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Socioeconomic position (SEP) is a multi-dimensional construct reflecting (and influencing)
multiple socio-cultural, physical, and environmental factors. In a sample of 286,301 partici-
pants from UK Biobank, we identify 30 (29 previously unreported) independent-loci asso-
ciated with income. Using a method to meta-analyze data from genetically-correlated traits,
we identify an additional 120 income-associated loci. These loci show clear evidence of
functionality, with transcriptional differences identified across multiple cortical tissues, and
links to GABAergic and serotonergic neurotransmission. By combining our genome wide
association study on income with data from eQTL studies and chromatin interactions, 24
genes are prioritized for follow up, 18 of which were previously associated with intelligence.
We identify intelligence as one of the likely causal, partly-heritable phenotypes that might
bridge the gap between molecular genetic inheritance and phenotypic consequence in terms
of income differences. These results indicate that, in modern era Great Britain, genetic effects
contribute towards some of the observed socioeconomic inequalities.
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average, live longer, and have better mental and physical

health than those from more deprived environments!—3. An
understanding of the causes underlying the association between
socioeconomic position (SEP) and health is likely to be helpful to
minimize social disparities in health and well-being*.

The link between SEP and health is typically thought to be
due to environmental factors, including, but not limited to
access to resources, exposure to harmful or stressful environ-
ments, adverse health behaviours, such as smoking, poor diet
and excessive alcohol consumption, and a lack of physical
exercise’. However, genetic factors (most likely via mediated
pleiotropy, Fig. 1) have been discussed as a partial explanation
for the SEP-health gradient; for example, genetic predisposi-
tions towards certain diseases and/or genetic influences on what
foods people like, could lead to poor diet, which in turn could
lead to both lower SEP and poorer health®. It has recently been
demonstrated that genome-wide association studies (GWASs)
can capture shared genetic associations between measures of
health and SEP’. Potential pleiotropic effects are highlighted in
the observed genetic correlations between SEP variables, such as
years of education completed, household income and social
deprivation, and physical and mental health traits including
longevity”8.

Loci associated with two SEP phenotypes, education and
household income, have been identified via GWASs”-11, but—
consistent with other complex traits, such as height—these loci
collectively account for only a small fraction of the total herit-
ability of the traits in question. For household income, an analysis
of a sample of 96,900 individuals from Great Britain found that
additive genetic effects tagged by common single-nucleotide
polymorphisms (SNPs) accounted for ~11% (SE =0.7%) of dif-
ferences in household income’. Two loci attained genome-wide
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significance in that study, but they collectively accounted for
<0.005% of the total SNP heritability.

Here, we use the UK Biobank data set!? to examine genetic
associations with household income (n=286,301) in a con-
temporary British sample. We identify 30 independent genome-
wide significant loci, 29 of which are unreported in previous
work. Using a method that leverages power from genetically
correlated traits, multi-trait analysis of GWAS (MTAG), an
additional 120 loci are found to be associated with income. We
identify neurogenesis and the components of the synapse as being
associated with income. Furthermore, we link transcription dif-
ferences across multiple cortical tissue types, as well as both
GABAergic and serotonergic neurotransmission, to income dif-
ferences. We also show that the genes linked to differences in
income are predominantly those that have been previously linked
with intelligence®, and that intelligence is one of the likely causal
factors leading to differences in income. We compare the genetic
correlations derived using income with those derived using
another measure of SEP, educational attainment, to show that the
genetic variants associated with income are related to better
mental health than those related to education. Finally, we predict
2.5% of income differences using genetic data alone in an inde-
pendent sample.

Results
Graphical representation of statistical analysis. A flow chart
summarizing all statistical analyses conducted is displayed in Fig. 2.

SNP-based analysis of income. For household income, 3712
SNPs attained genome-wide significance (P < 5 x 10~8), across 30
independent loci (Fig. 3a and Supplementary Data 1), which
contained 68 independent significant SNPs and 31 lead SNPs. A
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Fig. 1 lllustrating a possible pathway from genetic inheritance to income. In this pathway there are no direct effects of genetic variants on income. Rather,
mediated pleiotropy (also termed vertical pleiotropy) is used to understand, in part, the link between genetic variation and more biologically distal
phenotypes such as income and education. Mediated pleiotropy describes instances where genetic variation is linked to a phenotype (in this case income)
through genetic effects that act on another partly heritable trait. These partly heritable traits would also be associated with income, and so the genetic
effects that act on them would also be associated with income. For simplicity, this schematic illustrates only two possible pathways between genetic
variation and income. In reality, there may be, and are likely to be, many links between genetic variation, including bidirectional causality between the
phenotypes in the pathway, and the more biologically distal phenotypes such as income.
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Genome-wide association analysis of household income n = 286,301
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Fig. 2 Flow chart for the statistical analysis carried out using the GWAS data on household income in 286,301 White British participants in UK
Biobank. Blue indicates a type of analysis conducted (i.e. LDSC to derive a heritability estimate) and gold indicates a subtype of this type of analysis (i.e.
global heritability or the heritability of a subset of SNPs). Green indicates the result of an analysis (i.e. the global heritability was 7.39%).

total of 29 of these 30 loci were not identified in the previous UK
Biobank analysis of income’ (Supplementary Data 2). The 30 loci
predominantly contained SNPs found within intronic regions
(47%) as well as non-coding RNA introns (29%). A total of 17%
of the SNPs within the independent loci were found in intergenic
regions, and only 1.2% were found in exons (Fig. 3b). Many of the
loci contained SNPs showing evidence of influencing gene reg-
ulation with 33% having a Regulome DB score of <2 (Fig. 3¢) and
86% having evidence of being in an open-chromatin state (indi-
cated by a minimum chromatin state of <8, in Fig. 3d). Addi-
tionally, these loci were linked to intelligence (11 loci), mental
health (schizophrenia, 1 locus; bipolar disorder, 2 loci; neuroti-
cism, 4 loci) and neurological variables (corticobasal degenera-
tion, 1 locus; subcortical brain volumes, 1 locus; and Parkinson’s
disease, 1 locus) (Supplementary Data 3).

Linkage disequilibrium score (LDSC) regression showed that
the mean y? statistic was 1.45 and the intercept of the LDSC
regression was 1.04. These statistics indicate that around 92% of
the inflation in the GWAS test statistics was due to a polygenic
signal rather than residual stratification or confounding. The
LDSC regression estimate of the heritability of household income
was 7.39% (SE = 0.33%).

Gene prioritization. Three methods of mapping allelic variation
to genes were used to better understand the functional con-
sequences of the 30 independent loci linked to income (positional
mapping, expression quantitative trait loci (eQTL) analysis and
chromatin mapping). Using positional mapping, SNPs from the
GWAS were aligned to 117 genes. eQTL mapping was used to
match cis-eQTL SNPs to 186 genes, and chromatin interaction
mapping linked the SNPs to 277 genes (Fig. 3¢ and Supplementary

Data 4 and Supplementary Fig. 1). These mapping strategies
identified a total of 400 unique genes, of which 133 (Fig. 3e cells
14 +23 426+ 3 + 24 + 11 + 2 + 30) were implicated by at least
two mapping strategies and 47 (Fig. 3e cells 23 4 24) were
implicated by all three. Of the 133 implicated by two mapping
strategies, two showed evidence of a chromatin interactions with
two independent genomic risk loci (Supplementary Data 5). Both
HOXB2 and HOXB?7 showed interactions with loci 24 and loci 25.
HOXB2 showed interactions in mesendoderm (an embryonic
tissue layer) tissue and IMR90 (foetal lung fibroblasts) tissue,
whereas HOXB7 showed associations in the tissues of hESC
(human embryonic stem cell), mesenchymal (multipotent stromal
cells which differentiate into a variety of different cell types) stem
cell, IMR9O0, left ventricle, GM12878, and trophoblast-like cells.

Gene-based association analysis. Using MAGMA!3, 118 genes
were associated with income (P < 2.662 x 10~9) (Supplementary
Data 6 and Fig. 4a). These genes overlapped with 24 of those
implicated using positional, eQTL, and chromatin interaction
modelling (Fig. 3e). Of the genes implicated by each of the three
methods and the gene-based GWAS, BSN was of particular note
due to it being expressed primarily in the neurons of the brain
and its role in the scaffolding protein involved in the organization
of the presynaptic cytoskeleton. Also found in this overlap was
the gene CHSTI0. The protein encoded by CHSTIO0 is a sulfo-
transferase that acts on HNK-1, which is involved in neurode-
velopment and synaptic plasticity.

These 24 genes were then examined to determine if gene-based
statistics had implicated them in intelligence due to the previously
reported strong genetic correlations between income and
intelligence’. We found that 18 were associated (P < 2.75 x 1076)
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Fig. 3 SNP level associations for income and mapping of the SNPs in independent genomic loci. a Manhattan plot for income; negative log 10-transformed
P values for each SNP are plotted against chromosomal location. The red line indicates genome-wide significance and the black line indicates suggestive
associations (1x1073). b Functional annotation carried out on the independent genomic loci identified. The percentage of SNPs found in each of the nine
functional categories is listed. ¢ The percentage of SNPs from the independent genomic loci that fell into each of the Regulome DB scores categories. A lower
score indicates greater evidence for that SNPs involvement in gene regulation. d The percentage of SNPs within the independent genomic loci plotted against the
minimum chromatic state for 127 tissue/cell types. e Venn diagram illustrating the overlap of the genes implicated using positional mapping, eQTL mapping,

chromatin interaction mapping, which was conducted on the independent signi

ficant loci identified in the SNP-based GWAS. Also shown is how these implicated

genes overlap with those identified using the gene-based statistics derived using MAGMA.

with intelligence from the GWAS conducted by Hill et al.8. This
indicates that the genes with the most biological relevance to
income were also linked to intelligence, again suggestive of the role
that intelligence plays in SEP differences.

Gene-set and gene-property analysis. Gene-set analysis did not
reveal evidence that any of the gene sets included here were enriched

4

for differences in household income (Supplementary Data 7).
However, a gene-property analysis showed that genes that were
more associated with household income were also more highly
expressed in the brain (P=1.31 x 10~°) and the testis (P = 1.31 x
107°) than genes that were less associated with income (Supple-
mentary Table 1). This relationship was found across tissues of
the cerebellum (P=5.61 x 10°), the cerebellar hemisphere (P =
5.99 x 1079), the frontal cortex BA9 (P =9.68 x 10~>), the cortex
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Fig. 4 Gene-level associations for income and links to transcription in the brain and cortical cell types. a A Manhattan plot of income using the gene-
based statistics derived using MAGMA; -log;o-transformed P values for each gene are plotted against chromosomal location. The red line indicates
genome-wide significance. b The results of a gene-property analysis linking transcription differences in the brain with income differences. Significant links
between expression differences in cerebellar hemisphere, at Brodmann area 9 (BA9) of the frontal cortex, the nucleus accumbens and at Brodmann area
24 of the anterior cingulate cortex (BA24) are illustrated. Dark blue indicates low -log;o P values (a lower level of association) describing the link between
gene expression and household income and light blue indicates high -log;o P values (a higher level of association) describing the same relationship. The full
results are found in Supplementary Data 8 with the gene-based statistics produced using MAGMA. ¢ shows the results of a cell-type-specific gene-
property analysis where the relationship between the gene-based statistics from MAGMA and the degree to which gene expression was specific to the
annotations was examined. A Bonferroni correction was applied to control for the 24 tests conducted. The red line indicates statistical significance
indicating that expression that is specific to the annotation is associated with the gene-based statistics for income. Embr. DA Neurons, Embryonic
Dopaminergic Neurons; Pyramidal (SS), Pyramidal (Somatosensory); Hypoth. GABAergic Neurons, Hypothalamic GABAergic Neurons; DA Neuroblast,
Dopaminergic Neuroblast.
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(P=1.05x 10~4), the nucleus accumbens basal ganglia (P =2.93 x
10~%) and the anterior cingulate cortex BA24 (P=6.81x10"%)
(Supplementary Data 8 and Fig. 4b).

Cell-type analysis conducted for household income indicated that
of the 24 cell types examined, two were statistically significant after
controlling for 24 tests. The significant cell types include medium
spiny neurons P=7.67 x 107>, and serotonergic neurons P = 0.002
(Supplementary Table 2 and Fig. 4c). Finally, gene-property analysis
found little evidence that genes linked to household income were
transcribed in the brain at any one of 11 developmental stages!4, or
across 29 different specific ages'* (Supplementary Tables 3 and 4).

Partitioned heritability. The partitioned heritability analysis
describes whether or not the SNPs that capture the greatest
proportion of the heritability of income, also cluster in regions of
the genome that are united by a shared biological theme. We find
that, consistent with the notion that intelligence and income are
genetically linked!®, the regions of the genome that have under-
gone purifying selection are those that harbour the greatest
proportion of heritability for income (P=1.62x10~10). Also
enriched was the Conserved (GERP RS > 4) annotation providing
further evidence that conserved regions of the genome are enri-
ched for the heritability of income. None of the other functional
categories were significantly enriched for the heritability of
income (Fig. 5a and Supplementary Data 9).

The partitioned heritability analysis using the six continuous
categories analyzed by quintile showed that common variants that
were in the first three quintiles for age (i.e. the younger three
groupings) were associated with a greater proportion of the
heritability of income (1st quintile P=2.57 x 104, 2nd quintile
P=1333x10"7 and 3rd quintile P = 6.91 x 1071°) as were SNPs
in the upper two quintiles for greater level of background
selection (4th quintile P=9.81 x 1078, 5th quintile P=0.001).
The first three quintiles describing nucleotide diversity and the
same quartiles describing the level of LD (LDD - AFR) were also
significantly enriched for heritability (nucleotide diversity, 1st
quintile P = 2.47 x 10723, 2nd quintile P=3.79 x 10720 and 3rd
quintile P = 0.003; LDD-AFR, 1st quintile P=5.38 x 10712, 2nd
quintile P=7.36 x 10716 and 3rd quintile P = 0.002) (Fig. 5b and
Supplementary Table 5). The enrichment found by examining the
continuous annotations by quintile is consistent with the idea that
negative selective pressure has acted on the partially heritable
traits linked to income.

When examining cell-type-specific enrichment using partitioned
heritability, we show that the greatest level of enrichment for cell-
type-specific groupings comes from the brain and central nervous
system. This is indicated by the fact that the 24 cell types that were
significantly enriched using the gene expression data set were all cell
types that are found within the brain and the rest of the central
nervous system (Fig. 5¢ and Supplementary Data 10). In addition,
using the chromatin-based sets, 32 of the 34 cell groupings that
were significantly enriched were drawn from the brain and the
central nervous system (Fig. 5d and Supplementary Data 11).

This enrichment of heritability in the central nervous system
led us to examine brain regions and cell types. We found that
gene expression in the cortex harboured an enriched proportion
of the heritability of income (P =0.006), but no other regions
were found to be enriched (Fig. 5e and Supplementary Table 6).
Finally, gene expression associated with the category of neuron
was found to be enriched (P=1.30x10~?), but the two glia
annotations of astrocyte and oligodendrocyte were not linked to
income (Fig. 5f and Supplementary Table 7).

Inference of causal links with intelligence. Mendelian rando-
mization (MR) was performed using the genetic instrument

derived using 19 SNPs associated with intelligence from a meta-
analysis of a GWAS of intelligence from the INTERVAL
study!®17 as well as publicly available sources (Supplementary
Methods). Here we inferred a strong, causal link between intel-
ligence and income (B=0.213, SE=0.063, P=7.63x10~4)
(Supplementary Table 8). Should the assumptions of MR be met,
this indicates that greater intelligence causes a higher level of
income. Sensitivity analyses revealed little evidence of directional
pleiotropy, which can bias MR estimates (MR-Egger intercept =
0.010, SE=0.007, P=10.189) (Supplementary Table 8). The
heterogeneity statistics indicate that the estimated size of the
causal effect of intelligence on income varies across the SNPs
(Supplementary Table 8). However, since there was little evidence
of directional pleiotropy, the overall causal estimate based on all
of the genetic variants is unlikely to be biased if the MR-Egger
assumptions hold (i.e. the InSIDE assumption).

Genetic correlations. Genetic correlations were calculated between
household income and a set of 27 data sets covering psychological
traits, mental health, health and well-being, anthropometric traits,
metabolic traits and reproduction.

First, we build on the findings of Hill et al. (2016)” by using a
larger, better-powered data set on income to show that the genetic
variants associated with household income are linked with those that
influence intelligence, r, = 0.69, SE = 0.02, P< 10 x 10~2%, We also
show that there are genetic correlations between income with health
(self-rated health, r,=0.60, SE=0.03, P=>5.72x10"73), mental
health (subjective well-being, r, = 0.32, SE = 0.04, P =4.99 x 10~17)
and longevity (r,=0.47, SE =0.07, P=1.29 x 10~19). Furthermore,
we replicated the finding of Hill et al. (2016)” by showing in our
current study that while a general factor of neuroticism shows a
negative genetic correlation with household income (ry= —0.36,
SE =0.02, P=2.07 x 10~>3), the two special factors of neuroticism
named anxiety/tension and worry/vulnerability each show positive
genetic correlations with income (ry=0.12, SE=0.03, P=7.19 x
107> and 7, =0.15, SE=0.03, P=15.61 x 107, respectively).

These findings show that many of the same genetic variants
linked to higher SEP, as measured by income, are also linked to
better health. It should, however, be noted that income shows a
positive genetic correlation with the mental health variables of
anorexia nervosa (ry=0.09, SE=0.03, P=9.53x 1073) and
bipolar disorder (r;=0.11, SE=0.04, P=1.20 x 10-2) (Fig. 6a
and Supplementary Data 12).

Second, as SEP is a multi-dimensional construct and each
marker of SEP is imperfectly correlated with the others, the
magnitude of the genetic correlations derived using income was
compared with those derived using another measure of SEP,
educational attainment. The goal of these analyses was to indicate
if the genetic associations between income with health differed
from those of education with health. As can be seen in Fig. 6a,
whereas the magnitude and direction of the genetic correlations
derived using income and educational attainment with the 27
health and well-being, anthropometric, mental health and
metabolic traits were highly similar, there were instances of
divergence indicating unique genetic associations with the two
SEP variables. Of note are the variables of autism and
schizophrenia. As found in previous studies®18-23, schizophrenia
showed a small positive genetic correlation with educational
attainment (ry=0.06, SE=0.02, P=1.15x1073), whereas, in
the present study, income showed a negative genetic correlation
with = schizophrenia (ry=—0.14, SE=0.02, P=6.49x1077,
Pgir = 6.57 x 10~11), Autism was positively genetically correlated
with educational attainment (r,=0.27, SE=0.03, P=1.10 x
1071%) as previously described®21.24, whereas there was no
detectable genetic correlation between income and autism
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Fig. 5 Partitioned heritability of income. a Enrichment analysis for income using the 60 functional categories as well as 10 minor allele frequency
groupings and 6 continuous annotations (27 categories describing enrichment within these categories is shown). This analysis differs from that presented
in Figs. 3 and 4 as here all SNPs are used, not only those that reached genome-wide significance (Fig. 3) or SNPs that were located within protein-coding
genes (Fig. 4). The enrichment statistic is the proportion of heritability found in each functional group divided by the proportion of SNPS in each group (Pr
(h2)/Pr(SNPs)). The red line indicates no enrichment found when Pr(h2)/Pr(SNPs) = 1. Error bars represent +1SE. A Bonferroni correction controlling for
57 tests was used to ascertain statistical significance that is indicated by an asterisk. b Enrichment analysis for the six continuous annotations by quintile.
Shading represents quintile with light colours corresponding to low quintiles and dark colours to high quintiles. Groupings that contained a significantly
greater proportion of heritability proportional to the number of SNPs they contain are marked with an asterisk. Multiple testing was performed within each
of the annotations resulting in an a level of @ =0.05/5 = 0.01, with a red line indicating no enrichment. Error bars represent +1SE. ¢, d shows the
enrichment of 205 tissues of cell types assembled using gene expression data and 489 groupings assembled using chromatin data. In each instance, these
were arranged into nine tissue-type groupings with correction for multiple testing been performed using false discovery rate (FDR)83 conducted separately
for the gene expression and the chromatin groupings indicated by a red line. @ Shows if the genes that were expressed in 13 brain regions are enriched for
the heritability of income. A Bonferroni correction was used to control for 13 tests and the a level was set at 0.004 with the brain regions that crossed the
red line being those that were statistically significant. f shows the level of enrichment for three brain cell types. A Bonferroni correction was used to control
for three tests (@ = 0.05/3 = 0.017) and groupings that crossed the red line were those that were statistically significant. The full results for each of these
analyses can be found in Supplementary Data 9, Supplementary Table 5, Supplementary Data 10 and 11 and Supplementary Tables 6 and 7.
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Fig. 6 Pairs of genetic correlations are compared. a compares genetic correlations derived using income with those derived using education, b compares
genetic correlations derived using income with those derived using income conditioned on intelligence and ¢ compares genetic correlations derived using
intelligence with those derived using intelligence conditioned on income. In each instance, 27 pairs of genetic correlations are compared. Genetic correlations that
were significantly different between within each of the three comparisons described above using a two-sided test (2*pnorm(—abs(abs(rg; — rgj-)/sqrt(SEg2 + SEJ-Z))))
are indicated by an asterisk next to the phenotype label. MDD, major depressive disorder; ADHD, attention-deficit hyperactivity disorder; T2D, type 2 diabetes;
CAD, coronary artery disease; SRH, self-rated health; SWB, subjective well-being; BMI, body mass index: FEV1, forced respiratory volume in 1 second. Worry/
vulnerability and anxiety/tension were derived as special factors of neuroticism3492. Full results for each of the genetic correlations derived can be found in

Supplementary Table 12. Error bars represent +1SE.

(rg=0.04, SE=0.05, P=0.37, Pgiz=1.17 x 10~11). There was
evidence of differences between the income and education genetic
correlations and nine other traits (subjective well-being, Py =
1.42 x 1075, tiredness, Pgig=1.60 x 1074, age at first birth, P=
1.24 x 1073, bipolar disorder, Pgg= 1.41 x 1072, social depriva-
tion, Pgir=1.72x1072 and chronotype, P=3.83x 1072, the
worry/vulnerability special factor of neuroticism P=1.17 x 102
and a general factor of neuroticism Pyy=7.26 x 1073) (Fig. 6a
and Supplementary Data 12).

Third, the role of intelligence in mediating the effect of genetic
variation on income was explored by estimating the genetic
correlation of income with each of the traits after conditioning
the income GWAS on a GWAS of intelligence. As can be seen in
Fig. 6b, after controlling for intelligence, the genetic correlations
between income and the 27 health and well-being, anthropo-
metric, mental health and metabolic traits remained largely
similar. Two exceptions to this were age at first birth, where the
genetic correlation with income decreased from r, = 0.58 (SE =
0.03, P=8.81x10"%) to r,=0.45 (SE=0.04, P=1.20x 10~%,
Pgir=0.003), and ADHD, which decreased from r,=—0.48
(SE=10.03, P=220x10"%) to rg=—0.36 (SE=0.04, P=
1.86 x 10717, P4 = 0.03). This means that genetic variation that
is associated with income, but not intelligence, shows much of the
same overlap with the 27 traits used here, as the genetic variation
that is common to both income and intelligence.

In Fig. 6¢c however, 12 genetic correlations with intelligence
changed after controlling for income. There was little evidence that
subjective well-being was genetically correlated with intelligence
(rg=0.03, SE=0.03, P=0.31), as previously found;® however,
subjective well-being was negatively genetically correlated after
adjusting for income (ry=—0.18, SE=0.04, P=3.11x 107°)
(Pgir=9.92 x 107°). The genetic correlation between intelligence
and social deprivation (as measured by Townsend scores) of 7, =
—0.42 (SE=0.04, P=1.38 x 10~23) attenuated to r,=0.04 (SE =
0.05, P=038) (Pgir=129%x10713). The genetic correlation
between intelligence and neuroticism (ry = —0.23, SE=0.02, P =
1.83 x 10723) also attenuated to close to zero after conditioning on
income (ry = —0.02, SE = 0.03, P = 0.57) (Pgir = 7.26 x 10~3). This
means that the genetic variation that is associated with
intelligence, but not income, shows less overlap with the 27 traits
used here, than the genetic variation that is common to both
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intelligence and income. The genetic correlations with intelligence
once conditioning on income were different for the variables of
self-rated health (Pgs=6.76 x 10712), age at first birth (Pgr=
1.33x 1078), fatigue or tiredness (Pgr=6.82x1078), ADHD
(Paige = 5.55x 10~%), height (Pgig=2.59x 10~4), BMI (Pggz=
0.013), obesity (Pgir = 1.60 x 1072), longevity (Pgir= 0.014) and
smoking (Pgis = 0.032) (Fig. 6¢, Supplementary Data 12).

Genetic prediction. Polygenic risk scores (PGRSs) were derived
using the summary statistics from our GWAS of household
income and GS:SFHS. When examining the PGRSs within each of
the five income groups in GS:SFHS, we found that those in
category 5 (those earning more than £70,000) had the highest
PGRSs (Fig. 7a). The predicted income for the PGRSs was lower
in each subsequent level of household income in GS:SFHS.

Those in the lowest quintile of the polygenic score for income
were found on average to have the lowest predicted income
(Fig. 7b), with the mean level of household income rising across
each quintile. Those in the three lowest quintiles for their genetic
propensity for income were found to have an average level of
household income between £10,000 and £30,000, whereas those
in the top two quintiles were found to have a household income
of between £30,000 and £50,000. Polygenic prediction conducted
using the summary data from UK Biobank applied to the GS:
SFHS data showed that between 1.2 and 2.0% of the variance in
household income can be predicted using the polygenic score for
income (Supplementary Table 9 and Fig. 7c), with the PGRSs that
was most predictive using a P value cutoff of 0.1.

Multi-trait analysis of GWASs. MTAG has previously been used
to conduct the first well-powered GWAS on intelligenceS. We
used MTAG here to increase the power of our GWAS on income
by meta-analyzing it with another measure of SEP, educational
attainment!?, as measured by the number of years of education a
participant has completed. MTAG was conducted using the
default settings and applied to increase the power in the GWAS of
household income. Following the application of MTAG, the mean
2 statistic increased from 1.45 to 1.73 and increased the effective
sample size to 505,541 for income.
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to derive PGRSs. All results can be found in Supplementary Table 9.

The maxFDR derived was 0.003, over an order of magnitude
lower than the commonly accepted standard of false discovery
and comparable with that reported previously®2, indicating that
the data set was capturing variance associated with income. We
also found that the genetic correlation between our MTAG-
income phenotype and a previous GWAS on income’ was rg=
0.97 (SE = 0.024), with a genetic correlation of r,=10.94 (SE =
0.004) with educational attainment. This indicates that the
polygenic signal in the MTAG-income analysis is virtually
identical to that found in previous GWAS of income, but also
that it captures more of the variance that is shared between
income and education.

Using this MTAG-income phenotype, we identify 144
independent genomic risk loci (Supplementary Fig. 2A and
Supplementary Data 13). A total of 24 overlapped with the 30
found without using MTAG, meaning that by using MTAG, an
additional 120 independent loci were identified that were
associated with income (Supplementary Data 14). Functional
annotation of these loci, as well as gene-based analyses and
partitioned heritability analysis, showed results that were
consistent with a better-powered GWAS data set on household
income (Supplementary Fig. 2B-E). These results can be found in
Supplementary Note 1.

PGRS analysis using the MTAG phenotype showed that
between 1.7 and 2.5%, the variance of income was predicted in
an independent sample (Supplementary Table 9 and Fig. 7c), with
the PGRS that was most predictive using a P value cutoff of 0.05.

Discussion

Using the UK Biobank data set, we identified 30 independent
genetic loci (29 of which have not been previously repor-
ted) associated with income levels in Great Britain today. This
represents a considerable advance on the two loci previously
identified by Hill et al.”. The present study contributes to our

understanding of the genetic contributions to SEP in at
least seven major ways.

First, the loci associated with income showed clear evidence of
functionality, particularly regarding their links to gene expression,
regulatory regions of the genome and open-chromatin states.
Second, by combining our GWAS data with eQTL data from
BRAINEAC?6, GTEx?” and others, along with chromatin inter-
action data?8:29, we were able to prioritize which genes were likely
to be causal based on the overlap of multiple lines of biological
enquiry. Although income, as a biologically distal phenotype, will
not be directly linked to genetic variation (Fig. 1), genes that may
exert a causal influence are likely to do so through their effect on
more proximal phenotypes3°.

Using our GWAS data set on income, we identified 47 genes
that were mapped to the 30 independent genomic loci using
positional, eQTL and chromatin mapping. In addition, we used
the 118 genome-wide significant genes from our gene-based
analysis of income to further refine this set to a total of 24
implicated genes. These 24 genes therefore should be prioritized
in follow-up studies as they are located close to the associated
loci, have expression correlated with genetic variation of the SNPs
in the independent genomic loci, and have chromatin interactions
taking place between these genes and the SNPs found in the
independent loci (Supplementary Data 4), and consistent with
highly polygenic traits, these genes harbour many SNPs that show
consistent associations with income (Supplementary Data 6). In
addition, 18 of these genes have been associated with intelli-
genced, so efforts to ascertain how such genetic variation is
associated with income differences should examine their asso-
ciations with intelligence more closely.

Third, by broadening our analysis to include the polygenic
signal that fell outside the independent loci, we identified addi-
tional, functional elements of the genome linked to differences
in income. By combining the gene-based statistics from MAGMA
with gene expression data from the GTEx?’ database, we
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identified a positive association between expression in the brain
and several specific regions, and the level of association displayed
by the gene-based statistics on income. This indicates that the
higher the level of association between a gene and income, the
higher that gene’s level of expression specific to the brain will be.

Cell-type-specific analysis revealed that the expression that was
specific to the serotonergic neurons and to medium spiny neu-
rons was associated with income. Medium spiny neurons have
previously been linked to schizophrenia3!, which has a strong
cognitive component and has previously been linked to gluta-
matergic systems, including the N-methyl-p-aspartate receptor
signalling complex32. Medium spiny neurons are a subtype of
GABAergic inhibitory neurons. Future work should examine if,
like other cognitive traits, income is linked to both GABAergic
and glutamatergic systems.

Partitioned heritability analysis identified enrichment across
cell types from the central nervous system and across the cortex
as being significantly enriched for the heritability of income.
These findings indicate that income in Great Britain today is
associated with phenotypes that are associated with differences in
the brain such as intelligence® or neuroticism33-34.

These two approaches, gene-based statistics and LDSC
regression, illustrate how combining the genetic data from GWAS
with gene expression data can be informative as to the possible
biological processes that are associated with income. This is of
particular value for traits, like income, that have no clear biolo-
gical analogue and are likely linked to genetic variation via
mediated pleiotropy. This combination of data provides evidence
that some of the individual differences in income are related to
gene expression differences in the brain (Figs. 4b and 5c-e), as
well as highlighting the role of specific classes of neurons (Figs. 4c
and 5f). As importantly, we show the role for some tissue types
outside of the central nervous system (Fig. 5d), indicating that
genetic factors associated with income differences may also lie
outside the phenotype of intelligence, and outside cortical
tissue types.

Fourth, using MR, we provided evidence implicating intelli-
gence as one of the potentially causal, partly heritable, phenotypes
that might be one bridge in the gap between molecular genetic
inheritance and phenotypic consequence. This result could help
explain why individual differences in income are found to be
partly heritable.

Fifth, our data show that income and education each have
similar genetic correlations with many variables. However, some
genetic correlations differ depending on whether income or
education is used as a measure of SEP, and those that differed
tend to be those related to mental health. In those, the income
genetic correlations that are negative are of a greater magnitude
than those derived using education, and where the income genetic
correlations are positive, they are of smaller effect than the
education-derived genetic correlations (Fig. 6a and Supplemen-
tary Data 12).

Together, this implies that the genetic variants that are asso-
ciated with higher income tend to be more strongly associated
with better psychological health than the genetic variants asso-
ciated with education. This could be a stage-of-life-course-specific
phenomenon, that is, education tends to be completed earlier in
the life course, before some illnesses appear that could affect
earning capability. It should also be considered that these sig-
nificantly different genetic correlations between education and
income indicate that educational attainment serves to provide
access to opportunities in the labour market, and those that have
these opportunities are then better placed to engage in health-
relevant behaviours. This would indicate that whereas income
may be a more distal phenotype from DNA than education, it is
potentially closer to outcomes such as later-life health, as

evidenced by differences between the genetic correlations. Future
work should examine models where DNA — neuronal properties
— intelligence — education — income — health, using multi-
variable MR3>-37 to gauge the direct and indirect effects of
income and education on health outcomes.

However, previous work in Sweden using lotteries as natural
experiments to examine the causal effect of wealth on health
differences®® found that in the 10 years after receiving a prize
(either as a single payment or multiple instalments), winning
participants did not have a longer life or fewer hospital admis-
sions compared with those who did not win the lottery38. This
indicates that whereas high earners may be in better health and
have a greater level of education than low earners, a high income
might not be causal in such differences in affluent countries that
have strong social support systems. Furthermore, children born to
lottery winners were not found to be advantaged in terms of their
level of scholastic performance compared with the children of
those who did not win the lottery38, a finding that argues against
a dynastic effect mediated via wealth. Although any causal effect
of wealth on health is likely to differ across countries and
time periods, should the results of this Swedish study generalize
to the United Kingdom today, they would complement our
results and together would support a model whereby genetic
differences that are linked with health might be linked to partly
heritable intermediary phenotypes, such as intelligence.

In this scenario, the similarities and differences between the
genetic correlations derived using education and income might be
accounted for in part by the differences in the intermediary
phenotypes that give rise to each measure of SEP. Under this
model, the observed differences between genetic correlations with
mental health (Fig. 6a) would be due to intermediary variables
that make a greater contribution to both income and mental
health than they do to education. The similarities between income
and education genetic correlations and health potentially indicate
a similar contribution from intermediary phenotypes to income,
education and health.

We found that when the genetic associations that are shared
between income and intelligence were removed, the genetic cor-
relations with other traits were largely unchanged. The exceptions
were with ADHD and with age of first birth, where the genetic
correlations with income are both attenuated once conditioned
on intelligence. However, 12 of the income-health genetic cor-
relations were attenuated after adjusting the SNP-income asso-
ciations for intelligence. These results indicate that the genetic
variation associated with intelligence and income is also asso-
ciated with many health and mental health traits, because, when
this shared variance is removed, leaving only the variance that is
unique to intelligence, the magnitude of the genetic link between
intelligence and health is reduced. In the case of the genetic link
between intelligence, social deprivation, neuroticism and height,
this genetic association disappears entirely following adjustment
for income. The exception is that subjective well-being shows a
genetic correlation with intelligence only after the variance that is
common to both income and intelligence is removed.

One interpretation of this finding is that the residual variance
left in income after conditioning on intelligence still contains the
genetic contributions to other partly heritable traits (such as
conscientiousness or resistance to disease). These traits also
contribute towards individual differences in income, and so the
association between income and health is, largely, intact following
conditioning on intelligence. This would imply that intelligence is
only one of a number of factors that contribute to variation in
income, but income is a very important factor that mediates the
associations between intelligence and health. Future work
examining the genetic relationship between income and health, as
well as intelligence and health, should focus on this genetic
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overlap between intelligence and income using tools such as
genomic structural equation modelling (SEM) to partition the
total variance of traits like income into the variance that is shared
with intelligence and the variance that is separate from it3°.

Sixth, we were able to predict up to 2% of income differences
using PGRSs. This shows that even for phenotypes that are not
impacted directly by genetic effects, but rather are more biolo-
gically distal as is the case with income, that the link between
genotype and phenotype is sufficient to make predictions, based
on DNA alone.

Seventh, using MTAG, we increased our effective sample size
from 286,301 participants to 505,541. With this increase in
power, we were able to increase the number of loci found to be
associated with income from 30 to 144. Of these 144 associations,
120 were not found to be genome-wide significant before the
application of MTAG. These loci demonstrated the same patterns
of functional enrichment as shown in the 30 loci identified using
income alone. We also identified the same relationship between
expression in the brain and across multiple cortical structures,
using the better-powered MTAG-derived income phenotype
(Supplementary Note 1). Furthermore, following meta-analysis
with MTAG, we were able to increase our prediction accuracy of
income by 25%.

The limitations of this study include that income was measured
at the level of the household and was not an individual-level
measure of income. However, previous GWASs examining
household income variables have shown that income, measured
at a household level, has a genetic correlation of 0.90 (SE = 0.04)
with educational attainment, as measured on an individual level,
indicating that the household-level effects are likely to be gen-
eralizable to individual persons’. Furthermore, GWASs con-
ducted on regional measures of educational attainment show
genetic correlations of >0.9 with education measured using an
individual’s own level of educational attainment40.

A limitation of the MR analysis specifically are potential
dynastic effects, which may violate the assumptions of MR.
Dynastic effects are where genetic variants that the parent has but
the child does not, are associated with parental behaviours, and
these parenting behaviours are a causal factor in the SEP of the
child*!. An example of this would could be that parents with a
greater predisposition towards intelligence are also those that are
more likely to provide opportunities for their children to enter
higher-income occupations. In this instance, the second assump-
tion of MR, that the instrument must only affect income via their
effect on intelligence, would be violated. The association of the
offspring’s SNPs and income would be partially due to the effects
of the parents’ genotype on their parents’ intelligence, which
subsequently affects offspring’s income. Whereas the current data
cannot differentiate between causality and dynastic effects, it
should be noted that for another measure of SEP, educational
attainment, there is evidence of indirect genetic effects that account
for ~30% of the variance of the direct genetic associations*?. Future
work in multigenerational samples should examine the role that
such indirect genetic effects play in individual differences in
income, as well as if their presence (if established) could result in
an inflation of the estimate for a causal effect using MR*3.

Furthermore, genetic variants associated with intelligence are
likely to have pleiotropic effects*®. However, to break the
assumptions of MR, it is not sufficient for the genetic variants to
have pleiotropic effects*>. The genetic variants we use as instru-
ments must have horizontally pleiotropic effects mediated via
mechanisms other than intelligence. If the genetic variants have
vertically pleiotropic effects, for example, SNP > neuron -> intel-
ligence > income - health, then our MR estimates will not be
biased. Equally, if the SNPs affect other phenotypes, but these
phenotypes do not affect outcome, then these effects will not

result in bias in the MR estimates. It is possible that the genetic
variants identified in intelligence GWAS have horizontally
pleiotropic effects; however, it is unclear what mechanisms would
mediate these effects. The genetic correlations between intelli-
gence and personality traits are relatively low?®. The genetic
variants identified in the intelligence GWAS are likely to also
affect a range of cognitive ability-related traits. However again,
these pleiotropic effects via related phenotypes are unlikely to
cause bias if the results are interpreted as a test of general cog-
nitive function. It is possible to investigate potentially horizontal
pleiotropic effects further using multivariable MR#’. If SN'Ps have
been identified, which explain sufficient independent variation in
two or more potential pathways, for example, intelligence and
education, it is possible to identify the direct effects of each
exposure. Future research should use multivariable MR to
investigate this further.

Another limitation is that the present study was restricted to
examining common genetic effects. Should rare or less common
genetic variation be associated with income, then these effects will
be absent from this study. Future work should utilize methods
that can capture these genetic effects?$, as well as examine SEP
variables using whole-exome or whole-genome sequencing. In
addition, the participants of UK Biobank are drawn from the
more educated and healthier individuals in the United Kingdom,
which might introduce collider bias*. Whereas a comparison of
the level of SEP between the individuals in UK Biobank and the
census conducted in the United Kingdom indicates that SEP, as
measured using the Townsend Deprivation Index?, was very
similar’, future work aiming to quantify or control for collider
bias would be of value in addressing this potential issue.

A further limitation is that molecular genetic analyses of
phenotypes, such as intelligence, income or SEP, appear prone to
being misinterpreted®!. Such misunderstandings include
describing associated variants as, genes for income, or the mis-
interpretation that any associated variant, and indeed any non-
zero heritability estimate, is evidence for genetic determinism or
the immutable nature of these phenotypes via environmental
intervention. We include a figure (Fig. 1) that illustrates that
genetic variants do not act directly on income; instead, genetic
variants are associated with partly heritable traits (such as intel-
ligence, conscientiousness, health, etc.), which have their own
complex gene-to-phenotype paths (including neural variables)
and are ultimately associated with income. Therefore, the genetic
variant-income associations discovered here are no more for
income than they are for these other traits. For more discussion of
the implications of these results, aimed at the general reader, we
have provided a Frequently Asked Questions (FAQ) document in
Supplementary Note 2.

Finally, it should be noted that GWASs, like heritability esti-
mates, describe differences that exist within populations. This
means that although we report here that those with a greater
number of intelligence-associated genetic variants tend to be
those who report higher incomes, it does not hold that this is true
across other societies or times. Indeed, the links between markers
of SEP and health are not consistent across all societies®?.
Research into genetic links to education has found indications
that the genetic variants linked to higher educational attainment
are less predictive of success in societies that have less merito-
cratic selection for education and occupation®®. Future work
examining the relative contribution of genetic and environmental
associations with income, as well as the biological systems cau-
sally implicated in any GWAS conducted on a marker of SEP
across many cultures, would be valuable in identifying more and
less meritocratic societies.

In conclusion, this work adds to the growing body of evidence
indicating that markers of SEP, and their links to health, are likely
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to be both genetic and environmental in origin®’. We found that
SEP variation in the Great Britain is partially accounted for by
genetic differences in the population®*. We found little evidence
that these genetic differences were attributable to population
stratification, but rather that they indicated the unequal dis-
tribution of heritable traits, including intelligence, across different
SEP groups. Using multiple forms of biological data, we showed
that these genetic differences are predominantly found in regions
of the genome that have undergone negative selection and are
related to differences in gene expression in the brain, particularly
in medium spiny neurons. We also prioritize 24 genes for further
follow-up and evidence from eQTL analysis, chromatin interac-
tions, with previous associations of intelligence converging to
implicate 18 of these genes. Furthermore, we identify intelligence
as one of the likely causal psychological traits partly driving dif-
ferences in income and SEP in Great Britain today.

Methods

Participants. The primary sample used involved participants from UK Biobank, an
open-access resource established to examine the determinants of disease in middle-
aged and older adults living in the United Kingdom?®. Recruitment to UK Biobank
occurred between 2006 and 2010, targeting community-dwelling individuals from
both urban and rural environments across a broad range of socioeconomic cir-
cumstances. A total of 502,655 participants were assessed at baseline on a range of
cognitive and other psychological measures, physical and mental health, and their
SEP. They donated a number of biological samples, including DNA for genotyping.
In order to reduce the effects of population stratification, only participants from a
single-ancestry group, those of White British ancestry, were included in the ana-
lysis. High-quality genotyping was performed by UK Biobank on 332,050 parti-
cipants. Ethical approval for UK Biobank was received from the Research Ethics
Committee (REC reference 11/NW/0382). This work was conducted under UK
Biobank application 10279.

Phenotype description. A total of 332,050 participants had genotype data and
data on their level of household income. Self-reported household income was
collected using a 5-point scale corresponding to the total household income before
tax, 1 being less than £18,000, 2 being £18,000-£29,999, 3 being £30,000-£51,999, 4
being £52,000-£100,000 and 5 being greater than £100,000. This 5-point scale was
analyzed by treating the categories of income as a continuous variable. Participants
were removed from the analysis if they answered “do not know” (n = 12,721), or
“prefer not to answer” (n = 31,947). This left a total number of 286,301 participants
(138,425 male) aged 39-73 years (mean = 56.5, SD = 8.0 years) with genotype data
who had reported, between 1 and 5, their level of household income.

UK Biobank genotyping. Full details of the UK Biobank genotyping procedure
have been made available®. In brief, two custom genotyping arrays were used to
genotype 49,950 participants (UK BiLEVE Axiom Array) and 438,427 participants
(UK Biobank Axiom Array)®0°7. Genotype data on 805,426 markers were available
for 488,377 of the individuals in UK Biobank. Imputation to the Haplotype
Reference Consortium (HRC) reference panel leads to 39,131,578 autosomal SNPs
being available for 487,442 participants®. Allele frequency checks®® against the
HRC? and 1000G®? site lists were performed, and variants with minor allele
frequencies (MAFs) differing more than +0.2 from the reference sets were
removed.

Additional quality control steps were conducted and described previously’
These included the removal of those with non-British ancestry based on self-report
and a principal components analysis, as well as those with extreme scores based on
heterozygosity and missingness. Individuals with neither XX nor XY chromosomes,
along with those individuals whose reported sex was inconsistent with genetically
inferred sex, were also removed. Finally, individuals with more than ten putative
third-degree relatives (identified by Bycroft et al.>® by estimating the kinship
coefficients for all pairs of samples using the software KING®!) were also removed.
Following these exclusions, a sample of 408,095 individuals remained. Using
GCTA-GREML on 131,790 reportedly related participants®?, related individuals
were removed based on a genetic relationship threshold of 0.025. Following this
quality control, household income data and genetic data were available on 286,301
participants. Following association analysis, SNPs with an MAF < 0.0005, and an
imputation quality score <0.1 were removed. Finally, only biallelic SNPs were
retained, resulting in 18,485,882 autosomal SNPs.

8,34

GWAS in the UK Biobank sample. The level of household income as measured on
the 5-point scale was subjected to a regression using income as the outcome, as has
been conducted previously’, and 40 genetic principal components (to control for
population stratification), genotyping array, batch, age and sex as predictors. The

residuals from this model were then used in a GWAS assuming an additive genetic
model as implemented in BGENIE®®.

Functional annotation and loci discovery. Genomic risk loci were derived using
the summary data from the data set of household income derived in UK Biobank,
using FUnctional Mapping and Annotation of genetic associations (FUMA)%3.
First, independent significant SNPs were defined using a P value cutoff of genome-
wide significance (P <5 x 1078), as well as being independent from each other (r?
<0.6) within a 1-mb window. Second, SNPs that were in LD with any independent
SNP (12 > 0.6) and within a 1-mb window in addition to being in the HRC genomes
reference panel with an MAF >0.001, were included for further annotation. Third,
lead SNPs were identified using the independent significant SNPs as defined above.
Lead SNPs were a subset of the independent significant SNPs that were in LD with
each other at r2 <0.1, with a 1-mb window. Fourth, genomic risk loci were created
by merging lead SNPs if they were closer than 250 kb apart. This means that a
genomic risk locus could contain multiple independent significant SNPs and
multiple lead SNPs. Finally, all SNPs in LD of r2 >0.6 with one of the independent
significant SNPs formed the border, or edge, of the genomic risk loci.

The lead SNPs and those in LD with the lead SNPs were then mapped to genes
based on their functional consequences, as described using ANNOVAR®* and the
Ensemble genes build 85. Intergenic SNPs were annotated as the two closest
flanking genes, which can result in them being assigned to multiple genes.

Gene mapping. Three strategies were used to link the income-associated inde-
pendent genomic loci to genes. First, positional mapping® was used to map SNPs
to genes based on physical distance. SNPs were mapped to genes if they were
within 10kb of a known protein gene found in the human reference assembly
(hg19).

Second, eQTL mapping was carried out by mapping SNPs to genes if allelic
variation at the SNP is associated with expression levels of a gene. For eQTL
mapping, information on 45 tissue types from three databases (GTEx v7, Blood
eQTL browser and BIOS QTL browser) based on cis-QTLs was used and SNPs
were mapped to genes up to 1 Mb away. A false discovery rate (FDR) of 0.05 was
used as a cutoff to define significant eQTL associations.

Finally, chromatin interaction mapping was carried out to map SNPs to genes
when there is a three-dimensional DNA-DNA interaction between the SNP and
gene. No distance boundary was applied as chromatin interactions can be long-
ranging and span multiple genes. Hi-C data of 14 tissue types were used for
chromatin interaction mapping®®. In order to reduce the total number of genes
mapped using chromatin interactions and to increase the likelihood that those
mapped are biologically relevant, an additional filter was added. We only retained
interaction-mapped genes if one region involved with the interaction overlapped
with a predicted enhancer region in any of the 111 tissue/cell types found in the
Roadmap Epigenomics Project®, and the other region was located in a gene
promoter region (i.e. 250 bp upstream and 500 bp downstream of the transcription
start site and also predicted to be a promoter region by the Roadmap Epigenomics
Project®’). An FDR of 1 x 107> was used to define a significant interaction.

Gene-based GWAS. Gene-based analyses have been shown to increase the
power to detect association due to the multiple testing burden being reduced, in
addition to the effects of multiple SNPs being combined®s. Gene-based GWAS
was conducted using MAGMA!3. All SNPs located within protein-coding genes
were used to derive a P value describing the association found with household
income. The NCBI build 37 was used to determine the location and boundaries
of 18,782 autosomal genes, and linkage disequilibrium within and between genes
was gauged using the HRC panel. In order to control for multiple testing, a
Bonferroni correction was applied using each gene as an independent statistical
unit (0.05/18,782 = 2.66 x 10~6). The gene-based statistics derived using
MAGMA were then used to conduct the gene-set analysis, the gene-property
analyses and the cell-type enrichment analysis.

Gene-set analysis. In order to understand the biological systems vulnerable to
perturbation by common genetic variation, a competitive gene-set analysis was
performed. Competitive testing, conducted in MAGMA!3, examines if genes within
the gene set are more strongly associated with the trait of interest than other genes,
and differs from self-contained testing by controlling for type 1 error rate as well as
being able to examine the biological relevance of the gene set under investigation®.

A total of 10,891 gene sets (sourced from Gene Ontology’’, Reactome’! and
MSigDB2) were examined for enrichment of household income. A Bonferroni
correction was applied to control for the multiple tests performed on the 10,891
gene sets available for analysis.

Gene-property analysis. In order to identify the relative importance of particular
tissue types, which may indicate the intermediary biological phenotypes that might
act between genetic variation and SEP outcomes, a gene-property analysis was
conducted using MAGMA. The goal of this analysis was to determine if, in 30
broad tissue types and 53 specific tissues, tissue-specific differential expression
levels were predictive of the association of a gene with household income. Tissue
types were taken from the GTEx v7 RNA-Seq (RNA-sequencing) database’? with

12 | (2019)10:5741 | https://doi.org/10.1038/s41467-019-13585-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

expression values being log, transformed with a pseudocount of 1 after Winsor-
ising at 50 with the average expression value being taken from each tissue. Multiple
testing was accounted for using Bonferroni correction.

An additional gene-property analysis was conducted to determine if
transcription in the brain at 11 developmental stages'4, or across 29 different age
groupings'4, was associated with a gene’s link to household income. This RNA-
Seq GEncode v10 summarized to gene data was accessed using the following
link: http://www.brainspan.org/api/v2/well_known_file_download/267666525.
The detailed descriptions of the normalization processes used can be found in
the technical white paper at http://help.brain-map.org/download/attachments/
3506181/ Transcriptome_Profiling.pdf?version=1&modificationDate=13820365
62736&api=v2, where a total of 524 samples were available for analysis. The
developmental stages were assigned to each of the two groups (11 developmental
stages and 29 age groupings) based on the age of the sample. The groupings of 25
post-conception weeks (pcw) and 35 pcw were excluded from the age groups as
they contained fewer than three samples. Next, the 52,376 annotated genes were
filtered so that the average reads per kilobase (RPKM) are >1. This was
performed in the developmental group and in the age group separately. This
resulted in 19,601 genes for the developmental- stage groupings and 21,001
genes for the age groupings. RPKM was then winsorized at 50 (RPKM >50 was
replaced with 50). Then, the average of log-transformed RPKM with a
pseudocount 1 (log,(RPKM + 1)) per group (for either 11 developmental stages
or 29 age groups) was used as a covariate conditioning on the average across all
the labels. To control for multiple tests, a Bonferroni correction was used to
control for 11 and 29 tests separately.

Cell-type enrichment. As previous studies had indicated the importance of cor-

tical tissues to differences in SEP7-10, a gene-property analysis was also conducted
to examine a broad array of brain-specific cell types. Enrichment of heritability was
tested against 173 types of brain cells (24 broad categories of cell types), which were
calculated following the method described in Skene et al.3!. Briefly, brain cell-type
expression data were drawn from single-cell RNA-Seq data from mouse brains. For
each gene, a specificity value for each cell type was calculated by dividing the mean
Unique Molecular Identifier (UMI) counts for the given cell type by the summed
mean UMI counts across all cell types. MAGMA!3 was used to calculate cell-type
enrichments where specificity values were then divided into 40 equal-sized bins for
each cell type for the MAGMA analysis. A linear model was fitted over the

40 specificity bins (with the least specific bin indexed as 1 and the most specific as
40). This was done by passing the bin values for each gene using the ‘--gene-covar
onesided’ argument.

Univariate LDSC. Univariate LDSC regression was performed on the summary
statistics from the GWAS on household income in order to quantify the degree to
which population stratification may have influenced these results.

For the GWAS on household income, LD score regression was carried out by
regressing the GWA test statistics (x2) from each GWAS onto the LD score (the
sum of squared correlations between the MAF count of a SNP with the MAF count
of every other SNP) of each SNP. This regression allows for the estimation of
heritability from the slope, and a means to detect residual confounders using the
intercept.

LD scores and weights were downloaded from http://www.broadinstitute.org/
~bulik/eur_ldscores/ for use with European populations. SNPs were included if
they had an MAF of >0.01 and an imputation quality score of > 0.9. Following this,
SNPs were retained if they were found in HapMap 3 with MAF > 0.05 in the 1000
Genomes EUR reference sample. Following this, indels and structural variants were
removed along with strand-ambiguous variants. SNPs whose alleles did not match
those in the 1000 Genomes were also removed. The presence of outliers can
increase the standard error in LDSC regression, and so SNPs where 32 >80 were
also removed.

Partitioned heritability. Partitioned heritability was performed using stratified
LDSC regression’47°. Stratified LD scores were calculated from the European-
ancestry samples in the 1000 Genomes project and only included the HapMap 3
SNPs with an MAF of >0.05. The model was constructed using 60 overlapping,
functional categories. In addition, ten MAF bins and six continuous annotations
were included to control for LD-related bias in the partitioned heritability analysis
by modelling regional LD, as well as MAF. Correction for multiple testing was
performed using a Bonferroni test on the 60 functional categories (« = 0.00083).
The continuous annotations were also analyzed by examining the enrichment of
each quintile for the six continuous categories of predicted allele age, background
selection, recombination rate, nucleotide diversity, low levels of linkage dis-
equilibrium in African populations and CpG content. Here, control for multiple
testing was performed using a Bonferroni correction within each of the six
annotations (o = 0.05/5=0.01).

Cell-type analysis was conducted using the method of Finucane et al.”®. Here,
four data sets were used and examined for enrichment of household income. The
first data set (gene expression) contained gene expression data from across 205
tissue or cell types taken from the GTEx’> database and from Franke lab data
set’7>78 from Finucane et al.”®. The second data set (chromatin) contained data on

489 tissue and cell types taken from Roadmap Epigenomics consortium®” and from
EN-TEx, a subgroup of ENCODE’%7°. Data pertaining to expression in 13 regions,
the brain was taken from GTEx’3 and gene expression specific to the neuron, the
astrocytes and the oligodendrocytes were taken from mouse data from the work of
Cahoy et al.80.

Multiple testing for the partitioning of the heritability by cell types was conducted
using a Bonferroni correction across the 13 brain regions (« = 0.05/13 = 0.004) and
across the three types of neurons (¢ =0.05/3 = 0.017). For the gene expression
and chromatin groupings, an FDR8! was applied to the 205 tests performed to
look at enrichment using gene expression (« = 0.006) and to the 489 tests examining
chromatin-based annotations (a = 0.003).

Mendelian randomization. The causal effects of intelligence (termed the exposure
in an MR analysis) on income (termed the outcome in an MR analysis) were
investigated using univariate MR analysis. Here, the total causal effect of intelli-
gence on income was examined by combining summary GWAS test statistics for
intelligence and for income using an inverse-variance-weighted (IVW) regression
model®2. This is equivalent to a weighted regression of the SNP-outcome coeffi-
cients on the SNP-exposure coefficients, with the intercept constrained to zero (i.e.
assuming no unbalanced horizontal pleiotropy).

The results of the IVW regression model were compared with the results
obtained using MR-Egger regression®3. MR analyses, which use multiple SNPs, are
more likely to include invalid SNPs with horizontally pleiotropic effects®4. By not
constraining the intercept to zero (as done using IVW regression) MR-Egger
relaxes the assumption that the effects of genetic variants on the outcome act solely
through the exposure (in this case intelligence). The intercept parameter of the
MR-Egger regression indicates the average directional pleiotropic effects of the
SNPs on the outcome. As such, the direct pleiotropic effect that the SNPs have on
the outcome, independent of the exposure, can be quantified, where a nonzero
intercept provides evidence for bias due to directional pleiotropy and a violation of
the MR IVW estimator assumptions. Of note is that the MR-Egger regression
estimates only remain consistent if the magnitude of the gene-exposure
associations, across all variants, are independent of their horizontally pleiotropic
effects on the outcome (i.e. the InSIDE assumption holds)83. In addition, power is
almost always lower for MR-Egger and it requires variation in the size of effect of
the SNPs on the exposure (i.e. if all SNPs have similar sized effects on the exposure,
then MR-Egger will have very low power).

For use with MR, two independent groups (n = 95,521 for intelligence and n =
271,732 for income) were created, whereby the GWAS on income was rerun using
only those participants whose data were not included in the interim release of the
UK Biobank genotype data. A GWAS data set on intelligence was created by meta-
analyzing publicly available data on intelligence with a GWAS (conducted for this
study) using data from the INTERVAL study!®!7 (Supplementary Methods) where
19 SNPs were identified as being genome-wide significant and independent. These
19 SNPs were used as instrumental variables for intelligence in the MR analysis.

Genetic correlations. Genetic correlations were derived using bivariate LDSC
regression. A total of 27 GWAS data sets on health, anthropometric, psychiatric
and metabolic traits were examined for a genetic correlation with income (Sup-
plementary Table 16). Genetic correlations were also derived between household
income with education and intelligence. There were three objectives to our analysis
examining genetic correlations using household income. First, we sought to
replicate the results of Hill et al.”, who found genetic correlations between
household income and other variables in a smaller data subset from the UK Bio-
bank sample used here. Second, SEP is multi-dimensional in nature: it is composed
of multiple measures, each of which are correlated imperfectly with the others.
Because of this, different measures of SEP may have genetic variance that is both
unique to them, and differentiates them from the others in the way it associates
with health. To examine this, we compare how genetic correlations with household
income and 27 health, anthropometric, psychiatric, cognitive and metabolic traits
differed compared with the genetic correlations derived using a different,
individual-level measure of SEP, that is, educational attainment as measured by the
number of years one has spent in education!!. Third, Hill et al.” also found that
the phenotypes with the strongest genetic correlations with income are those that
are cognitive (verbal numerical reasoning, childhood IQ and years of education) in
nature’. The magnitude of these genetic correlations might indicate the phenotypes
that occur as potential mediators between molecular genetic inheritance and
household income.

In addition, intelligence is known to be genetically correlated with many
physical and mental health traits'®2185 The role that intelligence might play in
accounting for some of the genetic links between household income and 27 health
and well-being, anthropometric, mental health and metabolic traits was examined
using genetic correlations. Here, the GWAS of income was conditioned on a
GWAS on intelligence using multi-trait-based conditional and joint analysis
(mtCOJO). mtCOJO is used to perform conditional GWAS whereby the genetic
effects from one GWAS are controlled for in another GWAS. Importantly, the
mtCOJO method avoids well-known issues of collider bias that can occur by
including heritable covariates®. In the current study, the GWAS on income was
conditioned on a GWAS on intelligence (and the intelligence GWAS was
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conditioned on the income GWAS) before the genetic correlations between income
(and intelligence) and 27 variables mentioned above were reran.

Genetic prediction. The summary statistics from our GWAS of household income
PGRSs were derived using PRSice-287 and the Generation Scotland:Scottish Family
Health Study (GS:SFHS) cohort. The recruitment protocol and sample character-
istics of GS:SFHS are described in full elsewhere®88%. In brief, 23,690 participants
were recruited through their GP from across Scotland. Participants were all aged 18
years and over and were not ascertained based on the presence of any specific
disease. Following the removal of individuals who preferred not to answer, income
was assessed in GS:SFHS by 5-point scale (1 less than £10,000, 2 between £10,000
and £30,000, 3 between £30,000 and £50,000, 4 between £50,000 and £70,000 and 5
more than £70,000). Individuals who preferred not to answer were excluded from
the analysis. Individuals who had taken part in UK Biobank were also removed
from the GS:SFHS data set (n = 174). SNPs were included in the data if they had an
MATF of 20.01 and Hardy-Weinberg P value >0.000001. Finally, one from every
pair of related individuals were removed from the data set by creating a genetic
relationship matrix using GCTA% and removing individuals who are related at
>0.025. This yielded a final sample size of 6680 participants who had genotype data
and income data.

The participant’s level of income was then used as a predictor in a regression
analysis with age, sex and 20 principal components included to control for
population stratification. The standardized residuals from this model were then
used as each participant’s income phenotype. PGRSs were created using the income
phenotype derived using UK Biobank.

In each instance PRSice-2 was used to create five PGRSs corresponding to one
of five P value cutoffs (P<0.01, P<0.05, P<0.1, P<0.5 and P<1) applied to the
association statistics from the summary data. The polygenic risk scores for each
threshold were then standardized and used in a regression model to predict the
income phenotype in GS:SFHS.

Multi-trait analysis of GWAS. MTAG?’ can be used to meta-analyze genetically
correlated traits in order to increase power to detect loci in any one of the traits.
Only summary data are required in order to carry out MTAG and bivariate LD
score regression is carried out as part of an MTAG analysis to account for (possibly
unknown) sample overlap between the GWAS data sets?>. The goal of this analysis
was to increase the power to detect loci associated with income, and so our income
GWAS was meta-analyzed with the GWAS on years of education by Okbay et al.%!
using MTAG. Both the Okbay data set and the income data set from UK Biobank
had a similar level of power (Okbay mean y2 = 1.65, UK Biobank income mean
x> = 1.45) and they showed a genetic correlation of r, =0.77 (SE =0.02), con-
firming that both income and education, as measured using these data sets, have a
highly similar genetic aetiology. Functional annotation and loci discovery, gene
mapping, gene-based GWAS, gene set and gene-property analysis, were also per-
formed using the MTAG-derived data set on income. In addition, following the
removal of UK-based cohorts from the educational attainment summary statistics,
genetic prediction was performed using the MTAG-derived income phenotype and
the GS:SFHS as described above.

Data availability

The household income association results, and the multivariate analysis conducted using
MTAG can be downloaded from The Lothian Birth Cohorts of 1921 and 1936 data-
sharing resource: https://www.lothianbirthcohort.ed.ac.uk/content/gwas-summary-data
and at http://www.phenoscanner.medschl.cam.ac.uk/.
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