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We study the mean-field limit of the Kuramoto model of globally coupled 
oscillators. By studying the evolution in Fourier space and understanding the 
domain of dependence, we show a global stability result. Moreover, we can identify 
function norms to show damping of the order parameter for velocity distributions 
and perturbations in Wn,1 for n > 1. Finally, for sufficiently regular velocity 
distributions we can identify exponential decay in the stable case and otherwise 
identify finitely many eigenmodes. For these eigenmodes we can show a center-
unstable manifold reduction, which gives a rigorous tool to obtain the bifurcation 
behaviour. The damping is similar to Landau damping for the Vlasov equation.

© 2015 The Author. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

On étudie la limite de champ moyen du modèle de Kuramoto pour des oscillateurs 
couplés de manière globale. En étudiant l’équation d’évolution dans l’espace de 
Fourier et grâce à la compréhension du domaine de dépendance, on démontre un 
résultat de stabilité globale. De plus, on peut identifier des normes de fonctions 
pour lesquelles l’amortissement du «paramètre d’ordre », lorsque la distribution en 
vitesse on mentre de référence et sa perturbation sont dans Wn,1, n > 1. Enfin, pour 
des distributions en vitesse de référence suffisamment régulières, on montre, dans 
le cas stable, la décroissance exponentielle, et dans le cas instable on identifie un 
nombre fini de modes propres. Pour ces modes propres, on démontre un résultat de 
réduction de variété centrale-instable, ce qui donne un outil rigoureux d’obtention 
du comportement de bifurcation. L’amortissement est similaire à « l’amortissement 
Landau» pour l’équation de Vlasov.
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1. Introduction

1.1. Overview

The Kuramoto model for globally coupled oscillators is a prototype for synchronisation behaviour. 
Introduced 40 years ago to model chemical instabilities [1,2], it has found many other applications, see 
[3,4].

The finite model consists of N oscillators with natural frequencies (ωi)Ni=1 whose phase (θi)Ni=1 evolves as

∂tθi(t) = ωi + K

N

N∑
j=1

sin(θj(t) − θi(t))

= ωi + K

2i

(
η(t) e−iθi(t) − η(t) eiθi(t)

)
,

for i = 1, . . . , N , where K is the coupling constant and

η(t) = 1
N

N∑
j=1

eiθj(t)

is the order parameter and the main observable of the system.
This has the structure of a kinetic particle system, where the phase angle θ corresponds to the spatial 

position and the natural frequency ω to the velocity. Following this structure, we will use the terminology 
of spatial and velocity distribution.

We study the mean-field limit for N → ∞, cf. [5,6]. Main features of the evolution were already identified 
in early studies [1,2] and [3] contains a more precise review. The spatially homogeneous distribution is a 
trivial stationary solution with η = 0 and is also called the (fully) incoherent state. The system then has a 
critical coupling constant Kc so that for K < Kc the incoherent state appears to be stable and for larger 
K the system bifurcates to partially locked states.

Even though the order parameter suggests a stable behaviour for K < Kc, the linearised evolution 
operator in normal physical function spaces has a continuous spectrum along the imaginary axis and thus 
does not show decay directly [5]. Already in 1992 it was realised that the behaviour is similar to Landau 
damping in plasma physics [7].

Here our starting point is to study the model in Fourier variables for the phase θ and the frequency ω. 
By understanding the domain of dependence, we can prove a global stability result: There exists Kec such 
that for couplings K < Kec the evolution is controlled by

∞∫
0

|η(t)|2dt < ∞.

For general velocity distributions Kec < Kc, but for the Lorentzian and Gaussian distribution Kec = Kc. 
As far as the author is aware, this is the first global result controlling the order parameter.

For the local behaviour of the spatially homogeneous state, we first note that the theory of the Volterra 
equation [8] gives a rigorous stability result for the linearised evolution of the order parameter η. In 
particular, it shows exponential decay when the Fourier transform decays exponentially and algebraic decay 
t−n when the Fourier transform decays like t−n. In particular the condition for algebraic decay is satisfied 
if the velocity distribution and the perturbation are in the Sobolev space Wn,1.

By working in Fourier variables, we can now define norms for the perturbation in which the linearised 
evolution has the same decays as the order parameter. For exponential decay or algebraic decay t−n with 
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n > 1, we are able to extend the linear stability to nonlinear stability of perturbations. In particular, this 
shows that the order parameter decays as predicted by the linear analysis.

In case the linear stability criterion fails and we have exponential regularity, the linear analysis allows us to 
identify finitely many eigenmodes. By constructing suitable norms we are now able to prove a center-unstable 
manifold reduction of the dynamics. In particular, this allows the rigorous derivation of the bifurcation and 
shows stability of the partially locked states in the supercritical bifurcation.

We stress that our results and used norms are independent of the particular velocity distribution. Thus 
the stability result and the center-unstable manifold reduction hold for all sufficiently regular distributions. 
To the best of the author’s knowledge this result was unknown.

For Gaussian and rational velocity distributions a similar stability and bifurcation result has been ob-
tained by Chiba [9,10]. The dynamics of the system can also be reduced by using a symmetry reduction, the 
so called Ott–Antonsen ansatz [11–13]. For special rational velocity distribution ((1 + ω2)−1, (1 + ω4)−1) 
[13] and for the Bi-Cauchy distribution [14] this has been used to obtain the dynamics. In case of identical 
oscillators (i.e. the frequency distribution is concentrated at one frequency), it has been proved that the 
system will asymptotically be fully synchronised [15]. This result has been extended to compactly supported 
velocity distributions with sufficiently coherent initial data and large enough coupling constant [16].

The nonlinear stability and bifurcation have been studied in the modified system with white noise [17]. 
In this case the mean-field limit becomes a Fokker–Planck equation and the results have been obtained 
in the 1990s [5,18,19]. The concrete bifurcation behaviour for different velocity distributions and different 
interactions has been studied in more detail [20–23], see [4] for a review.

The above results show that the Kuramoto model is an interesting model to understand Landau damping 
where we can obtain more results than for the classical Vlasov equation for plasmas [24,25]. Other models 
are the 2d Euler equation [26] and the Vlasov-HMF model, where recently stability has been proved with 
Sobolev norms [27].

Remark. After finishing the work, the author got aware of the independent work by Fernandez, Gérard-Varet, 
and Giacomin [28]. This very interesting work shows the nonlinear stability for perturbations in the class 
Cn (n ≥ 4) and follows more closely [27]. After finishing a first draft another preprint [29] appeared showing 
for analytic initial data exponential convergence to the incoherent state if the coupling constant K is small 
enough.

1.2. Strategy and detailed results

For finitely many oscillators with phase angles (θi)Ni=1 and frequencies (ωi)Ni=1 we can look at the em-
pirical measure ρN,t(θ, ω) = N−1∑N

i=1 δθ=θi(t)δω=ωi(t) in the phase space Γ = T × R, where T is the torus 
[0, 2π) for the phase angles. The set of probability measures on a space X is denoted by M(X) and in 
the mean-field limit N → ∞ we suppose that the initial distribution converges weakly to a probability 
distribution ρin ∈ M(Γ). Then for all later times t ∈ R

+ the distribution converges weakly to a probability 
distribution ρt and satisfies a PDE in a weak sense. For the limiting case N → ∞ we can thus study the 
family ρt whose evolution is uniquely determined by the PDE. Given initial data ρin , we call this family ρt
the solution to the Kuramoto equation or the mean-field solution.

Assuming a density function f(t, ·, ·) of ρt, the system evolves formally as

⎧⎨
⎩
∂tf(t, θ, ω) + ∂θ

[(
ω + K

2i (η(t) e
−iθ − η(t) eiθ)

)
f(t, θ, ω)

]
= 0,

η(t) =
∫ 2π

eiθ
∫

f(t, θ, ω)dωdθ.

θ=0 R
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In the general case, we rigorously understand this PDE in a weak sense for measures. As a Cauchy problem, 
we will always assume that the initial data ρin are given at time t = 0 and then the solutions ρ· will be 
defined for all t ∈ R

+.
The velocity distribution g is a probability distribution M(R) which is constant in time, so that

g(A) = ρt(T ×A) holds for all A ∈ B(R) and time t, where B(R) denotes the Borel sets of R.
Working formally with a density f , the velocity distribution has a density g and we can take the Fourier 

series for the spatial modes

f̂(t, l, ω) =
∫

θ∈T

eilθf(t, θ, ω)dθ

for l ∈ Z. These then evolve as⎧⎨
⎩
∂tf̂(t, l, ω) = ilω f̂(t, l, ω) + Kl

2

[
η(t) f̂(t, l − 1, ω) − η(t) f̂(t, l + 1, ω)

]
,

η(t) =
∫
R
f̂(t, 1, ω)dω.

Since f is non-negative and its marginal g(ω) =
∫
θ∈T

f(t, θ, ω)dθ is constant in time, we find for all time t

f̂(t, 0, ω) = g(ω) and |f̂(t, l, ω)| ≤ g(ω) for all l ∈ Z.

Moreover, since f is real, f̂(l, ω) = f̂(−l, ω) so that it suffices to consider l ∈ N.
The spatially homogeneous distribution is characterised by vanishing non-zero moments, so that the 

stability of the spatially homogeneous distribution is equivalent to the decay of f̂ restricted to l ≥ 1. 
The evolution of the restriction satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tf̂(t, 1, ω) = iω f̂(t, 1, ω) + K

2

[
η(t) g(ω) − η(t) f̂(t, 2, ω)

]
,

∂tf̂(t, l, ω) = ilω f̂(t, l, ω) + Kl
2

[
η(t) f̂(t, l − 1, ω) − η(t) f̂(t, l + 1, ω)

]
for l ≥ 2,

η(t) =
∫
R
f̂(t, 1, ω)dω.

Exploiting that the non-linear interaction is skew-Hermitian, we find

∂t

∫
R

∞∑
l=1

1
l
|f̂(t, l, ω)|2g−1(ω)dω = K|η(t)|2.

With K > 0 the system therefore is not dissipative and the convergence to zero must happen in a weaker 
sense. Moreover, it shows that the model is not time-reversible, as K needs to change sign as well. Finally, 
for negative K this already shows global stability as then 

∫
|η(t)|2dt is bounded. Hence the interesting case 

is K ≥ 0 which we assume in the following.
In order to understand the evolution of the spatial modes l ≥ 1, we also Fourier transform the velocity 

variable ω as

u(t, l, ξ) =
∫

(θ,ω)∈Γ

eilθeiξωρt(dθ, dω) (1)

and

ĝ(ξ) =
∫

eiξωg(dω). (2)

ω∈R
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The difference to the spatially homogeneous state is again captured by the restriction to l ≥ 1. Hence the 
evolution of u(t, ·, ·) ∈ C(N × R) describes the evolution of the perturbation and is determined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tu(t, 1, ξ) = ∂ξu(t, 1, ξ) + K

2

[
η(t) ĝ(ξ) − η(t)u(t, 2, ξ)

]
,

∂tu(t, l, ξ) = l∂ξu(t, l, ξ) + Kl
2

[
η(t)u(t, l − 1, ξ) − η(t)u(t, l + 1, ξ)

]
for l ≥ 2,

η(t) = u(t, 1, 0).

(3)

In this formulation the free transport always moves ξ �→ u(t, l, ξ) to the left and the interaction at (t, l, ξ)
is given by u(t, 1, 0) = η(t) and u(t, l ± 1, ξ). Hence with M ≥ 0, the region N × {ξ : ξ ≥ −M} is its own 
domain of dependence. This already suggests to use norms focusing on ξ ≥ 0 in order to show convergence.

For the global energy estimate, we note that the interaction is skew-Hermitian except for the first mode. 
Thus we consider the energy functional

I(t) =
∞∫

ξ=0

∑
l≥1

1
l
|u(t, l, ξ)|2φ(ξ)dξ, (4)

where φ is an increasing weight. By balancing the gain of the first linear interaction term with the decay 
by the increasing weight, we can show our first main result.

Theorem 1. For a velocity distribution g ∈ M(R) suppose 
∫∞
0 |ĝ(ξ)|dξ < ∞ and let

Kec = 2∫∞
ξ=0 |ĝ(ξ)|dξ

.

If the coupling constant K satisfies K < Kec, then there exists a finite constant c > 0 and a bounded 
increasing weight φ ∈ C1(R+) with φ(0) = 1 so that for a solution to the Kuramoto equation with velocity 
marginal g the energy functional I(t) defined by Equation (4) satisfies

I(t) + c

t∫
0

|η(s)|2ds ≤ I(0)

for all t ∈ R
+. In particular this shows that I is non-increasing and the order parameter η satisfies

∞∫
0

|η(s)|2ds ≤ c−1I(0) < ∞.

If, moreover, the initial distribution ρin has a density fin ∈ L2(Γ), then I(0) ≤ ‖φ‖∞‖fin‖2
2.

In order to quantify the decay and stability, we introduce, for a non-negative weight φ, the weighted 
spaces L1(X, φ) and L∞(X, φ) for functions f : X �→ C with finite norm

‖f‖L1(X,φ) =
∫

x∈X

|f(x)|φ(x)dx

and

‖f‖L∞(X,φ) = ess sup |f(x)|φ(x),

x∈X



456 H. Dietert / J. Math. Pures Appl. 105 (2016) 451–489
respectively. As weights we will use expa defined as expa(x) = eax and pA,b defined as pA,b(x) = (A + x)b
with the special case pb = p1,b.

In Fourier variables the linear evolution is determined by the PDE
⎧⎨
⎩
∂tu(t, 1, ξ) = ∂ξu(t, 1, ξ) + K

2 u(t, 1, 0)ĝ(ξ),

∂tu(t, l, ξ) = l∂ξu(t, l, ξ) for l ≥ 2.
(5)

Here all modes decouple and only the first mode differs through the interaction. We denote its evolution 
operator by etL, i.e. t, l, ξ �→ (etLuin)(l, ξ) is the weak solution to Equation (5) in C(R+ × N × R) with 
initial data uin given at time t = 0. As in the case of the Vlasov equation [30], the order parameter under 
the linear evolution is given by a Volterra equation.

Lemma 2. Let ĝ ∈ C(R). Then the evolution operator etL is well-defined from continuous initial data to 
the unique continuous solution. For uin ∈ C(N × R) let ν(t) = (etLuin)(1, 0). Then ν satisfies the Volterra 
equation

ν(t) + (k ∗ ν)(t) = uin(1, t) (6)

with the convolution kernel

k(t) = −K

2 ĝ(t) (7)

and

(etLuin)(1, ξ) = uin(1, ξ + t) +
t∫

0

K

2 ν(s)ĝ(ξ + t− s)ds (8)

and for l ≥ 2

(etLuin)(l, ξ) = uin(l, ξ + tl). (9)

Here the convolution f ∗ g between two functions f, g ∈ L1
loc(R+) is defined for t ∈ R

+ by
(f ∗ g)(t) =

∫ t

0 f(t − s)g(s)ds.
The solution to the Volterra equation is given by the resolvent kernel r ∈ L1

loc(R) as

ν(t) = uin(1, t) − (r ∗ uin(1, ·))(t).

Hence the order parameter ν under the linear evolution can decay if uin(1, ξ) is decaying as ξ increases. 
We can express this for a ≥ 0 as

‖ν‖L∞(R+,expa) ≤ (1 + ‖r‖L1(R+,expa))‖uin(1, ·)‖L∞(R+,expa)

and for A ≥ 1 and b ≥ 0 as

‖ν‖L∞(R+,pA,b) ≤ (1 + ‖r‖L1(R+,pb))‖uin(1, ·)‖L∞(R+,pA,b).

With the same decay in ĝ we have a sharp criterion for the resolvent kernel by the Paley–Wiener theorem 
for Volterra equations [8, Chapter 2, Thm 4.1] and Gel’fand’s theorem [8, Chapter 4, Thm 4.3].
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Theorem 3. If for a ∈ R we have ĝ ∈ L1(R, expa), then r ∈ L1(R, expa) is equivalent to (Lk)(z) 
= −1 for 
all z ∈ C with �z ≥ −a.

If for b ≥ 0 we have ĝ ∈ L1(R, pb), then r ∈ L1(R, pb) is equivalent to (Lk)(z) 
= −1 for all z ∈ C with 
�z ≥ 0.

Here Lk denotes the Laplace transform of k, i.e.

(Lk)(z) =
∞∫
0

k(t)e−tzdt = −K

2

∞∫
0

ĝ(t)e−tzdt.

Hence the linear evolution of the order parameter is stable if (Lk)(z) 
= −1 for all z ∈ C with �z ≥ 0. 
By bounding the absolute value, we see that if K < Kec the system is linearly stable. In case of the Gaussian 
or the Cauchy distribution, ĝ is always positive so that Kec equals the critical coupling.

Like in the Vlasov equation [30], this condition can be related to a Penrose criterion for the complex 
boundary, which also visualises how often the condition fails. Under this we can also relate the stability to 
the known condition [5,7].

For small perturbations, our second main result is the nonlinear stability of the incoherent state. In a 
first version we propagate control in

sup
l≥1

sup
ξ∈R

|u(t, l, ξ)|ea(ξ+tl/2).

Theorem 4. Let g ∈ M(R) and a > 0 such that ĝ satisfies the exponential stability condition of rate a in 
Theorem 3, i.e. ĝ ∈ L1(R+, expa) and (Lk)(z) 
= −1 for all z ∈ C with �z ≥ −a. Then there exists a δ > 0
and finite c1 such that for initial data ρin ∈ M(Γ) with velocity marginal g, Fourier transform uin and 
Min := supl∈N supξ∈R |uin(l, ξ)|eaξ ≤ δ the Fourier transform u of the solution to the Kuramoto equation 
with initial data ρin satisfies

sup
t∈R+

sup
l≥1

sup
ξ∈R

|u(t, l, ξ)|ea(ξ+tl/2) ≤ (1 + c1)Min .

In particular, this shows that the order parameter η(t) = u(t, 1, 0) decays as O(e−at/2).

For the algebraic decay we propagate control in

sup
l≥1

sup
ξ∈R+

|u(t, l, ξ)| (1 + ξ + t)b

(1 + t)α(l−1) .

Theorem 5. Let g ∈ M(R) and b > 1 such that ĝ satisfies the algebraic stability condition of parameter b in 
Theorem 3, i.e. ĝ ∈ L1(R+, pb) and (Lk)(z) 
= −1 for all z ∈ C with �z ≥ 0. For α > 0 satisfying b > 1 +α, 
there exists δ > 0 and finite γ1 such that for initial data ρin ∈ M(Γ) with velocity marginal g, Fourier 
transform uin and Min := supl∈N supξ∈R+ |uin(l, ξ)|(1 + ξ)b ≤ δ the Fourier transform u of the solution to 
the Kuramoto equation with initial data ρin satisfies

sup
t∈R+

sup
l≥1

sup
ξ∈R+

|u(t, l, ξ)| (1 + ξ + t)b

(1 + t)α(l−1) ≤ (1 + γ1)Min.

In particular, this shows that the order parameter η(t) = u(t, 1, 0) decays as O(t−b).

Note that the exponential and algebraic control are one-sided and thus do not control the L2 or Sobolev 
norm in the original space. This explains why we can have decay with these norms, even though there is no 
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decay of perturbations in the L2 norm and the linear system is only neutrally stable [5]. For the application, 
however, the Sobolev norm Wb,1 controls Min and g ∈ Wb,1 ensures the required decay of ĝ.

If the stability condition fails, we can identify growing modes in the Volterra equation.

Theorem 6. For a ∈ R suppose ĝ ∈ L1(R+, expa) and that the convolution kernel k defined by Equation (7)
satisfies (Lk)(z) 
= −1 for z ∈ C with �z = −a. Then the solution to the Volterra equation (6) is given by

η(t) = uin(1, t) −
∞∫
0

q(t− s)uin(1, s)ds

with

q(t) = rs(t) +
n∑

i=1

pi−1∑
j=0

bi,jt
jeλit,

where rs is vanishing for negative arguments and satisfies ‖rs‖L1(R+,expa) < ∞ and λ1, . . . , λn are the finitely 
many zeros of 1 + (Lk)(z) in �z > −a with multiplicities p1, . . . , pn and bi,j depends on the residues of 
[1 + (Lk)(z)]−1 at λi.

This says that the linear evolution is governed by eigenmodes tjeλit for i = 1, . . . , n and j = 0, . . . , pi − 1
and a remaining stable part rs. The previous linear stability theorem is included in this formulation as r = rs.

If ĝ ∈ L1(R+, expa) for a > 0, this shows that if the stability condition fails, there exists an unstable 
mode. Without extra assumption, for every a < 0 we have ĝ ∈ L1(R+, expa) because g is a probability 
distribution. Hence, unless we are at the critical case, we have unstable modes if the stability condition 
fails. Therefore, the linear stability condition is sharp.

The additional restriction (Lk)(z) 
= −1 for �z = −a is very weak, because, if ĝ ∈ L1(R+, expa), then 
(Lk)(z) is analytic for �z > −a and by the Riemann–Lebesgue lemma vanishing as |z| → ∞. Hence we can 
choose a smaller a′ such that |a − a′| is arbitrarily small and the theorem applies.

The eigenmodes of the Volterra equation can be related to eigenmodes zλ,j of the linear evolution
(Equation (5)) on C(N × R). These eigenmodes are vanishing except in the first spatial modes where 
they satisfy zλ,j(1, ·) ∈ L∞(R+, expa).

For the center-unstable manifold reduction we therefore look for solutions in

Za = {u ∈ C(N× R) : ‖u‖Za < ∞}

with

‖u‖Za = sup
l≥1

‖u(l, ·)‖L∞(R,expa) = sup
l≥1

sup
ξ∈R

eaξ|u(l, ξ)|.

The nonlinearity is not controlled in Za but within

Ya = {u ∈ C(N× R) : ‖u‖Ya < ∞}

with

‖u‖Ya = sup
l≥1

l−1‖u(l, ·)‖L∞(R,expa) = sup
l≥1

sup
ξ∈R

eaξ

l
|u(l, ξ)|.

By a spectral analysis we can find a continuous projection Pcu from Ya to Za
cu := 〈zλi,j : i = 1, . . . , n and 

j = 0, . . . , pi − 1〉 with complementary projection Ps mapping Za to Za
s and Ya to Ya

s . The image of Ps
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is invariant under the linear evolution and decaying with rate a. In fact the higher modes decay quicker in 
this norm, so that the solution to the linear evolution with forcing in Ya

s is within Za
s .

Hence the theory of center-unstable manifold reduction [31–33] applies and we can reduce the dynamics
for the local behaviour. This is our third main result and here we also consider K as variable in order to 
discuss the asymptotic result for couplings K close to a fixed coupling Kc.

Theorem 7. Given a > 0 and g ∈ M(R) with ĝ ∈ L1(R+, expa). Let Kc be a coupling constant such that 
Theorem 6 applies with center-unstable modes λ1, . . . , λn satisfying �λi ≥ 0 for i = 1, . . . , n. For k ∈ N

there exists ψ ∈ Ck(Za
cu × R, Za

s ) and δ > 0 such that for |ε| ≤ δ the manifold

Mε = {y + ψ(y, ε) : y ∈ Za
cu}

is invariant and exponentially attractive under the nonlinear evolution with coupling constant K = Kc + ε

in the region {u ∈ Za : ‖u‖Za ≤ δ}. Moreover, the derivatives of ψ can explicitly be computed at 0.

Hence we can reduce the dynamics around the spatially homogeneous distribution to the finite dimensional
dynamics of Mε. We demonstrate the application by recovering Chiba’s bifurcation result for the Gaussian 
distribution [9]. In particular, it shows the nonlinear stability of the partially locked states close to the 
bifurcation.

The key point for the center-unstable manifold reduction is the use of the regularity in the natural 
frequency ω. This allows the use of the weighted space Za on which the linear generator does not have 
a continuous spectrum along the imaginary axis as seen in earlier linear analysis [5]. Instead the linear 
evolution decays with rate al in the lth spatial mode except in the first mode l = 1 where a discrete 
spectrum can arise. Thus the effect of using Za is very similar to adding white noise [17] of strength D to 
the system and in this case D > 0 the stability and center manifold reduction have been done [5,18,19].

We remark that the use of Za is compatible with adding noise and thus for sufficiently regular velocity 
distribution the center-unstable manifold reduction can be used to study the bifurcation behaviour with the 
noise strength D as additional parameter in the limit D → 0. The behaviour of the amplitude equations in 
the center manifold reduction in this limit is reviewed in [3, Section 11] and this explains why taking the 
limit D → 0 gave the correct behaviour for regular distributions [19]. Note that even in this case the order 
parameter can decay faster than rate D through the Landau damping mechanism.

In order to understand the norm Za (which is also the measure for the perturbations in Theorem 4) we 
relate the norm to the analytic continuation in the strip {z ∈ C : 0 ≤ �z ≤ a} of the complex plane. Here 
we can demonstrate explicitly that for suitable velocity marginals the partially locked states have finite 
norm in Za and are small perturbations if their order parameter η is small. In particular, this shows that 
partially locked states with a small η and coupling K just above Kc result in exponential damping when the 
coupling is lowered below Kc by Theorem 4. This is particularly interesting, because these partially locked 
states are not regular in general, e.g. they do not even have a density.

The exponential stability of the incoherent state and the convergence in Za to the reduced manifold do 
not imply convergence in L2. Nevertheless, we can relate it to weak convergence for sufficiently nice test 
functions because the Fourier transform is bounded.

In case of the algebraic stability (Theorem 5), the convergence is very weak but we can conclude ∫∞
0 |η(t)|dt < ∞. Going back to the original equation this shows control in the gliding frame and weak 

convergence of the phase marginal.
The plan of the paper is as follows: In Section 2 we review the notion of the considered solutions and 

their existence and uniqueness. In Section 3 we show the global energy estimate (Theorem 1). The linear 
evolution and its stability is discussed in Section 4. In Section 5 we use the linear stability to show nonlinear 
stability. In preparation for the center-unstable manifold reduction, the linear decomposition is derived in 
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Section 6. With this the nonlinear reduction (Theorem 7) is shown in Section 7. The discussion of the norm 
and the convergence are in Section 8.

2. Mean-field limit

Early studies of the mean-field limit for the Kuramoto equation are [5,34]. Lancellotti [6] noted that the 
theory developed for the Vlasov equation [35–37] applies because the interaction is Lipschitz. This setup is 
also reviewed in [16] and was derived using moments in [38].

Since we want to be able to consider partially locked states, we formulate solutions in terms of probability 
measures. As mentioned in the introduction, we assume the initial data for time t = 0 and solve for t ∈ R

+, 
because we have global existence and uniqueness.

Definition 8. Let CM be the solution space Cw(R+, M(Γ)), which consists of the families of weakly
continuous probability measures on Γ, i.e. ρ· ∈ CM is a family {ρt ∈ M(R) : t ∈ R

+} such that for 
every h ∈ Cb(Γ) the function t �→ ρt(h) is continuous.

Let ρin ∈ M(Γ). Then ρ· ∈ CM is a solution to the Kuramoto equation with initial data ρin if for all 
h ∈ C1

0 (R+ × Γ)

0 =
∫
Γ

h(0, P )ρin(dP ) +
∫
R+

∫
Γ

[V [ρ·](t, P )∂θh(t, P ) + ∂th(t, P )]ρt(dP )dt, (10)

where

V [ρ·](t, θ, ω) = ω + K

2i

(
η(t)e−iθ − η(t)eiθ

)
with η(t) =

∫
(θ,ω)∈Γ

eiθρt(dθ,dω).

The trajectories Tt,s[ρ·] : Γ �→ Γ of the system are defined as Tt,s[ρ·](Q) = P (t) where P : R+ �→ Γ is the 
solution to the initial value problem

{
d
dtP (t) = (V [ρ·](t, P (t)), 0),
P (s) = Q.

Since |η(t)| ≤ 1 for all t ∈ R
+, the velocity field V [ρ·] is globally Lipschitz and the trajectories are

well-defined. Moreover, all derivatives of V [ρ·](t, P ) with respect to P are bounded, so that Tt,0[ρ](P )
also has uniformly bounded derivatives of all orders for finite ranges of t. Finally, Tt,s is invertible with 
inverse Ts,t and thus a diffeomorphism.

By standard arguments for scalar transport equation, the following lemma holds.

Lemma 9. Let ρin ∈ M(Γ). Then ρ· ∈ CM is a solution to the Kuramoto equation if and only if 
ρt = (Tt,0[ρ·])∗(ρin), i.e. ρt(A) = ρin((Tt,0[ρ·])−1(A)) = ρin(T0,t[ρ·](A)) for A ∈ B(Γ).

From this we see that the empirical measures of solutions of the finite Kuramoto model are solutions to 
the Kuramoto equation in the sense of Definition 8. Neunzert’s general framework [37,6] implies:

Theorem 10. The Kuramoto equation is well-posed. In particular, for every ρin ∈ M(Γ) there exists a unique 
global solution ρ· ∈ CM to the Kuramoto equation with initial data ρin.
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The well-posedness implies that this is the mean-field limit as N → ∞. For this consider the empirical 
measure ρN,t of a system of N oscillators and suppose ρN,0 ⇀ ρin . As the empirical measure is a solution, 
the well-posedness shows that at later times t also ρN,t ⇀ ρt.

Lemma 9 shows that the regularity is preserved along the flow as we can see from the following lemma:

Lemma 11. Let ρin ∈ M(Γ) and ρ· ∈ CM be the solution to the Kuramoto equation with initial data ρin. 
If ρin has a density fin, then for every t ∈ R

+ the measure ρt has a density f(t, ·) given by the flow

f(t, P ) = fin(t, T0,t[ρ·](P )) div(T0,t[ρ·]).

If ‖fin‖2 < ∞, then for every compact Δ ⊂ R
+

sup
t∈Δ

‖f(t, ·)‖2 < ∞.

Proof. If ρ· is a solution, ρt = (Tt,0[ρ·])∗(ρin). Since Tt,0[ρ·] is differentiable, ρt has the density f(t, ·).
Since the order parameter η is bounded by 1, the divergence of Tt,0[ρ·] is bounded uniformly over compact 

intervals Δ of time. Hence the above formula shows that ‖f(t, ·)‖2 is uniformly bounded as well. �
Lemma 9 also shows that the velocity marginal is constant in time.

Lemma 12. Let ρin ∈ M(Γ) and g ∈ M(R) be its velocity marginal. If ρ· ∈ CM is the solution to the 
Kuramoto equation, then g is for all t ∈ R

+ the velocity marginal of ρt.

Proof. By Lemma 9 ρt = (Tt,0[ρ·])∗(ρin) and the trajectories leave the velocity marginals invariant. �
For a solution ρ· ∈ CM and velocity distribution g ∈ M(R) define the Fourier transform u and ĝ, 

respectively, by Equations (1) and (2). The evolution of the difference to the uniform state is captured by 
the restriction to l ≥ 1. Its evolution is described in Fourier variables as follows:

Theorem 13. Suppose ρin ∈ M(Γ) with velocity marginal g ∈ M(R). Let ρ· ∈ CM be the solution to the 
Kuramoto equation. Then the Fourier transform u is in C(R+ × N × R), is bounded uniformly by 1 and 
satisfies

0 =
∑
l∈Z

∫
R

uin(l, ξ)h(0, l, ξ)dξ

+
∫
R+

∫
R

K

2 ĝ(ξ)η(t)h(t, 1, ξ) +
∑
l≥2

Kl

2 u(t, l − 1, ξ)η(t)h(t, l, ξ)

+
∑
l∈N

[
−Kl

2 u(t, l + 1, ξ)η(t)h(t, l, ξ) + u(t, l, ξ) [∂th(t, l, x) − l∂ξh(t, l, ξ)]
]

dξdt (11)

for all h ∈ C1
0 (R+ × N × R), where η(t) = u(t, 1, 0) and ĝ is the Fourier transform of g.

Proof. For every t ∈ R
+, the distribution ρt is a probability measure, so that u(t, l, ξ) is bounded by 1 and 

continuous with respect to ξ. Since ρ· is weakly continuous, u is also continuous with respect to time.
By Lemma 12 the velocity marginal is always g so that Plancherel’s formula shows that Equation (11)

holds for all h ∈ S (R+ × N × R). By density it then holds for all h ∈ C1
0 (R+ × N × R). �

The free transport is a well-posed linear problem, so that Duhamel’s principle on the free transport holds.
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Lemma 14. Let uin ∈ C(N × R), ĝ ∈ C(R) and u ∈ C(R+ × N × R). For t ∈ R
+ and ξ ∈ R define

v(t, 1, ξ) = uin(1, ξ + t) + K

2

t∫
0

[
η(s)ĝ(ξ + (t− s)) − η(s)u(s, 2, ξ + (t− s))

]
ds

and for l ≥ 2

v(t, l, ξ) = uin(l, ξ + lt)

+ Kl

2

t∫
0

[
η(s)u(s, l − 1, ξ + l(t− s)) − η(s)u(s, l + 1, ξ + l(t− s))

]
ds,

where η(t) = u(t, 1, 0). If u satisfies Equation (11) for all h ∈ C1
0 (R+ × N × R), then u ≡ v.

Proof. In the weak formulation Equation (11) consider all terms except the free transport as forcing. 
Then the problem has a unique solution given by v. �

For the stability and bifurcation result we construct solutions u to Equation (11). By the following 
theorem these correspond to the Fourier transform of the mean-field solution.

Theorem 15. Let uin ∈ C(N × R) and ĝ ∈ C(R). Suppose u, ̃u ∈ C(R+ × N × R) satisfy Equation (11) for 
every h ∈ C1

0 (R+ × N × R). If for T ∈ R
+ there exists M ∈ R

+ with a, β ≥ 0 satisfying

sup
ξ∈R

|ĝ(ξ)|min(1, eaξ) ≤ M

and

sup
t∈[0,T ]

sup
l∈N

sup
ξ∈R

e−βl min(1, eaξ) max(|u(t, l, ξ)|, |ũ(t, l, ξ)|) ≤ M

then u(t, ·, ·) ≡ ũ(t, ·, ·) for t ∈ [0, T ].

Proof. For γ > 0 consider the difference measure e defined by

e(t) = sup
l∈N

sup
ξ∈R

e−γtle−βl min(1, eaξ)|u(t, l, ξ) − ũ(t, l, ξ)|.

Then by Lemma 14 for t ∈ [0, T ], l ∈ N and ξ ∈ R we have

|u(t, l, ξ) − ũ(t, l, ξ)|e−γtle−βl min(1, eaξ) ≤ 2KMl

t∫
0

e2β+γse(s)e−γl(t−s)ds

≤ 2KM

γ
e2β+γt sup

s∈[0,t]
e(s).

Choose γ > 0 and t∗ > 0 so that (2KM/γ)e2β+γt∗ < 1/2. Then the above shows for t ∈ [0, t∗]

e(t) ≤ 1
2 sup

∗
e(s).
s∈[0,t ]
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Therefore, we must have e(t) = 0 for t ≤ t∗, i.e. the solutions agree. Since we can repeat the argument in 
steps of t∗ up to time T , this shows uniqueness up to time T . �

By Theorem 13 the Fourier transform u of a solution to the Kuramoto equation satisfies the assumptions 
of the previous uniqueness theorem for every a and β.

Theorem 16. The restriction of the Fourier transform u to C(R+×N ×R
+), i.e. ξ ≥ 0, satisfies an appropriate 

weak PDE (Theorem 13) to which the Duhamel formula (Lemma 14) applies and the uniqueness holds for 
the restriction ξ ≥ 0 in Theorem 15.

Proof. Characteristics of the full equation are never entering the restricted region and the nonlinear interac-
tion in the restricted region is determined by the region itself. Hence the restriction satisfies the appropriate 
restriction of the weak PDE Theorem 13 whose solution is given by the Duhamel formula Lemma 14. 
The proof of the uniqueness theorem holds as before when restricting ξ to R+ everywhere. �
3. Global stability by energy method

The basic idea is to differentiate the energy functional in time and to note that the nonlinear terms cancel, 
because they are skew-Hermitian. However, the Fourier transform u does not need to be differentiable. 
Therefore, we use an approximation procedure.

Lemma 17. Let φ ∈ C1(R+) be a bounded increasing weight with φ(0) = 1 whose derivative φ′ is bounded 
and satisfies φ′(ξ) > 0 for ξ ∈ R

+.
For the Fourier transform u ∈ C(R+ ×N ×R) of a solution to the Kuramoto equation with initial density 

fin ∈ L2(Γ) define the functional I(t) by Equation (4). Then for all t ∈ R
+

I(t) ≤ I(0) + (α− 1)
t∫

0

|η(s)|2ds,

where

α = K2

4

∞∫
ξ=0

|ĝ(ξ)|2
φ′(ξ) φ2(ξ)dξ.

Proof. In order to overcome the non-differentiability, let χ ∈ C∞
c (R) be a non-negative function with ∫

x∈R
χ(x)dx = 1 and let χδ(x) = δ−1χ(x/δ) for δ > 0. Define the mollified uδ by

uδ(t, l, ξ) =
∫

x∈R

χδ(ξ − x)u(t, l, x)dx.

Since u is bounded by 1, also uδ is bounded by 1 and has a bounded derivative with respect to ξ. Moreover, 
‖uδ(t, l, ·)‖2 ≤ ‖u(t, l, ·)‖2.

By Lemma 14

uδ(t, 1, ξ) = uin,δ(1, ξ + l)

+ K

2

t∫
0

[
η(s)ĝδ(ξ + t− s) − η(s)uδ(s, 2, ξ + t− s)

]
ds
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and for l ≥ 2

uδ(t, l, ξ) = uin,δ(l, ξ + tl)

+ Kl

2

t∫
0

[
η(s)uδ(s, l − 1, ξ + (t− s)l) − η(s)uδ(s, l + 1, ξ + (t− s)l)

]
ds,

where ĝδ and uin,δ are the mollifications of ĝ and uin, respectively. Hence uδ is also continuously differentiable 
with respect to t ∈ R

+ and satisfies classically

∂tuδ(t, 1, ξ) = ∂ξuδ(t, 1, ξ) + K

2

[
η(t)ĝδ(ξ) − η(t)uδ(t, 2, ξ)

]

and for l ≥ 2

∂tuδ(t, l, ξ) = l∂ξuδ(t, l, ξ) + Kl

2

[
η(t)uδ(t, l − 1, ξ) − η(t)uδ(t, l + 1, ξ)

]
.

For M ∈ N and N ∈ R
+ define

Iδ,M,N (t) =
M∑
l=1

N∫
ξ=0

1
l
|uδ(t, l, ξ)|2φ(ξ)dξ.

Since uδ and its derivative are bounded in the integration region, we can differentiate under the integral 
sign to find

∂tIδ,M,N (t) =
M∑
l=1

N∫
ξ=0

1
l
∂t|uδ(t, l, ξ)|2φ(ξ)dξ

= −
M∑
l=1

N∫
ξ=0

|uδ(t, l, ξ)|2φ′(ξ)dξ +
M∑
l=1

[
|uδ(t, l, ξ)|2φ(ξ)

]N
ξ=0

−
N∫

ξ=0

K�
[
η(t)uδ(t,M + 1, ξ)uδ(t,M, ξ)

]
φ(ξ)dξ

+
N∫

ξ=0

K �
[
η(t)ĝδ(ξ)uδ(t, 1, ξ)

]
φ(ξ)dξ

≤
N∫

ξ=0

(
−|uδ(t, 1, ξ)|2φ′(ξ) + K �

[
η(t)ĝδ(ξ)uδ(t, 1, ξ)

]
φ(ξ)

)
dξ

− |uδ(t, 1, 0)|2 + ‖φ‖∞
M∑
l=1

|uδ(t, l, N)|2

+ K‖φ‖∞‖u(t,M, ·)‖2‖u(t,M + 1, ·)‖2.

The first integral can be controlled as
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N∫
ξ=0

(
−|uδ(t, 1, ξ)|2φ′(ξ) + K �

[
η(t)ĝδ(ξ)uδ(t, 1, ξ)

]
φ(ξ)

)
dξ

= −
N∫

ξ=0

∣∣∣∣uδ(t, 1, ξ) −
Kη(t)

2
ĝδ(ξ)
φ′(ξ)φ(ξ)

∣∣∣∣
2

φ′(ξ)dξ

+ |η(t)|2K
2

4

N∫
ξ=0

|ĝδ(ξ)|2
φ′(ξ) φ2(ξ)dξ.

Hence

Iδ,M,N (t) = Iδ,M,N (0) +
t∫

0

∂tIδ,M,N (s)ds

≤ Iδ,M,N (0) +
t∫

0

[
αδ,N |η(s)|2 − |uδ(s, 1, 0)|2

]
ds

+
t∫

0

[
‖φ‖∞

M∑
l=1

|uδ(s, l,N)|2 + K‖φ‖∞‖u(s,M, ·)‖2‖u(s,M + 1, ·)‖2

]
ds.

where

αδ,N = K2

4

N∫
ξ=0

|ĝδ(ξ)|2
φ′(ξ) φ2(ξ)dξ.

Taking δ → 0 by dominated convergence

IM,N (t) ≤ IM,N (0) +
t∫

0

(α− 1)|η(s)|2

+
t∫

0

[
‖φ‖∞

M∑
l=1

|u(s, l,N)|2 + K‖φ‖∞‖u(s,M, ·)‖2‖u(s,M + 1, ·)‖2

]
ds,

where

IM,N (t) =
M∑
l=1

N∫
ξ=0

1
l
|u(t, l, ξ)|2φ(ξ)dξ.

By dominated and monotone convergence and the Riemann–Lebesgue lemma, we can take N → ∞. By 
Lemma 11 and Plancherel’s identity, the L2 norm of u is uniformly bounded. Hence by taking M → ∞, we 
arrive at the result by dominated convergence. �

The global stability result, Theorem 1, follows from this lemma by finding a suitable weight φ such that 
α < 1. For this we want to minimise the integral defining α. Formally, the Euler–Lagrange equation is
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0 = |ĝ(ξ)| + ∂ξ

[
|ĝ(ξ)|

(
φ(ξ)
φ′(ξ)

)]
.

With φ(0) = 1 the solution formally is

φ(ξ) = A

A−
∫ ξ

0 |ĝ(ζ)|dζ

for a constant A. If A >
∫∞
0 |ĝ(ξ)|dξ, this indeed defines a bounded increasing weight and we find

K2

4

∞∫
0

|ĝ(ξ)|2
φ′(ξ) φ2(ξ)dξ = K2

4 A

∞∫
0

|ĝ(ξ)|dξ.

Thus if K < Kec, for a suitable A we have the required control.

Proof of Theorem 1. Lemma 17 requires the additional condition φ′(ξ) > 0 for all ξ ∈ R
+. Therefore, 

we slightly modify the weight found formally before.
For A >

∫∞
0 |ĝ(ξ)|dξ and γ > 0 the integral

K2

4

∞∫
0

A
|ĝ(ξ)|2

|ĝ(ξ)| + e−γξ
dξ

tends to

K2

4

⎛
⎝ ∞∫

0

|ĝ(ξ)|dξ

⎞
⎠

2

as A →
∫∞
0 |ĝ(ξ)|dξ and γ → ∞. Since K < Kec, we can thus find γ̄ > 0 and Ā > γ̄−1+

∫∞
0 |ĝ(ξ)|dξ such that

K2

4

∞∫
0

Ā
|ĝ(ξ)|2

|ĝ(ξ)| + e−γ̄ξ
dξ < 1.

With Ā and γ̄ define the weight φ by

φ(ξ) = Ā

Ā−
∫ ξ

0 (|ĝ(ζ)| + e−γ̄ζ) dζ
.

The integrand is continuous so that φ ∈ C1(R+) and φ′(ξ) > 0 for all ξ ∈ R
+. Moreover, φ is bounded 

and φ(0) = 1.
Thus φ is a valid weight for the theorem and by Lemma 17 a solution with initial density fin ∈ L2(Γ)

satisfies the required bound

I(t) + c

t∫
0

|η(s)|2ds ≤ I(0)

with
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c = 1 − α = 1 − K2

4

∞∫
0

Ā
|ĝ(ξ)|2

|ĝ(ξ)| + e−γ̄ξ
dξ > 0.

For general initial data, mollify the initial density ρin as ρin,ε = ρin ∗ χε where χε is the scaled Gaussian 
distribution in phase space Γ. Then Lemma 17 applies to the mollified solution. By the well-posedness of the 
problem (Theorem 10) the mollified Fourier transform converges pointwise to the original Fourier transform 
as ε → 0. Using Fatou’s lemma we can take the limit and conclude the result.

For the initial bound, use Plancherel to note

I(0) ≤ ‖φ‖∞
∑
l≥1

∫
ξ∈R+

|uin(l, ξ)|2dξ ≤ ‖φ‖∞‖f‖2
2. �

4. Stability of the linearised evolution

As in the mean-field limit, the linear evolution given by Equation (5) is understood as PDE for continuous 
solutions in the same weak sense, i.e. tested against C1

0 functions.

Proof of Lemma 2. The free transport has a unique weak solution, so that, as in Lemma 14, Duhamel’s 
formula implies

(etLuin)(1, ξ) = uin(1, ξ + t) + K

2

t∫
0

(esLuin)(1, 0)ĝ(ξ + (t− s))ds (12)

and for l ≥ 2

(etLuin)(l, ξ) = uin(l, ξ + lt).

Taking ξ = 0 in Equation (12) shows that ν(t) = (etLuin)(1, 0) must satisfy Equation (6). By the general 
theory of Volterra equation [8, Chapter 2] Equation (6) has a unique solution and the solution is continuous. 
Hence the evolution operator etL is well-defined and given by Equations (6), (8) and (9). �

The solution of the Volterra equation can be characterised by the following lemma:

Lemma 18. For a convolution kernel k ∈ L1
loc(R+) there exists a unique resolvent kernel r ∈ L1

loc(R+)
satisfying r + r ∗ k = k. For f ∈ L1

loc(R+) the unique solution x ∈ L1
loc(R+) to the Volterra equation 

x + k ∗ x = f is given by x = f − r ∗ f .

Proof. This is Theorem 3.1 and 3.5 of Chapter 2 of [8]. �
We can control the convolution by using the (sub)multiplicative structure of the weights.

Lemma 19. Let r, f ∈ L1
loc(R+). For a ∈ R

‖r ∗ f‖L∞(R+,expa) ≤ ‖r‖L1(R+,expa)‖f‖L∞(R+,expa)

and for A ≥ 1 and b ≥ 0

‖r ∗ f‖L∞(R+,pA,b) ≤ ‖r‖L1(R+,pb)‖f‖L∞(R+,pA,b).
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Proof. For a ∈ R and t ∈ R
+

|(r ∗ f)(t)|eat ≤
t∫

0

|r(t− s)|ea(t−s)|f(s)|easds

≤ ‖f‖L∞(R+,expa)

t∫
0

|r(t− s)|ea(t−s)ds

showing the first bound.
For A ≥ 1 and b ≥ 0 and t ∈ R

+

|(r ∗ f)(t)|(A + t)b ≤
t∫

0

|r(t− s)|(1 + t− s)b|f(s)|(A + s)bds

≤ ‖f‖L∞(R+,pA,b)

t∫
0

|r(t− s)|(1 + t− s)bds,

where we used that A + t ≤ (1 + t − s)(A + s) holds for s, t ∈ R
+, because A ≥ 1. Taking the supremum 

shows the second claim. �
These norms propagate in the linear evolution.

Lemma 20. Let uin ∈ C(N × R). Then for a ∈ R

sup
t≥0

eat‖(etLuin)(1, ·)‖L∞(R+,expa) ≤ c1‖uin(1, ·)‖L∞(R+,expa)

with c1 = 1 + (1 + ‖r‖L1(R+,expa))(K/2)‖g‖L1(R+,expa) and for A ≥ 1 and b ≥ 0

sup
t≥0

sup
ξ≥0

|(etLuin)(1, ξ)|(A + ξ + t)b ≤ γ1‖uin(1, ·)‖L∞(R+,pA,b)

with γ1 = 1 + (1 + ‖r‖L1(R+,pb))(K/2)‖g‖L1(R+,pb).

Proof. By the previous lemma and the explicit formula for ν, Equation (8) shows for ξ ∈ R

|(etLuin)(1, ξ)|ea(t+ξ) ≤ ‖uin‖L∞(R+,expa)

+
t∫

0

K

2 (1 + ‖r‖L1(R+,expa))‖uin‖L∞(R+,expa)e
a(ξ+t−s)|ĝ(ξ + t− s)|ds

which proves the claim.
In the algebraic case we find for ξ ≥ 0

|(etLuin)(1, ξ)|(A + ξ + t)b ≤ ‖uin‖L∞(R+,pA,b)

+
t∫

0

K

2 (1 + ‖r‖L1(R+,pb))‖uin‖L∞(R+,pA,b)
(A + ξ + t)b

(A + s)b |ĝ(ξ + t− s)|ds

which implies the result as (A + ξ + t)/(A + s) ≤ (1 + ξ + t − s). �
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Fig. 1. The black line shows Lĝ(iR) with the enclosed shaded area Lĝ({z : �z > 0}) for the Gaussian distribution g(ω) =
(2π)−1/2e−ω2/2.

The stability condition on the kernel comes from the literature.

Proof of Theorem 3. The exponential condition follows from Lemma 3.4 and Theorem 4.1 of Section 2 
of [8] and is called the Paley–Wiener theorem. The algebraic condition comes from Gel’fand’s theorem as 
Theorem 4.3 in Section 4 in [8], because the weight pb is submultiplicative. �

The stability criterion 1 + Lk(z) 
= 0 for �z ≥ 0 can be understood as imposing that Lĝ({z : �z ≥ 0})
does not contain 2/K. Since Lĝ is analytic, the argument principle shows that this is equivalent to imposing 
that Lĝ(iR) does not encircle 2/K.

For �z > 0 we find by Fubini

Lĝ(z) =
∞∫
0

e−zξ ĝ(ξ)dξ =
∞∫

−∞

g(ω) 1
z − iω

dω.

By continuity of Lĝ we thus find

Lĝ(ix) = lim
λ→0+0

∞∫
−∞

g(ω)
i(x− ω) + λ

dω = iPV
∞∫

−∞

g(x + ω)
ω

dω + πg(x),

where the last equality is Plemelj formula for continuous g and PV denotes the principal value integral.
The curve Lĝ(iR) starts and ends at 0, is bounded, and goes through the right half plane where it crosses 

the real axis by continuity of the principal value integral. If g > 0, this shows that it crosses the real axis 
at a positive value. Thus there exists a critical value Kc such that for 0 ≤ K < Kc the system in linearly 
stable and for Kc + δ > K > Kc with some δ > 0 the system is unstable.

For the Gaussian distribution, we can plot the boundary explicitly (cf. Fig. 1) and note that for 
K < 2/(πg(0)) the solution is stable while for K > 2/(πg(0)) there is exactly one root of (1 + Lk)(z)
for �z ≥ 0.

Already for two Gaussians with variance 1 centred at ω = ±1.5, we see a more interesting behaviour 
(cf. Fig. 2). Here we see that at the critical coupling two roots of (1 +Lk)(z) appear and that for sufficiently 
large K this reduces to one root.

A sufficient condition for stability is

K <
2

.

π‖g‖∞
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Fig. 2. The black line shows Lĝ(iR) with the enclosed shaded area Lĝ({z : �z > 0}) for two Gaussian distributions with variance 
1 and centred at ω = ±1.5.

In this case �(Lĝ(ix)) < 2/K so that Lĝ(iR) cannot encircle 2/K and the solution is stable. In the case of 
a symmetric distribution with a maximum at 0, this condition is sharp for the first instability because then 
(Lĝ)(0) = πg(0).

Comparing the linear stability condition to possible stationary solutions, we can understand the stability 
condition on the real part πg(x) as critical mass density to form an instability while the imaginary part 
ensures that it is not drifted away.

5. Nonlinear stability

In Fourier variables the nonlinear interaction is given by R : C(N × R) �→ C(N × R) defined as

⎧⎨
⎩
R(v)(1, ξ) = −K

2 v(1, 0)v(2, ξ),

R(v)(l, ξ) = Kl
2

[
v(1, 0)v(l − 1, ξ) − v(1, 0)v(l + 1, ξ)

]
for l ≥ 2

for v ∈ C(N ×R). Here we see that the nonlinearity is not bounded as it increases with the spatial mode l. 
In the exponential convergence we can match this with the faster decay of the linear operator in higher 
modes. In the algebraic case we compensate for this in the norm by the factor (1 + t)−α(l−1).

We characterise the solution by Duhamel’s principle on the linear evolution.

Lemma 21. Let ĝ ∈ C(R) and etL the linear evolution from Lemma 2. For uin ∈ C(N × R) define the map 
T : C(R+ × N × R) �→ C(R+ × N × R) by

(Tu)(t, l, ξ) = (etLuin)(l, ξ) +
t∫

0

(e(t−s)LR(u(s, ·, ·)))(l, ξ)ds.

Then u ∈ C(R+ × N × R) satisfies Equation (11) for all h ∈ C1
0 (R+ × N × R) if and only if Tu = u.

Proof. For u consider the nonlinear terms as forcing in Equation (11). The linear problem has a unique 
solution given by Tu. Hence u is a solution if and only if Tu = u. �

For the exponential and algebraic stability we want to propagate the norms given in the introduction using 
Lemma 21. However, we do not know a priori if these norms stay finite. Therefore, we construct a solution 
using Banach fixed point theorem and by the uniqueness (Theorem 15) this must be the mean-field solution.
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Proof of Theorem 4. Define on C(R+ × N × R) the norm ‖ · ‖e by

‖u‖e = sup
t∈R+

sup
l≥1

sup
ξ∈R

|u(t, l, ξ)|ea(ξ+tl/2)

for u ∈ C(R+ × N × R).
By the assumption Lemma 20 applies with a finite constant c1. This shows for u ∈ C(R+ × N × R) and 

t ∈ R
+, ξ ∈ R

ea(ξ+t/2)|Tu(t, 1, ξ)| ≤ c1e
−at/2Min + Kc1‖u‖2

e

2

t∫
0

e−a(t−s)/2ds

≤ c1Min + Kc1
a

‖u‖2
e

and by the explicit form (Lemma 2) for l ≥ 2

ea(ξ+tl/2)|Tu(t, l, ξ)| ≤ e−atl/2Min + Kl‖u‖2
e

t∫
0

e−al(t−s)/2ds

≤ Min + 2K
a

‖u‖2
e.

Hence

‖Tu‖e ≤ c1Min + c2‖u‖2
e

where c2 = max(c1, 2)K/a. Therefore, there exists δ > 0 such that if Min ≤ δ and ‖u‖e ≤ (1 + c1)Min, then 
‖Tu‖e ≤ (1 + c1)Min.

If u, ̃u ∈ C(R+ × N × R) satisfy ‖u‖e, ‖ũ‖e ≤ (1 + c1)δ, then as before we find

‖Tu− T ũ‖e ≤
2K(1 + c1)δ

a
max(c1, 2)‖u− ũ‖e.

Hence we can choose δ small enough such that T is a contraction on {u ∈ C(R+×N ×R) : ‖u‖e ≤ (1 +c1)Min}
for Min ≤ δ.

Thus for Min ≤ δ, there exists a unique fixed point u with ‖u‖e ≤ (1 + c1)Min. By Theorem 15, this u
must be equal to the Fourier transform of the solution to the Kuramoto equation. �

The structure for the proof of algebraic stability is very similar to the previous proof of exponential 
estimate.

Proof of Theorem 5. Define on C(R+ × N × R) the norm ‖ · ‖a by

‖u‖a = sup
t∈R+

sup
l≥1

sup
ξ∈R+

|u(t, l, ξ)| (1 + ξ + t)b

(1 + t)α(l−1)

for u ∈ C(R+ × N × R).
By the assumption Lemma 20 applies with a finite constant γ1. This shows for u ∈ C(R+ × N × R) and 

t ∈ R
+, ξ ∈ R
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|Tu(t, 1, ξ)|(1 + ξ + t)b ≤ γ1Min + K‖u‖2
a

2

t∫
0

γ1(1 + s)α−bds

≤ γ1Min + γ1K

2(b− 1 − α)
‖u‖2

a.

For modes l ≥ 2 the explicit formula Lemma 2 shows

|Tu(t, l, ξ)| (1 + ξ + t)b

(1 + t)α(l−1) ≤ Min + K‖u‖2
al

t∫
0

(1 + s)αl−b

(1 + t)α(l−1) ds.

For l ∈ N with αl > b − 1 we can bound

l

t∫
0

(1 + s)αl−b

(1 + t)α(l−1) ds ≤ l

αl − b + 1

by a finite constant independent of l.
For l ∈ N with l ≥ 2 and αl − b ≤ 1 the integral 

∫ t

0 (1 + s)αl−bds grows at most logarithmically, so that 
it can be bounded by (1 + t)α(l−1). Hence there exists a finite γ2 satisfying

‖Tu‖a ≤ γ1Min + γ2‖u‖2
a.

Thus there exists δ > 0 such that Min ≤ δ implies that ‖Tu‖a ≤ (1 +γ1)Min holds if ‖u‖a ≤ (1 +γ1)Min.
For two functions u, ̃u ∈ C(R+ × N × R) with ‖u‖a, ‖ũ‖a ≤ (1 + γ1)δ, we find for t ∈ R

+ and ξ ∈ R
+ as 

before

|(Tu− T ũ)(t, 1, ξ)|(1 + ξ + t)b ≤ Kγ1(1 + γ1)δ‖u− ũ‖a
t∫

0

(1 + s)α−bds

≤ Kγ1(1 + γ1)δ
b− 1 − α

‖u− ũ‖a

and for l ≥ 2

|(Tu− T ũ)(t, l, ξ)| (1 + ξ + t)b

(1 + t)α(l−1) ≤ 2K(1 + γ1)δ‖u− ũ‖al
t∫

0

(1 + s)αl−b

(1 + t)α(l−1) ds.

By the same argument, the factors with l are uniformly bounded over l ≥ 2, so that for small enough δ > 0
the map T is a contraction on {u ∈ C(R+ × N × R) : ‖u‖a ≤ (1 + γ1)Min} when Min ≤ δ. Hence there 
exists a unique fixed point Tu = u with ‖u‖a ≤ (1 + γ1)Min . For every T > 0, the restricted uniqueness 
(Theorem 15 and Theorem 16) shows that this solution must be equal to the Fourier transform of the 
mean-field solution to the Kuramoto equation up to time T . Hence u always equals the Fourier transform 
of the solution and the bound on u proves the theorem. �
6. Linear eigenmodes and spectral decomposition

The solution of the Volterra equation with eigenmodes follows from the literature.
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Proof of Theorem 6. By the assumed decay of ĝ, the Laplace transform Lk is analytic in {z : �z > −a}
and continuous up to the boundary {z : �z = −a}. By the Riemann–Lebesgue lemma further Lk(z) → 0
as |z| → ∞ for �z > −a. Hence 1 + Lk(z) can only have finitely many poles with finite multiplicity.

The decomposition now follows from Theorem 2.1 of Chapter 7 of [8]. �
For the characterisation of the stable subspace we use the functional α.

Lemma 22. For a ∈ R and λ ∈ C and j ∈ N with �λ > −a define the continuous functional αλ,j on Ya by

αλ,j(u) =
(

d
dz

)j

[Lu(1, ·)](z)
∣∣∣∣∣
z=λ

=
∞∫
0

u(1, t)(−t)je−λtdt.

Proof. Since |u(1, ξ)| ≤ e−aξ‖u‖Ya , the functional is well-defined, continuous and for j ≥ 1 the derivative 
can be computed by differentiating under the integral sign. �
Lemma 23. Assume a ∈ R and ĝ ∈ C(R) as in Theorem 6 and let λ1, . . . , λn be the roots of multiplicity 
p1, . . . , pn as in Theorem 6. Define the closed subspace

Ya
s = {u ∈ Ya : αλi,j(u) = 0 for i = 1, . . . , n and j = 0, . . . , pi − 1}.

Then Ya
s is invariant under the linear evolution etL and u ∈ Ya is in Ya

s if and only if for ν(t) = (etLu)(1, 0)
holds ν ∈ L∞(R+, expa). In this case

sup
t≥0

eat‖(etLu)(1, ·)‖L∞(R+,expa) ≤ c1‖u(1, ·)‖L∞(R+,expa) (13)

holds with c1 = 1 + (1 + ‖rs‖L1(R+,expa))(K/2)‖g‖L1(R+,expa) < ∞.

Proof. If u ∈ Ya
s , the solution of the Volterra equation for ν in Theorem 6 simplifies to

ν(t) = u(1, t) − (rs ∗ u(1, ·))(t).

Since rs ∈ L1(R, expa), this shows ν ∈ L∞(R+, expa) and, as in Lemma 20, Equation (13) follows with the 
given constant c1.

Conversely, assume ν ∈ L∞(R+, expa). Then at z ∈ C with �z > −a the Laplace transform of ν, k and 
u(1, ·) are analytic and by the Volterra equation (6) satisfy

(Lν)(z) + (Lk)(z)(Lν)(z) = [Lu(1, ·)](z).

Hence the LHS has roots λ1, . . . , λn of multiplicities p1, . . . , pn. Thus the RHS must have the same roots, 
i.e. αλi,j(u) = 0 for i = 1, . . . , n and j = 0, . . . , pi − 1, which shows u ∈ Ya

s .
The growth condition ν ∈ L∞(R+, expa) under the linear evolution is invariant, so that Ya

s is invariant 
under the linear evolution. �

We can use this to control the decay in Za
s = Ya

s ∩ Za under the linear evolution and the forcing term 
from a Duhamel equation.

Lemma 24. Assume the hypothesis of Lemma 23 with a ≥ 0. Then for u ∈ Za
s we have for t ∈ R

+

‖etLu‖Za ≤ c1e
−at‖u‖Za .
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For 0 ≤ μ < a consider F ∈ C(R+ × N × R) with F (t, ·, ·) ∈ Ya
s for all t ∈ R

+ and norm

‖F‖Ya,−μ := sup
t∈R+

e−μt‖F (t, ·, ·)‖Ya < ∞.

Then

v =
∞∫
0

etLF (t, ·, ·)dt

is well-defined and v ∈ Za
s with

‖v‖Za ≤ c(μ)‖F‖Ya,−μ,

where c(μ) = (a − μ)−1c1.

Remark 25. The forcing F is measured in the weaker norm Ya and we are able to recover the control in the 
stronger norm Za.

Proof. Since u is in Za
s , we find by Lemma 23 for t ∈ R

+ and ξ ∈ R

eaξ|(etLu)(1, ξ)| ≤ c1e
−at‖u‖Za

and by (9) for l ≥ 2

eaξ|(etLu)(l, ξ)| ≤ e−alt‖u‖Za

which shows the first claim.
For the second part note that for every t ∈ R

+ the integrand etLF (t, ·, ·) is continuous. By Lemma 23 we 
can control for ξ ∈ R

eaξ|[etLF (t, ·, ·)](1, ξ)| ≤ c1e
−at‖F (t, ·, ·)‖Ya ≤ c1e

(μ−a)t‖F‖Ya,μ

and for l ≥ 2 by Equation (9)

eaξ|[etLF (t, ·, ·)](l, ξ)| ≤ le(μ−al)t‖F‖Ya,μ.

These bounds are uniformly integrable as

∞∫
0

c1e
(μ−a)tdt = c1

a− μ

and for l ≥ 2

l

∞∫
0

e(μ−al)tdt = l

al − μ
= 1

a− μ/l
.

Hence the integral is well-defined and defines a continuous function v ∈ C(N × R). Moreover, it shows the 
claimed control of ‖v‖Za . �
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In order to find the eigenmodes in Za and the projection to them, we consider the linear generator L
on Za.

Lemma 26. Assume the hypothesis of Lemma 23 with a > 0. Define the closed operator L : D(L) ⊂ Za �→ Ya

with D(L) = {u ∈ C1(N × R) : ‖u‖Za < ∞} by

(Lu)(1, ξ) = ∂ξu(1, ξ) + K

2 u(1, 0)ĝ(ξ)

and for l ≥ 2 by

(Lu)(1, ξ) = l∂ξu(l, ξ).

Then in {λ : �λ > −a} the spectrum of L equals σ = {λ1, . . . , λn}. For λ /∈ σ and �λ > −a the resolvent 
(L − λ)−1 is given by

[(L− λ)−1v](1, ξ) = −
∞∫
ξ

e−λ(ζ−ξ)
(
v(1, ζ) + K

2
[Lv(1, ·)](λ)
1 + (Lk)(λ) ĝ(ζ)

)
dζ (14)

for ξ ∈ R where k is the convolution kernel from Equation (7) and for l ≥ 2

[(L− λ)−1v](l, ξ) = −1
l

∞∫
ξ

e−(λ/l)(ζ−ξ)v(l, ζ)dζ. (15)

Proof. By classical analysis the differentiation and the uniform limit can be interchanged so that L is closed.
For the resolvent fix λ ∈ C with �λ > −a and λ /∈ σ and v ∈ Ya. We now look for solutions of (L −λ)u = v

in u ∈ D(L) ⊂ Za.
For l ≥ 2 this implies

l∂ξu(l, ξ) − λu(l, ξ) = v(l, ξ) ⇒ ∂ξ

(
e−(λ/l)ξu(l, ξ)

)
= 1

l
v(l, ξ)e−(λ/l)ξ.

Since �λ > −a this shows that u is uniquely given by Equation (15).
For l = 1 we likewise find that u must satisfy

u(1, ξ) = −
∞∫
ξ

e−λ(ζ−ξ)
(
v(1, ζ) − K

2 u(1, 0)ĝ(ζ)
)

dζ.

Hence by taking ξ = 0 we find that u must satisfy

u(1, 0) (1 + (Lk)(λ)) = −[Lv(1, ·)](λ).

Since λ /∈ σ, this determines u(1, 0) uniquely and the solution is given by Equation (14). Moreover, the 
found solution satisfies ‖u‖Za < ∞. Hence such a λ is not in the spectrum of L and the resolvent map takes 
the given form.

If λ ∈ σ, the above shows that L is not injective, so that σ is in the spectrum. �
Equation (14) shows that at a root λ of multiplicity p the residue of the resolvent map (L − λ)−1 is in 

the space spanned by 〈zλ,j : j = 0, . . . , p − 1〉 where for ξ ∈ R
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zλ,j(1, ξ) = K

2

∞∫
ξ

e−λ(ζ−ξ)(ξ − ζ)j ĝ(ζ)dζ

and for l ≥ 2

zλ,j(l, ξ) = 0.

Since we assume ĝ ∈ L1(R, expa), we always have zλ,j ∈ D(L) ⊂ Za.

Lemma 27. Assume the hypothesis of Lemma 23 with a > 0. Then for a root λ with �λ > −a of 1 +(Lk)(z)
with multiplicity p, the elements zλ,0, . . . , zλ,p−1 are generalised eigenvectors of L with eigenvalue λ.

Proof. Note that for j = 0, . . . , p − 1

zλ,j(1, 0) = −
(

d
dz

)j

(Lk)(z)

∣∣∣∣∣
z=λ

=
{

1 j = 0,
0 otherwise.

Then by direct computation

Lzλ,j =
{
λzλ,j j = 0,
λzλ,j + jzλ,j−1 otherwise.

�

Using holomorphic functional calculus, we can construct the required projection.

Lemma 28. Assume the hypothesis of Lemma 23 with a > 0. There exists a continuous projection
Pcu : Ya �→ Za

cu such that the complementary projection Ps = I − Pcu maps to Ya
s .

Proof. Take γ a contour in {z ∈ C : �z > −a} encircling all roots λ1, . . . , λn once and define

Pcu(u) = −1
2πi

∮
γ

(L− λ)−1(u)dλ.

Then Pcu is a continuous projection. Since its value is given by the residues, Equation (14) shows that Pcu

maps into Za
cu.

On the image of the complementary projection Ps the resolvent map (L −λ)−1 is continuous for �λ > −a. 
By Equation (14) this can only be true if for all roots λ1, . . . , λn with multiplicities p1, . . . , pn also Lu(1, ·)
has a root of matching multiplicity, i.e. αλi,j must be vanishing for i = 1, . . . , n and j = 0, . . . , pi − 1. 
Hence the image is within Ya

s . �
7. Center-unstable manifold reduction

Since the nonlinearity R is smooth from Za to Ya, the center-unstable manifold reduction follows from 
the decay on the stable part (Lemma 24) and the continuous projections (Lemma 28). The center-manifold 
reduction in Banach spaces is discussed in [32, Chapter 2], which can be adapted to our case with a 
weak PDE as Duhamel’s principle holds again. Moreover, instead of a center manifold reduction we do a 
center-unstable manifold reduction [33, Section 1.5] as this implies convergence to the reduced manifold. 
The statements are also discussed in [31].

In order to understand the bifurcation behaviour, the center-unstable manifold is constructed with 
ε = K −Kc as additional parameter. Furthermore, we need to localise the non-linearity around the 
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incoherent state. This localisation might affect the resulting reduced manifold, which is not unique.
Moreover, we choose the localisation to preserve the rotation symmetry of the problem so that the
resulting manifold has the same symmetry.

Hence we study the solution in Z̃a = Za ×R and Ỹa = Ya ×R with norms ‖(u, ε)‖Z̃a = max(‖u‖Za , |ε|)
and ‖(u, ε)‖Ỹa = max(‖u‖Ya , |ε|). In these define the linear evolution operator etL̃ as

etL̃ũ = etL̃(u, ε) = (etLu, ε).

The center-unstable space Z̃a
cu is now spanned by (0, 1) and (zλi,j , 0) for i = 1, . . . , n and j = 0, . . . , pi − 1.

The projection P̃cu is defined as P̃cu(u, ε) = (Pcuu, ε) with Pcu from Lemma 28. The complementary pro-
jection P̃s maps into the stable part Ỹa

s = Ya
s × {0}.

For the center-unstable manifold reduction the used properties of the linear evolution are collected in the 
following lemma:

Lemma 29. Assume the hypothesis of Theorem 7. Then there exists a continuous projection P̃cu : Ya �→ Z̃a
cu

with complementary projection P̃s = I − P̃cu mapping Ỹa to Ỹa
s . The subspaces Z̃a

cu and Ỹa
s are invariant 

under the linear evolution. On Z̃a
cu the linear evolution acts as finite-dimensional matrix exponential whose 

generator has spectrum λ1, . . . , λn. On Z̃a
s = P̃sZ̃a there exists a constant c1 such that for t ∈ R

+ and 
u ∈ Z̃a

s

‖etL̃u‖Z̃a ≤ c1e
−at‖u‖Z̃a

and there exists a continuous function c : [0, a) �→ R
+ such that for μ ∈ [0, a) and F ∈ C(R+ ×N × R ×R)

with F (t, ·) ∈ Ỹa
s for t ∈ R

+ and norm

‖F‖Ya,−μ := sup
t∈R+

e−μt‖F (t, ·)‖Ỹa < ∞,

the integral

v =
∞∫
0

etL̃F (t, ·)dt

is well-defined and v ∈ Z̃a
s with

‖v‖Z̃a ≤ c(μ)‖F‖Ỹa,−μ.

Proof. The linear evolution on ε is constant so that the properties follow from the study of etL, i.e.
Lemmas 24, 27 and 28. �

In the extended dynamics for ũ in Z̃a, the nonlinearity takes the form R̃ : Z̃a �→ Ỹ a given by

R̃(ũ) = (N(ũ), 0)

where N : Z̃a �→ Ya is for ũ = (u, ε) defined by

N(ũ)(1, ξ) = ε

2u(1, 0)ĝ(ξ) − (Kc + ε)
2 u(1, 0)u(2, ξ)

for ξ ∈ R and for l ≤ 2



478 H. Dietert / J. Math. Pures Appl. 105 (2016) 451–489
N(ũ)(l, ξ) = (Kc + ε)l
2

(
u(1, 0)u(l − 1, ξ) − u(1, 0)u(l + 1, ξ)

)
.

For the localisation let χ : R+ �→ [0, 1] be a smooth function with χ(x) = 1 for x ≤ 1 and χ(x) = 0
for x ≥ 2. Then let χδ(x) = χ(x/δ) and sδ(x) = xχδ(|x|). With this define the localised nonlinearity 
R̃δ : Z̃a �→ Ỹa by

R̃δ(ũ) = (Nδ(ũ), 0)

where Nδ : Z̃a �→ Ya is for ũ = (u, ε) defined by

Nδ(ũ)(1, ξ) = sδ(ε)
2 sδ(u(1, 0))ĝ(ξ) − (Kc + sδ(ε))

2 sδ(u(1, 0))sδ(u(2, ξ))

for ξ ∈ R and for l ≥ 2

Nδ(ũ)(l, ξ) = (Kc + sδ(ε))l
2

(
sδ(u(1, 0))sδ(u(l − 1, ξ)) − sδ(u(1, 0))sδ(u(l + 1, ξ))

)
.

Then for δ > 0, the localised nonlinearity R̃δ agrees with the original nonlinearity of the mean-field 
equation for ‖ũ‖Z̃a ≤ δ, is in C∞(Z̃a, Ỹa) with R̃δ(0) = DR̃δ(0) = 0 and is bounded and Lipschitz 
continuous with constants tending to 0 as δ → 0.

We now study the evolution PDE

⎧⎪⎪⎨
⎪⎪⎩
∂tu(t, 1, ξ) = ∂ξu(t, 1, ξ) + Kc

2 u(t, 1, 0)ĝ(ξ) + Nδ(ũ)(1, ξ),
∂tu(t, l, ξ) = l∂ξu(t, l, ξ) + Nδ(ũ)(l, ξ) for l ≥ 2,
∂tε(t) = 0,

(16)

for ũ = (u, ε) ∈ C(Δ × N × R × R) understood weakly against test functions in C1
0 and where Δ ⊂ R is a 

time interval.

Lemma 30. A solution ũ of Equation (16) satisfies Duhamel’s formula, i.e. for t0, t1 ∈ Δ with t0 ≤ t1 the 
following holds

ũ(t1) = e(t1−t0)L̃ũ(t0) +
t1∫

t0

e(t1−s)L̃R̃δ(ũ(s))ds.

Proof. Consider R̃δ(ũ) as forcing. Then the linear problem has a unique solution given by the formula. �
Lemma 31. Let ũ be a solution of Equation (16). Given ũ(t0) ∈ Z̃a the solution is uniquely determined at 
later times t ≥ t0 and ‖ũ(t)‖Z̃a is uniformly bounded for compact intervals of later times. If δ is small 
enough, there exists, given ũ(t0) ∈ Z̃a, a global solution for t ≥ t0.

Proof. The projections commute with the linear evolution in the Duhamel formula and are bounded. Since 
R̃δ is bounded, this shows with the control of the linear evolution (Lemma 29) that ‖ũ(t)‖Z̃a is uniformly 
bounded for compact time-intervals of later times. Furthermore, R̃δ is Lipschitz so that the Duhamel for-
mulation gives a Gronwall control showing uniqueness.
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If δ is small enough, then the Picard iteration

ũ �→ e(t−t0)L̃ũ(t0) +
t∫

t0

e(t−s)L̃R̃δ(ũ(s))ds

is a contraction, so that a solution exists. �
With this we can construct the reduced manifold. We want to capture the evolution in the reduced 

manifold where the stable part has decayed, which we can characterise by the growth as t → −∞.

Theorem 32. Assume the hypothesis of Theorem 7. There exists μ ∈ (0, a) and δb such that for δ ≤ δb there 
exists ψ̃ ∈ Ck(Z̃a

cu, Z̃a
s ) such that

M = {ũ0 ∈ Z̃a : ∃ũ satisfying Equation (16) with ũ(0) = ũ0,

and sup
t∈R−

eμt‖ũ(t)‖Z̃a < ∞}

= {v + ψ̃(v) : v ∈ Z̃a
cu}

which is the reduced manifold. Under the evolution of Equation (16) the reduced manifold is invariant and 
exponentially attractive. Moreover, the Taylor series of ψ̃ is explicitly computable at 0 starting with

ψ̃|0 = 0,

Dψ̃|0 = 0,

D2ψ̃|0(h1, h2) =
0∫

−∞

e−tL̃P̃sD
2R̃δ|0(etL̃h1, e

tL̃h2)dt.

The growth condition already suggest that this captures the dominant behaviour and M is attractive.

Proof. Since we have a Duhamel formula, the proofs of Theorem 1 and 2 of [32] work. We further adapt it, 
as in Section 1.5 of [33], to the center-unstable case. Parts of the results are also stated as Theorem 2.9 and 
3.22 of Section 2 of [31].

The key point is to note that by the Duhamel formulation a solution with the growth bound is a fixed 
point of the map T given by

(T ũ)(t) = etL̃P̃cuũ0 −
0∫

t

e(t−s)L̃P̃cuR̃δ(ũ(s))ds +
t∫

−∞

e(t−s)L̃P̃sR̃δ(ũ(s))ds

for t ∈ R
− on the space C(R− × N × R × R) with norm ‖ũ‖ = supt∈R− eμt‖ũ(t, ·)‖Z̃a . Here note that on 

Z̃a
cu the linear evolution etL̃ restricts to a finite dimensional matrix exponential, which has a well-defined 

inverse e−tL̃.
For small enough δ the map T is a contraction with a unique fixed point depending on P̃cuũ0 so that 

there exists ψ̃ : Z̃a
cu �→ Z̃a

s such that the unique solution is P̃cuũ0 + ψ̃(P̃cuũ0) [32, Theorem 1]. Hence the 
set M is a reduced manifold with the given form. Moreover, the growth condition is invariant under the 
evolution.

By a Fibre contraction argument ([32, Theorem 2] and [33, Section 1.3]), for small enough δ, the map ψ̃
has the claimed regularity and the derivatives can be computed explicitly at 0 with the given form.



480 H. Dietert / J. Math. Pures Appl. 105 (2016) 451–489
As discussed in [33, Section 1.5] and [31, Theorem 3.22 of Chapter 2] a similar fixed point argument 
shows the exponential attractiveness. �

Hence, with a sufficient localisation, we can prove Theorem 7.

Proof of Theorem 7. Apply Theorem 32 with a small enough δ. Then for |ε| ≤ δ and ‖u‖ ≤ δ the nonlinearity 
of R̃δ agrees with the nonlinearity of the Kuramoto equation, i.e. a solution to the localised evolution is also 
a solution to the original problem in the restricted region.

The map ψ̃ maps into Z̃a
s and thus has the form ψ̃(u, ε) = (ψ(u, ε), 0) for ψ mapping into Za

s . As ε
is constant, the reduced manifold must have the claimed form and the result follows from the uniqueness 
(Theorem 15). �
Remark 33. The Kuramoto equation has the rotation symmetry, i.e. if u is a solution to the Kuramoto 
equation, then ū(t, l, ξ) = eilαu(t, l, ξ) is again a solution. This symmetry is also satisfied by the localised 
nonlinearity and thus by the reduced manifold.

7.1. Bifurcation analysis

The center-manifold reduction can be used to determine the bifurcation behaviour by studying the 
evolution on the reduced manifold. The resulting behaviour crucially depends on the velocity distribution 
and [19] contains several examples based on the center-manifold reduction with noise which at this point is 
very similar. The Penrose diagrams (cf. Figs. 1 and 2) already show the dimension of the reduced manifold 
as the covering number, e.g. this shows for the example of Fig. 2 that at the critical coupling two eigenmodes 
appear.

As an example we repeat Chiba’s analysis [9] for the bifurcation of the Gaussian distribution. In this 
example the density is given by

g(ω) = 1√
2π

e−ω2/2,

and the Fourier transform is

ĝ(ξ) = e−ξ2/2.

From the discussion in Section 4, we see that the critical coupling is

Kc = 2
πg(0) = 4√

2π

and that at the critical coupling Kc there exists a single eigenvalue at λ = 0 for small enough a.
Recall, that the eigenvector z0,0 is given by

z0,0(1, ξ) = Kc

2

∞∫
ξ

ĝ(ζ)dζ.

Hence z0,0(1, 0) = 1 and

α0,0(z0,0) = Kc

2

∞∫ ∞∫
ĝ(ζ)dζdξ
0 ξ
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= Kc

2
,

so that

Pcu(u) = 2
Kc

α0,0(u)z0,0.

Now apply Theorem 7 with sufficiently small a > 0 such that λ1 = 0 is the only eigenmode and with 
k ≥ 3. Then for ũ = (u, ε) ∈ Z̃a

cu

ψ(ũ) = 1
2b(ũ) + O(‖ũ‖3),

where

b(ũ) = D2ψ|0(ũ, ũ) =
0∫

−∞

e−tL̃P̃sD
2N |0(ũ, ũ)dt.

For this we find that only the first two spatial modes are non-vanishing with

b(ũ)(1, ξ) = O(|ε|‖u‖)

and

b(ũ)(2, ξ) =
0∫

−∞

2Kcu(1, ξ − 2t)u(1, 0)dt.

Hence we can compute

N(u + ψ(u, ε))(1, ξ) = ε

2u(1, 0)ĝ(ξ) − Kc

2 u(1, 0)b(ũ)(2, ξ)
2 + O(|ε|2‖u‖, ‖ũ‖4).

As ũ = u(1, 0)z0,0 we find

∞∫
0

b(ũ)(2, ξ)dξ = (u(1, 0))2
∞∫
0

0∫
−∞

2Kcz0,0(1, ξ − 2t)z0,0(1, 0)dtdξ

= K2
c (u(1, 0))2

∞∫
ξ=0

∞∫
t=0

∞∫
ζ=ξ+2t

ĝ(ζ)dζdtdξ

= K2
c (u(1, 0))2

∞∫
ζ=0

ζ2

4 ĝ(ζ)dζ

=
√

2π
8 .

Hence we find

α0,0(N(u + ψ(u, ε))) =
√

2π
εu(1, 0) − 1 |u(1, 0)|2u(1, 0) + O(|ε|2‖u‖, ‖ũ‖4).
4 π
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On the reduced manifold the solution is β(t)z0,0 +ψ(β(t)z0,0, ε), which evolves by the previous computation 
as

Kc

2 ∂tβ =
√

2π
4 εβ − 1

π
|β|2β + O(|ε|2‖u‖, ‖ũ‖4).

For small enough ε ≤ 0, thus β = 0 is a stable fixed point, i.e. the incoherent state is stable. For small 
enough ε > 0, the zero solution is unstable, but the set |β| = βc are stable attractors where

βc =
√

π

4
√

2π
√
ε + O(ε).

Hence we have proved the claimed bifurcation from the incoherent state and that for small enough ε the 
appearing stationary states are nonlinearly stable. Since z0,0(1, 0) = 1, the value of β agrees with the order 
parameter so that we have found the known result.

8. Boundedness and convergence in the exponential norms

The exponential norm L∞(R, expa) can be related to an analytic extension in a strip {z : 0 ≤ �z < a}.

Lemma 34. Let f ∈ L1(R) ∩ C(R) with Fourier transform f̂ ∈ L1(R) satisfying f̂ ∈ L∞(R, expa). Then f
has an analytic continuation to {z : 0 ≤ �z < a}.

Proof. For z ∈ R the Fourier inversion formula shows

f(z) = 1
2π

∫
R

e−izξ f̂(ξ)dξ.

By the assumed supremum bound on f̂ for ξ ≥ 0 and the bound |f̂(ξ)| ≤ ‖f‖1 for ξ ≤ 0, this definition 
extends to the given range and has a complex derivative given by differentiating under the integral sign. �
Lemma 35. Let f ∈ L1(R) and suppose f has an analytic continuation to {z : 0 ≤ �z ≤ a} such that 
|f(z)| → 0 uniformly as |�z| → ∞ and f(· + ia) ∈ L1(R). Then the Fourier transform f̂ is bounded as

‖f̂‖L∞(R,expa) ≤ ‖f(· + ia)‖L1(R).

Proof. By the assumed decay we can deform the contour of integration as

f̂(ξ) =
∫
R

eiξyf(y)dy =
∫
R

eiξ(y+ia)f(y + ia)dy = e−aξ

∫
R

eiξyf(y + ia)dy.

Bounding the integral with the L1 norm of f shows the claimed result. �
We can use this to show the finite Za norm of partially locked states (see [3, Chapter 4] for a brief review 

of these states).

Theorem 36. Suppose a velocity marginal with density g ∈ L1(R) and that g has an analytic continuation 
to {z : 0 ≤ �z ≤ a} such that |g(z)| → 0 uniformly as |�z| → ∞ and g(· + ia) ∈ L1(R). Then a partially 
locked state ρlocked has Fourier transform u ∈ Za. If furthermore |η| ≤ a/(

√
2K), then

‖u‖Za ≤ K|η|
2 ‖g(· + ia)‖L1(R).
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The assumption on the velocity distribution is for example satisfied for a Gaussian distribution. This 
estimate shows that partially locked states with small order parameter η are small perturbations in Za.

Proof. Suppose a partially locked state with order parameter η. Then for |ω| < K|η| all oscillators are 
trapped at θ+ satisfying

eiθ+ =
√

K2|η|2 − ω2

Kη
+ iω

Kη
.

For |ω| > K|η| the oscillators are distributed proportionally to the density

1
ω + K

2i (ηe−iθ − ηeiθ)
.

Consider the Fourier transform f̂ with respect to the phase angle

f̂(l, ω) =
∫

θ∈T

eilθρlocked(dθ, ω).

By Cauchy’s residue theorem

f̂(l, ω) = g(ω) η

|η|

(
β

(
ω

K|η|

))l

,

where β is given by

β(z) =

⎧⎨
⎩iz

(
1 −
√

1 − 1
z2

)
for |z| ≥ 1,

iz +
√

1 − z2 for |z| < 1.

Now β has an analytic continuation to the complex upper half plane and is bounded there by 1. 
Hence Lemma 35 shows for all l ∈ N

‖u(l, ·)‖L∞(R,expa) ≤ ‖g(· + ia)‖L1(R),

which implies that u ∈ Za.
For |z| ≥

√
2 we can estimate by the series expansion

|β(z)| ≤ 1
2|z|

∞∑
i=0

|z|−2i ≤ 1
|z| .

Hence we can estimate for |η| ≤ a/(
√

2K) that

‖u(l, ·)‖L∞(R,expa) ≤ sup
ω∈R

∣∣∣∣β
(
ω + ia

K|η|

)∣∣∣∣
l

‖g(· + ia)‖L1(R) ≤
K|η|
a

‖g(· + ia)‖L1(R),

which is the claimed bound. �
We can relate convergence in Za as found in the center-unstable manifold reduction and the exponential 

stability with weak convergence.
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Theorem 37. Let ρ· ∈ CM be a solution to the Kuramoto equation with initial data ρin ∈ M(Γ) and Fourier 
transform u. If u(t, ·, ·) → v in Za as t → ∞ where v is the Fourier transform of ρ∞ ∈ M(Γ), then for 
every φ ∈ H4(Γ) the integral ρt(φ) converges to ρ∞(φ) as t → ∞.

Proof. Since the velocity marginal is conserved, wlog assume 
∫
θ∈T

φ(θ, ω)dθ = 0 for all ω ∈ R and φ to be 
real-valued. Then by Plancherel theorem

ρt(φ) = 2�

⎛
⎜⎝∑

l≥1

∫
ξ∈R

u(t, l, ξ)φ̂(l, ξ)dξ

⎞
⎟⎠ ,

where φ̂ is the Fourier transform of φ. Since φ ∈ H4, we have φ̂ ∈ L1(N × R). Hence for every ε > 0, there 
exists some M such that

∑
l≥1

M∫
−∞

|φ̂(l, ξ)|dξ ≤ ε

8 .

Since u and v correspond to probability measures, they are bounded by 1 so that
∣∣∣∣∣∣
∑
l≥1

M∫
−∞

(u(t, l, ξ) − v(l, ξ))φ̂(l, ξ)dξ

∣∣∣∣∣∣ ≤
ε

4 .

For ξ ≥ M we have a control by Za

∣∣∣∣∣∣
∑
l≥1

∞∫
M

(u(t, l, ξ) − v(l, ξ))φ̂(l, ξ)dξ

∣∣∣∣∣∣ ≤ e−aM‖u− v‖Za‖φ̂‖1.

Hence for large enough t we have |ρt(φ) − ρ∞(φ)| ≤ ε. Since ε is arbitrary, this shows the claimed conver-
gence. �

In the stability Theorem 5 we only control a norm in half of the Fourier coefficients which also looses 
control for higher spatial modes. However, this controls the order parameter η and in particular it shows ∫∞
0 |η(t)|dt < ∞. With this knowledge we can go back to the original equation to deduce convergence 

properties. As an example we show a convergence in the gliding frame.
In the gliding frame the position of each oscillator is corrected by the effect of the free transport,

i.e. if ρ· is the solution of the Kuramoto equation which has a density f , then the density h in the gliding 
frame is given by

h(t, θ, ω) = f(t, θ + tω, ω).

If f ∈ C1(R+ × Γ), then f satisfies classically

∂tf(t, θ, ω) + ∂θ

[
ω +

(
K

2i

(
η(t) e−iθ − η(t) eiθ

))
f(t, θ)

]
= 0

so that then h ∈ C1(R+ × Γ) and h satisfies

∂th(t, θ, ω) + ∂θ

[
K

2i

(
η(t) e−i(θ+tω) − η(t) ei(θ+tω)

)
h(t, θ, ω)

]
= 0. (17)
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Theorem 38. Suppose ρin ∈ M(Γ) has density fin ∈ C2(Γ) and let ρ· be the solution of the Kuramoto 
equation with initial data ρin. Then ρ· has a gliding frame density h ∈ C2(R+ × Γ) and for every t ∈ R

+

and ω ∈ R holds
∫
T

(h(t, θ, ω))2dθ ≤ eK
∫ t
0 |η(s)|ds

∫
T

(fin(θ, ω))2dθ

and ∫
T

(∂θh(t, θ, ω))2dθ

≤ e3K
∫ T
0 |η(s)|ds

⎡
⎣∫

T

(∂θfin(θ, ω))2dθ + K

t∫
0

|η(s)|ds sup
s∈[0,t]

∫
T

(h(t, θ, ω))2dθ

⎤
⎦ .

If 
∫∞
0 |η(t)|dt < ∞, then for every fixed ω ∈ R the function h(t, ·, ω) converges in L2(T) as t → ∞.
If additionally fin ∈ L2(Γ) and ∂θfin ∈ L2(Γ), then h(t, ·, ·) converges in L2(Γ) as t → ∞.

Proof. Along the evolution the regularity is propagated [6] so that ρ· has a density f ∈ C2(R+ ×Γ). Hence 
h ∈ C2(R+ × Γ) and h satisfies Equation (17).

For the bounds, fix ω and let

z(t) =
∫

θ∈T

(h(t, θ, ω))2dθ.

By the assumed regularity, we can differentiate under the integral sign to find

d
dtz(t) =

∫
θ∈T

K

2

(
η(t) e−i(θ+tω) + η(t) ei(θ+tω)

)
(h(t, θ, ω))2dθ ≤ K|η(t)|z(t).

Hence Gronwall’s inequality shows as claimed

z(t) ≤ eK
∫ t
0 |η(s)|dsz(0) = eK

∫ t
0 |η(s)|ds

∫
T

(fin(θ, ω))2dθ.

Similar, we consider

y(t) =
∫

θ∈T

(∂θh(t, θ, ω))2dθ

and find

d
dty(t) = K

2

∫
θ∈T

[
(h(t, θ, ω))2 + 3(∂θh(t, θ, ω))2

] (
η(t) e−i(θ+tω) + η(t) ei(θ+tω)

)
dθ

≤ K|η(t)|z(t) + 3K|η(t)|y(t).

Then Gronwall’s inequality shows the claimed bound.
If 
∫ t |η(t)|dt < ∞, these bounds show that there exist constants C1, C2 ∈ R such that for every ω ∈ R
0
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∫
θ∈T

(h(t, θ, ω))2dθ ≤ C1

∫
θ∈T

(fin(θ, ω))2dθ

and ∫
θ∈T

(∂θh(t, θ, ω))2dθ ≤ C2

∫
θ∈T

[
(fin(θ, ω))2 + (∂θfin(θ, ω))2

]
dθ.

In particular the bounds are finite as the integral is over a compact domain and we assume fin ∈ C2(Γ).
Now consider for t ≥ s ≥ 0

D(t, s) =
∫

θ∈T

(h(t, θ, ω) − h(s, θ, ω))2dθ.

By the assumed regularity we can differentiate under the integral sign and find

∂tD(t, s)

=
∫

θ∈T

2[∂θh(t, θ, ω) − ∂θh(s, θ, ω)]K2i

(
η(t) e−i(θ+tω) − η(t) ei(θ+tω)

)
h(t, θ, ω)dθ

≤ 2K|η(t)|(
√
y(t) +

√
y(s))

√
z(t).

Hence

D(t, s) ≤ C

t∫
s

|η(s̄)|ds̄

for a constant C. As 
∫∞
0 |η(t)|dt < ∞, this shows the claimed convergence in L2(T) as t → ∞.

If fin ∈ L2(Γ) and ∂θfin ∈ L2(Γ), we can integrate the previous inequality over ω to show the convergence 
of h(t, ·, ·) in L2(Γ) as t → ∞. �

The convergence in the gliding frame implies for example weak convergence in the normal setup.

Theorem 39. Suppose the assumption of Theorem 38 with 
∫∞
0 |η(t)|dt < ∞ and fin ∈ L2(Γ) and 

∂θfin ∈ L2(Γ). Then for every φ ∈ L2(Γ)

∫
R

∫
T

f(t, θ, ω)φ(θ, ω)dθdω →
∫
R

∫
T

g(ω)
2π φ(θ, ω)dθdω.

Proof. By the previous theorem, the gliding frame density converges in L2(Γ). Let h∞ be the limit, i.e.

h(t, ·, ·) → h∞(·, ·)

holds in L2(Γ) as t → ∞.
The inner product can be expressed in terms of h as

∫ ∫
f(t, θ, ω)φ(θ, ω)dθdω =

∫ ∫
h(t, θ, ω)φ(θ + tω, ω)dθdω.
R T R T
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Given ε > 0, we then have for large enough t by the convergence in L2

∣∣∣∣∣∣
∫
R

∫
T

f(t, θ, ω)φ(θ, ω)dθdω −
∫
R

∫
T

h∞(θ, ω)φ(θ + tω, ω)dθdω

∣∣∣∣∣∣ ≤
ε

2 .

Let ĥ∞ and φ̂ be the Fourier transform in both variables θ and ω. Then the Plancherel theorem shows

∫
R

∫
T

h∞(θ, ω)φ(θ + tω, ω)dθdω =
∑
k∈Z

∫
ξ∈R

ĥ∞(k, ξ)φ̂(k, ξ − kt)dξ.

The velocity marginal g is constant so that ĥ∞(0, ξ) = ĝ(ξ) which shows

∫
ξ∈R

ĥ∞(0, ξ)φ̂(0, ξ)dξ =
∫

ω∈R

∫
θ∈T

g(ω)
2π φ(θ, ω)dθdω.

For k 
= 0 we find that

∣∣∣∣∣∣∣
∫

ξ∈R

ĥ∞(k, ξ)φ̂(k, ξ − kt)dξ

∣∣∣∣∣∣∣ ≤ ‖ĥ∞(k, ·)‖2‖φ̂(k, ·)‖2

and

∫
ξ∈R

ĥ∞(k, ξ)φ̂(k, ξ − kt)dξ → 0

as t → ∞.
Since ĥ ∈ L2 and φ̂ ∈ L2, we have the bound

∑
k∈Z

‖ĥ∞(k, ·)‖2‖φ̂(k, ·)‖2 < ∞,

so that dominated convergence shows as t → ∞

∑
k∈Z

∫
ξ∈R

ĥ∞(k, ξ)φ̂(k, ξ − kt)dξ →
∫

ξ∈R

ĥ∞(0, ξ)φ̂(0, ξ)dξ,

which is the claimed limit. �
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