%) 

42 
(0.2%) 

14 
(0.05%) 

96 
(0.5%) 

50-59 10854 
(39.9%) 

11699 
(40.4%) 

11553 
(44.6%) 

10841 
(47.2%) 

9857 
(52.4%) 

11887 
(44.2%) 

10759 
(50.7%) 

60-69 10211 
(37.5%) 

12390 
(42.8%) 

10242 
(39.5%) 

9441 
(41.2%) 

7659 
(40.7%) 

11080 
(41.2%) 

8235 
(38.8%) 

70+ 3116 
(11.5%) 

2224 
(7.7%) 

1813 
(7.0%) 

2548 
(11.1%) 

1245 
(6.6%) 

3920 
(14.6%) 

2128 
(10.0%) 

Cancers        
Normal 26882 

(98.8%) 
28670 

(99.1%) 
25619 

(98.8%) 
22662 

(98.8%) 
18551 

(98.7%) 
26560 

(98.7%) 
20947 

(98.7%) 
SDC 208 

(0.8%) 
152 

(0.5%) 
198 

(0.8%) 
189 

(0.8%) 
158 

(0.8%) 
225 

(0.8%) 
188 

(0.9%) 
IC 124 

(0.5%) 
104 

(0.4%) 
98 

(0.4%) 
85 

(0.4%) 
94 

(0.5%) 
116 

(0.4%) 
85 

(0.4%) 
Table 4-2 – Number of exams per site available with images currently held in the CC-MEDIA database. 
Interval cancers were diagnosed within 40 months of screening. FFDM: Full field digital mammography, IC: 
Interval cancer, SDC: Screen detected cancer.  

 
In total the core database (CC06 and CC08) contains 323,438 images, 40,021 exams, and 39,982 

cases from Cambridge, and 550,611 images, 131,892 exams, 87,046 cases from Norwich. Thus in 
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total the database contains 874,049 images, 171,913 exams, 127,028 cases of which 1,318 are SDC 

cases, and 706 were IC cases, Table 4-2. 

Out of all the exams in the database 82,190 (47.8%) have one instance, 89,606 (52.1%) have two 

instances, with only a very small proportion having 3 (75 (0.04%)), 4 (32 (0.02%)) and 5 (10 (0.01%)) 

instances. The age range of cases in the cohort was 47-95 years old (median = 59 years old). 

An annual report is created by each screening programme called the KC62 (The NHS Breast 

Screening Programme Central Return Data Set), which details “information on women invited for 

Breast Screening, the outcome of the Breast Screening and further information on each cancer 

detected”261. Comparing the volume of cases to the distribution of KC62 data from both sites shows 

that a similar distribution was collected to the true distribution of cases which attended for 

screening. Thus the database was representative of the screening carried out at each NHSBSP site, 

Table 4-3. 

 NHSBSP 
Screened262 

Cambridge KC62  
Screened 

Cambridge 
CC-MEDIA 

Norwich  
KC62 Screened 

Norwich  
CC-MEDIA 

2011-2012 1940603 17134 - 25900 - 
2012-2013 1970955 17475 - 25798 - 
2013-2014 2079271 19590 - 26823 7912* 
2014-2015 2105454 21972 - 26070 26133 
2015-2016 2161268 19370 - 29150 29065 
2016-2017 2199342 18389 4979* 25584 25573 
2017-2018 2138434 19035 18970 22471 22286 
2018-2019 2234514 20830 16072* 27371 20923* 
2019-2020 2123589 15144 - 23675 - 

      
Total exams 18953430 168939 40021 232842 131892 

Table 4-3 – Cambridge and Norwich CC-MEDIA database 2011-2020 compared to the KC62 report at both 
sites. The KC62 reports programme performance from 01/04/YYYY to 31/03/YYYY at each NHSBSP site. KC62 
data is taken from Table-T of the annual KC62 report which reports the sum of tables A-F2; first invite for 
routine screening, routine invitation to previous non-attenders, return invitation to previous attenders (last 
screening within 5 years and last screen more than 5 years), short term recall, self / GP referrals for women not 
previously screened or previously screened (last screen within 5 years or last screen more than 5 years 
previously). *Fields that have incomplete year data. 

 
4.4.2 Database content  - Interval cancers  

ICs are a key measure of screening programme performance. The acceptable IC rate set by the 

NHSBSP is 3.7/1000 women screened101,103. ICs can occur anytime from the last negative screen to 

40 months post screen as defined by the NHSBSP. Figure 4-7 shows the time to diagnosis at 

Cambridge and Norwich by months. IC image data available within the CC-MEDIA database is shown 

in Table 4-4.  
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Figure 4-7 – Time to diagnosis (months) for interval cancers (IC) at a) Cambridge and b) Norwich.  

 
 Cambridge  

n (%) 
Norwich  

n (%) 
Total exams n 611 561 
Total images n 3937 2350 

Year of Screening   
2010-2011 2* (0.3%) 0* (0.0%) 
2011-2012 26* (4.3%) 0* (0.0%) 
2012-2013 75* (12.3%) 24* (4.3%) 
2013-2014 92 (15.1%) 100 (17.8%) 
2014-2015 106 (17.3%) 104 (18.5%) 
2015-2016 86 (14.1%) 104 (18.5%) 
2016-2017 62 (10.1%) 94 (16.8%)  
2017-2018 85 (13.9%) 76 (13.6%) 
2018-2019 53* (8.7%) 48* (8.6%) 
2019-2020 23* (3.8%) 11* (2.0%) 
2020-2021 1* (0.2%) 0* (0.0%) 

Age at Screening   
47-49 67 (11.0%) 54 (9.6%) 
50-59 262 (42.9%) 206 (36.7%) 
60-69 230 (37.6%) 229 (40.8%) 
70+ 52 (8.5%) 72 (12.8%) 

Manufacture   
GE 23 (3.8%) 557 (99.3%) 

Philips 553 (90.5%) 0 (0.0%) 
Hologic 15 (2.5%) 4 (0.7%) 
Sectra 20 (3.3%) 0 (0.0%) 
FFDM   

 Raw FFDM images 1478 (37.5%) 0 (0.0%) 
 Processed FFDM images 2459 (62.5%) 2350 (100%) 

Implants   
 Implant images 17 (0.4%) 28 (1.2%) 

Table 4-4 – Interval cancers (ICs) at Cambridge and Norwich with imaging data 2011-2020 in CC-MEDIA. 
Interval cancers were diagnosed within 40 months of screening, leading to 5 cases excluded from Cambridge 
and 4 cases from Norwich that were diagnosed > 40 months. FFDM: Full field digital mammography. *Fields 
that have incomplete year data. 

a) b) 
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As shown in the table there is good coverage of image data availability from 2013 to 2018. In 

addition four different mammographic machine vendors are included over this time period, however 

the majority are Philips at Cambridge and GE at Norwich. Information regarding IC rates is provided 

in this database from the NBSS local site data. Ethical approval has been obtained to apply for 

additional information from the Screening History Information Management system (SHIM) and  

National Cancer Registry (NCRAS) in the future. 

4.4.3 Database content  - Screen detected cancers  

SDCs that are recalled at the screening episode and diagnosed at the assessment clinic, where a 

triple assessment is carried out of; clinical examination, further imaging (e.g. ultrasound), and 

biopsy. It is estimated that in the triennial NHSBSP, SDCs occur at a rate of 8/1000 women 

screened54,263. The SDC image data that is available for each site within the CC-MEDIA database is 

shown in Table 4-5. As shown in the table there is good coverage of SDC data from 2013 to 2020 at 

both sites. In addition five different mammographic machine vendors are included over this time 

period, however the majority are Philips at Cambridge and GE at Norwich. 
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 Cambridge 
KC62 n (%) 

Cambridge  
n (%) 

Norwich 
 KC62 n (%) 

Norwich  
n (%) 

Total exams n 1539 1286 2179 1551 
Total images n - 8327 - 6528 

Year of Screening     
2010-2011 123 (8.0%) 1* (0.08%) 202 (9.3%) 0* (0.0%) 
2011-2012 148 (9.6%) 52* (4.0%) 204 (9.4%) 0* (0.0%) 
2012-2013 131 (8.5%) 129 (10.0%) 186 (8.5%) 52* (3.4%) 
2013-2014 148 (9.6%) 143 (11.1%) 180 (8.3%) 168 (10.8%) 
2014-2015 162 (10.5%) 168 (13.1%) 201 (9.2%) 203 (13.1%) 
2015-2016 166 (10.7%) 163 (12.7%) 188 (8.6%) 187 (12.1%) 
2016-2017 144 (9.4%) 148 (11.5%) 201 (9.2%) 197 (12.7%) 
2017-2018 162 (10.5%) 161 (12.5%) 198 (9.1%) 200 (12.9%) 
2018-2019 184 (12.0%) 196 (15.2%) 249 (11.4%) 247 (15.9%) 
2019-2020 97 (6.3%) 96 (7.5%) 202 (9.3%)  207 (13.3%) 
2020-2021 74 (4.8%) 29* (2.3%) 186 (8.5%) 90* (5.8%) 

Age at Screening Cambridge  
n (%) [n = 1286] 

Norwich  
n (%) [n = 1551] 

47-49 74 (5.7%) 69 (4.5%) 
50-59 469 (36.5%) 509 (32.8%) 
60-69 589 (45.8%) 717 (46.2%) 
70+ 154 (12.0%) 256 (16.5%) 

Manufacture   
GE 33 (2.6%) 1548 (99.8%) 

Philips 1190 (92.5%) 0 (0.0%) 
Hologic 22 (1.7%) 3 (0.2%) 
Siemens 1 (0.08%) 0 (0.0%) 
Sectra 40 (3.1%) 0 (0.0%) 
FFDM   

 Raw FFDM images 3133 (27.6%) 13 (0.2%) 
 Processed FFDM images 5194 (62.4%) 6515 (99.8%) 

Implants   
 Implant images 45 (0.5%) 25 (0.4%) 

Table 4-5 – Screen detected cancers (SDCs) at Cambridge and Norwich with imaging data 2011-2020 in CC-
MEDIA. The KC62 reports programme performance from 01/04/YYYY to 31/03/YYYY at each NHSBSP site. KC62 
data is taken from Table-T of the annual KC62 report which reports the sum of tables A-F2; first invite for 
routine screening, routine invitation to previous non-attenders, return invitation to previous attenders (last 
screening within 5 years and last screen more than 5 years), short term recall, self / GP referrals for women not 
previously screened or previously screened (last screen within 5 years or last screen more than 5 years 
previously). FFDM: Full field digital mammography. *Fields that have incomplete year data. 

 
4.4.4 Database content  - Ethnicity  

Ethnicity information is sparsely available within the NBSS output from Cambridge and no 

information was available from Norwich, Table 4-6. A similar volume of ethnicity data availability 

from NBSS was found when searching EPIC the EHR system at Cambridge, Figure 4-8. This limited 

availability of data meant it was not possible in the studies detailed in Chapters 5-7 to evaluate AI 

tools for bias relating to ethnicity. In addition, as the data included in this study is only from two 
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sites in East Anglia, England, it is not representative of the UK population. This is further outlined in 

the 2011 Census of 25 million households in England and Wales where it was reported “people from 

the White ethnic group were more likely to live in the South East than any other region”264.  

 Cambridge NBSS  
[n = 40021] 

Cambridge EHR EPIC  
[n = 83662] 

A = White – British 18200 
(45.5%) 

45424 
(54.3%) 

B = White – Irish 212 
(0.5%) 

381 
(0.5%) 

C = White – Any other White 
background 

770 
(1.9%) 

2329 
(2.8%) 

D =  Mixed – White and Black 
Caribbean 

27 
(0.07%) 

32 
(0.04%) 

E = Mixed – White and Black 
African  

19 
(0.05%) 

19 
(0.02%) 

F = Mixed – White and Asian 66 
(0.2%) 

78 
(0.09%) 

G = Mixed – Any other Mixed 
background 

35 
(0.09%) 

129 
(0.2%) 

H = Asian or Asian British – Indian 125 
(0.3%) 

350 
(0.4%) 

J = Asian or Asian British – Pakistani 31 
(0.08%) 

75 
(0.09%) 

K = Asian or Asian British – 
Bangladeshi 

21 
(0.05%) 

55 
(0.07%) 

L = Asian or Asian British – Any 
other Asian background 

122 
(0.3%) 

396 
(0.5%) 

M = Black or Black British - 
Caribbean 

54 
(0.1%) 

140 
(0.2%) 

N = Black or Black British - African 59 
(0.2%) 

181 
(0.2%) 

P = = Black or Black British – Any 
other Black background 

6 
(0.01%) 

61 
(0.07%) 

R = Other ethnic groups – Chinese 176 
(0.4%) 

420 
(0.5%) 

S = Other ethnic groups – Any 
other group  

105 
(0.3%) 

305 
(0.4%) 

Z = Not stated 257 
(0.6%) 

5193 
(6.2%) 

Missing 19736 
(49.3%) 

28094 
(33.6%) 

Table 4-6 – Ethnicity information from National Breast Screening System (NBSS) and Electronic Health 
Record (EHR) EPIC data at Cambridge. NBSS: National breast screening system, EHR: Electronic health record. 
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Figure 4-8 – Ethnicity data distribution at Cambridge using National Breast Screening System (NBSS) and 
Electronic Health Record (EHR) EPIC data. a) NBSS, b) EPIC EHR. Ethnicity codes are provided in Table 4-6. 
NBSS: National breast screening system.  

 
4.4.5 Database content  - Mammographic breast density  

Density is not routinely reported by readers in the NHSBSP. However, the Breast Imaging-Reporting 

and Data System (BI-RADS) 5th edition density score was obtained for all cases in the CC-MEDIA 

database. Raw DICOM data was processed by Volpara (research version - 

VolparaResearch32_L30Enabled_v2, Wellington, New Zealand) to generate the Volumetric Breast 

Density (VBD) of each case. The VBD was then converted in Volpara Density Grade, which is 

consistent with BI-RADS 5th edition. Processed DICOM data was processed by one of the AI algorithm 

systems (DL-3) used in this research to generate the BI-RADS 5th edition density score for each case. 

Figure 4-9 shows the distribution of 1 years’ worth (2017) of data from Cambridge where both raw 

and processed data was available.  

Figure 4-9  – Breast imaging-reporting and data system (BI-RADS) 5th edition mammographic density 
distribution for cases in one year (2017) of data at Cambridge with both raw and processed four views 
mammograms available [n = 18246]. a) Volpara raw density distribution, b) DL-3 processed density 
distribution. Cases with breast implants were removed from this dataset. 

 
Demonstrating a similar distribution in the Volpara population mammographic density distribution 

as per previous publications75,265. Whereas the density distribution from DL-3 using processed data 

shifted the population distribution to the left providing overall lower density assessments for cases. 

b) a) 

a) b) 
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4.4.6 Database content  - Histopathological information   

The clinical metadata collected from each site included the invasive status (ICD-10 code), histological 

grade (assigned using Nottingham grading system), and histological size for cancer cases. Where 

there were gaps in data, the missing data was collected by hand from histopathology reports on the 

EHR systems at each site. Histopathological information was taken from the surgical pathology 

report where available. If the surgical histopathology was unavailable the core biopsy histopathology 

was used. Information regarding the use of neoadjuvant chemotherapy and hormone therapy was 

not available alongside this information and so the histopathological size and grade could differ at 

the time of diagnosis for some cases. Furthermore cancers diagnosed during the Covid-19 pandemic 

were treated with an increase use of hormone therapy whilst the availability of operations was 

limited, this would also have an impact on the histopathological size and grade of cancers.  

 

4.5 Technical setup of an AI algorithm testing environment 

An AI algorithm testing environment was setup at the University of Cambridge (developed by 

Richard Black, Medical Physicist at Cambridge University Hospitals NHS Foundation Trust). Two 

computers were available in this environment with the following technical setup:  

• System 1 – OpenSUSE Leap 15.3 operating system, 12 central processing units (CPU), 32 GB 

random access memory (RAM).  

• System 2 - OpenSUSE Leap 15.3 operating system, 56 CPU, 1024 RAM, 3 NVIDIA Quadro RTX 

8000 graphics cards.  

On both systems the following software was installed to allow for company installation as well as 

data processing; Teamviewer, Docker, dcmtk 3.6.5, libvirtd v7.1.0, and qemu-kvm v5.2.0 

(virtualisation). 

 

4.6 Uses of the database   

To date the database has been used for the following research applications. Those applications with 

an asterisk (*) next to them are the applications detailed in the remaining chapters of this thesis, the 

remaining applications are part of ongoing work by other researchers.  

• *Benchmark existing AI algorithms for interval and next round cancer detection – Chapters 

5, 6 and 7 

• *Benchmark existing AI algorithms for stand-alone cancer detection – Chapter 6  

• *Benchmark existing AI algorithms for screening triage – Chapter 7 

• *To assess the relationship between AI algorithm accuracy and mammographic breast 

density – Chapters 5, 6 and 7 
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• To evaluate the accuracy of AI algorithm prompt location for the detection of cancer 

• To evaluate breast density tools for both raw and processed data 

• To evaluate breast cancer screening risk stratification tools  

• To evaluate the impact of prior image availability on AI algorithm performance  

 

4.7 Discussion    

4.7.1 Overall discussion 

Developing a large multi-site mammographic imaging database is a complex task, involving 

numerous governance, approvals and technical setup requirements. The involvement of patients 

and the public in the setup highlighted the importance of clear communication regarding access and 

processing of data as well as the acceptability of using data without consent and with commercial 

collaborators for this type of research. In addition, the formation of the DAC means the data is 

treated with a high level of governance oversight from staff with expertise at both sites to ensure 

the security and correct use of the data in research. The systematic collection of a large 

representative cohort for breast cancer screening provides an extensive resource for AI algorithm 

benchmarking as well as for feedback to AI companies regarding their performance to allow for the 

further development of algorithms. The availability of SDCs as well as ICs and next round cancers 

(NRCs) over the ten-year study time period allows for the robust assessment of algorithms for the 

detection of cancers as well as the potential for the earlier detection of cancer. Using this database 

AI algorithms can be tested for numerous applications including stand-alone detection and normal 

case triage in a UK screening setting. Another advantage of the database is the inclusion of raw data 

at one site, allowing for the calculation of mammographic breast density which is not routinely 

reported within the NHSBSP. This database is of similar size to recently developed databases in the 

UK, USA and Sweden, and overcomes the limitation of early mammographic databases which were 

small in size and only contained screen film mammography.  

4.7.2 Limitations 

However, this database is limited to East Anglia and thus not representative of the entire UK 

population in terms of demographics. Furthermore, there is limited availability of ethnicity 

information at both sites to provided sufficient data for subgroup analysis to evaluate AI algorithms 

performance in order to detect bias. In addition, this database does not have any image level / pixel 

level annotations at present and so it is not possible to evaluate the precision of AI algorithm prompt 

locations which are provided alongside continuous case score outputs. Lastly, the overlap with OMI-

DB is required to be taken into account when selecting cases for algorithm testing, by removing 
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cases identified as being extracted into OMI-DB, as these cases may have been used for model 

training.  

 

4.8 Conclusion 

The CC-MEDIA database is a large 127,000 case mammographic medical imaging database that is 

representative of the NHSBSP in case distribution. The clinical metadata available provides a robust 

method to identify the ground truth for different cases cohorts when testing various applications of 

AI algorithms in breast cancer screening. The governance of the database by the DAC ensures the 

security of the data and that robust protocols are followed when sharing data. Collecting data from a 

ten-year period provides sequential screening information which is vital for testing numerous 

applications of AI algorithms for breast cancer screening. However, this data is limited to one region 

of the UK only and thus is not completely representative of diverse UK population in terms of 

ethnicity and socio-economic factors.  
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Chapter 5 – Performance of artificial intelligence algorithms for 

interval cancer detection  

 
5.1 Aims 

In this chapter the performance of three commercial AI algorithms is investigated for the detection 

of interval cancers, using an enriched dataset from two UK screening sites. This study evaluated the 

potential benefit from AI algorithms for the earlier detection of breast cancer. Interval cancer 

literature and screen programme standards were used to pre define thresholds for the AI algorithms 

operating points and all algorithms were tested independent of the commercial vendor. The results 

from this study will help the planning of both retrospective and prospective studies for the use of AI 

algorithms as stand-alone readers. 

Contents of this chapter have been presented at the Radiological Society of North America 

conference 2021 [abstract ID - #2021-SP-12762-RSNA] and accepted for presentation at the 

European Congress of Radiology 2022 [abstract number - #12040]. 

 

5.2 Introduction  

Breast cancer screening programmes aim to detect breast cancer at an earlier stage when the cancer 

is asymptomatic, which has been shown to improve both morbidity and mortality outcomes266. 

Interval cancers (ICs) occur in the time period between screening rounds. In the UK, operating a 

triennial programme, the acceptable IC rate is set at 3.7/1000 women screened101,103. Overall the 

survival outcomes of ICs are worse than screen detected cancers102. It is estimated ~77% ICs could 

not be seen at screening (normal / benign), ~16% have minimal signs (uncertain) and ~7% were 

visible (suspicious)103. Duty of candour is defined as a healthcare professionals responsibility to be 

“honest with patients and people in their care when something that goes wrong with their 

treatment or care causes, or has the potential to cause, harm or distress”, thus all ICs classified as 

false negative (suspicious) in the UK programme at the IC audit are required to be disclosed to 

patients103,267. There are numerous reasons ICs are not be detected at screening. These include not 

present at time of screening and developed in the interval, low sensitivity of mammography 

(especially in dense breasts due to masking), cancer radiological appearance (this can be either a 

stable appearance or the signs can be minimal on mammography), and perception or interpretation 

error (either not seen or seen and dismissed)268,269. 

Artificial intelligence (AI) algorithms for detection and diagnosis tasks (CADe+x) have demonstrated 

good performance for screen detected cancers (SDCs)133. However, as highlighted in the 2021 UK 

National Screening Committee (NSC) report the use of AI systems for IC detection is scarce, 
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especially for UK data136. Lång et al, tested one AI algorithm (Transpara v1.5.0) using a dataset of 429 

ICs from five years of Swedish screening data, and found the AI algorithm could detect 11.2% of 

potentially visible cancers at the previous screen at a 4.0% recall rate270. In addition, 28.4% of 

minimal sign or false negative cancers were correctly located by the AI prompts. Of the ICs detected 

at a risk score 10 (the highest category score) 23.0% patients died or they developed stage IV disease 

and thus were clinically significant cancers270. Larsen et al tested an updated version of the AI 

algorithm (v1.7.0) used in Lång et al, and applied it to a large Norwegian dataset of more than 

47,000 women, containing 205 ICs271. Larsen et al found 44.9% of ICs were detected at a risk score of 

10 (a 10.0% recall rate), and 30.7% at a 5.8% recall rate. Hinton et al applied a ResNet50 architecture 

algorithm to a dataset of 182 ICs diagnosed within 12 months of screening, with an age and race 

matched screen detected cancer dataset of 173 cancers, from nine years of US screening. They 

found an accurate classification of 74.0% for ICs and 77.0% for SDCs272. Dembrower et al, tested an 

AI algorithm (Lunit v5.5.0) using a dataset of seven years of Swedish screening data with 7364 

women which included 200 ICs. They found 12.0-27.0% of ICs had the highest 1.0-5.0% of scores, 

and the AI score was shown to be a better predictor than automated breast density (LIBRA) for the 

detection of ICs, OR 2.01 [95% CI 1.98-2.18] and 1.59 [95% CI 1.50-1.68] respectively134. Other 

studies have also included ICs within their datasets but have either not reported the separate 

performance for ICs or the dataset was small in size138,273. 

This study aimed to provide evidence for the use of AI algorithms for IC detection with UK screening 

data. In addition, this study aimed to evaluate three commercial AI algorithms using the same large 

unseen dataset to carry out independent performance benchmarking.   

 

5.3 Methods  

5.3.1 Sample size  

The required sample size for this study was calculated using the method described in Arkin et al, to 

determine the minimum number of cases required to estimate the true performance of an algorithm 

for benchmarking274. As described in the literature it is estimated 23.0% of ICs were visible at the 

previous screening (false negatives – suspicious / uncertain) and therefore a reference proportion of 

20.0% and 30.0% was used103. Applying these reference proportions and a 95.0% confidence 

interval, between 246 - 323 cancers were required for this study.  

5.3.2 Data  

Patient data was obtained from the existing CC-MEDIA database described in Chapter 4, where data 

was collected from two National Health Service Breast Screening Programme (NHSBSP) sites 
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(Cambridge and Norwich) under existing ethical approval (HRA REC 20/LO/0104, HRA CAG 

20/CAG/0009, PHE RAC BSPRAC_090).  

Women age greater than or equal to 47 years old who attended screening at either site were 

included. IC cases were identified using the existing cancer registry (CREGX) query on the National 

Breast Screening System (NBSS) from January 2011 to December 2020 at Cambridge, and January 

2011 to May 2021 at Norwich. A python (Python Software Foundation, http://www/python.org, 

version 3.8)260 script was used to query a database of all women screened at each site, to randomly 

select three age and screening year matched controls to every IC case. The two-view screening Full 

Field Digital Mammography (FFDM) images for each case were used. Cases were excluded where 

they did not include the full four views, and as per each companies’ manufacturer protocol images 

containing an implant, pacemaker or other device were excluded. Cases were also excluded 

following a discussion with Public Health England (PHE) if the IC was not a primary breast cancer (e.g. 

mesothelioma, melanoma, colorectal cancer metastasis). IC radiological classifications were taken 

from the original screen reader IC audit. Where histopathological data was missing, this was hand 

searched for using Electronic Health Records (EHR) at each site, for further detail please see Chapter 

4 Section 4.4.5. The case selection process is shown in the Standards for Reporting of Diagnostic 

Accuracy Studies (STARD) diagram in Figure 5-1275.  

Figure 5-1 – Standards for Reporting of Diagnostic Accuracy Studies (STARD) flow diagram of cases included 
and excluded in this study. FFDM: Full Field Digital Mammogram, IC: Interval cancer, NHS: National Health 
Service, OMI-DB: The Optimam Mammography Image Database, PHE: Public Health England, PACS: Picture 
Archiving and Communication System. 



 

 98 

5.3.3 Ground truth  

The ground truth for an IC case was a confirmed histopathological diagnosis, within 40 months of 

screening, as per the NHSBSP definition101. ICs were classified by radiologists as part of the routine IC 

audit using the NHSBSP definitions, which were updated in August 2017101: 

• Satisfactory - Normal – “normal or benign mammographic features” and “readers found no 

reason to recall”.  

• Satisfactory with learning points - Uncertain – “seen with hindsight, difficult to perceive, not 

obviously malignant” and “not all readers would recall. Case may provide learning”.  

• Unsatisfactory – Suspicious – “appearance is obviously malignant” with “all readers 

reviewing the images agree that they would recall. Woman should have been recalled”.  

A case was classified as ‘normal’ if there was a routine recall from screening, more than 912 days 

after their initial screen, and no breast cancer was detected in this time period. Figure 5-2 provides 

an overview of the cases included and examples of different IC cases included.  

 
Figure 5-2 – Example of cases included in the study. a) Interval cancer cases selected from CC-MEDIA cohort 
were matched at a ratio of 1:3 with normal cases based on year of screen and age at screen. Only cases from 
2011-2019 were included due to the follow-up time period required of 912 days and so only cases up until 2019 
could be included as screening data was available until end of 2020 at Cambridge and mid 2021 at Norwich, b) 
an example of a normal / benign classified interval cancer case, c) an example of an uncertain interval cancer 
case, and c) an example of a suspicious interval cancer case.  

 
5.3.4 AI tools  

Three commercial AI algorithms were independently tested. Each tool was installed within the 

University of Cambridge research environment, and companies did not have access to their tools 
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during testing or the results from the study. Details of each algorithms training, required input and 

output as well as operating system are outlined in Table 5-1.  

Tool DL-1 DL-2 DL-3 
Training Screening 

Programme Readers - 
Frequency 

(%UK) 

Double – triennial 
Double – biennial 

Single – annual 
(10.0%) 

Double – biennial  
 
 

(0.0%) 

Double – triennial  
Single - biennial 
Single – annual  

(4.3%) 
OMI-DB Yes No Yes 

Training Cases n >200000 >200000 >150000 
Training Cases Age Range 40-74 50-70 18-90 

Training Cancers SDC / IC / NRC SDC  NA 
Training Cases Vendors 

(%) 
Hologic (80.0%) 

GE (10.0%) 
Siemens (10.0%) 

Hologic (41.0%) 
GE (5.0%) 

Siemens (36.0%) 
Philips (< 1.0%) 

Fuji (7.0%) 
Agfa (6.0%)  

Kodak (4.0%) 

Hologic (32.3%) 
GE (65.6%)  

Siemens (1.7%) 
Philips (0.3%) 

    
Data  Processed FFDM Processed FFDM Processed FFDM 
OS Lunix Lunix Lunix 

Output Case level 
Continuous score 

(0-10)* 

Case level 
Continuous score 

(0-10)* 

Case level 
Continuous score 

(0-10)* 
Table 5-1 – Artificial intelligence (AI) algorithm characteristics. FFDM: Full field digital mammogram, GE: 
General Electric, IC: Interval cancer, NA: Not available, NRC: Next round cancer, OS: Operating System, OMI-DB: 
The Optimam Mammography Image Database, SDC: Screen detected cancer. *Output scores were adjusted to 
the same 0-10 scale. 

 
5.3.5 Thresholds  

Three different methods for identifying thresholds were used in this study and were all based on 

using the AI algorithms at either a 96.0% specificity (NHSBSP consensus specificity) or 30.0% 

sensitivity (estimated visible IC rate), for use as stand-alone system for IC detection, Figure 5-3.b.  

The first threshold is the ‘pre-specified specificity / sensitivity’ (threshold 1) where the tools are 

operated at the pre-defined operating points of 96.0% specificity or 30.0% sensitivity within the 

study data for each site. The second threshold is the ‘identified year operating points’ (threshold 2) 

for each algorithm, which were found using 10,206 cases (229 cancers (150 SDCs and 79 ICs)) of 

Cambridge 2017 data from the main CC-MEDIA database. Both the ‘pre-specified specificity / 

sensitivity’ (threshold 1) and ‘identified year operating points’ (threshold 2) thresholds were then 

applied to the Cambridge and Norwich data in this study. The last threshold was the ‘identified 

Cambridge operating points’ (threshold 3) for each algorithm, where the operating point was 

identified on the study Cambridge data and then applied to the study Norwich data. 
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Figure 5-3 – Proposed workflow image for testing the artificial intelligence (AI) systems as stand-alone 
readers for interval cancer (IC) detection. a) Routine UK double reading workflow, b) stand-alone artificial 
intelligence algorithm reading at 96.0% specificity and 30.0% sensitivity thresholds workflow.  

 
5.3.6 Statistical analysis  

All statistical analysis took place in R (R Foundation for Statistical Computing, Vienna, Austria, 

version 4.0.4)225, using packages: ggplot2, dplyr, tidyr, lme4, pROC, precrec, lubridate, epiR, 

data.table and VennDiagram276–284. The overall predictive performance of each AI algorithm was 

evaluated by calculating the area under the receiver operating characteristic curve (AUROC), 

proportion of true positive (TP), true negatives (TN), false positives (FP), false negatives (FN), 

sensitivity and specificity.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
		 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

To investigate the variability between sites and mammography machine vendors the results from 

each site are reported separately. Data is presented as integer number and percentage (n (%)), or 

median and interquartile range [IQR 25th – 75th centile range] as appropriate. 

A multivariable model was created for a combination of all three individual algorithms using a 

generalised linear mixed effects model and Cambridge data. This model was then applied to Norwich 

data to check for overfitting. DeLong’s test was used to assess for a statistically significant difference 

between the AUROC curve of individual AI algorithms using 2000 bootstrapping examples. 

Subgroup analysis for each algorithm based on IC detection at different categories of; age, 

radiological classifications, time interval to diagnosis (months), mammographic machine vendor, 

invasive status of cancer, invasive tumour size, invasive tumour grade and mammographic breast 

density was performed using both Cambridge and Norwich data. The true integer values and 
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sensitivity were reported as well as Chi squared c2 test was used to investigate if there was a 

statistically significance between categories285. In all analyses, 95.0% confidence intervals are used 

and p-values < 0.05 were considered statistically significant. 

5.3.7 Reporting  

Each AI algorithm was assigned a Deep Learning (DL) Identifier (ID) for the purposes of this study. 

The de-identified results of all algorithms were reported back to the companies prior to publication. 

The individual companies’ results were re-identified and presented back to each company for their 

own performance; the companies could not alter any reporting or methods used.  

 

5.4 Results   

5.4.1 Data 

In total 8,452 images from Cambridge and 8,012 images from Norwich were included in the study 

dataset. 2,113 cases from Cambridge contained 523 IC cases (24.8%), and 2,003 cases from Norwich 

contained 506 IC cases (25.3%). Study case cohort characteristics are provided in Table 5-2. 
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 Cambridge 
Normal  

Cases n (%) 

Cambridge 
Interval 

Cancers n (%) 

Norwich 
Normal 

Cases n (%) 

Norwich  
Interval 

Cancers n (%) 
Total Cases n 2113 2003 

   
Age at 

Screening 
Median 57.0 [51.0-64.0] 60.0 [54.0-67.0] 
47-49 187 (8.8%) 62 (2.9%) 145 (7.2%) 52 (2.6%) 
50-54 430 (20.4%) 142 (6.7%) 258 (12.9%) 89 (4.4%) 
55-59 261 (12.4%) 89 (4.2%) 308 (15.4%) 105 (5.2%) 
60-64 318 (15.1%) 107 (5.1%) 222 (11.1%) 77 (3.8%) 
65-69 298 (14.1%) 91 (4.3%) 390 (19.5%) 129 (6.4%) 
70+ 96 (4.5%) 32 (1.5%) 174 (8.7%) 54 (2.7%) 

Year of Screen 2011 8 (0.4%) 7 (0.3%) 0 (0.0%) 0 (0.0%) 
2012 218 (10.3%) 70 (3.3%) 10 (0.5%) 13 (0.7%) 
2013 231 (10.9%) 72 (3.4%) 166 (8.3%) 66 (3.3%) 
2014 313 (14.8%) 105 (5.0%) 353 (17.6%) 115 (5.7%) 
2015 264 (12.5%) 87 (4.1%) 293 (14.6%) 97 (4.8%) 
2016 198 (9.4%) 64 (3.0%) 283 (14.1%) 91 (4.5%) 
2017 238 (11.3%) 76 (3.6%) 237 (11.8%) 77 (3.8%) 
2018 120 (5.7%) 42 (2.0%) 153 (7.6%) 46 (2.3%) 
2019 0 (0.0%) 0 (0.0%) 2 (0.1%) 1 (0.05%) 

FFDM Vendor GE 26 (1.2%) 16 (0.8%) 1490 (74.4%) 502 (25.1%) 
Philips 1501 (71.0%) 473 (22.4%) 0 (0.0%) 0 (0.0%) 
Hologic 26 (1.2%) 15 (0.7%) 7 (0.3%) 4 (0.2%) 
Sectra 37 (1.8%) 19 (0.9%) 0 (0.0%) 0 (0.0%) 

Density  
BI-RADSa 

 

a 342 (16.2%) 46 (2.2%) 224 (11.2%) 20 (1.0%) 
b 875 (41.4%) 231 (10.9%) 894 (44.6%) 238 (11.9%) 
c 368 (17.4%) 236 (11.2%) 361 (18.0%) 232 (11.6%) 
d 5 (0.2%) 10 (0.5%) 18 (0.9%) 16 (0.8%) 

Table 5-2 – Summary of testing dataset characteristics. Integer values with percentages in brackets (%) and 
median with Interquartile range in square brackets [IQR] are provided. BI-RADS: Breast imaging-reporting and 
data system, FFDM: Full Field Digital Mammography, GE: General Electric. aDL-3 5th edition BI-RADS density 
scores on processed Full Field Digital Mammograms. 

 
The FFDM images were from 48.0% Philips’s, 49.4% GE, 1.3% Hologic, and 1.4% Sectra 

mammography machines. The median age of the entire cohort was 59.0 [IQR 53.0–65.3] years old 

and the median time interval between screening and follow-up normal recall as 1071.0 [IQR 1041.0–

1105.0] days. IC cases had a median time interval from screening to diagnosis of 690.0 [IQR 465.0–

911.0] days at Cambridge and 670.5 [IQR 434.2–880.8] days at Norwich. The majority of cases 

(78.4%) were classified as normal / benign, with 16.6% assigned uncertain and 3.3% suspicious 

classification at the routine IC audit. IC characteristics are provided in Table 5-3 and Table 5-4.   
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 Cambridge Interval 
Cancers n (%) 

Norwich Interval  
Cancers n (%) 

Total Cases n 523 506 
Interval 

(months) 
0-12 85 (16.3%) 83 (16.4%) 

12-24 205 (39.2%) 201 (39.7%) 
24-36 233 (44.5%) 222 (43.9%) 
36-40 0 (0.0%) 0 (0.0%) 

Radiological Audit 
Classification 

Normal / Benign 429 (82.0%) 382 (75.5%) 
Uncertain 80 (15.2%) 92 (18.2%) 
Suspicious 8 (1.5%) 27 (5.3%) 

Unclassifiable 5 (1.0%) 5 (1.0%) 
Missing 1 (0.2%) 0 (0.0%) 

Density BI-RADSb 
 

a 20 (3.8%) - 
b 110 (21.0%) - 
c 114 (21.8%) - 
d 76 (14.5%) - 

Missing 203 (38.8%) - 
Table 5-3 – Interval cancer (IC) characteristics by case. Integer values with percentages in brackets (%) are 
provided. BI-RADS: Breast imaging-reporting and data system. b Volpara 5th edition BI-RADS mammographic 
breast density from raw full field digital mammograms Cambridge data. 

 
One AI algorithm (DL-3) provided a density score based on processed data for the entire cohort 

which was used in study analysis, Table 5-2. Volpara mammographic breast density (research version 

– VolparaResearch32_L30Enabled_v2, Wellington, New Zealand) was only available for Cambridge 

cases, where the raw mammographic data was available (67.3% of Cambridge cases), Table 5-3. 

 Cambridge Interval 
Cancers n (%) 

Norwich Interval  
Cancers n (%) 

Total Lesions n 535 519 
Invasive Status Invasive 474 (88.6%) 490 (94.4%) 

Non-invasive 55 (10.3%) 29 (5.6%) 
Missing 6 (1.1%) 0 (0.0%) 

    
Invasive 

Tumour Sized 
(mm) 

< 15 114 (24.1%) 146 (29.8%) 
>= 15 278 (58.6%) 288 (58.8%) 

Missing 82 (17.3%) 56 (11.4%) 
Invasive 
Tumour 
Graded 

1 49 (10.3%) 65 (13.3%) 
2 223 (47.0%) 231 (47.1%) 
3 183 (38.6%) 180 (36.7%) 

Missing 19 (4.0%) 14 (2.9%) 
Table 5-4 – Interval cancer (IC) characteristics by lesions. Integer values with percentages in brackets (%) are 
provided. dInvasive lesions only.  

 
5.4.2 Algorithm results  

The area under the receiver operating characteristic curve (AUROC) was 0.710 [95% CI 0.691–0.730], 

0.713 [95% CI 0.695–0.732], 0.732 [95% CI 0.715–0.750] for DL-1, DL-2, and DL-3 respectively when 
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testing on the entire cohort. When tested on Cambridge data the AUROC was 0.719 [95% CI 0.692–

0.746], 0.723 [95% CI 0.698–0.748], 0.726 [95% CI 0.701–0.752], and on Norwich data was 0.713 

[95% CI 0.686–0.740], 0.704 [95% CI 0.677–0.730], 0.760 [95% CI 0.736–0.784] for DL-1, DL-2, and 

DL-3 respectively.  

ROC curve plots for comparison between sites is shown in Figure 5-4.a. and between AI algorithms in 

Figure 5-4.b. All algorithms perform similarly on Cambridge and Norwich data. However, the AUROC 

of DL-3 is statistically significantly greater than DL-1 and DL-2 when tested on all and Norwich data (p 

< 0.05).  

Figure 5-4 – Receiver operating characteristic (ROC) curves for all three artificial intelligence (AI) algorithms 
at each site. a) For each artificial intelligence algorithm with the overall results in grey, Cambridge in orange 
and Norwich in pink, b) for each site with the results for DL-1 are in blue, DL-2 in purple, and DL-3 in green.  

 
Testing using the ‘pre-specified specificity / sensitivity’ (threshold 1) thresholds on Cambridge data 

at 96.0%, specificity, found a sensitivity of 23.7% , 21.6%, 23.1% and at 30.0% sensitivity specificity 

was 93.8% , 93.1%, 93.0% for DL-1, DL-2, and DL-3 respectively, results are shown in Table 5-5. 

 

 

 

 

 

 

a) 

b) 
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Threshold a) Sensitivity a) Specificity b) Sensitivity b) Specificity 
96.0% specificity  

(DL-1) 
23.7%  

[19.0-28.7] 
96.0% 21.6% 

[17.0-26.4] 
96.7% 

[95.3-97.9] 
96.0% specificity  

(DL-2) 
21.6%  

[17.2-26.4] 
96.0% 21.8% 

[17.0-26.4] 
96.0% 

[94.1-97.3] 
96.0% specificity  

(DL-3) 
23.1%  

[17.8-27.3] 
96.0% 20.8% 

[16.3-26.0] 
96.5% 

[95.1-97.7] 
     

30.0% sensitivity  
(DL-1) 

30.0% 93.8%  
[91.8-95.6] 

2.9% 
[1.9-9.6] 

99.9% 
[99.7-100] 

30.0% sensitivity  
(DL-2) 

30.0% 93.1%  
[90.5-94.8] 

2.1% 
[1.5-5.2] 

100% 
[99.9-100] 

30.0% sensitivity  
(DL-3) 

30.0% 93.0%  
[90.9-95.0] 

0.4% 
[0.2-5.6] 

100% 
[99.9-100] 

Table 5-5 – Cambridge data testing of three artificial intelligence (AI) algorithms. a) At the ‘pre-specified 
specificity / sensitivity’ (threshold 1) for 96.0% specificity, and 30.0% sensitivity, b) at the ‘identified year 
operating points’ (threshold 2) from Cambridge external year cohort testing. 95.0% confidence intervals are in 
square brackets [95.0% CI]. 

 
Applying the ‘identified year operating points’ (threshold 2) on Cambridge 2017 data at 96.0% 

specificity, found a specificity of 96.7%, 96.0% and 96.5%, and sensitivity of 21.6% , 21.8%, 20.8% 

respectively for DL-1, DL-2, and DL-3. At 30.0% sensitivity DL-1, DL-2, and DL-3 specificity was 99.9% , 

100.0%, 100.0% and sensitivity was 2.9%, 2.1%, 0.4% respectively. Figure 5-5 shows the distribution 

of IC cases and normal cases from Cambridge data by the assigned continuous score for each AI 

algorithm with the four different operating points used in this study.  

Figure 5-5 – Cambridge data testing density plots for each artificial intelligence (AI) algorithm. Interval 
cancer case distribution is shown in red and normal case distribution is in blue. The green line represents the 
‘pre-specified specificity / sensitivity’ (threshold 1) 96.0% specificity operating point for each algorithm and the 
orange line the 30.0% sensitivity operating point on Cambridge study data. The purple line represents the 
‘identified year operating points’ (threshold 2) 96.0% specificity operating point for each algorithm and the pink 
line the 30.0% sensitivity operating point.  

 
Applying the ‘pre-specified specificity / sensitivity’ (threshold 1) thresholds on Norwich data at 

96.0%, specificity, the sensitivity was 23.3%, 16.4%, 27.9%. At 30.0% sensitivity DL-1, DL-2, and DL-3 

specificity was 94.1% , 91.2%, 95.4% respectively, the results are shown in Table 5-6. 
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Threshold a) 
Sensitivity 

a) 
Specificity 

b) 
Sensitivity 

b) 
Specificity 

c) 
Sensitivity 

c) 
Specificity 

96.0% 
Specificity 

(DL-1) 

23.3% 
[18.4-29.1] 

96.0% 36.8% 
[31.8-42.3] 

90.0% 
[87.2-92.5] 

39.3% 
[34.2-44.7] 

88.6% 
[86.0-91.3] 

96.0% 
Specificity 

(DL-2)  

16.4% 
[13.0-21.0] 

96.0% 16.2% 
[12.9-20.1] 

96.3% 
[94.5-97.9] 

16.2% 
[12.9-20.1] 

96.3% 
[94.5-97.9] 

96.0% 
Specificity 

(DL-3) 

27.9% 
[22.7-32.8] 

96.0% 13.8% 
[9.9-18.2] 

 

99.0% 
[98.2-99.7] 

 

14.8% 
[11.1-20.0] 

98.8% 
[98.1-99.6] 

       
30.0% 

Sensitivity 
(DL-1) 

30.0% 94.1% 
[91.0-95.7] 

6.5% 
[2.8-11.7] 

99.5% 
[99.1-99.9] 

47.4% 
[42.7-52.6] 

83.4% 
[79.8-87.2] 

30.0% 
Sensitivity 

(DL-2)  

30.0% 91.2% 
[88.6-93.4] 

2.6% 
[0.0-5.9] 

99.9% 
[99.7-100] 

24.1% 
[18.8-28.7] 

93.7% 
[91.4-95.3] 

30.0% 
Sensitivity 

(DL-3) 

30.0% 95.4% 
[92.9-97.0] 

1.0% 
[0.2-2.0] 

100% 
[100-100] 

20.6% 
[12.6-25.3] 

98.0% 
[96.7-98.7] 

Table 5-6 – Norwich data testing of three artificial intelligence (AI) algorithms. a) At the ‘pre-specified 
specificity / sensitivity’ (threshold 1) for 96.0% specificity, and 30.0% sensitivity, b) at the ‘identified year 
operating points’ (threshold 2) from Cambridge external year cohort testing, c) at the ‘identified Cambridge 
operating points’ (threshold 3) from Cambridge data in this study. 95.0% confidence intervals are in square 
brackets [95.0% CI]. 

 
Testing using the ‘identified year operating points’ (threshold 2) on Norwich data at 96.0% 

specificity, the specificity of each AI algorithm was 90.0%, 96.3% and 99.0%, and the sensitivity was 

36.8%, 16.2%, 13.8% for DL-1, DL-2, and DL-3 respectively. At 30.0% sensitivity DL-1, DL-2, and DL-3 

specificity was 99.5%, 99.9%, 100% and sensitivity was 6.5%, 2.6%, 1.0% respectively.  

Applying the ‘identified Cambridge operating points’ (threshold 3) on Norwich data at 96.0% 

specificity, the specificity was 88.6%, 96.3% and 98.8%, and the sensitivity was 39.3%, 16.2%, 14.8% 

respectively for DL-1, DL-2, and DL-3. At 30.0% sensitivity DL-1, DL-2, and DL-3 specificity was 83.4%, 

93.7%, 98.0% and sensitivity was 47.4%, 24.1%, 20.6% respectively.  

Figure 5-6 shows the distribution of IC cases and normal cases from Norwich data by the assigned 

score for each AI algorithm with the six different operating points used in this study. 
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Figure 5-6 – Norwich data testing density plots for each artificial intelligence (AI) algorithm. Interval cancer 
cases distribution is shown in red and normal case distribution is in blue. The green line represents the ‘pre-
specified specificity / sensitivity’ (threshold 1) 96.0% specificity operating point for each algorithm and the 
orange line the 30.0% sensitivity operating point on Norwich study data. The purple line represents the 
‘identified year operating points’ (threshold 2) 96.0% specificity operating point for each algorithm and the pink 
line the 30.0% sensitivity operating point. The red line represents the identified Cambridge operating points’ 
(threshold 3) 96.0% specificity operating point for each algorithm and the grey line the 30.0% sensitivity 
operating point.  

 
5.4.3 Combined algorithm results  

Combining the performance of all three DL algorithms (DL-1, DL-2, DL-3) using Cambridge data 

resulted in an AUROC of 0.738 [95% CI 0.713–0.764], which was not statistically significant different 

to the individual AI algorithms performance (p = 0.302–0.508). And at the threshold of 96.0% 

specificity, the sensitivity of the combined model was 25.4% [95% CI 21.4–30.0]. The contribution to 

the combined model was similar from both DL-1, DL-2 and DL-3. The ROC plot for each model on 

Cambridge data is shown in Figure 5-7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-7 – Combined model receiver operating characteristic (ROC) curve on Cambridge data compared to 
individual artificial intelligence (AI) algorithms (DL-1, DL-2, DL-3) performance. Results for DL-1 are in blue, 
DL-2 in purple, DL-3 in green, and the Combined model in red, with area under the receiver operating 
characteristic curve values provided for each algorithm. 
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Applying the combined model to Norwich data also resulted in an AUROC of 0.738, which was 

statistically significantly different to DL-1, DL-2 and DL-3 (p < 0.05). At the 96.0% specificity operating 

point the combined model sensitivity on Norwich data was 25.7% [95% CI 21.0–31.6]. Applying the 

96.0% operating point from Cambridge testing of the combined model, the sensitivity was 12.8% 

[95% CI 10.1–15.6] and specificity was 99.1% [95% CI 98.5–99.5]. The ROC plots for each model on 

Norwich data are shown in Figure 5-8. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-8 – Combined model receiver operating characteristic (ROC) curve on Norwich data compared to 
individual artificial intelligence (AI) algorithms (DL-1, DL-2, DL-3) performance. Results for DL-1 are in blue, 
DL-2 in purple, DL-3 in green, and the Combined model in red, with area under the receiver operating 
characteristic curve values provided for each algorithm. 

 
5.4.4 Sub-group analysis  

Sub group analysis on the entire cohort to evaluate each AI algorithms performance across key IC 

characteristic parameters at the 96.0% specificity ‘identified year operating points’ (threshold 2) is 

detailed in Table 5-7 and Table 5-8. Threshold 2 was used in this subgroup analysis as this threshold 

was found on a separate dataset reducing the bias of the threshold as well as the same threshold 

was used for Cambridge and Norwich data for each algorithm. When interpreting these results 

please refer to Table 5-5 and 5-6 which details the sensitivity and specificity at this threshold. When 

re-applying this threshold to Norwich there was a decrease in specificity with an increase in 

sensitivity for DL-1 and the opposite for DL-3, with the performance DL-2 remaining stable. 

Therefore the number of cancers detected by DL-1 at this threshold is greater than that for DL-2 and 

DL-3, however with the trade-off of decreased specificity. Overall detection was greater for ICs 

occurring in the first year, and for cancers that were classified as suspicious at the IC audit for all 
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three AI tools. On the other hand, detection was lower for grade 3 and less than 15 mm in size 

invasive tumours, however due to missing data this analysis is not definitive.  

Interval cancer parameter Total DL-1 DL-2 DL-3 
Total Cases n 1029 299 196 179 

     
Age at 

Screening 
47-49 114 25 

(21.9%) 

0.328 

19 
(16.7%) 

0.754 

16 
(14.0%) 

0.826 

50-54 231 60 
(26.0%) 

37 
(16.0%) 

42 
(18.2%) 

55-59 194 62 
(32.0%) 

39 
(20.1%) 

36 
(18.6%) 

60-64 184 49 
(26.6%) 

37 
(20.1%) 

28 
(15.2%) 

65-70+ 306 103 
(34.5%) 

64 
(22.7%) 

57 
(17.7%) 

FFDM 
Vendor 

GE 518 194 
(37.5%) 

< 0.01 

85 
(16.4%) 

< 0.01 

72 
(13.9%) 

< 0.01 

Philips 473 96 
(20.3%) 

101 
(21.4%) 

98 
(20.7%) 

Hologic 19 3 
(15.8%) 

4 
(21.1%) 

3 
(15.8%) 

Sectra 19 6 
(31.6%) 

6 
(31.6%) 

6 
(31.6%) 

Interval 
(months) 

  

0-12 168 56 
(33.3%) 

0.577 
 

38 
(22.6%) 

0.563 
 

39 
(23.2%) 

0.199 13-24 406 118 
(29.0%) 

76 
(18.7%) 

65 
(16.0%) 

35-36 455 125 
(27.5%) 

82 
(18.0%) 

75 
(16.5%) 

Radiological 
Audit 

Classification 
  

Normal / 
Benign 

811 180 
(22.3%) 

< 0.01 

119 
(14.7%) 

 < 0.01 

103 
(12.8%) 

< 0.01 

Uncertain 172 90  
(52.3%) 

58 
(33.9%) 

58 
(33.9%) 

Suspicious 35 26  
(74.3%) 

16 
(45.7%) 

14 
(41.2%) 

Unclassifiable 10 3 
(30.0%) 

3 
(30.0%) 

4 
(40.0%) 

Density  
BI-RADSb 

a 20 1 
(5.0%) 

0.187 

3 
(15.0%) 

0.752 

4 
(20.0%) 

0.213 

b 110 20 
(18.2%) 

20 
(18.2%) 

14 
(12.7%) 

c 114 32 
(28.1%) 

28 
(24.6%) 

25 
(21.9%) 

d 76 15 
(19.7%) 

16 
(21.1%) 

21 
(27.6%) 
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Density  
BI-RADSa 

a 66 13  
(19.7%) 

0.093 

10 
(15.2%) 

0.212 

8 
(12.1%) 

0.357 

b 469 155 
(33.0%) 

86 
(18.3%) 

75 
(16.0%) 

c 468 128 
(27.4%) 

99 
(21.2%) 

93 
(19.9%) 

d 26 3 
(11.5%) 

1 
(3.8%) 

3 
(11.5%) 

         
Invasive 
Status 

Invasive 964 283 
(29.4%) 0.578 

186 
(19.3%) 0.963 

170 
(17.6%) 0.966 Non-invasive 84 28 

(33.3%) 
16 

(19.0%) 
15 

(17.9%) 
Table 5-7 – Subgroup analysis of cases using all interval cancer (IC) data from both Cambridge and Norwich 
sites. The total number of interval cancer cases detected at the 96.0% specificity ‘identified year operating 
points’ (threshold 2) for each artificial intelligence algorithm is reported. Sensitivity is reported in round 
brackets. BI-RADS: Breast imaging-reporting and data system, FFDM: Full Field Digital Mammography. 

bVolpara 5th edition BI-RADS mammographic breast density from raw full field digital mammogram Cambridge 
data, aDL-3 5th edition BI-RADS scores from processed full field digital mammogram data at both sites. p values 
were determined by using Chi squared c2 test to compare against the detected proportion of interval cancer 
cases / lesions by each artificial intelligence algorithm for each interval cancer characteristic category. p-values 
< 0.05 were considered statistically significant. 

 
At this threshold there was no statistically significant difference in the cancers detected by each AI 

tool for; patient age, interval to diagnosis, BI-RADS mammographic breast density, invasive status, 

and grade (p > 0.05). There was however a statistically significant difference between radiological 

classification groups and mammographic machine vendor for all of the three AI algorithms (p < 0.05). 

In addition, there was a statistically significant difference for DL-3 invasive tumour size (p < 0.05). 

Interval cancer parameter Total DL-1 DL-2 DL-3 
Total Invasive Lesions n 964 283 186 170 
Invasive 
Tumour 
Graded 

1 114 37  
(32.5%) 

0.171 

23  
(20.2%) 

0.350 

23 
(20.2%) 

0.085 2 454 146  
(32.2%) 

97  
(21.4%) 

92  
(20.3%) 

3 363 89  
(24.5%) 

60  
(16.5%) 

49  
(13.5%) 

Invasive 
Tumour Sized 

(mm) 

< 15 260 71 
(27.3%) 0.337 

39 
(15.0%) 0.055 

34   
(13.1%) 0.034 >= 15 566 180 

(31.8%) 
124  

(21.9%) 
115 

(20.3%) 
Table 5-8 – Subgroup analysis of lesions using all interval cancer (IC) data from both Cambridge and Norwich 
sites. The total number of interval cancer lesions detected at the 96.0% specificity ‘identified year operating 
points’ (threshold 2) for each artificial intelligence algorithm is reported. Sensitivity is reported in round 
brackets. dReport by invasive lesions for size and grade.  p values were determined by using Chi squared c2 test 
to compare against the detected proportion of interval cancer lesions by each artificial intelligence algorithm 
for each interval cancer characteristic category. p-values < 0.05 were considered statistically significant. 
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The AI algorithms did overlap in the ICs detected. However, the AI algorithms did not identify 

identical IC cases as shown in Figure 5-9, for threshold 1 and 2 at 96.0% specificity.  

Figure 5-9 – Proportional Euler diagram of each artificial intelligence (AI) algorithms interval cancer (IC) 
detection. a) At threshold 2 (96.0% specificity), using all interval cancer data from both Cambridge and 
Norwich sites, b) at threshold 1 (96.0% specificity), using all interval cancer data from Cambridge, c) at 
threshold 1 (96.0% specificity), using all interval cancer data from Norwich. 

 
5.4.5 Failure analysis  

A case classified as a suspicious IC that was not detected by all methods, human readers and AI 

algorithms, at the 96.0% specificity threshold 2 is shown in Figure 5-10. This was a case of a 59-year-

old patient, diagnosed with a left sided grade 2, 140 mm invasive cancer, 987 days after screening.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-10 – False negative case, which was not detected by all three commercial artificial intelligence (AI) 
algorithms. The screen and diagnostic images were annotated by a breast radiologist to show the true location 
of the cancer. 

a) b) c) 

Screen Diagnostic 
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A case classified as a normal / benign IC that was detected by all AI algorithms, at the 96.0% 

specificity threshold 2, is shown in Figure 5-11. This was a case of a 52-year-old patient, diagnosed 

with a left sided grade 3, 10 mm invasive cancer, 789 days after screening.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-11 – True positive case, which was detected by all three commercial artificial intelligence (AI) 
algorithms. The screen and diagnostic images were annotated by a breast radiologist to show the true location 
of the cancer. 

 
5.5 Discussion    

The three commercial AI algorithms performed similarly and maintained acceptable performance at 

the ‘pre-specified specificity / sensitivity’ (threshold 1) for stand-alone IC detection. Thus, AI 

algorithms could play a role in the earlier detection of cancers. When using the algorithms at the 

same specificity as the screening programme double reader performance (96.0%), 21.6%-23.7% of 

ICs at Cambridge and 16.4%-27.9% of ICs at Norwich were detected. This is similar to the expected 

reported percentage of visible cancers that could have been detected, ~20.0-30.0%, at the previous 

screen103. Although this result was found using the ‘pre-specified specificity / sensitivity’ (threshold 

1), which is not the threshold used in routine practice as this cut off is drawn from a population 

without SDCs and also a dataset enriched with IC cases. When transferring operating points 

identified at one site (Cambridge) using a one-year cohort (2017) with 2.2% cancers (SDC and IC) to 

both sites, performance was maintained for the Cambridge site, whilst there was a shift in 

performance shown for two out of the three algorithms (DL-1 and DL-3) when applied at the 

Norwich site. A significant shift was seen for all AI algorithms at the 30.0% sensitivity thresholds at 

both sites, with a very high specificity (99.5%-100.0%) whilst very low sensitivity was achieved (0.4%-

Screen Diagnostic 
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6.5%). This is expected due to the change in cancer proportions between the two datasets. 

Consistency / reliability of transferring operating points between sites should be monitored and is a 

key metric in performance. In addition, the dataset used to identify the threshold should be clearly 

documented in order to allow for monitoring where there is variation between sites e.g. 

mammography machine manufacturer. Based on this analysis, DL-2 demonstrated good 

generalizability and reliability to other sites with stable performance in the 96.0% specificity 

threshold 2 at both Cambridge and Norwich. 

Sensitivity and specificity should be stated when using AUROC to report model performance as 

demonstrated in this study where model (e.g. DL-3) achieved the highest AUROC on Cambridge site 

data. However, as we were evaluating model performance at one extreme of the ROC curve (96.0% 

specificity), in order to avoid an increase in recall rates and thus costs of assessment clinics, the 

sensitivity when reported for the model with the highest AUROC (DL-3) is lower than another model 

(DL-1) at this threshold. Thus, AUROC should not be the only metric reported and should not be the 

deciding factor of an AI algorithms performance when under taking evaluation in a breast screening 

programme task.  

As there is an overlap of the Cambridge database with The Optimam Mammography Image 

Database (OMI-DB) database (2012-2016), detailed in Chapter 4, these cases were identified and 

removed from this study to ensure that the same cases were not used in training and testing286. Two 

out of the three companies used OMI-DB in their training of the algorithm which may explain the 

good performance in Cambridge Philips data, despite Philips’s data being used for a small 

percentage of training. To account for this the algorithms were tested on the completely 

independent Norwich dataset, that has never been used for the training of any AI algorithm. DL-3 

performance improved when tested on Norwich data compared to Cambridge data, this is likely due 

to the significant proportion of GE images used in the DL-3 algorithm training. 

Combining the three AI algorithms into one model did not significantly increase performance 

compared to a single algorithm when tested on Cambridge data, however there was a statistically 

significant difference between the Combine model and all three algorithms when tested on Norwich 

data. Thus there was no overfitting displayed and further work is needed to determine if there is an 

advantage of using different AI systems together for screen reading tasks.  

The AI algorithms did not preferentially detect specific IC characteristics, other than for the 

radiological classification of cases (uncertain and suspicious) and mammographic machine vendor. 

Importantly, there was no difference found between invasive size and grade categories of ICs 

detected by all three AI systems, except for one system and invasive size. The algorithms did detect 
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different ICs to each other at threshold 1 and 2, therefore it may be possible that these systems 

could be used in tandem with all three systems operating independently to increase IC detection.    

This is the first study to compare three separate algorithms for the use in IC detection on UK data, as 

well as using the largest set of IC cases reported, addressing the gap in evidence identified in the NSC 

report 2021. The results found in this study are similar to the results in Lång et al, where 11.2% of 

visible ICs were detected and correctly located using Transpara v1.5.0 at 4.0% recall rate, Larsen et al 

where 30.7% ICs were detected at a 5.8% recall rate using Transpara v1.7.0, and Dembrower et al 

where 27.0% of ICs were detected using Lunit v5.5.0 at a 5.0% recall rate134,270,271. McKinney et al 

reported slightly lower values of 2.7-9.4% of ICs were detected when using an in house algorithm 

from Google138 .  

There is a potential role of these systems to be used to guide supplemental imaging in breast 

screening, as shown in Wanders et al, where 50.9% of women who developed an IC were identified 

at 90.0% specificity by combining Transpara v1.6.0 with LIBRA density in an enriched cohort287. Also 

Dembrower et al showed the rule in triage identified 12.0-27.0% ICs in the highest 1.0-5.0% cases 

suggesting a hybrid tailored screening approach could be made feasible by using AI algorithms134.  

There are limitations to this study such as the overall small study cohort without the representative 

class-imbalance of routine screening. In addition, not using the annotation provided by AI tools to 

confirm correct AI tool location identification of a cancer, which is critical for ICs with no radiological 

signs to guide further assessment unlike in Lång et al where they did confirm the location for each IC 

cases270. Thus, it is not possible to conclude if the cancers identified based on the threshold score 

only would be detected at assessment without additional correct location prompting by the AI 

system. In addition, this was a retrospective study and so it is not known how a human reader would 

behave with a prompt on a cancer that two readers have previously dismissed. Further prospective 

studies are required to confirm these results. Furthermore, there was missing cancer information at 

both sites, this was due to both data not being recorded and well as patients not undergoing further 

investigations or operations when their IC was diagnosed. Lastly, it should also be considered that 

the invasive size used in the analysis maybe subject to change due to the effect of neo-adjuvant 

chemotherapy, which is not commonly available through the automated extraction of data from 

NBSS.  

 

5.6 Conclusion   

The three AI algorithms were able to detect ICs at the preceding screening mammogram, detecting 

between 16.0-27.0% ICs across two UK screening sites at a 96.0% specificity threshold. However, 

when translating identified operating points from a year cohort from one study site to the other 
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there was a significant variation in performance for two out of the three algorithms and thus 

stability must be monitored across sites when translating operating points. It is unknown how 

readers would react to such cases being flagged where no location information is provided, and 

what is the best deployment route for algorithms to maintain such performance for IC detection in 

the real-time screening workflow. Thus, future prospective studies using the identified operating 

points across UK screening sites are required as well as sufficient follow-up to monitor the impact of 

AI algorithms on IC rates.  
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Chapter 6 – Performance of stand-alone deep learning algorithms in a 

UK screening cohort for detection and diagnosis 

 
6.1 Aims 

In this chapter three commercial artificial intelligence (AI) algorithms for stand-alone screen reading 

are investigated using a representative cohort from two UK screening centres. Performance was 

compared against that of a human reader, for three stand-alone reading approaches and non-

inferiority was demonstrated for the AI algorithms at various benchmarks. The inclusion of interval 

and next round cancers allowed for the robust assessment of AI algorithms performance for the 

earlier detection of breast cancer. The results from this chapter provided data to plan future 

prospective studies. 

Contents of this chapter have been accepted for presentation at the European Congress of Radiology 

2022 [abstract number - #12040] and submitted to the European Society of Breast Imaging 

conference 2022 [abstract ID - #A-165]. 

 

6.2 Introduction  

Traditional computer aided detection (CAD) algorithms have been used as clinical decision support 

systems, predominantly in the USA screening programme. However CAD systems have been shown 

to increase the recall rate with little improvement in reader performance, especially for experienced 

readers125,288. With the increasing improvement in performance of deep learning (DL) methods it has 

been proposed that these AI tools could be deployed as computer aided detection and diagnosis 

(CADe+x) stand-alone systems either entirely independently or alongside existing readers133. Many 

stand-alone systems have been tested and shown to be non-inferior to the first reader / single 

reader performance and even superior in some cases when used as a stand-alone system133,289,290. 

However no algorithm has been shown to be superior to the standard double reading performance 

whilst maintaining acceptable recall rates, suggesting that DL will not replace human reading entirely 

in these programmes at present133,289. Few algorithms have been compared on the same 

independent dataset for benchmarking against acceptable performance thresholds137,149. The UK 

National Screening Committee (NSC) report in 2021 concluded that further evidence, retrospective 

and prospective, using UK data, is required before these systems are implemented into the National 

Health Service Breast Screening Programme (NHSBSP)136.  

This study aimed to evaluate the performance of three different AI algorithms for stand-alone 

detection and diagnosis (CADe+x) of breast cancer, using a representative UK screening cohort from 

two sites, and comparing against UK reader performance thresholds. This will provide evidence for 
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three AI algorithm deployment approaches as well as identifying AI algorithm thresholds for 

prospective studies.  

 
6.3 Methods  

6.3.1 Sample size  

The sample size for this study was calculated to determine the minimum number of cases required 

to reliably detect a meaningful difference between the AI algorithm performance and reader 

performance. The method was derived from Arkin et al for ‘comparing a variable and a fixed 

proportion’274. The fixed proportion was determined by the screen readers sensitivity in the study 

reported cohorts (2017), in order to determine non-inferiority of the AI algorithm in comparison to 

the average UK reader performance. 

The key metrics involved in the calculation are: 

•  𝑎	- Reference proportion – which is the average three-year single first reader and double 

reader sensitivity at the two screening sites, 62.9% and 67.4% respectively  

• Effect size – which is the size of difference required to be shown between the groups. This 

was set at 10%  

• 𝑏	- (Reference proportion - Effect size) 

• Power - (1-P(Type 2 error)) – which was set to 95% (β = 0.05) 

• Significance level - P(Type 1 error) – which was set at 0.025  

𝑆𝑎𝑚𝑝𝑙𝑒	𝑠𝑖𝑧𝑒	𝑛 = 8	
Ζa!:𝜋!(1 − 𝜋!) +	Ζb:𝜋"(1 − 𝜋")

(𝜋! −	𝜋")
	@
#

 

 

The first calculation, to demonstrate that the AI algorithm is as good as the average single first 

reader (independent) performance over three years (screen detected cancers (SDCs) plus interval 

cancers (ICs)) when used as a stand-alone system, found that 313 cancers were required for this 

study. The second calculation, to show the AI algorithm plus a single first reader and arbitration is as 

good as the average double reading three yearly performance (SDCs plus ICs), found that 300 

cancers were required for this study. Therefore a sufficient sample size between 300 and 313 

cancers was required for this study.   

6.3.2 Data  

Patient data was obtained from the CC-MEDIA database described in Chapter 4, where data was 

collected from two NHSBSP sites (Cambridge and Norwich) under existing ethical approval (HRA REC 

20/LO/0104, HRA CAG 20/CAG/0009, PHE RAC BSPRAC_090). All study data was de-identified prior 

to use in this research. Processed Full Field Digital Mammogram (FFDM) image data (right and left 
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craniocaudal (CC) and mediolateral oblique views (MLO)) and corresponding clinical metadata was 

retrospectively collected for all women who attended routine three yearly screening between 

January 1 2017 and December 31 2017 in order to obtain a sufficient sample size. Cases were 

excluded if they had an incomplete mammogram (less than two views of each breast or images not 

available on Picture Archiving and Communication System (PACS)), no ground truth was available, if 

the case was part of high-risk screening or the screen was documented as a technical recall. Cancer 

cases were also removed where they did not meet the specified definition, such as secondary 

melanoma metastasis recorded as an IC and confirmed following discussions with Public Health 

England (PHE). IC cases were removed if the interval from screening was recorded as longer than 40 

months. As per the AI algorithm manufacturers documentation breast implants, pacemakers 

(including loop recorders) were excluded as well as any cases where only raw data was available or a 

pixel error occurred. Examples of artefacts excluded from the study cohort are shown in Figure 6-1.  

 

 

 

 

 

 

 

 

 

Figure 6-1 – Mediolateral oblique (MLO) views of mammogram artefacts removed from the study. a) 
Pacemaker, b) breast implant, c) loop recorder device, d) pixel error.  

 

 

 

 

 

 

 

 

 

 

 

a) c) b) d) 
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The study case selection process is shown in a Standards for Reporting of Diagnostic Accuracy 

Studies (STARD) diagram in Figure 6-2275. 

Figure 6-2 – Standards for Reporting of Diagnostic Accuracy Studies (STARD) flow diagram of cases included 
and excluded in this study. FFDM: Full Field Digital Mammogram, FHx: Family history, IC: Interval cancer, NHS: 
National Health Service, OMI-DB: The Optimam Mammography Image Database, PHE: Public Health England, 
PACS: Picture Archiving and Communication System. 

 
One exam was included per patient. All exams had not previously been seen by any AI algorithm. All 

images were stored in JPEG Lossless DICOM format and no additional pre-processing other than that 

performed by the mammography vendor and that performed by the AI algorithm occurred. 

Corresponding clinical metadata was available for each case, including each readers decision at 

screening. Trainee readers were removed from this analysis and replaced with the first and second 

trained reader decision. The invasive status (ICD-10 code), histological grade (assigned using 

Nottingham grading system), and histological size, was obtained using an automated National Breast 

Screening System (NBSS) query, for further detail please see Chapter 4 Section 4.4.5.  

6.3.3 Ground truth  

The NHSBSP is a triennial screening programme, thus women are screened every 34-36 months 

using FFDM. The ground truth for normal cases was defined as a final reader action of routine recall 

(RR) more than > 912 days (30 months) after their previous screen, to account for early recall of 

women to three-year screening and a confirmed ‘no cancer diagnoses’ within three years. The study 

follow-up time period overlaps with the pause in screening during the Covid-19 pandemic, therefore 

cases were excluded if sufficient follow-up information was not available. We used this definition of 

a ‘normal’ case to provide a robust ground truth for these cases.      
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Cancer cases were identified using the existing NBSS queries. All cancers received a confirmed 

histopathological diagnosis and were classed as either a: SDC, next round cancer (NRC), future round 

cancer (FRC), IC, or next round interval cancer (NRIC), such that; 

• SDCs were recalled and diagnosed at the screening episode included in the study, within 90 

days (3 months).  

• NRCs were recalled at the next screening episode, after the screening episode included in 

this study.  

• FRCs were recalled at the second screening episode, after the screening episode included in 

this study.  

• ICs occurred in the interval following a negative screen, within 1216 days (40 months) of the 

screening episode, and received a confirmed histopathological diagnosis.  

• NRICs occurred less than 1216 days (40 months) after the next round screening episode, and 

received a confirmed histopathological diagnosis. 

6.3.4 AI tools  

Three commercial AI algorithms were installed at the University of Cambridge. Two AI algorithms 

were hosted in a local environment using a virtual machine connection and one AI algorithm was run 

using hardware supplied by the AI company. The AI companies did not have access to their 

algorithms following the successful setup installation and at no time had access to the study data. 

Details regarding the training data used by each AI algorithm as well as the technical setup and 

algorithm output is outlined in Chapter 5 Table 5-1. 

Density was calculated using Volpara (research version - VolparaResearch32_L30Enabled_v2, 

Wellington, New Zealand) and DL-3. The Breast Imaging-Reporting and Data System (BI-RADS) 5th 

edition density score from both Volpara and DL-3 is reported in this study.  

6.3.5 Thresholds  

SDCs and ICs, occurring within the three-year screening interval, were classified as cancer cases in 

both the study and when identifying any study thresholds. 

Three thresholds were used in this study. The first was set at the single first reader three yearly 

specificity for the entire study cohort (96.6%) (threshold 1). The second threshold was identified 

using one year of Cambridge study data (2018) to identify the operating point for each AI algorithm 

at the first reader specificity performance (96.6%) (threshold 2). The 2018 Cambridge cohort used to 

identify this threshold consisted of 12,455 cases of which 239 were cancer cases (183 SDCs (1.5%), 

and 56 ICs (0.5%)). The third threshold (threshold 3) of 99.0% specificity, was also identified using 

the Cambridge 2018 data cohort.  
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Each AI algorithms performance was then assessed using these three thresholds. Adapted screening 

reading workflows, are outlined in Figure 6-3. Figure 6-3.b, shows how the AI algorithm performance 

alone was compared to the single first independent reader using threshold 1 and threshold 2. Figure 

6-3.c, shows the combined AI and human reader approach, where the AI algorithm was set at 

threshold 2 and combined with the single human first reader. If there was discordance the final 

action decision was used (either second reader or arbitration) and the overall performance was 

compared to double reading performance as shown in Figure 6-3.a.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-3 – Proposed workflow deployment of a stand-alone computer aided detection and diagnosis 
(CADe+x) artificial intelligence (AI) algorithm. a) Routine UK double reading workflow, b) stand-alone artificial 
intelligence algorithm reader, c) single human and artificial intelligence algorithm reader, with arbitration 
where there is discordance, d) auto recall of cases, not recalled by single human and artificial intelligence 
algorithm workflow, for cases that score above the artificial intelligence algorithm threshold of 99.0% 
specificity.  

 
Figure 6-3.d, demonstrates the use of the auto recall threshold where all cases above the 99.0% 

specificity threshold of the AI algorithm were automatically recalled. Any cases below this threshold 

but above the 96.6% of the AI algorithm, and those recalled by the first reader, were recalled. Where 

there was discordance between the AI algorithm and the first reader (not including cases above the 
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99.0% specificity threshold) cases were referred to arbitration where the final action decision was 

taken. The results from this workflow were also compared to double reading performance as shown 

in Figure 6-3.a. 

6.3.6 Statistical analysis  

All statistical analysis took place in R version 4.0.4 (R Foundation for Statistical Computing, Vienna, 

Austria)225, using the packages detailed in Chapter 5 Section 5.3.6.  

The overall predictive performance of each AI algorithm was evaluated using area under the receiver 

operating characteristic (AUROC) curve, the partial AUROC (pAUROC) at 96.0-100% specificity, and 

area under the precision recall curve (AUPRC). Due to the imbalanced nature of the data (3% cancers 

to 97% normal cases) precision and sensitivity were the primary outcome measures for this study.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
		 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Performance of each AI algorithm was compared to readers performance, using one sample one 

tailed z-test to determine if the algorithm was non-inferior. The percentage of cancers detected 

from each category (SDC, IC, NRC, FRC and NRIC) was calculated for the AI algorithm at each 

threshold. Perturbation analysis took place to test the robustness of each AI algorithm against 

changes in performance thresholds. 

A multivariable model was created through the combination of all three individual algorithms using a 

generalised linear mixed effects model on Cambridge site data. This combined model was then 

tested using Norwich site data to check for overfitting. DeLong’s test was used to assess for a 

statistically significant difference between the AUROC curve of individual AI algorithms using 2000 

bootstrapping examples. 

Finally, sub group analysis to evaluate each AI algorithms performance for SDC and IC detection in 

the following categories took place; age at screening, breast density, invasive status, invasive grade 

and size of cancers as well as mammographic machine vendor. Further sub group analysis took place 

for ICs using the interval between screening and diagnosis, as well as the radiological audit 

classifications assigned to each case. A Chi squared c2 test was used to investigate if there was a 

statistically significance between categories285. In all analyses, p-values < 0.05 were considered 

statistically significant and 95% confidence intervals were calculated, using bootstrapping with 2000 

samples or through an approximation method from Simel et al using the epiR package291.  
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6.3.7 Reporting  

Each AI algorithm was assigned a DL-ID for the purposes of this study. For additional details please 

refer to section 5.3.7 in Chapter 5. This study is reported in accordance with The Checklist for 

Artificial Intelligence in Medical Imaging (CLAIM) criteria167.  

 

6.4 Results   

6.4.1 Data 

In total 26,722 cases were included in this study, 11,924 cases (44.6%) were from Cambridge and 

14,798 cases (55.4%) were from Norwich. Patient characteristics of the study cohort are shown in 

Table 6-1. The median age for the entire cohort was 59.0 [IQR 54.0–63.0].  

 Cambridge n (%) Norwich n (%) 
Total Cases n 11924 14798 
FFDM Vendor   

GE 121 (1.0%) 14798 (100%) 
Philips 11803 (99.0%) 0 (0.0%) 

Age at Screening   
Median [IQR]  57.0 [54.0-63.0] 59.0 [55.0-64.0] 

47-49 13 (0.1%) 70 (0.5%) 
50-54 4002 (33.6%) 2958 (20.0%) 
55-59 2802 (23.5%) 5290 (35.8%) 
60-64 2928 (24.6%) 2915 (19.7%) 
65-69 1826 (15.3%) 2787 (18.8%) 
70+ 353 (3.0%) 778 (5.3%) 

Density BI-RADS Volparab DL-3a DL-3a 
a 1968  (16.5%) 2755  (23.1%) 2353 (15.9%) 

b 5474 (45.9%) 6568  (55.1%) 8660 (58.5%) 

c 3247 (27.2%) 2548 (21.4%) 3614 (24.4%) 

d 1217 (10.2%) 53 (0.4%) 171 (1.2%) 

Missing 18 (0.2%) 0 (0.0%) 0 (0.0%) 
Cancers   

SDC 
Rate per 1000 screens 

152 
8.1/1000 

180 
7.9/1000 

IC 
Rate per 1000 screens 

84 
4.5/1000 

90 
3.9/1000 

NRC 
Rate per 1000 screens 

99 
7.5/1000 

155 
9.6/1000 

FRC 0 1* 
NRIC  13* 15* 

Table 6-1 – Summary of testing dataset characteristics. Integer values with percentages in brackets (%) and 
median with Interquartile range in square brackets [IQR] are provided. BI-RADS: Breast imaging-reporting and 
data system, FRC: Future round cancer, FFDM: Full Field Digital Mammography, GE: General Electric, IC: 
Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: Screen detected cancer. *Rate 
was calculated by the total number of women screened that year, there was incomplete follow-up time period 
information from which to calculate an accurate rate for these groups. aDL-3 5th edition BI-RADS density scores 
on processed full field digital mammograms. b Volpara 5th edition BI-RADS mammographic breast density from 
raw full field digital mammograms for Cambridge data.  
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The majority of Cambridge cases were classed as b / c BI-RADS density, which was consistent with 

the expected distribution across the reported screening population75.  

In total 506 three-year cancer cases (SDCs and ICs) were included in this study, 236 from Cambridge 

and 270 from Norwich. A total of  254 NRC cases were also included. The characteristics of the SDC 

and NRC cases in the study cohort are shown in Table 6-2. 

 Cambridge  
SDC n (%) 

Cambridge  
NRC n (%) 

Norwich 
SDC n (%) 

Norwich  
NRC n (%) 

Total Cases n 152 99 180 155 
Total Lesions n 159 104 184 161 

     
Round length*l [IQR] 35.6  

[35.1-36.1] 
41.7 

[36.7-45.2] 
35.2  

[35.1-36.1] 
39.0 

[35.5-39.8] 
Age at 

Screening 
l 

Median [IQR] 62.0  
[56.0-67.0] 

59.0 
[54.0-65.0] 

64.0  
[59.0-68.0] 

60.0 
[56.0-65.0] 

47-49 0 (0.0%) 1 (1.0%) 0 (0.0%) 0 (0.0%) 
50-54 37 (24.3%) 29 (29.3%) 15 (8.3%) 20 (12.9%) 
55-59 25 (16.5%) 22 (22.2%) 36 (20.0%) 50 (32.3%) 
60-64 29 (19.1%) 18 (18.2%) 40 (22.2%) 34 (21.9%) 
65-69 44 (29.0%) 22 (22.2%) 56 (31.1%) 35 (22.6%) 
70+ 17 (11.2%) 7 (7.1%) 33 (18.3%) 16 (10.3%) 

Invasive 
Status 

Invasive 134 (84.3%) 86 (82.7%) 152 (82.6%) 136 (84.5%) 
Non-invasive 24 (15.1%) 18 (17.3%) 30 (16.3%) 25 (15.5%) 

Missing  1 (0.6%) 0 (0.0%) 2 (1.1%) 0 (0.0%) 
     

Invasive 
Tumour 

Sized 

< 15 mm 73 (54.5%) 40 (46.5%) 87 (57.2%) 71 (52.2%) 
>= 15 mm 59 (44.0%) 34 (39.5%) 61 (40.1%) 55 (40.4%) 

Missing 2 (1.5%) 12 (14.0%) 4 (2.6%) 10 (7.4%) 
Invasive 
Tumour 
Graded 

1 23 (17.2%) 10 (11.6%) 44 (29.0%) 37 (27.2%) 
2 76 (56.7%) 60 (69.8%) 81 (53.3%) 65 (47.8%) 
3 30 (22.4%) 11 (12.8%) 26 (17.1%) 27 (19.9%) 

Missing 5 (3.7%) 5 (5.8%) 1 (0.7%) 7 (5.1%) 
  Volparab DL-3a Volparab DL-3a DL-3a DL-3a 

Density 
BI-RADSl 

a 18 
(11.8%) 

30 

(19.7%) 
13 

(13.1%) 
22 

(22.2%) 
15 

(8.3%) 
19 

(12.3%) 
b 79 

(52.0%) 
92 

(60.5%) 
52 

(52.5%) 
50 

(50.5%) 
116 

(64.4%) 
89 

(57.4%) 
c 43 

(28.3%) 
29 

(19.1%) 
24 

(24.2%) 
27 

(27.3%) 
49 

(27.2%) 
47 

(30.3%) 
d 12 

(7.9%) 
1 

(0.7%) 
10 

(10.1%) 
0 

(0.0%) 
0 

(0.0%) 
0  

(0.0%) 
Table 6-2 – Cancer characteristics by lesions and cases. With integer values and percentages in brackets (%). 
dInvasive lesions only. BI-RADS: Breast imaging-reporting and data system, NRC: Next round, SDC: Screen 
detected cancer. lCases only. aDL-3 5th edition BI-RADS density scores on processed full field digital 
mammograms.b Volpara 5th edition BI-RADS mammographic breast density from raw full field digital 
mammograms for Cambridge data. *Round length is shown in months from the previous screen, cases without 
a previous screen or screened more than six years previously are removed from this analysis. The round length 
was increased for next round cancers due to the pause in screening during the Covid-19 pandemic which is 
described in Chapter 4.  
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In total 174 ICs, 84 from Cambridge and 90 from Norwich were included in the study cohort. The 

characteristics of the IC cases in the study cohort are shown in Table 6-3. The median time to 

diagnosis was 825.5 [IQR 531.0–1002.5] days for all ICs at Cambridge and 725.5 [IQR 486.8–964.0] 

days at Norwich.  

 Cambridge IC n (%) Norwich IC n (%) 
Total Cases n 84 90 

Total Lesions n 86 100 
   

Age at Screeningl Median [IQR] 58.0 [54.0-65.3] 62.0 [55.0-68.0] 
47-49 0 (0.0%) 0 (0.0%) 
50-54 27 (32.1%) 17 (18.9%) 
55-59 19 (22.6%) 23 (25.6%) 
60-64 14 (16.7%) 13 (14.4%) 
65-69 14 (16.7%)  21 (23.3%) 
70+ 10 (11.9%) 16 (17.8%) 

Invasive Status Invasive 74 (86.0%) 93 (93.0%) 
Non-invasive 9 (10.5%) 6 (6.0%) 

Missing  3 (3.5%) 1 (1.0%) 
   

Invasive Tumour 
Sized 

< 15 mm 16 (21.6%) 36 (38.7%) 
>= 15 mm 48 (64.9%) 48 (51.6%) 

Missing 10 (13.5%) 9 (9.7%) 
Invasive Tumour 

Graded 
1 10 (13.5%) 18 (19.4%) 
2 33 (44.6%) 40 (43.0%) 
3 31 (41.9%) 32 (34.4%) 

Missing 0 (0.0%) 3 (3.2%) 
 Volparab DL-3a DL-3a 

Density BI-RADSl a 8 (9.5%) 11 (13.1%) 2 (2.2%) 
b 34 (40.5%) 43 (51.2%) 51 (56.7%) 
c 29 (34.5%) 29 (34.5%) 36 (40.0%) 
d 12 (14.3%) 1 (1.2%)  1 (1.1%) 

Missing 1 (1.2%) 0 (0.0%) 0 (0.0%) 
    

Interval 
(months)l 

0-12 13 (15.5%) 18 (20.0%) 
12-24  23 (27.4%) 28 (31.1%) 
24-36  48 (57.1%) 44 (48.9%) 
36-40  0 (0.0%) 0 (0.0%) 

Radiological Audit 
Classificationl 

Normal/ Benign 69 (82.1%) 60 (66.7%) 
Uncertain 11 (13.1%) 28 (31.1%) 
Suspicious 0 (0.0%) 0 (0.0%) 

Unclassifiable  0 (0.0%) 1 (1.1%) 
Missing  4 (4.8%) 1 (1.1%) 

Table 6-3 – Interval cancer (IC) characteristics by lesions and cases. With integer values and percentages in 
brackets (%). Invasive Tumour Size in millimetres (mm). BI-RADS: Breast imaging-reporting and data system, IC: 
Interval cancer. dInvasive lesions only. lCases only. aDL-3 5th edition BI-RADS density scores on processed full 
field digital mammograms.b Volpara 5th edition BI-RADS mammographic breast density from raw full field 
digital mammograms for Cambridge data.  
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The majority of IC cases were classified as normal / benign in keeping with the reported UK 

distribution103. No cases were classified as suspicious, which was likely to be due to the change in 

national reporting of interval cancers in 2017101. 

6.4.2 Algorithm results  

The overall AUROC for DL-1, DL-2, DL-3 was 0.868 [95% CI 0.849–0.887], 0.885 [95% CI 0.869–0.902] 

and 0.894 [95% CI 0.878–0.910] respectively. ROC curves for each AI algorithm are shown in Figure 

6-4. All algorithms maintained a similar AUROC performance for both sites (p > 0.05). The AUROC of 

DL-3 was statistically significantly different to DL-1 on all and Norwich data, and DL-2 on Norwich 

data (p < 0.05). DL-1 and DL-2 were also statistically significantly different to each other on all and 

Norwich data (p < 0.05). The comparator ROC curves for each site are shown in Figure 6-5.  

Figure 6-4 – Receiver operating characteristic (ROC) curves per artificial intelligence (AI) algorithm. The 
overall results are in grey, Cambridge in orange and Norwich in pink. Area under the receiver operating 
characteristic curve values are provided for each site.  

 
The pAUROC, from 96.0% to 100% specificity, for DL-1, DL-2, DL-3 was 0.744 [95% CI 0.723–0.764], 

0.739 [95% CI 0.720–0.760] and 0.774 [95% CI 0.754–0.794] respectively on all data.  
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Figure 6-5 –  Receiver operating characteristic (ROC) curves per site. a) receiver operating characteristic 
curves per site, with the area under the receiver operating characteristic curve values provided for each 
algorithm, b) partial receiver operating characteristic curves to show the performance of each artificial 
intelligence algorithm between 95.0% and 100% specificity at each site. The results for DL-1 are in blue, DL-2 in 
purple, and DL-3 in green. A pink triangle represents the first reader performance, and a red diamond 
represents the overall double reader performance at each site. 

 
The pAUROC when tested on Cambridge data was lower for all algorithms; 0.739 [95% CI 0.709–

0.769], 0.737 [95% CI 0.709–0.767] and 0.759 [95% CI 0.730–0.787] for DL-1, DL-2 and DL-3 

respectively. On Norwich data all algorithms achieved a higher pAUROC compared to all and 

Cambridge data, with DL-1 achieving a pAUROC of 0.761 [95% CI 0.732–0.789], DL-2 0.741 [95% CI 

0.714–0.769], and DL-3 0.791 [95% CI 0.762–0.818]. The pAUROC of DL-3 was statistically 

significantly different (p < 0.05) when compared to DL-1 and DL-2 on all, Cambridge and Norwich 

data. The pAUROC of DL-1 was also statistically significantly different (p < 0.05) compared to DL-2 on 

Norwich data.  

The overall AUPRC for DL-1, DL-2, DL-3 was 0.440, 0.407, 0.513 respectively, Figure 6-6. The drop in 

DL-2 and DL-3 precision, shown in the precision recall curves (PRC), was due to either missing a true 

positive case or including more false positives at a high recall threshold. Although both curves 

recover, the curve for DL-2 remains consistently lower than DL-3.  

 

 

 

b) 

a) 
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Figure 6-6 – Precision recall curves (PRC). For DL-1 in blue, DL-2 in purple and DL-3 in green.  

 
When the AI algorithm threshold is set at the first screen reader specificity (96.6%) (threshold 1), DL-

1, DL-2 and DL-3 were non-inferior relative to the single first reader, as shown in Table 6-4. DL-3 was 

also non-inferior to the double reader sensitivity. The AI algorithms detected more NRC (D 

+4.5%~+9.9%) and IC (D +5.2%~+8.0%) compared to the first reader, when these systems were used 

as stand-alone CADe+x readers. However, the number of SDCs found by all AI algorithms was less 

than the first reader (D -4.9%~-10.9%).  

At the identified threshold 2, DL-2 maintained performance and was non-inferior to the single first 

human reader. However, the sensitivity of DL-1 improved with the trade-off of reduced specificity 

and the opposite was found for DL-3, whilst both algorithms sensitivity remained non-inferior to the 

first reader performance, Table 6-5. DL-1 sensitivity was also non-inferior to the double reader 

performance. 

All three AI algorithms were able to detect a greater proportion of ICs and NRCs at both threshold 1 

(96.6% specificity) and threshold 2 (Cambridge 2018 first reader 96.6% specificity performance) for 

the earlier detection of cancer compared to the human reader workflows offsetting the reduced rate 

of SDCs. 
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 Double 
reader 

First  
reader 

DL-1  DL-2  DL-3  

AUROC - - 0.868 0.885 0.894 
pAUROC - - 0.744 0.739 0.774 
AUPRC - - 0.440 0.407 0.513 

      
Sensitivity 67.4% 

[63.1-71.5] 
62.9% 

[58.5-67.1] 
57.7% 

[53.4-62.1] 
p = 0.016 

57.5% 
 [53.2-61.9] 

p = 0.02 

62.5% 
[58.3-66.8] 

p < 0.01 
- - - Non-inferior Non-inferior Non-inferior 

Specificity 97.1% 96.6% 96.6% 96.6% 96.6% 
Precision 31.3% 26.0% 24.7% 24.6% 26.2% 

Recall Rate 4.1% 4.6% 4.4% 4.4% 4.5% 
Cancers      

SDC n (%) 332 (100%) 302 (91.0%) 266 (80.1%) 266 (80.1%) 286 (86.1%) 
IC n (%) 9 (5.2%) 16 (9.2%) 26 (14.9%) 25 (14.4%) 30 (17.2%) 

NRC n (%) 10 (3.9%) 13 (5.1%) 31 (12.2%) 32 (12.6%) 31 (12.2%) 
FRC n (%) 0 (0.0%) 0 (0.0%) 1 (100%) 1 (100%) 1 (100%) 
NRIC n (%) 2 (7.1%)   3 (10.7%) 2 (7.1%) 2 (7.1%) 1 (3.6%) 

Table 6-4 – Stand-alone artificial intelligence (AI) algorithm application compared to the single first reader – 
threshold 1. All algorithm thresholds set at the first reader, 96.6% specificity (threshold 1). AUROC: Area under 
the receiver operating characteristic curve, AUPRC: Area under the precision recall curve, FRC: Future round 
cancer, IC: Interval cancer, NRC: Next round, NRIC: Next round interval cancer, pAUROC: Partial area under the 
receiver operating characteristic curve, SDC: Screen detected cancer. 95.0% confidence intervals are shown in 
square brackets [95.0% CI]. p values are calculated using a one-sided z-test.  

 
 DL-1  DL-2  DL-3  

Sensitivity 64.8% 
[61.3-68.2] 

p  < 0.01 

56.7% 
[53.0-60.5] 
p = 0.045 

58.9% 
[55.3-62.5] 

p < 0.01 
- Non-inferior Non-inferior Non-inferior 

Specificity 92.8% 
[92.5-93.1] 

p < 0.01 

96.8% 
[96.7-97.0] 

p < 0.01 

97.9% 
[97.8-98.0] 

p < 0.01 
Precision 14.8% 25.6% 35.2% 

Recall Rate 8.3% 4.2% 3.2% 
    

SDC n (%) 287 (86.5%) 264 (79.5%) 275 (82.8%) 
IC n (%) 41 (23.6%) 23 (13.2%) 23 (13.2%) 

NRC n (%) 59 (23.2%) 32 (12.6%) 18 (7.1%) 
FRC n (%) 1 (100%) 1 (100%) 0 (0.0%) 
NRIC n (%) 6 (21.4%) 2 (7.1%) 1 (3.6%) 

Table 6-5 – Stand-alone artificial intelligence (AI) algorithm application compared to the single first reader – 
threshold 2. All algorithm thresholds set using the operating point identified using Cambridge 2018 data, 
threshold 2. FRC: Future round cancer, IC: Interval cancer, NRC: Next round, NRIC: Next round interval cancer, 
SDC: Screen detected cancer. 95.0% confidence intervals are shown in square brackets [95.0% CI]. p values are 
calculated using a one-sided z-test.  

The distribution of scores for each category of cases along with the cut off points of each threshold 

are shown in Figure 6-7. 
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Figure 6-7 – Individual artificial intelligence (AI) algorithm score distributions normalised from 0-10. a) 
Density plots, where normal cases are in red and cancer cases (screen detected and interval cancers) are in 
blue, and b) violin plots where the blue dot in the violin plot is the mean score and the red is the median score. 
The green line indicates the 96.6% specificity threshold (threshold 1) and the pink line is the operating point 
identified from the Cambridge 2018 data (threshold 2). FRC: Future round cancer, IC: Interval cancer, NRC: Next 
round, NRIC: Next round interval cancer, SDC: Screen detected cancer.  

 
 Double reader First reader + DL-1  First reader + DL-2  First reader + DL-3  

Sensitivity 67.4% 
[63.1-71.5] 

67.0% 
[62.7-71.1] 

p < 0.01 

65.6% 
[61.3-69.7] 

p < 0.01 

65.4% 
[61.1-69.6] 

p < 0.01 
- - Non-inferior Non-inferior Non-inferior 

Specificity 97.1% 
[96.7-97.3] 

97.4% 
[97.2-97.6] 

p < 0.01 

97.6% 
[97.4-97.7] 

p < 0.01 

97.6% 
[97.4-97.8] 

p < 0.01 
Precision 31.3% 33.4% 34.2% 34.4% 

Arbitration  2.7% 9.5% 6.3% 5.2% 
Recall Rate 4.1% 3.8% 3.6% 3.6% 

     
SDC n (%) 332 (100%) 326 (98.2%) 323 (97.3%) 321 (96.7%) 
IC n (%) 9 (5.2%) 13 (7.5%) 9 (5.2%) 10 (5.8%) 

NRC n (%) 10 (3.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
FRC n (%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
NRIC n (%) 2 (7.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Table 6-6 – Artificial intelligence (AI) algorithm (at threshold 2) combined with the single first reader (+/- 
arbitration where discordance) compared to double reading performance. FRC: Future round cancer, IC: 
Interval cancer, NRC: Next round, NRIC: Next round interval cancer, SDC: Screen detected cancer. 95.0% 
confidence intervals are shown in square brackets [95.0% CI]. p values are calculated using a one-sided z-test.  

 
Combining the AI algorithm with the human reader decision, using the identified threshold 2 for 

each AI algorithm, resulted in non-inferior sensitivity and specificity performance. The overall recall 

b) 

a) 
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rate was lower, however the was arbitration rate was higher (D +2.5%~+6.8%), Table 6-6. A 

reduction in SDCs (D -1.8%~-3.3%) and reduction in NRCs (D -3.9%) with only a modest increase in IC 

detection (D +0.0%~+2.3%) was noted for all algorithms compared to double reader performance, 

Table 6-6. 

Perturbation analysis demonstrated that all the algorithms performed similarly and are robust to 

changes in specificity. When adjusting the AI algorithms specificity to ~90.5% and in combination 

with the first reader, and arbitration for discordance, the performance for all AI algorithms was close 

to double reader sensitivity without increasing the overall recall rate, but with an increase in the 

arbitration rate, Table 6-7.  

 AI-Specificity Sensitivity Specificity Precision Arbitration Recall 
DL-1 + 

readers  
97.5% 65.4% 97.6% 34.5% 5.82% 3.60% 
96.5% 66.2% 97.6% 34.5% 6.58% 3.63% 
95.5% 66.4% 97.5% 34.1% 7.34% 3.69% 
94.5% 66.4% 97.5% 33.8% 8.14% 3.72% 
93.5% 66.8% 97.5% 33.7% 8.94% 3.76% 
92.5% 67.0% 97.4% 33.3% 9.75% 3.81% 
91.5% 67.0% 97.4% 33.1% 10.60% 3.83% 
90.5% 67.0% 97.4% 33.0% 11.47% 3.84% 

       
DL-2 + 

readers  
 

97.5% 65.4% 97.6% 34.4% 5.70% 3.60% 
96.5% 65.6% 97.5% 34.0% 6.48% 3.65% 
95.5% 65.8% 97.5% 33.7% 7.31% 3.70% 
94.5% 66.0% 97.5% 33.4% 8.13% 3.75% 
93.5% 66.4% 97.4% 33.1% 8.97% 3.80% 
92.5% 66.8% 97.4% 33.0% 9.79% 3.84% 
91.5% 66.8% 97.4% 32.8% 10.6% 3.86% 
90.5% 67.0% 97.3% 32.7% 11.5% 3.88% 

       
DL-3 + 

readers  
 

97.5% 66.0% 97.6% 34.4% 5.48% 3.64% 
96.5% 66.4% 97.5% 34.0% 6.23% 3.70% 
95.5% 66.4% 97.5% 33.6% 7.02% 3.75% 
94.5% 66.4% 97.4% 33.3% 7.84% 3.78% 
93.5% 66.4% 97.4% 32.8% 8.66% 3.84% 
92.5% 66.6% 97.3% 32.6% 9.55% 3.87% 
91.5% 66.6% 97.3% 32.3% 10.40% 3.90% 
90.5% 67.0% 97.3% 32.2% 11.27% 3.94% 

Table 6-7 – Perturbation analysis when adjusting the specificity threshold for the artificial intelligence (AI) 
algorithm, then combining with the first reader and final action arbitration decision if there is discordance.  

 
6.4.3 Scenario D 99.0% specificity auto recall threshold  

Including the auto recalled cases above the identified 99.0% specificity threshold of each AI 

algorithm resulted in an overall increase in sensitivity and decrease in specificity, Table 6-8. On 

average sensitivity increased by +0.8~+3.4%% and specificity decreased by -0.8~-2.3%, compared to 
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the results in Table 6-6 where the 99.0% specificity AI threshold was not implemented. This is also 

reflected in the increased recall rate (D +0.8~+2.3%) and decreased arbitration rate (D -0.9~-2.4%). 

There was an overall increase in the NRCs (D +1.8%~+9.9%), and ICs (D +2.3%~+9.7%) detected due 

to the auto recall implementation, thus Scenario D facilitates the earlier detection of cancer at the 

expense of an increased recall rate.  

 Double 
reader 

First reader +  
DL-1  

First reader +  
DL-2  

First reader +  
DL-3  

Sensitivity 67.4% 
[63.1-71.5] 

70.4% 
[66.2-74.3] 

66.4% 
[62.1-70.5] 

67.4% 
[63.1-71.5] 

Specificity 97.1% 
[96.7-97.3] 

95.1% 
[94.9-95.4] 

96.6% 
[96.3-96.8] 

96.8% 
[96.6-970] 

Precision 31.3% 21.9% 27.2% 28.9% 
Arbitration  2.7% 7.1% 5.2% 4.3% 
Recall Rate 4.1% 6.1% 4.6% 4.4% 

Cases Flagged     
Total  - 947 (3.5%) 530 (2.0%) 533 (2.0%) 

True Positive - 274 (1.0%) 235 (0.9%) 272 (1.0%) 
False Positive - 673 (2.5%) 295 (1.1%) 261 (1.0%) 

Cancers Flagged     
SDC n (%) - 254 (76.5%) 229 (69.0%) 258 (77.7%) 
IC n (%) - 20 (11.5%) 6 (3.5%) 14 (8.1%) 

NRC n (%) - 24 (9.4%) 10 (3.9%) 8 (3.1%) 
FRC n (%) - 1 (100%) 0 (0.0%) 0 (0.0%) 
NRIC n (%) - 1 (3.6%) 1 (3.6%) 0 (0.0%) 

Auto Recalled     
SDC n (%) - 20 (6.0%) 15 (4.5%) 18 (5.4%) 
IC n (%) - 17 (9.8%) 4 (2.3%) 10 (5.8%) 

NRC n (%) - 21 (8.3%) 9 (3.5%) 7 (2.8%) 
FRC n (%) - 1 (100%) 0 (0.0%) 0 (0.0%) 
NRIC n (%) - 1 (3.6%) 1 (3.6%) 0 (0.0%) 

Final Total Detected     
SDC n (%) 332 (100%) 326 (98.2%) 323 (97.3%) 321 (96.7%) 
IC n (%) 9 (5.2%) 30 (17.2%) 13 (7.5%) 20 (11.5%) 

NRC n (%) 4 (3.6%) 21 (8.3%) 9 (3.5%) 7 (2.8%) 
FRC n (%) 6 (4.2%) 1 (100%) 0 (0.0%) 5 (3.5%) 
NRIC n (%) 2 (7.1%) 1 (3.6%) 1 (3.6%) 0 (0.0%) 

Table 6-8 – Artificial intelligence (AI) algorithm (at threshold 2) combined with the single first reader (+/- 
arbitration where discordance below 99.0% specificity for the algorithm and above 96.6% specificity) with 
cases auto recalled above the 99.0% specificity threshold (threshold 3) compared to double reading 
performance. FRC: Future round cancer, IC: Interval cancer, NRC: Next round, NRIC: Next round interval cancer, 
SDC: Screen detected cancer. 

 
6.4.4 Combined algorithm results  

The Combined model was created by combining DL-1, DL-2 and DL-3 AI algorithms. The Combined 

model achieved a performance of AUROC 0.886 [95% CI 0.860–0.912], with an improvement in 

AUROC of D +0.002~+0.014, and pAUROC of 0.761 [95% CI 0.733–0.793]. At the 96.6% specificity 
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threshold for the first reader specificity, the Combined model achieved a sensitivity of 61.4% [95% CI 

54.7 – 67.4]. Figure 6-8 compares the ROC curves of the Combined model to, DL-1, DL-2 and DL-3 on 

the Cambridge data.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8 – Combined model receiver operating characteristic (ROC) curves on Cambridge data. For DL-1 in 
blue, DL-2 in purple, DL-3 in green and the Combined algorithm performance in red, with area under the 
receiver operating characteristic curve values provided for each algorithm.  

 
The Combined model performance was not statistically significant from each individual AI algorithm 

performance (p > 0.05), as demonstrated in Table 6-9.  

 DL-1  DL-2  DL-3  
DeLongs test p value 0.4642 0.9093 0.806 

Table 6-9 – DeLong’s test comparison results for DL-1, DL-2, DL-3 compared to the Combined model 
performance on Cambridge data. 

 
Taking the Combined model and then applying the model to Norwich data, found there was no 

overfitting of the model and that the model was generalisable to a different site using a different 

machine vendor (GE), achieving an AUROC of 0.902 [95% CI 0.880–0.925] and pAUROC of 0.783 [95% 

CI 0.756–0.810]. Figure 6-9 compares the ROC curves of the Combined model to, DL-1, DL-2 and DL-3 

on Norwich data. Applying the 96.6% specificity threshold found on the Cambridge data using the 

Combined model, the Combined model on the Norwich data achieved a 99.8% [95% CI 99.8–99.9] 

specificity and 37.8% [95% CI 33.0–43.0] sensitivity.  
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Figure 6-9 – Combined model receiver operating characteristic (ROC) curves on Norwich data. For DL-1 in 
blue, DL-2 in purple, DL-3 in green and the Combined algorithm performance in red, with area under the 
receiver operating characteristic curve values provided for each algorithm. 

 
The Combined model performance was not statistically significant from DL-2 and DL-3 performance 

(p > 0.05). However, it was statistically significantly different from DL-1 as demonstrated in Table 6-

10.  

 DL-1  DL-2  DL-3  
DeLongs test p value < 0.01 0.2434 0.6288 

Table 6-10 – DeLong’s test comparison results for DL-1, DL-2, DL-3 compared to the Combined model 
performance on Norwich data. 

 
6.4.5 Sub-group analysis  

Performance of the AI algorithms was further assessed at the 96.6% specificity threshold (threshold 

1) for sensitivity of the following subgroups; age at screening, mammographic machine vendor, 

invasive status, invasive size of cancer, invasive grade of cancer, and mammographic breast density 

categories for SDCs, Table 6-11, and ICs, Table 6-12, at all sites.  
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 n First  reader  DL-1 DL-2 DL-3 
Total SDC Cases 332 302 266 266 286 
Total Lesionsd 343 315 278 278 297 

Total Invasive Lesionsd 286 266 238 240 253 
Age at Screening      

< 60 113 (34.0%) 105 (92.9%) 88 (77.9%) 89 (78.8%) 96 (85.0%) 
>= 60 219 (66.0%) 197 (90.0%) 178 (81.3%) 177 (80.8%) 190 (86.8%) 

p value  - 0. 846319 0.806241 0.88204 0.902054 
FFDM Vendor      

GE 184 (55.4%) 169 (91.8%) 159 (86.4%) 148 (80.4%) 160 (87.0%) 
Philips 148 (44.6%) 133 (89.9%) 107 (72.3%) 118 (79.7%) 126 (85.1%) 
p value  - 0.891552 0.284815 0.9576 0.896299 

Invasive statusd      
Invasive 286 (83.3%) 266 (93.0%) 238 (83.2%) 240 (83.9%) 253 (88.5%) 

Non-invasive 54 (15.7%) 46 (85.2%) 39 (72.2%) 37 (68.5%) 43 (79.6%) 
Missing 3 (0.9%) 3 (100%) 1 (33.3%) 1 (33.3%) 1 (33.3%) 
p value - 0.916924 0.599303 0.493973 0.616753 

Invasive Tumour Sized      
< 15 mm 160 (55.9%) 144 (90.0%) 126 (78.8%) 133 (83.1%) 135 (84.4%) 

>= 15 mm 120 (42.0%) 116 (96.7%) 106 (88.3%) 101 (84.2%) 112 (93.3%) 
Missing 6 (2.1%) 6 (100%) 6 (100%) 6 (100%) 6 (100%) 
p value  - 0.911418 0.772362 0.951474 0.82882 

Invasive Tumour Graded      
1 67 (23.4%) 60 (89.6%) 55 (82.1%) 55 (82.1%) 57 (85.1%) 
2 157 (54.9%) 147 (93.6%) 133 (84.7%) 134 (85.4%) 141 (89.8%) 
3 56 (19.6%) 54 (96.4%) 45 (80.4%) 46 (82.1%) 50 (89.3%) 

Missing 6 (2.1%) 5 (83.3%) 5 (83.3%) 5 (83.3%) 5 (83.3%) 
p value - 0.989649 0.996254 0.997324 0.994561 

Density BI-RADSb      
a 18 (5.4%) 17 (94.4%) 11 (61.1%) 13 (72.2%) 15 (83.3%) 
b 79 (23.8%) 71 (89.9%) 59 (74.7%) 66 (83.5%) 71 (89.9%) 
c 43 (13.0%) 39 (90.7%) 34 (79.1%) 36 (83.7%) 37 (86.1%) 
d 12 (3.6%) 10 (83.3%) 6 (50.0%) 7 (58.3%) 7 (58.3%) 

p value - 0.996736 0.817878 0.889323 0.860564 
Density BI-RADSa      

a 45 (13.6%) 42 (93.3%) 31 (68.9%) 35 (77.8%) 38 (84.4%) 
b 208 (62.7%) 190 (91.3%) 174 (83.7%) 172 (82.7%) 185 (88.9%) 
c 78 (23.5%) 69 (88.5%) 61 (78.2%) 59 (75.6%) 63 (80.8%) 
d 1 (0.3%) 1 (100%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

p value - 0.997149 - - - 
Table 6-11 – Sub group analysis of DL-1, DL-2, DL-3 set at the first reader specificity threshold of 96.6% 
(threshold 1) for screen detected cancers (SDCs). BI-RADS: Breast imaging-reporting and data system, FFDM: 
Full field digital mammography, SDC: Screen detected cancer. dLesions reported. aDL-3 5th edition BI-RADS 
density scores on processed full field digital mammograms. b Volpara 5th edition BI-RADS mammographic breast 
density from raw full field digital mammograms for Cambridge data. p values were determined by using Chi 
squared c2 test to compare against the detected proportion of cancers cases by the true distribution for each 
cancer characteristic category. p values < 0.05 were considered statistically significant.  
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 n 
 

Double 
reader 

First 
reader  

DL-1 DL-2 DL-3 

Total IC Cases 174 9 16 26 25 30 
Total Lesionsd 186 10 17 31 25 32 
Total Invasive 

Lesionsd 
167 7 16 30 19 30 

Age at 
Screening 

      

< 60 86 (49.4%) 3 (3.5%) 4 (4.7%) 13 (15.1%) 12 (14.0%) 13 (15.1%) 
>= 60 88 (50.6%) 6 (6.8%) 12 (13.6%) 13 (14.8%) 13 (14.8%) 17 (19.3%) 

p value  - 0.346281 0.061133 0.956401 0.893963 0.537597 
FFDM Vendor       

GE 91 (52.3%) 3 (3.3%) 7 (7.7%) 18 (19.8%) 9 (9.9%) 9 (9.9%) 
Philips 83 (47.7%) 6 (7.2%) 9 (10.8%) 8 (9.6%) 16 (19.3%) 21 (25.3%) 
p value  - 0.266994 0.512593 0.105847 0.127486 0.024046 

Invasive statusd       
Invasive 167 (89.8%) 7 (4.2%) 16 (9.6%) 30 (18.0%) 19 (11.4%) 30 (18.0%) 

Non-invasive 15 (8.1%) 2 (13.3%) 1 (6.7%) 1 (6.7%) 5 (33.3%) 2 (13.3%) 
Missing 4 (2.2%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 1 (25.0%) 0 (0.0%) 
p value - 0.118297 0.732246 0.327375 0.128396 0.700804 

Invasive Tumour 
Sized 

      

< 15 mm 52 (31.1%) 4 (7.7%) 5 (9.6%) 10 (19.2%) 4 (7.7%) 6 (11.5%) 
>= 15 mm 96 (57.5%) 3 (3.1%) 11 (11.5%) 19 (19.8%) 14 (14.6%) 24 (25.0%) 

Missing 19 (11.4%) 0 (0.0%) 0 (0.0%) 1 (5.3%) 1 (5.3%) 0 (0.0%) 
p value  - 0.236243 0.756546 0.401431 0.394622 0.106786 

Invasive Tumour 
Graded 

      

1 28 (16.8%) 1 (3.6%) 2 (7.1%) 4 (14.3%) 3 (10.7%) 4 (14.3%) 
2 73 (43.7%) 5 (6.9%) 9 (12.3%) 21 (28.8%) 13 (17.8%) 18 (24.7%) 
3 63 (37.7%) 1 (1.6%) 5 (7.9%) 5 (7.9%) 3 (4.8%) 8 (12.7%) 

Missing 3 (1.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
p value - 0.34277 0.663023 0.029639 0.105161 0.291008 
Density  

BI-RADSb 
      

a 8 (4.6%) 0 (0.0%) 1 (12.5%) 0 (0.0%) 1 (12.5%) 3 (37.5%) 
b 34 (19.4%) 3 (8.8%) 3 (8.8%) 0 (0.0%) 4 (11.8%) 6 (17.6%) 
c 29 (16.6%) 3(10.3%) 4 (13.8%) 5 (17.2%) 7 (24.1%) 7 (24.1%) 
d 12 (6.9%) 0 (0.0%) 1 (8.3%) 3 (25.0%) 4 (33.3%) 5 (41.7%) 

Missing 1 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
p value - - 0.939331 - 0.518521 0.58906 
Density  

BI-RADSa 
      

a 13 (7.4%) 0 (0.0%) 1 (7.7%) 0 (0.0%) 1 (7.7%) 4 (30.8%) 
b 94 (53.7%) 5 (5.3%) 9 (9.6%) 17 (19.1%) 14 (14.9%) 14 (14.9%) 
c 65 (37.7%) 4 (6.1%) 6 (9.1%) 9 (13.6%) 10 (15.2%) 12 (18.2%) 
d 2 (1.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

p value - - - - - - 
Table 6-12 – Sub group analysis of DL-1, DL-2, DL-3 set at the first reader specificity threshold of 96.6% 
(threshold 1) for interval cancers (IC). BI-RADS: Breast imaging-reporting and data system, FFDM: Full field 
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digital mammography, IC: Interval cancer. dLesions reported. aDL-3 5th edition BI-RADS density scores on 
processed full field digital mammograms. b Volpara 5th edition BI-RADS mammographic breast density from raw 
full field digital mammograms for Cambridge data. p values were determined by using Chi squared c2 test to 
compare against the detected proportion of cancers cases by the true distribution for each cancer characteristic 
category. p values < 0.05 were considered statistically significant. 

 
The AI algorithms behaved similarly to true distribution of cancer cases in the all types of cancers 

detected (p > 0.05). A statistically significant difference between the distribution of ICs invasive 

grade for DL-1, and ICs mammographic machine vendor for DL-3 was found. Otherwise, no 

statistically significant difference was found between the distribution of each sub category and the 

types of cancers detected by human readers or AI algorithms. The AI algorithm performance is 

similar to human reader performance, and reduces in sensitivity as density increases.  

Performance of the AI algorithms was further assessed at the 96.6% specificity threshold (threshold 

1) for sensitivity of the following IC subgroups; interval time in months and radiological audit 

classification, Table 6-13. The AI algorithms followed a similar distribution to the true distribution of 

IC over the interval time period (months) and detected more year three cancers than human 

readers. In addition, the algorithm like human readers picked up more uncertain cases, where there 

was potentially a visible sign “seen with hindsight”, than normal / benign cases where there was no 

visible sign on case review.  

 n 
 

Double 
reader 

First  
reader  

DL-1 DL-2 DL-3 

Total IC Cases 174 9 16 26 25 30 
Interval  

(Months) 
      

0-12 31 (17.7%) 4 (12.9%) 6 (19.4%) 3 (9.7%) 4 (12.9%) 5 (16.1%) 
12-24 51 (29.1%) 5 (9.8%) 10 (19.6%) 7 (13.7%) 5 (9.8%) 8 (15.7%) 
24-36 92 (52.6%) 0 (0.0%) 0 (0.0%) 16 (17.4%) 16 (17.4%) 17 (18.5%) 
36-40 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

p value - - - 0.642967 0.545267 0.927792 
Radiological 

Audit 
Classification 

      

Normal/Benign 129 (74.1%) 5 (3.9%) 9 (7.0%) 14 (10.9%) 16 (12.4%) 21 (16.3%) 
Uncertain 39 (22.3%) 3 (7.7%) 7 (18.0%) 12 (30.8%) 8 (20.5%) 9 (23.1%) 
Suspicious 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Unclassifiable 1 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Missing 5 (2.9%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 0 (0.0%) 
p value - - - - - - 

Table 6-13 – Sub group analysis of DL-1, DL-2, DL-3 set at the first reader specificity threshold of 96.6% 
(threshold 1) for interval cancer (IC) specific categories. IC: Interval cancer. p values were determined by using 
Chi squared c2 test to compare against the detected proportion of cancers cases by the true distribution for 
each cancer characteristic category. p values < 0.05 were considered statistically significant. 
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Furthermore, the overlap of cases detected by each algorithm (DL-1, DL-2, DL-3) and the human first 

reader, at threshold 1, is shown in Figure 6-10. The Venn diagram demonstrates how the majority of 

SDC cases overlap for both the human reader and AI algorithms. Whereas, the IC and NRC cases 

detected differ between the AI algorithms as well as between the human first reader and AI 

algorithms.  

 

 

 

 

 

 

 

Figure 6-10 – Venn diagram – not proportional. a) Screen detected cancer cases, b) interval cancer cases, c) 
next round cancer cases. For DL-1 in blue, DL-2 in purple, DL-3 in green and the first human reader in red.  

 
6.4.6 Failure analysis  

Examples of cases missed by either the human readers, AI algorithms or both are shown below. A 

case classified as an uncertain IC that was not detected by all methods, human readers and AI 

algorithms is shown in Figure 6-11. This was a case of a 57-year-old patient, diagnosed with a left 

sided grade 2, 15 mm invasive cancer, 691 days after screening.  

 

 

 

 

 

 

 

 

 

 

Figure 6-11 – Missing case analysis, case missed by both artificial intelligence (AI) and human readers. a) 
Screening image b) diagnostic image, with a blue bounding box to show the location of the cancer. The screen 
and diagnostic images were annotated by a breast radiologist to show the true location of the cancer. 

 

a) b) c) 

a) b) 
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A case classified as a normal / benign IC that was not detected by all human readers, but was 

recalled by all AI algorithms is shown in Figure 6-12. This was a case of a 57-year-old patient, 

diagnosed with a right sided grade 2, 21 mm invasive cancer, 806 days after screening.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-12 – Missing case analysis, case missed by all human readers and detected by all artificial 
intelligence (AI) algorithms. a) Screening image b) diagnostic image, with a blue bounding box to show the 
location of the cancer. The screen and diagnostic images were annotated by a breast radiologist to show the 
true location of the cancer. 

 
A SDC case recalled at routine screening by all readers that was not detected by all AI algorithms, 

Figure 6-13. This was a case of a 51-year-old patient, diagnosed with a left sided grade 3, 3 mm 

invasive cancer, with a 107 mm non-invasive component.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-13 – Missing case analysis, case missed by all artificial intelligence (AI) algorithms. a) Screening 
image, with a blue bounding box to show the location of the cancer. The screen images were annotated by a 
breast radiologist to show the true location of the cancer.  

a) b) 

a) 
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6.5 Discussion    

6.5.1 Overall performance 

This study aimed to evaluate the performance of three commercial AI algorithms as stand-alone 

systems for the task of detection and diagnosis (CADe+x) in routine UK breast screening, using a 

large unenriched multi-vendor retrospective dataset from two UK NHSBSP sites. It provides an 

independent external validation which has not previously been performed, on UK data, for multiple 

algorithms simultaneously133,138,235,236,292,293.  

Overall all three AI algorithms achieved a good AUROC 0.868–0.910, pAUROC 0.737–0.791 and 

AUPRC 0.407–0.513 when using cancers diagnosed within 3 years of screening as cases, 

demonstrating that these algorithms are generalisable to the UK screening population across 

different sites and mammographic machine vendors. The AUROC and pAUC of DL-3 is statistically 

significantly different than DL-1 and DL-2 when tested on Norwich data, which is likely due to the 

predominant manufacturer used for training DL-3 (GE) is the same as the manufacture in the 

Norwich test set. Interestingly, the AUROC was not statistically significantly different between sites 

for the same AI algorithm, despite the algorithms either training on no or < 1% Philips data. 

Generalisability is further demonstrated as all the AI algorithms trained on less than 10% of UK data 

(triennial screening programme).  

This study highlights the importance of reporting, AUROC alongside, pAUROC, AUPRC, sensitivity and 

precision, as the groups are unbalanced in screening with a large proportion of normal cases to 

cancer cases. Additional metrics of AUPRC, precision and sensitivity provide information regarding 

the cost trade off, such that there is a high cost for missing a cancer case, which is captured in these 

metrics, and is demonstrated in Figure 6-6 for DL-3 and DL-2 where the precision is significantly 

reduced at a high recall for either missing a cancer case or high rates of false positive recalls. The 

pAUROC allows for the evaluation of an AI algorithms performance at the extreme end of the curve, 

high specificity, where an algorithm operates for screening tasks to maintain recall rates and so 

provides a more accurate assessment of clinical performance compared to the overall AUROC.  

Compared to the first reader, the sensitivity of all three algorithms were shown to be non-inferior at 

both threshold 1 and threshold 2 (first reader specificity 96.6%). The AI algorithms detected 

between 13.2-23.6% ICs and 4.5-28.8% NRCs which may offset the reduction in SDCs seen when 

using these systems as stand-alone readers. This is in keeping with previous studies where AI 

algorithms have been shown to be non-inferior and in certain cases superior to the first reader in 

double reading biennial and triennial screening programmes as well as in single reader annual 

programmes137,138,149,290. Rates of ICs detected were lower than in recent studies where 30.7% 

(63/205) of ICs were detected in the biennial screening programme of Norway, using a cohort of > 
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47,000 women, although this was at a higher recall rate of 5.8%271. In a study using a ten year UK and 

Hungarian screening cohort, 29.8% (111/373) of ICs were detected, although again the AI system 

was operating at a lower specificity (91.2%)290.  

When the algorithm is set at threshold 2 and combined with the first reader decision and final action 

decision where discordance, all of the three AI algorithms were non-inferior to double reading 

performance. However, there was an increase arbitration rate with a decrease in SDC rate and 

maintenance of IC detection. The decrease in recall rate and overall reduction in workload if this 

approach was implemented potentially provides a trade-off to the cancer detection and arbitration 

rate effects. Sharma et al reported a similar non-inferior sensitivity AI algorithm performance in a 

cohort of UK and Hungarian screening data, as well as similar increase in the arbitration rate290. 

Deployment of AI algorithms as the second reader is seen as a favourable initial deployment 

approach with a ‘reader in the loop’ for oversight of the algorithm’s decisions, however the trade-off 

of reducing the workload of one reader, whilst significantly increasing arbitration, needs to be 

addressed as to what is an acceptable national level of increase in arbitration as well as who takes 

part in this arbitration and what information needs to be provided by the AI algorithm to arbitration 

readers. It is also important recall rates remain the same as existing screening standards so as not to 

increase the workload of assessment clinics, which are already a workload intensive and costly part 

of any screening programme.  

6.5.2 Further analysis 

The additional scenario of implementing an auto recall threshold (99.0% specificity), aims to 

overcome the bias caused by using the original arbitration decision of human readers, as a case can 

only be recalled if the overall human reader decision was to recall the case. At this threshold there 

was an overall increase in earlier detection of cancer (ICs and NRCs) at the expense of an increased 

recall rate. However, it is unknown if the ICs and NRCs recalled would be detected at an assessment 

clinic or with supplemental imaging.  

Combining all three AI algorithms did not result in a statistically significant improvement in 

performance. Salim et al also found using a voting system of three different commercial AI 

algorithms did not improve performance compared to the best performing algorithm149. However in 

Schaffter et al, they implemented an ensemble method of the top performing eight algorithms as 

part of the DREAM challenge, and did show superior performance compared to the single best 

performing algorithm137. It was also suggested in the UK National Screening Committee report that 

using algorithms together could potentially improve overall performance136,137. Interestingly as 

shown in Figure 6-10.b the ICs and NRCs detected by each AI algorithm and human readers are 
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different and thus potential benefit for the early detection of cancers could be found by using these 

systems together.  

Investigating the consistency of performance across different categories showed the algorithms 

detected cancers with a similar distribution to the true distribution across all sub groups. In addition 

AI algorithms demonstrated similar behaviour to human readers with a decrease in performance at 

the highest breast density category, which has previously been reported138,149,290. 

6.5.3 Limitations 

There are limitations to this study. Firstly, comparing three yearly performance disadvantages the 

human reader as it provides the AI algorithms with the opportunity to detect cancers that were not 

detected by the human readers. Secondly, in practice human readers have access to both prior 

images and clinical information, which could disadvantage the AI algorithms. Recent developments 

have seen algorithms starting to use prior images within their decision-making process, and this 

information was not available in this study. In addition, as all the algorithms in this study are 

commercial, they are reported under a pseudonym (DL-ID). Whilst this limits the transparency of 

reporting certain parameters (e.g. model weights and layers) for reproducibility, it does provide an 

oversight as to the current performance of commercial AI algorithms for programme level decisions 

and thus evidence for the implementation of this technology as well as the planning of prospective 

studies. Part of this study uses simulation to estimate the performance of the AI as the second 

reader, as noted in the recently updated 2021 UK NSC report, simulation studies are unable to 

“measure the impact of AI on readers and their decisions”. Ethnicity data was missing for a 

proportion of cases, when searching NBSS and Electronic Health Record (EHR) systems and so the 

assessment of AI algorithms for consistent non-biased performance based on case ethnicity was not 

possible. Histopathological size can be influenced by the use of neo-adjuvant chemotherapy, and 

this information was not commonly available alongside size information for analysis. Finally, two out 

of the three algorithms had access to UK The Optimam Mammography Image Database (OMI-DB) 

data, which includes a small proportion of data form Cambridge. Whilst, all time points for these 

cases were identified and removed from this study testing set, the Cambridge data is not wholly 

temporally independent from the training sets used by each AI algorithm and there is the potential 

for bias.  

6.5.4 Future work 

Further work should include evaluating the lesion level prompts provided by each algorithm to 

investigate the explainability as well as the possibility of use of algorithms as interactive clinical 

decision support systems. In addition, the development of the database over a ten-year period will 
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allow for the inclusion of prior mammogram information for AI algorithms which could result in an 

improvement in performance.  

6.6 Conclusion   

In conclusion all of the three commercial AI algorithms met the required benchmark of non-

inferiority for the detection and diagnosis of breast cancer as a stand-alone single screen reader and 

in conjunction with a human reader in a double reading system. Thus, all of the three algorithms are 

suitable to proceed to prospective assessment. Further work is however required to confirm bias 

does not occur for certain patient groups, through the evaluation of AI algorithm performance for 

different ethnicities and in different socio-economic regions of the country as part of prospective 

studies.  
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Chapter 7 - Performance of stand-alone artificial intelligence 

algorithms in a UK screening cohort for high sensitivity and high 

specificity triage 

 
7.1 Aims 

In this chapter, the performance of three commercial artificial intelligence (AI) algorithms is 

investigated for high sensitivity and high specificity triage applications. A large representative 

screening cohort from two UK screening sites is used for this study in order to assess the tools 

performance at a high sensitivity for normal case rule out triage. In addition, each AI algorithm was 

evaluated for a high suspicious high specificity rule in triage application, for the detection of interval 

and next round cancers. A combined approach for both rule in rule out triage was then applied using 

the thresholds identified in the earlier studies. The results from this chapter provide data for 

planning prospective trials and adds to the UK evidence for investigating the use of AI algorithms for 

triage applications in breast cancer screening.  

Contents of this chapter have been submitted to Radiological Society of North America conference 

2022 [abstract ID - #2022-SP-2966-RSNA] and European Society of Breast Imaging conference 2022 

[abstract ID - #A-165]. 

 

7.2 Introduction  

Each year more than 2.5 million women are screened using mammography as part of the National 

Health Service (NHS) Breast Screening Programme (BSP), and an estimated 15,000 cancers are 

diagnosed, such that an estimated ~99.0% of women screened will not have a cancer at the time of 

screening54. Thus the vast majority of the screening workload is from ‘normal’ screens. Screening 

programmes like the NHSBSP employ a double reading system, where each case is read by two 

radiologists and if there is discordance between readers the case is arbitrated. Mammographic 

screen reading is therefore a repetitive task of high volume, which is prone to reader fatigue294. 

Many countries have also reported a scarcity of radiologists, especially in breast imaging58. Therefore 

solutions to improve the efficiency of screening are of interest for programmes. One solution would 

be to reduce the readers’ workload and not have to read mammograms with a very low likelihood of 

a cancer by using an AI algorithm for automated ‘normal’ case triage. Mammograms below a 

threshold could be automatically assigned a ‘normal’ outcome and not read by a human reader or 

only read by one reader in a double reading programme134,135,229. In our systematic review and meta-

analysis reported in Chapter 3 we found when applying this computer aided triage (CADt) approach 
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the number of exams could be reduced from 17.0-91.0% whilst missing 0.0-7.0% of cancer cases133. 

A recent study by Lång et al, found 19.1% of cases could be removed without missing a cancer. If 

53.0% of cases were classified as normal, 10.3% of screen detected cancers (SDCs) would not be 

flagged of which 85.7% (6/7) were clearly visible, with a 27.8% reduction in false positive recalls295. 

What has not been fully quantified is the acceptable miss rate of these systems when used for this 

specific application, such as what sensitivity threshold should be used when setting the operating 

point of these systems133. Alternative triage reading approaches, have been suggested such that 

cases with the lowest scores are single read and the rest are double read. Using this approach Balta 

et al demonstrated a 32.6% reduction in workload for the second reader whilst estimated to miss no 

cancers230. Balta et al also found a reduction in recall rate (5.35% to 4.79% (p < 0.01)), a reduction in 

arbitration rate by 20.8% and an increase in positive predictive value (11.9% to 13.3% (p < 0.01))230. 

However, it is unknown if this would be replicated in the real-time clinical workflow and if reader 

performance would improve or at a minimum stay the same. Concerns raised are if there will be 

adverse effects if reading a smaller volume of exams and the impact on reader training to maintain 

the high standards of breast screening through exposure to different cases, both cancer and non-

cancer.  

An alternative method for stand-alone AI triaging is to triage highly suspicious cases with a high 

score for either automatic referral for assessment or supplemental imaging. This auto CADt rule in 

approach could improve the detection of interval (IC) and next round (NRC) cancers, thus potentially 

improving the survival outcomes of women through earlier detection. One approach suggested by 

Dembrower et al is for enhanced screening of those cases with the highest 1.0-5.0% scores using 

supplemental imaging (Digital Breast Tomosynthesis (DBT), Magnetic resonance imaging (MRI)), 

which estimated to increase the detection of ICs by 12.0-27.0% and NRCs by 14.0-35.0%134. 

Dembrower et al also incorporated a rule out triage approach which identified 60.0% of cases could 

be triaged out from human reading without missing a cancer134.  Lauritzen et al, implemented both a 

normal rule out triage and a high suspicion auto recall to assessment triage. For the auto recall high 

suspicion triage only 0.08% of cases were recalled of which 8.8% were SDCs, 0.0% ICs and 0.14% 

NRCs. However, Lauritzen et al found an overall 63.0% workload reduction and 25.1% false positive 

reduction, whilst missing 12 (1.5%) SDCs when implementing the auto recall out threshold296. 

Overall, Lauritzen et al reported a non-inferior sensitivity (69.7% vs 70.8%) and specificity (98.6% vs 

98.1%) when comparing the AI system workflow to the routine double reading workflow296.  

Such improvements in efficiency of reading could also benefit the patients by potentially providing 

faster results. The anxiety of waiting for screening results is often reported by patients attending 

screening. Furthermore, the overall cost effectiveness of the screening programme could be 
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improved by this strategic screening reading approach, through the reduction in the number of 

radiologists hours required for mammographic screen reading and instead utilising radiologists time 

for complex biopsies and time-consuming MRI reading.  

This study addresses the gap in evidence highlighted in the UK National Screening Committee report, 

using a large external UK multi-vendor multi-site cohort for testing multiple AI algorithms in different 

triage approaches within an independent environment136.  

 

7.3 Methods  

7.3.1 Data  

All study data was obtained from the CC-MEDIA database described in Chapter 4, where data was 

collected from two NHSBSP sites (Cambridge and Norwich) under existing ethical approval (HRA REC 

20/LO/0104, HRA CAG 20/CAG/0009, PHE RAC BSPRAC_090). All study data was de-identified prior 

to use in this research. 

Cases were included if the following eligibility criteria was met; age more than 47 years old, 

complete two-view FFDM, took part in routine NHSBSP screening between January 1 2015 to 

December 31 2017 at Norwich and January 1 2017 to December 31 2018 at Cambridge. Cases were 

excluded if they were recorded as a technical recall, were part of high-risk screening, did not meet 

the specified case definition for ground truth, and any cases where there was an incomplete 

mammogram; less than four views, more than four views, images not available on Picture Archiving 

and Communication System (PACS) or only raw data was available. One time point per case was 

included, such that if a case appeared twice due to repeat screening within the study time frame the 

earliest time point was used for this study. Cancer cases were also removed where they did not 

meet the specified definition following discussion with Public Health England (PHE), and interval 

cancer cases were removed if the interval was recorded as longer than 40 months. Cases were not 

excluded if they had prior surgery, prior cancer or an artefact was included in the image (e.g. 

pacemakers). However, cases with implants were excluded. All cases were checked to ensure there 

was no overlap with any existing databases the tools had used for training and therefore the AI 

algorithms had not previously seen any data included in this study dataset.  

The processed screening Full Field Digital Mammogram (FFDM) images were used by all AI 

algorithms for this study. The images were stored in Joint Photographic Experts Group (JPEG) 

Lossless Digital Imaging and Communications in Medicine (DICOM) format and no additional pre-

processing other than that performed by the mammography vendor and that performed by the AI 

algorithm occurred. No prior images or clinical data was available for the algorithms to use. 
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Clinical metadata was collected for all cases included in this study from the National Breast 

Screening System (NBSS). The invasive status, histological grade, and histological size, was obtained 

using an automated NBSS query, for further detail please see Chapter 4 Section 4.4.5. The case 

selection process is shown in the Standards for Reporting of Diagnostic Accuracy Studies (STARD) 

diagram in Figure 7-1275. Cases were excluded if a sufficient ground truth follow-up was not 

available. In this study 34,889 cases were excluded as a second time point normal screen outcome 

was not available in the NBSS output. This is due to cases not returning to screening due to either 

non-attendance or they completed routine screening (aged 50-70) and did not self-refer. The study 

took place during the Covid-19 pandemic which also effected women being recalled to screening, as 

detailed in Chapter 4.  

Figure 7-1 – Standards for Reporting of Diagnostic Accuracy Studies (STARD) flow diagram of cases included 
and excluded in this study. FFDM: Full Field Digital Mammogram, FHx: Family history, IC: Interval cancer, NHS: 
National Health Service, OMI-DB: The Optimam Mammography Image Database, PHE: Public Health England, 
PACS: Picture Archiving and Communication System. 

 
7.3.2 Ground truth  

The ground truth was determined for each case using definitions available from the NHSBSP as well 

as normal follow-up standards within the field. The study time period overlaps with the pause in 

screening during the Covid-19 pandemic, which lead to an increase in round length. For further 

details regarding the definition for the ground truth of each case please refer to Chapter 6 Section 

6.3.3. 
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Figure 7-2 shows the sequence of different cancer outcomes. Previous round cancers and previous 

round interval cancers were only included if they had a further round outcome of either ‘normal’ or 

‘cancer’ outcome.  

 
Figure 7-2 – Cancer outcomes for study cohort. FRC: Future round cancer, IC: Interval cancer, NRC: Next round 
cancer, NRIC: Next round interval cancer, PRC: Previous round cancer, PRIC: Previous round interval cancer, 
SDC: Screen detected cancer. 

 
The human readers were trained breast radiologists or breast radiographers who read as part of the 

NHSBSP, meeting the NHSBSP standards of reading 5000 mammograms a year and undertaking 

Personal Performance in Mammographic Screening (PERFOMS) testing each year56. Trainee readers 

were removed from this analysis.  

7.3.3 AI tools  

Three commercial AI algorithms, which use a deep learning (DL) convolutional neural network 

architecture, were installed at the University of Cambridge. Details regarding the training data used 

by each AI algorithm as well as the technical setup and algorithm output is outlined in Chapter 5 

Table 5-1.  

Breast Imaging-Reporting and Data System (BI-RADS) 5th edition density scores were provided from 

two systems; Volpara (research version – VolparaResearch32_L30Enabled_v2, Wellington, New 

Zealand) using raw full field digital mammography (FFDM) data, and DL-3 using FFDM processed 

data.  

7.3.4 Thresholds  

Four thresholds were used for the normal triage aspect of this study. The first threshold was set at 

99.0% sensitivity for the AI algorithm (threshold 1) and the second threshold was set at 99.9% 

sensitivity (threshold 2), with SDCs classified as cases. The third threshold (threshold 3) was set at 

85.0% sensitivity, and the fourth threshold was set at 70.0% specificity (threshold 4) for cancers 

occurring within 3 yearly screening (SDCs, ICs, NRCs). At these thresholds the AI algorithms 

performance was assessed for an adapted reader workflow, where an initial AI algorithm read takes 

place and if the case meets the threshold, then it is included in the alternative screening workflow, 

Figure 7-3.b or Figure 7-3.c. Scenario B, as shown in Figure 7-3.b, results in any case below the 
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threshold not being read by a human reader, whereas in Scenario C, Figure 7-3.c, the case is read by 

one reader (single first reader) only. Cases that do not meet this threshold proceed to routine 

double reading creating a simulated workflow.  

For the high-suspicion rule in triage part of this study, the performance threshold was set at 94.0-

99.0% specificity, for cancers occurring within 3 yearly screening (SDCs, ICs, NRCs). Two approaches 

are reported in this study, Scenario D (Figure 7-3.d) and Scenario E (Figure 7-3.e). In Scenario D any 

case above the AI algorithm threshold of 94.0-99.0% specificity is automatically recalled for 

supplemental imaging or assessment. Alternatively in Scenario E, any case above the threshold 

(94.0-99.0% specificity) not recalled by routine human reading would be referred for further 

supplemental imaging or assessment. 

SDCs and ICs, occurring within the three-year screening interval, were classified as cancer cases for 

the calculation of overall sensitivity and specificity. 
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Figure 7-3 – Proposed workflow deployment approaches for stand-alone artificial intelligence (AI) systems as 
triage tools. a) Routine UK double reading workflow, b) rule out normal triage of all cases below a set 
threshold, c) rule out normal triage of cases below a set threshold to single first reader reading, d) rule in high 
suspicion triage of all cases above a set threshold to supplemental imaging or assessment, e) rule in high 
suspicion triage of cases above a set threshold that were not recalled by routine double reading to 
supplemental imaging or assessment.  

 
7.3.5 Statistical analysis  

All statistical analysis took place in R version 4.0.4 (R Foundation for Statistical Computing, Vienna, 

Austria)225, using the packages detailed in Chapter 5 Section 5.3.6.   
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The overall predictive performance of each AI algorithm was evaluated using area under the receiver 

operating characteristic (AUROC) curve, and the partial AUROC (pAUROC) at 99.0-100% or 85.0-

100% sensitivity and 94.0-99.0% specificity. The primary performance metrics for the normal triage 

study were; specificity, sensitivity, % cases triaged, % cancers missed due to normal triage and % 

false positive cases triaged. The primary performance metrics for the high-suspicious triage study 

were; sensitivity, specificity, % interval cancers detected, and % next round cancer detected. The 

effect on the overall recall rate and arbitration rate was also assessed for all triage approaches.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
		 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
		 

 
Performance of each AI algorithm was compared to readers performance, using one sample one 

tailed z-test to determine if the algorithm was non-inferior. Subgroup analysis of the SDCs missed by 

the AI algorithms as part of normal triaging at threshold 1 took place for the following categories; 

age at screening, mammographic machine vendor, invasive tumour size, invasive tumour grade, and 

mammographic breast density using both Cambridge and Norwich data. Further subgroup analysis in 

the same categories was calculated for the AI algorithms at the 94.0% specificity rule in triage 

threshold for ICs and NRCs. The true integer values and percentages were reported as well as Chi 

squared c2 test was used to investigate if there was a statistically significance between categories285.  

Data is presented as integer number and percentage (n (%)), or median and interquartile range (IQR) 

[25th – 75th centile range] as appropriate. DeLong’s test was used to assess for a statistically 

significant difference between the AUROC curve of AI algorithms using 2000 bootstrapping 

examples. In all analyses, p-values < 0.05 were considered statistically significant and 95% 

confidence intervals were calculated, using bootstrapping with 2000 samples or through an 

approximation method from Simel et al using the epiR package291.  

7.3.6 Reporting  

Each AI algorithm was assigned a DL Identifier (ID) for the purposes of this study. For additional 

details please refer to Section 5.3.7 in Chapter 5.  

 

7.4 Results   

7.4.1 Data 

In total 78,849 cases were included. 24,563 (31.2%) cases were from Cambridge and 54,286 (68.8%) 

cases were from Norwich. The median age of the cohort was 59.0 years old [IQR 54.0–63.0]. The 

study cases characteristics are detailed in Table 7-1.  
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 Cambridge  Norwich  
Total Cases n 24563 54286 

Year of Screen   
2015 - 21017 (38.7%) 
2016 - 19219 (35.4%) 
2017 11956 (48.7%) 14050 (25.9%) 
2018 12607 (51.3%) - 

FFDM Manufacturer   
GE 235 (1.0%) 54286 (100%) 

Philips 24328 (99.0%) - 
Age at Screening   

Median [IQR] 58.0 [54.0-63.0] 59.0 [52.0-64.0] 
47-49 76 (0.3%) 4030 (7.4%) 
50-59 13871 (56.5%) 26752 (49.3%) 
60-69 9607 (39.1%) 20785 (38.3%) 
70+ 1009 (4.1%) 2719 (5.0%) 

Density BI-RADS Volparab DL-3a DL-3a 
a 3965 (16.1%) 5682 (23.1%) 8109 (14.9%) 
b 11123 (45.3%) 13527 (55.1%) 31260 (57.6%) 
c 6607 (26.9%) 5252 (21.4%) 14180 (26.1%) 
d 2516 (10.2%) 102 (0.4%) 737 (1.4%) 

Missing 48 (0.2%) 0 (0.0%) 0 (0.0%) 
Cancers   

SDC  
Rate per 1000 screens 

342  
8.5/1000 

545  
7.0/1000 

IC  
Rate per 1000 screens 

167  
4.2/1000 

272  
3.5/1000 

NRC  
Rate per 1000 screens 

184* 
6.5/1000 

504  
8.1/1000 

FRC - 149* 
Next round Interval cancers 18* 181* 

Table 7-1 – Summary of testing dataset characteristics. Integer values and percentages in brackets (%) and 
Interquartile range in square brackets [IQR]. BI-RADS: Breast imaging-reporting and data system, FRC: Future 
round cancer, FFDM: Full Field Digital Mammography, GE: General Electric, IC: Interval cancer, NRC: Next round 
cancer, NRIC: Next round interval cancer, SDC: Screen detected cancer. aDL-3 5th edition BI-RADS density scores 
on processed full field digital mammograms. b Volpara 5th edition BI-RADS mammographic breast density from 
raw full field digital mammograms for Cambridge data. *Incomplete follow-up time period information from 
which to calculate an accurate rate.  

 
In total 69.0% of the study mammograms were from GE machines, whereas 31.0% were from Philips 

machines with predominantly Philips machines at Cambridge and GE machines at Norwich. 

Approximately 1/6th of the cohort of women aged 67-69 are were not included as they would not 

have self-referred to have a repeat screen, thus would not have met the threshold for the ‘normal’ 

ground truth used in this study. This has a potential knock-on effect for the overall density 

percentages reported, as women aged 67-69 have a higher proportion of BI-RADS category a and b 

cases. The cohort contains 887 (1.1%) SDCs, 439 (0.6%) ICs, and 688 (0.9%) NRCs. The characteristics 

of the SDC and NRC cases in the study cohort are shown in Table 7-2.  
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 Cambridge SDC  
n (%)  

Cambridge NRC 
n (%)  

Norwich SDC 
n (%) 

Norwich NRC 
n (%) 

Total Cases n 342 184 545 504 
Total Lesions n 359 191 562 527 

     
Round Length* 

(days) 
1088 

[1066-1105] 
1221  

[1080-1332] 
1063 

[1036-1085] 
1078 

[1064-1128] 
Round Length* 

(months) 
35.8 

[35.0-36.3] 
40.1 

[35.5-43.8] 
35.0 

[34.1-35.7] 
35.4 

[35.0-37.1] 
Age at 

Screening 
Median [IQR] 62.0  

[57.0-68.0] 
60.0  

[54.0-65.0] 
62.0   

[56.0-68.0] 
61.0 

[55.0-65.0] 
47-49 0 (0.0%) 1 (0.5%) 33 (6.1%) 25 (5.0%) 
50-59 123 (36.0%) 84 (45.7%) 171 (31.3%) 199 (39.5%) 
60-69 164 (47.9%) 86 (46.7%) 259 (47.5%) 237 (47.0%) 
70+ 55 (16.1%) 13 (7.1%) 82 (15.0%) 43 (8.5%) 

Invasive 
Status 

Invasive 292 (81.3%) 160 (83.8%) 478 (85.1%) 432 (82.0%) 
Non-invasive 66 (18.4%) 30 (15.7%) 82 (14.6%) 92 (17.5%) 

Missing  1 (0.3%) 1 (0.5%) 2 (0.4%) 3 (0.6%) 
     

Invasive 
Tumour 

Sized 

< 15 154 (52.7%) 72 (45.0%) 261 (54.6%) 244 (56.5%) 
>= 15 128 (43.8%) 60 (37.5%) 198 (41.4%) 154 (35.6%) 

Missing 10 (3.4%) 28 (17.5%) 19 (4.0%) 34 (7.9%) 
Invasive 
Tumour 
Graded 

1 52 (17.8%) 24 (15.0%) 132 (27.6%) 133 (30.8%) 
2 170 (58.2%) 98 (61.2%) 233 (48.7%) 187 (43.3%) 
3 53 (18.2%) 24 (15.0%) 104 (21.8%) 86 (19.9%) 

Missing 17 (5.8%) 14 (8.8%) 9 (1.9%) 26 (6.0%) 
 Volparab DL-3a Volparab DL-3a DL-3a DL-3a 

Density 
BI-RADSl 

a 47 
(13.7%) 

72 

(21.1%) 
27 

(14.7%) 
41 

(22.3%) 
52 

(9.5%) 
59 

(11.7%) 
b 169 

(49.4%) 
197 

(57.6%) 
95 

(51.6%) 
98 

(53.3%) 
334 

(61.3%) 
303 

(60.1%) 
c 87 

(25.4%) 
72 

(21.1%) 
47 

(25.5%) 
45 

(24.5%) 
153 

(28.1%) 
141 

(28.0%) 
d 35 

(10.2%) 
1 

(0.29%) 
15 

(8.2%) 
0 

(0.0%) 
6 

(1.1%) 
1 

(0.2%) 
Missing 4 

(1.2%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
0 

(0.0%) 
Table 7-2 – Screen detected (SDC) and next round cancer (NRC) characteristics by lesions and cases. With 
integer values and percentages in brackets (%). Invasive Tumour Size  in millimetres (mm). BI-RADS: Breast 
imaging-reporting and data system, NRC: Next round cancer, SDC: Screen detected cancer. dInvasive lesions 
only. lCases only. aDL-3 5th edition BI-RADS density scores on processed full field digital mammograms. 
bVolpara 5th edition BI-RADS mammographic breast density from raw full field digital mammograms for 
Cambridge data. *Cases not screened before or screened more than 6 years ago were not included in this 
calculation. Results for screen detected cancers between sites are comparable. However the results for next 
round cancers are not comparable between sites. This is because cases from 2017 onwards were effected by 
the pause in screening during the Covid-19 pandemic, which is described in Chapter 4. Cambridge data includes 
2017-2018 cases (~84.8% cases effected) whereas Norwich includes 2015-2017 cases (~21.2% cases effected), 
thus this effect is seen in the Cambridge next round cancer results where the round length is increased. It is 
expected that the size and grade of cancers would increase as a consequence, however due to the increase use 
of hormone therapy in the pandemic this impact may not been seen in the histopathological size and grade.  
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Of the 439 ICs, 167 (38.0%) were from Cambridge and 272 (62.0%) were from Norwich. The 

characteristics of the IC cases in the study cohort are shown in Table 7-3. 

 Cambridge IC n (%) Norwich IC n (%) 
Total Cases n 167 272 

Total Lesions n 170 275 
   

Age at Screening Median [IQR] 59.0 [54.0-66.0] 62.0 [55.0-68.0] 
47-49 1 (0.6%) 18 (6.6%) 
50-59 85 (50.9%) 99 (36.4%) 
60-69 58 (34.7%) 114 (41.9%) 
70+ 23 (13.8%) 41 (15.1%) 

Invasive Status Invasive 145 (85.3%) 260 (94.5%) 
Non-invasive 14 (8.2%) 14 (5.1%) 

Missing   11 (6.5%)  1 (0.4%) 
   

Invasive Tumour 
Sized 

< 15  39 (26.9%) 87 (33.5%) 
>= 15  86 (59.3%)  142 (54.6%) 

Missing 20 (13.8%) 31 (11.9%) 
Invasive Tumour 

Graded 
1 24 (16.6%) 31 (11.9%) 
2 62 (42.8%) 127 (48.8%) 
3 57 (39.3%) 95 (36.5%) 

Missing 2 (1.4%) 7 (2.7%) 
 Volparab DL-3a DL-3a 

Density BI-RADSl a 12 (7.2%) 15 (9.0%) 10 (3.7%) 

b 65 (38.9%) 85 (50.9%) 131 (48.2%) 

c 58 (34.7%) 63 (37.7%) 122 (44.9%) 

d 31 (18.6%) 4 (2.4%) 9 (3.3%) 

Missing 1 (0.6%) 0 (0.0%) 0 (0.0%) 

    
Interval 

(months)l 
0-12 25 (15.0%) 44 (16.1%) 

12-24  56 (33.5%) 100 (36.8%) 
24-36  86 (51.5%) 128 (47.1%) 
36-40  0 (0.0%) 0 (0.0%) 

Missing 0 (0.0%) 0 (0.0%) 
Radiological Audit 

Classificationl 
Normal/ Benign 138 (82.6%) 199 (73.2%) 

Uncertain 19 (11.4%) 59 (21.7%) 
Suspicious  0 (0.0%) 9 (3.3%) 

Unclassifiable  1 (0.6%) 5 (1.8%) 
Missing  9 (5.4%) 0 (0.0%) 

Table 7-3 – Interval cancer (IC) characteristics by lesions and cases. With integer values and percentages in 
brackets (%). BI-RADS: Breast imaging-reporting and data system, IC: Interval cancer. dInvasive lesions only. 
lCases only. Invasive Tumour Size  in millimetres (mm). aDL-3 5th edition BI-RADS density scores on processed 
full field digital mammograms.b Volpara 5th edition BI-RADS mammographic breast density from raw full field 
digital mammograms for Cambridge data.  

 
The median time to diagnosis was 741.0 [IQR 502.5–963.0] days for all ICs at Cambridge and 703.5 

[IQR 450.0–944.2] days at Norwich. 
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The double reader performance and single first reader performance, when combining outputs from 

both sites, is shown below in Table 7-4.  

 Double reading First reader 
Sensitivity 68.9% 63.6% 
Specificity 97.6% 97.0% 
Precision 32.8% 26.4% 

Arbitration 2.5% - 
Recall rate 3.5% 4.1% 

n detected (%)   
SDC  887 (100%) 807 (91.0%) 
IC 27 (6.2%) 36 (8.2%) 

NRC 20 (2.9%) 29 (4.2%) 
FRC 4 (2.7%) 7 (4.7%) 
NRIC 7 (3.5%) 10 (5.0%) 

FP 1840 2310 
Table 7-4 – Double and single first reader performance at both Cambridge and Norwich. FRC: Future round 
cancer, FP: False positive, IC: Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: 
Screen detected cancer.  

 
7.4.2 Rule-out triage – Threshold 1 and 2 

The overall AUROC for DL-1, DL-2, DL-3 was 0.962 [95% CI 0.955–0.969], 0.966 [95% CI 0.961–0.972] 

and 0.975 [95% CI 0.970–0.980] respectively, when classifying cancers as SDCs only, Figure 7-4. The 

AUROC of DL-3 was statistically significantly different (p < 0.05) to that of DL-1 and DL-2 when tested 

on all and Norwich data. As well as DL-3 AUROC performance was statistically significantly different 

(p < 0.05) when comparing between Norwich and Cambridge site data. 
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Figure 7-4 – Receiver operating characteristic (ROC) curves for screen detected cancers (SDCs) as cases. a) 
results per site, b) results per algorithm. The overall results are in grey, Cambridge in orange and Norwich in 
pink. The results for DL-1 are in blue, DL-2 in purple, and DL-3 in green. Area under the receiver operating 
characteristic curve values are provided for each site and each algorithms performance. 

 
Firstly applying the Scenario B workflow at the 99.0% sensitivity threshold (threshold 1), where SDCs 

were classed as cases, resulted in 65.0%, 46.8% and 44.4% cases left to be read by a double reading 

workflow for DL-1, DL-2 and DL-3 respectively, Table 7-5. At this threshold all algorithms ruled out 9 

(1.0%) SDCs, and between 100-222 (14.5-32.3%) NRCs and 74-114 (16.9-26.0%) ICs. DL-3 ruled out 

the highest number of false positive (FP) cases (n = 465), whereas DL-1 and DL-2 ruled out a similar 

volume (DL-1 n = 318 and DL-2 n = 369).  

 

 

 

 

 

 

 

 

 

a) 

b) 
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 Sensitivity 
Threshold 

Specificity Missed Cancers FP out % to read 
SDC IC NRC 

Cases - - 887 439 688 1840 - 
        

DL-1 1) 99.0% 35.3% 
[30.0-57.0] 

9 
(1.0%) 

74 
(16.9%) 

100 
(14.5%) 

318 
(14.4%) 

65.0% 

DL-1 2) 99.9% 10.8% 
[10.6-28.0] 

1 
(0.1%) 

14 
(3.2%) 

18 
(2.6%) 

68  
(3.7%) 

89.4% 

        
DL-2 1) 99.0% 53.8% 

[35.9-66.4] 
9 

(1.0%) 
107 

(24.4%) 
214 

(31.1%) 
369 

(20.1%) 
46.8% 

DL-2 2) 99.9% 12.1% 
[11.9-29.2] 

1 
(0.1%) 

12 
(2.7%) 

28 
(4.1%) 

25 
(1.4%) 

88.0% 

        
DL-3 1) 99.0% 56.3% 

[38.1-66.7] 
9 

(1.0%) 
114 

(26.0%) 
222 

(32.3%) 
465 

(25.3%) 
44.4% 

DL-3 2) 99.9% 21.9% 
[21.4-38.1] 

1 
(0.1%) 

21 
(4.8%) 

55 
(8.0%) 

131 
(7.1%) 

78.3% 

Table 7-5 – Results at 1) 99.0% sensitivity threshold 1 and 2) 99.9% sensitivity threshold 2. Missed cases are 
shown for screen detected cancers, next round cancers and interval cancers as well as the proportion of false 
positives ruled out. Where screen detected cancers were classed as cases only for the threshold identification. 
FP: False positive, IC: Interval cancer, NRC: Next round cancer, SDC: Screen detected cancer. 

 
The sensitivity (D -0.7%) and specificity (D +0.4%~+0.6%) is non-inferior. A lower arbitration rate (D -

0.4%~-0.7%) and recall rate (D -0.4%~-0.6%) was also observed at threshold 1, Table 7-6.  

Applying Scenario B workflow at the 99.9% sensitivity threshold (threshold 2) left in 89.4%, 88.0% 

and 78.3% cases required to be read by the double reading workflow for DL-1, DL-2 and DL-3 

respectively. At this threshold, 1 (0.1%) SDC was missed, and between 18-55 (2.6-8.0%) NRCs and 12-

21 (2.7-4.8%) ICs were missed from rule out triage, Table 7-5. The specificity and sensitivity were 

both non-inferior. The arbitration rate (D 0.0%~-0.2%) and recall rate (D 0.0%~-0.1%) were observed 

to not change at this threshold compared to double reading, Table 7-7.  
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 DL-1 + readers DL-2 + readers DL-3 + readers 
Sensitivity threshold 99.0% 99.0% 99.0% 

    
Sensitivity 68.2% 

[65.6-70.7] 
p < 0.01 

68.2% 
[65.6-70.7] 

p < 0.01 

68.2% 
[65.6-70.7] 

p < 0.01 
Specificity 98.0% 

[97.9-98.1] 
p < 0.01 

98.1% 
[98.0-98.2] 

p < 0.01 

98.2%  
[98.1-98.3] 

p < 0.01 
Precision 36.8% 37.6% 39.2% 

Arbitration 2.1% 1.9% 1.8% 
Recall rate 3.1% 3.1% 2.9% 

n  (%) Missed    
SDC 9 (1.0%) 9 (1.0%) 9 (1.0%) 
IC 74 (16.9%) 107 (24.4%) 114 (26.0%) 

NRC  100 (14.5%) 214 (31.1%) 222 (32.3%) 
FRC  18 (12.1%) 58 (38.9%) 74 (49.7%) 
NRIC 32 (16.1%) 82 (41.2%) 87 (43.7%) 

Rule out    
Normal cases n (%) 27332 (34.7%) 41467 (52.6%) 43363 (55.0%) 

Reader FP n (%) 318 (14.4%) 369 (20.1%) 465 (25.3%) 
Table 7-6 – Results for DL-1, DL-2 and DL-3 at the 99.0% sensitivity (threshold 1) Scenario B. FP: False positive, 
FRC: Future round cancer, IC: Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: 
Screen detected cancer. p values are calculated using a one-sided z-test. 

 
 DL-1 + readers DL-2 + readers DL-3 + readers 

Sensitivity threshold 99.9% 99.9% 99.9% 
    

Sensitivity 68.9% 
[66.3-71.3] 

p < 0.01 

68.9% 
[66.3-71.3] 

p < 0.01 

68.9% 
[66.3-71.3] 

p < 0.01 
Specificity 97.7% 

[97.6-97.8] 
p < 0.01 

97.6% 
[97.5-97.7] 

p < 0.01 

97.8% 
[97.6-97.9] 

p < 0.01 
Precision 33.6% 33.1% 34.4% 

Arbitration 2.4% 2.5% 2.3% 
Recall rate 3.4% 3.5% 3.4% 

n  (%) Missed    
SDC 1 (0.1%) 1 (0.1%)  1 (0.1%) 
IC 14 (3.2%) 12 (2.7%) 21 (4.8%) 

NRC  18 (2.6%) 28 (4.1%) 55 (8.0%) 
FRC  2 (0.6%) 7 (4.7%) 28 (18.8%) 
NRIC 7 (3.5%) 14 (7.0%) 21 (10.6%) 

Rule out    
Normal cases n (%) 8342 (10.6%) 9371 (11.9%) 17017 (21.6%) 

Reader FP n (%) 68 (3.7%) 25 (1.4%) 131 (7.1%) 
Table 7-7 – Results for DL-1, DL-2 and DL-3 at the 99.9% sensitivity (threshold 2) Scenario B. FP: False positive, 
FRC: Future round cancer, IC: Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: 
Screen detected cancer. p values are calculated using a one-sided z-test. 
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Applying Scenario C at the 99.0% sensitivity threshold (threshold 1), resulted in 35.0-55.6% of cases 

classified as to be read by one reader only. Whilst maintaining SDC detection (99.9-100%) as well as 

an observed lower the arbitration rate (D -0.4%~-0.7%). However, the recall rate was observed to be 

higher (D +0.2%~+0.3%), Table 7-8. Specificity and sensitivity performance was non-inferior (p < 

0.01).  

 DL-1 + readers DL-2 + readers DL-3 + readers 
Sensitivity 68.9% 

[66.3-71.3] 
p < 0.01 

69.0% 
 [66.4-71.5] 

p < 0.01 

68.9% 
[66.4-71.4] 

p < 0.01 
Specificity 97.4%  

[97.3-97.5] 
p < 0.01 

97.4% 
[97.2-97.5] 

p < 0.01 

97.4%  
[97.3-97.5] 

p < 0.01 
Precision 31.5% 30.8% 30.9% 

Arbitration 2.1% 1.9% 1.8% 
Recall rate 3.7% 3.8% 3.7% 

n  (%) Detected    
SDC 886 (99.9%) 886 (99.9%) 887 (100%) 
IC 27 (6.2%) 29 (6.6%) 27 (6.2%) 

NRC  20 (2.9%) 21 (3.1%) 22 (3.2%) 
FRC  4 (2.7%) 4 (2.7%) 5 (3.4%) 
NRIC 8 (4.0%) 9 (4.5%) 7 (3.5%) 

Rule out    
Single reading (%) 27565 (35.0%) 41937 (53.2%) 43869 (55.6%) 
False positives n 1956  2019  2008  

Table 7-8 – Results for DL-1, DL-2 and DL-3 at the 99.0% sensitivity (threshold 1) Scenario C. FRC: Future 
round cancer, IC: Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: Screen 
detected cancer. p values are calculated using a one-sided z-test. 

 
7.4.3 Rule-out triage – Threshold 3 and 4 

The AUROC for DL-1, DL-2, DL-3 was 0.813 [95% CI 0.802–0.824], 0.814 [95% CI 0.803–0.825], and 

0.821 [95% CI 0.886–0.906] respectively, when classifying cancers as SDCs, ICs and NRCs, Figure 7-5.  

There was a statistically significant difference (p < 0.05) between the AUROC of DL-3 compared to 

DL-1 and DL-2 when tested on Norwich data. Applying Scenario B at the 85.0% sensitivity threshold 

(threshold 3), where SDCs, NRCs and ICs were classed as cases, the percentage of cases requiring 

double reading after applying the AI algorithm threshold was 49.8% for DL-1, 49.5% for DL-2, and 

48.4% for DL-3. Applying Scenario B at the 70.0% specificity threshold (threshold 4), where SDCs, 

NRCs and ICs were classed as cases, the percentage of cases requiring double reading after applying 

the AI algorithm threshold was 31.2% for DL-1, 31.1% for DL-2, and 31.2% for DL-3. The results of 

this analysis for each AI algorithm are shown in Table 7-9. 
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Figure 7-5 – Receiver operating characteristic (ROC) curves for screen detected cancers (SDCs), next round 
cancers (NRCs) and interval cancers (ICs) as cases. a) for each site, b) for each algorithm. The overall results 
are in grey, Cambridge in orange and Norwich in pink. The results for DL-1 are in blue, DL-2 in purple, and DL-3 
in green. Area under the receiver operating characteristic curve values are provided for each site and each 
algorithms performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) 

b) 
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 Sensitivity 
Threshold  

Specificity Missed Cancers FP out % to read 
SDC IC NRC 

Cases - - 887 439 688 1840 - 
        

DL-1 1) 85.0% 51.3% 
[47.5-56.9] 

15 
(1.7%) 

118 
(26.9%) 

169 
(24.6%) 

507 
(27.6%) 

49.8% 

DL-2  1) 85.0% 51.6% 
[48.4-54.7] 

8 
(0.9%) 

95 
(21.6%) 

199 
(28.9%) 

338 
(18.4%) 

49.5% 

DL-3 1) 85.0% 52.6% 
[50.0-55.6] 

7 
(0.8%) 

97 
(22.1%) 

198 
(28.8%) 

420 
(22.8%) 

48.4% 

 Specificity  
Threshold 

      

DL-1 2)  70.0% 75.3% 
[73.4-77.3] 

34 
(3.8%) 

182 
(41.5%) 

281 
(40.8%) 

827 
(45.0%) 

31.2% 

DL-2 2)  70.0% 74.8% 
[72.9-76.7] 

20 
(2.3%) 

172 
(39.2%) 

316 
(45.9%) 

661 
(35.9%) 

31.1% 

DL-3 2)  70.0% 75.8% 
[73.8-77.7] 

19 
(2.1%) 

156 
(35.5%) 

313 
(45.5%) 

696 
(37.8%) 

31.2% 

Table 7-9 – Results at 1) 85.0% sensitivity (threshold 3) and 2) results at 70.0% specificity (threshold 4). 
Missed cases are shown for screen detected cancers, next round cancers and interval cancers as well as the 
proportion of false positives ruled out. Where screen detected cancers, next round cancers and interval cancers 
were classed as cases for the threshold identification. FP: False positive, IC: Interval cancer, NRC: Next round 
cancer, SDC: Screen detected cancer.  

 
 DL-1 + readers DL-2 + readers DL-3 + readers 

Sensitivity 69.0% 
[66.4-71.5] 

p < 0.01 

69.0% 
[66.4-71.5] 

p < 0.01 

68.9% 
[66.4-71.4] 

p < 0.01 
Specificity 97.4% 

[97.2-97.5] 
p < 0.01 

97.4% 
[97.3-97.5] 

p < 0.01 

97.4%  
[97.3-97.5] 

p < 0.01 
Precision 30.8% 31.0% 31.1% 

Arbitration 1.8% 2.0% 1.9% 
Recall rate 3.8% 3.8% 3.7% 

n  (%) Detected    
SDC 886 (99.9%)  886 (99.9%) 887  (100%) 
IC 29 (6.6%) 29 (6.6%) 27 (6.2%) 

NRC  19 (2.8%) 21 (3.1%) 21 (3.1%) 
FRC  4 (2.7%) 4 (2.7%) 5 (3.4%) 
NRIC 9 (4.5%) 9 (4.5%) 7 (3.5%) 

Rule out    
Single reading (%) 39625 (50.3%) 39923 (50.6%) 40719 (51.6%) 

False positive n 2023 2005 1985 
Table 7-10 – Results for DL-1, DL-2 and DL-3 at the 85.0% sensitivity (threshold 3) Scenario C. FRC: Future 
round cancer, IC: Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: Screen 
detected cancer. p values are calculated using a one-sided z-test. 
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 DL-1 + readers DL-2 + readers DL-3 + readers 
Sensitivity 68.8% 

[66.2-71.3] 
p < 0.01 

68.8% 
[66.2-71.3] 

p < 0.01 

68.8% 
[66.2-71.3] 

p < 0.01 
Specificity 97.2% 

[97.1-97.4] 
p < 0.01 

97.2% 
[97.1-97.4] 

p < 0.01 

97.3%  
[97.2-97.4] 

p < 0.01 
Precision 29.9% 29.9% 30.3% 

Arbitration 1.3% 1.5% 1.5% 
Recall rate 3.9% 3.9% 3.8% 

n  (%) Detected    
SDC 883 (99.5%)  882 (99.4%) 885 (99.8%) 
IC 29 (6.6%) 30 (6.8%) 27 (6.2%) 

NRC  18 (2.6%) 20 (2.9%) 21 (3.1%) 
FRC  4 (2.7%) 5 (3.6%) 6 (4.0%) 
NRIC 9 (4.5%) 9 (4.5%) 7 (3.5%) 

Rule out    
Single reading (%) 54281 (68.8%) 54292 (68.9%) 54266 (68.8%) 

False positive n 2110 2102 2063 
Table 7-11 – Results for DL-1, DL-2 and DL-3 at the 70.0% specificity (threshold 4) Scenario C. FRC: Future 
round cancer, IC: Interval cancer, NRC: Next round cancer, NRIC: Next round interval cancer, SDC: Screen 
detected cancer. p values are calculated using a one-sided z-test. 

 
Implementing the alternative Scenario C and threshold 3, specificity and sensitivity performance was 

found to be non-inferior (p < 0.01), Table 7-10. A lower arbitration rate (D -0.5%~-0.7%) was 

observed, whilst the recall rate (D +0.2%~+0.3%) was higher. Implementing the alternative Scenario 

C and threshold 4, specificity and sensitivity performance was found to be non-inferior (p < 0.01), 

Table 7-11. The arbitration rate (D -1.0%~-1.2%) was again lower, whilst the recall rate (D 

+0.3%~+0.4%) was higher. 



 

 163 

The density and violin plots in Figure 7-6 show the distribution of cases and the assigned thresholds 

1, 2, 3 and 4 for each AI algorithm. 

Figure 7-6 – Plots for rule out triage thresholds. a) Density plot for screen detected cancers as cases, b) density 
plot for screen detected, next round and interval cancers as cases where the cancers are in blue and normal 
cases in red, c) violin plot for all cancer case types, where the blue dot in the violin plot is the mean score and 
the red is the median score. The pink line represents threshold 1 (99.0% sensitivity), the green line represents 
threshold 2 (99.9% sensitivity), the purple line represents threshold 3 (85.0% sensitivity) and the orange line 
represents threshold 4 (70.0% specificity). FRC: Future round cancer, IC: Interval cancer, NRC: Next round 
cancer, NIC: Next round interval cancer, SDC: Screen detected cancer. 

 
7.4.4 Rule-in triage  

Scenario D applied 94.0-99.0% specificity cut-off to determine the percentage of ICs and NRCs with a 

high suspicion that should be referred for additional supplemental imaging / assessment, Table 7-12. 

At the lower 94.0% specificity threshold 101-115 (23.0-26.2%) ICs and 142-157 (20.6-22.8%) NRCs 

were ruled in for further assessment. At the 99.0% specificity threshold 26-46 (5.9-10.5%) ICs and 

40-44 (5.8-6.4%) NRCs were recalled for further assessment.  

 

 

 

 

 

a) 

b) 

c) 
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SDC, IC, NRC as cases ruled in 
 

Spec 
DL-1  DL-2  DL-3  

%TRR IC NRC %TRR IC NRC %TRR IC NRC 
99.0% 4.5% 40 

(9.1%) 
44 

(6.4%) 
4.5% 26 

(5.9%) 
40 

(5.8%) 
4.4% 46 

(10.5%) 
41 

(6.0%) 
98.0% 5.5% 56 

(12.8%) 
69 

(10.0%) 
5.4% 48 

(10.9%) 
82 

(11.9%) 
5.4% 62 

(14.1%) 
77 

(11.2%) 
97.0% 6.4% 68 

(15.5%) 
94 

(13.7%) 
6.4% 68 

(15.5%) 
96 

(14.0%) 
6.3% 74 

(16.9%) 
96 

(14.0%) 
96.0% 7.3% 82 

(18.7%) 
116 

(16.9%) 
7.3% 75 

(17.1%) 
115 

(16.7%) 
7.2% 88 

(20.0%) 
114 

(16.6%) 
95.0% 8.3% 94 

(21.4%) 
137 

(19.9%) 
8.2% 87 

(19.8%) 
129 

(18.8%) 
8.2% 101 

(23.0%) 
130 

(18.9%) 
94.0% 9.2% 101 

(23.0%) 
157 

(22.8%) 
9.2% 103 

(23.5%) 
149 

(21.7%) 
9.1% 115 

(26.2%) 
142 

(20.6%) 
Table 7-12 – Scenario D perturbations of specificity with screen detected cancers (SDCs), interval cancers (ICs) 
and next round cancers (NRCs) as cases. IC: Interval cancer, NRC: Next round cancer, Spec: Specificity, %TRR: 
Percentage total recall rate. 

 
Table 7-13 shows the proportion of FRCs and NRICs that could have been detected at these 

thresholds (94.0-99.0% specificity) further increasing the proportion of cancers which could 

potentially be detected earlier. In addition, the number of additional false positive recalls, which 

would ultimately lead to an increase in the recall rate from this scenario is included in Table 7-13, 

and increases as the specificity threshold is reduced.  

FP, FRC, NRIC ruled in 
 

Spec 
DL-1  DL-2  DL-3  

FP FRC NRIC FP FRC NRIC FP FRC NRIC 
99% 753 

 
9 

(6.0%) 
9 

(4.5%) 
757 

 
3 

(2.0%) 
8 

(4.0%) 
760 

 
4 

(2.7%) 
5 

(2.5%) 
98% 1508 

 
12 

(8.1%) 
15 

(7.5%) 
1521 

 
5 

(3.4%) 
11 

(5.5%) 
1519 

 
8 

(5.4%) 
10 

(5.0%) 
97% 2269 

 
14 

(9.4%) 
21 

(10.6%) 
2284 

 
7 

(4.7%) 
14 

(7.0%) 
2281 

 
10 

(6.7%) 
14 

(7.0%) 
96% 3026 

 
18 

(12.1%) 
26 

(13.1%) 
3051 

 
8 

(5.4%) 
14 

(7.0%) 
3048 

 
10 

(6.7%) 
16 

(8.0%) 
95% 3787 

 
24 

(16.1%) 
30 

(15.1%) 
3815 

 
12 

(8.1%) 
15 

(7.5%) 
3805 

 
12 

(8.1%) 
25 

(12.6%) 
94% 4550 

 
28 

(18.8%) 
32 

(16.1%) 
4573 

 
18 

(12.1%) 
19 

(9.6%) 
4568 

 
15 

(10.1%) 
28 

(14.1%) 
Table 7-13 – Scenario D perturbations of specificity with screen detected cancers (SDCs), interval cancers (ICs) 
and next round cancers (NRCs) as cases – additional cancers detected. FP: False positive, FRC: Future round 
cancer, NRIC: Next round interval cancer, Spec: Specificity. 

 
The results of applying the 94.0-99.0% specificity thresholds for Scenario E where cases are auto 

recalled if above the threshold and were not recalled by human readers, are shown in Table 7-14.  
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SDC, IC, NRC as cases ruled in 
 

Spec 
DL-1  DL-2  DL-3  

%ARR IC NRC %ARR IC NRC %ARR IC NRC 
99.0% 1.0% 32 

(7.3%) 
42 

(6.1%) 
0.9% 20 

(4.6%) 
36 

(5.2%) 
0.9% 36 

(8.2%) 
37 

(5.4%) 
98.0% 1.9% 47 

(10.7%) 
67 

(9.7%) 
1.9% 38 

(8.7%) 
75 

(10.9%) 
1.8% 49 

(11.2%) 
71 

(10.3%) 
97.0% 2.9% 59 

(13.4%) 
92 

(13.4%) 
2.8% 58 

(13.2%) 
88 

(12.8%) 
2.8% 60 

(13.7%) 
90 

(13.1%) 
96.0% 3.8% 71 

(16.2%) 
111 

(16.1%) 
3.8% 65 

(14.8%) 
107 

(15.6%) 
3.7% 73 

(16.6%) 
106 

(16.6%) 
95.0% 4.8% 82 

(18.7%) 
132 

(19.2%) 
4.7% 76 

(17.3%) 
120 

(17.4%) 
4.6% 85 

(19.4%) 
121 

(17.6%) 
94.0% 5.7% 88 

(20.1%) 
152 

(22.1%) 
5.7% 90 

(20.5%) 
139 

(20.2%) 
5.6% 99 

(22.6%) 
132 

(19.2%) 
Table 7-14 – Scenario E perturbations of specificity with screen detected cancers (SDCs), interval cancers (ICs) 
and next round cancers (NRCs) as cases. %ARR: Additional Recall rate, IC: Interval cancer, NRC: Next round 
cancer, Spec: Specificity. 

 
Applying this scenario at the 94.0% threshold results in an increase in the number of ICs (20.1-22.6%) 

and NRCs (19.2-22.1%) detected. A lower number of cases are overall detected at the higher 

specificity threshold of 99.0% (ICs (4.6-8.2%), NRCs (5.2-6.1%)). However the recall rate also 

increased at all thresholds. This is potentially further offset by increase in FRCs and NRICs detected 

shown in Table 7-15. 

FP, FRC, NRIC ruled in 
 

Spec 
DL-1  DL-2  DL-3  

FP FRC NRIC FP FRC NRIC FP FRC NRIC 
99% 675 

 
9 

(6.0%) 
8 

(4.0%) 
668 

 
3 

(2.0%) 
6 

(3.0%) 
630 

 
4 

(2.7%) 
4 

(2.0%) 
98% 1369 

 
12 

(8.1%) 
13 

(6.5%) 
1358 

 
5 

(3.4%) 
9 

(4.5%) 
1299 

 
8 

(5.4%) 
9 

(4.5%) 
97% 2067 

 
14 

(9.4%) 
18 

(9.1%) 
2061 

 
7 

(4.7%) 
12 

(6.0%) 
1992 

 
10 

(6.7%) 
13 

(6.5%) 
96% 2774 

 
17 

(11.4%) 
23 

(11.6%) 
2772 

 
8 

(5.4%) 
12 

(6.0%) 
2701 

 
10 

(6.7%) 
15 

(7.5%) 
95% 3487 

 
23 

(15.4%) 
27 

(13.6%) 
3484 

 
12 

(8.1%) 
13 

(6.5%) 
3405 

 
12 

(8.1%) 
23 

(11.6%) 
94% 4204 

 
27 

(18.1%) 
29 

(14.6%) 
4196 

 
17 

(11.4%) 
16 

(8.0%) 
4130 

 
15 

(10.1%) 
24 

(12.1%) 
Table 7-15 – Scenario E perturbations of specificity with screen detected cancers (SDCs), interval cancers (ICs) 
and next round cancers (NRCs) as cases – additional cancers detected. FP: False positive, FRC: Future round 
cancer, NRIC: Next round interval cancer, Spec: Specificity. 

 
The density and violin plots in Figure 7-7 show the distribution of cases and the assigned 94.0% and 

99.0% specificity threshold cut-off for each algorithm rule in triage approaches. 
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Figure 7-7 – Plots for rule in triage thresholds – Screen detected cancers (SDCs), next round cancers (NRCs) 
and interval cancers (ICs). a) Density plot for screen detected, next round and interval cancers as cases in blue 
and normal cases in red, b) violin plot for all cancer case types, where the blue dot in the violin plot is the mean 
score and the red is the median score. The green line represents 94.0% specificity, the pink line represents 
99.0% specificity. FRC: Future round cancer, IC: Interval cancer, NRC: Next round cancer, NIC: Next round 
interval cancer, SDC: Screen detected cancer. 

 
7.4.5 Combined approach  

The Combined approach entailed combining Scenario C, at the 99.0% sensitivity (threshold 1), and 

Scenario E at the 99.0% specificity threshold, as shown in Figure 7-8.  

Figure 7-8 – Violin plots for the combined approach of Scenario C and E for both rule in and rule out triage by 
an artificial intelligence (AI) algorithm. The normal triage threshold was set a threshold 1 99.0% sensitivity, as 
shown by the green line on the violin plot. The high suspicious rule in threshold was set at 99.0% specificity, as 
shown by the purple line on the violin plot. Where the blue dot in the violin plot is the mean score and the red is 
the median score. FRC: Future round cancer, IC: Interval cancer, NRC: Next round cancer, NIC: Next round 
interval cancer, SDC: Screen detected cancer. 

a) 

b) 
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 DL-1 + readers DL-2 + readers DL-3 + readers 

Sensitivity 71.3% 
[68.7-73.7] 

p = 0.03516* 

70.5% 
[68.0-73.0] 
p > 0.05* 

71.6% 
[69.1-74.1] 

p = 0.01758* 
Specificity 96.5% 

[96.4-96.6] 
p < 0.01 

96.4% 
[96.3-96.6] 

p < 0.01 

96.5%  
[96.4-96.6] 

p < 0.01 
Precision 25.8% 25.3% 25.9% 

Arbitration 2.1% 1.9% 1.8% 
Recall rate 4.7% 4.7% 4.7% 

n  (%) Detected    
SDC 886 (99.9%) 886 (99.9%) 887 (100%) 
IC 59 (13.4%) 49 (11.2%) 63 (14.4%) 

NRC  62 (9.0%) 57 (8.3%) 59 (8.6%) 
FRC  13 (8.7%) 7 (4.7%) 9 (6.0%) 
NRIC 16 (8.0%) 15 (7.5%) 11 (5.5%) 

Rule out    
Single reading (%) 27565 (35.0%) 41937 (53.2%) 43869 (55.6%) 

Rule in    
% Additional RR  0.97% 0.93% 0.90% 

Table 7-16 – Combined approach of Scenario C and E for both rule in and rule out triage by an artificial 
intelligence (AI) algorithm. The normal triage threshold was set at 99.0% sensitivity (threshold 1). The high 
suspicious rule in threshold was set at 99.0% specificity. FRC: Future round cancer, IC: Interval cancer, NRC: 
Next round cancer, NRIC: Next round interval cancer, RR: Recall rate, SDC: Screen detected cancer. p values are 
calculated using a one-sided z-test. *Tested for superiority.  

 
Using this approach the sensitivity was superior (p < 0.05) for DL-1 and DL-3. However, this would 

result trade off in specificity. Overall the proportion of ICs (D +5.0%~+8.2%) and NRCs (D 

+5.4%~6.1%) detected was higher, Table 7-16. The recall rate (D +1.2%) was observed to be higher 

and arbitration rate was lower (D -0.4%~-0.7%), Table 7-16.  

Two settings were applied to calculate the pAUROC for DL-1, DL-2, DL-3, first at the 94.0-99.0% 

specificity as shown in blue in Figure 7-9, and then at either the 99.0-100% sensitivity (Figure 7-9.a) 

or 85.0-100% sensitivity (Figure 7-9.b). Overall the AI algorithms achieved a good pAUROC at all 

thresholds, with DL-3 achieving the highest pAUROC at all settings, Table 7-17. 

pAUROC  – SDC DL-1 DL-2 DL-3 
94.0-99.0% Specificity 89.6% [88.3-90.8] 89.2% [87.9-90.4] 93.0% [91.9-94.0] 
99.0-100% Sensitivity 62.7% [58.1-68.1] 66.8% [61.2-75.3] 70.1% [65.1-77.4] 

pAUROC – SDC / NRC / IC DL-1 DL-2 DL-3 
94.0-99.0% Specificity 71.2% [70.1-72.2] 70.7% [69.6-71.8] 72.7% [71.6-73.8] 
85.0-100% Sensitivity 62.1% [60.7-63.8] 63.1% [61.7-64.6] 63.6% [62.2-65.0] 

Table 7-17 – Partial area under the receiver operator characteristic (pAUROC) curve results. 95.0% CI in 
square brackets. IC: Interval cancer, NRC: Next round cancer, pAUROC: Partial area under the receiver operator 
characteristic curve, SDC: Screen detected cancer. 
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Figure 7-9 – Partial receiver characteristic (pROC) curves. a) Screen detected cancers as cases applying a 99.0-
100% sensitivity to reflect rule out threshold 1 and 2 in the study as shown in green, and a 94.0-99.0% 
specificity to reflect the rule in thresholds used in this study as shown in blue. b) Screen detected cancers, next 
round cancers and interval cancers as cases applying 85.0-100% sensitivity to reflect rule out threshold 1, 2 and 
3 in the study as shown in green, and a 94.0-99.0% specificity to reflect the rule in thresholds used in this study 
as shown in blue. 

 
7.4.6 Sub-group analysis  

Performance of the AI algorithms was further assessed at threshold 1 (99.0% sensitivity) for the SDCs 

that were missed by each AI algorithm at this threshold [n = 9 (1.0%)] using Scenario B, Table 7-18. 

There was no statistically significant difference in the types of cancers missed relative to the true 

distribution of cancer cases using Chi squared c2 test ( p > 0.05).  

 

 

 

 

 

 

 

 

a) 

b) 
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 n DL-1 DL-2 DL-3 
Total Cases n 887 9 9 9 

Total Lesions n 921 9 9 9 
Total invasive lesions 770 8 5 7 

Age at Screening     
< 60 327 3 (0.9%) 4 (1.2%) 4 (1.2%) 

>= 60 560 6 (1.1%) 5 (0.9%) 5 (0.9%) 
p value - 0.82696 0.639289 0.639289 

FFDM Vendor     
GE 554 5 (0.9%) 7 (1.3%) 7 (1.3%) 

Philips 333 4 (1.2%) 2 (0.6%) 2 (0.6%) 
p value - 0.670613 0.34459 0.34459 

Invasive Tumour Sized     
< 15 mm 415 3 (0.7%) 1 (0.2%) 5 (1.2%) 

>= 15 mm 326 5 (1.5%) 4 (1.2%) 2 (0.6%) 
Missing 29 0 (0.0%) 0 (0.0%) 0 (0.0%) 
p value - 0.294494 0.106186 0.413069 

Invasive Tumour Grade d     
1 184 0 (0.0%) 0 (0.0%) 0 (0.0%) 
2 403 7 (1.7%) 4 (1.0%) 5 (1.2%) 
3 157 1 (0.6%) 1 (0.6%) 2 (1.3%) 

Missing 8 0 (0.0%) 0 (0.0%) 0 (0.0%) 
p value - - - - 

Density BI-RADSa      
a 124 2 (1.6%) 0 (0.0%) 0 (0.0%) 
b 531 4 (0.8%) 7 (1.3%) 5 (0.9%) 
c 225 3 (1.3%) 2 (0.9%) 4 (1.8%) 
d 7 0 (0.0%) 0 (0.0%) 0 (0.0%) 

p value - - - - 
Density BI-RADS b     

a 47 0 (0.0%) 0 (0.0%) 0 (0.0%) 
b 169 2 (1.2%) 1 (0.6%) 1 (0.6%) 
c 87 0 (0.0%) 0 (0.0%) 0 (0.0%) 
d 35 2 (5.7%) 0 (0.0%) 1 (2.9%) 

Missing 549 5 (0.9%) 8 (1.5%) 7 (1.3%) 
p value - - - - 

Table 7-18 – Sub group analysis of DL-1, DL-2, DL-3 set at the threshold of 99.0% sensitivity (threshold 1) 
using Scenario B for the screen detected cancers (SDCs) missed. BI-RADS: Breast imaging-reporting and data 
system, FFDM: Full Field Digital Mammography, GE: General Electric. dLesions reported. aDL-3 BI-RADS density 
scores on processed full field digital mammograms. b Volpara 5th edition BI-RADS mammographic breast density 
from raw full field digital mammograms for Cambridge data. p values were determined by using Chi squared c2 
test to compare against the detected proportion of cancers cases by the true distribution for each cancer 
characteristic category. p values < 0.05 were considered statistically significant.  

 
At the 94.0% specificity threshold applied in Scenario E, for the auto recall of cases with a high 

suspicion not recalled by double reading, The types of cases detected at the 94.0% specificity 

threshold are outlined in Table 7-19 for ICs and Table 7-20 for NRCs.  
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 n DL-1 DL-2 DL-3 
Total Cases n 439 88 90 99 

Total Lesions n 445 91 93 101 
Total invasive lesions 405 87 85 94 

Age at Screening     
< 60 203 30 (14.8%) 28 (13.8%) 38 (18.7%) 

>= 60 236 58 (24.6%) 62 (26.3%) 61 (25.9%) 
p value - 0.036197 0.008378 0.155554 

FFDM Vendor     
GE 275 72 (26.2%) 56 (20.4%) 55 (20.0%) 

Philips 164 16 (9.8%) 34 (20.7%) 44 (26.8%) 
p value - 0.000536 0.940191 0.190878 

Invasive Tumour Sized     
< 15 mm 126 25 (19.8%) 23 (18.3%) 16 (12.7%) 

>= 15 mm 228 51 (22.4%) 52 (22.8%) 66 (29.0%) 
Missing 51 11 (21.6%) 10 (19.6%) 12 (23.5%) 
p value - 0.904813 0.700864 0.019921 

Invasive Tumour Grade d     
1 55 11 (20.0%) 11 (20.0%) 14 (25.5%) 
2 189 48 (25.4%) 49 (25.9%) 46 (24.3%) 
3 152 26 (17.1%) 24 (15.8%) 32 (21.1%) 

Missing 9 2 (22.2%) 1 (11.1%) 2 (22.2%) 
p value - 0.516076 0.280206 0.933244 

Time interval 
(months) 

    

0-12 69 13 (18.8%) 12 (17.4%) 19 (27.5%) 
13-24 156 31 (19.9%) 25 (16.0%) 38 (24.4%) 
25-36 214 44 (20.6%) 53 (24.8%) 42 (19.6%) 

p value - 0.966804 0.21088 0.482711 
Radiological 
classification 

    

Normal / Benign 337 44 (13.1%) 52 (15.4%) 56 (16.6%) 
Uncertain 78 37 (47.4%) 31 (39.7%) 36 (46.2%) 
Suspicious 9 5 (55.6%) 5 (55.6%) 4 (44.4%) 

Unclassifiable 6 2 (33.3%) 0 (0.0%) 2 (33.3%) 
Missing 9 0 (0.0%) 2 (22.2%) 1 (11.1%) 
p value - < 0.01 - 0.000567 
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Density BI-RADS b a b a b a b a 
a 12 25 0  

(0.0%) 
3 

(12.0%) 
1  

(8.3%) 
5 

(20.0%) 
5  

(41.7%) 
6 

(24.0%) 
b 65 216 5  

(7.7%) 
54 

(25.0%) 
14  

(21.5%) 
49 

(22.7%) 
17 

(26.2%) 
43 

(19.9%) 
c 58 185 8  

(13.8%) 
29 

(15.7%) 
12 

 (20.7%) 
34 

(18.4%) 
13 

(22.4%) 
47 

(25.4%) 
d 31 13 3  

(9.7%) 
2 

(15.4%) 
7  

(22.6%) 
2 

(15.4%) 
9  

(29.0%) 
3 

(23.1%) 
Missing 273 0 72  

(26.4%) 
0 

(0.0%) 
56 

(20.5%) 
0 

(0.0%) 
55 

(20.1%) 
0 

(0.0%) 
p value - - - 0.2139 0.9271 0.8256 0.6093 0.7744 

Table 7-19 – Sub group analysis of DL-1, DL-2, DL-3 set at 96.0% specificity threshold, using Scenario E for the 
interval cancers (ICs) detected. BI-RADS: Breast imaging-reporting and data system, FFDM: Full Field Digital 
Mammography, GE: General Electric. dLesions reported. aDL-3 BI-RADS density scores on processed full field 
digital mammograms. b Volpara 5th edition BI-RADS mammographic breast density from raw full field digital 
mammograms for Cambridge data. p values were determined by using Chi squared c2 test to compare against 
the detected proportion of cancers cases by the true distribution for each cancer characteristic category. p 
values < 0.05 were considered statistically significant.  
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 n DL-1 DL-2 DL-3 
Total Cases n 688 152 139 132 

Total Lesions n 718 159 144 133 
Total invasive 

lesions 
592 134 122 111 

Age at Screening     
< 60 309 61 (19.7%) 44 (14.2%) 49 (15.9%) 

>= 60 379 91 (24.0%) 95 (25.1%) 83 (21.9%) 
p value - 0.3208 0.0047 0.104 

FFDM Vendor     
GE 504 132 (26.2%) 106 (21.0%) 75 (14.9%) 

Philips 184 20 (10.9%) 33 (17.9%) 57 (31.0%) 
p value - 0.0003 0.5262 0.0002 

Invasive Tumour 
Sized 

    

< 15 mm 316 67 (21.2%) 54 (17.1%) 39 (12.3%) 
>= 15 mm 214 54 (25.2%) 58 (27.1%) 63 (29.4%) 

Missing 62 13 (21.0%) 10 (16.1%) 9 (14.5%) 
p value - 0.667276 0.61173 0.00023 

Invasive Tumour 
Grade d 

    

1 157 42 (26.8%) 33 (21.0%) 26 (16.6%) 
2 285 58 (20.4%) 65 (22.8%) 63 (22.1%) 
3 110 29 (26.4%) 19 (17.3%) 19 (17.3%) 

Missing 40 5 (12.5%) 5 (12.5%) 3 (7.5%) 
p value - 0.305361 0.53279 0.224504 

Time Interval     
Median [IQR] 

(months) 
35.7 

[35.0-39.2] 
35.4 

[35.0-37.3] 
35.8 

[35.0-39.3] 
35.6 

[34.9-40.4] 
Density BI-RADS b a b a b a b a 

a 27 100 5 
(18.5%) 

16 
(16.0%) 

3 
(11.1%) 

17 
(17.0%) 

7  
(0.0%) 

18 
(18.0%) 

b 95 401 6  
(6.3%) 

92 
(22.9%) 

20 
(21.1%) 

82 
(20.5%) 

29  
(0.9%) 

72 
(18.0%) 

c 47 186 6  
(12.8%) 

44 
(23.7%) 

7 
(14.9%) 

40 
(21.5%) 

14  
(1.8%) 

42 
(22.6%) 

d 15 1 3  
(20.0%) 

0 
(0.0%) 

3 
(20.0%) 

0 
(0.0%) 

7  
(0.0%) 

0 
(0.0%) 

Missing 504 0 132 
(26.2%) 

0 
(0.0%) 

106 
(21.0%) 

0 
(0.0%) 

95 
(18.9%) 

0 
(0.0%) 

p value - - 0.004912 - 0.78437 - 0.0821 - 
Table 7-20 – Sub group analysis of DL-1, DL-2, DL-3 set at 96.0% specificity threshold, using Scenario E for the 
next round cancers (NRCs) detected. BI-RADS: Breast imaging-reporting and data system, FFDM: Full Field 
Digital Mammography, GE: General Electric. dLesions reported. aDL-3 BI-RADS density scores on processed full 
field digital mammograms. b Volpara 5th edition BI-RADS mammographic breast density from raw full field 
digital mammograms for Cambridge data. p values were determined by using Chi squared c2 test to compare 
against the detected proportion of cancers cases by the true distribution for each cancer characteristic 
category. p values < 0.05 were considered statistically significant.  
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DL-1 detected 88 ICs and 152 NRCs, DL-2 detected 90 ICs and 139 NRCs, and DL-3 detected 99 ICs 

and 132 NRCs. It is proposed at this threshold, and using the Scenario E approach, that these cases 

could be recalled for supplemental imaging using a modality such as abbreviated MRI for earlier 

detection. There was a statistically significant difference for the ICs detected at the 94.0% specificity 

for the age at screening (DL-1 and DL-2), FFDM vendor (DL-1), invasive tumour size (DL-3) and 

radiological classification (DL1 and DL-3), Table 7-19. In addition, there was a statistically significant 

difference (p < 0.05) for the NRCs detected for age at screening (DL-2), FFDM vendor (DL-1 and DL-3) 

as well as invasive tumour size (DL-3) and Volpara mammographic breast density (DL-1), Table 7-20.  

7.4.7 Failure analysis  

Of the 9 (1.0%) SDCs case missed by each AI algorithm at threshold 1 (99.0% sensitivity), only one 

case missed overlaps for all algorithms, Figure 7-10. 

 

 

 

 

 

 

 

Figure 7-10 – Venn diagram – not proportional, for screen detected cancers (SDCs) missed at threshold 1, 
Scenario B. For DL-1 in blue, DL-2 in purple, and DL-3 in green. 

 
The SDC case that was missed by all AI algorithms was from a 63-year-old patient, diagnosed with a 

left sided grade 2 16 mm invasive cancer from Cambridge screening, Figure 7-11. 

 
 
 
 
 
 
 
 
 

 

 

  

Figure 7-11 – Missing case analysis, case missed by artificial intelligence (AI).  Screening image, with a blue 
bounding box to show the location of the cancer. The images were annotated by a breast radiologist to show 
the true location of the cancer. 
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Of the ICs case detected by each AI algorithm at the 94.0% threshold 34 cases overlap and for NRCs 

57 cases overlap, Figure 7-12. 

 

 

 

 

 

 

  

 

 

Figure 7-12 – Venn diagram – not proportional, for a) interval cancers (ICs) and b) next round cancers (NRCs) 
detected at the 94.0% specificity threshold Scenario E. For DL-1 in blue, DL-2 in purple, and DL-3 in green. 

 
7.5 Discussion    

7.5.1 Overall performance 

Implementing a CADt rule out workflow found a large proportion of cases could be read by either no 

readers (Scenario B) or one reader (Scenario C) whilst missing between 0-34 (0.0-3.8%) SDCs. 

Simulating the effect on overall screening performance found the specificity and sensitivity remained 

non-inferior to the double reading performance at all thresholds. Similar results for rule out CADt 

were found in previously published papers, reporting between 17.0-91.0% cases could be not read 

by human readers whilst estimated to miss 0-7.0% of the cancer cases133. However, many of these 

previous studies used enriched and small datasets135,231. The implementation of DL for CADt could 

have a positive impact on the efficiency of screening and help in places where there is a shortage of 

trained expert human readers. Furthermore, this reduction in workload to improve efficiency could 

also help offset the increase in workload from the rule in triage approach to improve earlier 

detection of cancers. However, the question still remains as to where an acceptable threshold 

should be set for triage ruling out CADt applications.  

At the highest specificity threshold (99.0%) for Scenario E, auto recall cases with a high suspicion not 

recalled by human readers, a small proportion of ICs (4.6-8.2%) and NRCs (5.2-6.1%) were recalled 

for supplemental imaging / assessment and could potentially be detected. However, this is a smaller 

number than that reported in Dembrower et al, 1.0% highest scores 12.0% ICs and 14.0% NRCs134. 

This is possibly due to the method used for threshold identification in our study, where we set each 

AI algorithm at a 94.0-99.0% specificity as appose to taking the cases with the highest 1.0-5.0% 

scores. Further guidance is also required for this CADt approach, as to what modality or form of 

a) b) 
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assessment would be best suited to detect these ‘occult’ cancers recalled by AI systems only as well 

as what location prompting should be provided by the AI algorithms to radiologist carrying out the 

additional review. MRI with the increase sensitivity compared to mammography could be offered for 

these mammographically ‘occult’ cancers.  

During the running of this study two tools were updated. All the data reported in the study is from 

the same version of the updated algorithms. It is important in future work to monitor for the 

changes in performance with these updates in algorithms as well as that these processes must be 

time efficient to account for these frequent changes.  

Alternative CADt workflows are also possible such as sending any suspicious cases back to the 

second reader only with the AI prompts for review, or even just using the AI algorithms to generate a 

smart worklist with cases prioritised in order of suspicion so the most suspicious cases are read first 

when potentially the readers are most alert.  

7.5.2 Further analysis 

When using both the rule in (Scenario C) and rule out (Scenario E) combination approach the 

sensitivity was found to be superior, with a trade off in specificity for two out of the three 

algorithms. In Lauritzen et al, the sensitivity was non-inferior (p = 0.02) and the specificity was higher 

(p < 0.001)296. Although in their study it was proposed normal cases were not read by human readers 

if the case reached the auto recall out threshold296. Keeping a reader in the loop in the first instance 

when deploying such an automated AI workflow would be beneficial for two reasons; 1) to provide 

human oversight to AI algorithm decisions acting as a safety net and 2) to build trust and knowledge 

regarding these systems by radiologists who have not trained with these systems. Interestingly, one 

case was missed by all AI algorithms at the set auto rule out threshold 1 demonstrating that these 

systems both detect and miss different cancers. Further work into the use of these systems together 

should be carried out to see if there is an added benefit.  

7.5.3 Limitations 

There are several limitations to this study. The data was from one region in the UK. The study was 

retrospective and so the impact on the reader can only be simulated and the true effect on reading a 

smaller proportion of cases cannot be evaluated. In addition, it is not definitive that the cancers 

flagged for supplemental imaging or assessment will be detected. Thresholds for this study were 

found on the study dataset and not an independent dataset, thus causing bias. All available data was 

used in study test set to provide a sufficient sample size, thus there was no independent dataset, 

without overlap with the study cohort, from which to identify thresholds. A proportion of women 

aged 67-69 were excluded from this study as they did not have sufficient follow-up for the required 

ground truth. We used a strict ground truth definition for this study. However, in recent studies a 
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sufficient follow-up time with a no cancer outcome for the case has been used, and is an alternative 

way of defining a case that would limit the loss of cases from the normal case ground truth.  

 

7.6 Conclusion 

CAD triage applications of the latest DL algorithms provide multiple workflow solutions. A large 

proportion of cases can be triaged out of double reading to either an automated decision of no recall 

or for single reading, whilst estimated to miss only 0.0-3.8% of SDCs. The potential benefit of 

efficiency from automated rule out triage could offset the increase in recall rate from an automated 

rule in approach, which provides the opportunity to improve IC and NRC detection and thus the 

earlier detection of some cancers. Prospective studies implementing one or more of these 

workflows are required to further investigate performance and the effect on reader performance. It 

is important to evaluate the readers acceptability of these thresholds as well as reader interaction 

with AI systems, as this is not possible to evaluate in simulated studies.  
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Chapter 8 – Contributions, Future Work and Conclusions 

 
8.1 Contributions to knowledge   

This thesis evaluated the use of artificial intelligence (AI) in breast cancer screening.  

The major contributions to knowledge from this thesis include a systematic review and meta-

analysis of the stand-alone use of AI in breast cancer screening, the creation of a large curated 

mammographic imaging database (The Cambridge Cohort – Mammography East Anglia Digital 

Imaging Archive (CC-MEDIA)) which provides multiple representative year data from two National 

Health Service Breast Screening Programme (NHSBSP) sites, a comparative analysis of three different 

AI algorithms for the early detection of interval cancers, a study investigating the use of three 

different AI algorithms as stand-alone screen readers, and an evaluation of three different AI 

algorithms for normal rule out and high suspicion rule in triage approaches in breast cancer 

screening.  

The systematic review and meta-analysis presented in Chapter 3 highlighted the rapid increase in 

published literature over the past six years investigating the latest deep learning algorithms 

performance in breast cancer screening. Two key workflow applications were the focus of this 

review, stand-alone screen reading and triage. The performance of AI systems was comparable to 

the human readers. Furthermore, a large proportion of cases could be triaged whilst missing a small 

proportion of cancers. However, this review also established there is a high level of bias due to the 

use of internal datasets and no pre-setting of the algorithm threshold. In addition, the evidence was 

from a limited number of studies using small and enriched datasets. The gaps in evidence and 

standard methodology within the field identified through this review, such as ground truth 

classification, were then applied in Chapters 5, 6 and 7.  

The creation of CC-MEDIA database outlined in Chapter 4, highlights the governance and technical 

processes required to create a large medical imaging database. The patient and public involvement 

(PPI) work carried out during the database creation helped ensure the transparent communication 

with patients about the use of their data in this research. This database has also been used in three 

separate research projects from this thesis by researchers at the University of Cambridge Radiology 

Department. In addition, the image extraction pipeline created, and lessons learned from deploying 

this method at both sites, has contributed to the ongoing development of an image extraction 

protocol from Cambridge University Hospitals NHS Foundation Trust PACS to the University of 

Cambridge Radiology Department.  

Chapter 5 demonstrated that AI algorithms are able to detect breast cancer at an earlier time point 

using the screening mammogram. By comparing the three different algorithms on the same data set 
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this work identified that the interval cancers detected by each AI algorithms do differ. Fluctuations in 

performance were identified when translating pre-identified thresholds from other sites, thus the 

stability of algorithm performance when transferring between sites is an important measure and 

should be considered when evaluating algorithm performance. The feasibility of installing and 

running multiple AI systems, processing of data from the CC-MEDIA database, and methods for 

comparative analysis were established in this chapter and provided the basis from which to carry out 

the analysis in Chapters 6 and 7.  

The comparative study for stand-alone screen reading presented in Chapter 6 adds to the growing 

body of literature for the use of AI as a stand-alone reader either entirely independent or in 

combination with a human reader in a double reading system. All three algorithms demonstrated 

non-inferiority at clinically relevant thresholds, thus reaching the required benchmark for 

prospective testing. All algorithms were generalisable to the NHSBSP even though less than 10% of 

training data was from the UK. Furthermore all algorithms were generalisable to both 

mammographic machine vendors (Philips and GE) included in the data, with no statistically 

significant difference in performance when comparing the two sites using different machines, 

despite all algorithms training on less than 1% Philips data. The importance of reporting metrics such 

as sensitivity, specificity and partial area under the receiver operating characteristic (pAUROC) curve 

alongside area under the receiver operating characteristic (AUROC) curve was also detailed to 

account for the class imbalance in screening as well as that the algorithms are operating at high 

specificity in screening, so as not to increase recall rates.  

Chapter 7 presents the first comparative study of AI algorithms for triage applications using the 

same external dataset. The rule out triage approach demonstrated that all algorithms could class a 

large proportion of cases as ‘normal’ whilst missing a very small proportion of screen detected 

cancers. This loss of screen detected cancers could be offset by the rule in triage approach for the 

earlier detection of cancers. The acceptable trade-off between these two approaches requires 

clarification in future work through discussion between breast radiologists and the national 

screening programme.   

 
8.2 Future work  

8.2.1 AI in the NHS  

Whilst there have been reports, briefings, and proposals for the adoption of AI into the NHS there is 

no established pathway for the approval of AI algorithms to be used in the NHS297–299. The National 

Screening Committee (NSC) report published in 2021 concluded that “the current evidence is a long 

way from the quality and quantity required for implementation into clinical practice” and so does 

not to support the implementation of AI into the NHSBSP136. Thus no algorithms are currently being 
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used in the programme. The report detailed that further evidence is required from both 

retrospective and prospective studies.  

Overall the aim of the studies in Chapters 5, 6 and 7 was to address the gaps in evidence highlighted 

in the 2021 NSC report. The results in these three chapters demonstrate the generalisability and 

acceptable performance from all three AI algorithms using NHSBSP data. However, as these studies 

were retrospective and required simulation, the performance can only be estimated. This 

emphasises the need for prospective studies deploying the various workflow approaches applied in 

these chapters with sufficient follow-up time to account for the earlier detection cancer benefit that 

could be obtained from these systems.  

8.2.2 Retrospective studies  

Retrospective studies allow for the faster review of multiple AI algorithms for multiple different 

workflow applications at clinically relevant thresholds. The speed of these studies is important due 

to the continuous updates of AI systems as well as that there are now more than fourteen different 

algorithms approved by the Food and Drug Administration (FDA) for mammographic screening 

applications300. In order to improve the generalisability of results in this thesis the 127,000 case CC-

MEDIA database could be used in collaboration with other databases, such as 

The Optimam Mammography Image Database (OMI-DB), or additional NHSBSP sites could be added 

to the database in order to provide a national test set that is more representative of the seventy-five 

NHSBSP sites. Furthermore testing across continents using the large medical imaging databases that 

have been established over the past ten years, detailed in Chapter 4 Table 4-1, could allow for 

broader generalisability testing. This geographical expansion is also important to include a more 

diverse screening population to investigate for bias in algorithms. The recording of ethnicity and 

socioeconomic information is an important aspect of this work, however as shown in Chapter 4 

Section 4.4.4 this information is often not available. The inclusion of additional sites and databases 

also provides wider coverage of mammographic manufacturers e.g. Hologic and Siemens and 

screening programmes e.g. single reader or biennial round length, not evaluated in this work of this 

thesis. Retrospective testing could play a role in the future benchmarking of AI algorithms to a set 

programme performance standard for an already approved algorithm application that has 

proceeded through prospective testing. As it is not feasible for all algorithms to be tested 

prospectively for all applications.  

8.2.3 Prospective studies  

Prospective studies allow for the assessment of the impact AI system have on the reader 

performance, overall effect on programme performance as well as the acceptability of an AI adapted 

workflow approach by readers. Prospective studies have been funded in the UK to evaluate both the 
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Kheiron system at up to fifteen NHSBSP sites and Google system at three NHS sites, although for the 

Google study the “AI system would not be used in patient care during the study”301–303. Other 

prospective studies around the world are taking place in the Spain, South Korea, Sweden, Norway, 

China and Russia, testing various deployment approaches and algorithms238,239,304–308. Ideally these 

prospective studies should be randomised to provide the highest level of evidence. In Denmark, 

Transpara has already been incorporated into routine screen reading to help with the Covid-19 

pandemic screening backlog, where the system will be used for a triage application of cases with low 

scores to be read by one reader and high scores continuing to double reading, like the approach 

shown in Chapter 7 Scenario C of this thesis309. 

The feasibility of implementing AI into the NHSBSP is also important to consider. In this thesis all 

algorithms were hosted via on premises hardware in a bespoke research environment specifically 

designed to carry out this work. Installing and maintain such systems within the NHS is an important 

point to consider as technical expertise and technical infrastructure varies between sites. It has been 

acknowledged by the NHS that AI systems could be hosted in one of the two approved cloud 

providers (Microsoft Azure or Amazon Web Services) which could facilitate a more centralised 

oversight of these systems at each site310. Furthermore, the recording of AI outputs in NBSS has not 

yet been tested. Extracting data from NBSS to create the CC-MEDIA database required the 

development of unique Crystal Report queries and was a complex process which depended on 

expertise in this field. Lastly, the NHS Trust information governance procedures that have to be 

satisfied in order to deploy a new system within the NHS firewall can be extensive and take a long 

time for approval which should be factored into the planning of any study. As part of our work we 

have gone through the local Trust governance approvals for one out of the three algorithms included 

in this thesis to both evaluate the feasibility of this sign off process and for the initial setup of 

prospective work.  

As outlined in Chapter 2, the factors to consider when implementing AI into the clinical workflow 

extend beyond the technical requirements as the ethical and legal implications should also be 

clarified. The Royal College of Radiologists have incorporated AI training into the updated curriculum 

for trainee radiologists311. But it is important to establish the type of training that existing 

radiologists should undertake before using these systems. Alongside this thesis Professor Gilbert and 

I have developed an online teaching module for the National Breast Imaging Academy titled 

“Computer-Aided Detection (CAD) and Artificial Intelligence (AI)” to provide an overview of AI in 

breast cancer screening for healthcare professionals.  

Questions that should be addressed in future prospective studies include:  

• What is an acceptable performance of an AI system to achieve for the workflow approach?  
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• What to do when there is a disagreement between an AI algorithm and human reader in 

each type of workflow deployment? 

o It is likely that these cases should proceed to arbitration for further review using the 

prompts provided by the AI system.  

• What percentage of additional cases is it both feasible and acceptable to triage to 

supplemental imaging for the earlier detection of cancers?   

• Does each algorithm have to be tested prospectively before deployment for each workflow 

application?  

• What is the cost effectiveness of using the AI systems for a specific workflow application? 

• Should consent be obtained from all women whose mammograms are read by AI systems? 

o This is unclear as the aim of systems is to provide standard of care if not improve 

detection. However, as shown by the PPI work undertaken in this thesis clear 

communication with the women participating in screening is required and 

centralised clear communication at point of invite would be most appropriate.  

• Where does the legal responsibility lie when using systems as stand-alone readers?  

8.2.4 Future work - AI research questions  

The CC-MEDIA database described in this thesis is approved for the collection of data from 2011 

until 2020 at two NHSBSP sites. Thus, the database will continue to be expanded in order to include 

prior screening rounds for patients which will allow for the evaluation of AI systems that incorporate 

the prior image, potentially improving AI performance. Other areas of interest for future work 

include the use of AI systems together either via an ensemble method, as explored in this thesis and 

in Schaffter et al, or in tandem to obtain the benefit from the difference in cancers detected by each 

system137.  

Whilst this thesis explores the main applications of AI in breast cancer screening there are remaining 

gaps not addressed in this thesis which were highlighted in the NSC report136. These include 

evaluating the performance for subgroup populations, including cases with breast implants or a 

previous cancer. Similarly projects looking at the impact of artefacts, more than four views, non-

standard views on performance should be investigated. Future work should also incorporate cost 

effectiveness analysis for the various AI screening approaches explored in this thesis. As screening is 

a balance between early detection and feasibility cost effectiveness it is important aspect in the 

evaluation pipeline. The studies in this thesis focused on the performance of stand-alone algorithms 

and so did not investigate the accuracy of prompt locations provided by the AI algorithms in addition 

to the continuous output score. As discussed in Chapter 5, studies such as Lång et al have further 

investigated the accuracy of these prompts to establish the likelihood that an occult cancer could be 
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found if the AI system provided this additional guidance to the radiologists270. A researcher at the 

University of Cambridge is currently using the outputs from the studies in this thesis to establish the 

accuracy of the prompts provided by the AI algorithms.   

The Breast Screening – Risk Adaptive Imaging for Density (BRAID) study is a large prospective multi-

centre trial, investigating the use of supplemental imaging for women with Breast Imaging-Reporting 

and Data System (BI-RADS) classified C and D mammographic breast density94. The CC-MEDIA 

database is being used by researchers as part of this study to investigate the use of risk prediction 

and mammographic breast density algorithms. These studies aim to establish the best threshold to 

guide the use of supplemental imaging. In the BRAID study patients also complete the BOADICEA risk 

questionnaire, designed by researchers at the University of Cambridge97. The risk information from 

the BOADICEA risk questionnaire where possible will also be extracted from the CC-MEDIA database 

to be used in combination with risk prediction and mammographic breast density algorithms. The 

inclusion of prior screening rounds in the database allows for the assessment of change in 

mammographic breast density overtime. In addition, the long-term follow-up information also 

included allows for the calculation of five-year risk. It has been proposed that the CC-MEDIA 

database will then be used to build new risk prediction tools. An application has been submitted to 

the CC-MEDIA Database Access Committee for a team at the University of Cambridge Maths 

Department to receive secure access to the database in order to facilitate the development of new 

algorithms. 

Digital Breast Tomosynthesis (DBT) is already used in screening in the USA. In the UK a large multi-

centre prospective trial is currently underway, Prospective Trial of DBT in Breast Cancer Screening 

(PROSPECTS) trial, to establish the added benefit from DBT in the NHSBSP312. Numerous publications 

have shown improved reading times and good AI algorithm performance with DBT313–315. The studies 

performed as part of this thesis should be replicated using DBT data in the UK screening programme 

if DBT is implemented into the NHSBSP in the future.    

 

8.3 Conclusions 

1. Stand-alone AI algorithms achieve a similar performance compared to human reader 

performance, although the evidence is from a small number of studies many of which used 

small and enriched retrospective cohorts leading to high rates of bias in reported studies.  

2. Development of a medical imaging database requires extensive ethical approvals, patient 

and public involvement, governance procedures as well as technical expertise.   

3. AI algorithms are able to detected interval cancers at the previous screening timepoint.  
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4. In this UK dataset the three AI algorithms tested achieved non-inferior performance 

compared to the single first human reader at both screening sites when used as a stand-

alone reader. In addition, when combined with the single human first reader all AI 

algorithms achieved a non-inferior performance compared to double reading.  

5. Each AI algorithm detected different interval and next round cancers.  

6. A high proportion of cases (35.0%-68.9%) can be ruled out as ‘normal’ or assigned for single 

reading only by the AI systems whilst missing a small proportion (0.0-3.8%) of screen 

detected cancers.  

7. Up to 20% of interval and next round cancers can be detected at a high specificity threshold 

which could be recalled for assessment and supplemental imaging.  

8. A combined approach using both rule in and rule out triage, led to a superior sensitivity 

performance with a trade off in specificity. A lower arbitration rate and higher recall rate 

was observed.  

 
My proposal for the future of AI in clinical practice is that AI will not replace the vital role of 

radiologists, rather it will enhance early detection of cancer.  
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Appendix 1 
 
Definitions of commonly used terms in this review: 
 

• Computer-aided detection (CADe) = A system which locates an abnormality 
within an image and provides a prompt or marker to assist a human reader. 
 

• Computer-aided diagnosis (CADx) = A system which provides a classification for 
the type of abnormality found in an image. For example, at the level of cancer or 
no cancer for a case.  
 

• Computer-aided triage (CADt) = A system which automatically assigns cases to 
normal or abnormal category. Providing a possible final case decision for normal 
cases and highlights abnormal cases for further human reader review.  
 

• Stand-alone = An algorithm that interprets the whole mammogram case / exam 
and provides an outcome independent of human interaction or interpretation. 

 
• Reader = A breast clinician, radiologists or reporting radiographer who reports 

mammographic images.  
 
• 2D standard-view mammography = An x-ray image of breast tissue which 

includes two views (mediolateral oblique and cranial caudal views) for each 
breast (right and left).  

  
• Adapted screening = The adjustment of radiological screening workflow by 

changing reading protocols. Such as using a CADt algorithm for machine only 
reading of normal cases and presenting a proportion of suspicious cases to a 
single or double reader system. Other adjustments include the possibility of 
using a CADe and CADx algorithm as a stand-alone system to substitute one of 
the readers in a double reading system.  

 
• Testing = The evaluation of an algorithm’s performance. 

 
• Development = The training, tuning and validation of an algorithm. 

 
• Pre-assigned thresholds = ML algorithm test performance levels (e.g., sensitivity 

and specificity) which are determined in the protocol and specified according to 
current evidence or national performance. This is in contrast to thresholds that 
are altered to find the optimum performance following the completion of the 
test.  

 
• Clinically relevant thresholds = are the current screening programme targets 

(sensitivity and specificity) as well as current screening reader performance, 
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which ML algorithm performance is required to reach or provide a workflow 
solution where these standards are met. For example, in a double reading 
system if ML is to be used as a stand-alone reader alongside another human 
reader, then the thresholds for the ML algorithm could be set at current single 
reader performance. 

 
• *Open database = “Neither login nor registration are required for these data 

collections”. We have defined this also as a public database.  

 
• *Safeguarded database = “The safeguards include knowing who is using the data 

and for what purpose. The EUL outlines the restrictions on use for a particular 
data collection”. 

 
• *Controlled database = “These data are only available to users who have been 

accredited and their data usage has been approved by the relevant Data Access 
Committee”. 

 
• Private database = This is a controlled or safeguarded database as outlined 

above.  

 
• External testing = When an algorithm is tested by an independent third party 

who has not been involved in the development of the algorithm. 

 
• Internal testing = When an algorithm is tested by the company / academic 

institution that developed it. 

 
• External dataset = A dataset that is from a different dataset to the dataset that 

was used for development (training and validation). This can be either 
geographically (from a different site or country), temporally (from a different 
time period) or both geographically and temporally different. 

 
• Internal dataset = A dataset that is from the same dataset as the dataset that 

was used for development (training and validation), which is used for testing. 
 
• **Gray literature = “evidence not published in commercial publications”. 

 
*UK Data Service. Data access policy. https://www.ukdataservice.ac.uk/get-data/data-access-policy. 
Accessed 6 January 2021. 
**Paez A. Gray literature: An important resource in systematic reviews. J Evid Based Med. 
2017;10(3):233–240.  
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Appendix 2 
 
Protocol registration  
PROSPERO (CRD42019156016) 
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=156016  
 
Link to protocol https://www.crd.york.ac.uk/PROSPEROFILES/156016_PROTOCOL_20200909.pdf  
 
Registered amendments 

1. 29/10/2019 submitted initial application following completion of preliminary 
searches 

2. 12/05/2020 updated time period for the review and fields for extraction, submitted 
prior to final search execution  

3. 12/05/2020 updated authors, submitted prior to final search execution 
4. 09/09/2020 submitted an update to the final search execution in protocol  

 
Deviations from the protocol  

5. Data collection – additional items collected which were not included in the protocol, 
through this may introduce bias in these fields (e.g. processed mammography 
adjusted from processed / raw) it was felt that these fields added significant 
information to the review. 

6. Data collected – certain data collected as part of this review is not reported in paper, 
however this is available on request for access to the originally extracted raw data 
from the authors.  

7. Data collected – study authors were not contacted for further information as this 
was felt that it could possibly bias the results of reporting as well as confuse the 
metrics used to evaluate quality of reporting (CLAIM, QUADAS, PROBAST). 
Therefore, we have reported based on what was available in the original manuscript 
and supplemental material only. To ensure data extraction was robust this was 
checked by a third reviewer with a computer science background.   

8. Meta-analysis – this was conducted only for external studies as this allowed for 
consistency in reporting and a larger enough number of studies to be compared. The 
methods from Liu et al were used to direct this analysis.  

Conflicts of interest 
FJG undertakes consulting for technology companies, and both FJG and SEH have research 
collaborations with technology companies as detailed in the conflicts of interest statement. None of 
these organizations had any role in the funding, conduct, or publication of the study. 
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Appendix 3 

 
Digital Literature Database Search:  
 
EMBASE (EXCERPTA MEDICA DATABASE) 
 
Database: Embase <1996 to 2020 Week 35> 
Search Strategy: 
-------------------------------------------------------------------------------- 
1     (breast* adj2 (cancer* or carcino* or tumour* or tumor* or malignan*)).ti,ab.  
2     (breast* adj2 (lump* or lesion* or mass*)).ti,ab.  
3     exp breast cancer/  
4     (Breast adj2 (screen* or imag*)).ti,ab.  
5     mammogra*.ti,ab.  
6     (mammo-graph* or mastograph*).ti,ab.  
7     exp mammography/  
8     ((convolutional or transfer or ensemble or deep or machine*) adj2 learning).ti,ab.  
9     ((deep or artificial or convolutional or neural) adj2 net*).ti,ab.  
10     "artificial intelligence".ti,ab.  
11     ("computer assisted diagnosis" or "computer assisted detection" or "computer aided 
detection" or "computer aided diagnosis").ti,ab.  
12     (CNN or CAD).ti,ab.  
13     exp machine learning/  
14     exp artificial intelligence/  
15     (Radiolo* or radiographer* or reader* or expert* or expertise or specialist* or clinician* or 
physician* or practitioner* or human* or doctor* or person*).ti,ab.  
16     (workflow* or "clinical practice" or standalone or stand-alone or independent* or automat* or 
"screening tool" or "triage tool" or comput*).ti,ab.  
17     1 or 2 or 3  
18     4 or 5 or 6 or 7  
19     8 or 9 or 10 or 11 or 12 or 13 or 14  
20     15 or 16  
21     17 and 18 and 19 and 20  
22     limit 21 to yr="2012 - 2020"  
 
MEDLINE (MEDICAL LITERATURE ANALYSIS AND RETRIEVAL SYSTEM ONLINE) 
 
Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, 
Daily and Versions(R) <1946 to September 02, 2020> 
Search Strategy: 
-------------------------------------------------------------------------------- 
1     (breast* adj2 (cancer* or carcino* or tumour* or tumor* or malignan*)).ti,ab.  
2     (breast* adj2 (lump* or lesion* or mass*)).ti,ab.  
3     exp breast cancer/  
4     (Breast adj2 (screen* or imag*)).ti,ab.  
5     mammogra*.ti,ab.  
6     (mammo-graph* or mastograph*).ti,ab.  
7     exp mammography/  
8     ((convolutional or transfer or ensemble or deep or machine*) adj2 learning).ti,ab.  
9     ((deep or artificial or convolutional or neural) adj2 net*).ti,ab.  
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10     "artificial intelligence".ti,ab.  
11     ("computer assisted diagnosis" or "computer assisted detection" or "computer aided 
detection" or "computer aided diagnosis").ti,ab.  
12     (CNN or CAD).ti,ab.  
13     exp machine learning/  
14     exp artificial intelligence/  
15     (Radiolo* or radiographer* or reader* or expert* or expertise or specialist* or clinician* or 
physician* or practitioner* or human* or doctor* or person*).ti,ab.  
16     (workflow* or "clinical practice" or standalone or stand-alone or independent* or automat* or 
"screening tool" or "triage tool" or comput*).ti,ab.  
17     1 or 2 or 3  
18     4 or 5 or 6 or 7  
19     8 or 9 or 10 or 11 or 12 or 13 or 14  
20     15 or 16 (6353106) 
21     17 and 18 and 19 and 20  
22     limit 21 to yr="2012 - 2020"  
 
SCOPUS  
 
( ( TITLE-ABS-
KEY ( breast*  W/2  ( cancer*  OR  carcino*  OR  tumour*  OR  tumor*  OR  malignan* ) ) )  OR  ( TITLE
-ABS-KEY ( breast*  W/2  ( lump*  OR  lesion*  OR  mass* ) ) ) )  AND  ( ( TITLE-ABS-
KEY ( breast*  W/2  ( screen*  OR  imag* ) ) )  OR  ( TITLE-ABS-KEY ( mammogra* ) )  OR  ( TITLE-ABS-
KEY ( mammo-graph*  OR  mastograph* ) ) )  AND  ( ( TITLE-ABS-
KEY ( ( convolutional  OR  transfer  OR  ensemble  OR  deep  OR  machine* )  W/2  learning ) )  OR  ( TI
TLE-ABS-KEY ( ( deep  OR  artificial  OR  convolutional  OR  neural )  W/2  net* ) )  OR  ( TITLE-ABS-
KEY ( "artificial intelligence" ) )  OR  ( TITLE-ABS-KEY ( "computer assisted diagnosis"  OR  "computer 
assisted detection"  OR  "computer aided detection"  OR  "computer aided diagnosis" ) )  OR  ( TITLE-
ABS-KEY ( cnn  OR  cad ) ) )  AND  ( ( TITLE-ABS-
KEY ( radiolo*  OR  radiographer*  OR  reader*  OR  expert*  OR  expertise  OR  specialist*  OR  clinici
an*  OR  physician*  OR  practitioner*  OR  human*  OR  doctor*  OR  person* ) )  OR  ( TITLE-ABS-
KEY ( workflow*  OR  "clinical practice"  OR  standalone  OR  stand-
alone  OR  independent*  OR  automat*  OR  "screening tool"  OR  "triage 
tool"  OR  comput* ) ) )  AND  ( LIMIT-TO ( PUBYEAR ,  2020 )  OR  LIMIT-
TO ( PUBYEAR ,  2019 )  OR  LIMIT-TO ( PUBYEAR ,  2018 )  OR  LIMIT-
TO ( PUBYEAR ,  2017 )  OR  LIMIT-TO ( PUBYEAR ,  2016 )  OR  LIMIT-
TO ( PUBYEAR ,  2015 )  OR  LIMIT-TO ( PUBYEAR ,  2014 )  OR  LIMIT-
TO ( PUBYEAR ,  2013 )  OR  LIMIT-TO ( PUBYEAR ,  2012 ) )  
 
WEB OF SCIENCE (CORE COLLECTION) 
 

# 18 1,998 #16 AND #15 AND #14 AND #13  
Refined by:  PUBLICATION YEARS: ( 2020 OR 2012 OR 2019 OR 2018 OR 2017 OR 
2016 OR 2015 OR 2014 OR 2013 )  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 17 3,395 #16 AND #15 AND #14 AND #13  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 
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# 16 11,039,655 #12 OR #11  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 15 645,943 #10 OR #9 OR #8 OR #7 OR #6  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 14 59,602 #5 OR #4 OR #3  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 13 561,062 #2 OR #1  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 12 5,354,666 TS = (workflow* or "clinical practice" or standalone or stand-alone or 
independent* or automat* or "screening tool" or "triage tool" or comput*)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 11 6,491,265 TS = (Radiolo* or radiographer* or reader* or expert* or expertise or specialist* 
or clinician* or physician* or practitioner* or human* or doctor* or person*)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 10 107,204 TS = (CNN or CAD)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 9 13,595 TS = ("computer assisted diagnosis" or "computer assisted detection" or 
"computer aided detection" or "computer aided diagnosis")  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 8 53,218 TS = ("artificial intelligence")  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 7 388,724 TS = ((deep or artificial or convolutional or neural) NEAR/2 net*)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 
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# 6 202,363 TS = ((convolutional or transfer or ensemble or deep or 
machine*) NEAR/2 learning)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 5 30 TS = (mammo-graph* or mastograph*)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 4 46,265 TS = (mammogra*)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 3 25,523 TS = (Breast NEAR/2 (screen* or imag*) )  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 2 17,412 TS = (breast* NEAR/2 (lump* or lesion* or mass*) )  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 

# 1 553,266 TS = (breast* NEAR/2 (cancer* or carcino* or tumour* or tumor* or malignan*) )  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, 
CCR-EXPANDED, IC Timespan=All years 

 
CENTRAL (COCHRANE CENTRAL REGISTER OF CONTROLLED TRIALS) 
ID Search  
#1 ((breast* near/2 (cancer* or carcino* or tumour* or tumor* or malignan*))):ti,ab,kw (Word 
variations have been searched)  
#2 (breast* near/2 (lump* or lesion* or mass*))  
#3 (Breast near/2 (screen* or imag*))  
#4 (mammogra*)  
#5 (mammo-graph* or mastograph*)  
#6 ((convolutional or transfer or ensemble or deep or machine*) near/2 learning) 
#7 ((deep or artificial or convolutional or neural) near/2 net*)  
#8 ("artificial intelligence")  
#9 ("computer assisted diagnosis" or "computer assisted detection" or "computer aided 
detection" or "computer aided diagnosis")  
#10 (CNN or CAD)  
#11 (Radiolo* or radiographer* or reader* or expert* or expertise or specialist* or clinician* or 
physician* or practitioner* or human* or doctor* or person*) 1090834 
#12 (workflow* or "clinical practice" or standalone or stand-alone or independent* or automat* 
or "screening tool" or "triage tool" or comput*) 167454 
#13 #1 OR #2  
#14 #3 OR #4 OR #5  
#15 #6 OR #7 OR #8 OR #9 #10  
#16 #11 OR #12 
#17 #13 AND #14 AND #15 AND #16 with Publication Year from 2012 to 2020, in Trials  
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Grey Database Search:  
 
DBLP (DATABASE SYSTEMS AND LOGIC PROGRAMMING) 
 
Machine learning Breast cancer Mammography 
 
Then separate search for:  
 
Deep Learning Breast cancer Mammography 
 
ACM (ASSOCIATION FOR COMPUTER MACHINERY, FULL TEXT COLLECTION) 
 
[[All: machine learning] AND [All: breast cancer] AND [All: mammography]] OR [[All: deep 
learning] AND [All: breast cancer] AND [All: mammography]] AND [Publication Date: 
(01/01/2012 TO 31/12/2020)] 
 
IEEE  
 
(("All Metadata":Machine learning AND Breast cancer AND Mammography) OR "All Metadata":Deep 
Learning AND Breast cancer AND Mammography)  
 
arXiv  
 
Query: order: -announced_date_first; size: 200; date_range: from 2012-01-01 to 2020-12-31; 
include_cross_list: True; terms: AND all=Machine learning AND Breast cancer AND Mammography; 
OR all=Deep Learning AND Breast cancer AND Mammography 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 214 

Appendix 4 
 

Fields included in the data extraction:  
 

Table 1 
Study details 
1. Journal 
2. Year 
3. Author 
4. Title 

Study design 
5. Design (Retrospective/ prospective) 
6. Algorithm name  
7. Traditional ML / Deep ML  
8. Workflow application  
9. Decision level  

Study population (train + validation dataset) 
10. Total number of cases  
11. Total number of images 
12. Number of normal cases (*not reported in main tables, please contact authors for 

the extraction tables)  
13. Number of cancer cases (*not reported in main tables, please contact authors for 

the extraction tables)  
14. Number of benign cases (*not reported in main tables, please contact authors for 

the extraction tables)  
15. Vendor (*not reported in main tables, please contact authors for the extraction 

tables)  
16. Country (*not reported in main tables, please contact authors for the extraction 

tables)  

Human readers 
17. Readers (number + experience) 
18. Single / double / multi-reader 
19. Clinical information available to readers (*not reported in main tables, please 

contact authors for the extraction tables)  
20. Prior mammogram available to readers (*not reported in main tables, please contact 

authors for the extraction tables)  
21. Reader reading as part of real time workflow / reader study  
22. Ground truth 

Algorithm performance  
23. Internal / external  
24. Algorithm threshold set 
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25. Randomised / non-randomised data split (*not reported in main tables, please 
contact authors for the extraction tables)  

26. Bootstrapping / cross validation (resampling) (*updated to include other types of 
study format) 

27. %normals (CI)  
28. Negative Predictive Value (NPV) 
29. False Negatives (FN) 
30. Area Under the Curve (AUC) (CI) 
31. Sensitivity (CI) 
32. Specificity (CI) 

Other 
33. Data augmentation (flip / rotate / synthetic images) (*not reported in main tables, 

please contact authors for the extraction tables)  
34. Handling missing data (*not reported in main tables, please contact authors for the 

extraction tables)  
35. Compute time (*not reported in main tables, please contact authors for the main 

extraction tables)  
36. Interpretability - e.g. heatmap / locator (*not reported in main tables, please contact 

authors for the extraction tables)  
37. Algorithm code available 
38. Funding Source (*not reported in main tables, please contact authors for the 

extraction tables)  
39. Additional information relevant to testing (*not reported in main tables, please 

contact authors for the extraction tables)    

Table 2 
Study details 
1. Journal 
2. Year 
3. Author 
4. Title  

Study population (test dataset) 
5. Dataset name  
6. Country where mammograms were taken 
7. No. Centres 
8. Year of studies 
9. Vendor 
10. Screen / Diagnostic 
40. Digital / Film  
41. Raw / Processed (*adjusted field to algorithm processing, raw and processed 

reported in main tables, please contact authors for the extraction tables)  
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11. Public / Private 
12. Internal / External test set  
13. Dataset Size cases  
14. Dataset Size images 
15. Proportion of cancers 
16. Proportion of cancers that are (screen detected + subsequent round + interval) (*not 

reported in main tables, please contact authors for the extraction tables) 

Training, validation and testing  
17. Used for testing (*not reported in main tables, please contact authors for the 

extraction tables) 
18. Dataset for testing same as train + validation (*not reported in main tables, please 

contact authors for the extraction tables) 
19. Train / validation / test split (*not reported in main tables, please contact authors for 

the extraction tables) 
20. Density measure 
21. Average lesion size (*not reported in main tables, please contact authors for the 

extraction tables) 
22. Age 

 
*For clarity a refined selection of fields was included in the main extraction tables (table 1,2,3 and 
4). For the details of the additional fields extracted please contact authors for these extraction 
tables.  
 
Varying terminology in reported studies made the identification of data for extraction challenging. 
Studies included in this review were allowed to focus on ML development, validation, or both. 
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Appendix 5 

 
Further description of methods for primary meta-analysis  
 
Studies were included in the primary study level meta-analysis if they were conducted with an 
external dataset, the ground-truth was similar to the set standard of histopathology plus follow-up 
of more than one year, and enough information was provided to produce contingency tables for 
both the algorithm and reader (tested on the same dataset). If a study reported exams only then this 
was used as the case number for analysis. When a simulated case cohort (e.g. using bootstrapping) 
was reported, this was used for the total and cancer case size. If the same algorithm was reported in 
different articles for the same workflow application, then the most recent version of the algorithm 
was included. If a study reported multiple algorithms, then the highest performing algorithm (at the 
test stage) defined by AUROC was used. If multiple results for the same algorithm or reader were 
available in the same article, then only the highest reported study result by either AUROC or if 
AUROC was not available then by positive prediction (total number of true positives and true 
negatives) was used (from the test stage). 
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Appendix 6 

 
 
Included articles references:116,134,135,137,138,149,229–236 
 
1.  *+**Rodriguez-Ruiz A, Lång K, Gubern-Merida A, et al. Stand-alone artificial intelligence for 

breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer 
Inst. 2019;111(9):916–922.  

2.  Rodriguez-Ruiz A, Lång K, Gubern-Merida A, et al. Can we reduce the workload of 
mammographic screening by automatic identification of normal exams with artificial 
intelligence? A feasibility study. Eur Radiol. European Radiology. 2019;29(9):4825–4832.  

3.  Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A Deep learning model to triage screening 
mammograms: a simulation study. Radiology. 2019;293(1):38–46.  

4.  Kyono T, Gilbert FJ, van der Schaar M. Improving workflow efficiency for mammography using 
machine learning. J Am Coll Radiol. 2020;17(1):56–63. 

5.  *+**McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for 
breast cancer screening. Nature. 2020;577(7788):89–94.  

6.  **Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in 
mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit 
Heal. 2020;2(3):e138–e148.  

7.  *+**Schaffter T, Buist DSM, Lee CI, et al. Evaluation of combined artificial intelligence and 
radiologist assessment to interpret screening mammograms. JAMA Netw open. 
2020;3(3):e200265. 

8.  Rodríguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detection of breast cancer with 
mammography: effect of an artificial intelligence support system. Radiology. 2019;290(3):1–
10.  

9.  *+**Lotter W, Diab AR, Haslam B, et al. Robust breast cancer detection in mammography and 
digital breast tomosynthesis using annotation-efficient deep learning approach. Arxiv 
[Preprint]. 2019;1–16. http://arxiv.org/abs/1912.11027. 

10.  Kyono T, Gilbert FJ, van der Schaar M. MAMMO: a deep learning solution for facilitating 
radiologist-machine collaboration in breast cancer diagnosis. Arxiv [Preprint]. 2018;1–18. 
http://arxiv.org/abs/1811.02661. 

11.  Geras KJ, Wolfson S, Shen Y, et al. High-resolution breast cancer screening with multi-view 
deep convolutional neural networks. Arxiv [Preprint]. 2017;1–9. 
http://arxiv.org/abs/1703.07047. 

12.  *+**Salim M, Wåhlin E, Dembrower K, et al. External evaluation of 3 commercial artificial 
intelligence algorithms for independent assessment of screening mammograms. JAMA Oncol. 
2020;6(10):1581–1588.  

13.  Dembrower K, Wåhlin E, Liu Y, et al. Effect of artificial intelligence-based triaging of breast 
cancer screening mammograms on cancer detection and radiologist workload: a 
retrospective simulation study. Lancet Digit Heal. 2020;2(9):e468–e474.  

14.  Balta C, Rodriguez-Ruiz A, Mieskes C, Karssemeijer N, Heywang-Köbrunner SH. Going from 
double to single reading for screening exams labeled as likely normal by AI: what is the 
impact? Proc SPIE 11513, 15th International Workshop on Breast Imaging (IWBI2020), 
115130D (22 May 2020).  

 
 
 
*Studies included in primary meta-analysis  
**Studies included in secondary meta-analysis 
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Appendix 7 

 
 
Tabular presentation for Prediction model Risk Of Bias ASsessment Tool (PROBAST) results 

Study RISK OF BIAS APPLICABILITY ROB 
PARTICIPANTS 

 

OUTCOME ANALYSIS PARTICIPANTS OUTCOME OVERALL 

McKinney (2020) L J J ? J L 
Kim (2020) L ? J L ? L 
Rodriguez-Ruiz [1] (2019) ? J J L J ? 
Rodriguez-Ruiz [2] (2019) ? J L L J L 
Yala (2019) J J L J J L 
Kyono [1] (2019) ? L L L L L 
Schaffter (2020) J J J J J J 
Kyono [2] (2018) ? L L L L L 
Rodriguez-Ruiz [3] (2019) L J L L J L 
Geras (2017) L ? L L ? L 
Lotter (2019) L J J L J L 
Dembrower (2020) L J L J J L 
Salim (2020) L J J J J L 
Balta (2020) J L L J L L 

 

Note.- JLow Risk LHigh Risk  ? Unclear Risk 
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Tabular presentation for Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) results 

Study RISK OF BIAS APPLICABILITY CONCERNS 
PATIENT 

SELECTION 
INDEX TEST REFERENCE 

STANDARD 
FLOW AND 

TIMING 
PATIENT SELECTION 

 

INDEX TEST REFERENCE 
STANDARD 

McKinney (2020) L J J J ? J J 
Kim (2020) L L ? ? L L ? 
Rodriguez-Ruiz [1] (2019) ? L ? J L L J 
Rodriguez-Ruiz [2] (2019) ? L ? J L L J 
Yala (2019) L J J J J J J 
Kyono [1] (2019) L J L L L J L 
Schaffter (2020) J J J J J J J 
Kyono [2] (2018) L J L L L J L 
Rodriguez-Ruiz [3] (2019) L L ? J L L J 
Geras (2017) L L ? ? L L ? 
Lotter (2019) L L ? J L L J 
Dembrower (2020) L L J J J J J 
Salim (2020) L J J J J J J 
Balta (2020) J L L ? J J L 

 

Note.- JLow Risk LHigh Risk  ? Unclear Risk 
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Appendix 8 
 

Meta-analysis results 
 
 
Appendix 8 – Table 8.1 - Primary analysis – contingency table  
 

Study Cases Cancer ML  Reader 
Sens Spec TP FN FP TN  Sens Spec TP FN FP TN 

Rodriguez-Ruiz [1] (2019) 199 79 0.800 0.790 63 16 25 95  0.770 0.790 61 18 25 95 
Schaffer (2020) 68 008 780 0.771 0.925 601 179 5042 62186  0.771 0.967 601 179 2219 65009 
Lotter (2019) 285 131 0.820 0.909 107 24 14 140  0.820 0.669 107 24 51 103 
Salim (2020) 113 663 739 0.819 0.966 605 134 3839 109085  0.774 0.966 572 167 3839 109085 
McKinney (2020) 3 097 686 0.562 0.843 386 300 379 2032  0.481 0.808 330 356 463 1948 

 
Note.- FN = False Negative, FP = False Positive, ML = Machine Learning, Sens = Sensitivity, Spec = Specificity, TP = True Positive, TN = True Negative 
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Appendix 8 – Table 8.2 - Secondary analysis – contingency table  
 

Study Cases Cancer ML  Reader 
Sens Spec TP FN FP TN  Sens Spec TP FN FP TN 

Rodriguez-Ruiz [1] (2019) 199 79 0.800 0.790 63 16 25 95  0.770 0.790 61 18 25 95 
Rodriguez-Ruiz [1] (2019) 129 40 0.850 0.490 34 6 45 44  0.840 0.490 34 6 45 44 
Rodriguez-Ruiz [1] (2019) 469 68 0.850 0.670 58 10 132 269  0.770 0.670 52 16 132 269 
Rodriguez-Ruiz [1] (2019) 298 49 0.860 0.540 42 7 115 134  0.820 0.540 40 9 115 134 
Rodriguez-Ruiz [1] (2019) 326 104 0.810 0.510 84 20 109 113  0.830 0.510 86 18 109 113 
Rodriguez-Ruiz [1] (2019) 585 113 0.860 0.680 97 16 151 321  0.840 0.680 95 18 151 321 
Rodriguez-Ruiz [1] (2019) 179 75 0.750 0.750 56 19 26 78  0.760 0.750 57 18 26 78 
Rodriguez-Ruiz [1] (2019) 204 82 0.810 0.730 66 16 33 89  0.830 0.730 68 14 33 89 
Kim (2020) 320 160 0.888 0.819 142 18 29 131  0.753 0.720 120 40 45 115 
Schaffer (2020) 68 008 780 0.771 0.925 601 179 5042 62186  0.771 0.967 601 179 2219 65009 
Schaffer (2020) 68 008 780 0.771 0.880 601 179 8067 59161  0.839 0.985 654 126 1008 66220 
Lotter (2019) 285 131 0.962 0.669 126 5 51 103  0.820 0.669 107 24 51 103 
Lotter (2019) 285 131 0.820 0.909 107 24 14 140        
Salim (2020) 113 663 739 0.819 0.966 605 134 3839 109085  0.774 0.966 572 167 3839 109085 
Salim (2020) 113 663 739 0.670 0.966 495 244 3839 109085  0.850 0.985 628 111 1694 111230 
Salim (2020) 113 663 739 0.674 0.967 498 241 3726 109198        
McKinney (2020) 3 097 686 0.562 0.843 386 300 379 2032  0.481 0.808 330 356 463 1948 

 
Note.- FN = False Negative, FP = False Positive, ML = Machine Learning, Sens = Sensitivity, Spec = Specificity, TP = True Positive, TN = True Negative 
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Appendix 8 – Table 8.3 - Heterogeneity 

 

Study N 
studies Cases Cancer 

Heterogeneity Sens 
(95% CI) 

Spec 
(95% CI) 

AUROC 
(95% CI) I2 Cochrane Q – p 

value 
Primary - Algorithm 5 185 252 2 415  0.000%  0.621   0.754 (0.656-0.832) 0.906 (0.829-0.950) 0.892 (0.838-0.982) 
Primary - Reader 5 185 252 2 415  0.000%  0.609   0.730 (0.607-0.826) 0.886 (0.724-0.958) 0.849 (0.779-0.971) 
             
Secondary – Algorithm 17 185 572 2 575  0.625%  0.446   0.804 (0.755-0.846) 0.821 (0.727-0.888) 0.864 (0.841-0.901) 
Secondary - Reader 15 185 572 2 575  0.000%  0.783   0.785 (0.738-0.825) 0.826 (0.692-0.909) 0.836 (0.814-0.876) 

 
Note.- AUROC = Area Under the receiver operating characteristic curve, N = Number, Sens = Sensitivity, Spec = Specificity
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Appendix 9 – z-test results  

 
A z-test was applied to the pooled AUROC results for comparison between the ML algorithms and 
readers in both the primary and secondary meta-analysis, with a p-value <.05 indicating a 
statistically significant result.  
 
Primary analysis pooled AUROC of ML algorithm compared to pooled AUROC of readers 
p-value = .53 
 
Secondary meta-analysis pooled AUROC of ML algorithm compared to pooled AUROC of readers  
p-value = .84 
 



 

 225 

 
Appendix 10  

 
Forest plots  

Supplemental Figure 1 - Primary analysis – Forest plot     Supplemental Figure 2 - Secondary analysis – Forest plot
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Appendix 11 
 

Funnel plot  
 
 

Supplemental Figure 3 - Primary analysis – Funnel plots  
 
Each algorithm and reader study result that is included in the primary meta-analysis is represented 
by a diamond shape. The log of diagnostic odds ratio (DOR) is plotted against standard error, with a 
vertical line for the median and dashed lines for the 95% confidence intervals.  
 
For the primary analysis there are an insufficient number of studies to assess for funnel asymmetry. 
 

 
Supplemental Figure 4 - Secondary analysis – Funnel plots  
 
Each algorithm and reader study result that is included in the secondary meta-analysis is 
represented by a diamond shape. The log of diagnostic odds ratio (DOR) is plotted against standard 
error, with a vertical line for the median and dashed lines for the 95% confidence intervals.  
 
 
Visual assessment of the secondary analysis funnel plots did not show asymmetry and thus does not 
suggest publication bias.  
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Appendix 12 
 

All private DICOM tags were removed as part of the anonymisation process. The table below details 

the de-identification process for each DICOM tag.   

 

(0002,0000) FileMetaInformationGroupLength Keep 
(0002,0001) FileMetaInformationVersion Keep 
(0002,0002) MediaStorageSOPClassUID Keep 
(0002,0003) MediaStorageSOPInstanceUID Hash 
(0002,0010) TransferSyntaxUID Keep 
(0002,0012) ImplementationClassUID Keep 
(0002,0013) ImplementationVersionName MATLAB 
(0002,0016) SourceApplicationEntityTitle Keep 
(0008,0005) SpecificCharacterSet Keep 
(0008,0008) ImageType Keep 
(0008,0016) SOPClassUID Keep 
(0008,0018) SOPInstanceUID Hash 
(0008,0020) StudyDate 01/MM/YYYY 
(0008,0023) ContentDate Blank 
(0008,0030) StudyTime Blank 
(0008,0033) ContentTime Blank 
(0008,0050) AccessionNumber Exam ID 
(0008,0060) Modality Keep 
(0008,0068) PresentationIntentType Keep 
(0008,0070) Manufacturer Keep 
(0008,0080) InstitutionName Blank 
(0008,0090) ReferringPhysicianName Blank 
(0008,1030) StudyDescription Keep 
(0008,1032) ProcedureCodeSequence Blank 
(0008,0100) CodeValue Blank 
(0008,0102) CodingSchemeDesignator Keep 
(0008,0103) CodingSchemeVersion Keep 
(0008,0104) CodeMeaning Keep 
(0008,103E) SeriesDescription Keep 
(0008,1090) ManufacturerModelName Keep 
(0008,2218) AnatomicRegionSequence Blank 
(0008,0100) CodeValue Keep 
(0008,0102) CodingSchemeDesignator Keep 
(0008,0104) CodeMeaning Keep 
(0010,0010) PatientName Trial ID 
(0010,0020) PatientID Trial ID 
(0010,0030) PatientBirthDate 01/01/YYYY 
(0010,0040) PatientSex Blank 
(0010,1010) PatientAge Keep 
(0012,0062) PatientIdentityRemoved Yes 
(0018,0015) BodyPartExamined Keep 
(0018,0060) KVP Keep 
(0018,1020) SoftwareVersions Kee 
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(0018,1110) DistanceSourceToDetector Keep 
(0018,1111) DistanceSourceToPatient Keep 
(0018,1114) EstimatedRadiographicMagnificationFactor Keep 
(0018,1130) TableHeight Keep 
(0018,1150) ExposureTime Keep 
(0018,1151) XRayTubeCurrent Keep 
(0018,1152) Exposure Keep 
(0018,1153) ExposureInuAs Keep 
(0018,1164) ImagerPixelSpacing Keep 
(0018,1191) AnodeTargetMaterial Keep 
(0018,11A0) BodyPartThickness Keep 
(0018,11A2) CompressionForce Keep 
(0018,1405) RelativeXRayExposure Keep 
(0018,1508) PositionerType Keep 
(0018,1510) PositionerPrimaryAngle Keep 
(0018,5101) ViewPosition Keep 
(0018,7004) DetectorType Keep 
(0018,7005) DetectorConfiguration Keep 
(0018,700C) DateOfLastDetectorCalibration Blank 
(0018,700E) TimeOfLastDetectorCalibration Blank 
(0018,7020) DetectorElementPhysicalSize Keep 
(0018,7022) DetectorElementSpacing Keep 
(0018,7050) FilterMaterial Keep 
(0020,000D) StudyInstanceUID Hash 
(0020,000E) SeriesInstanceUID Hash 
(0020,0010) StudyID Exam ID 
(0020,0011) SeriesNumber Keep 
(0020,0013) InstanceNumber Keep 
(0020,0020) PatientOrientation Keep 
(0020,0052) FrameOfReferenceUID Keep 
(0020,0062) ImageLaterality Keep 
(0020,1040) PositionReferenceIndicator Blank 
(0028,0002) SamplesPerPixel Keep 
(0028,0004) PhotometricInterpretation Keep 
(0028,0006) PlanarConfiguration Keep 
(0028,0010) Rows Keep 
(0028,0011) Columns Keep 
(0028,0100) BitsAllocated Keep 
(0028,0101) BitsStored Keep 
(0028,0102) HighBit Keep 
(0028,0103) PixelRepresentation Keep 
(0028,0106) SmallestImagePixelValue Keep 
(0028,0107) LargestImagePixelValue Keep 
(0028,0301) BurnedInAnnotation Keep 
(0028,1040) PixelIntensityRelationship Keep 
(0028,1041) PixelIntensityRelationshipSign Keep 
(0028,1052) RescaleIntercept Keep 
(0028,1053) RescaleSlope Keep 
(0028,1054) RescaleType Keep 
(0028,1300) BreastImplantPresent Keep 
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(0028,1350) PartialView Keep 
(0028,2110) LossyImageCompression Keep 
(0040,0316) OrganDose Keep 
(0040,0318) OrganExposed Keep 
(0040,8302) EntranceDoseInmGy Keep 
(0054,0220) ViewCodeSequence Blank 
(0008,0100) CodeValue Keep 
(0008,0102) CodingSchemeDesignator Keep 
(0008,0104) CodeMeaning Keep 
(0054,0222) ViewModifierCodeSequence Blank 
(2050,0020) PresentationLUTShape Keep 
(7FE0,0010) PixelData Blank 

 

 

 

 
 
 


