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Abstract

The paper explores the frequency and size distributions of firm-size in a novel dataset

for the mid-Victorian era from a recent extraction of the England and Wales popula-

tion censuses of 1851, 1861, 1871, and 1881. The paper contrasts the hypothesis of the

Power Laws against the Lognormal model for the tails of the distributions using maxi-

mum likelihood estimation, log likelihood ratio, clipped sample coefficient of variation

UMPU-Wilks test, Kolmogorov-Smirnov statistic, among other state-of-the-art statis-

tical methods. Our results show that the Power Law hypothesis is accepted for the

size distribution for the years 1851 and 1861, while 1871 is marginally non-significant,

but for 1881 the test is inconclusive. The paper discusses the process that generates

these distributions citing recent literature that shows how after adding an i.i.d. noise

to the Gibrat’s multiplicative model one can recreate a Power Law behaviour. Overall,

the paper provides, describes and statistically tests for the very first time a unique

historical dataset confirming that the tails of the distributions at least for 1851 and

1861 follow a Pareto model and that the Lognormal model is firmly rejected.

Keywrod: Power Law; Pareto distribution; Zipf’s Law; Lognormal distribution; Gibrat’s

Law; Firm size; Victorian census.
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A tale of two tails:

Do Power Law and Lognormal models fit firm-size

distributions in the mid-Victorian era?

1 Introduction

Fujita et al. in their classic textbook observe that often “theory gives simple, sharp-edged

predictions, whereas the real world throws up complicated and messy outcomes”.[17] How-

ever, Fujita et al. also notice that numerous examples occur where the situation is upside

down: “data offer a stunningly neat picture, one that is hard to reproduce in any plausible

(or even implausible) theoretical model”.[17] This unsettled theorisation may explain that

a search in Physica A gets 7,543 results for “Power law”, 551 for “Pareto distribution”, 222

for “Zipf’s Law”, 708 for “Lognormal” and 70 for “Gibrat’s Law”, the main fields discussed

in this paper. In this literature on firm size, the key sources are the work of American

linguist George Kingsley Zipf [63] and French engineer Robert Gibrat [25]. However, Power

law, Pareto distribution, Zipf’s law, and Gibrat’s law have been described in an astonishing

number of occasions in the social sciences, economics, biology, linguistics, history, geography,

ecology, physics, and elsewhere.1

This paper focuses on firm size. This has been previously explored using different vari-

ables according to the frequency, number or percentage of total employees, employment

share, sales, income, assets or profits. The unique data examined in this paper permits

analysis of both the distributions of the frequency, and the size, measured by number of

total employees of firms in England and Wales between 1851 and 1881. The relevant liter-

ature on the distribution of firm size covers almost all geographical contexts: e.g. [51] for

the United Kingdom, [5] and [57] for the United States, [22] and [21] for the G7 countries,

[46] for Japan, [10] for Italy, [47] for Portugal, [31] and [62] for China, or [33] for Korea. A

related topic, farm size, which is also available in our dataset but is not analysed in this

paper, is included in works by [27] and [1] for England and Wales, [28] for South Africa, and

1Mitzenmacher [44] gives nineteen examples in computer science and apologizes for “leaving out countless
further examples”. Clauset et al [13] give twenty-four examples comprising words in Moby Dick [45], protein
interaction in Saccharomyces cerevisiae [35], metabolites in Escherichia Coli [34], intensity of wars [50],
terrorist attacks [12], the size distribution of web files transmitted over the Internet [61], species per genus
of mammals [56], customers affected in electrical blackouts [45], bestselling books sold [29], acres of wildfires
[45], solar flares [45], and number of citations listed in the Science Citation Index [49].
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[42] for England and the EU. An important contribution to the discussion is the book [53]

where complex stochastic processes are used to explain both Zipf’s and the Gibrat’s laws.

Advanced econometric techniques are implemented in this paper to test the tail behaviour of

our unique sample. The main intention of the paper is to provide evidence of the statistical

behaviour of the firm size and frequency distributions using a dataset for England and Wales

in mid-Victorian times.

Currently there is a heated debate about the possibility to distinguish whether behaviour

at the tail follows a Power Law distribution or a pure Gibrat’s Law, i.e. a Lognormal distri-

bution. Malevergne et al. [43] claim that their attempt using the UMPU (uniformly most

powerful unbiased)—following Del Castillo and Puig test [15]—“is shown to provide a clear

diagnostic, allowing us to distinguish between the power-law and the Lognormal hypothesis,

even when the data set is quite small”. Also, although Clauset et al. [13] argue that: “[i]t

is extremely difficult to tell the difference between log-normal and power-law behaviour . . .

[and] it appears unlikely that any test would be able to tell them apart unless we had an

extremely large data set”, notwithstanding they provide an extended methodology to deal

with the testing of the Power Law and Lognormal hypotheses. Bee et al. [8] and [7] also

acknowledge that “the two different distributions are mathematically different, but only in

the limit” and the tail behaviour for their empirical analysis gave approximately the same

outcomes for their finite samples but at the same time they provide a Maximum Entropy

(ME) test to tackle this query. In this paper, we implement several advanced statistical

methods proposed in recent literature using maximum likelihood estimation to estimate

the shape (α) and the cut-off (u) parameters, loglikelihood ratio to compare competing

models, Vuong methodology to find p-values for this comparison, clipped sample coefficient

of variation UMPU-Wilks test to contrast the Pareto to the Lognormal hypothesis on the

tail, Kolmogorov-Smirnov procedure to measure the distance of models and find also the u

parameter and the Goodness-of-Fit, and non-parametric bootstraping to obtain confidence

intervals as proposed by Malevergne et al. [43], Clauset et al. [13], Alstott et al. [2], and

Gillespie [26]. The evidence we provide corroborates the claim of Malevergne et al. [43] that

“the test can be derived with extremely high accuracy (even for very small samples)”.

We are interested in which of either a Power Law or Lognormal better describes the

distributions of our data, but to aid interpretation it is important to clarify why firm size
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follows these distributions? Traditionally for examination of the whole distribution focus

was given to the simple distinction of whether a firm’s decision-making is multiplicative

and not additive. When a decision is made on the next period of workforce hiring, it is

based on “I need ten more or twenty fewer workers”, or it is based on “I need an increase

of 10%, or I need a 20% decrease”. The former was considered to generate a normal dis-

tribution, while the latter was believed to generate a Lognormal distribution. As a result,

many authors explain the outcomes of the Lognormal simply as a proportional process that

acts recursively over time. For example, Gan et al. [23] using Monte Carlo experiments

showed that no explanatory economic theory is required. Batty [6] argues that this result

from complex systems is self-organising and Corominas-Murtra and Sole [14] establish that

Zipf is a common statistical feature when a system goes from order to disorder or vice versa.

Arshad et al. [3] give a wider comparison of these simple explanations based on economic

shocks, human capital accumulation, or central place theory. At the same time, Gabaix

[19] and [20] presents an explanation for the growth model of cities. Nevertheless, more

recently Saichev et al. [53] and [52] have shown that simply adding a well-behaved noise

to the well-known equation embodying Gibrat’s law can result in switching the Lognormal

behaviour to a Power Law for large values in the tail. That is, there is no need to add a

theory just to explain the generation of the Lognormal distribution, as commonly argued,

but also for the Power Law.

2 Methodology, data, frequency and size distributions

The data for this paper are derived from the original manuscripts of the England and

Wales population census. The censuses have been transcribed and encoded into a database

recently made available at the UKDA [32]: The Integrated Census Microdata (I-CeM). From

this source as well as additional census data to infill gaps in I-CeM, employers and the size

of their workforce have been extracted and made available as the ‘British Business Census

of Entrepreneurs’ database.2 This provides the starting point here. The 1851-81 popula-

tion censuses questions included data on workforce size. Unfortunately, the question was

discontinued after 1881 so our analysis is limited to four-censuses: 1851-81. The data are

particularly valuable since they are exhaustive, especially for the largest firms: noted as

2Reference to be included when database is deposited in March-April 2019. The data used are included
with this submission as supplementary files.
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essential by Fujiwara et al. [18] to discriminate between firm size distributions. However,

whilst the data for 1851, 1861 and 1881 are almost fully complete, 1871 has transcriber defi-

ciencies that mean that total business numbers are not reliably available (about 20% of data

are missing). Hence, whilst 1871 analysis is included here for completeness, and it generally

confirm the same distribution patterns, we do not always attempt to fully interpret this year.

There are two possible distributions that can be built from the employers’ answers in

the censuses. One is the frequency distribution of firm size, the number of firms for a given

workforce size. For instance, in 1851 there were 181,900 firms and 390 different sizes. Their

distribution starting from the left (largest) has 159 (40.77%) of frequency one—159 sizes

appear just once—52 (13.33%) of frequency two—52 sizes appear twice—and 23 (5.9%) of

frequency three—23 sizes appear thrice—and so on, ending to the right with one (0.26%) of

frequency 38,111 (i.e. for size of two employees), and one (0.26%) of frequency 47,231 (for

size of one employee). This is similar to the number of journal citations used in the data

by Redner (1998), as well as many other examples. The second distribution is the firm size

distribution, the workforce size for a given firm. For instance, in 1851, there are 1,185,602

employees and 181,900 firms and its distribution starting from the left has 47,231 (25.97%)

with one employee, 38,111 (20.95%) with two employees, and so on, ending to the right with

one with 4,287 employees and one with 6,000 employees. As a starting point, it is possible

to plot both together. Figure 1, which is a replication of Figure 1 of Redner [49] for our firm

data, using a log-log scale to represent the relation between frequency and size. These plots

represent frequency as a function of size. However, the function is not one-to-one because

for some low frequencies there are many sizes with the same given frequency, as can be

seen from the large cluster of data points at low frequencies and relatively large sizes. This

is amplified in our data because of bunching: contrary to Redner’s data, employers often

reported their workforces in round numbers of tens, hundreds and thousands. This explains

the higher variance and spread in frequency at large firm sizes. Note also that we use the

actual firm size for each firm: they are not pre-grouped into size classes. This overcomes

one of the criticisms of many analyses of firm size: what Bee et al. [8] term “the widespread

practice of binning the data” (grouping into size categories). This loses information and

results in any statistical inferences being less reliable, especially for the tails which Fujiwara

[18] observe are critical: where bins are large and number of observations is small over a

wide size range.
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Tables 1 and 2 show the most frequent and the largest firm sizes for 1851-1881. First

notice that, in grey, the function converting rank to size (and its inverse) is not necessarily

monotonic. Also, in 1851 the ratio of each frequency relative to the frequency of the most

frequent firm size ranges from one to fifteen, but in the rest of the years it ranges approx-

imately one to eight. If we plot the frequency and the size distribution for values of less

than forty for each distribution, in Figure 2, more than 40% of the distribution is made up

by firms with one specific workforce category, with a large drop of frequency for size classes

with two specific size classes and over. Also, in Figure 3, over 20% of the firms have size

one, but the drop for smaller sizes is smooth and not as sharp as for frequencies. However,

for both distributions what matters most for the mathematics of the curve is the upper tail

of the distribution where high figures appear. Figure 4 shows the whole distribution of firm

size frequency. For the upper tail there are only 159 of firms including the four largest firms

(2,010, 2,180, 4,287, and 6,000 employees). Hence, the distribution does not have a typical

scale or size but spans from frequency one to frequency almost 50,000 as described by New-

man [45]: “not all things we measure are peaked around a typical value. Some vary over

an enormous dynamic range, sometimes many orders of magnitude.” In the US population,

Newman calculates that the ratio of largest and smallest population is at least 150,000. This

compares with our almost 50,000 between the most frequent and least frequent firm size for

the approximately 500 different frequency categories of firms. For the size distribution, this

compares with approximately 8,000 as the size range spans from one to 8,000 employees if

we expand the analysis to all the distributions.

Table 3 compares in detail the summary statistics of the two distributions in each of the

four censuses. While the frequency distribution has only around 500 datapoints, the size

one has about 180,000. As a result, in the frequency distribution the arithmetic mean is of

a different order of magnitude than the geometric and harmonic means and the median. In

contrast, in the size distribution all are similar and close together. All statistics for maxi-

mum, range, inter quantile range, standard deviation (and variance) and standard error of

the mean of the frequency distribution are greater than for firm size. While the size distri-

bution has a greater skewness and kurtosis, both distributions exhibit similar coefficients of

variation.
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Table 4 shows the correlations among the frequency and size distributions for each of

the four censuses. At first sight, there is a high correlation within the distributions: the

four frequency distributions are correlated at about 0.99, while the four size distributions

are correlated at 0.95. The correlations across types are also high at 0.7 and above.

3 Empirical analysis

A relationship y = f(x) follows a Power-law if, after the unit increase of x, y increases

by a power. This Power Law is an intermediate rate of increase between the linear and

the exponential. If you take the logs of the dependent variable and also the logs of the

independent variable, there is a straight line relationship. The exponential, a model with a

higher rate of growth just requires the logs of the dependent variable to get a straight line.

Thus, finding the linear behaviour after taking logs was one of the holy grails for identifying

the type of growth, but as we will see this does not suffice as a test. Indeed, a straight line is

only a necessary but not a sufficient behaviour of a Power Law. In our cases, the Lognormal

presents an exponential decline while the Power Law just a power decay. Consequently,

the Lognormal goes to zero faster than the Power Law. Nevertheless, it is also well-known

that for certain parameter values, the Lognormal can present pseudo-linear patterns in the

meaningful intervals of analysis. As shown by Malevergne et al. [43] a Lognormal with

standard deviations in the interval [2,3] “is close to linear over almost four decades” of city

sizes over time. This is observed in our data. Thus it is of crucial importance to use other

more advanced methods to distinguish between the Power Law and the Lognormal in the

dataset.

Consequently, we have two competing behaviours: Pareto (a Power Law with a cut-

off—the xmin or u parameter—defining the tail as shown below) and Lognormal distribu-

tions.3 The probability density function of the Pareto distribution as presented in equation

3It may be confusing the jump between Pareto Law, Pareto, and Zipf. To clarify this, we argue, as will
become clear below, that Power Law includes Pareto and that Pareto includes Zipf. This means that when
we are saying Pareto we are also saying “Power Law with a cut-off—the xmin or u parameter—”. So these
terms are both interchangeable, but also subtlety different. The title of the paper uses Power Law because
it is the more general terminology but the tail behaviour is just restricted to Pareto because we are thinking
of a “Power Law with a Lentement term equals to xmin”. At the same time, when we explore the Zipf
behaviour we are thinking of a “Pareto with an exponent equal to 1” or a “Power Law with a cut-off and
an exponent equal to 1”.
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2.2 of Clauset et al. [13] is:

p(x) =
α− 1

xmin

(
x

xmin

)−α

while Malevergne et al. [43] equation (21) use:

α0
uα0

x1+α0
, x > u (3.1)

It is immediate that:

α = 1 + α0

and that

xmin = u

Moreover, the Power-law, Pareto, and Zipf are related by the following relation

Power-law ⊃ Pareto ⊃ Zipf

By definition, a Power Law has a complementary cumulative distribution function (CCDF)

equal to P (X > x) ∼ L(x)x−α0 , where α0 > 0 and L(x) is a slowly varying func-

tion—“Lentement” in French—as suggested by Karamata’s classical definition [37], [38],

and [54]:

lim
x→∞

L(rx)

L(x)
= 1

From this general equation, one can impose an additional constraint that L(x) = xmin so

that the Pareto distribution is defined. Finally, if the parameter α0 in Equation 3.1 is equal

to 1 a Zipf distribution is defined. Notice, importantly, that the coefficient in the CCDF is

α0, as defined in Equation 3.1, so that Zipf’s law is fulfilled when Malevergne et al. α0 = 1

but by Clauset et al. when α = 2. Henceforth, we call the cut-off parameter u as in Malev-

ergne et al. and we use Clauset et al. α so the Zipf’s law will be attained for a value of α = 2.

Sometimes this relation is firstly presented, as we do in Figures 5 and 7, as a linear
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relation between the rank, r, and firm size, x, in a log-log plot. But it is important to admit

that a linear relation is only a necessary condition for a Power Law behaviour but not a

sufficient condition, as mentioned before. Hence, a linear regression does not corroborate a

Power Law because Lognormal, exponential (see [13]) and other distributions can manifest

themselves as linear in a rank/size log-log plot. The following equation, Equation (2) of

Hoon et al. [33], further describes this relation:

xrβ = A

or taking logs,

ln(x) = ln(A)− β ln(r)

In this case Malevergne et al. α0 corresponds to 1/β of Hoon et al. So again, Zipf’s law is

guaranteed with a Hoon et al. β = 1. These authors add “The larger the value of β [the

smaller the value of the Malevergne et al. α0], the greater the relative size of a large firm

(high ranked firm) as compared with a smaller firm (low ranked firm)”. Hoon et al. also

provide intuition with the following differential equation:

dx

x
= −β dr

r

which can be interpreted as “for any two companies in the ranking, the difference in their

sizes is proportional to their difference in ranks and β is the proportionality constant”. In

other words, that the elasticity of the relation between rank and firm size is constant.

The Lognormal model has two parameter µ and σ. According to Johnson et al. [36],

x is Lognormally distributed with parameters µ and σ, if the logarithm of x is normally

distributed with the same parameters. The probability density function is the following:

fX(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , x > 0

Limpert et al. [41], and [40] argue that “[s]kewed distributions are particularly common

when mean values are low, variances are large, and values cannot be negative”. For the

difference between Lognormal and normal variability, they say “[a] major difference . . . is
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that the effects can be additive or multiplicative, thus leading to normal or lognormal dis-

tributions”. Limpert et al. [41], as discussed in the Introduction, show how the Lognormal

distribution is generated from a sequence of multiplicative random effects, x×c and x
c , where

x is a given value of the distribution and c any constant, equivalent to the additive random

effects that generate a normal distribution, x+c, and x−c. They add that, as in the normal

distribution, an additive 68–95–99.7 rule applies (i.e., the arithmetic value plus and minus

one, two, or three standard deviations), so also in the Lognormal distribution a multiplicative

rule 68–95–99.7 rule emerges for iterative multiplication and division by standard deviations.

3.1 Testing the tails: Pareto distribution or Lognormal?

3.1.1 The u cut-off parameter

The first step to test the behaviour at the tails is to establish at what point each tail

starts. To the left of the u parameter the behaviour is assumed to be Lognormal. To the

right there is competing behaviour between the Pareto and the Lognormal. To establish the

u parameter we use the Clauset et al. methodology described in [12] and [13]: they choose

the u that minimises the distance between the Power Law model and the empirical data. To

measure the distance they use the maximum distance between the cumulative distribution

function (CDF):

D = maxx≥u|S(x)− P (x)|

S(x) is the CDF of the data for the observations with value at least u, and P (x) is

the CDF of the Power-law model that best fits the data in the region x ≥ u. u is then

the value that minimises D.[13] Clauset et al. use the max or infinity metric, d∞, i.e, the

so-called Chebyshev distance in the space of functions. They suggest that this Kolmogorov-

Smirnov (KS) statistic is well behaved for this model. They even show that this method

performs better than a Bayesian information criterion (BIC) another alternative they im-

9



plement. Malevergne et al. [43] propose a Maximum-likelihood estimation (MLE) method

maximising the likelihood of a piecewise-function of a Lognormal below u and a Pareto at

and above u. We tested our results against this methodology with similar u estimates. Bee

et al. [8] add a ME methods, that is the best approximating density in a non-parametric

setup. Generalising it can be said that what is needed is a point estimation method to infer

the most statistically plausible estimate that accommodates the Lognormal model to the

left and the Pareto one to the right of the estimate.

After calculating u, it is direct to use another MLE estimation to fit the Pareto tail to find

the α parameter. Finally, using a non-parametric bootstraping procedure, i.e. by repeatedly

subsampling from the empirical distributions, we can find 95% confidence intervals for each

described parameter. Figures 6 and 8 show the fitted CCDF distributions with a dashed

line going from the estimated u throughout the tail with a slope equal to the estimated α

for all the distributions.

We use different methods to implement each statistic including code by Clauset [11] for

MATLAB [58], Alstott et al. [2] for Python [59], and Gillespie [26] and Shalizi [55] for R

[48], and our own code to implement the methods not readily available. Our results for

the number of firms and the total employees at the u parameter for the eight distributions

under analysis are presented in Table 5 and the 95% confidence intervals in Table 6 and

Figures 9 and 10. It can be seen from the results that both reported methods, Clauset et

al. and Gillespie, provide the same outcomes: for the small sample frequency distributions,

the û cut-off includes the whole distribution (but for 1851 this starts at a û of three for

the frequency of firms), while for the large sample size distributions the cut-off is evenly at

a û of ten employees. The α̂ estimations of the shape parameter are also given. In Table

6, it is also shown the number of observations within the tail or Total obs − rank(û) and

the percentage of firms or employees respectively in the frequency and the size tails, which

range from 53% to 100% for the frequency tail and from 60% to 77% for the size tail.4

4We have tested all our methods by replicating the well-known US Census cities data in Clauset et al.
dataset [13] to ensure that the calculation methods are equivalent. We also used synthetic Power Law
distributions to test the various tests generated by means of the following random number generator for

Power Law stated by Clauset et al. [13]:

⌊
(xmin − 1

2
)(1− r)

− 1
(α−1) + 1

2

⌋
where r is a random real number

uniformly distributed in the interval [0, 1) and b c is the floor function.
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3.1.2 A proper Pareto test

Hypothesis testing, following Casella and Berger [9], is an inferential method where a

statement about a population parameter is assessed to decide based on a sample of the

population, which of two complementary hypotheses is true: the null, H, and the alternative

hypotheses, K. A test is a function of the sample T (x1, x2, ..., xn) = T (X) which specifies a

region on the parameter space Θ where the null hypothesis is accepted, ΘH , and a rejection

region where the alternative is accepted, ΘK .

Clauset et al. [13] present a proper Pareto test claiming that “[m]ost previous empirical

studies of ostensibly power-law [they use power-law but in practice they refer to Pareto]

distributed data have not attempted to test the power-law hypothesis quantitatively.” They

introduce a null hypothesis of a Pareto distribution versus an alternative hypothesis that

a Pareto distribution is not plausible. The method is straightforward. First they fit the

empirical data to a Pareto model using MLE and then calculate the same KS statistic they

used to pin down the u parameter. They then generate a vast number of Pareto synthetic

distributions using as parameters the ones achieved in the first step and calculate KS for

these models. Then the proportion of these values larger than the empirical data is the

p-value. Figure 11 depicts the p-value for this test of the null hypothesis that the upper tail

of our frequency distributions is Pareto using the methodology of Clauset et al. [13]. The

test is positive to the null for all the years except 1871.

3.1.3 Pareto or Lognormal?

When making a decision (see, for example, Lehmann and Romano [39]), it is necessary

to distinguish Type I error (rejecting H when H is true) from Type II error (accepting H

when K is true). The power function β(θ)—where θ is the parameter tested—contains the

information to test these. The ideal is to have β(θ) = 0 for values of the parameter θ ∈ ΘH

and β(θ) = 1 for values of the parameter θ ∈ ΘH . A test is assessed according to the degree

its accomplishes this ideal. Normally, Type 1 error is fixed at a given level of significance

equal to 0.01, 0.05 or 0.1. Moreover, a test is uniformly most powerful (UMP) if its power
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function is closer to one than any other test testing the same H and K hypotheses for every

value of the parameter in the K subspace. This means, that after setting a Type 1 error at

a given level of significance, we are trying to find the best test among the tests of the same

class comparing its performance not to commit a Type 2 error. Finally, when this is not

achievable, it can be demonstrated that sometimes an unbiased UMP, or UMPU, test can

be found, where unbiased simply means that its probability of committing Type 2 error is

always higher in the relevant hypothesis subspace than the probability of committing Type

1 error, which is a generally plausible assumption.

After introducing this approach, we can present the H and K hypotheses we are con-

fronting as summarised by Malevergne et al. [43]:

“H: Pareto distribution for values of x larger than some threshold u and

K: Lognormal distribution also for values of x above the same threshold u”[43]

To test these hypotheses, Malevergne et al. show that an UMP test is not achievable,

while they suggest as an UMPU test the maximum likelihood ratio, that is “with insertion

in the maximum likelihood ratio of the maximum likelihood estimates of the unknown pa-

rameters instead of the true values”.[43] In mathematical statistics, this test is called the

Wilks test [43]. Malevergne et al. show that an equivalent statistic to this UMPU-Wilks test

is the clipped sample coefficient of variation ĉ = min(1, c), where c is the sample coefficient

of variation, that is the ratio of the sample standard deviation to the sample mean:

c =
sX

X

This test proposed by Malevergne et al. overcomes the biggest deficiency of competing

tests previously used in the literature that have very limited power such as the L-test or

χ2-test used in the famous Eeckhout Figure 2 (see [16]) where the confidence interval under

the null of Lognormal behaviour expands disproportionately at the tail of the distribution

completely compromising the test ability to discern between the vying hypotheses. Accord-

ing to Malevergne et al. the clipped sample coefficient of variation can be deemed as a

sufficient statistic for the optimal UMPU test. The critical function of this test is a function
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of the sample T (x1, x2, ..., xn) = T (X) equal to, as shown by [43]:

T (X) = 1 if ĉ < h

T (X) = 0 if ĉ ≥ h

where h is the critical value chosen “such that the probability that the inequality ĉ < h holds

under the null hypothesis [Pareto distribution] is equal to the (small) preliminary chosen

[level of significance]”.[43] To derive h, Malevergne et al. suggest two methods: a saddle

point method as shown by Del Castillo and Puig [15] and Gatto and Jammalamadaka [24]

and a simpler Monte Carlo approximation. Malevergne et al. refer to Del Castillo and

Puig [15] who showed that for the problem of testing the null hypothesis that the upper

tail is exponential against the alternative of a truncated normal, the UMPU-Wilks test is,

also, the clipped sample coefficient of variation. Finally, they describe how to perform the

simpler Monte Carlo method to find h. For this a large enough number of samples M of the

standard exponential function with unit parameter has to be generated—they suggest at

least 10,000—. Then, for each sample, ĉ is calculated and compared with that of the sample

under scrutiny. Therefore, as argued in [43], the “fraction of exceedances provides a good

statistical estimate of the corresponding p-value of the null hypothesis [Pareto distribution]”.

Yet another statistic is the logarithm R of the ratio of the likelihoods of the data under

two competing distributions presented by Clauset et al. [13]. If the outcome of the test is

positive then the first model has preeminence over the second, if the outcome is negative

the second should prevail. But it is also necessary to correct for random fluctuations. To do

so the ratio R is standardised by the standard deviation σ using the method first presented

by Vuong [60]. The method gives a p-value that tells “whether the observed sign of R is

statistically significant”.[13] If the p-value is small, say below a significance level of 0.01 the

test is unlikely to be a chance result of fluctuations. The hypotheses tested by Clauset et

al. [13] are the following:

H: Pareto distribution for values of x larger than some threshold u and
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K1: exponential distribution also for values of x above the same threshold

K2: stretched exponential distribution also for values of x above the same threshold

K3: Lognormal distribution also for values of x above the same threshold

The results comparing the Pareto distribution with the exponential—which is the abso-

lute minimum alternative because the usual definition of “heavy-tail” is against the “light-

tailed” exponential behaviour [4]—the stretched exponential, and the Lognormal are given

in Table 7. All the distributions are confirmed as “heavy-tailed” because the likelihood

ratios are positive and the p-values smaller than 0.01. For the stretched exponential the

frequency distributions for years 1851 and 1871 are positive and significant, but the other

two frequency distributions for 1861 and 1881 are not, even though they are marginally

non-significant. The four size distributions compared to the stretched exponential have best

fit by the Pareto distribution with strongly significant p-values. The comparison between

Pareto and Lognormal for the size distributions, have the year 1851 significant at a 0.05

level and the year 1861 at any level, ruling out the Lognormal model and confirming the

Pareto behaviour. For 1871, the significance is slightly inconclusive and for the year 1881,

the significance is clearly inconclusive. With these results it is possible to answer the main

question of this paper: at least for the years 1851 and 1861 the size distributions have better

fit by a Pareto tail than by a Lognormal one, defining the tails as all the observations above

the estimated u cut-off parameter. The test is inconclusive for the frequency distributions

with high p-values and alternating signs. Thus, it is not possible to rule out the Lognormal

or the Pareto distributions with the methods employed for the frequency distributions.

3.2 To Zipf or not to Zipf?

Having constructed, in Table 6, the 95% confidence intervals for the α parameters for

the two tails, size and frequency, it is direct to test the null that the model follows a Zipf

behaviour. This is relevant, as noted earlier, where Zipf behaviour is a “Pareto behaviour

with an exponent equal to 1” or a “Power Law with a cut-off and an exponent equal to

1”. The answer is an absolute no. None of the intervals includes a value compatible with

Zipf behaviour in the tail. So a rigorous and simple hypothesis testing permits us to be
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conclusive in this respect that the two tails are not Zipfian at the 0.05 level as implied by

the confidence intervals displayed in Table 6.

4 A comparison with modern times

We compare our data for the latest year (1881) with figures taken from Robson and

Gallagher [51] for the UK for 1987, as shown in Table 8. This is the closest year of modern

data to the historical censuses 1851-81. In the table, we compare the number of firms, the

number of employees and the percentage of employment (the percentage of employees in

a given bin out of the total employees in the economy) for size category used by Robson

and Gallagher for 1987 with our data for 1881. In this table we have to use bins to match

those in the Robson and Gallagher data, although we acknowledge that bins distort the

data, as noted earlier. Unfortunately, we can not perform here the same tests developed in

the previous sections of the paper because the full dataset of Robson and Gallagher [51] is

not archived. If data reemerged it would be a promising area for future research. Also, it

needs to be stressed that UK data are not equivalent to our data for England and Wales.

Nevertheless, the comparisons are valuable. There is an increase of 399.7% (5.8% annually)

in the number of firms, from 181,125 to 905,155; and in the number of employees of 574.1%

(6.2% annually), from 2,142,404 to 14,433,000. In the twenty bin size categories, fifteen show

a decrease in the percentage change in percentage employment with a minimum of -63.9% in

the 500-999 bin, while five show an increase with a maximum of infinity in the over 10,000

bin because there are no firms in this bin for 1881. There are only 179 very large firms

over 10,000 in 1987 and they account for a huge 22% of the employment; in our historical

data the largest 179 firms had 12.3% of employment (calculated from our individual firm

data), roughly half the modern figure. Although there is variation between bin categories,

the dominant pattern is for positive and high percentage increases in the two largest bins,

and decreases in all but one of the small and medium-sized categories. Although constrained

by differences in the bases of the data over time and the bin categories, the lengthening and

fattening of the tail is a continuation of the trend we observe in 1851-81, and in line with the

expectations of the Pareto and Lognormal distributions: i.e. the tail increases massively in

fatness and length over time. Also, this is in line with economic literature that has suggested

that significant concentration into larger firms probably began in the mid-Victorian period

after the 1870s and 1880s and continued thereafter (e.g. Hannah [30]).
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5 Discussion and conclusions

This paper explores two distributions of firm data (size and frequency) during the mid-

Victorian era to test the Power Law compared to the Lognormal hypotheses at the tails:

that is, a tale of two tails. We show that the Pareto distribution fits the tails of the size data

better than a Lognormal one for at least the years 1851 and 1861, and also with marginally

non-significant values in 1871, but for the frequency distributions the test is inconclusive.

Thus, the main contribution of this paper to the literature is to demonstrate that the new

dataset for firms size in mid-Victorian era is heavy-tailed, with the tail belonging to the

Power Laws rather than the Lognormal distribution. Comparison with more modern data

for 1987, although constrained by the available data and categories, confirms that tails have

grown larger over time, whilst the main part of the distribution for small firms has been

reduced. Also, we have been able to rule out a Zipf behaviour in the tails of our size and fre-

quency distributions. Some of the techniques revisited are the UMPU-Wilks clipped sample

coefficient of variation for distinguishing between the Power Laws and Lognormal behaviour,

MLE to point estimate the u and the α parameters, KS to measure the distance between

the actual data and the fitted one, and log likelihood ratios to compare distributions and

Vuong procedure to obtain the p-values for this comparison.

We use the original firm size data at individual level which is exhaustive, thus meeting

Fujiwara et al. [18] condition that the data are complete to allow identification of tail effects.

And we avoid grouping (binning), which Bee et al. [8] argue is one of the most overlooked

limitations of many previous analyses of firm size. Despite, Fujita et al. [17] questioning

how to distinguish between distributions: “Is this a solution to the riddle? Our view is

that it is ingenious but not entirely satisfactory”, we are now in a position to answer for

the distributions in the tail. Using the advances in the literature by Clauset et al. [13] and

Malevergne et al. [43] we have shown how rigorous assessments of firm size tail behaviour

can be used to test between these two tales. With these procedures it is possible to answer

the main question of this paper: at least for the years 1851 and 1861 the size distributions

have better fit by a Pareto tail than by a Lognormal one, defining the tails as all the ob-

servations above the estimated u cut-off parameter. This outcome is conclusive and stands

as a new addition to the profuse literature on this issue. We are convinced that these new

procedures recently discussed in the literature permits to properly test the tale of the tails:
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are they Pareto or Lognormal above the cut-off? We expect this discussion to carry on

in the literature as more tails, current and past, being questioned on their tail behaviour.

At least, we deliver the answer for this newly available mid-Victorian firm size and frequency.
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Table 5: Kolmogorov-Smirnov procedure to estimate the cut-off parameter u and maximum
likelihood estimation of the shape parameter α using Clauset et al. MATLAB package [11],
and Gillespie’s R package [26].

FREQUENCY
1851 1861 1871 1881

Clauset et al.
û (frequency of firms) 3 1 1 1

α̂ 1.433 1.469 1.45 1.467
Gillespie

û (frequency of firms) 3 1 1 1
α̂ 1.433 1.469 1.45 1.467

SIZE
1851 1861 1871 1881

Clauset et al.
û (size of firms) 10 10 10 10

α̂ 2.481 2.321 2.242 2.144
Gillespie

û (size of firms) 10 10 10 10
α̂ 2.481 2.321 2.242 2.144
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Table 7: Loglikelihood ratio test for comparing the Pareto hypothesis with an exponential,
a stretched exponential, and a Lognormal. The test results provided are the normalised
ratio and the p-value calculated from it. A small p-value means the direction of change
is caused not only by random variation. A large p-value means that the statistic cannot
discern between each pair of distribution. Alstott package [2] in use with 5,000 simulations
for each of the tails.

FREQUENCY
1851 1861 1871 1881

EXPONENTIAL
normalised ratio 9.482‡ 10.27‡ 10.795‡ 9.935‡
p-value 0.00 0.00 0.00 0.00
STRETCHED EXPONENTIAL
normalised ratio 1.715∗ 1.556 2.584‡ 1.412
p-value 0.086 0.12 0.009 0.158
LOGNORMAL
normalised ratio -0.442 0.241 -0.786 0.158
p-value 0.658 0.809 0.432 0.874

SIZE
1851 1861 1871 1881

EXPONENTIAL
normalised ratio 20.309‡ 32.801‡ 29.6‡ 38.74‡
p-value 0.00 0.00 0.00 0.00
STRETCHED EXPONENTIAL
normalised ratio 16.612‡ 24.21‡ 20.813‡ 20.788‡
p-value 0.00 0.00 0.00 0.00
LOGNORMAL
normalised ratio 2.342† 10.141‡ 1.469 0.808
p-value 0.019 0.00 0.142 0.419
∗, p < 0.10; †, p < 0.05; ‡, p < 0.01
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