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Abstract 

The emergence of additive manufacturing and 3D printing technologies is introducing industrial skills 
deficits and opportunities for new teaching practices in a range of subjects and educational settings.  
In response, research investigating these practices is emerging across a wide range of education 
disciplines, but often without reference to studies in other disciplines. Responding to this problem, 
this article synthesizes these dispersed bodies of research to provide a state‐of‐the‐art literature 
review of where and how 3D printing is being used in the education system. Through investigating 
the application of 3D printing in schools, universities, libraries and special education settings, six use 
categories are identified and described: (1) to teach students about 3D printing; (2) to teach 
educators about 3D printing; (3) as a support technology during teaching; (4) to produce artefacts 
that aid learning; (5) to create assistive technologies; and (6) to support outreach activities. Although 
evidence can be found of 3D printing‐based teaching practices in each of these six categories, 
implementation remains immature, and recommendations are made for future research and 
education policy. 
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1. Introduction 

The adoption of additive manufacturing (AM) and 3D printing (3DP) technologies in industry is 

growing as new applications are found that take advantage of their functionalities. While technical 

advances continue to be made in terms of their productive throughput and quality, there are 

concerns that education and skills development lags these technical developments and that they 

may inhibit the technology’s wider adoption [1–6]. Despite these concerns and a longstanding call 

for evidence of educational activities [7], there is currently an absence of a comprehensive and 

accessible literature review of how 3D printing technologies are being used in the education system.  

Addressing this deficit, this paper synthesizes prior research spanning a wide range of educational 

disciplines through asking two questions:  

1. Where is 3D printing being used in the education system?  
2. How is 3D printing being used in the education system? 

 
To answer these questions, a review of academic literature is conducted that explores the 

application of AM and 3DP technologies in teaching and education. Within the education system, it 

is observed that the majority of AM and 3DP equipment adopted for teaching purposes is the low‐

cost, consumer grade 3DP rather than the more sophisticated AM equipment that is used for the 

fabrication of advanced prototypes and final products. Accordingly, the term 3D printing (3DP) is 

used throughout this article, even though we recognise that in some cases the course or program 

may describe AM technologies. 

The use of digital fabrication technologies such as 3DP to support education is far from new. The 

disciplines of architecture and engineering were early adopters of rapid prototyping technologies [8–

12], and a variety of benefits have been identified arising from the incorporation of these 

technologies into teaching. For example, they can facilitate learning, develop skills, and increase 

student engagement [13]; inspire creativity, improve attitudes towards STEM subjects and careers, 

while also increasing teachers’ interest and engagement [14]. This literature review extends our 

understanding of 3DP in the education system, describing the benefits and challenges of using 3DP 

in teaching within six use cases, and providing clear directions for future research through a list of 44 

research questions. 

 

2. Literature review process  

Literature reviews provide a foundation for future empirical research. They can help reveal the 

current status of knowledge related to a focal topic, describe the quality of current research, situate 

research findings, and provide rationale for future research directions [15]. In drawing together 

research in teaching and education, this literature review follows in the footsteps of others in the 

domain of 3DP and AM, which have focused on providing literature reviews of AM processes, 

materials and applications [16]; hybrid AM processes [17]; AM and nanotechnology [18]; AM 

management [19]; AM trends in construction [20]; and the societal impact of AM [21]. 

A literature review is a process of material collection, descriptive analysis, category selection and 

material evaluation, leading to the identification of patterns, themes and issues within the literature 

[22]. The literature review presented in this paper followed such a process and was conducted in 

two distinct stages. In the first stage, an initial scan of academic literature related to teaching and 

education was conducted. This involved a search of Scopus, EBSCOHost and Google Scholar using 
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combinations of the search terms “3D printing” and “additive manufacturing” in combination with 

“teaching” and “education”. 

During this material collection phase 44 academic articles were identified and acquired. A 

preliminary analysis of these papers revealed that 3DP was being adopted across the K‐12 school 

spectrum, and in universities, libraries, makespaces, and special education settings. Through a 

category selection process, five categories were found in relation to the research question of “How 

is 3D printing being used in the education system?” We define these five categories as use cases. 

They were:  

1. To teach students about 3DP;  

2. To teach educators about 3DP;  

3. To teach design and creativity skills and methodologies; 

4. To produce artefacts that aid learning; 

5. To create assistive technologies. 

Reviewing these 44 articles it was also revealed that the literature on 3DP in teaching and education 

spanned multiple, disconnected clusters of literature. The articles were drawn from journals and 

conferences that spanned the disciplines of architecture [9,12,23]; computing [24,25]; ergonomics 

and human factors [26–30]; engineering [11–17]; healthcare [18]; library studies [19–22]; medicine 

[23–25]; and technology [26–28]. In a final cluster of education, articles were found in journals and 

conferences that linked education to medicine [31]; STEM [32]; science [14,33–37]; and technology 

[13,38–40]. 

In the second stage of the literature review a systematic process was taken to broaden and deepen 

the collection of material from the dispersed literature sources. The bibliographies of the original 

articles were mined for relevant citations and the same keyword searches were conducted within 

the journals and conference proceedings of all the articles collected. This process of bibliographic 

search followed by publication and conference keyword search was conducted iteratively until no 

further articles could be identified. In total, this search led to the identification and acquisition of 

280 articles. These articles comprise the review presented in Sections 3 and 4, with the analysis of 

these articles leading to a revision of the original five use cases to the six described in this paper. 

As a literature review it is important to define clear boundaries to what is included and what is not. 

The focus of the literature review is the application of 3DP in teaching in the education system. The 

scope of the education system is considered to include primary, secondary and tertiary education. 

This includes K‐12 teaching that spans elementary, middle and high schools, and further and higher 

education institutions. Work published before September 2017 is included within the review. 

Excluded from this review are academic articles describing the application of 3DP for research 

purposes in the education system; the use of 3DP for teaching in non‐educational institutions, such 

as in‐company training and skills development; self‐led education; and the creation of 3D models 

where no physical object is 3D printed [41–43]. Furthermore, only academic literature is reviewed. 

Non‐academic sources excluded from this literature review include descriptions of Master’s 

programs and graduate certificates focusing on 3DP and AM such as those offered at the National 

University of Singapore [44], PennState [45], University of Maryland [46], University of Nottingham 

[47], and University of Texas at El Paso [48]; online resources describing educational 3DP projects 

such as MakeSchools [49] and Create Education [50]; and educational resources provided online by 

3DP companies such as Formlabs [51], Stratysys [52], Thingiverse [53], and Ultimaker [54]. 
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3. Where is 3D printing being used in the education system? 

This review begins by first describing where 3DP is being used within the education system. The 

sections that follow summarize the four main pedagogical environments in which 3DP is being used: 

(1) schools; (2) universities; (3) libraries; and (4) special education settings. Each of these sections 

includes short overviews of how 3DP is being used within these settings. 

 

3.1 3D printing in schools 

The papers related to the use of 3DP in schools and children’s education cover the full spectrum 

from primary/elementary [33,55–58], through middle school [59–62], to secondary/high school [63–

70], and also includes combinations of the three [24,71–82]. However, given that there are relatively 

few papers specifically considering primary and middle school, these are clustered together with 

secondary and high school for the purpose of this discussion. 

In their commentary on the engineering design curriculum in schools, Bull et al. describe how 

engineering design projects involving physical prototyping such as 3DP can provide a foundation for 

improving the understanding of science and mathematics [72]. The majority of papers in this body of 

literature support this view, being examples of how 3DP is being used to support STEM education in 

schools. For example, in the sciences, 3DP was used to introduce atomic structure in Grade 10 

chemistry classes, with a positive correlation found between its integration into teaching and 

student learning [74]. Meanwhile in physics, Japanese high schools students learned about audio 

frequency through creating 3D printed police whistles [66]. In technology and engineering, students 

were introduced to the construction of 3D printers [75], computational thinking through a 

combination of Minecraft and 3DP [69], and design thinking through a 3D printed city planning 

game, Kidville [77]. Other studies focusing on design described how students developed skills in 

creativity [64,65], technical drawing [70], and product design and development [57,63]. Specific 

instances of the latter can be found in real‐world cases of creating prosthetic hands, in elementary 

schools [33] and high schools [76]. A study of a transmedia book project in a project‐based learning 

environment found that using 3DP increased mathematical achievement in students [59], while 

understanding of geometry was improved through the fabrication of three dimensional shapes 

[58,62]. STEM integration has been sought through using 3DP in K‐12 teaching in paleontology, 

where students learned about the giant extinct shark carcharocles megalodon through 3D printed 

reproductions of its teeth [80]. Furthermore, 3DP is being used as part of a variety of STEM outreach 

activities in schools. These are discussed in Section 4.6. 

Beyond STEM education, studies have demonstrated how oral presentation benefits can arise from 

using 3DP [26], and how 3D printed visualizations can aid spatial education, with the rotation ability 

of ten year old boys particularly promoted [55]. This latter study, along with many of those 

described above, highlight the advantages of 3D printed artefacts relative to virtual, screen‐based 

artefacts; they allow self‐directed construction and capacity for independent and introverted work, 

as well as improving physical tactility and the observability of the physical artefacts created [24].  

The inclusion of 3DP in school curricula is also positive from another pedagogical perspective as it 

can provide opportunities for different learning styles to be practiced, including experiential learning 

and failure [71]. In a study of two Greek high schools, it was found that the use of 3DP enabled 

different learning styles to be practiced, with this particularly useful in engaging certain students: 

“We have seen that students, who were otherwise indifferent (according to them and their teachers) 

about their project class, when given proper stimulation and the necessary tools can choose what to 
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learn themselves through exploration […] Then proudly share their results with others while they 

acquire knowledge instead of dry information out of textbooks” [65].  

However, in her conclusions arising from her 25 month autoethnographic study of a Grade 9 

woodworking course at Lakeside High School in Melbourne, Australia, Nemorin warns that 3DP 

“ought to be approached as a method of teaching and learning with the same pitfalls and obstacles 

that previous new digital technologies have brought into the school setting” [67]. These pitfalls and 

obstacles include the “frustration, physical fatigue, mental exhaustion, tedium and occasional panic” 

that can occur during the protracted learning stages of a 3DP‐focused design project [68]. The 

project observed was only sustained “through the vast amount of personal enthusiasm, organisation 

and support from one motivated and interested teacher, alongside sporadic episodes of student 

attention, effort and energy” [68]. Thus rather than reshaping the classroom into a more democratic 

peer learning environment, established teacher‐student expertise dynamics were reinforced. This 

highlights the significant role that teachers have in shaping the experience of 3DP’s first use, with 

the need for teachers to receive continuing professional development so that their expertise 

remains up to date [65,73]. In addition, other challenges that have been identified include issues of 

student technological literacy and attitudes towards new technologies [65,67]; costs, even when 

open source [65], and integration into the curriculum and instructional standards [73]. 

 

3.2 3D printing in universities 

In tertiary education, the adoption of 3DP is greatest in universities, and there are comparatively few 

reports of the technology’s adoption in other continuing education and further education 

institutions. Within the articles reporting on the use of 3DP in universities, literature can be found 

that describes the acquisition of subject knowledge through the creation of 3DP systems, scientific 

models and test models; the use of 3DP during project‐based learning; the integration of 3DP skills 

development into the curriculum through its incorporation in existing courses and the introduction 

of new courses; and external engagement beyond the university. This section provides brief 

summaries of each in turn. 

There are several accounts of the construction of open source RepRap 3D printers being 

incorporated into engineering curricula. Their construction acts as the focal point of a mechatronics 

design project at Philadelphia University, Jordan [83]; is part of senior capstone projects supported 

by the Princeton / Central Jersey Section (PCJS) of the Institute of Electrical and Electronics Engineers 

(IEEE) [84]; and is used to introduce 3DP to industrial engineering and business masters students at 

the University of Applied Sciences Offenburg [85]. In this last case, students first built the 3D printer 

before downloading and fabricating 3D models [85]. 

A significant use of 3DP at universities is in the sciences, where 3D models are created to support 

student learning in the lab or classroom [35,86–88]. This application of 3DP to produce models as 

visual learning aids is discussed in more detail in Section 4.4. In a similar vein, 3DP can be used to 

create test models for experiments. This also includes test specimens for learning about the 

mechanical properties of materials; 3D printed polymer test models have been demonstrated to be 

appropriate for this purpose in engineering curricula [89], and mechanical tests have been 

incorporated into an undergraduate capstone research course in the Mechanical Engineering 

Science Department at the University of Johannesburg [90]. Elsewhere, MSc graduate students in 

the Faculty of Mechanical Engineering at the University of Belgrade used 3D printed components 

during fan and turbocompressor experiments [91], and fourth year aerospace engineering 



6 
 

undergraduates at Technion – Israel Institute of Technology created different configurations of wing 

spoilers, and measured their effects using 3D printed models in wind tunnels [92].  

3DP has also become a popular tool in robotics teaching, with it being a low cost means of 

supporting the development of educational robots [93–99] and haptic devices [100]. Using a 3D 

printed chassis for low‐cost open source robotic platforms enables students to modify the robot, 

and to be distribute these modifications to other students [98]. 

3DP can be used to enable project‐based learning [101–106] and the use of 3DP in projects is the 

subject of numerous papers (see Section 4.1.2 and examples in Section 4.3). Examples include the 

University of Modena and Reggio Emilia, where second year mechanical engineering undergraduates 

used 3DP as part of a project to design and create an eye‐tracking system [107], and the State 

University of New York, where student engagement was improved through the integration of 3DP 

into a semester long “Introduction to MEMS” design module [108]. During the MSc in Mechanical 

Engineering at Politecnico di Torino it was found that incorporating 3DP in a project‐learning 

environment improved student attitudes towards mechanical engineering. In particular, it was found 

that the use of 3DP provided positive student feedback in relation to student motivation, 

understanding, interest and education [109].  

Learning styles were explored during a two year study of 3DP adoption in the second year of an 

industrial design degree [110]. It was found that using 3D printed artefacts to demonstrate 

theoretical concepts “can favor different groups of students, according to their preferred learning 

styles active, reflexive, theoretical and pragmatic. The higher the applied methodological diversity in 

higher education, the more efficient is learning for most students” [110]. Furthermore, students are 

able to assimilate, apply and describe new knowledge more effectively, with the conclusion that 

“Students become more responsible, motivated, involved and reach higher levels of learning, in that 

it caters to the diversity of their learning styles” [110]. 

Similarly, at Griffith University’s Product Design Studio, the integrated adoption of 3DP into the first 

year teaching syllabus has had three main benefits: (1) it has promoted student‐centred learning and 

led to observable improvements in student work; (2) it has changed the relationship between 

students and lecturers as eLearning has taken place; and (3) it links students’ learning to their ethical 

responsibilities in the world, such as environmental sustainability. The second point is an important 

one as student‐centred learning involves the balance of power within the learning experience 

shifting from the lecturer to the student. Traditionally, the lecturer would have significant practical 

expertise to impart to the students; however this is often not the case with a novel technology such 

as 3DP. In addition, the novelty of the technology means that internet resources are more accurate 

and up‐to‐date than the limited number of 3DP publications. Given the pace of 3DP developments, 

Loy comments that “the student is as likely – more so as a cohort – to be bringing new information 

on the spread of the technology to the classroom as the lecturer” [34]. This means that the lecturer 

will be learning alongside the class, acting less as a leader and more as a mentor to the class. 

Experiences at Griffith University indicated that a ‘flipped classroom’ approach as part of a blended 

learning strategy was positive for both lecturers and students [34]. 

The need to explicitly learn 3DP skills has led several universities to either incorporate training into 

existing course offerings or to create new courses to introduce the topic. Examples of the former 

include the University of North Georgia’s Department of Computer Science and Information 

Systems, which has integrated 3DP into a computer graphics course so that students can develop 

modelling, scanning and rapid prototyping skills [111]; in undergraduate engineering courses at 

Tsinghua University’s Department of Mechanical Engineering [112]; in graphic design courses at 
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Universidade Estadual de Londrina, Brazil, where the incorporation of 3DP into student courses led 

to interest from other parts of the university into the use of 3DP [113]; and at City University of HK, 

where 3DP has been included in a classic instructional design theory course for first year engineering 

students [114]. In this last case, student feedback about the course experience was identified as 

being broadly positive, but dependent on the student’s prior experience with 3DP and their area of 

expertise/major [114].  

There are multiple opportunities for students to acquire 3DP skills at the Missouri University of 

Science and Technology, with 3DP skills development opportunities available in courses focusing on 

design and basic CAD modelling; product modelling; rapid prototyping; integrated product 

development; as well as in advanced level courses [115]. Meanwhile at Colorado State University‐

Pueblo, 3DP is being used in industrial engineering and mechatronics programmes, and integrated 

into 12 courses in total [116]. Uses of 3DP include direct learning of 3DP skills during rapid 

prototyping and functional part manufacturing, along with 3D visualizations and specimens for 

testing the mechanical properties of materials. Commenting on what they believe to be the 

significant benefits of integrating 3DP into the undergraduate engineering curriculum, the Program 

Director lists: “Creation of functional parts in the first year of study by various engineering majors, 

quick verification of designs early in the curriculum, fast turn-around times from “imagination to 

implementation,” the decreased need for students with the well-developed machining skills, 

connections with other sciences and mathematics through 3D built objects, and increased lab safety” 

[116]. 

There are also several examples of programmes explicitly created to introduce and educate students 

about 3DP. These are discussed further in Section 4.1 and include MIT’s graduate and advanced 

undergraduate course, which was created to teach the fundamentals of 3DP, and which is open to 

multiple faculties [117]; the University of Texas at Austin and Virginia Tech’s introduction of 

undergraduate and graduate 3DP courses, which cover the science of 3DP, the principles of “design 

for additive manufacturing”, and apply this learning through problem‐based and project‐based 

pedagogies [118]; and the Metropolitan State University of Denver, where the Mechanical 

Engineering Technology (MET) Program has introduced a semester‐long direct digital manufacturing 

elective for upper level undergraduates from industrial design, mechanical and manufacturing 

concentrations [119]. Alongside student learning, there are instances of 3DP being introduced in 

universities to support educator learning [120,121]. These applications are discussed in more detail 

in Section 4.2. 

 

3.3 3D printing in libraries 

The papers which consider the library as a place in which 3DP occurs cover libraries in schools [122], 

universities [123–136] and community colleges [137], along with public libraries [138,139], medical 

libraries [140], and libraries in general [141–147]. The topic of 3DP adoption in libraries sits within a 

larger debate about the nature of libraries in a digital era. Those critical of 3DP being used in libraries 

argue that it is an “exotic cutting-edge technology-based service and a mere extravagance or an 

unnecessary expense for what might only be a select number of patrons” [144]. According to the 

sample of papers reviewed here, this is the minority view, with the majority of articles positive in 

their attitudes towards the incorporation of 3DP into library services. A more representative 

statement is that “In most organizations, the library is a logical choice to house technology that has 

many potential users. By providing space and expertise for 3D printing, libraries can offer a valuable 

service to their organizations while raising awareness of the other services they offer as well” [140]. 
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As a physical space, libraries provide opportunities for collaboration and knowledge exchange 

between library users, librarians and educators [128,148], and reduce barriers to participation [141]. 

This accessibility has seen the rise of makerspaces within libraries as creative spaces in which 3D 

printers, among other digital fabrication technologies, are available to library patrons 

[123,127,128,130,133,145,147,148], with such spaces encouraging creativity and experimentation 

[131,138,142,147]. While the majority of such makerspaces are being created within libraries, there 

are also numerous instances of makerspaces being established independently of libraries [149,150].  

In universities, the neutral, non‐departmental space allows interactions between students from 

different faculties [124–127,133] and extra‐curricular use [142]. As Van Epps et al. explain: “The 

library is often seen as a non-disciplinary or cross-disciplinary space on campus, where access to the 

materials and services is available to all users. By bringing 3D printing into our libraries, access to 3D 

printers moves beyond gated access for a few to general access for all” [132]. While access may be 

improved, the awareness of this access to non‐traditional library services such as 3DP can limit their 

uptake in university libraries [129,131,151]. Awareness can be raised by running introductory 3DP 

workshops [133,151] and pop‐up maker technology workshops [130], and identifying local advocates 

such as design class instructors, 3D visual researchers, and design‐oriented student groups [125].  

In their 3D printing and scanning pilot projects at Dalhousie University Library, Groenendyk and 

Gallant explain how the library sought “to take the knowledge-sharing, innovation-driven ideals of 

hackerspaces and bring these into an academic library setting” [126]. The library sought to make 3DP 

accessible to students beyond those in engineering and architecture that already had access. The 3D 

printing and scanning technologies were purchased on the basis of affordability and usability. In 

addition, the librarians hoped that the 3D scanner would enable various scientific and cultural 

artefacts to be digitized and archived online. “In creating this collection the Libraries will help to 

provide online exposure for both student and faculty work, as well as ensure that the 3D information 

collected remained preserved and freely available” [126]. 

Librarians themselves play a critical role in the integration of 3DP into the school or university. As 

Mark Ray, Chief Digital Officer of Vancouver Public Schools commented: “School libraries can serve 

as test beds. As others follow our lead, teacher librarians can play a valuable role, supporting 

educators for whom this brave new world represents change and uncertainty” [122]. As a central 

resource, library staff not only help support those coming into the library but educators looking to 

incorporate 3DP into their teaching practice. One such example comes from a collaboration at 

LaGuardia Community College between a librarian and an educator to produce a biological model for 

in‐class teaching [137]. While the time available and expertise of library staff to provide such 

services is a limiting factor [124,138,141,145], providing librarians with training around the use of 

3DP technologies can help them overcome their lack of expertise and their discomfort when 

interacting with library users [126,128,146]. Such basic training is necessary to in turn be able to 

provide student training [131,145], as well as ensure that library staff can maintain 3DP equipment 

and troubleshoot equipment malfunctions [124,126,128,136]. As technologies continue to evolve, so 

too will librarianship skills need to evolve in parallel [138]. 

Other issues of noted concern were those associated with the operational of 3DP equipment, health 

and safety, and intellectual property. Operational issues highlighted include the cost of 3DP 

consumables, particularly for those with highly limited budgets [122], along with access hours, 

staffing and supervision of 3DP use [145]. Concerns regarding the health and safety consequences of 

using 3DP in libraries have led to PLA filaments being recommended for use rather than ABS; 

fabrication using PLA produces approximately ten times fewer ultrafine particles than ABS [124,152]. 

A final issue of note that has been considered in this literature on 3DP in libraries concerns 
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intellectual property (IP), and the potential for library users to infringe upon existing copyrights 

when designing, modifying and producing 3DP artefacts. Academic librarians have pointed towards 

the need for acceptable use policies to be developed that cover IP and 3DP in libraries, alongside 

raising patrons’ awareness of the IP issues associated with the use of 3DP [138,143,153].  

 

3.4 3D printing in special education settings 

3DP is being used in special education settings for those with visual, motor and cognitive 

impairments. Within these settings there are several examples of 3DP being used by students with 

visual [14,40,154–156], motor [28,33,76] and cognitive [56,157] impairments, along with 

combinations of the three [27,158,159]. The use of 3DP in such settings is enabling the creation of 

custom adaptive devices and educational aids, while also enabling greater student engagement with 

STEM subjects [27,56,159]. The use of 3DP to create assistive devices is discussed in greater detail in 

Section 4.5. 

Using 3DP in special education settings is not without its challenges, as described in Buehler et al.’s 

two year investigation into its applications [27,28,157,159]. In one of their studies, cognitively‐

impaired students were given tutorials on using Tinkercad software before being encouraged to 

create their own 3D designs [27]. However, the combination of task difficulty and limited time meant 

that most students did not create their own designs, instead printing or modifying designs from 

open‐source sites. Student interest in completing custom designs appeared to decrease due to the 

challenge of using the software, with difficulties observed in changing views and manipulating 

objects. Furthermore, the ability to design in three dimensions was particularly challenging for 

students with high support needs. Other adoption challenges arose from the occupational therapists 

who worked with the students. While enthusiastic about the potential of 3DP, they were concerned 

about the effort required on their part to learn how to use the software; “they currently see the task 

of 3D design and printing to be someone else’s work, and see themselves as consumers of that work” 

[27]. 

 

4. How is 3D printing being used in the education system? 

After considering where 3DP is being used in the education system, this section summarizes how 

3DP is being used within it. The sections that follow describe the six main ways in which 3DP is being 

used: (1) to teach students about 3DP; (2) to teach educators about 3DP; (3) as a support technology 

during teaching; (4) to produce artefacts that aid learning; (5) to create assistive technologies; and 

(6) to support outreach activities. 

 

4.1 Teaching students about 3D printing 

In the first instance, 3DP is being used to teach students about 3DP and develop 3DP skills. An 

important distinction between this literature and others concerns the active and passive integration 

of 3DP into curricula. Active integration involves the development of courses and projects which 

have an explicit focus on the teaching of 3DP skills. In contrast, passive integration involves the use 

of 3DP during courses and projects to support the teaching of other subjects [160]. The former is the 

focus of this section, while the latter is the subject of Section 4.3, in which the development of 3DP 

skills may occur as a by‐product or side benefit of teaching other subjects.  
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4.1.1 Teaching university students about 3D printing 

The majority of these papers provide accounts and summaries of experiences introducing 3DP into 

curricula in universities. These include the creation of courses, projects and workshops, with almost 

all falling within the domains of design and engineering. The curricula into which this 3DP teaching 

has been actively integrated is summarized in Table 1. In these accounts, the stated learning 

objectives of the introduced 3DP teaching content ranges from the very brief and general 

[85,109,111,113–115,161,162] to the more detailed and specific [117–119,163].  

Subject Source(s) 

Computer graphics [111] 

Design and manufacturing with polymers [162] 

Engineering design [118] 

General engineering [114,163] 

Graphic design [113] 

Industrial engineering and business [85] 

Informatics [164] 

Mechanical design and manufacturing processes [117] 

Product and industrial design [34,165] 

Product development [166] 

Product realization [115] 

Table 1. Summary of university courses into which 3DP teaching has been actively integrated 

 

In broad terms, 3DP courses are being introduced to encourage creative experimentation 

[34,113,114]; enable product innovation and entrepreneurship [113,115]; support the integration of 

technical knowledge from other courses [115]; and facilitate multi‐ and interdisciplinary approaches 

[113]. More specifically, the stated objectives of these courses is to develop a range of technical and 

non‐technical 3DP‐related skills. These learning objectives are summarized in Table 2. 

Learning objective Source(s) 

Appreciate the advantages and disadvantages of 3DP technologies [119] 

Appreciate the differences between 3DP and conventional manufacturing 
processes 

[117,167] 

Evaluate the performance and functional constraints of 3DP for specific 
applications 

[117–119,162,163] 

Learn and apply 3DP post‐processing techniques [163] 

Learn and apply design for 3DP principles [85,109,117,119,162,163,166] 

Learn and use 3D scanners [117,119,163] 

Recognise business opportunities for 3DP [163] 

Recognise current and future 3DP applications [117,163,167] 

Recognise important 3DP research challenges [118] 

Understand and recognise the causes of errors and irregularities in 3DP parts [118] 

Understand the complete 3DP sequence of designing, fabricating and 
measuring parts 

[115,117] 

Understand the fundamentals of 3DP and its basic operating principles [85,117,118,161,163,167] 

Table 2. Learning objectives of 3DP-focused courses 



11 
 

Among these courses there are several detailed accounts of how new 3DP courses are being 

introduced and what they cover [114,117,119,163]. At MIT a 14‐week additive manufacturing course 

was introduced in which 30 students participated. During the first five weeks of the course, students 

gained an overview of the 3DP industry and technology landscape. They were introduced to the 

fundamental 3DP technologies of FDM, SLA and SLS/SLM, and a variety of scanning techniques. Lab 

sessions on FDM and SLA were held in parallel with the lectures, with each involving pre‐processing, 

printing, post‐processing and inspection stages. Following these introductory classes, two group 

exercises gave students opportunities to apply their new knowledge. These exercises involved the 

design of a 3DP‐based bridge and a more open‐ended innovation project. Alongside these open lab 

sessions, further special topic lectures were organized with industry and academic experts. These 

topics included bioprinting; computational design; design for additive manufacturing; digital 

assembly; economics of additive manufacturing; entrepreneurship for additive manufacturing; 

machine controls; micro‐ and nanoscale additive manufacturing; and printed electronics. Student 

feedback was reported to be positive for both the lecture materials and the two projects, albeit with 

some concerns raised about the time demands and open‐ended scope of the innovation projects. In 

reflecting on this feedback, the authors recognized the importance of setting clear project objectives 

during the early part of the course in order to establish appropriate workload expectations. They 

also identified that introducing SLS/SLM equipment to the teaching laboratory would improve future 

courses. Furthermore, it was recognized that courses such as this provide collaborative research 

opportunities with industry, and the potential for tailoring separate curricula for professional 

development [117]. 

In another detailed course description, a seven‐step pedagogical model was developed for 

introducing 3DP teaching into an engineering‐oriented general education course at the City 

University of Hong Kong [114]. This model draws on Gagne’s conditions of learning instructional 

framework [168]. The model was used as the basis for teaching the course in 2013/14 and 2014/15, 

with 89 and 28 students participating in these courses respectively. Approximately half of these 

students were from the College of Science and Engineering, with other significant participation from 

the College of Business and the College of Liberal Arts & Social Science. Analysis of student feedback 

indicated positive impressions on the understanding of 3DP technology and ease of use of CAD 

software with tutor guidance, and that using 3DP in the learning task improved their motivation and 

the development of innovative ideas. However, there was greater variance in student perceptions of 

the workload and difficulty of the learning task; this was thought to derive from the weaker technical 

backgrounds of non‐science and engineering students [114]. 

At the Metropolitan State University of Denver, the Mechanical Engineering Technology (MET) 

Program has introduced a semester‐long direct digital manufacturing elective for upper level 

undergraduates from industrial design, mechanical and manufacturing concentrations. Over 16 

classes, students are introduced to 3D scanning, solid modelling and CAD; a range of AM 

technologies and equipment; post‐processing; safety; sustainability issues; and current and future 

applications. During hands‐on lab sessions, students are introduced to digital file conversion, 

formatting and mesh manipulation; print variables; design for AM using FDM, SLA, powder bed 

fusion, and direct metal printing; and 3D scanning and reverse engineering. Analysis of pre‐ and 

post‐surveys showed significant increases in student’s learning outcomes, with improvements to 

their awareness of the types of AM technologies available, the geometries that could be fabricated 

and the factors in AM, alongside their ability to design a product for AM, and their overall 

confidence in using these technologies. The challenges of running this course include the logistics of 

fabricating components outside class time, the need for continuous lab supervision, and the current 

lack of an appropriate textbook to support teaching [119]. 
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At Mercer University, a senior level elective course on AM is offered to students from all engineering 

disciplines. This 16 week long course begins with reviews of product design and CAD, the basic 

principles of AM, and the generalized AM process chain, before exposing students to a range of 

different AM technologies. During a range of open‐ended labs, students conduct a comparative 

study of additive and subtractive manufacturing; practice reverse engineering with different 3D 

scanners; cast 3D objects; and design, make, market and sell a product in a rapid prototyping 

challenge. The course concludes with classes on design for AM; rapid tooling; applications of AM; 

business opportunities; and future directions. A final course assessment by faculty and student peers 

found that students taking this course averaged greater than four points on a five point Likert scale 

against the Accreditation Board for Engineering and Technology (ABET)’s student learning outcomes. 

These outcomes covered the ability to design and conduct experiments; analyze experimental data; 

design systems, components or processes under realistic constraints; function in multidisciplinary 

teams; communicate effectively; and use techniques, skills and tools for engineering practice. For 

future courses it was recommended that students receive additional training in CAD and 3D scanning 

[163]. 

The creation of 3D models is an important precursor to 3DP. In a study of their use in university 

teaching, three approaches to the acquisition of 3D designs were tested [169]. In the first approach, 

students downloaded existing designs from a database. In this way students were made aware of 

the technical capabilities of 3DP, the materials used, the design constraints, and the variety of 

potential application areas for 3DP. The second approach involved independent design. It was 

commented that “students were turned from passive consumers (database users) into active and 

creative users grappling with the possibilities and limits of the 3D printing process” [85]. 

Consequently, students gained significant experience of 3D modelling for 3DP, in terms of the 

geometric design, stability and colour scheme. Finally, the third approach involved 3D scanning, with 

students learning about the possibilities and limitations of 3D scanning, along with how to prepare 

this captured data for 3D printing. Testing out each of these three approaches meant that “students 

are then able to learn how technical hardware specifications impact on part design and how these 

limits might be overcome” [85]. 

The diverse technical backgrounds of students entering 3DP courses combined with the diverse 

technical nature of 3DP can create challenges for educators. Balancing breadth and depth is an issue 

due to the many design, engineering, material science and computing topics that make up 3DP. This 

diversity of topics highlights the importance of multidisciplinarity during courses. While challenging 

to teach, it has been found that projects comprising students with complementary disciplines 

produced more novel and sophisticated 3DP prototypes, and that “while rooted in mechanical 

engineering and materials science, AM education is truly multidisciplinary. As a result, educational 

programs to AM processes and applications should embrace this context” [117]. 

 

4.1.2 Teaching university students about 3D printing through project-based learning 

A final stated learning objective is that of giving students hands‐on experience of 3DP. This is 

primarily being achieved through project‐based learning [170,171], in which students collaborate in 

groups and develop 3DP skills. Such project work features prominently in the courses documented. 

Descriptions of these projects found in many of these papers [109,113,114,161,162,167,172], but 

only a few detailed accounts [115,117,118]. 

In MIT’s additive manufacturing course, project‐based learning was practiced during two distinct 

projects [117]. In the first project, students worked in teams of 3‐4 to design and build a bridge using 
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desktop FDM and SLA machines, and stock polymers. This challenge required students to integrate 

their freshly acquired knowledge of the 3DP design and build process with prior knowledge of solid 

mechanics and material science, then conduct experiments to evaluate the mechanical performance 

of 3DP‐fabricated components. In a second project, the capstone that spanned the entire semester, 

small teams were created based on common interests and multidisciplinary. During the capstone, 

students were challenged to identify and justify an opportunity for the creation of a 3DP application, 

before going on to use the skills they had been taught in designing and prototyping this application. 

Through this project seven concepts were developed, with the advanced nature of these projects 

seen in that several teams had discussions with the MIT Technology Licensing Office around filing 

provisional patents [117]. 

At the Missouri University of Science and Technology, a course on “Rapid Product Design and 

Optimization” introduced the design and production of rapid prototyping and 3DP. During the 

course, students worked on a sponsored project to develop a concept prototype. The projects 

involved creating CAD models, converting these models into 3DP‐ready STL files, fixing any errors in 

the STL files, producing physical models, and post‐processing these models. A further project‐based 

course on integrated product development allowed these projects to be further advanced [115]. 

Both project‐based learning and problem‐based learning approaches are adopted during 3DP 

teaching at the University of Texas at Austin and Virginia Tech. Through a semester‐long design 

project, groups of three to five students worked to identify, design, make and test a product 

appropriate for 3DP. Based on a formal problem statement, groups conducted a customer needs 

analysis, generated concepts based on these needs, and selected one of these concepts for more 

detailed design and embodiment. Through an iterative design process they arrived at a CAD model 

and 3DP‐ready STL file of their final design before fabrication and final presentation [118]. 

Examples of other less detailed examples of project‐based learning can also be found 

[109,113,114,162,167]. In the first of these, students used a concurrent design approach to create a 

“gerotor”‐type gear pump during mechanical engineering projects at Universidad Politecnica de 

Madrid. Following the introduction of the challenge, student groups developed conceptual and 

detailed designs in CAD software, before prototyping using SLA 3DP, and then conducting assembly 

and functional tests [162]. Meanwhile at the Department of Management and Production 

Engineering (DIGEP), Politecnico di Torino, students worked in teams of five on an integrated 

computer‐aided environment for design, engineering and manufacturing (CAD/CAE/CAM) project 

that spans three compulsory courses [109]. In a graphic design project at Universidade Estadual de 

Londrina, Brazil, the teaching team worked together with a group of five students. The collaboration 

led to the creation of an assistive device for young children with upper limb amputations, with this 

design being entered into the Designoteca‐sponsored “3D Printing Challenge” [113]. At Austin Peay 

State University, a capstone project built on three previous 3DP courses so that students could apply 

their learning in an organization setting role play [167]. Finally, at the City University of Hong Kong, 

groups of 5‐6 students worked together on a “smart living” challenge. This involved student groups 

creating a 3DP‐ready CAD model, which was then fabricated by the instructor [114]. 

 

4.1.3 Teaching students about 3D printing in schools and libraries 

Outside of university courses, student teaching about 3DP is also occurring during K‐12 school 

teaching [56,65,122,160], and in libraries and makespaces [124,126,128,131,145]. In the former 

category, a study of two Greek high schools had the learning goal of introducing students to the 

concept of 3D design and the basic operation of 3DP. A group of 15 16 year olds in one school and a 
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group of 18 15 year olds in another worked on a project that involved 700 minutes of instructor 

time. During these projects the students were introduced to basic 3D modelling software and the 3D 

design process. Following experimentation in open source CAD software, they produced 3D printed 

artefacts through a trial and error process, before reflecting on the lessons learned through their 

3DP experience. One notable challenge with running these courses was found in terms of the 

different levels of technological literacy and engagement among the students; this heterogeneity 

created an uneven classroom and required instructors to adapt to the various needs of students. 

Other challenges arose from the freedom given to students to design artefacts of their own 

selection, as significant instructor attention was necessary when technical design problems arose, 

along with the cost of acquiring 3D printers [65].  

An afterschool program open to third and fourth grade students was held at an elementary school in 

Baltimore. Separate program streams of 16 sessions were run for each grade group, with 

approximately 15 grade 3 students and 10 grade 4 students participating in each workshop session. 

The objective of this program was to help support academically vulnerable students, reinforcing 

fundamental skills such as arithmetic and reading. 3DP was included within this program as a form of 

enrichment; it was hoped that introducing students to 3DP would engage them and stimulate 

interest in STEM subjects. Sessions were project‐based and focused on students needing to engage 

in problem solving. Doing so led students to complete entire iterative design cycles, going from 

initial concept development, through low fidelity prototyping, to 3D printed prototypes. Through 

doing so students developed an understanding of the basic capabilities and limitations of FDM 3D 

printers, as well as practicing their communication skills while working in project teams. It was 

observed that using 3DP enabled students to go beyond abstract concepts to produce tangible 

outcomes, creating engaging experiences that exceed skills acquisition alone. Alongside the benefits 

of incorporating 3DP, a number of barriers to disengagement were also observed. These included 

access to shared 3D printing equipment and the maintenance of this equipment; the prohibitive cost 

of 3D printers, even ones that are generally considered to be “low‐cost”; limited practice time; and 

the challenge of onboarding new students throughout the program. Among the recommendations, it 

was suggested that further peer learning be incorporated into teaching in order to reduce the 

burden on teaching staff, as well as including a mixture of structured and unstructured projects in 

lesson plans [56]. 

Cost and instructor effort were also concerns expressed in a reflection on an introduction to 3DP 

course for grade eight and nine students at a high school in Steffisburg, Switzerland. Held over 16 90 

minute lessons, students sketched, 3D modelled and 3D printed buildings for their own city before 

presenting their finished work in the final class. Running the course required significant investment 

of time on the part of the instructors, both in the planning and setting up of the course, and in the 

administration of 3DP jobs when the course was underway. However, the benefit of introducing 

students to 3DP was that they remained highly motivated throughout the project. It was reasoned 

that the presence of the 3D printer, the availability of free software tools such as Tinkercad and 

Sketchup, and the opportunity to express their creativity, combined to provide this motivation [70]. 

Recognising the need for age‐appropriate educational models, a series of pilot programmes for 

introducing 3D visualization technologies into K‐12 education have been described, with 3DP one of 

these technologies. It was found that for grades K‐4, “show, touch and tell” type technology 

demonstrations and presentations from STEM professionals to groups of 2‐8 students were the most 

effective. Meanwhile, another pilot programme involved the embedding of 3D printers into schools 

was aimed at grade 9‐12 students who required live education opportunities. Pilot schools were 

selected due to having a “For Inspiration and Recognition of Science and Technology” (FIRST) 
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robotics team who had a clear practical need for the 3D printer, as well as being able to ensure the 

facilitation and maintenance of the equipment. A dedicated educator to oversee the printer’s 

operation was also seen as essential [160].  

One major downside to using 3DP in a school teaching environment is the speed of 3DP and the time 

it takes for larger prints to be created [56,122]. As Plemmons comments “it is unrealistic to think 

that students will sit and watch the entire print take place while they are missing instruction in their 

classroom” [122]. One strategy he uses in his elementary school classes is to have the whole class 

only watch the beginning of the print so they are part of the printing process.  

Finally, as was described in Section 3.3, 3DP is being provided in libraries and makespaces [126,145]. 

Providing 3D printers in libraries gives students the opportunity to learn about 3DP as part of 

extracurricular activities. Librarians use multiple methods to train students, including 

demonstrations and workshops, as well as online tutorials and videos. The range of training methods 

provides students with multiple ways by which they can access 3DP education [145]. 

 

4.2 Teaching educators about 3D printing 

Despite potential benefits, there are many barriers to the integration of new technologies into the 

education system. Along with institutional, cultural, assessment and resource barriers, these include 

teacher attitudes and beliefs, and teacher knowledge and skills [173]. As a new digital fabrication 

technology, 3DP is not immune to these integration challenges; Bull et al. remark that in the school 

system “the current generation of teachers is not well positioned to take advantage of these 

capabilities” [72]. As they see it, this lack of readiness derives from the fact that “Many teachers do 

not fully understand engineering, engineering habits of mind, or design thinking. This expertise is not 

currently provided in teacher preparation programs” [72]. Others believe that teachers are not 

receiving sufficient guidance on the use and maintenance of 3DP [150]. This speaks to a more 

general need in the education system of teaching educators about 3DP, supporting their 

professional development, and enabling their ability to teach others about 3DP.  

Reflections and discussions on realising these objectives can be found in the literature, with small 

clusters around informing educators about 3DP during their teacher training [61,120,121,174,175]; 

informing active educators as part of professional development [26,174,176–179]; and informing 

library professionals [145,146]. 

In this first cluster, early childhood educators [120] and technology and science educators [121,174] 

were the recipients of 3DP teaching during their teacher training. During a Master’s level 

programme at James Madison University, preservice early childhood educators were introduced to 

3DP during a 2‐hour workshop in their “Creativity and the Arts in Early and Elementary Education” 

course. However, rather than provide detailed guidance to student teachers on how to use 3DP and 

instruct others in its use, the experience was instead aimed at encouraging student teachers to 

critically evaluate new technologies, including the appropriateness of 3DP for young children, and 

the rationale for incorporating the technology into early childhood classrooms [120]. 

During a Master’s degree in Applied Science Education at Michigan Technological University, RepRap 

3D printers were used during a two‐week course that introduced students to the design‐build‐test 

process. Post‐course feedback from 18 completed surveys rated the course highly. Furthermore, two 

high school biology teachers who were participants in the course also attended a two day workshop 

to build a 3D printer. They were able to do so and to go on to use it to 3D print scientific apparatus 

for use in their classrooms [174]. 
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A more comprehensive programme to teaching future educators occurs during the "Advanced issues 

in teaching design and manufacturing" course at the Technology Education Laboratory at Technion 

University in Israel [121]. Spanning a whole semester, each week students had two hours of lectures 

and two hours of laboratory classes. During lectures, students were introduced to theories of 

learning in the context of technology education, with the students themselves tasked with delivering 

short lectures on aspects of teaching design and manufacturing. Examples of these lectures include 

3DP in design education; user‐centred design; student engagement in design and manufacturing; 

and fostering creativity in learning design and manufacturing. During the laboratory classes, students 

practiced aspects of CAD and 3DP. Finally, a teaching assignment made use of “conceive, design, 

implement and operate” (CDIO) learning practices in response to a real‐world educational problem 

from a grade ten mechanics class.  Through this assignment student teachers learned about the 

benefit of using 3DP models as teaching aids and ice‐breakers. Noting how 3D printed artefacts 

engaged their class, one student teacher commented: “The pupils said that the printed models were 

very cool. They enjoyed holding the model, examining it and even took photos of the models” [121].  

In a two day workshop, a group of 10 pre‐service teachers and 13 in‐service teachers learned about 

3D modelling and 3DP, and began to explore how these technologies could be integrated into their 

curricula. Within this group, nine teachers chose to focus on the application of 3DP in history and 

social sciences. This led to four projects being conceived and delivered in middle school classrooms 

on themes of world geography, US history, and American government and civics. Educators initially 

found the Tinkercad design software difficult to use, and also found it challenging to imagine what 

artefacts to produce that tied into the curriculum. However they found that having access to content 

and technical support during the project was helpful [61]. 

This workshop spans the first and second clusters, which cover pre‐service and in‐service teacher 

education respectively. Several other professional development initiatives for middle and high 

school educators can also be found [26,176–178]. An initiative at the College of Computer and 

Information Sciences at King Saud University (KSU) in Saudi Arabia, involved a 3‐day workshop on 

introducing new computing technologies to high and middle school computer teachers. 3DP was one 

of several new computing technologies introduced during 90 minute sessions, alongside mobile 

application programming, Internet of Things, and robotics. During the session on 3DP, the 

technology was introduced, the main steps to producing 3D printed artefacts were explained, and 

participants discussed the potential use of 3DP in the teaching and learning process. The perceived 

difficulty of integrating 3DP into teaching can be seen from 3DP scoring the lowest of the four 

technologies in a survey of post‐workshop intentions; 57% of participants strongly agreed or agreed 

that they intended to integrate 3DP into their teaching, in contrast to 90% of participants for mobile 

application programming, 87% for Internet of Things, and 73% for robotics [176]. In another 

initiative, a three day instructional workshop was run at East Carolina University as a professional 

development activity. Focusing on 3DP, seven participants were introduced to the fundamentals of 

the technology [177]. 

During the three day “Emerging Technologies and Technicians” workshop at St. Petersburg College, 

participants were introduced to 3D modelling and 3DP, alongside reverse engineering, quality 

assurance and other machining processes. The 24 participants were largely community college and 

university faculty, and gained hands‐on experience of these methods. In a workshop exit survey, 

85% of participants intended to incorporate workshop materials into their teaching, with several 

participants reported to have done so [178]. Meanwhile, a 3.5 day training workshop involved 22 

middle school and high school teachers from Michigan [26]. Workshop participants worked in pairs 

to construct a RepRap‐based open source 3D printer, and discussions of how incorporating the 



17 
 

technology into teaching could benefit students. The experience of building the 3D printer was 

reported to have given participants “a sense of empowerment” and a belief “that their students 

would be empowered by the ability to design, build, and create unique physical objects using OS3DP” 

[26]. 

The final cluster describes educating library professionals about 3DP, set within the broader context 

of libraries as digital makerspaces [145,146]. Of the three clusters, this one exhibits the least 

evidence of formalized educational initiatives, with Williams and Folkman commenting that “as of 

2016, the concepts of making and the skills needed to run these spaces are as uncommon as 

instructional design courses in foundational librarianship programs” [146]. Without formalized 

education about 3DP, librarians have often needed to be self‐taught, with Moorefield‐Lang 

describing necessary attitudes of “Trial and error, experimentation, going with the flow, patience, 

and time” [145]. For such individuals, peer learning has been necessary, either in physical space or 

on social media, with visits to other schools, libraries, makerspaces and museums helpful in learning 

about how 3DP could be integrated into their libraries. The overall attitude is that “While this 

technology is becoming more prevalent, having a spirit of investigation and little fear of failure is 

important” [145]. 

The importance of library staff having the technical skills in 3DP and other maker technologies, and 

the confidence in those skills, was the focus of an initiative at the University of North Carolina at 

Greensboro (UNCG) Library that involved librarians from across the state [146]. Through a 

programme of online resources, events and workshops, librarians were introduced to a range of 

digital making technologies, including 3DP. The hands‐on workshops with equipment received the 

most positive feedback from participants and were found to be the most successful as they provided 

“a safe, encouraging, “okay to fail” environment which embodies the maker movement in practice” 

[146]. 

In addition to these teaching initiatives, other workshops and curricula have been proposed. In the 

former, a National Science Foundation‐funded Innovative Technology Experiences for Students and 

Teachers (ITEST) project plans to run two week workshops with educators in grade 4‐12 STEM 

subjects. The aim of these workshops is to introduce educators to Internet of Things (IoT), building 

automation and 3DP technologies, and then support them as they integrate these technologies into 

their curricula [180]. Elsewhere, a teaching curriculum has been developed and proposed for use at 

Korea National University of Education. This curriculum makes use of the ADDIE (analysis, design, 

development, implementation, and evaluation) approach to introduce 3DP to pre‐service educators 

over 250 minutes of instruction [175]. 

 

4.3 Using 3D printing during teaching 

In Section 4.1, a distinction was drawn between the active use of 3DP in the classroom, instructional 

laboratory or library to learn about 3DP and develop 3DP skills, and the use of 3DP in such settings 

to learn other subjects. The focus of this section is the latter application, in which students are using 

3DP to learn about other subjects. 

The predominant subjects in which 3DP is being used in this way are the STEM subjects of design 

and mechatronics engineering. In design, 3DP is being used within teaching courses to introduce 

students to product and engineering design processes, making use of its functions as a rapid 

prototyping and low‐cost production technology [10,11,33,34,77,90,102–107,161,181–204], as well 

as architectural design [205]. The application of 3DP in combination with 3D scanning is a specific 
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emphasis in design courses focusing on reverse engineering [206–210], while 3DP also features in 

CAD/CAM courses [211–214], and concept‐based teaching in green manufacturing [215]. 

3DP is frequently used in design projects. The range of artefacts created during such projects is 

highly diverse and examples are included in Table 3. In addition of these artefacts, 3D printers 

themselves have been built during integrated engineering design [216–220] and mechatronics and 

instrumentation [221] projects. 

Artefacts Source(s) 

Biomedical devices [202,222] 

Bridges [223–225] 

Desk lamps [105] 

Exoskeletons [226] 

Home appliances [191] 

Microfluidics [188] 

Model cars [103,227] 

Musical instruments [187] 

Orthotics [228] 

Quadcopters [229] 

Robots [194,230] 

Rockets [102] 

Unmanned aircraft system wings [231] 

Whistles [196] 

Table 3. 3D printed artefacts created during design projects 

 

Meanwhile, its application for rapid prototyping is also finding use in mechatronics [83,101,108,203] 

and the mechatronics sub‐category of robotics [78,93–100,230,232–239]. As previously commented 

in Section 3.2, 3DP has become a popular tool for creating low‐cost educational robots as it allows 

modifications to be easily made to the design of the robot chassis/body and for these modifications 

to be shared with others.  

Elsewhere in STEM subjects, examples of 3DP being used to directly support teaching can be found 

in creating experimental test artefacts for aeronautical [91,92,240], mechanical engineering [241–

249] and structural [250] engineering; developing computational thinking [69]; and supporting 

teaching in biology [35,86,137]; physics [66]; chemistry [74,251,252]; and mathematics [58,59,62]. 

Documented examples from outside of STEM can be found in English [132] and history [61] teaching. 

A range of benefits have been described in these accounts. These include the way that incorporating 

3DP into teaching can bring excitement and realism into the classroom [10,33,161,216], raising 

student engagement and motivation [33,102,104,105,108,223,224,252], and interest in the subject 

material [137,231]. The use of 3DP has been observed to improve the iterative design process and 

shorten design‐test‐revise cycle times [90,181,183,185,201,202,247], exposing students to CAD 

[103], while reducing the cost of creating prototypes [183,187] and experiment components [90]. 

Furthermore, there are indications that using 3DP can improve student confidence in terms of oral 

presentation when demonstrating their 3D printer and communicating their learning [26], improve 

their creative flexibility [197] and critical thinking [215], as well as build on skills in virtual making to 

build confidence in physical making [34]. Most significantly the use of 3DP during teaching has been 
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reported to improve student understanding, with these benefits arising during a range of subjects 

and settings (Table 4).  

Subject Topic(s) Educational context Source(s) 

Biology Biological molecules Community college [137] 

Chemistry Atomic structure High school [74] 

Protein structures Upper division undergraduate [253] 

Design Co‐design and sustainability Lower division undergraduate [34] 

Engineering Foundations of engineering Undergraduate [223–225] 

Material properties Undergraduate [245] 

Computer‐aided simulation 
and design 

Lower division undergraduate [241] 

MEMS design Upper division undergraduate 
and postgraduate 

[108] 

Mathematics Geometry Middle school [59,62] 

Pharmacology Enzyme and ligand structures Upper division undergraduate [87] 

Table 4. Subjects in which the use of 3DP has improved student understanding of a topic 

 

There is also some evidence that exposure to 3DP during these subjects may also improve attitudes 

towards 3DP [35,183,245]. As one student commented when electing to use 3DP to create biological 

models, “I feel using the 3D printer to design and create a project allowed me to learn a lot more 

about the subject than I otherwise would have. However, the most valuable part of this project was 

the skill set I gained in learning how to operate 3D software and upload and print these designs” 

[35]. 

Incorporating 3DP into the teaching of other subjects is not without problems, with various 

challenges noted. These include students struggling with 3DP when they don’t have experience with 

3D modelling [108]; problems arising in the modelling and printing process that need educator 

support [137]; 3D printed materials not performing as expected [183], particularly in experimental 

settings [90]; the time it takes for 3D models to print [122,253]; and the costs of 3D printing [35]. 

 

4.4 Using 3D printing to produce artefacts that aid learning 

While the previous section described how students are using 3DP to learn about a range of different 

subjects, this section describes the use of 3D printed artefacts that are brought into the educational 

setting by educators, and which have been fabricated by those educators or third party suppliers. 

It has been commented that educational tools “could be printed to assist educators in almost every 

discipline” [5,160,254]. This review has found evidence that 3DP is already being used to produce 

artefacts to aid learning in a number of subjects. Table 5 provides a summary of the types of 

artefacts being created. It is apparent that 3DP artefacts are being used to support teaching in 

anatomy [31,36,255–270] and chemistry [271–288] the most. 
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Subject 3D printed artefact(s) Source(s) 

Anatomy 

Airway models [270] 

Bones [31,263,267,289,290] 

Femoral artery [262] 

Heart [258,260,261] 

Limb sections [262,268] 

Lungs [290] 

Oral surgical model [269] 

Orbital dissections [257] 

Prosected human cadavers [36] 

Skeletal tissues [255] 

Arts Cultural heritage models [291] 

Biochemistry Macromolecular structures [292] 

Chemistry 

Atomic structure [293] 

Copolymer nanostructures [282] 

Crystals [273] 

Crystal structures [280,285,287,288] 

Free energy surfaces [276] 

Hydrogenic orbitals [274] 

Molecular structures [281,284,286,288,294] 

Orbitals [279,294] 

p orbital isosurfaces [272] 

Potential energy surfaces [271,276,277,283] 

Reaction progress surfaces [275] 

Dentistry 
Cavities [295] 

Prosthodontic models [88] 

Geosciences Digital terrain models [14] 

Mathematics Geometric models [296–302] 

Paleontology Extinct shark teeth [80] 

Physics 
Mechanisms [303] 

Mie scattering apparatus [304] 

Zoology 
Marine biology specimens [305] 

Nematodes [306] 

Table 5. Summary of subjects in which 3D printed artefacts are being used to support learning 

 
Whatever the subject, a significant benefit of using 3D printed models as learning aids is that “the 

simple ability to rotate a physical object can often bring new elements into view for evaluation that 

would not be detectable using digital models alone” [14]. There are also subject specific benefits. 

The advantages of using 3D printed models in anatomy teaching include “durability, accuracy, ease 

of reproduction, cost effectiveness, and the avoidance of health and safety issues associated with wet 

fixed cadaver specimens or plastinated specimens” [36]. Purely in cost terms, it has been estimated 

that 3DP models are 10‐20 times less expensive than plastinated alternatives created from cadavers 

[257]. Furthermore, using 3D printed replicas means that students can examine them without 

damaging the originals [31], while also reducing demand for human body parts, and allaying ethical 

and legal concerns regarding the use of cadavers [256]. Similar benefits have been described in 
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zoology, where the ability to replicate the textures and mechanical features of original specimens to 

a high level for hands‐on student learning is advantageous [305]. 

There have been several investigations of the application of 3D printed artefacts in anatomy 

teaching, with these comprising surveys of student attitudes and experimental tests of student 

learning. During an investigation into the use of a 3D printed upper limb in teaching, 15 medical 

students reported that they felt the anatomical features of the model were accurate, but that the 

models produced were best used in combination with plastinated prosections to aid learning [268]. 

A survey of 211 anatomy students, found that 3D printed models of a femur, fifth rib and cervical 

vertebra helped their overall understanding of the structure of bones, as well as improving their 

learning interest [289]. Elsewhere, in a cadaveric comparison study of 3D printed temporal bone 

models by ten postgraduate surgical trainees there were mixed attitudes towards the use of 3D 

printed simulations as a replacement for cadaveric specimens. While the study reported that 

trainees found the internal structures of the 3D printed models very similar to cadaveric bones and 

were in unanimous agreement that such models should be integrated into resident education, the 

trainees disagreed that the models could completely replace the cadaveric bones [267].  

Several experiments have also been conducted that explore the effectiveness of 3D printed artefacts 

toward student learning. In one study, a 22‐part one third scale model of the lower limb and 

posterior compartment musculature was used in a limb anatomy class. The class was divided into 

two groups, with one studying dissection specimens and the other studying 3D printed models. 

Analysis revealed no meaningful differences between the knowledge gained by the two groups 

[262]. In another study, 29 premedical and medical students were introduced to the concepts of 

ventrical septal defects and used high‐fidelity 3D printed hearts to develop surgical incisions and 

suturing skills. Statistical analysis of pre‐ and post‐seminar questionnaires showed that use of the 3D 

printed models enabled significant improvements in terms of knowledge acquisition, knowledge 

reporting, and structural conceptualization of ventrical septal defects [260]. The effect on learning 

has also been investigated through analysis of test performances of 127 first year medical students 

during a “Heart, Lungs and Blood” module. In this study, 61 students were part of a control group 

that used only anatomical images during module tutorials, while 66 students were part of an 

intervention group that studied 3D printed models during these tutorials. The use of 3D printed 

models was found to support learning; average test scores for those in the 3D printed model group 

were 14.4% higher, with this result statistically significant (P=0.001) [290]. In another study, 52 

undergraduate medical students explored the use of cadaveric materials and 3D printed models in 

self‐directed cardiac anatomy learning. Of the 52 students, 18 used only cadaveric materials, 16 used 

only 3D printed models, and 18 used a combination of the two types. Statistical analysis of pre‐ and 

post‐test scores showed significantly higher post‐test scores for the group that only used 3D printed 

models. Furthermore, significant improvements to this group’s test scores were found, while there 

were no significant improvements to the other two groups [261]. These findings support earlier 

propositions that when dissection specimens are not available, that 3D printed models “offer a 

novel, accurate and effective substitute” [36]. 

The low cost of producing pedagogical aids using 3DP has also been recognized by those in 

chemistry. One estimate of the cost of 3D printing molecular structures designed using freeware 

CAD software found that they cost less than one fiftieth the price of commercially available models 

[274]. As in anatomy, studies have begun to explore the effectiveness of using these 3D printed 

visual aids to support teaching [287,294]. An end of course survey of over 180 undergraduate 

students on an organic chemistry course found that the use of 3D printed molecular models in 

lectures was welcomed by students. 79% of students agreed that using 3D printed molecular models 
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in lectures was an improvement over 2D images used in slides course materials, while 72% of 

students agreed that seeing the models helped their understanding of molecular structure and 

bonding [294]. Meanwhile, analysis of the introduction of 3D printed crystallographic models into a 

300 level general education course on nanoscience and nanotechnology found the models to have a 

significant benefit to comprehension and knowledge retention. The average test score of a study 

group (n=7) that used 3D printed models was 47% higher than a control group (n=7) that did not 

[287].  

Finally, evidence of the effectiveness of incorporating 3DP into teaching can also be found in 

dentistry. 3D printed prosthodontic models were introduced to a class of 22 fourth year dental 

students in a simulation to practice dental crown removal and preparation for new crown 

installation. The class was in strong agreement that the model is useful as a preparation for clinical 

courses and provides learning benefits, but had varying opinions on the realism of the model and 

simulation with 3DP limited in the colours and features that can be built into such models [88].  

 

4.5 Using 3D printing to create assistive technologies 

As previously described in Section 3.4, 3DP is being used in special education settings for those with 

visual, motor and cognitive impairments. There are two broad categories of application: (1) when 

the artefacts created using 3DP are for use by those needing assistive technologies 

[14,27,28,154,156–159,307–310], and (2) when the needs of those with special learning needs 

provides a real‐world framing to student projects [33,40,76,174,190]. This latter category can be 

seen as a specific instance of the use of 3DP during teaching that was covered in Section 4.3. It 

includes the creation of tactile stories for the visually impaired as part of a middle and high school 

design and teaching class [40]; the development of a prosthetic hand in a school project by fourth 

graders [33]; and the production of the 3D printed e‐NABLE prosthetic hand in a ninth grade 

programme [76]. 

To help visually impaired and blind students, 3DP is being used to create a range of tactile artefacts 

[309,310], including graphics to assist with the teaching of programming [156]; mathematics [307]; 

literacy [308]; picture books [155]; geoscience maps [14]; astronomical maps [311]; and history 

textbooks [154]. In this last case, educators and students agreed that the introduction of tactile 

history textbooks into a semester‐long teaching class were useful, that the 3DP textbooks “helped to 

clarify obscure meanings” and also “directly stimulated the students' imagination and reinforced 

their understanding and capacity for memorization” [154]. Meanwhile student excitement and 

engagement was also found to increase when using tactile graphics to help teach programming, with 

students “eager to touch the printer and observe its mechanics” [156]. However the slow speed of 

printing and the brittleness of the tactile graphics created were issues, and the quality and durability 

of 3DP need to be improved for the tactile graphics to become more useful [156]. In other special 

education settings, 3DP has been used to help students with combinations of visual, motor and 

cognitive impairments. During the SHIVA project, disabled students used eye‐gaze tracking or 

touchscreens to create three dimensional “totems” in the SHIVA software environment, with these 

totems then fabricated using 3DP. Through this process, students improved their understanding of 

spatial awareness and spatial relationships between objects [158]. Elsewhere it is recommended 

that the availability of assistive technology designs on online catalogues such as Thingiverse be 

improved, and that more connections and communication be made between designers and 

communities of users with disabilities [29]. 
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4.6 Using 3D printing to support outreach activities 

A growing number of universities are finding applications for 3DP in their outreach activities. While 

outreach from universities into middle and high schools is the most commonly described 

[115,116,150,312–319], there are also descriptions of 3DP being used in an outreach function to 

enable the professional development of teachers [150], librarians [130,146], and industry 

professionals [115,117,150], as well as engage with students in other universities [316], and adult 

learners [150]. 

Using 3DP to develop interest in STEM subjects is the main focus of university outreach activities in 

schools. As part of a STEM pathway initiative at California State University – Northridge, seven high 

school students were introduced to digital manufacturing and the engineering design process 

through 3DP. Running over eight weeks and involving three hours of instruction per week, students 

learned basic 3D modelling and 3DP concepts, implementing them during design‐simulate‐build 

activities [315]. A design‐analyze‐build‐test process is also followed during the four‐week long 

“Summer Ventures in Science and Mathematics” program sponsored by the State of North Carolina. 

The program included a bracket design challenge where participating high school students needed 

to design and 3D print the lightest bracket possible that fulfilled the challenge specification [246]. In 

collaboration with an industry partner, TimeOut 4U, Hampton University ran a pilot Advanced 

Manufacturing STEM after school program at Hunter B. Andrews PK‐8 school. Over ten modules and 

fifty hours of activities, students learned about manufacturing and 3DP, and went through an 

iterative design process that led to the creation of 3D printed objects [316]. 41 high school students 

participated in 3DP‐focused STEM workshops at Miami University [198], while a collaboration 

between the Missouri University of Science and Technology and the St. Louis Community College at 

Florissant Valley saw a series of NSF‐sponsored “Discover Manufacturing Workshops”. Held over five 

days, the aim of these workshops was “to expose high school students and teachers to 

manufacturing technologies in the hope of directing and impacting their career choices” [115].  

3DP has also been incorporated into STEM outreach initiatives focusing on women and minorities. At 

the suggestion of the University of Florida (UF) student chapter of the Society of Women Engineers, 

the University of Florida Marston Science Library sought to engage middle school students in 3DP. 

During 90 minute sessions, students were introduced to Tinkercad, before designing and printing 

their own nametags. Almost 110 students, of which approximately 80 were female, have attended 

the sessions so far. Along with introducing students to 3DP, the workshops also helped promote the 

availability of the library’s 3DP capabilities [314]. Elsewhere, a 3DP‐based workshop was included as 

an activity at a Women in Engineering Summer Camp organized by the University of Dayton. This 

workshop contributed to the effectiveness of the whole camp, with 35 of the 36 female high school 

participants reporting that the camp had influenced their future college study plans [320].  

Meanwhile, African‐American students have been the target of two outreach initiatives. In the first, 

a two week‐long “Generation Innovation” summer camp, African‐American students in grades 6‐12 

were introduced to a variety of computing science topics. In 2013, 3DP was one of the topics 

included to a group of 30 students, with each designing and producing objects such as rings and 

keychains [321]. In a second initiative, 3DP was included in the Minority Male Maker program, a 

STEM‐focused student engagement program for African‐American middle school students. A survey 

of 480 participating students from 56 middle schools in four US states found that the program 

stimulated student interest in pursuing careers in science, design and engineering [322]. 

In other outreach initiatives, plastic jewellery has been 3D printed during Colorado State University‐

Pueblo’s K‐12 outreach, with high school students using 3DP to produce bracelet designs 
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downloaded from Thingiverse [116]. Meanwhile, the Santa Clara University Maker Lab used a mobile 

maker lab for school visits and has engaged with other 500 middle and high school students to date. 

3DP is just one of the fabrication tools to which students are introduced; it features in an “Exploring 

Flight” module where students use 3DP to make noseclips for balsa wood aeroplanes and test their 

effects on the balance of the planes [150].  

Some studies also report on the effectiveness of these STEM outreach activities. The two‐week 

Engineering Design and Manufacturing Summer Camp organized by the Georgia Institute of 

Technology saw 59 students from multiple US states participate on a distributed basis. Using 3DP as 

part of a create‐build‐design‐operate process, it was reported that students had a strong satisfaction 

with the course content and approach, as well as a high degree of motivation for pursuing careers in 

engineering [317]. Working with high school students, faculty from the University of Texas at El Paso 

used 3DP to test the strength of redesigned LEGO components. The activities led to a reported 45% 

of the class gaining a positive impression of STEM as a career option [319]. An existing STEM summer 

program for high school students, the six‐week long Cooper Union Summer STEM program, was 

revised to incorporate 3DP into a makerspace‐oriented stream. The first two weeks of the program 

saw students introduced to a range of making technologies, including CAD and 3DP, as well as the 

engineering design process, before going on to apply their new skills in projects that lasted the 

remaining four weeks of the program. Among the 22 respondents to a survey on future study 

intentions, 17 indicated that the course had changed their study intentions, and that all 22 planned 

to go on to study science or engineering [323]. In an effort to attract high school students to STEM 

subjects, Texas A&M University‐Kingsville brought 17 students from grades 11 and 12 to a month‐

long series of workshops in which they worked alongside undergraduate students to learn about 3D 

modelling and 3DP. This outreach activity was considered successful as after the workshops all 17 

students submitted applications to Texas A&M engineering programmes [312]. In another week‐long 

student camp with middle school students, the use of 3D printed modular robots was found to boost 

student confidence in the use of computers and robots [78]. In contrast, the inclusion of 3DP in a 

two‐week computer science summer camp for middle‐ and high school girls found was found to be 

challenging due to the student’s lack of spatial awareness skills [79]. Finally, an extracurricular 

summer camp for computational bead design introduced students to computing, digital modelling 

and 3DP. While qualitative survey data was positive about the experience, quantitative survey data 

among a small sample (n=17) was inconclusive about the relationships between 3DP application and 

changes in attitudes towards STEM [60].  

Reports of planned activities can also be found. In one instance, a combined wind‐turbine and PV 

demonstration kit has been developed at Roger Williams University using 3DP, with the intent of it 

being used for K‐12 STEM outreach activities [318]. In another, the use of 3DP in soft robotics is 

planned as part of a large‐scale initiative to increase female interest in STEM. This will be delivered 

to grade nine students taking a freshman‐level technology and engineering course within the 

Engineering by Design program, seeing it taught in over 270 US school districts to about 100,000 

students each year [313]. 
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5. Conclusions 

This article has summarized the existing research conducted into the application of 3DP in the 

education system. Through synthesising a diverse and fragmented literature of 280 articles, this 

state of the art review provides a clearer understanding of where and how 3DP is being used in the 

education system. A high‐level summary is provided in Table 6. Given its historical roots as a rapid 

prototyping technology, it is unsurprising that 3DP’s adoption is most mature in university 

engineering and design courses, and that dedicated 3DP courses are emerging from within these 

disciplines (Section 4.1). However, it’s apparent from this review that 3DP has expanded beyond 

these roots; 3DP is being actively incorporated into a variety of other subjects (Section 4.3) and 

being used to produce artefacts that support learning (Section 4.4). Outside of engineering and 

design, other STEM disciplines are the most prominent adopters of 3DP, and are beginning to 

demonstrate how using 3DP can create cross‐linkages between these subjects [39]. In non‐STEM 

subjects, however, there are currently only a few documented examples of 3DP’s adoption during in‐

class teaching. 

As a literature review, this work is ultimately limited by what academics have chosen to research and 

document. Given pressures to publish and share knowledge, university academics have greater 

incentives to document their experiences than K‐12 teachers and continuing/further education 

lecturers. The more substantial literature on the adoption of 3DP in universities may be a reflection 

of these differences in motivations, but is also suggestive of the more mature adoption of 3DP in 

universities. Within universities, 3DP is diffusing from engineering and design subjects into other 

disciplines, with university libraries often providing a centralized resource that enables students 

from other disciplines to gain exposure to 3DP outside the classroom. While there are a relatively 

large number of documented accounts of workshops, courses and curricula in engineering and 

design, descriptive papers providing similar accounts outside of these subjects, particularly in non‐

STEM subjects, are encouraged so that others may learn from and be inspired by 3DP’s application. 

Furthermore, there are limited accounts of 3DP skills acquisition in continuing/further education 

settings, and we call for research that studies that describes and analyses the implementation of 3DP 

in vocational subjects. 

Meanwhile in the K‐12 system, when middle‐ and high school students are being exposed to 3DP it is 

primarily through university outreach activities rather than during their formal curriculum. There are 

currently only isolated pockets of 3DP adoption in K‐12 teaching, with these appearing to be based 

on the educator’s experience, confidence and enthusiasm towards 3DP. This is reflective of the 

currently limited exposure and training in 3DP received by educators (Section 4.2). For K‐12 

educators to develop the experience and confidence necessary to incorporate 3DP into teaching, 

more 3DP educational components need to be included in pre‐service teaching, as well as an 

expanded range of workshops to inform in‐service teachers. Improved access to teaching materials 

is also necessary alongside improving teaching skills, and a centralized resource for lesson plans and 

comprehensive curricula would help support teaching integration [324]. This issue of “teaching the 

teachers” is a pressing one but one that appears to have been overlooked in recently published 

recommendations around 3DP education [2]. 

While there is a wealth of online materials to support teaching, it has been noted that there is a lack 

of an appropriate textbook to support teaching [119]. There remains a need for additional teaching 

support materials that simplify the process of incorporating 3DP into teaching, both for curricula 

where 3DP skills development is the objective, and for incorporating 3DP into curricula to improve 

student engagement and subject knowledge acquisition. In addition, improving the availability and 

access to 3D models is also needed to support teaching. 3D models provide an entry point for 
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introducing 3DP, demonstrating its capacity for modification and sharing, and supporting educators 

who want to produce teaching models but don’t have the time or necessary expertise. While there is 

a rapidly growing number of 3D models available online, those available for education purposes are 

predominantly found for disciplines such as engineering and architecture where 3D modelling skills 

are most advanced, with a sparse number in other disciplines [325]. Through dedicated repositories 

such as the NIH 3D Print Exchange [326], 3D models can be shared. It is recommended that similar 

education‐focused 3D print exchanges be created to lower the barriers to integrating 3DP into 

teaching, avoid the duplication of effort in modelling, and reduce the cost of creating assistive 

technologies and labware [325,327]. 

Pursuing such initiatives is worthwhile as the positive impact of using 3DP in teaching is gradually 

becoming known. As described in Sections 4.3 and 4.4, there is evidence that incorporating 3DP into 

teaching supports student learning, along with providing additional subject‐specific benefits. While 

this body of evidence is growing, much of it is based on single course assessments or small student 

samples, and there are currently no standardized methods of evaluation [149]. Developing such 

methods and conducting further evaluation studies across larger populations are necessary in order 

to better substantiate the nature and magnitude of learning benefits that arise. The results of such 

studies would help answer the broader questions of how should 3DP be integrated into teaching and 

what institutional and national policies are necessary to realise this objective. 

Beyond the formal education system described in this paper there are also wider questions about 

the application of 3DP in informal education. Students of all ages can learn about 3D modelling 

through online courses and tutorials, fabricate objects through 3D print‐on‐demand services and 

networks such as 3DHubs, and join fablabs and makerspaces that are unconnected to universities 

and libraries [328]. The democratization of education and making provides opportunities for self‐

directed learning. Accordingly, a better understanding is needed of how acquiring 3DP skills occurs 

outside the formal education system, and how learning from informal and formal education can be 

integrated. 

As the previous paragraphs have described, there are numerous future research directions that 

scholars could pursue to advance our understanding of 3DP adoption and practice in the education 

system. Expanding on these possible directions and drawing on the works reviewed in Sections 3 and 

4, a list of potential research questions is provided in Table 7. Categorized against the six use cases, 

we propose 44 potential research questions for further investigation. We hope that these questions 

will assist researchers embarking on empirical studies into the use of 3DP in the education system, 

and that developing answers to these questions will inform 3DP education policy. 
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 Where is 3DP being used in the education system? 

Schools Universities Libraries 
Special 

education 
settings 

How is 
3DP 
being 
used in 
the 
education 
system? 

Teaching students 
about 3DP 

3DP and 3D 
modelling are 
introduced to 
students during 
design and 
prototyping 
projects in class 

The 
fundamentals 
of 3DP and 3D 
modelling are 
introduced to 
engineering 
and design 
students, who 
apply their 
skills during in‐
class projects 

Improving 
access to 3DP 
equipment and 
services 
enables self‐
directed 
learning by 
students 
outside class 

‐ 

Teaching educators 
about 3DP 

3DP and 3D 
modelling are 
being 
introduced to 
in‐service 
teachers 

3DP and 3D 
modelling are 
being 
introduced to 
pre‐service and 
in‐service 
teachers 

Training 
librarians 
enables them 
to operate and 
maintain 3DP 
equipment, 
and 
troubleshoot 
3D modelling 
problems 

‐ 

Using 3DP during 
teaching 

Using 3DP 
during class 
projects to 
improve 
student  
engagement 
and 
understanding 
of STEM 
subjects 

Using 3DP 
during class 
projects to 
improve 
student  
engagement 
and 
understanding 
of STEM 
subjects 

‐ 

Using 3DP to 
create custom 
adaptive 
devices and 
educational 
aids 

Using 3DP to 
produce artefacts 
that aid learning 

‐ 

3DP models 
enable hands‐
on learning in 
lectures and 
lab sessions, 
particularly in 
anatomy and 
chemistry 
teaching 

‐ ‐ 

Using 3DP to create 
assistive 
technologies 

‐ ‐ ‐ 

Expands the 
range of 
student 
learning 
opportunities, 
particularly 
among those 
with visual 
impairments 
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Using 3DP to support 
outreach activities 

Using 3DP 
during 
university 
outreach 
programs 
improves 
student 
engagement 
with STEM 
subjects 

‐ ‐ ‐ 

Table 6. Overview of how 3DP is typically being used in different educational settings 

 

Use category Potential research questions 

Teaching students 
about 3DP 

 When and how should 3DP be first introduced into the classroom? 

 What types of projects are effective in introducing students to 3DP and engaging 
them in developing 3DP knowledge and skills? 

 What knowledge and skills should students acquire in introductory, intermediate 
and advanced 3DP courses? 

 What differentiates a 3DP course from an AM course? 

 How is 3DP being introduced and taught in vocational education? 

 How are 3DP equipment companies supporting the creation of 3DP curricula? 

 With the rapid development of 3DP technologies, what should be included in 3DP 
curricula so that students’ knowledge and skills don’t become quickly obsolete? 

 How can 3DP engagement be encouraged and disengagement reduced in 
classrooms with diverse levels of technological literacy? 

 How can peer learning be used effectively to support 3DP learning and 
engagement?  

 How much structure, supervision and resources are needed during 3DP‐based 
projects? 

 What do students learn when they share their 3DP projects online? 

 How are individuals of different ages developing 3DP knowledge and skills through 
self‐directed informal education?  

 How can libraries and makespaces provide a bridge between 3DP teaching in the 
formal education system and self‐directed informal education?  

Teaching 
educators about 
3DP 

 What types of training programs are used to introduce and educate pre‐service and 
in‐service educators about the use of 3DP in teaching? 

 How successful are these existing training programs at preparing educators for 
using 3DP in teaching? 

 What types of 3DP training programs are required for educators to develop the 
skills and confidence necessary to integrate 3DP into classroom projects? 

 How should 3DP training differ for educators at different stages of their careers 
(pre‐service; different levels of in‐service), in different educational institutions, and 
in different disciplines? 

 Where in the pre‐service educator curriculum should 3DP training be added? 

 What are the metrics for measuring the success of educator training programs? 

Using 3DP during 
teaching 

 What are the barriers and challenges to educators incorporating 3DP into their 
teaching of other subjects? 

 What teaching resources and support do educators require to incorporate 3DP into 
their teaching and classroom projects? 

 How effective are the educational resources provided by 3DP equipment 
manufacturers at supporting educators using 3DP during teaching? 

 Where is 3DP being used to support teaching outside of STEM subjects?  
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 Why does hands‐on experience of 3DP in class lead to improved student 
understanding of subject matter? 

 How does this improved student understanding relate to the preferred learning 
styles of students (e.g. kinaesthetic, visual, social)? 

 How are student attitudes towards 3DP affected by using 3DP in other subjects and 
educational settings? 

Using 3DP to 
produce artefacts 
that aid learning 

 What are the educational benefits of 3D printed artefacts versus those produced 
using alternative methods? 

 How do these educational benefits vary across different stages of the education 
system and across disciplines? 

 Why do students learn better when using 3D printed artefacts? 

 Why have 3D printed learning aids been embraced in anatomy and chemistry more 
than in other disciplines? 

 What are the barriers to the further adoption of 3D printed visual aids in teaching? 

Using 3DP to 
create assistive 
technologies 

 What types of assistive technologies have been 3D printed?  

 What are the benefits and challenges of creating 3D printed assistive technologies 
in the classroom for students with different types of visual, motor and cognitive 
impairments? 

 How effective are 3D printed assistive technologies at supporting learning in special 
education settings? 

 What are the metrics for measuring the success of using 3DP to create assistive 
technologies in special education settings? 

 What support and resources are necessary for using 3DP to create assistive 
technologies in special education settings? 

 How does the creation of assistive technologies by non‐impaired students develop 
empathy for the users of such assistive technologies? 

Using 3DP to 
support outreach 
activities 

 What models of 3DP‐based outreach programs exist? 

 What are the characteristics of successful 3DP‐based outreach programs? 

 Which are the most significant factors when designing 3DP‐based outreach 
programs for different types of student audiences? 

 How effective are 3DP‐based outreach programs at encouraging students to pursue 
higher education and careers in STEM subjects? 

 What are the metrics for measuring the success of 3DP‐based outreach programs? 

 How can 3DP‐based outreach programs complement the in‐class teaching of 3DP? 

 How does the effectiveness of 3DP‐based outreach programs change as 3DP is 
adopted more widely in the K‐12 school system? 

Table 7. Potential research questions relating to 3DP in education 
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