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Abstract: As a non-destructive testing technology with fast response and high resolution, acoustic 
emission is widely used in material monitoring. The material deforms under stress and releases 
elastic waves. The wave signals are received by piezoelectric sensors and converted into electrical 
signals for rapid storage and analysis. Although the acoustic emission signal is not the original stress 
signal inside the material, the typical statistical distributions of acoustic emission energy and wait-
ing time between signals are not affected by signal conversion. In this review, we first introduce 
acoustic emission technology and its main parameters. Then, the relationship between the expo-
nents of power law distributed AE signals and material failure state is reviewed. The change of 
distribution exponent reflects the transition of the material’s internal failure from a random and 
uncorrelated state to an interrelated state, and this change can act as an early warning of material 
failure. The failure process of materials is often not a single mechanism, and the interaction of mul-
tiple mechanisms can be reflected in the probability density distribution of the AE energy. A large 
number of examples, including acoustic emission analysis of biocemented geological materials, hy-
droxyapatite (human teeth), sandstone creep, granite, and sugar lumps are introduced. Finally, 
some supplementary discussions are made on the applicability of Båth’s law. 
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1. Introduction 
Geotectonic processes are often perceived as slow, encapsulated in the colloquial ex-

pression of ‘long geological time scales’. With improved experimental facilities to identify 
the details of geological time dependences, we now understand that they occur on many 
different time scales. Even those which evolve over thousands of years, such as some met-
amorphic processes, proceed by short-time atomistic changes which simply add up to the 
observed long-term evolution. Long-term time evolution is often constituted by a long 
sequence of short singular events and research has partly shifted from the continuous 
description of geological processes to the analysis of these singular events from sponta-
neous changes in chemical composition, atomic ordering, phase transitions, and crack 
propagation to earthquakes, the collapse of structures in the mining industry and so forth. 
The investigation of singular ‘rare events’ has entered geological and mineralogical re-
search after it already became a key research field in metallurgy [1,2], material sciences 
[3–5] and solid-state physics [6–8]. In addition, many short events are commonly observed 
in biogenic materials and in food processing. The observation of the collapse of these ma-
terials under stress leads to novel analytical tools to register the collapse mechanisms via 
the formation of avalanches and allow an assessment of their mechanical stability. The 
purpose of this paper is to highlight some recent experimental developments for the in-
vestigation of commonly used geomaterials and some analogs using acoustic emission 
spectroscopy, and to connect their analysis with current theoretical models. 
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2. Avalanches and Acoustic Emission Spectroscopy 
When physical systems produce discontinuous burst responses under external fields, 

the bursts often follow the predictions of avalanche physics and ‘crackling noise’ emitters 
[6,9,10]. Typical examples include natural avalanche disasters, such as earthquakes 
[11,12]. The avalanche behavior does not depend on the size of the earthquake with pico-
scale earthquakes and global earthquakes following very similar patterns. Avalanche dy-
namics also describe the fluctuations of stock markets, which have small fluctuations and 
stock disasters caused by financial crisis [6], the temporary evolution of neuron connectors 
during ‘thinking’ processes [13–15], and the medical deterioration of brain structures 
[16,17]. Other examples are the Barkhausen ‘noise’ of pinned domain walls during mag-
netization processes [18–21], martensitic transformations [22,23], plastic deformation in 
solids [24], materials failure [25], ferroelectric and ferroelastic domain movements [3,26–
29] etc. Avalanche events are monitored by different monitoring methods, such as force 
drop measurement [30], optical observation [28], thermal radiation observation [23], etc. 

Acoustic emission (AE) spectroscopy has become the method of choice in many fields 
[5,31–33] because it is highly sensitive. For example, the AE system constructed by the 
Vallen company, Germany, has a sampling rate that can reach up to 10 MHz, an arrival 
time resolution of 100 ns, and an energy resolution of 1.8 × 10−18 V2s (i.e., in the attojoule 
regime, aJ) referred to sensor signal at 34 dB preamplifier gain. A previous study showed 
simultaneous measurements of the avalanche of stress and AE during mechanically in-
duced twin boundary motion in a shape memory alloy. It showed that the probability of 
finding an AE event during a stress drop is ~100 times higher than between stress drops. 
Additionally, the relations between mechanical energy drops and the lower bound of the 
acoustic emitted energy is approximately proportional [34]. The common drawback of AE 
is that the local signal is first locally transferred into an acoustic signal inside the sample 
which then propagates as an acoustic wavelet to the noise detector. The wave profile of 
AE is hence determined only indirectly by the initial signal and great care has to be taken 
not to confuse the measured signal with that of the initial atomic event. This problem has 
been analyzed in great detail [35], the analytical techniques highlight the strong similarity 
with the deconvolution procedure to analyze propagating waves in the context of geo-
physical seismology. The current statistical analysis of AE signals, especially its energy 
probability distribution function (PDF) and the interevent times, are not much affected by 
wave profiles and there is a large amount of literature which elucidates some of the intri-
cacies of AE spectroscopy [35–38]. The AE signal is in the form of a wave in Figure 1, and 
the important parameters of AE waves are their amplitude, duration, rise time, absolute 
energy, and waiting time. 
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Figure 1. Schematic typical AE experiment and AE signals. The setting of the Peak Definition Time 
(PDT) ensures correct identification of the signal peak for rise time and peak amplitude measure-
ments. If the PDT is smaller than the rise time, the amplitude captured by AE system would be 
smaller than the truth value. Proper setting of the Hit Definition Time (HDT) ensures that each AE 
signal from the structure is reported as one and only one hit. If the HDT is larger than (T2-T1), hit 1 
and hit 2 will be detected by AE system as just one hit. AE system needs HLT to get ready for the 
next signal detection, with proper setting of the Hit Lockout Time (HLT), spurious measurements 
during the signal decay are avoided and data acquisition speed can be increased. 

The amplitude A(t) is a function of time t and captures the evolution of the conjugate 
parameter to the external force. The time evolution of the amplitude is typically initiated 
by an incubation period where A(t) increases exponentially leading to the maximum am-
plitude, called Amax. The duration is the time period over which an avalanche survives. 
Experimental time scales typically extend from a few microseconds to many milliseconds. 
Absolute energies are obtained by numerical integration of the square voltage of signals 
E = 1/R ׬ Uଶ(t)dt୲୨୲୧ , where ti and tj are starting and ending times of the signal and R = 10 
kΩ is a reference resistance. The rise time is the time difference between starting time of a 
wavelet and time of the wave peak. The waiting times are the times between consecutive 
events, also called ‘interevent times’. 

3. Collapse Predicting 
Tectonic materials are generally inhomogeneous, anisotropic and show nonlinear 

elastic responses. Non-linearities often lead to sudden collapses under elastic constrains 
and to catastrophic failure. The catastrophic failure is not continuous, and the evolution 
of strain fields is not smooth, but abrupt, and displays typical avalanche characteristics. 
Earthquakes and mine collapses are examples of such catastrophic failures. The develop-
ment of methods which can serve as early warning systems of such disasters has been the 
focus of disaster prediction research for many years [39–42]. Progress has been very lim-
ited due to the complexity of the nonlinear time evolution during failure, the hidden trig-
gering mechanisms and insufficient theoretical models [43–45]. Compared with the tradi-
tional mechanical constitutive model and failure criterion, statistical physics provides an 
alternative research framework for disaster research [46–48]. They are based on elastic 
responses, as measured by seismic waves in the geological context, while acoustic emis-
sion (AE) spectroscopy is used on an engineering and laboratory time and length scale. A 
series of acoustic emission studies of geological materials such as shales [49], porous 
quartz [50], berlinite [51], corundum [52] and goethite [32] show that the acoustic emission 
signals released during the failure process characterize well the statistical features of the 
collapse with the following characteristic features: the acoustic emission signal (amplitude 
and energy of the ‘jerks’ or burst signals) follow power law statistics. In addition, the wait-
ing time distribution between events, and the aftershock distribution of these geomateri-
als, are indeed very similar to observations of earthquake so that it may be assumed that 
the underlying principles of the statistical processes are very similar [53]. 

Jiang et al. [54] explored early warning AE signals of compressed geological materials 
before they collapse. The probability for an event with energy E is a power law P(E) 
dE~E−εdE. Compared with previous attempts, they used larger samples and higher pres-
sure to observe the change of power law exponents in AE energy distributions. Dry and 
wet sandstone and coal samples were studied under uniaxial compression. Initially, the 
damage centers are almost randomly distributed with little spatial correlation between 
them. Closer to the final collapse, the damaged areas interact and form fracture zones, 
which leads to the final catastrophic failure (Figure 2). The power law exponents ε show 
different values in these two stages. For example, for sandstone, the energy exponent dur-
ing the early stage is ε = 1.77, while near failure it reduces to 1.53 (Figure 3). 
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Figure 2. Evolution of AE centers. (a) A few AE centers appear in the top and bottom areas of a 
sandstone sample since friction between sample faces and loading faces; (b) some AE centers occur 
randomly; (c) AE centers form the final crack; and (d) the image of the cracked sample. Reproduced 
with permission from [54]. De Gruyter, 2016. 

 
Figure 3. Distribution of avalanche energies for sandstone samples in the different time windows. 
The inset shows the maximum likelihood estimation fitting exponent ε as a function of a lower 
threshold. Reproduced with permission from [54]. De Gruyter, 2016. 

The time evolution of avalanche exponents is well understood by the tendency to 
assume some ‘critical values’ near failure points [35]. Experimental results in coal [55] and 
sandstone [50] confirm this picture. Discrete element computer simulations [56,57] show 
variable power law exponents. Variable exponents were previously observed in several 
physical systems. For compression with the collapse of martensitic porous Ti-Ni alloy, the 
first series of events is generated by de-twinning (ε = 2), while later stages relate to fracture 
(ε = 1.7) [58]. Again, the exponent reduces systematically when the collapse progresses. 

Jiang and his coauthors proposed the use of superjerks (also called “record breaking” 
events) to analyze AE spectra [59]. A superjerk is defined as an avalanche signal with 
energy greater than any previous event of the series. It has attracted great attention due 
to its relevance for climate and earthquake research [60–62]. Superjerks divide the whole 
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AE spectrum into many subintervals (Figure 4). By analyzing the probability density dis-
tribution of AE energy in each subinterval, the critical exponent decreases with the in-
crease in superjerk ranks, which can be used as a warning signal of impeding disasters 
(Figure 5). At the same time, it is also found that the waiting time intervals at times close 
to the final collapse become shorter and the AE signal strengths more intensive. The AE 
parameters hence evolve with the superjerk rank. A combination of these early warning 
signals was found to be the best approach to develop a reliable alarm system for structural 
collapse. Recently, a fiber bundle model has shown that the statistics of records of the 
event series of breaking bursts provide a very good tool to detect the acceleration breaking 
bursts, which could be used as an early warning of an imminent catastrophic failure [63]. 
Similar results have also been reported during soft uniaxial compression of three silica-
based (SiO2) nanoporous materials. The variations in the activity rate are sufficient to ex-
plain the presence of multiple periods of accelerated seismic release leading to distinct 
brittle failure events [64]. 

 
Figure 4. Time sequence of jerk events in coal under uniaxial stress. The spectrum contains 18,968 
jerks (blue) and 21 superjerks as record–breaking events. Superjerks are more energetic than any of 
the previous jerks. Reproduced with permission from [59]. American Physical Society, 2017. 
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(b) 

 
(c) 

Figure 5. Energy exponent as a function of the lower energy cut-off determined by maximum like-
lihood (ML) estimate. (a) Energy exponents determined by the maximum likelihood method for k-
intervals 13–14 and 20–21 with error bars and estimate values; (b) energy exponents for all intervals 
between k = 13 and k = 21. Sparse data sets lead to a less defined plateaus. We used data near 103 aJ 
to determine the energy exponents. (c) Evolution of the waiting time renormalization factor λ and 
the energy exponent ε with increasing rank k of superjerks. Two plateaus can be distinguished for 
large and small λ and exponents near ε = 1.5 and ε = 1.32. Reproduced with permission from [59]. 
American Physical Society, 2017. 

4. Avalanche Mixing 
A crucial outcome of previous research is that failure does generally not follow a 

single mechanism. This surprising result can be exemplified by the observation of a col-
lapse processes in metals [2] where local porous collapse and the movement of disloca-
tions combine to achieve the final, global collapse. In other cases, the porous collapse en-
tails the avalanche movements of twin boundaries [58], or a phase transition triggers cat-
astrophic changes of microstructures related to structural transformations [65]. During 
avalanche evolution we find that often one instability triggers another instability. This 
means that several avalanche mechanisms interact and mix dynamically [66]. In this situ-
ation, probability densities are no longer simple power laws but show the typical up-
wards curvature of mixed power laws [67]. Salje et al. [67] extended the analysis of mixing 
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to the use of the ‘maximum likelihood estimation method’, ML [68–70]. They derived the 
characteristic ML profiles for single, underdamped avalanches (a plateau), a damped av-
alanche (a monotonically increasing profile), and mixed avalanches (a peak before a plat-
eau). The upwards bent probability density distribution translates into a steep increase in 
the ML estimates for small avalanche energies which peaks at a maximum value, which 
is bounded by the energy exponent of the avalanche with the higher exponent. It then 
decays towards the exponent of the second avalanche. This rather complex ML profile 
was identified in several experimental investigations, which shows that avalanche mixing 
is indeed a much more common phenomenon than previously assumed [6]. 

In order to confirm the mixing mechanism for different avalanches during a collapse 
process, Salje and his coauthors designed a simple and instructive experimental arrange-
ment. They used two materials with different strengths and superimposed them in the 
same stress device (Figure 6) [71]. The stress was identical for both materials, but the ava-
lanche dynamics were different. This experiment combined one porous material at the 
early stage of uncorrelated, random damage mode while the second material was more 
highly damaged within the correlated failure state. The common stress created two ava-
lanche processes simultaneously and ensured mixing between them. In the compression 
experiment, they used coal and sandstone as test materials. As predicted by theory, the 
probability distribution of the AE energy of the composite rock was a nonpower law with 
an upwards bent of the probability distribution function (PDF) in double logarithmic dis-
play. The maximum likelihood estimation curve showed the predicted increase, peak and 
decrease towards the lower exponent (Figure 7). Several other compression experiments 
show that the mixing effect of different avalanche mechanisms is a common phenomenon. 
For example, compression experiments on granite show that the crumbling and fracture 
mechanism of granite mineral particles can form a state of avalanche mixing [72]. High 
temperature annealing (near the α-β phase transition temperature of quartz) reduces the 
internal constraints of granite and weakens the effect of fracture, so that the mixing be-
tween crumbles and fracture is observed (Figure 8). The AE crack analysis helps to eval-
uate whether there is prior damage in granite, which plays an important role in the safety 
assessment of granite caves for nuclear waste deposition. 

 
Figure 6. (a) Experimental arrangement for high stress measurements. (b) Energies of AE hits, de-
tected by the transducers attached to coal and sandstone as indicated by their color as function of 
time. This experiment contains 1001 events in coal, and 4875 events in sandstone. The shadowed 
areas indicate time intervals from 790 s to 1100 s and from 1460 s to 1635 s. Reproduced with per-
mission from [71]. American Physical Society, 2019. 
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(a) 

 

(b) 

Figure 7. Log–log histogram of energy distributions (a), and ML analysis of the power law exponent 
as a function of a moving threshold (b) for sandwiches of sandstone and coal. ‘Setup A’ indicates 
low stress measurements, ‘Setup B’ high stress measurements. Reproduced with permission from 
[71]. American Physical Society, 2019. 

 
(a) 
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(b) 

 
(c) 

Figure 8. (a) Distribution of avalanche absolute energies for different temperatures. (b) The ML-
fitting exponent ε as a function of a lower threshold Emin. (c) Damping and pure power fitting for 
the distribution of avalanche absolute energies of 100 °C and 700 °C. Reproduced with permission 
from [72]. De Gruyter, 2019. 

For uniaxial compression under stress control, the sample compression stops after 
the first cracks occur. If the stress is further increased, it constitutes a confining effect and 
additional friction occurs. This effect was exemplified for sandstone where confined com-
pression tests always show avalanche mixing, in contrast with the uniaxial compression 
test without confinement [73]. 

In addition to geological materials, the mixing of different avalanche mechanisms 
has also been studied in several materials. For example, in a porous Mg-Ho alloy, the in-
teraction between dislocation and fracture leads to the mixing of avalanche mechanism 
during compression and tension [2]. The critical exponents of the two mechanisms are 
consistent with the mean field theory and the force integrated mean field theory, respec-
tively. Furthermore, the two avalanche mechanisms can be separated by synchronous 
waveform analysis. Chen and her collaborators have demonstrated how to separate dis-
location moves and entanglements in 316 L stainless steel. They showed that the main 
difference between the two mechanisms is the average duration for each type of avalanche 
[74]. 
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5. Applications 
5.1. Biocementation 

The energy consumption to produce cement for building work is particularly high. 
The cement industry creates significant environmental pollution, so that the development 
of new environmentally friendly cementitious materials has become a research hotspot in 
many countries. Some micro-organisms produce calcium carbonate in the process of me-
tabolism, which induce calcium carbonate deposition during cementation [75,76]. One of 
the important applications is in the construction of calcareous sand islands and reefs. Cal-
careous sand exists widely throughout the Earth’s tropical zones. The main construction 
requirement is that calcareous sand needs to be reinforced for foundation construction. 
Wang et.al. carried out compression failure experiments on single calcareous sand grain, 
unconsolidated sands and biocemented sand block [77] (see Figure 9). All three materials 
show avalanches under compression. Through the analysis of the avalanche characteris-
tics of the three samples, it was found that the destruction mechanism of the biocemented 
calcareous sand is the failure of the bonding between sand particles via the biogenic cal-
cium carbonate. Under stress the biocemented calcareous sand blocks degenerate rapidly 
back into sands without cementation and some carbonate clusters. In this case, the obser-
vation of crackling noise provides an excellent indicator for the stability of biocemented 
structures. 

 
Figure 9. Compression arrangement for (a) grain, (b) sands without cementation, and (c) bioce-
mented sand sample crushing. Reproduced with permission from [77]. Elsevier, 2021. 

5.2. Hydroxyapatite (Human Teeth) Cracking 
Teeth are the strongest part of the human body. They not only have the function of 

chewing, but also play an important role in pronunciation and facial appearances. They 
also contain microcracks which are not routinely found by optical and CT examination in 
dental clinics. This leads to wrong diagnosis of crack formation before the cracks become 
large enough to be observed optically. Moreover, tooth cracks do not self-repair, they can 
induce periodontitis and, ultimately, the loss of the tooth. The cracks do not induce pain 
at the initial stage, making it difficult for patients to detect tooth damage. When pain oc-
curs, the best opportunity for treatment has already been missed. Wang et al. used healthy 
human molars to carry out damage examinations and found that the process of tooth 
cracking displays obvious avalanche characteristics [78]. Human teeth are composed of 
hydroxyapatite from a nanometer to a micrometer scale and are typically brittle. Cracks 
progresses through the tooth dentin pores, and exhibit abundant microstructures such as 
crack bridging, crack deflection and crack bifurcation. This complex crack evolution leads 
to avalanche dynamics. The stress–strain curve is a typically serrated with clustering of 
the acoustic emission signal. The absolute energy of AE meets the power-law distribution 
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over nearly seven energy decades with a power-law exponent ε = 1.4, Figure 10. The sta-
tistical distributions of signal amplitudes, durations, correlations between energies and 
amplitudes, and the relationship between amplitude and duration all meet the prediction 
of mean field theory very well. These avalanche signals do not appear when the tooth is 
undamaged so that the acoustic emission method is a warning of developing microcracks 
in teeth. 

 
Figure 10. (a) The distribution of AE energy (double logarithmic scales) was fitted by P(E)~E−ε with 
ε = 1.4. (b) Maximum likelihood estimates the plateaus indicates the estimation for the energy expo-
nent. The dashed black line indicates the slope of the PDF. (c) Maximum likelihood estimate for the 
energy distribution exponent at different strain levels.Reproduced with permission from [78]. Else-
vier, 2021. 
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5.3. Sandstone Creep 
When a constant force is applied to a material it still transforms via creep. Even if the 

applied force is lower than the ultimate strength of the material, the material will still fail 
after long-term damage accumulation. Creep is predominant in geotechnical and geolog-
ical engineering, so it is necessary to monitor creep and predict disaster accumulation over 
time. According to the creep failure experiment of sandstone [79], it is found that the 
acoustic emission signal is weaker in the stable creep stage than under constant strain 
rates. When the failure is approaching collapse, the AE signal of creep shows a series of 
activity periods (Figure 11), which is different from the AE signal of increasing uniaxial 
compression. The probability density distribution of AE in the first few cycles has a high 
critical exponent value of ε = 1.6–1.7, while the final failure shows a fracture exponent of 
ε = 1.4. This creep results are consistent with fiber bundle simulations [80,81]. 
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(c) 

Figure 11. (a) AE energy spectra with a series of active periods, n = 1, 2, 3, and 4. The red continuous 
curve represents the energy average of 30 consecutive events. (b) Distribution of avalanche energies 
for n = 1 and n = 4 in creep experiments. (c) The ML-fitting exponent ε as function of the lower 
threshold Emin for n = 1, 2, 3, and 4. The horizontal dashed line (ε = 1.39) indicates the result from 
Vycor compression. Reproduced with permission from [79]. AIP Publishing, 2018. 

5.4. Damage of Wetting–Drying Cycles in Sandstone 
Periodic changes of water levels in reservoirs causes wet cycle damage of reservoir 

rocks. The Three Gorges Reservoir was formed by the construction of China’s Three 
Gorges Dam, the world’s largest water conservancy project, which contains changes of 
water levels by nearly 30 m. Xie et al. used the typical sandstone in the Three Gorges 
Reservoir Area to measure acoustic emission and nuclear magnetic resonance images to 
study the dry–wet cycle damage [82]. The internal damage of sandstone caused by dry–
wet cycles is best seen by nuclear magnetic imaging. The detailed relation between the AE 
energy distribution exponent and the number of wetting–drying cycles is shown in Figure 
12, and the exponent values decreased in an exponential fashion towards the mean field 
value of 1.6. 
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Figure 12. (a) AE spectra corresponding to stress curve in damaged sandstone. (b) The AE energies 
distribution of sandstone samples with different number of wetting–drying cycle in log–log scale. 
(c) the ML-fitting curves as a cutoff Emin, the plateau value is consistent with the slope in log–log 
scale. (d) the relationship between the energy exponent and the number of cyclic wetting events. 
Reproduced with permission from [82]. Springer Nature, 2018. 

5.5. Avalanches in Sugar Lumps 
Sugar is a highly controversial additive to both coffee and tea and is perhaps one of 

the most contentious topics amongst academics. Sugar today is commonly produced from 
sugarcane. The sugar production process involves the separation of sucrose from these 
other nonsugars from the sugarcane, with a final purity of 99.9%. To obtain the classical 
cube shape, water is added to the granules, and the mixture is pressed into a mold. When 
the water is mixed into the granules, there is a partial dissolution on the surface of each 
granule, which results in pseudo-necking, and inter-granular bonding. Cubes are dried, 
and the inter-granular bonding is cemented in space. 

Tate & Lyle sugar cubes (Tate & Lyle PLC, 1 Kingsway, London WC2B 6AT, UK) 
were measured, with an average dimension of 14.8 mm × 14.8 mm × 17.2 mm, as produced. 
A sugar cube was selected and prepared by slicing the original cube into a 3 mm × 4.5 mm 
× 6.25 mm rectangular prism using a scalpel, followed by polishing each face using sand-
paper. The acoustic emission spectra were recorded with a threshold of 23.6 dB. The jerk 
spectrum is shown in Figure 13a. 

 

 
(a) 
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Figure 13. (a) Jerk spectrum showing the peak amplitude vs. time with a threshold of 23.6 dB. Each 
peak in this spectrum is attributed to an avalanche in the sugar lump. (b) ML-fitting exponent ε as 
a function of energy. The plateau shown by the horizontal black line is an indication of ε = 1.47 from 
compressing the sugar lump. 

After the crushing of the sugar sample, the resultant grain size distribution was rela-
tively narrow, ranging from 0.2 mm to 0.5 mm. The resultant spectrum showed power-
law distributions over six decades, roughly consistent with the predictions from mean 
field theory with a power law exponent, ε = 1.47 shown in Figure 13b. The microstructure 
of sugar lumps is very similar to bioconsolidated materials and sandstones. In each case 
larger grains are connected by some cement. The specific feature of sugar lumps is that 
the cement and the grains are the same materials, namely sugar, while the other materials 
have different cementation from the grain material. The avalanche exponents are never-
theless almost identical (near ε = 1.5). 

6. Supplementary Discussion on Båth’s Law 
We now discuss some aspects of the Båth’s law, which is sometimes used in AE anal-

ysis. As an average for shallow shocks it has been postulated that: Ms-MAS* = 1.2, where 
Ms is the magnitude of main shock, and M AS* is the magnitude of the largest aftershock 
[83]. 

Båth’s law has been studied in previous coal, sandstone, teeth, Vycor glass, and bio-
cemented sands compression acoustic emission tests [54,78,79], but after carefully calcu-
lation code checking, we found that there was an error in the calculation of Båth’s law. 
The method of selecting aftershocks in these previous studies [54,78,79] is to start from the 
defined main shock and compare the energy values between the subsequent signals and 
the main shock one by one along the time axis until a signal cut-off point larger than the 
main shock is found, and a new signal sequence is formed. The largest AE signal in this 
sequence is defined as the largest aftershock. The correct definition of relative magnitude 
should be ΔM = log10(EMS/EAS*), but the calculation code is incorrectly written as ΔM = 
log10(EMS)/log10(EAS*), EMS and EAS* are the energy of main shock and the largest aftershock 
normalized by 1 aJ which is approximately the minimum detectable energy. Figure 14 
shows the comparison results of Båth’s law of different samples calculated by two formu-
las. Blue is the correct Båth’s law result and red is the ratio result of the incorrect calcula-
tion. There are three points to be pointed out. First, why does the correct Båth’s law for-
mula not yield a result of 1.2? Secondly, the results of Båth’s law indicate that the relation-
ship between the main shock and the largest aftershock is independent of the magnitude 
of the main shock, but the results of Figure 14 show that the Båth’s law analysis does not 
show a constant index in the low energy range. Thirdly, why does the wrong formula 
achieve better results than the correct one and what does it represent? These problems 
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may be caused by the choice of the largest aftershock. The influence of time is not consid-
ered in this selection scheme, which may lead to the result that the so-called largest after-
shock may be far away from the main shock: and indeed, the so-called ‘largest aftershock’ 
is registered as an independent event rather than as an aftershock. Its energy is not differ-
ent from the previous main shock, which results in the small relative magnitude of the 
aftershock. This effect is more obvious in the low energy range because of the limited 
statistics of the potential aftershocks. Therefore, it is very important to improve the way 
to select the relevant aftershock to correctly analyze Båth’s law in acoustic emission tests. 
We are conducting further work to combine information from Omori’s law and the Båth’s 
law to explore whether a better analysis of aftershocks is possible. 

 
Figure 14. The relationship between relative magnitude and mainshock energy for all samples, 
blued results are calculated by ΔM = log10(EMS/EAS*), and red results are from ΔM = 
log10(EMS)/log10(EAS*). 

7. Conclusions 
The anisotropy and heterogeneity of materials lead to the typical avalanche phenom-

enon in the failure process. This rapid discontinuous stepwise evolution of internal strain 
fields can be effectively captured by acoustic emission technology. The acoustic emission 
signal parameters, including acoustic emission energy, amplitude, and duration, follow 
power-law distributions. The power-law distribution is the only functional relationship 
with scale invariance, which means that avalanches satisfy the same statistical distribution 
and the same physical mechanism on different scales. 

A very important aspect of the study of material damage is the development of early 
warning systems for disaster processes. The AE energy distribution exponent reflects the 
correlation effects near failure points during material deformation. With the increase in 
damage, the damage mechanism evolves from random failure points (e.g., point defects) 
to defect aggregation. This effect is accompanied by a decrease in the AE energy exponent. 
This reduction of the power-law exponent is best observed by analyzing the superjerk 
events in the acoustic emission spectrum. This has already been used in early warning 
systems for catastrophic failure. 

In the typical scenario that more than one power-law mechanism exists with several 
interacting power-law mechanisms, the composite probability density function is no 
longer a straight line in double logarithmic representation but shows some curvature. The 
recommended method to analyze these distributions is the maximum likelihood (ML) 
method, to estimate the respective exponent values of the two power laws and the pro-
portion of their mixing. 
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We reviewed the acoustic emissions of common materials such as sandstone, coal, 
calcium carbonate sands, and sugar. While the avalanche characteristics are now well es-
tablished there is still work to be done. One is to optimize the search process of aftershock 
sequences. Others involve applications such as pico-seismology in bore holes to assess the 
geological configuration and the stability of a well. How can we make the effective early 
warning and prevention of geological disasters possible? The challenge of separating the 
main action mechanism from the mixed mechanisms and carrying out grouting or anchor-
ing for the shear or friction mechanism of the fault or crack remains unsolved. In the fields 
of materials sciences, physics and chemistry, AE spectroscopy is already used to optimize 
materials such as better alloys from space crafts to bicycles, and to assess the frequency 
range of ferroic modulators and switches in the gigacycle regime. 
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