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Summary 

Bismuth layer-structured ferroelectrics have been recognised as promising film materials for 
ferroelectric random access memory application due to their excellent fatigue resistance and other 
electrical properties. This work deals with the deposition and characterisation of epitaxial and 
polycrystalline W-doped SrBi2Ta2O9 (SBT) and lanthanide-doped bismuth titanate (BiT) films. 

SBT and W-doped SBT films were fabricated by pulsed laser deposition (PLD) on platinised 
silicon substrates. The effects of fabrication temperature and W-doping level on film properties 
were studied. The crystallinity of SBTW films improved with increasing fabrication temperatures, 
resulting in enhanced ferroelectric properties and dielectric properties above the fabrication 
temperature of 750 ºC. 

Dense ceramic samples of Nd- and Sm-doped BiT (BNdT and BSmT) were successfully 
fabricated for PLD targets by solid state processing. Highly epitaxially (001)-, (118)-, and 
(104)-oriented Nd-doped bismuth titanate (BNdT) films were grown by PLD on (001)-, (011)-, 
and (111)-oriented SrTiO3 (STO) single crystal substrates, respectively. A three-dimensional 
orientation relationship between films and substrates was derived as: BNdT(001)//STO(001), 
BNdT[ 110 ]//STO[100]. Films showed strong dependence of structural and ferroelectric 
properties on the crystal orientation. 

PLD-grown BSmT films on platinised silicon substrates were studied as a function of 
fabrication temperature, effects of Pt bottom layer orientation, Sm doping level, and LaNiO3 
buffer layer. 

An alkoxide-salt chemical solution deposition (CSD) method was adopted to prepare the 
precursors for BSmT (BNdT) film fabrication. Precursors of Bi-Sm(Nd)-Ti which were stable for 
at least eight months in air ambient were successfully developed. In-situ FT-IR studies suggest that 
acetic acid serves as chelating agent to improve the homogeneity of the precursor solution by 
generating a dense and homogeneous Ti-O-Ti polymeric network. The electrical properties of the 
films fabricated in this study (dielectric and ferroelectric properties, leakage current characteristics 
and electrical fatigue properties), are comparable or superior to these previously reported for 
similar films developed by other techniques or with other doping elements. Low temperature 
electrical properties of BSmT films suggest that the films are very promising for extremely low 
temperature nonvolatile memory applications. 

The results of BNdT films annealed at different oxygen partial pressure (O2, air, N2) showed 
that oxygen ambience affected structural properties of the films by enhancing the growth of 
perovskite phase (phase formation), increasing grain size (grain growth), and assisting the growth 
of (117)-oriented grains (crystallographic orientations). 

Piezoresponse force microscopy (PFM) was adopted to characterise BSmT films. Domain 
structures were clearly observed in a PLD-grown BSmT film, which were closely related to the 
grain structures. Domain manipulation was carried out in a CSD-derived BSmT film, showing that 
the film can be nearly uniformly polarised, which can be used in nanoscale device fabrication. 
Clear hysteresis loops were measured by PFM, which was an important proof of ferroelectricity. 
Large spatial variations of piezoelectric hysteresis loops of a CSD-derived BSmT film were 
observed across the film surface. Effective electrostriction coefficient (Qeff) of a PLD-grown 
BSmT film was measured, showing that BSmT films had better piezoelectric properties (higher 
Qeff, higher dzz) than SBT films, un-doped BiT ceramics and films. It suggests that BSmT films are 
promising piezoelectric materials for MEMS use. 
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Chapter 1 Introduction 

1.1 Background 

Much emphasis in integrated circuit technology is being focused on miniaturisation, 

with the result that significant advantages in the application of small dimension 

ferroelectric thin films offer great potential for ready integrability. Earlier attempts at 

deposition of ferroelectric thin films were limited mostly to development of thin-film 

capacitors that use large permittivity materials such as barium titanate. In addition, the 

complexities of the process involved in depositing multi-component material systems 

created another limitation. Current activity in ferroelectric thin-film research, 

motivated by the latest advances in thin-film growth processes, offers the opportunity 

to exploit several phenomena in ferroelectric materials including polarisation 

hysteresis,1 pyroelectricity,2,3,4 piezoelectricity,5,6 and electro-optic activity.7,8  

There has been considerable effort dedicated in recent years to ferroelectric materials 

for nonvolatile random access memory (Nv-RAM; or ferroelectric random access 

memory, FeRAM) applications.9 With ferroelectric memories rather than conventional 

memories, high-speed writing, low dissipation, power and high endurance can be 

achieved for the first time. The term nonvolatile means that the information is retained 

in the memory device even if the power is lost. These memories promise fast 

read-and-write cycles, low switching voltages (3~5 V and lower) nonvolatility in the 

unpowered mode, and long endurance (1012 cycles). 

Several attempts were made to make ferroelectric nonvolatile memories between the 

1950s and 1970s. Unfortunately, these efforts were not successful because of serious 
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problems, including fatigue (decrease in remanent polarisation with bipolar cycling), 

imprint (development of a bias field), and retention (decrease in remanent polarisation 

with time) as a result of the nature of the materials used or the integration process. 

Due to these material issues, the first commercial FeRAM was not available until 

about twenty years ago. 

A good understanding of fatigue in ferroelectric materials was necessary before the 

industry could manufacture memories in sufficient quantity and with good endurance. 

Fatigue in nonvolatile memories is a phenomenon that occurs when data are not 

correctly rewritten after experiencing switching cycles. For some ferroelectric 

materials, fatigue occurs when the direction of the polarisation is reversed (by an 

applied electric field) and the spontaneous polarisation decreases, i.e. the ferroelectric 

hysteresis loop, or polarisation versus electric field curve, gradually disappears. 

The existence of the bismuth layer-structured ferroelectrics (BLSFs) was first reported 

by Aurivillius in 1949.10 BLSFs have been recognised as promising film materials for 

FeRAM applications due to their excellent fatigue-free nature and other electrical 

properties. 

The representative materials of BLSFs are SBT (SrBi2Ta2O9)11 and La-doped 

Bi4Ti3O12 (BLaT)12. However these materials require optimisation. That is, SBT has a 

low remanent polarisation (2Pr < 10 µC/cm2) and BLaT has a large coercive field (Ec 

> 100 kV/cm). For most memory applications, a larger polarisation density and lower 

operating voltage is preferable. Therefore, the challenge is to improve the polarisation 

density and minimise the operating voltage of ferroelectric thin films13,14,15, and many 

groups are involved in doing just that16,17. 

Another problem concerning practical applications of ferroelectrics is that most pure 
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BLSFs have a relatively low electrical resistivity. Several researchers have reported 

that V- and W-substitution will improve the electrical properties of BLSF 

compounds.15,18,19 

BLSFs have a crystal structure and a general formula of (Bi2O2)2+(Am-1BmO3m+1)2- in 

which bismuth oxide layers [(Bi2O2)2+ layers] are interleaved with pseudo-perovskite 

blocks along the c axis.20 Recent studies revealed that Bi3+ ions in the Bi4Ti3O12 (BiT) 

structure could be substituted by trivalent rare earth ions, such as La3+, Nd3+, and 

Sm3+, to improve its properties as was the case of A-site substitution in BLSFs. It was 

reported that A-site or B-site substitution can lead to large remanent polarisations 

(Pr).17,21 It was also found that the coercive field (Ec) became larger in the 

A-site-substituted BiTs (including BLaT) and smaller in the B-site-substituted BiTs. 

Besides the effect of dopant type on ferroelectric properties, film orientation has a 

significant effect on the film properties. Due to the anisotropic nature of ferroelectric 

properties, orientation of the crystallites in BiT films is relevant for attaining high Pr 

and low Ec values. In the Aurivillius phases one would expect the largest Pr along the 

a-axis of the film and almost negligible Pr along the b- and c-axis (for pure BiT, 2Pr 

(//a-axis) = 36 µC/cm2 and 2Pr (//c-axis) = 4 µC/cm2).22,23,24 

Most of the films mentioned above were randomly oriented polycrystalline films. 

Recent efforts have concentrated on the growth of epitaxial films with non-c-axis 

orientations,25,26,27 including (118) and (104) for BLaT and (116) and (103) for SBT. 

These orientations have the spontaneous polarisation vector inclined to the normal 

direction of the film plane. 

High temperature synthesis is required to: eliminate pyrochlore phase formation, 



Chapter 1   Introduction 

 4 

transform fluorite micrograins to Bi-layered structures, improve the microstructure 

and attain a critical grain size. To enable the integration of BLSF films into 

silicon-based microelectronics, the films should be grown on electroded silicon 

substrates. 

Along with high switching polarisation and excellent fatigue resistance, the high 

values of piezoelectric coefficients of lanthanide-doped BiT (BLnT) films offer 

promise for microelectromechanical systems (MEMS).28,29 Recently, Maiwa et al.29 

have demonstrated that Nd-doped BiT (BNdT) thin films are very promising 

candidates for lead-free thin-film piezoelectrics. 

BLSF thin films have been fabricated using several techniques, which include 

metalorganic chemical vapour deposition (MOCVD),17 sputtering,30 pulsed laser 

deposition (PLD),31 and chemical solution deposition (CSD).32 A major thrust of these 

deposition techniques developed to deposit BiT films has been to overcome the twin 

issues of minimising the processing temperature and time and improving the 

ferroelectric properties like remanent polarisation, coercive field and dielectric 

constant. The requirement is for formation of a proper Bi-layered crystalline phase 

with minimum defects, without inclusion of any secondary phases, and with optimum 

orientation of the crystallites. As these are highly dependent on processing methods 

and parameters, several process variables of PLD and CSD have been attempted in the 

past to form BiT films meeting the structural criteria.31,32 

PLD consists of the laser ablation process and the kinetics of nucleation controlled 

growth. Here, the substrate temperature, laser conditions, ambient pressure, etc., all 

have direct impacts on the crystalline phase, microstructure, and composition of the 

deposited films. 



Chapter 1   Introduction 

 5 

CSD has been extensively employed in the past few years, including sol-gel process 

and metalorganic deposition (MOD). It has several advantages including accurate 

composition control which is very important for multicomponent systems, ease of 

process integration with standard semiconductor manufacturing technology and 

relatively low costs. 

1.2 Purpose of the research 

The current research is an effort to realise and solve the problems which could be 

encountered while fabricating a ferroelectric capacitor for a high density FeRAM cell.  

In a high density memory structure, the ferroelectric capacitor is fabricated on the top 

of a poly-silicon plug, which in turn is connected to the drain of the transistor. Such a 

configuration would result in constraints for processing and choice of the ferroelectric 

material: 

(1) In a high-density memory configuration, the transistor is fabricated prior to the 

fabrication of the capacitor. In order to preserve the integrity of the transistor, the 

processing temperature of the ferroelectric capacitor should be as low as possible (e.g. 

< 500 °C).  

(2) Even using low processing temperatures, a ferroelectric capacitor should exhibit 

well defined ferroelectric properties. 

(3) The ferroelectric capacitor should possess high 2Pr so that the memory stored in 

these capacitors could be read in an unambiguous manner. 

(4) Ec required to switch the memory from one state to the other state should be as 

low as possible. 
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(5) The ferroelectric capacitor should possess reproducible properties. 

(6) The ferroelectric capacitor should possess minimal fatigue while maintaining low 

leakage current density. 

1.3 Contents of the research 

In view of fundamental ferroelectric properties, namely remanent polarisation Pr and 

coercive field (Ec), there are two potential ferroelectric materials for FeRAM 

applications. These materials are SBT and BLnT. 

1. SBT. As discussed earlier, B-site doping can improve the electrical properties of 

BLSF compounds. This research includes the study of the effect of W-substitution on 

the structural and electrical properties of SBT. 

2. BLnT. As stated in the earlier section, integration of BLnT thin films into high 

density memory structures requires lowering processing temperatures while 

improving the 2Pr of BLnT based capacitors. In order to achieve lower processing 

temperatures for BLnT thin films, firstly the structure-property relationships of BLnT 

thin films were studied. Structure-property studies performed consisted of three 

different categories: the effects of (1) grain orientation, (2) composition and (3) grain 

size (or surface topography) on ferroelectric film properties. Consequently, processing 

parameters were manipulated to obtain desirable grain orientation and grain size at 

low processing temperatures. The research includes PLD-grown epitaxial BLnT films 

on single crystal substrates and PLD- and CSD-derived polycrystalline BLnT films on 

platinised silicon substrates. 

3. Piezoelectric properties of BLnT films were also studied, as high values of 
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piezoelectric coefficients of such films offer promise for microelectromechanical 

systems (MEMS)28. 

1.4 Outline 

Chapter 2 discusses aspects of ferroelectric films, including ferroelectricity, some 

points about FeRAM and the criteria of ferroelectric thin films for FeRAM. 

Background knowledge of the PLD and CSD techniques are also described. 

Chapter 3 describes the experimental techniques, which include details of film 

fabrication (PLD and CSD) and film characterisations. 

Chapter 4 presents the results and discussion of PLD-grown W-doped SBT thin films. 

Chapter 5 shows the results of epitaxial BNdT films on single crystal substrates. 

Chapter 6 presents the results of PLD-grown polycrystalline BSmT films on platinised 

silicon substrates, including the effect of processing parameters, Pt layer orientations, 

doping levels, and bottom electrodes. 

Chapter 7 presents the study of CSD-derived BSmT and BNdT thin films on 

platinised silicon substrates. Low-temperature properties of the CSD-derived BSmT 

films are studied. 

Chapter 8 presents the results of piezoelectric properties of ferroelectric thin films 

using PFM, which includes domain imaging and manipulation and local ferroelectric 

and piezoelectric measurements. 

Chapter 9 concludes these studies and provides directions for future work.  
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Chapter 2 Ferroelectric thin films 

2.1 Ferroelectricity 

Ferroelectricity was discovered in the beginning of last century by J. Valasek in 

Rochelle salt (potassium sodium tartrate)1. The phenomenon of ferroelectricity is 

analogous to that of ferromagnetism. Just as ferromagnetic materials may exhibit a 

spontaneous magnetic moment at zero magnetic field, ferroelectric materials exhibit a 

spontaneous electric dipole moment (per unit volume) or polarisation at zero electric 

field.1 

In order to describe the essential features of ferroelectricity,2 we assume a 

hypothetical model of a two dimensional crystal AB (which is oversimplified), shown 

in Fig. 2.1. The A ions, which we assume carry a negative charge, are located at the 

lattice points and B ions, which carry a positive charge, are located on the horizontal 

lines joining A ions. At equilibrium, B ions always lie closer to one of the two adjacent 

A ions than to the other. This situation can be explained in terms of potential between 

two adjacent A ions. There are two equilibrium positions in which a B ion can stay, 

but to change from one state to another, energy must be provided to overcome an 

energy barrier ∆ E. Let us assume that at a given temperature T, all the B ions are 

closer to the A ions on the left and consider each AB group as an electric dipole. In this 

situation the structure can be visualised as the top two layers of Fig. 2.1(a) and this 

assembly of dipoles can be expressed as the top two rows in Fig 2.1(b). In this state, 

the crystal is said to be spontaneously polarised: with a finite dipole moment per unit 

volume i.e. a spontaneous polarisation. Crystals exhibiting this property are called 
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pyroelectric and the direction of spontaneous polarisation is called the polar axis. 2 

Alignment of dipoles in one of the polar directions may extend only over a region of 

the crystal and there can be different regions in the crystal with aligned dipoles which 

are oriented in many different directions with respect to one another. Regions of 

uniform polarisation are called domains, and they are separated by a boundary from 

one another called a domain wall. Ferroelectric domain walls (of the order of 1~10 nm 

wide) are much narrower than the domain walls in ferromagnetic materials. 

 

 
 

(a)                        (b) 
Fig. 2.1 Schematic representation of structure and dipoles in a hypothetical 2D crystal 2 

 

Upon application of a DC electric field in the horizontal direction of Fig. 2.1, the 

dipoles which were already aligned in the field direction will remain aligned but those 

which are antiparallel will have a tendency to reorient themselves in the direction of 

electric field. Upon application of sufficiently large electric field, such dipoles will be 

able to align themselves in the direction of the applied field. This phenomenon of 

polarisation reversal takes place by way of nucleation of favourably oriented domains 

and domain wall motion. 

If we assume that our hypothetical crystal has an equal number of positive and 

negative domains then the net polarisation of the crystal will be zero. Upon 
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application of an electric field E, initial polarisation P increases linearly with the 

increasing electric field and the crystal behaves like a dielectric because the applied 

field is not large enough to switch any of the domains oriented opposite to its 

direction. A plot of P versus E is shown in Fig. 2.2 and this linear region is shown as 

AB. Upon further increasing the electric field, oppositely oriented domains start to 

reorient themselves and polarisation increases rapidly (BC) until all the domains are 

aligned in the direction of the electric field i.e. the crystal has reached a single domain 

state (CD) when polarisation saturates to a value called saturation polarisation (Ps).  

 
 

Fig. 2.2 Characteristic hysteresis loop of a ferroelectric material 
 

Upon decreasing the electric field, the polarisation generally does not return to zero 

but follows path DE and at zero field some of the domains still remain aligned in the 

positive direction and the crystal exhibits a remanent polarisation (Pr). To bring the 

crystal back to zero polarisation state, a negative electric field is required (along the 

path EF) which is called the coercive field (Ec). Further increase of the electric field in 

the negative direction will cause complete reversal of all domains in the direction of 

the field (path FG) and the loop can be completed by following the path GHD. This 
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relationship between P and E is called a ferroelectric hysteresis loop, which is an 

important characteristic of a ferroelectric crystal. The principle feature of a 

ferroelectric crystal is not only the presence of spontaneous polarisation but also the 

fact that this polarisation can be reversed by application of an electric field. 

Ferroelectric hysteresis loops can be experimentally measured using a Sawyer-Tower 

circuit.3 

2.2 Ferroelectric Random Access Memory (FeRAM) 

Nonvolatile memories with ferroelectric capacitor materials are also known as 

ferroelectric random access memories (FeRAMs). Present research focuses on 

integration of ferroelectric materials into high-density Nv-RAM. 

2.2.1 Ferroelectric memories 

There are different kinds of digital memories in use today, which range from slow, 

inexpensive tapes or discs used for archival storage to fast but expensive static 

random access memories (SRAMs) and dynamic random access memories (DRAMs). 

Some of the more expensive memories include electrical erasable programmable read 

only memories (EEPROMs). While EEPROMs suffer from a drawback of a very 

limited lifetime, SRAMs need continuously to be supplied with battery power. 

With current DRAM, the data is stored as a form of charge in a linear capacitor. In 

order to safely maintain the stored data, it is necessary to supply constant voltage to 

the capacitors, which are recharged hundreds of times per second by refresh circuitry. 

If the power is interrupted, DRAM loses all data stored in it, that is to say DRAM is 

volatile. In contrast, data in a ferroelectric capacitor is stored as a remanent 

polarisation state of the ferroelectric material itself. The ferroelectric capacitor has a 
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nonlinear dielectric property with permanent charge retention capabilities after the 

voltage application. Therefore, the stored data does not disappear, even though the 

power is turned off, that is, FeRAM is nonvolatile. The principal advantages of 

FeRAM over other nonvolatile memories are fast write/erase access times at the 

nanoseconds level, low operating voltage below 5 V, high endurance on read/write 

repeating cycle, and high radiation hardness which is especially useful for military 

and space applications. In terms of lifetime, FeRAMs have been shown to be potential 

candidates for Nv-RAMs, where the lifetime could extend at least to a value of 108
 

cycles.4 

In principle, FeRAM could replace EPROM (erasable programmable read only 

memory), EEPROM (electronically erasable programmable ROM), SRAM, and 

DRAM. Furthermore, if high density FeRAM could be developed and the production 

cost could be reduced down to the level of the magnetic core, then FeRAM could also 

replace the hard disk as the primary mass storage device because of its faster access 

speed and the absence of mechanical wear problems. Some of the state-of-art FeRAM 

available commercially are 4 Mbit RAMs from Samsung,5 1Mbit RAMs from NEC 

and 256 kbit RAMs from Matsushita.6 Low density FeRAM is already replacing 

EPROM and EEPROM in some areas such as video game consoles and smart cards. 

Use of FeRAMs is limited to applications which only require low density memories 

like video game devices, TV sets, fax machines, printers, mobile phones and fully 

embedded ferroelectric memories in silicon microprocessors and microcontrollers. 

Matsushita, the largest consumer-electronics firm in the world, expects the market for 

FeRAM to amount to $690 million a year by 2005. Explosive demands in video 

games, cellular phones, portable computers and other portable electronic goods, 

indicate that annual sales of these speedy nonvolatile memories could amount to more 
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than $20.7 billion by 2010.7 

2.2.2 Principle of basic operation 

Most of the ferroelectric materials which could be potential candidates for 

ferroelectric devices, including memories, are oxides such as barium titanate, lead 

titanate, lead zirconate titanate (PbZrxTi1-xO3, PZT) etc., and these are based on the 

perovskite ABO3 structure.8 The crystal structure of the characteristic tetragonal 

perovskite unit cell is shown in Fig. 2.3, where A+2 ions occupy the corner of the unit 

cell, B+4 ion lies at the centre of the unit cell and O-2 ions are at the face centres of the 

unit cell.8 Since the cubic phase is centrosymmetric, having no polar axis, there is no 

net spontaneous polarisation in the crystal. However, structural distortion below the 

Curie temperature causes the structure to change to a non-centrosymmetric tetragonal 

structure, which then gives rise to a net dipole moment (or spontaneous polarisation). 

Movement of the central atom B is the key to the ferroelectricity. It works as a switch 

and can be moved up or down relative to other ions by application of an electric field. 

This characteristic gives rise to the hysteresis behaviour in a ferroelectric material as 

shown previously in Fig. 2.2. 

 
Fig. 2.3 A typical ABO3 perovskite unit-cell (e.g. BaTiO3). Remanent polarisation is zero when the 

structure is cubic (paraelectric phase) and it is non-zero in the (lower temperature) ferroelectric phase 
which has a tetragonal structure 
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At zero field we have two stable states of polarisation +Pr and –Pr, arbitrarily defined 

as states ‘0’ and ‘1’. Binary information in the form of ‘0’ and ‘1’ can be stored by 

moving the central atom up or down. When the power is interrupted, the atom stays in 

its current position thereby preserving the data in the memory device. This property of 

a ferroelectric can be utilised to make a memory device which is nonvolatile. 

 

 
Fig. 2.4 Schematic diagram of a typical memory cell 9 

 

A typical memory cell is schematically shown in Fig. 2.4. In current devices, the 

memory cells are arranged in a square matrix. Therefore, a 1-megabit memory cell 

will have 1000 rows (drive line) and 1000 columns (word line). To overcome the 

crosstalk problem between two neighbouring cells, each memory cell capacitor is 

isolated from its neighbours by means of a passgate transistor. Each bit is written by 

applying one half a short voltage pulse along a row and the other half along a column. 

In this state, pulses add up to switch the polarisation state only at the specifically 

addressed cell. Two reading schemes for the FeRAMs are being explored,9 namely 

destructive readout (DRO) where the information must be rewritten after every read 

operation and non-destructive readout (NDRO) where information can be read over 
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and over again until the next write operation. DRO is the most commonly used 

scheme in the present generation FeRAMs because it closely resembles a DRAM. In 

DRO, the bit is read when a positive switching voltage is applied to the memory cell 

in the same way as the writing voltage is applied. If the data was already stored as 

state ‘0’ or +Pr, then only a linear non-switching response is measured in the form of a 

voltage across a 10~50 ohm resistor. If the data was stored as state ‘1’ or –Pr, a 

switching response greater than the linear response is measured because it contains 

the additional displacement current term dP/dt where P is the polarisation. A sense 

amplifier then compares this response with that of a reference cell which is always 

polarised in the +Pr or state ‘0’. A sense amplifier and other associated circuitry is 

used in a FeRAM device to determine this transient current and thereby read the state 

of the device. 

2.3 Ferroelectric film materials for memories 

The fabrication of memory devices using ferroelectric materials was intensively 

studied between the 1950s and 1970s by many market-leading companies such as 

IBM and Bell Laboratories. Due to the incompatibility with the silicon process, the 

research was almost abandoned after 1975. However, since 1986, it has exploded as a 

result of the improvements in thin film technology, especially Pb(ZrxTi1-x)O3 (PZT) 

sol-gel and sputtering deposition techniques10. Ferroelectric memories have been 

investigated by many semiconductor memory industries as well as by the defense 

industries, because of the nonvolatility, radiation hardness, high speed, low power and 

compatibility with silicon process.5,11 

In general, there are two major applications of ferroelectric materials for memory 

devices. Firstly, ferroelectric materials could be utilised for DRAMs. Secondly, they 
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are applicable for FeRAMs. Capacitance, by definition, could be improved by 

expanding the area, increasing the dielectric constant or decreasing the thickness of 

dielectric layer. In fact, the thickness of the dielectric layer has already been 

minimised to barely block tunnelling current, which is below 100 Å. The remaining 

choice, then, is to look for dielectric materials that have considerably higher dielectric 

constant. Because ferroelectric materials generally have high dielectric constants, 

ferroelectric thin films have been considered to be a capacitor material for 

high-density DRAM. As the integration density of DRAM reaches 4 Gbit, the device 

size can be tremendously decreased. As a result, current silicon-based dielectric 

materials, namely SiO2 and Si3N4, have proved to be rather inadequate, due to their 

low dielectric constants. Considerable effort has been made to overcome the low 

dielectric constant problem by geometric methods such as developing a trench or 

stack structure to provide wider surface area and increase the capacitance values. 

Ferroelectric thin films, which are known to have dielectric constants about two 

orders higher than that of SiO2, were selected as capacitor materials in 4 Gbit DRAM 

and beyond. 

Along with the high dielectric constant, ferroelectric materials also exhibit 

characteristic polarisation responses to an applied electric field, which makes them 

potential candidate materials for nonvolatile memory devices. Several attempts to 

integrate such devices on a scale larger than 1 Mbit by using advanced silicon ultra 

large scale integration (ULSI) technologies, have been reported using PZT or SBT 

ferroelectric thin films. However, there are still several issues concerning the 

integration to be solved for the realisation of high-density FeRAM. 

In a commercial memory technology, there are some issues for integration of 
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ferroelectric capacitors: 

1. A suitable ferroelectric thin film material, 

2. Development of an appropriate electrode technology, 

3. A thin film deposition process which can be scaled up and which has capability to 

deposit thin films with good conformal coverage over nonplanar surfaces, 

4. Suitable and compatible lithography and etching technology to produce submicron 

patterns with extreme precision and  

5. A fitting device integration process. 

For FeRAM device applications, an ideal material should have the properties as 

follows:12 

1. Low electrical conductivity, 

2. Good leakage and breakdown characteristics, 

3. Large switching polarisation, 

4. A low switching time (5~200 ns) for faster devices, 

5. High Curie temperature, at least above 100 ºC, 

6. Good aging and retention (decrease in Pr with time6) characteristics, 

7. Fatigue resistance up to a minimum of 1012 switching cycles, 

8. Low power consumption i.e. low switching voltage (1~5 V) and 

9. Low imprint (imprint is caused by development of an internal field in the 

ferroelectric capacitor which leads to a progressive shift of the hysteresis loop along 

the field axis). 

Of the many hundreds or even thousands of known ferroelectric materials, only a few 

are suitable for switching applications and can be integrated into semiconductor 

technology. Research towards the development of memory materials has been going 
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on since the 1950s. First generation materials were KNO3, Bi4Ti3O12 (in DRAMs and 

ferroelectric field effect transistors: FeFETs), BaMgF4 (in FeFETs). Later, PZT 

emerged as a promising candidate for these applications. However, PZT films on 

metal electrodes suffer from fatigue upon switching for 1010 switching cycles. Also 

PZT films are not easy to fabricate with controlled stoichiometry due to the presence 

of lead, which has high volatility under PZT processing conditions. It also leads to 

severe processing complications including environmental hazard issues and 

contamination problems. BLSFs have been recognised as promising film materials for 

FeRAM applications due to their excellent fatigue-free nature and other electric 

properties and the representative materials are SBT11 and BLaT13. 

 
 

Fig. 2.5 Schematic drawing of the crystal structure of BLSF (m=4). One half of the pseudo-tetragonal 
unit cell 14 

 

BLSFs have a crystal structure and a general formula of (Bi2O2)2+(Am-1BmO3m+1)2-, as 

shown in Fig. 2.5. The pseudo-perovskite blocks have a formula of (Am-1BmO3m+1)2-, 
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where A is a mono-, di-, or trivalent ion (e.g., K+, Na+, Ca2+, Ba2+, Sr2+, Pb2+, Bi3+), B 

is a tetra-, penta-, or hexavalent ion (e.g. Fe4+, Ti4+, Ta5+, Nb5+, W6+, Mo6+, V5+) and m 

represents the number of BO6 octahedra between two neighbouring Bi2O2 layers 

(m=1,2,3,4,5,… ). For example, SrBi2Ta2O9 (SBT, m=2), Bi4Ti3O12 (BiT, m=3), 

SrBi4Ti4O15 (SBTi4, m=4) and Sr2Bi4Ti5O18 (SBTi5, m=5) have 2, 3, 4 and 5 octahedra, 

respectively. 

2.4 Pulsed laser deposition (PLD) 

 

Pulsed laser deposition (PLD) is known for its ability to produce films whose 

stoichiometry are very close to that of the targets because of the extremely high 

temperatures at the focus point on the targets. In PLD, one takes advantage of a short 

and intense laser pulse to ablate the surface of a desired target material. At 

low-pressure conditions, the laser-ablation process leads to the formation of an 

expanding plume that consists of neutral atoms and various ionised species of the 

target material. This plume expands in the direction perpendicular to the target surface 

and can be collected onto a substrate to form a thin film a short distance away from 

the target. In the case of oxide materials like SBT and BiT, the film growth can be 

carried out by an in-situ process which involves substrate heating and an oxygen gas 

atmosphere in the ablation chamber leading to direct crystallisation of the ablated 

species reaching the substrate surface. Alternatively, ablation can be carried out 

without substrate heating or with a lower substrate temperature (termed as ex-situ 

process). In this case, amorphous as-deposited films can be crystallised with a 

post-annealing treatment. 

There are several important parameters to consider with PLD deposition.15 
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Laser 

The most commonly used range of laser wavelength for thin film growth by PLD lies 

in the UV region (195 to 508 nm) between 200 to 400 nm. Most materials used for 

deposition exhibit strong absorption in this spectral region. 

The absorption coefficients of materials tend to increase at the shorter wavelengths in 

this range, and thus the penetration depths into the target materials are reduced. 

Laser Beam 

A homogeneous, uniform beam is essential for good quality deposition. Poor beam 

quality can result in non-stoichiometric films as well as undesirable droplet formation. 

Target 

Successful depositions can be made from pressed powders, sintered pellets, cast 

material, single crystals and metal foils. Porous and inhomogeneous targets yield poor 

quality films. High density and smooth target surfaces are desirable features of a 

target material in order to avoid splashing due to defoliation of the surface. To achieve 

uniform target erosion and consumption, the target is usually rotated during 

deposition. 

Plume 

Evaporants from the ablated target form a plume, which consists of a mixture of 

energetic species including atoms, molecules, electrons, ions, clusters, micron-sized 

solid particulates, and molten globules. The plume is always perpendicular to the 

target regardless of the angle of the incident laser beam. 

Due to collisions between the laser produced plume and the background gas, the 

plume expansion decreases as the background gas pressure increases. The substrate to 

be coated should be placed at a distance on the edge, but just within, the visible part of 
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the laser plume. 

In-situ and ex-situ 

In-situ deposition techniques usually also consist of two steps, i.e. the deposition at 

high temperature and a post-deposition oxygen treatment to ensure correct 

stoichiometry and phase formation. 

Essentially the ex-situ route uses the same deposition steps as the in-situ method 

except that deposition takes place at much lower temperatures (e.g. 300 °C ~ 400 °C) 

in microcrystalline or amorphous form followed by film phase transformation via an 

ex-situ annealing step.16 

2.5 Chemical solution deposition (CSD) 

The chemical solution deposition (CSD) process is simple and compatible with 

conventional integrated circuit materials and processes. The process starts with 

preparing a precursor solution containing each of the metals in the desired thin film 

compound.17 

There are three general methods for the preparation of precursor solution for the 

fabrication of oxide thin films: (1) all alkoxide method, (2) alkoxide-salt method, and 

(3) other methods. An oxide network is formed in these techniques via hydrolysis and 

condensation of molecular precursors. This chemistry is controlled by parameters 

including the hydrolysis ratio, catalysis or molecular structure of precursors. The latter 

can be simply modified by oligomerisation, salvation or addition of chemical 

additives which lead to the tailoring of the coordination shell of the metal. The 

selection of precursor compounds and the solvents is the most important step in the 

precursor solution approach for the fabrication of thin films. The most important 
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points to be taken into consideration are: nature of initial species, whether there is a 

formation of mixed metal species, the stoichiometry of the various elements in the 

solution with respect to the formulation required, influence of the solvent, the 

temperature of the reaction as it effects the homogeneity at a molecular level, 

elimination of organics from the deposited film and temperature of crystallisation. 

2.5.1 Selection and preparation of precursors 

Normally, the all-alkoxide method will be considered in the first instance, since 

alkoxide precursors are mixed at the molecular level directly in the solution to enable 

a high degree of homogeneity. 

However, for some metals it is inconvenient to use all alkoxides because of 

preparation problems or unavailability and alternative starting materials must be 

found. This is particularly the case with Group I and Group II elements whose 

alkoxides are solid, nonvolatile and in many cases of low solubility; consequently, it is 

sometimes difficult to obtain pure samples. Metal salts provide a viable alternative 

provided that they are readily converted to the oxide by thermal or oxidative 

decomposition and are preferentially soluble in organic solvents. They can usually be 

obtained at a high purity analytical grade.17 

A major problem in forming homogeneous multicomponent solutions is the unequal 

hydrolysis and condensation rates of the metal alkoxides.17 This may result in phase 

separation, during hydrolysis or thermal treatment, leading to higher crystallisation 

temperatures or even undesired crystalline phases. It is therefore necessary to prepare 

solutions of high homogeneity in which cations of different types are uniformly 

distributed at an atomic scale through M-O-M (M: metal atoms) bridges. The initial 
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solution should therefore be treated such that bonds are first formed between the 

various alkoxide precursors prior to gelation. A difficulty of the all-alkoxide approach, 

especially for soluble alkoxides, is to understand the formation or not of the 

mixed-metal species and the stoichiometry between the metals. Solubilisation of one 

metal alkoxide in the presence of another is a criterion to be handled with care since it 

does not necessarily imply the formation of a mixed-metal species and thus 

homogeneity at a molecular level.  

The choice of solvent is also important in the alkoxide-salt approach. The influence of 

the solvent can be multiple: it can generate and/or stabilise intermediates and thus 

allow, preclude or modify reactions. Most metal alkoxides are very reactive towards 

hydrolysis and condensation. They must be stabilised to avoid precipitation. These 

reactions are controlled by adding complexing agents that react with metal alkoxides 

at a molecular level, giving rise to new molecular precursors of different structure, 

reactivity, and functionality. The carboxylic acids, such as acetic acid and 

acetylacetone, which act as hydroxylated nucleophilic ligands, help in controlling the 

hydrolysis rates by decreasing the functionality of the precursor. The reaction between 

alkoxide and nitrates in the presence of water and carboxylic acids proceeds with the 

formation of the smallest possible aggregate, which allows the metals to achieve their 

most usual coordination number and thus hydrolysis becomes more difficult. 

The precursors for individual metal should have a long shelf life. The selected 

precursors should have high solubility in the selected solvents and the various 

solvents should be compatible when mixed. The final precursor solution should have a 

relatively long shelf life so that it can be made in large volumes ahead of time and 

used as needed. 
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2.5.2 Film deposition -- Spin coating and baking 

The films can be prepared from the precursor solution using spin, dip, or spray 

technique. Acidic solutions are generally capable of wetting all metal substrates, oxide 

substrates or metal-semiconductor substrates with a thin oxide layer on the surface. 

Almost any substrate that will support a thin film and is compatible with the materials 

and processes may be used. Spin coating technique is a well known form of 

deposition in which the precursor is placed on a wafer and the wafer is spun to evenly 

distribute the precursor over the wafer. The spinning speed and the viscosity of the 

solutions need to be optimised to control the thickness of the films. 

Bornside et al.18 divide spin coating into four stages: deposition, spin up, spin off, and 

evaporation, although evaporation may accompany any of the other stages, as shown 

in Fig. 2.6. 

 
Fig. 2.6 Four stages of spin coating18 

 

The deposition process involves dispensing of an excess amount of fluid onto a 

stationary or slowly spinning substrate. The fluid is deposited through a nozzle at the 

centre of the substrate or over some programmed path. An excess amount of fluid is 

used to prevent coating discontinuities caused by the fluid front drying prior to it 
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reaching the wafer edge. 

In the spin up stage, the substrate is accelerated to the final spin speed. As rotational 

forces are transferred upward through the fluid, a wave front forms and flows to the 

substrate edge by centrifugal force, leaving a uniform layer of solution behind. 

The spin off stage is the spin coating stage where the excess solvent is flung off the 

substrate surface as it rotates at speeds between 2000 and 8000 rpm. The fluid is being 

thinned primarily by centrifugal forces until enough solvent has been removed to 

increase viscosity to a level where flow ceases. The spin off stage takes place for 

approximately 10 seconds after spin up. 

Though present throughout the spin coating process, evaporation becomes the primary 

method of film thinning once fluid flow ceases. Evaporation is the complex process 

by which a portion of the excess solvent is absorbed into the atmosphere. If significant 

evaporation occurs prematurely, a solid skin forms on the fluid surface which impedes 

the evaporation of solvent trapped under this skin and can cause coating defects when 

the sample is subjected to the centrifugal forces of the spinning substrate. 

Spin coating has many advantages in coating operations with its biggest advantage 

being its lack of coupled process variables. The spin speed, and fluid viscosity are the 

only degrees of freedom, making the spin coating process very robust. Therefore, film 

thicknesses are easily changed by changing the spin speed, or switching to a different 

viscosity spinning solution. During film formation the condensation rate can be 

controlled by varying the pH of the coating bath. 

After the coating process, the wafer is transferred to a hot plate on which it is baked. 

Alternatively, an oven may be used in baking if it is desirable to control ambient air 
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conditions. 

If the desired thickness is not obtained in a single coating, then the spin, dry, and bake 

steps are repeated until the desired thickness is achieved. After the last layer is coated 

and baked, the film is annealed in a diffusion furnace or in a rapid thermal annealing 

system. The annealing is preferably optimised. Depending on the type of substrate and 

the processing procedure, crystalline films with different morphologies can be 

obtained. 

2.6 Epitaxial thin films 

Epitaxy, ideally, refers to formation of a single crystal film on the top of a single 

crystal substrate with a specific crystallographic orientation relationship between the 

film and the substrate as growth commences. The orientation relationship is governed 

by the crystal systems and lattice parameters of the two phases. There can be more 

than one orientation relationship in the case of deviation from the single crystalline 

structure of the film. The concept of matching of lattice parameters between the film 

and the substrate is an important aspect of epitaxy. The fundamental criterion for 

epitaxy is defined by the lattice mismatch, which can be written as 

 

f=(af-as)/as,                 (2.1) 

 

where af and as are the lattice parameters of the film and the substrate. 

Ideally, for high quality epitaxy of the film, the lattice mismatch should be as small as 

possible (generally less than 10%). One way to avoid large misfit strain, at least along 

the interface, is by tilting of the growth planes of the film relative to the substrate 
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plane, as illustrated in Fig. 2.7. 

 
 

Fig. 2.7 Schematic representation of the epitaxy of the film and the substrate plane19 
 

The most important factor affecting epitaxy is the nature of the substrate. Normally, 

the substrate for epitaxial film growth should be a single crystal substrate. The choice 

of substrate is limited by various factors such as crystal symmetry, orientation, 

minimum lattice parameter mismatch, surface energy considerations, chemical nature, 

coefficient of thermal expansion and most importantly, the application for which the 

film is being deposited. Substrate preparation is also an important step towards 

depositing epitaxial films. In many instances, surface contamination can lead to 

dramatic changes in the epitaxy. Substrate temperature during the deposition also 

plays an important role in determining the epitaxy. In general, for in-situ film growth, 

the higher the deposition temperature, the better the chances of achieving the epitaxy. 

This is due to the improved ad-atom mobility at the substrate surface. Moreover, 

increase in the substrate temperature may also lead to purification of the substrate by 

desorption of any contaminants. Epitaxial temperature (temperature at and above 

which epitaxial growth is favoured) is also affected by the deposition rate. 
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2.7 Piezoelectricity 

2.7.1 Piezoelectric effect 

Piezoelectric materials are a class of materials which can be polarised, in addition to 

an electric field, also by application of mechanical stress. The linear relationship 

between stress Xik applied to a piezoelectric material and resulting charge density Di is 

known as the direct piezoelectric effect and may be written as  

 

Di = dijkXjk   (2.2) 

 

where dijk (C N-1) is a third-rank tensor of piezoelectric coefficients. The piezoelectric 

materials have another interesting property, in that they change their dimensions and 

contract or expand when an electric field E is applied. The converse piezoelectric 

effect describes the strain that is developed in a piezoelectric material due to the 

applied electric field. 

 

xij = dkijEk = dt
ijkEk   (2.3) 

 

where t denotes the transposed matrix. The units of the converse piezoelectric 

coefficient (dt
ijk) are (m/V). The piezoelectric coefficients d for the direct and 

converse piezoelectric effects are thermodynamically identical i.e. ddirect = dconverse. 

Note that the sign of the piezoelectric charge Di and strain xij depends on the direction 

of the mechanical force and electric fields, respectively. The piezoelectric coefficient 

d can be either positive or negative. It is common to call a piezoelectric coefficient 
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measured in the direction of applied field the longitudinal coefficient and that 

measured in the direction perpendicular to the field the transverse coefficient. Other 

piezoelectric coefficients are known as shear coefficients. 

Because the strain and stress are symmetrical tensors, the piezoelectric coefficient 

tensor is symmetrical with respect to the same indices, dijk = dikj. The number of 

independent piezoelectric coefficients is thus reduced from 27 to 18. The number of 

independent elements of dijk may be further reduced by the symmetry of the material. 

Piezoelectric coefficients must be zero and the piezoelectric effect is absent in all 11 

centrosymmetric point groups and in point group 432. Materials that belong to other 

symmetries may exhibit the piezoelectric effect. 

Examples of piezoelectric materials are quartz (SiO2), zinc oxide (ZnO), and PZT. 

The direct piezoelectric effect is the basis for force, pressure, vibration and 

acceleration sensors and the converse effect for actuator and displacement devices. 

2.7.2 Piezoresponse force microscopy (PFM) 

Progress in oxide electronic devices including microelectromechanical systems 

(MEMS), FeRAMs, and ferroelectric heterostructures necessitates an understanding 

of local ferroelectric properties at the nanometre level, which has motivated a number 

of studies of ferroelectric materials with various scanning probe microscopies 

(SPM).20,21 

Most SPM techniques allow local poling of ferroelectric materials with subsequent 

imaging of induced charges. From the materials scientists’ point of view, the 

information on domain structure and orientation obtained from SPM images is 

extremely valuable and numerous observations of local domain dynamics as related to 
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the polarisation switching process, ferroelectric fatigue, phase transitions, and 

mechanical stresses, etc. have been made. 

Table 2.1 SPM techniques for ferroelectric imaging 22 
 

Technique Measured signal  Relation to ferroelectric properties 

EFM 

(Electrostatic 

Force 

Microscopy) 

Electrostatic force 

gradient 

Characterise electrostatic stray fields above 

the ferroelectric surface induced by surface 

polarisation charge. Sensitive only to 

out-of-plane polarisation component. 

PFM 

(Piezoresponse 

Force 

Microscopy) 

Vertical (v-PFM) and 

lateral (l-PFM) 

surface displacement 

induced by tip bias. 

Characterises piezoelectric properties of the 

surface. Vertical and lateral components of 

the signal are related to in-plane and 

out-of-plane polarisation components. 

SCM 

(Scanning 

Capacitance 

Microscopy) 

Voltage derivative of 

tip-surface 

capacitance 

Based on polarisation-induced hysteresis in 

tip-surface capacitance. Only out-of-plane 

polarisation component can be determined. 

FFM 

(Friction Force 

Microscopy) 

Friction forces Characterises the effect of polarisation 

charge on surface friction. 

 

Table 2.1 summarises some of the most common SPM imaging techniques used for 

the characterisation of ferroelectric materials and presents the information obtained.22 

Among the techniques for ferroelectric surface imaging listed in Table 2.1, the most 

widely used currently is piezoresponse force microscopy (PFM), due to the ease of 

implementation, high resolution and relative insensitivity to topography and the state 

of the surface. PFM is rapidly becoming one of the primary imaging tools in 

ferroelectric thin film research that routinely allows high resolution (~ 10 nm) domain 

imaging. In contrast to X-ray techniques, which are limited to the averaged analysis of 
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domain structure, PFM yields spatially resolved information on domain size, 

correlations, domain behaviour near the inhomogeneities and grain boundaries. PFM 

can be used for imaging static domain structure in thin film, single crystals and 

polycrystalline materials, selective poling of specified regions on ferroelectric surface, 

studies of thermal evolution of domain structures, quantitative measurements of 

thermal phenomena and local hysteresis measurements.22 
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Chapter 3 Experimental techniques 

3.1 Film fabrication 

Films in this study were fabricated by two methods: pulsed laser deposition (PLD) 

and chemical solution deposition (CSD). 

3.1.1 PLD 

3.1.1.1 Preparation 

1. Ablation targets– solid state processing 

It is not economical to buy a series of targets in our present studies; therefore, targets 

were fabricated using solid state processing. 

For PLD, attention must be paid to the target composition for the BiT system due to 

different species having different sticking coefficients on the substrate and 

evaporation rates that could vary significantly, especially at high growth temperature. 

Due to the fact that bismuth can form volatile oxides at high temperature during target 

fabrication and film growth, Bi rich targets were prepared. 

Pure BiT and Bi4-xRxTi3O12 (R=Nd, Sm; x = 0.55, 0.70, 0.85, 1.00) bulk ceramic 

samples were prepared by a conventional solid state reaction technique with starting 

materials Bi2O3, TiO2 and Nd2O3 (or Sm2O3) powders (Alfa, 99.9%) according to 

equation (3.1): 

2 3 2 3 2 3 2 4 3 12

4
( ) 3

2 2
x x

Bi O Nd O Sm O TiO Bi Ti O
−  + + → 

 
    (3.1) 
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The required proportions of powders were mixed in acetone. An excess Bi2O3 of 10 

mol% of the stoichiometric composition was added to the starting powders to 

compensate the bismuth loss during sintering and later deposition stages.  

The mixtures were then ball milled with ZrO2 ball milling media for 72 hours, 

followed by drying at room temperature for 12 hours to remove the acetone. The 

as-dried mixtures were then calcined at 850 °C for 8 hours. To obtain dense samples, 

disks of about 15 mm in diameter and 2~3 mm thick were pressed and sintered in air 

at temperatures of 1050~1150 °C for 2 hours. After holding at these temperatures, the 

samples were slowly cooled to 25 °C over about 8 hours. These sintering processes 

led to a high relative density of over 90% of the theoretical value. 

There was some wastage because the target making procedure failed (irregular shapes) 

or they shattered during cooling to room temperature. SrRuO3 targets were 

commercially available. 

Surfaces of targets were polished before they were used for PLD. They were 

pre-ablated immediately before film growth, which was necessary because of possible 

surface contamination by impurities and also allowed stabilisation of the laser energy. 

This is important, since the initial film layers produced by the first several pulses are 

critical for epitaxial film growth. 

2. Substrate treatment 

Single-crystal SrTiO3 substrates with (001), (011), and (111)-orientations, and silicon 

substrates were placed parallel to the target surface after a cleaning treatment. The 

structures of the silicon substrates were Pt(150 nm)/TiOx(40 nm)/SiO2(400 

nm)/Si(100) purchased from PI-KEM. 
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The substrates required cleaning before film deposition. The procedure of cleaning 

adopted was as follows. The substrates were soaked in a bath of chloroform and 

ultrasonically treated for about 10 minutes. These substrates were then washed once 

more by using acetone and finally by 2-propanol in a similar manner to the 

chloroform treatment. It was very important to give a final wash using propanol 

because acetone tends to leave some spots on the surface of the substrates after 

evaporation. After the final wash the samples were dried by dry nitrogen or 

compressed air. 

3.1.1.2 Deposition 

 
Fig. 3.1 Schematic drawing of the PLD system 1 

 

A PLD system consists of a target holder and a substrate stage / heater housed in a 
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vacuum chamber. A high powered laser (KrF) is used as an external energy source to 

vaporise materials (from the targets) which will be deposited as thin films. 

1. System 

During pulsed laser deposition, a pulsed laser beam is focussed onto the surface of a 

target at an oblique angle so that a substrate can be placed directly in front of the 

target surface (see Figure 3.1). This focussing action produces a laser spot of high 

enough energy which can ablate the target material which subsequently deposits onto 

the substrate. A mixture of Ar and O2 or pure O2 gas is used for the deposition of 

oxides with a pressure range of 20~50 Pa in most cases. The interaction of the laser 

beam with the target surface gives rise to a powerful plasma-like bright plume which 

emanates perpendicular to the target surface. 

2. Procedure 

In this study, a pulsed KrF-excimer laser with a wavelength of 248 nm and pulse 

duration of 20 ns was used for the pulsed laser ablation processes to deposit thin films. 

The laser pulse repetition rate was 1~10 Hz. The path of the laser beam was an 

enclosed pathway and adjusted through mirrors and lenses to the target. The beam 

enters the chamber through a window and is directed towards the target at an oblique 

angle. The distance between the target surface and the substrate was fixed at 6.5 mm 

and the angle between the target surface and incident laser beam was 45°. The spot 

size of the laser beam was about 8 mm2. The energy of the laser pulse was measured 

with a Power/Energy meter by averaging the energies of 20 pulses. The energy of the 

beam incident on the target was about 90% of the energy of the beam before entering 

the chamber. The other 10% was absorbed in passing through the optical pathways 

and the MgF2 window. 
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After loading the target and substrates inside the chamber, the chamber was evacuated 

to between 10-6 and 10-7 mbar, achieved after overnight baking. The substrate support 

heater was heated to the desired temperature and held at this temperature for about 30 

minutes in order to preheat the substrates and also to evaporate any volatile matter 

from the substrate surface. During the preheating period, the laser energy was set to 

obtain the desired laser fluence (laser energy unit area, J/cm2) on the target.  

After preheating, O2 was leaked into the system opening the leak valve with the gate 

valve throttled and the desired O2 pressure was set by carefully controlling its flow 

though both valves. It was ensured that the backing pressure did not exceed 6 × 10-2 

mbar during the whole deposition process. 

The target was then pre-ablated for about 200 pulses with the substrates covered by a 

shield to remove any dirt and impurities from the target surface. Final ablation was 

carried out at a selected laser repetition rate for a desired number of pulses to get a 

particular thickness of the film. The substrate temperature was varied between 600 

and 800 °C. 

The post-annealing procedure was necessary since it ensured that the film 

composition was stoichiometric and there were no oxygen deficiencies. In order to 

achieve a well-crystallised thin film with an appropriate perovskite-type structure, the 

annealing temperatures of at least 650 ~ 800 °C had to be used. 

The film growth reported was performed by in-situ growth. The as-deposited films 

were annealed for 30 ~ 60 minutes in approximately half an atmosphere of oxygen 

immediately after the film deposition, using the same substrate temperature as the film 

growth. 
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3.1.2 CSD 

3.1.2.1 Selection of precursors 

In this study, for compounds containing bismuth, the selection of the precursor is 

critical because of the lack of reactivity of some bismuth alkoxides. The bismuth 

alkoxide, Bi(OR)3 (R= -C2H5 or -C3H7), has been found to show lack of reactivity 

towards a variety of metal alkoxides including niobium, tantalum, titanium and lead. 

In addition to the technical problem, the costs for an all-alkoxide method is also an 

issue, since alkoxides may be extremely expensive, thus it would be preferable to find 

salt substitutions for them to reduce the production costs. 

Therefore, we adopted the alkoxide-salt method, which means alkoxides and salts 

were used to introduce metal elements. The term salt basically refers to carboxylates 

but also includes the use of nitrates, sulfates, carbonates, chlorides, and hydroxides. In 

this study, we adopted nitrates for introducing Bi and Sm (Nd) elements since they are 

commercially available and cheap. To minimise the amount of organic materials that 

had to be vapourised, and thus minimise the size of the pores and other microscopic 

defects in the film, we selected Ti-isopropoxide to introduce Ti, and used Bi, Sm (Nd) 

nitrates to introduce Bi, Sm (Nd). To optimise the solubility and viscosity to obtain 

high quality coatings, in this study, we chose acetic acid as the main solvent. 

3.1.2.2 Preparation of precursor solutions 

Bismuth nitrate [Bi(NO3)3·5H2O] and samarium nitrate [Sm(NO3)·6H2O] (or 

neodymium nitrate for Nd-doped) were dried at 70 °C in an oven for 24 hours. This 

procedure was used to remove the water in the compounds, so as to prevent the 

uncontrolled hydrolysis in the later stage. They were then separately dissolved in 
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acetic acid with a constant rate of stirring. The temperature for dissolving the nitrates 

was very critical, and was optimised to be ~90 °C after several trials. At a lower 

temperature, the nitrates would not dissolve completely; above this temperature, the 

solvent will evaporate quickly. These solutions were then mixed completely by 

stirring. Titanium isopropoxide [Ti(OC3H7)4] was mixed with 2-methoxyethanol 

[CH3OC2H4OH], stirred for 10 minutes and then added to the Bi-Sm acetic acid 

solution and a stable Bi-Sm (or Nd)-Ti sol was achieved with ~12 hours continuous 

stirring. The pH value was then adjusted with acetic acid and water and the 

concentration of the final stock solution was adjusted accordingly. The pH value was 

set to be ~1.0.2 The amount of each source material used in the preparation of 

Bi-Sm-Ti or Bi-Nd-Ti solution was according to the molar ratio of Bi:(Sm or Nd):Ti = 

(4.0-x):x:3.0 (x varies) with 10 mol% Bi excess precursor added to compensate for Bi 

loss during annealing. The BSmT/BNdT sol was stable against precipitation for at 

least eight months. Fig. 3.2 shows the flowchart for preparation of Bi-Sm (or Nd)-Ti 

precursors. 

 

 
 

Fig. 3.2 Flowchart for the preparation of Bi-Sm (or Nd)-Ti complex solution 
 

Bismuth nitrate 
dissolved in acetic acid

Samarium (or Neodymium) 
nitrate dissolved in acetic acid

Titanium isopropoxide mixed 
with 2-methoxyethanol

pH value is 
adjusted

0.1 M Bi-Sm (or Nd)-Ti solution
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3.1.2.3 Film deposition 

In our study, to make thin films, stock solutions were spun onto substrates which were 

mounted on the sample holder of a spin coater using a vacuum and rotated at 4500 

rpm for 30 seconds and then pre-baked on a hotplate at 300 °C for 5 minutes. The 

procedure was repeated 3~5 times to produce the required thickness. During each 

coating procedure which lasted for 30 seconds, 15 drops of solution was applied to the 

rotating surface of the substrate. Films were then annealed in the range of 600 ~ 750 

°C for 10 minutes in a flowing oxygen atmosphere (or other ambient, if necessary).  

The rotating speed of the spin coater was adjusted from 1000 to 5000 rpm for several 

trial runs. According to the results of the surface coverage and morphology of the 

substrates, 4500 rpm was chosen to spin the films in our study. To expose bottom 

electrodes, during each deposition, a corner of the film was removed by acetone 

before the heat treatment.  

Similarly, in this study, to generate a flat non-porous film surface, the pre-baking 

temperature was optimised at ~300 °C. 

3.2 Film characterisations 

3.2.1 Structural characterisations 

3.2.1.1 X-ray diffraction (XRD) studies 

The structures of targets and thin films were studied using X-ray diffraction (XRD) 

experiments with a Cu-Ka (? = 1.54056 Å) X-ray source and a Phillips X-ray 

diffractometer (Philips XPERT PW1710) operated at 40 kV and 40mA. 
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Samples were placed on a piece of glass slide and held flat by plasticine with the aid 

of a pair of supporting slides on both sides (Figure 3.3)3. These steps were important 

as they ensured that the whole assembly clamped to the pair of supporting slides, 

rotated about an axis lying on the surface of the film. Failure to do so would lead to 

errors in the measured peak positions given by  

2 cos
(2 )

x
R

θ
δ θ =         (3.2) 

 

x is the displacement of the sample surface from the rotation axis, and R is the 

distance from the beam source to the axis. A sample displacement of 0.1 mm, for 

instance, would lead to an error of about 0.07° for 2θ below 60° (R = 173 mm from 

the diffractometer geometry used in this project). 

 
 

Fig. 3.3 X-ray sample set-up and measurement geometry3 
 

A normal θ−2θ scan of a sample over a wide angular range can give an idea about the 

degree of preferred orientation of the sample. 

For ceramic targets, θ−2θ scans consisted usually of recording the XRD intensities at 

2θ angles from 5° to 55° with a constant speed of 1 °/min. 
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For epitaxial films, two techniques were adopted to characterise samples, which are 

θ−2θ scans and film texture characterisation by measuring the pole figures. 

 

 
 

Fig. 3.4 Geometry of goniometer for pole figure analysis 1 
 

In an extreme case of good epitaxy, peaks from only one or a few particular type of 

planes are observed in a θ−2θ scan. These intense peaks are from the planes which are 

preferentially oriented with the substrate plane. Another method of determining the 

degree of texture in epitaxial films by XRD is pole-figure analysis. As Fig. 3.4 shows, 

the texture cradle mounted on the sample stage enables the sample to be rotated in the 

plane normal to both its surface and the plane containing the incident X-ray beam (ψ  

scan, rotation about AA’ axis) and also in its own plane (φ  scan). To produce a 2-D 

representation of the 3-D distribution the poles which lie on the surface of a sphere 

may be projected onto the equatorial plane, producing a pole figure. 

3.2.1.2 Atomic force microscopy (AFM) studies 

In order to study the surface morphology, an AFM (Digital Instruments Nanoscope III) 
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was used. Commercially purchased microfabricated cantilevers with Si3N4 tips were 

used to image the film surfaces in the tapping mode configuration. The determination 

of surface roughness as well as the size of the surface features was carried out using 

the analysis program included in the software of the Nanoscope III. 

 
 

Fig. 3.5 Schematic diagram showing the AFM tapping mode 4 
 

The AFM was operated in tapping mode in order to avoid any damage to the film 

surface. In the tapping mode the cantilever is oscillating as it is dragged across the 

surface of the sample as shown in Fig. 3.5. As the tip comes across surface features 

with varying heights the tip interacts with the surface, inducing a change in the 

amplitude of oscillation. Such oscillations are detected by a laser spot reflecting at the 

back of the cantilever, which is probed by a photodiode and converted into surface 

profile information. Resolution at atomic height scales can be achieved. The changes 

in voltage in order to maintain a constant distance between the sample surface and the 

tip are translated into the topographical variation of the sample surface when the tip 

scans it. AFM measurements were performed in air with Si3N4 probes having a ~260 



Chapter 3   Experimental techniques 

 47 

kHz resonant frequency. 

3.2.1.3 Piezoresponse force microscopy (PFM) studies 

1. System setup and basic operations 

The piezoresponse force microscopy (PFM) was developed for detection of polarised 

regions in ferroelectric copolymer films of vinylidene fluoride and 

trifluoroethylene5,6,7 and later was applied for visualisation of domain structure in PZT 

thin films.8 

It is based on the detection of the local electromechanical vibration of the ferroelectric 

sample caused by an external AC voltage. The voltage is applied through the probing 

tip, which is used as a movable top electrode. The modulated deflection signal from 

the cantilever, which oscillates together with the sample, is detected using the lock-in 

technique, as in the case of non-contact imaging. However, in the piezoresponse mode 

the frequency of the imaging voltage should be far lower than the cantilever resonant 

frequency to avoid mechanical resonance of the cantilever. An external voltage with a 

frequency ?  causes a sample vibration with the same frequency due to the converse 

piezoelectric effect. Vibration of the sample under the AC voltage also has a second 

harmonic component at 2?  due to the electrostrictive effect and dielectric constant.8 

Analysis of the second harmonic signal showed that for PZT films the contribution of 

the latter effect dominates the influence of electrostriction 9. 

The domain structure can be visualised by monitoring the first harmonic signal 

(piezoresponse signal). The phase of the piezoresponse signal depends on the sign of 

the piezoelectric coefficient (and therefore on the polarisation direction) and reverses 

when the coefficient is opposite. This means that regions with opposite orientation of 
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polarisation, vibrating in counter phase with respect to each other under the applied 

AC field, should appear as regions of different contrast in the piezoresponse image. 

Macroscopic ferroelectric characterisation techniques are of limited use in 

domain-level investigations of the properties of ferroelectric thin films and a more 

sensitive, highly localised measurement technique is required. The advent of PFM in 

1992 provided such capabilities, allowing high-resolution, non-destructive 

investigations of ferroelectric thin films and devices at the nanoscale. First used by 

Güthner and Dransfeld to image copolymer films5, PFM has been steadily developed 

to offer domain imaging, local ferroelectric measurements and domain manipulation. 

The piezoresponse experimental configuration used in this study is shown in Fig. 3.6. 

It consists of an AFM, a Signal Recovery 7265 lock-in amplifier, and a custom-built 

voltage generator (to provide AC and DC voltages and a range of digitally-synthesised 

waveforms). The AFM used was a Digital Instruments MultiMode II with a 

NanoScope II Controller and Basic Extender Module. For piezoresponse imaging the 

AFM was used in contact mode with two modifications. Firstly, a Signal Access 

Module was added to allow the input of signals to the AFM and the monitoring of 

output signals from the AFM. And secondly, the tapping-mode cantilever holder (to 

which the cantilever tips are mounted) was replaced with one designed for 

Electrostatic Force Microscopy (EFM), in order to provide an electrical connection to 

the cantilever.  

During piezoresponse imaging, the AFM cantilever is required to mechanically 

oscillate in a controlled manner at frequencies up to 20 kHz.10 A PtIr5-coated silicon 

cantilever (NanoWorld) with a nominal resonant frequency of 75 kHz and a typical tip 

radius less than 30 nm was therefore used in this study. The PtIr5 coating can provide a 
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conducting pathway to the sharpened tip at the end of the cantilever. The 

amplitude-frequency plot showed that 20 kHz lies well below the resonance peak of 

one of these cantilevers, which has a FWHM (full width at half maximum) of 321 Hz. 

In this study thin film samples were mounted on a magnetic stainless steel puck using 

silver paint, which was also used to make electrical contact to an exposed area of the 

bottom electrode. The puck was then mounted on the electrically grounded 

piezoelectric scanner head.  

 

 
 

Fig. 3.6 Experimental configuration of the piezoresponse force microscopy system. V(? ) is the 
imaging voltage applied to the tip and REF the reference signal (also of frequency ? ) of the 

lock-in amplifier 11 

 

The PFM was set to operate in contact mode on bare ferroelectric film surfaces (Fig. 

3.6). Both piezoresponse domain images and hysteresis loops were recorded. For 

piezoresponse imaging, a small AC voltage (~ 18.0 kHz, 2.0 V) was applied between 

the oscillating tip and bottom electrode of the film, connected to the magnetic 

stainless steel puck sample holder using silver paint. Local piezoelectric coefficient 

hysteresis loops were measured by positioning the AFM tip at various sites on the film 

surface and measuring the AFM signal as a function of a triangular waveform bias DC 

voltage. The conversion factor between the photodiode signal of the AFM and the 
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mechanical displacement of the tip was obtained by careful calibration using a 

standard SrTiO3 substrate11. 

 

 
 

Fig. 3.7 Configuration of the PFM measurement 
 

2. Measurement procedure--Domain imaging 

The detailed measurement procedure of domain imaging is as follows: 

1) Determine a size of area of the sample surface to be observed (such as 1 µm × 1 µm, 

or 10 µm × 10 µm). 

2) Scan the surface with a DC bias voltage applied to the PFM tip, sufficient to induce 

an electric field greater than the local out-of-plane coercive field. This will locally 

pole the ferroelectric film and thus domains with a polarisation opposing the field will 

have their polarisation switched. The bias voltage required for switching will vary 

between differently oriented domains due to the fixed out-of-plane orientation of the 

electric field, i.e. a greater voltage is required to switch domains with a largely 

in-plane polarisation vector. 

3) Subsequently scan the surface again without the DC bias. The effects of applying 

such a bias voltage (either to individual points on the film or to an area by scanning 

the tip) can then be observed by piezoresponse imaging. The surface topographic and 
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piezoresponse images of the films will then be acquired simultaneously by the PFM 

software. 

4) Depending on the experimental requirement, another poling with an opposite 

direction of DC bias voltage may be required to reverse the domain polarisation and a 

subsequent scanning without a DC bias can give information of domain switching 

after the reverse poling. 

3. Local ferroelectric measurement – d33 hysteresis measurement 

The vibration amplitude measured with a lock-in amplifier provides information about 

the value of the piezoelectric coefficient. Amplitude of less than 0.1 nm can be 

detected in PFM, which provides a vertical sensitivity of about 5 × 10-12 m/V for an 

applied voltage of 10 V. Such a high vertical sensitivity makes this method 

nondestructive because in thin films with high piezoelectric constants, the imaging 

voltage can be reduced to a value lower than the coercive voltage, and as a result, the 

imaging process will have no effect on the existing domain configuration. However, it 

might be problematic to apply this technique to materials with low piezoelectric 

constants. Because only a change in the sample surface height is detected in the 

piezoresponse mode, it also allows one to avoid the effect of surface roughness on 

domain contrast and makes possible imaging of a domain structure even underneath a 

rough surface dielectric layer, although at the expense of the lateral resolution12.  

The most important characterisation and also proof of ferroelectricity is the presence 

of piezoelectric hysteresis. The hysteresis loops are obtained by sweeping the bias 

voltage and recording the piezoresponse signal. 

The probing AC voltage is superimposed on the DC bias which is varied in steps from 
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zero to Vmax, then decreased down to Vmin (generally –Vmax) and increased again up to 

zero, in order to measure the piezoelectric coefficient as a function of the DC field. 

Each step of the bias has a duration tbias. The loop obtained in this manner is referred 

to as the in-field loop and represents a typical d-E curve, as it is often used for the 

characterisation of the macroscopic piezoelectric properties of thin films. 

3.2.1.4 Thickness measurement of thin films 

For film thickness measurement of PLD samples (not for CSD films due to the nature 

of the deposition technique), a platinum (Pt) strip was placed across the centre of a 

substrate prior to the deposition. After deposition, the Pt strip was removed, leaving a 

step in the film, as shown in Fig. 3.8. The step height gave a measure of the film 

thickness, determined using a profilometer. The profilometer consists of a diamond tip 

that travels across the sample along its length, and vertical downward movement of 

the tip at the step gives a measure of the step height which represents the film 

thickness. The sensitivity of the profilometer is about 10 nm. 

 
 

Fig. 3.8 Schematic representation of the thickness monitor 1 

 

More precise measurement of film thickness, applicable for both PLD- and 

CSD-derived films, was measured by thin film cross-sectional analysis using 

field-emission scanning electron microscopy (FE-SEM) (JEOL 6340F) operated at 10 

kV. The samples for measurement were broken and mounted on a sample holder for 

measuring their cross section, which enabled direct visualisation of different layers of 
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the films. 

3.2.1.5 Raman and infrared spectroscopy 

1. Theory 

Raman scattering and infrared spectroscopy measure optical vibrations of long 

wavelength, i.e. the optical modes at the Brillouin zone centre, via either a 

monochromatic light scattering experiment (Raman scattering) or via direct 

polychromatic light absorption (infrared spectroscopy). The set of vibrations for any 

molecules or crystals are unique (providing fingerprints) to that particular material, 

which makes vibrational spectroscopy a valuable tool for molecule and phase 

identification. Besides, they are more sensitive to local molecular structure compared 

with XRD technique. They are non-destructive methods and allow the investigations 

of samples in any physical state and of surfaces at any temperature or pressure. 

Raman spectroscopy is an analytical method commonly applied to molecules or atom 

assemblies in any physical state. It identifies materials through the characteristic 

vibrations of their functional groups or their collective oscillations (phonons) in the 

solid state. Otherwise, when these molecules or atom assemblies interact with other 

chemical agents, the frequency, intensity and band-shape of their vibrations can 

change and therefore yield information on the nature, the localisation and the force of 

the interaction.13 

Infrared spectroscopy is the study of the interaction of infrared electromagnetic 

radiation with matter, specifically optical vibrations of molecules or crystals. 

Classically, the electric component of electromagnetic radiation can couple with a 

normal vibration (normal mode) of dipoles in a crystal or a molecule fluctuating at the 
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same frequency. Vibrational energies lie approximately in the energy order of 0~5000 

cm-1 (or 0~60 kJ/mol) and so they fall in the infrared region of the spectrum. 

2. Procedure 

In this study, Raman back scattering experiments were performed at room temperature 

by a Renishaw Ramascope-1000 micro-Raman spectrometer, using 514.5 nm photons 

from an Ar+ laser (20 mJ) with the light focused onto the sample through a 50×  

optical microscope objective.  

Some of the Raman spectra were recorded using a 632.8 nm He-Ne laser for 

excitation (LamRam 300, Jobin Yvon, located at the Department of Earth Sciences, 

University of Cambridge). The laser power is approximately 20 mJ within a spot of 

1~2 micrometers in diameter using a 100×  objective lens. 

Infrared spectra were recorded using Bruker 113v and Bruker 66v spectrometers 

located at the Department of Earth Sciences, University of Cambridge. The Bruker 

66v spectrometer attached to a microscope was used for in situ decomposition study 

of the precursors, heated by a home made heating stage from room temperature up to 

300 °C. A Globar source, a liquid-nitrogen-cooled mercury cadmium telluride (MCT) 

detector and a KBr beamsplitter were chosen for measurement between 650 cm-1 and 

6000 cm-1. The resolution was set at 4 cm-1. Every spectrum was Fourier transformed 

after 200 interference scans. 

3.2.1.6 Scanning electron microscopy (SEM) and energy 

dispersive X-ray spectrometry (EDX) 

This technique is useful for monitoring the surfaces with grain size above ~10 nm and 

for carrying out composition analysis using electron dispersive X-ray spectrometry 
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(EDX) over a selected area. 

The EDX operates exclusively as a photon-to-charge detector and it directly measures 

the energy of the photon through photoelectric capture in a silicon diode.13 The nature 

of the EDX detection process permits the measurement of an extremely broad range 

of X-ray energies, effectively covering the complete range of interest. 

The microscope used was JEOL JSM-5800LV, which was generally operated at 20 kV. 

Samples were coated with gold (for grain size analysis) or carbon (for composition 

analysis) to avoid any charging effects which could be present due to the non-metallic 

nature of the samples. They were processed using VOYAGER (Therone Ael Ltd., 

Crawley, U.K.) program, using standard reference spectra. Each datum presented in 

this study is an average of 5 to 10 readings when using EDX based in SEM. Spectra 

collected over 2 µm × 2 µm area were taken on different areas of the film surface. 

For thin films, cross sectional images are important to obtain the detailed information 

about grain shape, grain size, film thickness, and film density. In our study, field 

emission scanning electron microscope (FE-SEM; JEOL 6340F, Japan Electron 

Optics, Ltd., Tokyo) was used. It was operated in two modes: secondary electron 

imaging (SEI) mode and back scattered electron image (BSEI) mode. The SEI mode 

monitors secondary electrons, which are low energy electrons emitted from very near 

the sample surface. This signal provides an image of the sample topography, and 

hence, external morphology. The BSEI mode uses backscattered electrons, which 

have higher energies than secondaries and are produce when electrons from the 

primary beam are ‘bounced’ back out of the sample by elastic collisions with atoms. 

The number of electrons a given atom will backscatter is proportional to its atomic 

number. Materials composed of larger, heavier atoms will backscatter more electrons, 
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producing brighter gray tones in the images than lower mass materials (differences in 

average atomic mass of 0.1 amu can be resolved). Backscattered electrons thus 

produce an image that is related to material composition, providing both spatial and 

chemical information.14  

3.2.2 Electrical characterisations 

For electrical characterisations, top Pt electrodes of 4 × 10-4 cm-2 (200 µm × 200 µm) 

were deposited by DC sputtering on top of the films through copper masks. After the 

deposition, samples were annealed on a hotplate at 250 °C for 5 minutes, to improve 

contacts between the electrodes and the film surface. 

3.2.2.1 Dielectric properties 

In this study, the dielectric behaviours of the films studied were characterised using an 

HP 4192A Impedance Analyser (located at the Earth Science Department, University 

of Cambridge) by measuring the frequency dispersion characteristics of the 

capacitance and dissipation factor in a frequency range from 103 Hz to 106 Hz with an 

oscillating voltage of 50 mV, which was considerably less than the coercive field of 

the material so that the AC field does not affect the polarisation state. 

3.2.2.2 Ferroelectric properties and leakage current 

measurement 

1. Theory and details of the measurement -- ferroelectric hysteresis loops 

For ferroelectric hysteresis loop measurement, a voltage waveform is applied to the 

sample in a series of voltage steps. At each voltage step, the current induced in the 

sample by the voltage step is integrated and the integral value is captured and 
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converted into polarisation (µC/cm2) by 15 

   (3.3) 

Equation (3.3) is scaled by appropriate factors to properly adjust computed values to 

the standard polarisation units of µC/cm2. 

 

 
Fig. 3.9 Details of the standard bipolar hysteresis drive profile 15 

 

The voltage waveform is normally a standard bipolar triangular waveform that can be 
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simply defined by providing the maximum voltage and the duration of the waveform 

in milliseconds. The sign of the voltage indicates the direction of the first leg of the 

waveform. The number of sampling points is controlled primarily by the duration of 

the waveform, though it may also be adjusted by the voltage. The waveform begins at 

0.0 volts and steps to a maximum value of the assigned voltage. It then proceeds to 

step to the negative of the assigned maximum. Finally it steps back to zero volts. The 

entire standard bipolar waveform structure is shown in the Fig. 3.9. 

The standard bipolar waveform produces five derived parameters of interest. These 

are shown in Table 3.1.15 

Table 3.1 Derived parameters of a ferroelectric hysteresis loop 15 
 

Pmax The polarisation at the maximum applied voltage. Note that this will be the 

polarisation at +5.0 Volts in both the examples. 

+Pr The polarisation at zero volts when voltage is moving from positive to 

negative. If VMax is negative, this will be the polarisation at the final sample 

point. 

-Pr The polarisation at zero volts when voltage is moving from negative to 

positive. If VMax is positive, this will be the polarisation at the final sample 

points. 

+Vc The voltage at which polarisation is zero when switching from negative to 

positive. 

-Vc The voltage at which polarisation is zero when switching from positive to 

negative. 

 

Hysteresis loops are normally used as primary characteristics for ferroelectric 
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materials, which shows the nonlinear polarisation response of the ferroelectric 

material to a bipolar triangular voltage stimulus waveform, where polarisation is the 

nonvolatile memory property of a ferroelectric sample. 

The standard hysteresis measurement is a particularly effective tool as it shows the 

total sample response to the stimulus voltage. This response can be modelled as the 

superposition of a number of parasitic linear elements along with the non-linear 

ferroelectric mechanism. The linear components of the ferroelectric model include 

linear capacitance, resistance and diode effects. In a quality sample, these response 

components will be very small with respect to the non-linear signal, which is of most 

interest to researchers. But the non-linear polarisation response of the sample can also 

be modelled as two or more non-linear components.  

The two components of primary concern are the remanent polarisation and the 

non-remanent polarisation. Remanent polarisation is the polarisation of the most 

interest. It is that bi-state ferroelectric parameter that maintains its state once switched 

and serves as the memory characteristic of the sample. Non-remanent polarisation 

also switches with the remanent. However, once the sample has returned to a 

quiescent voltage, the non-remanent polarisation does not maintain its switched state, 

but returns to the random situation; therefore, this polarisation does not contribute to 

the memory properties of the sample.15 

Normal hysteresis measurement normally captures the superpositive response of all of 

the linear and non-linear components. Normally the linear components may be 

ignored. As a result, 

 

Hysteresis response = resistance + linear capacitance + diode effects + remanent 
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polarisation + non-remanent polarisation 

≈ remanent polarisation + non-remanent polarisation    (3.4) 

 

Equation (3.4) applies to the measurement of the sample response to the second leg of 

the standard bipolar triangular stimulus voltage in all hysteresis measurements. It 

applies to the first leg only if the sample is pre-switched into a state that ensures that 

the first leg will switch the sample into the opposite state. If the sample is 

pre-switched into a polarisation state that ensures that the first leg reinforces (does not 

switch) the preset state, then only non-remanent polarisation will be switched and 

measured, as the remanent polarisation is already switched into the particular state. 

This leaves a tool for directly measuring both the combined remanent and 

non-remanent polarisation values and the non-remanent only. Subtracting the 

non-remanent measurement from the remanent plus non-remanent (non-switching 

from switching) allows the remanent-only hysteresis loop to be derived. Repeating the 

experiment at the opposite polarisation state allows both halves of the bipolar 

non-remanent sample response to be independently derived. Recombining the two 

halves results in a full non-remanent hysteresis loop being constructed. 

In the present study, the films are principally considered used for nonvolatile memory 

use, so that it would be preferable to know the ‘real’ remanent hysteresis response of 

the achieved films. 

A typical remanent hysteresis loop was measured at 1 kHz and different parts of 

polarisations were shown as a function of time, as shown in Fig. 3.10, which is an 

alternative method of displaying the unprocessed data. In this case, three plots are 

generated with a common x-axis, and x is given as time (ms). Both the drive voltage 
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and the polarisation response are plotted as independent functions of time, rather than 

as functions of each other. The polarisation response is plotted for both the derived 

remanent hysteresis measurement and the original Logic 1 measurement.  

 
 

Fig. 3.10 Polarisations as a function of time 
 

We can see that the unswitched polarisation was basically linear to the driving voltage, 

while the switched polarisation was non-linear to the driving voltage, as we described 

in the previous section. The remanent polarisation was calculated based on Equation 

(3.4) and is shown in Fig. 3.10. 

For clarification, three hysteresis loops were drawn as a function of applied bias 

voltage, as shown in Fig. 3.11. The unswitched part of hysteresis loop was subtracted 

from the switched hysteresis loop, which is the total combination of the unswitched 

and remanent loops. Therefore, the remanent loop shown in this figure is its true 

capability to maintain ferroelectric bi-states and thus reflect its ‘real’ memory 

characteristics. 
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Fig. 3.11 Hysteresis loops of a ferroelectric film 
 

2. Leakage current measurement. 

The leakage current of ferroelectric oxide materials is a limiting factor for memory 

applications as the stored charge can leak through a capacitor due to excessive leakage 

of the current making the binary state unrecognisable. 

In the measurement of leakage current, the steady state current through the test 

element connected to the tester is sampled by placing a constant DC bias voltage 

across the sample. A programmable delay or ‘soak’ period passes before the 

measurement begins. This is intended to allow any polarisation switching current or 

other currents induced by the application of the voltage to settle so that the sample is 

in steady state. After the delay period, a measurement period begins in which the 

current through the device under test is regularly sampled and recorded. The profile is 

shown in the Fig. 3.12. 
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Fig. 3.12 Leakage test stimulus and measurement profile 15 
 

The I-V measurement (or J-V, for leakage current density-voltage) was principally 

used, which performs a series of leakage measurements as voltage is stepped from 

point to point along a voltage profile. At each step, current, resistance and resistivity 

are recorded as a function of the voltage at the step. 

I-V test profile consists of a series of voltage steps of a user-defined number. At each 

step, a leakage measurement is made. A single step consists of the following elements: 

l Delay for the step delay time. 

l Step to the DC voltage for the measurement. 

l Delay for the soak time. 

l Measure the leakage over the measure time. 

l Compute current (Amps), resistance (Ohms) and resistivity (Ohms cm). 

l Return to zero volts. 
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l Repeat at the next voltage. 

A schematic of a single step in an I-V measurement is shown in Fig. 3.13. 

 

 
Fig. 3.13 A schematic of a single step in an I-V measurement 15 

 

The appropriate starting status for the sample is a key point, which can determine 

whether or not the sample is switched during the measurement. The I-V measurement 

is normally a very lengthy process, which takes up to several hours to complete. 

3. Electrical fatigue measurement 

To measure a sample's fatigue, a PUND (Positive-Up-Negative-Down) measurement 

method is used to extract the remanent polarisation during switching. The PUND 

measurement is a standard pulse measurement consisting of five pulses of identical 

pulse width and magnitude.15 The first pulse presets the sample to a given polarisation 

state. The second pulse switches the sample to the opposite state and measures the 
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switched polarisation. A second measurement is made after the pulse returns to zero 

volts and a programmable delay occurs. The delay is intended to allow non-remanent 

polarisation components to dampen before the measurement is made.  

 

 
Fig. 3.14 The signal profile of the fatigue measurement 15 

 

To determine that fatigue has occurred, it is necessary to perform an additional PUND 
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measurement before the application of the stressing waveform to provide a pre-fatigue 

baseline against which to compare the measurement on the stressed sample. This 

algorithm provides a discrete and absolute measure of the fatigue damage mechanism 

after some number of switching cycles. (The number of cycles is given by the stress 

waveform frequency × the duration.) It does not characterise the progress of the 

fatigue as the number of cycles grows. A refinement would shorten the stress period 

and repeat the stress/measure event several times producing several fatigue sample 

points and characterising the growth of the damage mechanism. Here, then, a 

stress/measure event, or stress/measure cycle, consists of a period of the application of 

the fatigue stress waveform to the sample, followed by a PUND measurement. (Note 

that the term ‘cycle’ has taken on two meanings. It signifies a single complete switch 

of the sample from one polarisation state to the other and back during the application 

of the stress waveform. It also signifies a single stress/measure event.) 

Fatigue is best characterised when its growth is displayed as a function of the log of 

the total number of stress waveform cycles that have been applied to the sample at the 

time of the measurement. This suggests a final refinement in which the duration of the 

stress period (and therefore the number of waveform cycles applied) can be adjusted. 

Under normal circumstances, each subsequent stress/measure cycle would be of 

longer duration than the previous, thereby applying a greater number of stress 

waveform cycles. The entire algorithm is simplistically represented in Fig. 3.14. 

The waveform depicted in Fig. 3.14 is a triangle wave, which is simply defined by 

specifying only the frequency and voltage. Other waveform options include sine, 

square, pulse, arbitrary custom waveform, etc. 

There are several critical parameters for switching pulses in fatigue measurement: 
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pulse voltage, pulse width, frequency. The polarisation switching process can be 

characterised by the following parameters: amplitude of cycling voltage (V), remanent 

polarisation (Pr), switchable polarisation (P*), P^, and dP (dP=P*-P^, also as Pnv, 

nonvolatile polarisation) (see Fig. 3.14). The occurrence of fatigue is usually 

described by plotting Pr, P*, P^, or dP, as a function of the number of switching cycles 

N in log scale. 

4. Procedure 

The ferroelectric properties and leakage currents of the films were investigated using 

a RT 6000 ferroelectric test system (Radiant Technologies) in virtual ground mode. 

The frequency of the waveform used for hysteresis loop measurements is normally 1 

kHz. 

 
 

Fig. 3.15 Drawing of the measurement system 
 

The leakage current characteristics of the films were measured by applying a 

staircase-shaped DC-bias voltage (with a 0.1 V step and 1 second span at each step, 

up to ~300 kV/cm) to the top electrode while the bottom electrode was grounded. The 

films were probed as shown in Fig. 3.15. It should be noted that for electrical leakage 
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current measurement, a pair of top and bottom electrodes were probed to avoid 

additional information from surface charge or other possible path for electrons which 

may complicate the issue. 

3.2.2.3 Low temperature electrical measurement 

Low temperature measurements were conducted with a cryostat system 

(CTI-Crogenics He-refrigerator) in the temperature regime of 35 to 300 K. The 

system consists of a source of high pressure helium gas, a refrigerator, a vacuum 

pump, and a cold stage which is in a vacuum chamber evacuated by the pump to 

decrease the heat transfer. 

Eight electrical feed-throughs provide access to the interior of the vacuum chamber. 

This provides eight lines for wire-bonding. The shielding provided by the vacuum 

chamber provides a low noise environment. To minimise heat flow into the 

temperature stage, the following sample preparation technique was used. The sample 

was mounted in a 10-pin brass dual inline circuit chip. The pins were removed from 

the chip carrier and the bottom was sanded with diamond sand paper until smooth, to 

ensure good thermal transfer. The chip carrier was mounted using a screw to the cold 

stage. The samples were attached to the carrier by silver epoxy, with the entire bottom 

of the sample coated, again to ensure good thermal transfer. Contacts were made to 

the electrodes on the sample by wire-bonding. 

The temperature cycle was 300 K à 35 K à 300 K when measuring electrical 

properties. At each temperature point, the dwell time was 2 minutes before the sample 

was measured. The temperature descending and ascending rate was ~ 4 K/ min. 
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Chapter 4 PLD-grown W-substituted strontium 
bismuth tantalate (SBT) thin films 

4.1 Background and motivation 

SBT is perhaps the most studied compound among the BLSF and is one of the most 

promising materials for application to Nv-RAMs due to its excellent ferroelectric 

properties, characterised by limited polarisation fatigue and low coercive field.1 

The electrical conductivity in BLSF is highly anisotropic, with maximum value in the 

same plane as the polarisation.2,3 The main problem concerning its practical 

application as a ferroelectric is that pure BLSF has a relatively high electrical 

conductivity. 

Villegas et al.4 reported that W-doped BiT ceramics showed an electrical conductivity 

value 2-3 orders of magnitude lower than undoped ceramics. V-substitution increased 

the 2Pr value and also lead to a reduction in electrical conductivity in SBT thin films.5 

Noguchi et al.6 reported a remarkable improvement in ferroelectric properties in the 

BiT ceramic by doping V to B sites, which was explained by a decrease in the defects 

affecting the domain pinning. Sakai et al.7 and Kim et al.8 have reported the effects of 

W-substitutions on BiT thin films fabricated by MOCVD and sol-gel processing, 

respectively. The substitution of W improved not only ferroelectric properties (2Pr and 

Ec),7,8 but also the electrical properties such as leakage current and fatigue properties7. 

Since it has a similar crystal structure to BiT, we can expect that W-substitution will 

also have the same effect on the SBT thin film system,. 

The annealing temperature is another issue. For the pure SBT thin film, the optimised 
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annealing temperature was higher than what we used (~850 ºC)9,10, which would be 

impractical for the silicon substrates used. W-doping can reduce the sintering 

temperature (from 1150 ºC to 900 ºC) in bulk ceramic form as reported by Villegas et 

al.4, therefore, we can expect that W-doping in thin film form can have a similar 

effect. 

In the present work we studied the effect of W substitution on the structural and 

electrical properties of SBT thin films on Pt-coated silicon substrates fabricated by 

PLD. 

4.2 Experimental details 

4.2.1 Target fabrication 

W-doped SBT (SBTW) targets were supplied from National University of Singapore 

(fabricated by a conventional solid-state technique).11 The formula of the ceramic 

targets was SrBi2+y(WxTa1.0-x)2O9, (x =0, 0.10 and 0.20, denoted as SBT, SBTW1 and 

SBTW2 respectively in the following text; y = 0.10, which means a 5 atom% bismuth 

excess). The XRD pattern of the targets did not show any detectable impurity phase 

other than pure bismuth layered structure.11 

4.2.2 Film deposition and growth process 

In this study, the laser wavelength was automatically limited by the deposition system. 

The pulse frequency and laser fluence both affect the interaction of the laser with the 

target. However, previous studies carried out in our group by Garg 12 demonstrated 

that the pulse frequency does not severely influence the film quality as compared to 

other parameters such as temperature and laser fluence.12 In Garg’s study, the 
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morphology (RMS roughness) of the SBT films deposited at frequencies of 1 and 4 

Hz was approximately 1.0~1.5 nm, whilst it was about 2.0 nm for the films deposited 

at 7 Hz and rose to 3.0~4.0 nm at 10 Hz.12 In our study, due to the time limitations, to 

balance of deposition rate and surface morphology of the films, the pulse frequency 

was set to 5 Hz. 

Several studies have been carried out in various research groups on the ambient gas 

pressure (partial oxygen pressure) dependence of the film quality.13,14,9,15 Most of the 

results suggested the optimised value of 13.3~26.6 Pa (100 ~ 200 mTorr).13,14,15 One 

of the typical studies by Pak et al. 15 showed that films prepared at 50 mTorr (6.7 Pa) 

are oxygen deficient while those prepared at 500 mTorr (67 Pa) have excessive 

oxygen resulting in a co-existing ferroelectric and pyrochlore phase. As for the film 

prepared at 200 mTorr (27 Pa), the dense surface with an average grain size of 50 nm 

revealed good ferroelectric properties.15 

Combining the previous similar studies in our research group,12,10 the ambient gas 

pressure in the present study was set to 27 Pa. 

Table 4.1 Deposition parameters used for the SBTW film growth 
 

Deposition parameters SBTW 

Laser pulse frequency (Hz) 5 

Total number of pulses 7200 

Pulse energy per spot (mJ) 175 

Substrate temperature (ºC) 700~800 

Oxygen pressure (Pa) 27 

Anneal pressure (kPa) (O2) ~65 

Thickness (nm) ~ 350 nm 
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The deposition parameters used for film growth are shown in Table 4.1. SBTW thin 

films were deposited on Pt (150 nm)/TiOx (40 nm)/SiO2 (400 nm)/Si(100) substrates.  

After deposition, the film was annealed in a pure oxygen atmosphere for 30 mins and 

then cooled down to room temperature in ~90 minutes. 

4.3 Results and discussion 

Here we discuss the effect of processing procedure and W doping on properties of the 

films. 

4.3.1 Effect of processing on film properties 

SBTW1 films were deposited under the same conditions, grown and annealed at 700 

ºC, 750 ºC, and 800 ºC, respectively. 

4.3.1.1 Structural properties 
 

Fig. 4.1 shows the XRD patterns of SBTW1 thin films annealed at various 

temperatures. The film orientations (hkl) were indexed by assuming the films are 

orthorhombic. The perovskite phase was fully formed with a mixture of (115) and (00l) 

peaks. This indicates that the films are polycrystalline. The (115) peak was enhanced 

after growth and annealing at 750 ºC. Since the spontaneous polarisation of SBT 

exists parallel to the (Bi2O2)2- layers, the (115) orientation is effective for a memory 

device application in which a large remanent polarisation needs to be aligned normal 

to the film plane. 
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Fig. 4.1 XRD patterns of SBTW1 films following various fabricated temperatures 
 

Fig. 4.2 show 1 µm × 1 µm AFM images illustrating the changes to the surface 

morphology of SBTW1 films following growth and annealing at various temperatures. 

These films showed similar morphology, all basically having spherical surface 

features (These represent the tops of ‘columns’, but for convenience, the term ‘grains’ 

will be used in the following text). The surface of the 700 ºC-fabricated film consisted 

of small spherical grains ~8 nm in size. These form aligned structures by coalescing 

into bigger grains. These aligned columns fused and formed larger columns at 750 ºC 

and the lateral size of the columns reached a peak. With an annealing temperature of 

800 ºC, the grain size decreased but grains became more uniform. 
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a) 700 ºC 
 

 
 

b) 750 ºC 
 

  
 

c) 800 ºC 
 

Fig. 4.2 AFM images of SBTW1 films following various growth and annealing temperatures 
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Fig. 4.3 Root-mean-square (RMS) roughness of films fabricated at various temperatures 

 

Fig. 4.3 shows the influence of the growth and annealing temperature on the average 

surface roughness of SBTW1 films. As we can see, the surface roughness decreases 

with an increase in temperature. The roughness of the film annealed at 700 ºC was 

17.9 nm over a size of 5 µm by 5 µm. The roughness sharply decreased at 750 ºC, 

which may be correlated to the disappearance of impurity phases. From 750 ºC to 800 

ºC, with a decrease in grain size, the roughness also decreased. 

Fig. 4.4 shows the fabrication temperature dependence of Raman scattering spectra of 

SBTW1 thin films from 200 to 1000 cm-1. This is similar to previous reports about 

Aurillivillius structure.16,17,18 The internal and external modes were found, which 

might be attributed to SrO (240 cm-1) and Ta2O5 (600 cm-1, 814 cm-1, and 918 cm-1). 

Small variations of internal mode of TaO6 slightly above 600 cm-1, and the band near 

240 cm-1 which was assigned to the transverse-optical mode of SrO, imply that the Ta 

site in the perovskite slab and SrO structures did not change much above the 

fabrication temperature of 700 ºC. With increasing temperature, the number of bands 

reduces gradually. More bands were observed in the low temperature annealed films, 
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which might come from impurities and other phases. 
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Fig. 4.4 Raman spectra of SBTW films fabricated at various temperatures 

 

4.3.1.2 Electrical properties 
 

Ferroelectric hysteresis measurements were conducted on the films in 

metal/ferroelectric/metal configuration at an applied voltage of 15 V using standard 

RT 6000 ferroelectric test system. The P-V hysteresis loops of films fabricated at 

various temperatures are shown in Fig. 4.5. It was observed that just saturated 

hysteresis loops can be developed by 800 ºC. 
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(c) 800 ºC           (d) 

Fig. 4.5 P-V loops of SBTW1 films fabricated at various temperatures 
 

Fig. 4.6 shows variations of 2Pr values of the films as a function of the applied 

maximum voltages. The films are saturated over ~8 V for films fabricated at 800 ºC. 

The 2Pr values increase from ~2 µC/cm2 for 700 ºC-fabricated film to ~4 µC/cm2 for 

750 ºC-fabricated, to ~8 µC/cm2 for 800 ºC-fabricated film.  

The AFM images and Raman results suggest that there are still fluorite or pyrochlore 

phases remaining in 700 ºC-fabricated film, which results in a lower 2Pr. More 

uniform grain size and lower roughness were observed in the 800 ºC- fabricated film 

than that of 750 ºC-fabricated one (shown in AFM images), which might account for 

the further increase of 2Pr for the 800 ºC- fabricated film. 19 
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Fig. 4.6 Variations of 2Pr values of the films fabricated at different temperatures as a function of 

the applied maximum electric voltage 
 

Fig. 4.7 shows J-V curves of the films fabricated at different temperatures. The 700 

ºC-fabricated film shows the highest leakage current density (1 × 10 -2 A/cm2 at ~200 

kV/cm), while the films fabricated at 750 ºC and 800 ºC demonstrate much lower 

electrical conductance (2~5 × 10 -6 A/cm2 at ~200 kV/cm). 
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Fig. 4.7 Leakage current characteristics of the films 
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The room temperature dielectric constant (er) was measured as a function of frequency 

from 1 kHz to 4 MHz. The capacitance values measured using different top electrodes 

varied within less than 4%, indicating a high degree of uniformity in the films. Fig. 

4.8 shows the dielectric spectrum of the film fabricated at 800 ºC. From the figure, we 

can see that er was relatively unchanged from 10 kHz to 1 MHz (maximum variation: 

7%). The other two films show a very similar result. 

Table 4.2 is a summary of the electrical properties of these films. Both dielectric 

constant and 2Pr increase with increasing fabricating temperatures. Vc increased from 

700 ºC to 750 ºC, and then decreased beyond 750 ºC. 
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Fig. 4.8 Dielectric spectrum of the 800 ºC-fabricated film 

 

Table 4.2 Summary of the properties 
 

Fabrication  

temperature 

Dielectric constant 

(er, at 100 kHz) 

Dissipation factor 

(tan d, at 100 kHz) 

2Pr (at 

15V) 

2Vc (at 

15 V) 

J (A/cm2) 

at 6V 

800 ºC 269.0 0.045 7.8 4.1 5 × 10 -6 

750 ºC 179.7 0.033 4.2 2.6 2 × 10–6 

700 ºC 153.4 0.041 2.0 3.5 1 × 10–2 
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4.3.2 Effect of doping level on film properties 

Films of different W-doping level SrBi2.1(WxTa1.0-x)2O9 (x = 0, 0.10 and 0.20, denoted 

as SBT, SBTW1 and SBTW2) were deposited under the conditions shown in Table 

4.1 and fabricated at 750 ºC. 

4.3.2.1 Structural properties 
 

Fig. 4.9 shows the XRD patterns of the films of different doping levels. For films of 

SBTW1 and SBTW2, the perovskite phase was formed with a mixture of (115) peak 

and (00l) peaks. This indicates that the films are polycrystalline. Since W-doping has 

been shown to decrease annealing temperature,4 which can explain the better 

crystallinity of SBTW2 film since it starts crystallising at a lower temperature.4 
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Fig. 4.9 XRD patterns of SBTW films of different doping levels 

 

Figs. 4.10 (a)-(c) show 1 µm × 1 µm AFM images of the films. These films showed 

the similar morphology, all basically having spherical grains. Both SBTW1 and 

SBTW2 films show more uniform spherical grains, with SBTW2 having slightly 
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smaller grains and a flatter surface than SBTW1. 

 

a) SBT 

 

b) SBTW1 

  

c) SBTW2 
Fig. 4.10 AFM images of SBTW films of different doping levels 
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4.3.2.2 Electrical properties 
 

The P-V hysteresis loops of films of different doping levels measured at various 

voltages are shown in Figs. 4.11 (a)-(c). The hysteresis loops of the films measured at 

15 V are shown in Fig. 4.11(d). 
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(c) SBTW2    (d) 

Fig. 4.11 (a)-(c): P-V loops of SBTW of different doping levels fabricated at 750 ºC, (d): 
Hysteresis loops of the films measured at 15 V 

 

Fig. 4.12 shows variations of 2Pr values of the films of different doping levels as a 

function of the applied maximum voltage. The SBTW1 and SBTW2 films are 

saturated over ~8 V. With increasing doping level, the 2Pr values increase from ~1 
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µC/cm2 for SBT film to ~4 µC/cm2 for SBTW1, to ~9 µC/cm2 for SBTW2. The 

enhancement of ferroelectric properties may stem from the crystallinity and 

uniformity suggested by XRD and AFM results. As shown in Fig. 4.9, there are still 

impurity phases remaining in pure SBT film when annealed at 750 ºC, which results 

in a much lower 2Pr. 
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Fig. 4.12 Variations of 2Pr of the SBTW thin films of different doping levels fabricated at 750 ºC 

as a function of the applied maximum voltage 
 

Fig. 4.13 shows J-V curves of the films of different doping levels. Pure SBT film 

shows the highest leakage current density (2 × 10 -2 A/cm2 at ~200 kV/cm). SBTW1 

film has the lowest leakage current density (5 × 10 -6 A/cm2 at ~200 kV/cm), while 

that of SBTW2 films was 2~3 orders of magnitude higher than SBTW1 film. 
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Fig. 4.13 J-V curves of the films of different doping levels 
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Table 4.3 is a summary of the electrical properties of the films of different doping 

levels. Both dielectric constant and 2Pr increase with the increasing doping level. Vc 

decreases with increasing doping levels. Leakage current density decreases after 

doping 10 mol % W, but increases with 20 mol% doping. This suggests that excess 

doping as much as 20 % may deteriorate the film electrical resistivity. 

Table 4.3 Summary of the properties 
 

 

4.4 Conclusions 

(1) We successfully fabricated SBT and W-doped SBT films by PLD. 

(2) The crystallinity of SBTW films improved with increasing growth and annealing 

temperatures, resulting in enhanced ferroelectric properties and dielectric properties 

beyond the fabrication temperature of 750 ºC. 

(3) W-doping lowered the required annealing temperature of SBT films, which can 

explain the improvement of crystallinity, dielectric and ferroelectric properties. The 

lowered growth temperature will increase the chances of applications of SBT films in 

silicon integrated technology. However, excess W-doping (20 %) lead to an increase 

in leakage current. Thus, further work is required to optimise the W-doping level in 

SBT thin films. 

Sample Dielectric 

constant (er) 

Dissipation factor 

(tan d, at 100 kHz) 

2Pr  

(at 15V) 

2Vc  

(at 15 V) 

J (A/cm2) 

(at 6V) 

SBT 50.0 0.044 1.4 4.0 1 × 10-2 

SBTW1 179.7 0.033 4.2 2.6 2 × 10-6 

SBTW2 280.5 0.049 8.9 2.5 3 × 10-4 
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Chapter 5 Epitaxial Nd-doped bismuth titanate 

thin films on single crystal substrates 

5.1 Background and motivation 

In 1999 Park et al.1 showed that fatigue-free BLaT films on Pt electrodes exhibited 

higher remanent polarisation (2Pr ≈ 24 µC/cm2) and required lower deposition 

temperature (£ 750 °C) in comparison to other Bi-layered ferroelectrics (e.g. SBT). 

The crystal structure of BLaT can be described as a stack of alternating layers of 

bismuth oxide and perovskite (Bi2Ti3O10)2+ units containing Ti-O octahedra with La 

substituting for Bi in the perovskite units.2 Undoped bismuth titanate (BiT) films 

show low remanent polarisation and suffer from bi-polar fatigue.3 

It is also possible to dope BiT with other lanthanide elements such as Nd,4 Sm,5 Pr,6 

etc. These elements are of interest because the extent of enhancement of remanent 

polarisation in BiT and Bi-layered oxides is dependent upon structural distortion 

within the perovskite block (rotation of TiO6 octahedra in the a-b plane accompanied 

by a tilt of the octahedra away from the c-axis), governed by the size difference 

between Bi and the dopant ion: the higher the distortion, the higher the Pr will most 

likely be.7,8 Ionic radii for eight-fold coordination of these element are: Bi3+ 0.117 nm, 

La3+ 0.116 nm, Nd3+ 0.111 nm, Sm3+ 0.108 nm;9 it can be deduced from these data 

that Nd- and Sm-doping will lead to larger distortion than La-doping and should, in 

principle, result in a larger Pr. This has been proved experimentally by studies 

comparing the effects of doping of BiT with various lanthanide elements.10,11 

In the Aurivillius phases one would expect the largest Pr along the a-/b-axis of the 
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film and almost negligible Pr along the c-axis (for pure Bi4Ti3O12, 2Pr (//a-axis) = 36 

µC/cm2 and 2Pr (//c-axis) = 4 µC/cm2)12. However, in a recent report by Chon et al.,13 

it was shown that sol-gel derived c-axis-oriented BNdT films exhibited 2Pr as high as 

~100 µC/cm2. This unexpected behaviour was attributed to the tilting of the Pr vector 

towards the c-axis of the film.  

Most of these studies were conducted on films prepared by chemical processes such 

as sol-gel processing and chemical vapor deposition. This chapter reports on the 

detailed investigation of the structural and electrical properties of BNdT films of 

various crystallographic orientations (c-axis and non-c-axis oriented) grown by PLD 

from a single target of composition Bi3.15Nd0.85Ti3O12 on single crystal (100)-, (110)- 

and (111)-oriented SrTiO3 (STO) substrates. 

5.2 Experimental details 

Table 5.1 Deposition parameters for the growth of SRO and BNdT 
 

Deposition parameters SRO BNdT 

Laser pulse frequency (Hz) 4 5 

Total number of pulses 2000 7200 

Pulse energy per spot (mJ) 160 175 

Substrate temperature (ºC) 675 750 

Oxygen pressure (Pa) 15 27 

Annealing pressure (O2) (kPa) 65 65 

Thickness (nm) ~40-60 ~250-300 

 

BNdT thin films were deposited on SrRuO3 (SRO)-covered STO substrates of (001), 

(011) and (111) orientations. The deposition parameters used for the growth of SRO 

and BNdT are shown in Table 5.1. All the layers were deposited in a pure oxygen 

atmosphere. To form the desired phase of SRO, after the deposition of SRO, the film 
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was annealed in a pure oxygen atmosphere of about 65 kPa and naturally cooled down 

to room temperature, then the chamber was pumped again for two and a half hours to 

reach the desired vacuum, the BNdT film was then deposited and annealed with a 

similar procedure. Most of the parameters for film growth were optimised based on 

previous work in our group.14  

5.3 Results and discussion 

5.3.1 Structural properties of the targets 

Fig. 5.1 shows XRD patterns from the polished surface of the dense samples of 

Bi4Ti3O12, (Bi4-xNdx)Ti3O12 (nominal x = 0.55, 0.70, 0.85, 1.00) and (Bi4-xSmx)Ti3O12 

(nominal x = 0.55, 0.70, 0.85, 1.00) ceramic targets (Sm-doped BiT ceramics were 

fabricated for comparison and also used for the BSmT film deposition in the later 

chapters). The diffraction peaks were identified and indexed using the XRD data of 

the perovskite Bi4Ti3O12 phase compiled in the JCPDS (Joint Committee on Powder 

Diffraction Standards) card (35-0795). There was one-to-one correspondence between 

these two patterns despite some peak shifts and changes in relative intensity. These 

results show no evidence of the formation of neodymium or samarium oxide or 

associated compounds that contain bismuth or titanium, i.e. that the neodymium or 

samarium ions in the BNdT or BSmT do not form minority phases or segregate, but 

are incorporated into the perovskite lattice. 
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Fig. 5.1 XRD patterns of Bi4-xNdxTi3O12 and Bi4-xSmxTi3O12 ceramic samples  
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The patterns obtained were analysed by the Rietveld method (X-CELL mode in 

MATERIALS STUDIO program) on the basis of the B2cb orthorhombic symmetry. 

(Strictly speaking, BiT has a slight monoclinic distortion, however, this distortion is 

very small and the symmetry of BiT can be regarded as orthorhombic.) All of the 

measured XRD patterns could be fitted well by the profiles calculated under the BiT 

structure. The refined lattice constants based on an orthorhombic unit cell are shown 

in Table 5.2. 

Table 5.2 Refined lattice constants of the BiT, BNdT and BSmT systems 
 

 a (nm) b (nm) c (nm) Cell volume 

(nm3) 

Reference 

BiT 0.5449 0.5409 3.284  [18]18 

BiT 0.545 0.541 3.283 0.96798 [16] 16  

BiT 0.5454 0.5415 3.285 0.97017 [17] 17  

BiT 0.5455 0.5412 3.284 0.96955 This work 

BNdT (x=0.40) 0.5426 0.5393 3.2783  [15]15 

BNdT (x=0.55) 0.5413 0.5396 3.2755 0.95683 This work 

BNdT (x=0.70) 0.5410 0.5393 3.2867 0.95677 This work 

BNdT (x=0.80) 0.5414 0.5407 3.2820  [15]15 

BNdT (x=0.85) 0.5414 0.5400 3.2846 0.96032 This work 

BNdT (x=1.00) 0.5414 0.5406 3.2786 0.96063 This work 

BNdT (x=1.20) 0.5413 0.5395 3.2823  [15]15 

BNdT (x=1.60) 0.5398 0.5393 3.2840  [15]15 

BSmT (x=0.55) 0.5415 0.5400 3.2846 0.96049 This work 

BSmT (x=0.70) 0.5414 0.5403 3.2829 0.96041 This work 

BSmT (x=0.85) 0.5413 0.5347 3.2725 0.95716 This work 

BSmT (x=1.00) 0.5400 0.5389 3.2809 0.95431 This work 

BSmT (x=2.00) 0.5435 0.5408 3.2822 0.9647 [18]18 

 

Diffraction patterns were compared particularly with results reported in some 
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previous references15,16,17,18. The refined lattice constants of the BiT were practically 

the same as the theoretical value previously identified,16,17 within 0.1% reported range. 

The lattice constants of the BNdT system and BSmT were comparable with the values 

previously identified,15,18 respectively. All diffraction data processed confirmed the 

existence of an orthorhombic cell. It is known that the size of the trivalent bismuth ion 

is comparable with that of samarium or neodymium9: Bi3+ 0.117 nm, Nd3+ 0.111 nm, 

Sm3+ 0.108 nm, so we can expect that the Sm and Nd ions enter the crystal cell and 

substitute for Bi ions. 

5.3.2 Structural properties of the films 

5.3.2.1 Crystallographic orientations and epitaxial 

relationships 

1. ?-2? scans  

Fig. 5.2 shows XRD ?-2? scans of BNdT/SRO heterostructures deposited on (001)-, 

(011)-, and (111)-oriented STO substrates at 750 ºC. Since the lattice misfit between 

SrRuO3 (acubic=0.3928 nm) and SrTiO3 (acubic=0.3905 nm) is only 0.6%, the 

orientations of SRO are basically identical with those of STO, as can be seen in Fig. 

5.2. We assume that the lattices are identical and refer to STO instead of SRO, unless 

specified. 

Fig. 5.2 suggests that highly epitaxially (001)-, (118)-, and (104)-oriented BNdT films 

have been grown on (001)-, (011)-, and (111)-orientated STO substrates, respectively: 

Fig. 5.2(a) shows a series of (00l) peaks of the BNdT films; Fig. 5.2(b) shows a film 

peak of only (2216); Fig. 5.2(c) shows film peaks of only (104) and (4016). 
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Fig. 5.2 XRD ?-2? scans of BNdT thin films on SRO-covered (a) (001)-, (b) (011)-, and (c) 

(111)-oriented STO substrates (inset of (c) shows a detailed range of the spectrum) 
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2. Pole figure scans 

Pole figure analyses were conducted to determine whether the BNdT/SRO/STO 

heterostructures were epitaxial and to confirm the BNdT crystallographic orientations.  

Fig. 5.3 shows pole figures of the BNdT thin films on STO substrates of different 

orientations. The fixed 2? angle used to record the pole figures was 30.1o, 

corresponding to the BNdT {117} planes. The pole figures were plotted with the pole 

distance angle ? =0o (centre) to ? =90o (rim). ? =90o corresponds to the substrate 

surface being parallel to the plane defined by the incident and reflected x-ray beams. 

In the case of (001)-oriented BNdT, as shown in Fig. 5.3(a), four diffraction peaks 

with a fourfold symmetry are observed at ? =50°, illustrating a very good in-plane 

orientation; BNdT {117} planes have a tilt angle of 50.66° with respect to the BNdT 

{001} plane, which is parallel to the substrate surface (that is, ∠ {117}, 

{001}=50.66°).  

In Fig. 5.3(b), the innermost two {117} peaks are located at ? =5°. This pole figure 

confirms that BNdT (118) plane is parallel to the substrate surface, because the angle 

between the (118) and (117) planes of BNdT is 3.78° (∠{117}, {118} = ∠{118}, 

{001}-∠{117}, {001} = 50.66°-46.88° = 3.78°). Moreover, the diffraction peaks 

from the (117) plane and the (117)/(117) planes are also present at ? = 65° and 

? =85°, respectively, indicating a double-domain situation (two-fold symmetry).  

In the case of (104)-oriented BNdT as shown in Fig. 5.3(c), six peaks situated at ? = 

36° and ? = 85° were observed. This corresponds to a triple-domain situation: the 

inner six peaks correspond to (117) and (117) planes as marked in the figure, and the 

outer six peaks are related to (117) and (11 7 ) planes. 
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(a) 

 
(b) 

 
 

(c) 
 

Fig. 5.3 X-ray pole figures of BNdT thin films on SRO-covered (a) (001)-, (b) (011)-, and (c) 
(111)-oriented STO substrates 
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Summarising the results of Figs. 5.2 and 5.3, the two-dimensional epitaxial 

relationships between the BNdT films and their corresponding STO substrates can be 

derived as follows: 

BNdT(001)//STO(001); BNdT[110]//STO[100]   (5.1) 

BNdT(118)//STO(011); BNdT[110]//STO[100]    (5.2) 

BNdT(104)//STO(111); BNdT[110]//STO[100]    (5.3) 

However, these relationships are not unique, because grains can grow in variants 

allowed by the crystallographic symmetry. The crystallographically allowed rotations 

are 90o for STO (001), 180o for STO (011) (leading to the double-domain situation), 

and 120o for STO (111) (leading to the triple-domain situation). 

   
(a) 3D view 

 
(b) Plan view (along c axis) 

Fig. 5.4 Schematic of proposed epitaxial relationship between BNdT films and STO (001) 
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A three-dimensional representation of the proposed epitaxy between BNdT films and 

STO (001) is shown in Fig. 5.4. The misfit values between the film and electrode 

(SRO), and electrode and substrate are approximately -0.8% and 0.6% (for SRO: a = 

0.3928 nm), respectively. 

Fig. 5.5 shows that all the three relationships, observed on the three substrate 

orientations, correspond to the same three-dimensional orientation relationship. This 

three-dimensional orientation relationship may be written as 

 

BNdT(001)//STO(001), BNdT[110]//STO[100]     (5.4) 

 

 

 
Fig. 5.5 Three-dimensional schematic drawing of the BNdT and STO unit cells illustrating the 

three-dimensional epitaxial orientation relationship 
 

5.3.2.2 Surface morphological studies 

AFM images of the BNdT film surfaces are shown in Fig. 5.6. In the case of 

(001)-oriented BNdT, submicron-sized columns are clearly visible in Fig. 5.6(a). The 
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root-mean-square (RMS) surface roughness of BNdT(001) over areas of 2×2 µm2 was 

about 0.7 nm. In Fig. 5.6(b), the (118)-oriented BNdT film shows rectangular-shaped 

columns arranged principally along one direction. The column length was 50~80 nm 

and the length ratio of the column shape was about 6~8. This film revealed a much 

higher RMS roughness of about 10 nm than that of the c-axis-oriented film. This 

morphology is comparable with the morphology observed in SBT films deposited on 

similar substrates.19 A three-fold symmetry of the column distribution was found on 

the (104)-oriented BNdT surface as shown in Fig. 5.6(c). Columns are oriented along 

three directions at 120º to each other, showing a triple-domain structure. The surface 

roughness is ~14 nm. 

This observed surface roughness increase as the film orientation moves further 

towards the a axis, i.e., R(001)<R(118)<R(104), may be due to the more complex 

nature of the growth with increasing domain orientations from STO (001) to STO 

(110) to STO (111). 

5.3.3 Electrical properties 

5.3.3.1 Ferroelectric properties 

Ferroelectric hysteresis loops were recorded in order to evaluate the dependence of 

ferroelectricity on different crystallographic orientations in BNdT films. Fig. 5.7 

shows ferroelectric loops recorded at 6~12 V from (001)-, (118)-, (104)-oriented 

BNdT films deposited on (001)-, (011)-, and (111)-oriented SRO electrodes, 

respectively. 
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(a) BNdT films on (001)-oriented STO (RMS roughness = 0.657 nm) 

 

  
 

(b) BNdT films on (011)-oriented STO (RMS roughness = 10.8 nm) 

 

  
 

(c) BNdT films on (111)-oriented STO (RMS roughness = 14.2 nm) 

 

Fig. 5.6 AFM images of BNdT films on SRO-covered (001)-, (011)- and (111)-STO 
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Fig. 5.7 P-E hysteresis loops of (a) (001)-, (b) (118)-, (c) (104)-oriented BNdT films at various 
applied voltages 

 



Chapter 5       Epitaxial Nd-doped bismuth titanate thin films on single crystal substrates 

 101 

The ferroelectric anisotropy of BNdT is clearly demonstrated: the measured 2Pr and 

2Ec of the (104)-orientated BNdT films were 45.0 µC/cm2 and 134.1 kV/cm, 

respectively, for a maximum applied electric field of 400 kV/cm (film thickness ~250 

nm); the 2Pr and 2Ec of the (118)-orientated BNdT films were 13.0 µC/cm2 and 300 

kV/cm, respectively. The (104)-orientated films have clearly saturated P-E loops with 

larger Pr and lower Ec (also shown in Fig. 5.8). On the other hand, only a small 

polarisation component (2Pr = 0.5 µC/cm2 and 2Ec = 10.0 kV/cm, Fig. 5.7(a)) along 

the normal to the film plane was found in the (001)-oriented films. This result 

confirms that the Pr of BiT along the c axis is much smaller than that along a (b) 

axis.17 This result also confirms the results of Miyayama et al.,20 which 

experimentally confirmed that there is no spontaneous polarisation in the c-axis 

direction in compounds with an even numbered m, and very weak polarisation in an 

odd numbered m, in (Bi2O2)2+(Mm-1RmO3m+1)2- bismuth-layered structures (for 

Bi4Ti3O12, m = 3). 
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Fig. 5.8 P-E hysteresis loops of BNdT films of different orientations 
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Fig. 5.9 2Pr and 2Ec of (118)- and (104)-oriented films as functions of applied field 

 

The field dependence of 2Pr and 2Ec is displayed in Fig. 5.9. Both 2Pr and 2Ec tend to 

saturate above 300 kV/cm. From these values, information about the spontaneous 

polarisation of BNdT can be obtained. The angles of the (118) and (104) planes with 

respect to the a-b plane of BNdT are 56.5º and 47.0º, respectively. Hence, it is 

expected that the (104)-oriented BNdT film has a larger Pr value since its a-axis is 

close to the applied electric field, as shown in Fig. 5.10. That also explains the very 

weak ferroelectricity of the (00l)-oriented (i.e., c-axis-oriented) film since the polar 

axis (a/b-axis) of the film lies in the film surface, therefore, very few octahedra blocks 

can be poled under the applied field, which is along the normal to the film surface 
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plane. 

 

(a) [110] direction projection of (118)-oriented BNdT thin film 

 
(b) [100] direction projection of (104)-oriented BNdT thin film 

Fig. 5.10 Schematic drawing of the relationships between a-axis and applied electric field 
 

5.3.3.2 Leakage current properties 

Fig. 5.11 shows the leakage behaviour (plot of current density J vs electric field E) of 
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(118)- and (104)-oriented films. At a glance, it can be seen from this figure that a 

(104)-oriented film shows better leakage characteristics than a (118)-oriented film. 

The current density was between 10-6 and 10-5 A/cm2 for a (104)-oriented film and 

almost an order of magnitude higher for (118)-oriented films. This difference can 

possibly be explained by the resistivity anisotropy (and hence leakage current 

anisotropy) which is well known in layered-structure perovskites, with Payne21 

reporting resistivity of 3.6 × 1014 ohm-cm along the c-axis in SBT, almost 25-times 

that along the a-axis. This explains why a (104)-oriented film, whose a/b-axis lies 

closer to the normal direction of the film surface plane, will have lower leakage 

current. Leakage characteristics of (104)-oriented films are also in agreement with the 

results of Kojima et al.10 

 
 

Fig. 5.11 Comparison of the leakage characteristics of (104)-oriented (□) and (118)-oriented (■) 
BNdT films 

 

The difference in the leakage characteristics of (118)- and (104)-oriented films may 

also arise due to grain size and surface roughness effects. Previous studies on 
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ferroelectric perovskite oxides indicate that conduction mechanisms are affected by 

the grain size 22,23. However, our specimens have different grain geometry for each 

orientation so we cannot assess such effects in the present work. What is anticipated is 

a sharp change in the relative contribution of grain boundary conduction as a function 

of grain size. All electrical analysis in this study is at the macroscopic and not atomic 

level, therefore the electrical properties were an average of results over the electrode 

area (200 µm by 200 µm). For our (118)- and (104)-oriented films, the difference in 

the roughness is not appreciably large to observe any appreciable effect on the leakage 

characteristics, unlike the results of T. Watanabe et al. on MOCVD-derived epitaxial 

BiT films.24 These authors also found that leakage increases appreciably with the 

roughness, not in agreement with our results. Their films had very different 

thicknesses for different orientations, and microstructural aspects may have an effect 

on the leakage properties. In another study, Kojima et al.10 did not find any effect of 

surface roughness on the leakage in their lanthanide-doped epitaxial BiT films, 

implying that lanthanide doping may have some effect on altering the leakage 

characteristics of BiT films. 

5.3.3.3 Electrical fatigue properties 

Fatigue measurements were performed up to 109 cycles on (104)- and (118)-oriented 

BNdT films using 1 MHz bipolar pulses at an applied voltage of 10 V and the results 

are shown in Fig. 5.13(a). Films showed little change in the nonvolatile polarisation 

(Pnv) up to 109 switching cycles. It was observed that the hysteresis loops remained 

almost identical after 109 cycles for both films, demonstrating good fatigue resistance 

(Figs. 5.12(b) and 5.12(c)). It should be noted that, despite the differences in the 

conduction behaviour of the two film orientations, their fatigue characteristics are 
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(b)                        (c) 

Fig. 5.12 Electrical fatigue characteristics of (a) (118)- and (104)-oriented BNdT films; (b)(c) 
hysteresis loops measured before and after 109 switching test 

5.4 Conclusions 

Epitaxial BNdT films of c-axis and non-c-axis-orientations were deposited on STO 

substrates of different orientations. Films showed strong dependence of ferroelectric 

properties on the crystal orientation. The highest remanent polarisation was exhibited 
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by a (104)-oriented film, whilst a c-axis-oriented film showed very weak ferroelectric 

activity. In addition, the (104)-oriented film showed better leakage characteristics than 

a (118)-oriented film. No significant fatigue was observed in the films of (118)- and 

(104)-oriented after 109 switching cycles. 
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Chapter 6 PLD-grown Sm-doped bismuth 

titanate polycrystalline ferroelectric thin films 

6.1 Background 

Chapter 5 described BNdT films grown by PLD on single crystal substrates, showing 

that Nd-doping of BiT leads to an increase in the polarisation in comparison to 

La-doped films and a strong dependence of ferroelectric properties on the film 

orientation, which confirmed that the polar axis remains in the a-b plane. Sm-doping 

may result in a higher 2Pr than Nd-doping, since the radius of Sm3+ (0.108 nm) is 

smaller than Nd3+ (0.111 nm) and La3+ (0.116 nm), all of which are smaller than Bi3+ 

(0.117 nm). Therefore, Sm-doped BiT films were also studied. 

Silicon substrates are widely used in microelectronic integrated circuit technology, 

since they are cheap and widely available. Standard microelectronic processing, such 

as oxidation, patterning, implantation, diffusion, etching and metallisation, have all 

been widely researched and standardised on silicon.1 Therefore, for practical use, 

electroded silicon substrates have great advantage over single crystal substrates. 

Due to the anisotropic nature of ferroelectric properties, the orientation of the 

crystallites in BiT films is critical for attaining high 2Pr and low Ec values. 

Therefore, the essential approach of the deposition techniques is crystallisation of the 

required Bi-layered phase with minimum defects without inclusion of any secondary 

phases and orientation of the crystallites with a preferred (a-b) plane perpendicular to 

the film surface. As these requirements are highly dependent on processing methods 
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and parameters, several process variables have been attempted in the past to form BiT 

films meeting the structural criterion. 

Combining the above analysis (doping element, substrates and deposition techniques) 

in order to achieve improved ferroelectric film properties, we have adopted PLD to 

fabricate BSmT thin films on platinised silicon. In this chapter, we present some 

detailed results on the structural and ferroelectric investigation of the BSmT films. 

First, we will study the effect of processing temperature on film properties; then we 

will investigate the effect of Pt layer orientation, Sm-doping level, and buffer layer, on 

film properties. 

6.2 Effect of processing temperatures on film 

properties 

We principally varied the substrate temperature during deposition and annealing, since 

for different materials, the crystallisation temperature is quite sensitive and critical to 

the film fabrication. 

6.2.1 Experimental details 

6.2.1.1 Target fabrication 

A series of Bi4-xSmxTi3O12 (x = 0, 0.55, 0.70, 1.00) bulk ceramic targets with 10 mol% 

bismuth excess were prepared by a conventional solid-state reaction route as 

described in Chapter 3. In this section, the Bi3.63Sm0.70Ti3O12 bulk ceramic targets 

were used to optimise the film fabrication. The XRD profile of the targets was shown 

in the previous chapter (see Fig. 5.1). We used undoped Bi4Ti3O12 and Bi4.4Ti3O12 (10 

mol% bismuth excess) targets to study the effect of bismuth excess on film properties. 
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6.2.1.2 Film deposition and characterisations 

Commercially available Pt(150 nm)/TiOx(40 nm)/SiO2(400 nm)/Si substrates with 

(111)-preferred-orientation Pt layer were used for film deposition. The deposition 

parameters used for the growth of films are shown in Table 6.1. Substrate 

temperatures of higher than 750 °C were not used because silicon substrates are 

greatly damaged and the interdiffusion between films and substrates increases at this 

temperature.2,3,4,5 

Table 6.1 Deposition parameters used for the growth of BiT and BSmT thin films 
 

Deposition parameters Values 

Laser pulse frequency (Hz) 5 

Total number of pulses 6000 

Pulse energy per spot (mJ) 150 (for BiT), 225 for (BSmT) 

Substrate temperature (ºC) 650, 700, and 750 

Oxygen Pressure (Pa) 27 

Anneal pressure (kPa) (O2) ~65 

Annealing duration (minutes) ~60 

Thickness (nm) 450~520 

 

6.2.2 Results and discussion 

6.2.2.1 Structural properties 

1. X-ray diffraction results 

First, the effect of excess bismuth in PLD targets on structural properties of the films 

was studied. Fig. 6.1 shows XRD profiles of the films deposited using pure BiT and 

BiT (10 mol% Bi excess) deposited and annealed at 650 ºC (Figs. 6.1(a) and 6.1(b)) 

and that of the same film subsequently annealed at 750 ºC (Figs. 6.1(c) and 6.1(d)). 
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From the comparison of the profiles, we can clearly see that the peak located at 15o 

(2? position), which is a fluorite phase due to incomplete crystallisation, exists for 

both films annealed at 650 ºC, but is significantly lower in the film deposited using 

the Bi-excess target. Further annealing at 750 oC converts the film from the Bi excess 

target completely to a perovskite phase (Fig. 6.1(d)), but not the film from the pure 

BiT target (which has even more pyrochlore phase, Fig. 6.1(c)). Increased annealing 

temperature results in further Bi loss (the bismuth content (weight percentage) of 

Bi2Ti2O7 is lower than that of Bi4Ti3O12). From this we can see that using bismuth 

excess target can facilitate the crystallisation of the perovskite phase. 
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Fig. 6.1 XRD profiles of films from (a) pure BiT and (b) BiT with bismuth excess targets 

annealed at 650 ºC; (c) pure BiT and (d) BiT with bismuth excess targets annealed at 750 ºC 
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Fig. 6.2 shows the XRD ?-2? scans of BSmT films deposited and annealed at different 

temperatures. We can see that the film was crystallised at 650 ºC with no evidence of 

amorphicity, but with a fluorite phase (around 15º 2? position), which was indexed as 

the Bi2Ti2O7 cubic phase (JCPDS card, 32-0118). With an increase in the deposition 

and annealing temperature, the intensity of the fluorite peak decreased and the (00l) 

peaks of perovskite phase were enhanced, indicating loss of the fluorite structure and 

the enhancement of the perovskite phase. No other phase other than the perovskite 

phase was observed at 750 ºC with a predominant (117) peak and secondary (006), 

(008), (0018), (1111) and (204) peaks, which indicates that the films are 

polycrystalline. 
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Fig. 6.2 XRD profiles of BSmT films deposited at different temperatures 
 

It has been reported that Bi2Ti2O7 is an intermediate and unstable phase that occurs in 

the formation of Bi4Ti3O12.6,7 According to the phase diagram of the Bi2O3-TiO2 

system, the phase Bi2Ti2O7 can be converted into Bi4Ti3O12 at 700 ºC.8 Kojima 9 
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found that BiT powder annealed at 770 ºC was crystalline Bi2Ti2O7 with the fluorite 

structure, whereas the powder annealed at 1000 ºC was crystalline Bi4Ti3O12 with the 

layered perovskite structure. 

The degree of the (00l)-type preferential growth was estimated using Lotgering’s 

orientation factor 10 

 

(00 )

(00 ) (117)

(00 )% 100%l

l

I
l

I I
= ×

+
       (6.1) 

(00l)% is 17%, 31%, 36%, for the BSmT films annealed at 650 ºC, 700 ºC, 750 ºC, 

respectively, as shown in Fig. 6.3, which suggests that the increasing temperature 

favours the growth of c-axis-oriented grains. 
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Fig. 6.3 Degrees of (00l)-type preferential growth 
 

2. Morphological studies (AFM and SEM) 

Fig. 6.4 shows 1 µm × 1 µm AFM images of the surface morphology of the BSmT (x 

= 0.70) films grown at 750 ºC. The film RMS roughness was 23.2 nm, over an area of 

2 µm × 2 µm. The average lateral size of columns for the film was 150~200 nm. 
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(a)            (b) 

 
Fig. 6.4 AFM images of BSmT films deposited at a substrate temperature of 750 ºC 

 

    
 

(a) 35000 ×    (b) 23000 × 

 

  
 

(c) SEI 23000 ×    (d) BSEI 23000 × 

Fig. 6.5 SEM image of BSmT (a) plan view; (b)-(d) cross sectional view 
 

Fig. 6.5 shows FE-SEM images of the film. Figs. 6.5(a) and 6.5(b) shows the plan 
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view and cross-sectional view of the film, showing a uniform surface with circular 

grains and relatively closely packed grains, as the AFM images indicated. The 

cross-sectional image (Fig. 6.5(b)) shows that the film has a dense columnar structure. 

Figs. 6.5(c) and 6.5(d) show the cross-sectional view of the same film obtained from 

the SEI mode and the BSEI mode, respectively. From the images, we can see that the 

film is continuous and chemically homogenous, with very clear boundaries between 

the film and bottom electrode layer (Pt/TiOx). 

EDX spectra were also collected at 11 keV at various points on samples. To ensure 

that the voltage used (11 kV) is not too high for the probe electrons to penetrate the 

whole film thickness and collect the background information from the bottom 

electrode, a simulation was carried out using Monte Carlo Simulation software 

(Developed by Kimio Kanda, 1996), shown in Fig. 6.6. The result shows that the 

electrons can go as far as about 400 nm, for an average composition of 

Bi3.3Sm0.7Ti3O12 (film thickness: 450 nm ~ 520 nm). Thus we can be sure that the 

information obtained from the EDX was solely from the films and not the substrate. 

 

Fig. 6.6 Simulation of interaction of electrons and the film 
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(a) 

 

(b) 
Fig. 6.7 EDX spectra collected over 60.0 live seconds for (a) edge area; (b) centre area  

 

Typical EDX spectra collected over 60.0 live seconds at different points from films 

grown at 750 ºC are shown in Figs. 6.7(a) and 6.7(b), respectively, and clearly show 

Bi, Sm, Ti, and O peaks, with other possible Si and Al small peaks (Al peaks may 

come from the sample holder). The spectrum lines that were used are Ti-L, Si-K, Bi-L, 

O-K, Pt-M, and Sm-L. 

In order to avoid complications arising from the large uncertainty of quantitative EDX 

measurements with oxygen, the Bi:Sm and (Bi+Sm):Ti ratios were acquired and the 

results are shown in Table 6.2. Values of the Bi:Sm and (Bi+Sm):Ti ratios for 
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Bi3.30Sm0.70Ti3O12 are 4.71 and 1.33, respectively. 

Table 6.2 EDX analyses from different selected area of the film surface 
 

Element 1  

(edge) 

2  

(edge) 

3  

(centre) 

4  

(centre) 

Calculated 

(Mean) 

(C) 

Intended 

(I) 

Deviation 

(C-I)/I × 

100% 

Bi (at. %) 19.25 18.53 19.67 18.27    

Sm (at. %) 4.00 4.34 3.94 4.03    

Ti (at. %) 16.42 15.57 16.66 16.49    

O (at. %) 60.32 61.56 59.74 61.01    

Bi:Sm 4.813 4.270 4.992 4.533 4.65±0.34 4.71 -1.3% 

(Bi + 

Sm):Ti 

1.416 1.469 1.417 1.352 1.41±0.06 1.33 6.0% 

 

The results suggest a successful substitution of Sm for Bi in the film by comparison 

with the intended value (4.71; a deviation of -1.3%). 

The second conclusion that may be drawn from the range of the Bi:Sm ratios 

(4.270~4.992; 4.65±0.34; deviation of ±0.7 at. %) is that there may be some small 

spatial variation in stoichiometry, although it is close to the ultimate accuracy of the 

equipment. 

From the mean values of Bi:Sm and (Bi + Sm):Ti, the composition of the film was 

calculated to be Bi3.48±0.15Sm0.75±0.04Ti4O12. The maximum deviation of the calculated 

value of the film from the intended value is ~6.0% (the intended film composition was 

Bi3.30Sm0.70Ti4O12), suggesting a successful control of the transfer of the composition 
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from the target to the film (after taking the Bi loss into account). 

6.2.2.2 Electrical properties 

The P-E hysteresis loops of Bi4-xSmxTi3O12 (x = 0.70) films deposited at 750 ºC using 

laser energy of 225 mJ are shown in Fig. 6.8. Well-saturated loops were measured. 
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Fig. 6.8 P-E loops of films deposited at 750ºC 
 

Fig. 6.9 summarises the variations of 2Pr and 2Ec of BSmT with the applied 

maximum electric field. The 2Pr values increase rather steeply at a low applied 

maximum electric field but do not change much beyond 350 kV/cm. 2Pr value of the 

film is 42 µC/cm2 at an applied maximum electric field of 450 kV/cm. This value is 

comparable to the 2Pr of 49 µC/cm2 for Chon’s BSmT films deposited using 

metalorganic sol decomposition (MOSD).11 2Ec value of the film is about 220 kV/cm 

at an applied maximum electric field of 450kV/cm, slightly smaller than that of Chon 

(230 kV/cm)11. 
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Fig. 6.9 Variations of 2Pr and 2Ec values of the BSmT thin film as a function of the applied 

maximum electric field 
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Fig. 6.10 J-E characteristics of the BSmT film 
 

Typical leakage current density - electric field (J-E) characteristics of the film is 

shown in Fig. 6.10. The leakage current density was found to be ~10-6 A/cm2, 
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respectively, when the applied electric field was smaller than 200 kV/cm. At 200 

kV/cm, the value of current density was 5 × 10-6 A/cm2.  

Therefore, the BSmT film deposited at 750 ºC and 225mJ/spot has both superior 

ferroelectric and insulating properties. The film also showed excellent fatigue 

resistance, as will be discussed in Section 6.4.3.4. 

6.3 Effect of Pt layer orientations 

6.3.1 Motivation 

As suggested in the previous section, the orientation of the lower Pt electrode might 

influence the film orientation as grown by PLD, thus affecting the film ferroelectric 

and electrical properties. With preferred orientation of polycrystalline ferroelectric 

films, key properties such as polarisation, coercivity and dielectric constant can 

approach those of single crystals, and even lower coercive fields are achievable with 

near epitaxial films. To confirm this, we carried out a further study on the different 

substrates using different orientations in Pt bottom layers. 

6.3.2 Experimental details 

The parameters for film deposition by PLD were kept the same as the previous section 

using different substrates. In this section, the target of Bi3.63Sm0.70Ti3O12 was used, 

which was prepared by a conventional solid-state reaction route mentioned in Chapter 

3. Commercially available Pt(150 nm)/TiOx(40 nm)/SiO2(400 nm)/Si substrates with 

preferred (111)- and (200)-oriented-Pt layers (abbreviated as Pt(111)/Si and Pt(200)/Si, 

respectively) were used for film deposition. The films were deposited at a substrate 

temperature 750 °C. 
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6.3.3 Results and discussion 

6.3.3.1 Structural properties 

Fig. 6.11 shows XRD profiles of the two different substrates (only showing the range 

which contains peaks of the Pt layers).  
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(a)      (b) 

Fig. 6.11 XRD profiles of two different substrates of (a) Pt(111)/Si; (b) Pt(200)/Si 
 

The proportion of the (111) oriented grains for Pt(111) is calculated using Lotgering’s 

equation 10 

 

(111)

(111) (200)

(111)% 100% 87.3%
I

Pt
I I

= × =
+

     (6.2) 

 

Similarly, the proportion of the (200)-oriented grains for Pt(200) is: 

 

(200)

(111) (200)

(200)% 100% 96.5%
I

Pt
I I

= × =
+

     (6.3) 
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Fig. 6.12 XRD profiles of BSmT films deposited on two different substrates 

 

The XRD profiles of BSmT films deposited on the two different substrates are shown 

in Fig. 6.12. We can see that both films are fully crystallised and have a single phase 

of bismuth layered structure showing mixed (00l) and (117) orientations.  

The proportion of (117)-oriented grains is calculated for the two films by the equation 

(117)

(006) (117)

(117)% 100%
I

I I
= ×

+
      (6.4) 

The proportions of (117)% in the two films are 54.0% and 19.5%, respectively, for the 
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films deposited on Pt(111)/Si and Pt(200)/Si substrates. 

 
 

(a) 

 

  
 

(b) 

Fig. 6.13 AFM images (2 µm × 2 µm) of BSmT films deposited on two different substrates: (a) Pt 
(111)/Si (rms = 20.9 nm); (b) Pt(200)/Si (rms = 18.9 nm) 

 

Fig. 6.13 shows the AFM images of the two films. Both films show similar surface 

topography and the values of surface roughness are 20.9 nm and 18.9 nm, respectively, 

for the films deposited on Pt (111)/Si and Pt (200)/Si substrates. 

In order to investigate the origin of the preferred growth orientations, we closely 
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examined the atomic configurations at the BSmT/Pt interfaces. 

The atomic arrangements in the Pt (200) and BSmT (00l) planes are shown in Fig. 

6.14. From this, we can see that there is a good match between these two planes if the 

following orientation relationship is satisfied: 

 

BSmT (00l) // Pt (200)       (6.5) 

BSmT [001] // Pt [110]       (6.6) 

 

The mismatch along the Pt[110] and BSmT[001] directions is quite small (-0.71%). 

Therefore, we would expect that BSmT films tend to grow with (00l)-preferred 

orientation, in Pt (200) plane. 

 

 
 

Fig. 6.14 Schematic representations of atomic configurations in the Pt (200) plane and those in 
the BSmT (001) plane 

 

Schematic representations of atomic configurations of Pt(111) and BSmT(117) are 

shown in Fig. 6.15. There are some similarities between the two structures, although 

there are no strict one-to-one corresponding atoms for the two planes. This may partly 
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explain the increase in (117)-oriented grains in BSmT films grown on the Pt (111) 

plane. 

 

 
(a) 

 
(b) 

Fig. 6.15 Schematic representations of atomic configurations of (a) Pt (111) plane; (b) BSmT (117) 
plane 

 

6.3.3.2 Electrical properties 

Fig. 6.16 shows ferroelectric loops recorded at various applied voltages and the field 

dependence of 2Pr and Vc of both films. The fluctuation in the Vc voltage dependence 

curve of the films on Pt (111) appeared in several measurements, which may be 

related to a domain de-pinning procedure around the range of 12-16 V. 
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The measured 2Pr and Vc of the films on Pt(200) were ~11.0 µC/cm2 and 4.5 V, 

respectively, for a maximum applied electric voltage of 30 V; the 2Pr and Vc values of 

the films on Pt (111) were ~30.0 µC/cm2 and 6.0 V, respectively, for a maximum 

applied electric voltage of 23 V. The BSmT films deposited on Pt(111)/Si have more 

clearly saturated P-V loops with larger 2Pr than those of the film on Pt(200)/Si. 
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(b) Pt(111) 

Fig. 6.16 Ferroelectric loops measured at various voltages and variations of 2Pr and Vc values of 
the BSmT thin film as a function of the applied maximum voltages 

 

Fig. 6.17 shows a comparison of both films at a similar applied maximum voltage and 

Table 6.3 shows the detailed values. These data clearly show that the film grown on Pt 

(111) has a higher 2Pr and Vc. It may be related to the higher proportions of 

(117)-oriented grains in the films grown on Pt (111)/Si substrates, since the polar axis 

(a/b axis) of (117)-oriented grains is closer to the normal direction of the film surface. 
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Fig. 6.17 Hysteresis loops of the films grown on Pt (111) and Pt (200) covered silicon substrates 

 
Table 6.3 Comparison of properties of both film types 

 

Sample 2Pr (µC/cm2, at 23 V) Vc (V, at 23 V) 

Pt 200 8.7 4.1 

Pt 111 27.0 7.0 

6.4 Effect of different doping level 

6.4.1 Motivation 

Since doping, especially lanthanide element doping, can greatly affect the properties 

of BiT films, in this section the effect of various doping levels of Sm on the film 

properties will be presented. 

BLaT has been the most popular and extensively studied previously. The primary 

differences in BLaT with the increase of La content x are: (a) increase in lattice 

constant and volume,12 (b) decrease in Tc, 13(c) increase in Pr,14 and (d) improvement 

in fatigue resistance.14 There have been few comprehensive studies on the effect of 

Sm doping on the properties of BiT thin films and understanding this is important for 

using such material for device applications. 
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6.4.2 Structural properties 

6.4.2.1 XRD studies 

Fig. 6.18 shows the XRD patterns of the BSmT films (with different doping levels) 

fabricated on Pt-coated Si substrates at 750 °C (thickness: ~470 nm). We can see that 

all the films were fully crystallised and have a bismuth-layered structure showing 

mixed orientations. From the intensities of (006)-and (117)-oriented grains, the degree 

of (117)-orientation was calculated (Equation 6.1) and is shown in Fig. 6.19. We can 

see that increasing Sm doping content increases the proportion of (117)-oriented 

grains. 
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Fig. 6.18 XRD patterns of the BSmT films with different doping levels 
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Fig. 6.19 Sm content, x, dependence of the degree of (117)-orientation 

6.4.2.2 AFM studies 

Fig. 6.20 shows the AFM images of the films with different Sm content (the image of 

the film with x = 0 was unavailable). The images reveal that with increasing Sm 

content from 0.55 to 1.00, the grain size of the film decreases, with an accompanying 

a decrease in surface roughness. 

6.4.2.3 Raman spectroscopy 

Fig. 6.21 shows the Raman spectra of Bi4-xSmxTi3O12 with x = 0, 0.55, 0.70, 1.00. The 

spectra show a series of modes around 230, 270, 320, 560, and 850 cm-1. Raman 

features in the figure are similar to those reported by Melgarejo et al.15 for BNdT 

films and Tomar et al.16 for BLaT films. 

Table 6.4 shows a comparison of typical mode frequencies at room temperature for 

different doping content. To clearly show the contrast between them, a detailed figure 

is shown as Fig. 6.22. 
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x = 0.55 (Rrms = 29.9 nm) 

 

 
x = 0.70 (Rrms = 25.2 nm) 

 

 
x = 1.00 (Rrms = 23.2 nm) 

 

Fig. 6.20 AFM images of the films with different Sm content 
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Fig. 6.21 Raman spectra of Bi4-xSmxTi3O12 with x = 0, 0.55, 0.70, 1.00 

 

Table 6.4 Comparison of typical mode frequencies at room temperature 
 

x v6 v5 v4 ? 1 ? 2 

0 231.8 270.5 324.8 555.8 850.7 

0.55 - 267.0 325.4 556.1 854.2 

0.70 - 265.8 327.6 561.1 855.4 

1.00 - 262.3 332.3 562.3 856.6 

 

A perfect TiO6 octahedron has six Raman modes of v1-v6 where v1 and v2 are bond 

stretching vibrations, v3 and v4 are a combination of stretching and bending vibrations 

and v5 and v6 are internal angle bending vibrations.17 Mode v6 is Raman inactive when 

the symmetry of the TiO6 octahedron is Oh, but it becomes Raman active when 

distortion occurs in the TiO6 octahedron. Based on the work of Kojima et al.17, we 

assigned the peaks at 231.8, 270.5, and 324.8 cm-1 in the undoped BiT film as the 

modes v6, v5, and v4, respectively. Due to the limitation of the equipment, modes of 
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frequencies lower than 200 cm-1 could not be measured. The 560 cm-1 mode (? 1) is 

attributed to a combination of stretching and bending of TiO6 octahedra, whilst the 

850 cm-1 mode (? 2) is a pure stretching mode of TiO6. 
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Fig. 6.22 Sm content, x, dependence of the Raman mode frequencies 

 

We can see that the v6 mode (around 230 cm-1) exists in the undoped BiT film, and 

becomes Raman inactive for Sm doped BiT films, which suggests that the symmetry 

of TiO6 octahedron approaches Oh upon Sm substitution, attributable to the 

substitution of the electronically active Bi3+ ion with the electronically inactive Sm3+ 

ion. A similar phenomenon has been reported in BLaT films by Yau et al. 18 They 

found that with increasing La content, the intensity of the v6 mode decreases and 

almost becomes Raman inactive between x = 0.1 and x = 0.3, since we only have four 

doping levels for our study, we can not clearly observe this transition. A study on 

undoped BiT and La-doped BiT films by Tomar et al. 16 also showed the 
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disappearance of the 230 cm-1 mode for La-doped films. 

In Fig. 6.22, the pure bending mode (850 cm-1) and the combination of the stretching 

and bending mode (560 cm-1) both show changes in modeshift (upshift) with 

increasing Sm content, which reflect the change in O-Ti-O bending and stretching 

vibrations. The mode upshift suggests a decrease in distortion and increase in Oh 

symmetry of TiO6, as also partly suggested in the disappearance of v6 mode. Cohen 19 

discussed the origination of ferroelectricity in TiO6 containing ferroelectrics and 

suggested that Ti-O hybridisation inside the TiO6 is essential for ferroelectricity and 

can also cause a structural distortion of TiO6 due to the Ti displacement towards one 

of the six oxygen atoms.19 Since Sm is electronically less active than Bi, and TiO6 

symmetry increases and distortion decreases with Sm addition, a decrease in Ti-O 

hybridisation is implied, which therefore may decrease the polarisation. 

6.4.3 Electrical properties 

6.4.3.1 Ferroelectric properties  

Fig. 6.23 shows ferroelectric hysteresis loops and the Sm content dependence of the 

2Pr and Vc of the films. With the increase of Sm doping level, the 2Pr values increase 

from 5.4 µC/cm2 for undoped BiT film, to 24.0 µC/cm2 for x = 0.55, and then peaks at 

x = 0.70 (45.6 µC/cm2). The 2Pr value decreases beyond x = 0.70 and shows a value 

of 11.4 µC/cm2 at x = 1.00. The Vc value shows similar tendency, which decreases first 

and then increase beyond x = 0.70. 
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Fig. 6.23 (a) Hysteresis loops; Sm content dependence of (b) 2Pr and (c) Vc of the films 
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6.4.3.2 Dielectric properties 

The measurement of capacitance and dissipation factor (tan d) values can give us 

more information about the polarisation in the films. The capacitance value increases 

with the increasing doping content and peaked at x = 0.70. It then decreases beyond x 

= 0.70, as shown in Fig. 6.24. 

0.0 0.2 0.4 0.6 0.8 1.0

4

6

8

10

12

14

16

18

20

 Capacitance

C
ap

ac
ita

nc
e 

(p
F)

Dopant level (x)

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

 Tan δ

 
Fig. 6.24 Sm content dependence of the capacitance and dissipation factor of the films 

 

6.4.3.3 Leakage current properties 

Fig. 6.25 shows the leakage current density of the films with x = 0 and 0.55, which 

clearly denotes that the Sm doping decreased the leakage current density. That 

suggests that the Sm substitution is effective in reducing leakage current. 

6.4.3.4 Electrical fatigue properties 

Fig. 6.26 shows the fatigue properties of BSmT films with x = 0.55, 0.70, 1.00, 

measured with 1 MHz pulses (The film with x = 0.0 fatigues quickly after 1 × 107 

cycles and the figure is not shown here). The films hardly fatigued, which suggests 
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that the Sm doping can improve the fatigue resistance of the BiT films. 
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Fig. 6.25 Leakage current density of the films with x = 0 and 0.55 

 

 
(a) x = 0.55    (b) x = 0.70    (c) x = 1.00 

 

Fig. 6.26 Fatigue property of BSmT films with various Sm contents 
 

6.4.4 Discussion and conclusions 

The inclusion of Sm3+ in the perovskite block is expected to influence the structural 

and electrical properties of BiT films in several ways, as discussed below.  

First, the introduction of Sm is likely to suppress the spontaneous polarisation value 

of the BiT films, and similar effect was reported in Sm-doped BiT ceramics.20 The 

measurement of the intrinsic spontaneous polarisation can only be possible by the 
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fabrication of single crystal samples, since these will not be affected by the 

orientations of grains and strains, etc. However, the Sm doped BiT single crystal has 

not yet been prepared. Because of the similarity of La, Nd, and Sm, the results of La 

and Nd-doped BiT can give some similar suggestions on Sm-doped samples. Soga et 

al. prepared single crystal BiT and BLaT and measured the polarisation along 

a(b)-axis of both samples, as shown in Fig. 6.27.21 This suggested that the doping of 

lanthanide elements may actually reduce the polarisation of BiT due to smaller ionic 

displacements along the a-axis. In another report, spontaneous polarisation of BLaT 

was estimated from epitaxially grown thin films by Sakai et al. 22 In their study, the 

La-doped BiT films have a smaller remanent polarisation than undoped BiT films. We 

can expect that the measurements of polarisation on single crystal and epitaxial films 

were much closer to the theoretical values than the polycrystalline films with 

mixed-oriented grains. It can also be easily reflected by the reduction of the Curie 

temperature of the doped samples in single-crystal 21 and ceramic 23 forms. 

 

 

 
Fig. 6.27 Polarisation hysteresis loops for BiT and BLaT (x = 0.85) single crystals 

along the a(b) axis measured at 25 °C 21 

 

Second, in polycrystalline films, the introduction of Sm suppresses the dominant 
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c-axis growth, as shown in XRD patterns of the films (Figs. 6.20 and 6.21). It is 

known that the polarisation is along a/b-axis instead of c-axis in BiT films and there 

were several reports that the c-axis oriented films have poor polarisation value as 

compared to the a- or b-axis oriented films.24,25,26,27 In this case, the enhancement of 

ferroelectric properties may be due to the preferred growth direction: the polarisation 

can be easily seen by the applied electric field through the film thickness. 

Third, pinning of the domain wall motion is also one of the factors which affects 

ferroelectric properties. Defect complexes are widely known as pinning centres in 

oxide ferroelectrics28,29 and doping of lanthanide elements can suppress these, as 

suggested by the decrease of leakage current density, as shown in Fig. 6.25. 

Combining the above analysis, we can see that from the Raman spectra, the intrinsic 

ferroelectricity within TiO6 blocks may be reduced by the increased symmetry and 

decreased distortion in the TiO6 octahedron, therefore, a decrease in Ti-O 

hybridisation and the resulting decrease in polarisation are expected. However, the 

increase in 2Pr with increasing Sm content may imply that the extrinsic effect, which 

is the crystallographic orientation of the films, dominates the ferroelectric properties. 

Although increasing Sm content decreases Tc,20 the preferential orientation closer to 

the polar axis (a/b-axis) favours the increase of 2Pr. Beyond a certain doping level, 

the increase in the crystallographic orientation to a/b-axis cannot compensate for the 

decrease in intrinsic polarisation, resulting in the decrease of 2Pr after x = 0.70.  

The decreased leakage current density suggests that the doping also reduces the defect 

complexes or oxygen vacancies. Therefore, the Bi in the A site become more stable 

than the undoped BiT, resulting in the reduction in dissipation factor and improved 

fatigue resistance.14 An alternative explanation is that the reduction in the oxygen 
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vacancy-related domain-pinning improves the fatigue resistance.30,28,31 

6.5 Effect of LaNiO3 (LNO) buffer layer 

6.5.1 Motivation 

For BLSF thin films, bismuth volatility during high temperature annealing is a major 

drawback. A large number of studies aimed at overcoming this major problem have 

been carried out in one of the BLSF films, SBT, by growing SBT thin films on 

conducting oxide electrodes 32,33,34,35. Previously, the existence of metallic bismuth in 

the SBT thin films was reported by Scott et al.36 According to Scott, metallic Bi might 

modify the interfacial characteristics of the film, which has a direct influence on the 

electrical properties of SBT based devices. In theory, thin films on metal electrodes 

exhibit higher leakage current density in comparison to oxide electrodes.37 Due to the 

higher crystallisation temperature of bismuth containing ferroelectric thin films and in 

order to avoid the interdifussion of Bi into Pt, it is necessary to anneal films at lower 

processing temperature or to grow films at an interfacial conducting oxide layer 

between Pt and films without sacrificing its ferroelectric properties. SBT films on 

LaNiO3(LNO) electrodes were fabricated by Hu et al. 35 and a layer of second phase 

with a thickness of 30 nm was observed at the interface between the SBT thin film 

and the LNO oxide electrode. 

In the previous parts of this chapter, relatively low temperature PLD-grown BSmT 

films on Pt-coated silicon substrates have been studied and the optimised annealing 

temperature was 700~750 °C, which was low enough but still relatively high for 

bismuth-containing ferroelectrics, due to unavoidable bismuth loss and bismuth 

diffusion into Pt electrodes. In this part, we then adopted LNO, the most attractive 
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candidate for electrodes in PZT-based ferroelectric memories,38 as an interfacial layer 

to grow BSmT films and compared them to those grown without LNO electrodes. 

6.5.2 Experimental details 

BSmT and LNO films were grown by PLD using a multi-target process. LNO oxide 

electrodes of ~50 nm thickness were grown on commercial Pt/TiOx/SiO2/Si substrates 

at a substrate temperature of ~750 °C and an oxygen pressure of 13 Pa. The details of 

the parameters for depositing BSmT films were shown in Section 6.2.1 (For this film, 

target composition: Bi3.63Sm0.70Ti3O12; total number of pulses: 4000; pulse energy per 

spot: 225 mJ; deposition and annealing temperature: 750 °C). BSmT films deposited 

in the same deposition run with LNO electrodes (BSmT/LNO/Pt) and without LNO 

electrodes (BSmT/Pt) were measured for comparison. Film thickness of BSmT was 

determined by FE-SEM (~ 310 nm) 

6.5.3 Results and discussion 

6.5.3.1 AFM studies 

AFM was used to analyse the influence of the LNO buffer layer on the surface 

topography of BSmT films, and typical AFM images of BSmT films grown on Pt and 

LNO are shown in Fig. 6.28. It was observed from the microstructure that the bottom 

electrodes directly influenced the grain size and the root mean square (RMS) surface 

roughness of the films. The films grown directly on Pt have larger grains (~200 nm) 

and intergranular regions filled with finer grains of ~100 nm. However, films grown 

with the LNO layer have a smaller grain size (~150 nm) and are surrounded by finer 

grains of ~25 nm. The RMS surface roughness of the BSmT/Pt and BSmT/LNO/Pt 

films was ~9.7 nm and ~14.8 nm, respectively. 
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(a) 

 
(b) 

Fig. 6.28 AFM images of (a) BSmT/Pt films; (b) BSmT/LNO/Pt films 
 

6.5.3.2 Ferroelectric properties 

Ferroelectric hysteresis characteristics of BSmT films grown without and with LNO 

layer are shown in Fig. 6.29. Thin films of BSmT/Pt exhibit a 2Pr of ~50 µC/cm2 and 

a Vc of ~3.0 V (Ec: 97 kV/cm for ~310 nm-thick film). However, BSmT films on the 

LNO buffer layer showed degradation of the ferroelectric characteristics and exhibited 

a 2Pr of ~14 µC/cm2 and Vc of ~4.5 V (Ec: ~ 145 kV/cm). The degradation of 

polarisation with the LNO buffer layer has been explained as due to the formation of 

oxygen vacancy related defect dipoles at the interface, which might lead to poor 

ferroelectric properties. 35 A TEM study may be able to clarify which effect dominates. 
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Another possible reason could be the series resistance effect of the interfacial layer 

between the oxide electrode and BSmT films, which is due to the diffusion of Ni into 

the BSmT film and then formation of a thin resistive layer. Hu et al. 35 reported a layer 

of second phase with a thickness of 30 nm at the interface between an SBT thin film 

and a LNO oxide electrode, examined by TEM. They also observed a strong reduction 

in dielectric constant of SBT/LNO/Pt films, due to the formation of a low dielectric 

constant layer at the interface. This explanation might be also applicable to our 

results. 

 
(a)        (b) 

Fig. 6.29 Ferroelectric hysteresis loops of (a) BSmT/Pt; (b) BSmT/LNO/Pt films 
 

Degradations of ferroelectric properties were also observed by Hu et al. 35 on SBT 

films. In their study, a small value of Pr could not be explained by their XRD data, 

thus, they also attributed this to the formation of the low dielectric constant layer at 

the interface.  

The difference between their and our results is the Vc. In our study, the increase of Vc 

was observed in BSmT/LNO films instead of a reduction as reported by Hu et al. 35 in 

SBT/LNO films. Since the Vc is dependent on the energy required for the domain 

nucleation and domain wall movement, which is related to the pinning status of 

domain walls by the trapped charges formed at the interface and grain boundaries, 
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therefore, for the BSmT thin film deposited on the LNO electrode, the traps of the 

space charges in the second phase formed at the interface must be deeper than that for 

the BSmT thin films without the LNO layer, resulting in the larger value of Vc. 

6.5.3.3 Leakage current properties 
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Fig. 6.30 Leakage current characteristics of BSmT/Pt and BSmT/LNO films 

 

The J-V characteristics of the films were measured at room temperature and it was 

observed that the BSmT/Pt film has a much lower leakage current density (~10-5 

A/cm2 at 50 kV/cm) than that of BSmT/LNO films (~10-3 A/cm2 at 50 kV/cm), as 

shown in Fig. 6.30. 

The smaller leakage current (and the larger breakdown field) may be due to larger 

energy barrier of BSmT/Pt than that of BSmT/LNO. The values of barrier height 

between the film and the electrode estimated by Das et al. 39 at zero voltage for 

Pt/SBT/Pt and Pt/SBT/LNO capacitors were 1.27 and 1.12 eV, respectively. The 

decrease in barrier height with the introduction of the LNO interfacial layer were 

ascribed to the different work function of LNO or the nature of chemical bonding 
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between SBT and the LNO electrode.39 In our BSmT/LNO interface, it might be 

possible that oxygen ions in LNO interact strongly with other oxygen ions and cations 

in BSmT, which changes the interfacial potential and results in a smaller barrier 

height. Another possible reason is that the higher leakage current may be caused by 

the higher surface roughness of the BSmT films on LNO electrode. Similar results 

were reported in SBT films32 and Ce-doped BiT films. 40 
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Chapter 7 CSD-derived Sm- and Nd-doped 

bismuth titanate polycrystalline ferroelectric 

thin films 

7.1 Background 

BLSF thin films have been fabricated using several techniques, which include 

MOCVD,1,2,3 sputtering,4,5 PLD,6,7,8 and CSD.9,10,11,12,13 Among the methods, CSD has 

been extensively employed in the past few years, including sol-gel process9,10,11 and 

metalorganic deposition (MOD)12,13. It has several advantages of accurate composition 

control which is very important for multicomponent systems, ease of process 

integration with standard semiconductor manufacturing technology and relatively low 

costs.  

Among the reports on CSD method to fabricate BLnT thin film, it can be found that 

metal alkoxide compounds are used as Bi, Ln (La, Sm, Nd), and Ti sources.14,15,16 BLnT 

films deposited by sol-gel and metalorganic solution growth techniques are generally 

polycrystalline, fine grained and often with segregated metallic Bi, necessitating 750 

°C processing for improvement of film properties. When starting materials of 

multicomponent systems are all metal alkoxide precursors,17,18 the system will be so 

susceptible to ambient humidity that it should be handled under an inert atmosphere. 

Inorganic and organic salts have been used for CSD processing of multicomponent 

systems when it is difficult or unnecessary to use alkoxides, such as under humid 

ambient.19 

In the present study, we successfully used nitrates to introduce bismuth and 
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samarium/neodymium instead of alkoxides as precursor materials to make a stable 

Bi-Sm(Nd)-Ti solution, which was insensitive to water and could be stable for more 

than eight months at room temperature. We investigated the condensation 

polymerisation and crystallisation behaviours of BSmT thin films during the baking 

and annealing stages by Fourier transform infrared spectroscopy (FT-IR), Raman 

spectroscopy, and XRD. We also characterised the structural and electrical properties 

of the Sm and Nd-doped BiT films. 

7.2 CSD-derived BSmT films 

7.2.1 Experimental results 

7.2.1.1 Characterisation of precursors: in-situ FT-IR study 

FT-IR can conveniently characterise structural changes that occur in the sol-gel process 

during the conversions from sol to gel and then to crystalline phase. In-situ FT-IR 

results of the precursor solution from room temperature to 300 °C are shown in Fig. 7.1. 

There are several peaks in the FT-IR spectrum of the Bi-Sm-Ti sol at 25 °C, which are 

~735, ~815, ~880, ~1025, ~ 1335, ~1430, ~1520, ~1635, and ~3400 cm-1. The peak 

around ~3400 cm-1, corresponding to the vibration of O-H, decreases with increasing 

temperature and disappears around 100 °C, indicating evaporation of water. The peak 

of ~1335 cm-1, corresponding to the stretching vibrations of the alkyl CH3,20 decreases 

with increasing temperature and disappears around 230 °C. The absorptions at ~1520 

and ~1430 cm-1 are assignable to asymmetric and symmetric ?COO vibrations, 

respectively21. It should be noted that the asymmetric vibration of ?COO shifted from ~ 

1765 cm-1 (in pure acetic acid, not shown here) to ~ 1520 cm-1, which indicates that 

stable titanium alkoxo-acylates actually forms when mixing with acetic acid.22 The 
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peaks disappear with increasing temperature around 100 °C, indicating the 

evaporation of the acetic acid with the increase in temperature.  
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Fig. 7.1 FT-IR spectra of the Bi-Sm-Ti solutions at different temperatures 

 

The acetic acid serves as chelating agent to improve the homogeneity of the precursor 

solution by generating a highly dense and homogeneous Ti-O-Ti polymeric network. 

Peaks at ~1630 cm-1 are due to ?C=O vibrations of conjugated carbonyl groups. The 

peaks around ~735, ~810 and ~880 cm–1, corresponding to NO3
-, disappear around 

150 °C, indicating the decomposition of bismuth nitrate and samarium nitrate. The 

amorphous Bi-Sm-Ti gel can be supposed to have a Ti-O-Ti framework with Bi(NO3)3 

and Sm(NO3)3 situated in random positions.  

The chemistry and homogeneity of the Bi-Sm-Ti solution have a strong influence on the 

crystallisation temperature of the BSmT thin films. The crystallisation temperature can 

be reduced by improving the homogeneity of the precursor solution by using a 

chelating agent such as acetic acid, which reacts chemically with the metal alkoxide, 
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giving rise to a new type of precursor Ti(OR)x(Acet)y, as shown in Equation (7.1). The 

hydrolysis of the precursors is shown in Equations (7.2) and (7.3). 

x y 1-x 1-yM-(OR)+(Acet) = M-(OR) (Acet) M-(OR) (Acet)+ +    (7.1) 

x 2 1-x 2M-(OR) +H O = M-(OH) (1-x)ROH H Oz+ +      (7.2) 

x y 2 x y 2M-(OR) (Acet) +H O = M-(OH) (Acet) ROH H Ox z+ +    (7.3) 

 

The anions can coordinate in one or more of the modes, shown in Fig. 7.3. 

 

 

 
Fig. 7.3 Reaction of acetic acid with precursors 

 

It was observed that most of the acetate groups exist as bridges in nature.23,24 There 

are two kinds of network in this hybrid solution: dense polymeric clusters and lower 

density polymer constituents. By adding additional acetic acid before hydrolysis steps 

(this is also why the nitrates should be completely dried before dissolving in acetic 

acid), a high fraction of the low density polymer constituent reacts with the acetic acid 
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and forms high density polymeric network, which is very resistive to hydrolysis and 

condensation. This tendency leads to the polycondensation process, and generates 

monolithic gels where high mass polymers are preferentially present rather than small 

colloidal particles. The hydrolysis of alkoxide is shown in (7.4), and condensation of 

two M-OH groups or reaction of an M-OR with M-OH group is described in (7.5) and 

(7.6). 

 

2M-OR+H O = M-OH ROH+        (7.4) 

2M-OH+M-OH= M-O-M H O+       (7.5) 

M-OH+M-OR= M-O-M ROH+       (7.6) 

 

Increasing the baking temperature to 300 °C results in the disappearance of most FT-IR 

vibration peaks, indicating most organic compounds have been evaporated and 

decomposed. This is analogous to the pre-baking stage of the BSmT film fabrication. 

7.2.1.2 Structural properties 

1. Raman spectroscopy 

In order to study the annealing stage of the films, room temperature micro-Raman 

spectra for BSmT thin films annealed at different temperatures were measured, as 

shown in Fig. 7.4. The as-baked film shows a peak around 1040 cm-1 which decreases 

with increasing temperature and disappears around 550 °C. This probably indicates that 

a CO3
2- structure forms during this temperature range, after decomposition of Ac-. A 

peak around 570 cm-1 also appears between the temperature range of 350 ~ 500 °C, 

which indicates an intermediate phase is formed during annealing. The BSmT thin film 



Chapter 7 CSD-derived Sm- and Nd-doped bismuth titanate polycrystalline ferroelectric thin films 

 155 

annealed at 500 °C maintains an amorphous status. When the annealing temperature 

reaches 550 °C, broad peaks around ~530 and ~830 cm–1 are found and then disappear 

with increasing temperature. These correspond to a metastable fluorite phase 

(Bi2Ti2O7), also observed by other researchers.25,26,27 Annealing the thin films at higher 

temperatures results in the perovskite structure, with three peaks at wavenumbers 

around 261, 553, and 850 cm-1, which are similar to the PLD-grown films reported in 

Chapter 6. The intensity and sharpness of these three peaks increase with increasing 

annealing temperature above 600 °C, indicating improvement in crystalline quality of 

the perovskite structure, which is consistent with the XRD results.  

Apart from these three main modes, the 325 cm-1 mode (seen as a bump on the right 

of the 260 cm-1 mode), which corresponds to the combination of stretching and 

bending of the TiO6 octahedron28, becomes sharper and more distinct with increasing 

annealing temperature. This change in the TiO6 modes is most probably due to 

exaggerations of orthorhombic distortion and octahedral tilting at higher annealing 

temperature.28,29 

200 400 600 800 1000 1200 1400

550 oC

350 oC
400 oC

450 oC

500 oC

800 oC
750 oC
700 oC
650 oC
600 oC

 

 

In
te

ns
ity

 (a
. u

.)

Raman Shift (cm-1)
200 400 600 800 1000 1200 1400

 

 

849.5549.6

263.2

750 oC - CSD
700 oC - CSD
650 oC - CSD
600 oC - CSD

 

 
In

te
ns

ity
 (a

. u
.)

Raman Shift (cm-1)

 
(a)           (b) 

 

Fig. 7.2 Raman spectra of the films annealed at different temperatures. (a): 350 °C~800 °C; (b): 
600 °C~800 °C. 
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2. XRD studies 
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Fig. 7.3 XRD profiles of the films annealed at different temperatures 

 

Fig. 7.3 shows the XRD ?-2? patterns of the BSmT films (~ 370 nm thick) annealed 

for 10 minutes in an oxygen atmosphere at temperatures ranging from 600 °C to 750 

°C. It can be seen that, as the annealing temperature increases, the crystallinity of the 

films improves (the peaks become sharper and more intense). The film annealed at 

600 ºC shows a fluorite phase at 2? ≈ 15º, which was indexed as the Bi2Ti2O7 cubic 

phase (JCPDS Card, 320118), indicating that the fluorite structure exists as an 

intermediate phase between the amorphous and perovskite phases of BSmT, as 

previously indicated in Raman spectra. With an increase in the annealing temperature, 

this fluorite peak disappeared and the peaks of the perovskite phase were enhanced. 

The perovskite phase was fully formed in films annealed at 650 ºC and above and all 

films have a bismuth-layered structure showing mixed orientations. This result 

indicates that the Sm3+ ions in the BSmT films are incorporated into the 



Chapter 7 CSD-derived Sm- and Nd-doped bismuth titanate polycrystalline ferroelectric thin films 

 157 

pseudo-perovskite structure, substituting for the Bi ions 30. The full width at half 

maximum (FWHM) of the perovskite phase peaks decreases with increasing 

annealing temperature (0.64º, 0.27º, 0.20º, 0.19º for peak (006), for films annealed at 

600 ºC, 650 ºC, 700 ºC, 750 ºC, respectively), suggesting an increase in the grain size. 

The degree of the (00l)-type preferential growth was determined by Lotgering’s 

orientation factor (Equation (6.1)), as shown in Fig. 7.4. The result suggests that 

increasing annealing temperature favours the growth of c-axis-oriented grains, which 

was similarly reported from the results of PLD-grown films in Chapter 6. 
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Fig. 7.4 Degrees of (00l)-type preferential growth 

3. Surface morphology (AFM) 

Fig. 7.5 shows AFM micrographs of the BSmT films. The RMS surface roughness (1 

µm × 1 µm) increased with increasing annealing temperature: 3.6 nm, 6.0 nm, 9.0 nm, 

and 11.0 nm, for the films annealed at 600 °C, 650 °C, 700 °C, and 750 °C, 

respectively. This was accompanied by an increase in grain size of the films, as seen 

from the AFM images and corroborated by the increase in XRD peak sharpness. The 

roughness values of the films annealed at 700 °C and 750 °C are comparable to that 

reported for 300~400 nm-thick (104)-oriented MOCVD-derived BSmT films (Rrms = 



Chapter 7 CSD-derived Sm- and Nd-doped bismuth titanate polycrystalline ferroelectric thin films 

 158 

12.2 nm) annealed at 700 °C.31 CSD-derived 200 nm-thick BNdT films prepared at 

700 °C have been reported to have a roughness of ~13.0 nm.32 The average lateral 

feature size of films annealed at 700 °C is ~70 nm. 

 

 
Fig. 7.5 AFM images of the films annealed at different temperatures 

 

4. SEM results 

Figs. 7.6(a) and 7.6(b) show FE-SEM images of cross-sections of BSmT films 

annealed at 700 °C, obtained in SEI and BSEI mode, respectively. Both images 

demonstrated that they exhibit a clear and sharp boundary between films and Pt 

bottom electrodes. A different image of larger magnification is also displayed (Fig. 

7.6(c)), clearly showing a grainy structure. Fig. 7.7 shows the cross-sectional FE-SEM 

images of a film annealed at 750 °C, confirming an increase in grain size with a 

further increase in annealing temperature, but suggesting a slight reduction in density 
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in the 750 °C-annealed film. 

  
(a) SEI mode (35,000 ×)    (b) BSEI mode (35,000 ×) 

 

 
(c) SEI mode (65,000 ×) 

 
Fig. 7.6 Cross-sectional FE-SEM images of films annealed at 700 °C 

 

   
 

(a) SEI mode (43,000 ×)   (b) BSEI mode (43,000 ×) 
 

Fig. 7.7 Cross-sectional FE-SEM images of film annealed at 750 °C 
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For comparison, surface FE-SEM images of the films annealed at 600 °C and 700 °C 

are shown in Fig. 7.8. Grain growth with increasing annealing temperature is clearly 

illustrated by these images. 

   
 

(a) 600 °C     (b) 700 °C 
 

Fig. 7.8 Surface FE-SEM images of the film annealed at different temperatures 
 

Cross-sectional FE-SEM images illustrate that the thickness of the films remain 

almost the same over this temperature range, suggesting very small shrinkage in film 

volume during film growth at this temperature range. The average cation ratio 

determined by EDX was Bi:Sm:Ti = (4.00-x):x:(2.96±0.05), where x = 0.55±0.04. 

7.2.1.3 Electrical properties 

1. Dielectric properties 

The dielectric constant (er) and dissipation factor (tan d) at room temperature are 

shown as a function of frequency in Fig. 7.9. The capacitance value measured using 

different top electrodes varied within less than 3%, indicating a high degree of 

uniformity in the films. For all films, er was relatively unchanged from 10 kHz to 1 

MHz (maximum variation: 9%). Tan d values were below 0.030 from 10 kHz to 100 

kHz (for all but the 600 °C-annealed film), and then increased gradually at higher 
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frequencies. 

At 100 kHz, er increased from ~102 to ~202 with increasing annealing temperature. 

There have been several reports in the literature suggesting that such an increase can 

be attributed to the increase in grain size and/or density of the films33,34. In our case, 

the XRD traces and AFM results confirm the increasing grain size with increasing 

annealing temperature but, as discussed in the previous section, a drop in film density 

at the highest annealing temperature was apparent in the FE-SEM images. The 

continuous increase in er suggests that the effect caused by the decrease in the density 

of the film annealed at 750 °C did not fully cancel the rise in er due to increase in the 

grain size. The values of tan δ at 100 kHz of the same set of films decreased from 

0.0265 to 0.0195 with increasing annealing temperature until 700 °C, and then 

increased to 0.0260 at the annealing temperature of 750 °C, suggesting that tan δ is 

predominantly affected by the film density. The increase in the tan d with increasing 

frequency becomes more obvious in the films annealed at higher temperature. 

The values of er at 100 kHz for the films annealed at 700 °C were ~168. These values 

of er are smaller than that reported for a BSmT film on platinised silicon prepared by 

MOSD (387 at 1 MHz) 35, and higher than that of a MOSD-derived BNdT film (110 at 

100 kHz) 36, but tan d in our films is much smaller than these latter two films (0.054 

and 0.137, respectively). A comparative study by Maiwa et al. on CSD-derived 

polycrystalline BiT, BLaT and BNdT films on platinised silicon showed that the films 

had dielectric constants of ~150, ~180, ~225, respectively at 100 kHz, suggesting an 

enhancement of the polarisation by La and Nd substitution. 17 Another comparative 

study by Zhang et al. on highly epitaxial c-axis-oriented BiT and BNdT films on 

LaNiO3-coated LaAlO3 substrates grown by PLD showed that films had dielectric 
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constants of ~130 and ~180, respectively. 37 
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Fig. 7.9 (a) Dielectric constant and (b) Dissipation factor as a function of frequency 
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2. Ferroelectric hysteresis behaviour 
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(a) 600 °C     (b) 650 °C 
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Fig. 7.10 P-E hysteresis loops of films annealed at (a) 600 °C, (b) 650 °C, (c) 700 °C, and (d) 750 
°C; (e): a comparison of hysteresis loops measured at ~370 kV/cm 
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Fig. 7.10 shows the P-E hysteresis behaviour of the films. It can be seen that 2Pr 

increases with increasing annealing temperature. The 2Pr value of the film annealed at 

750 °C was 33.4 µC/cm2, which is comparable to that of a BLaT thin film prepared by 

PLD (2Pr = ~27 µC/cm2),38 and that of a CSD-derived Bi4-xNdxTi3O12 (x = 0.5) thin 

film (2Pr = ~35 µC/cm2)39 (both on platinised silicon). 
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Fig. 7.11 2Pr as a function of the annealing temperature 

 

Fig. 7.11 shows the values of 2Pr as a function of the annealing temperature, 

suggesting an enhancement in ferroelectricity with increasing temperature. 

3. Leakage current density characteristics 

Fig. 7.12 shows the leakage current densities of BSmT films as a function of applied 

electric field. As the annealing temperature increased, the value of leakage current 

density increased: 7.4 × 10-7, 1.4 × 10-6, 4.0 × 10-6, 1.5 × 10-5 A/cm2 at an applied DC 

field of ~100 kV/cm for 600 °C, 650 °C, 700 °C, and 750 °C annealed films 

respectively. This higher leakage current could be a result of the increased surface 

roughness (see Fig. 7.5): previous studies of SBT 40 and Ce-modified BiT 41 thin films 

deposited on platinised Si substrates show similar effects. Leakage in the 
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CSD-derived film annealed at 700 °C is comparable to that of CSD-derived BNdT 

thin films as reported by Wu et al. (5.0 × 10-6 A/cm2 at 100 kV/cm) 19 and 

MOCVD-derived BSmT reported by Kojima et al. (~10-5 A/cm2) 31. 
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Fig. 7.12 J-E characteristics of the BSmT films 

4. Electrical fatigue behaviour 
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Fig. 7.13 Fatigue characteristics of the BSmT films 
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The films annealed at 600 and 650 °C fatigues quickly after 1.0 × 107 switching 

cycles. Fig. 7.13 shows the fatigue behaviour for the film annealed at 700 °C, with 

little change in the non-volatile polarisation (Pnv) up to 1.0 × 109 read/write switching 

cycles at a switching electric field of ~±380 kV/cm (i.e. ±14 V). The films annealed at 

750 °C show a similar behaviour to this. 

7.2.2 Discussion and conclusions 

In this study, an alkoxide-salt method was adopted to prepare the precursors for BSmT 

film fabrication. In-situ FT-IR studies on the decomposition of the precursor, which is 

an analogy of the pre-baking stage during film fabrication, reveals that acetic acid 

serves as chelating agent to improve the homogeneity of the precursor solution by 

generating a dense and homogeneous Ti-O-Ti polymeric network and, at a baking 

temperature of 300 °C, most organic compounds are evaporated and decomposed. 

Raman spectroscopy reveals that an excitation of the active modes of perovskite phase 

becomes stronger with increasing temperature annealing above 600 °C, indicating the 

development of the crystallinity for the perovskite phase in BSmT films.  

XRD and Raman results confirm the existence of the fluorite as an intermediate phase 

between the amorphous and perovskite phases of BSmT. Increasing annealing 

temperature favours the growth of c-axis-oriented grains and increases grain sizes. 

AFM and SEM images, as well as XRD patterns, all indicate an increase of grain size 

with increase of annealing temperature. FE-SEM images show that the films have a 

clear and sharp boundary with Pt bottom electrodes and a grainy structure. 

An increase in dielectric constant value with increasing annealing temperature was 



Chapter 7 CSD-derived Sm- and Nd-doped bismuth titanate polycrystalline ferroelectric thin films 

 167 

observed, which may be attributed to the increase in grain size and/or density of the 

films. The values of tan δ at 100 kHz of the same set of films decreased with 

increasing annealing temperature until 700 °C, and then increased at the annealing 

temperature of 750 °C, suggesting that tan δ is predominantly affected by the film 

density, since a slight reduction in density was seen at this temperature. 

Although the c-axis-oriented grains were favoured with increasing annealing 

temperature, the Pr increased with increasing annealing temperature, which was 

attributed to the enhancement of grain development. The higher leakage current 

measured after a higher annealing temperature could be the result of the increased 

surface roughness. The film annealed at 700 °C shows excellent electrical fatigue 

resistance. The electrical properties of the films fabricated in this study (dielectric and 

ferroelectric properties, leakage current characteristics and electrical fatigue 

properties), are comparable or superior to these previously reported for similar films 

developed by other techniques or using other doping elements. 

7.3 Low temperature properties of BSmT films 

7.3.1 Motivation 

Previous sections have described polycrystalline BSmT films deposited by PLD and 

CSD on platinised silicon. They have large Pr and are almost fatigue-free, which 

suggests a promising ferroelectric material for Nv-RAM use.  

Since the devices using Nv-RAM might be used at an extremely low temperatures, e.g. 

automobiles, in space or military applications, the performance of the 

lanthanide-substituted BiT films over a wide range of temperature must be tested to 

meet these special applications. In the simplest case, when reading and writing a 
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ferroelectric memory cell, a sufficient amount of charge will be necessary to enable 

precise data storage, which accordingly needs a large remanent polarisation in 

ferroelectric capacitors even at a very low temperature. Besides, the data obtained at 

low temperature can help us to fully understand some fundamental issues in this kind 

of new ferroelectric thin film, such as domain behaviour, leakage mechanisms, etc. 

Although there have been intensive investigations on the properties of BLnT films6-8, 

the detailed electrical properties of the films at low temperature have not yet been 

reported. In this section, we will report the electrical properties of BSmT thin films in 

the temperature range of 35 to 300 K. 

7.3.2 Results and discussion 

The BSmT thin films in this study were the CSD-derived 700 °C-annealed BSmT 

films in previous section (~370 nm thick). 
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Fig. 7.14 2Pr as a function of the applied voltage measured over the temperature range from 53 K 
to 300 K 

 

Fig. 7.14 shows 2Pr as a function of the applied voltage measured over the 

temperature range from 53 to 300 K. For all temperatures, the 2Pr value increases 
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with increasing voltage and saturates at higher voltages. With decreasing 

measurement temperature, the saturation voltage increases. 
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Fig. 7.15 P-V loops measured over the temperature range from 53 K to 300 K 

 

Fig. 7.15 shows well saturated hysteresis loops of the film measured at different 

temperatures, showing clearly that the film has a decreasing 2Pr and increasing Vc 

with decreasing temperature. 
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Fig. 7.16 Temperature dependence of 2Pr and Vc measured at a cooling and a heating cycle 
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Fig. 7.16 shows the detailed temperature dependence of 2Pr and Vc. The 2Pr decreases 

steadily from ~40 µC/cm2 to ~29 µC/cm2 with decreasing temperature, and upon 

subsequent temperature increase, recovers to the original value. Vc increases from 

~7.3 to ~9.0 V with decreasing temperature and then recovers upon temperature 

increase. These results suggest that the degradation of the ferroelectricity was not 

caused by any irreversible damage to the sample during the temperature cycle. 

Furthermore, the 2Pr and Vc both show some hysteresis properties during the cooling 

and heating stages. We should note that even at temperatures as low as 35 K, the film 

shows rather high 2Pr (~29 µC/cm2), which suggests application over a very wide 

temperature range. Comparatively, the 2Pr value of SBT thin films reported by Yang 

et al.42 has a remarkable (~98%) reduction from 300 K to 100 K, and shows negligible 

ferroelectricity at 100 K. 
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Fig. 7.17 Temperature dependence of er of the film measured at a heating cycle at various 
frequencies 
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The temperature dependence of the dielectric constant (er) measured at different 

frequencies during a heating cycle is shown in Fig. 7.17. From 35 to ~50K, the value 

of er remains constant; from ~50K to ~200 K, it increases steadily; and from ~200 K 

to 300 K, the rate of increase stabilises. 

There may be two possible reasons accounting for the shape of the curve: phase 

transition43,44,45,46 and/or domain wall pinning47. Phase transition theory suggests a 

delicate phase transition near ~200 K. Sawaguchi and Cross43 have reported dielectric 

measurements on single-crystal BiT along the c axis below room temperature, which 

showed some thermal hysteresis in spontaneous polarisation and a similar shape 

around 150 K in the er-T curve. Their other studies44,45 also corroborated the 

temperature dependence of the energy separation in the orthorhombic and monoclinic 

states. Following their studies, Idink et al.46 have carried out a detailed examination of 

the temperature dependence of BiT ceramics by Raman spectroscopy, observing a 

subtle phase transition in the 150~200 K region. They suggested that a possible subtle 

monoclinic-orthorhombic phase change, combined with a continuous ordering of 

dipoles associated with Bi3+ lone pair electrons and TiO6 octahedra, might be 

responsible for this.46 Since the moderate doping of similar lanthanide elements, such 

as Nd, does not significantly alter the phase structure at room temperature 

(orthorhombic),6 the same mechanism might also be applicable in our Sm-doped BiT 

thin films. This might also partly account for the hysteretic properties of the 

ferroelectricity with temperature cycles, as shown in Fig. 7.16, noting that the 2Pr-T 

curve becomes linear around ~230 K.  

Although a phase transition might dominate, another possible mechanism, domain 

wall dynamics, might also exist. The roughly linear dependence of Vc over the whole 
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range of 50 ~ 300 K is reminiscent of the KH2PO4 (KDP) family and PbSc1/2Ta1/2O3 

(PST)48. In the former case the phenomena were ascribed to domain wall freezing by 

considering that domain walls experience a finite viscosity in their motion through the 

lattice. In the PST case, the domain wall freezing theory was adopted but the 

temperature dependence of the de-pinning energy was used instead of the steady-state 

velocity or mobility, since a threshold temperature appeared in the er-T curve. In our 

case, the analogy of the domain wall motion can also be seemingly validated by the 

threshold temperature (~200 K), which results in a slow increase in er and lack of the 

hysteresis of Pr and Ec above 200 K. However, most interestingly, our results are more 

like KDP than PST, showing a temperature independent region in both e and Ec below 

~50 K, which might be due to the existence of another temperature independent phase 

or complete freezing of domain walls. 

Therefore in our case we could explain the behaviours by considering the two possible 

mechanisms: domain wall dynamics and phase transition.  

1. In the domain wall dynamics mechanism, below 50 K, domain wall movement was 

frozen; at 50 K, domain walls begin to un-freeze resulting in de-pinning; 50 ~ 200 K, 

the domain walls unfreeze further due to the change in de-pinning energy; at ~200 K, 

domain wall un-freezing is complete. 

2. In phase transition mechanism, below 50 K, a possible triclinic phase exists; at 50 

K, phase transition from triclinic to monoclinic happens; at ~200 K, a delicate phase 

transition from monoclinic to orthorhombic begins. 

Correspondingly, the decrease in the saturation polarisation at low temperatures can 

be attributed to the inability to reverse all the domains at the same electric field or 

decrease in spontaneous polarisation due to lattice distortion during the phase 
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transitions mentioned above. 48 Further temperature dependent high-resolution X-ray 

or neutron diffraction measurements would be necessary to elucidate the mechanism 

by observation (or not) of the phase transition. 
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Fig. 7.18 J-V characteristics in the temperature range from 53 K to 300 K 
 

Fig. 7.18 shows J-V characteristics of the same film in the temperature range from 53 

K to 300 K. We can see an increase in the leakage current with increasing temperature, 

suggesting that a thermally assisted conduction process might dominate. At 300 K, 

there are three stages on the J-V curve: from 0 to 1.0 V, there is an extremely rapid 

exponential rise in J(V) that has the form expected for injection tunnelling (through 

the electrode-film interface) into a high-dielectric material, which has been observed 

in both BST and PZT49; from 1.0 to 4.0 V there is a rather flat linear (saturated) region, 

which can be fitted very well by J~V1.0; from 4.0 to 7.0 V, the slope of LogJ vs. LogV 

plots change to 2.0 (i.e. J~V2.0, see the inset of Fig. 7.18) which agrees well with the 
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space charge limited current (SCLC) leakage mechanism. With decreasing 

temperature, the leakage mechanism becomes simpler: within the measured voltage 

range, the stage of J~V2.0 (which corresponds to SCLC leakage) disappears. This 

might be related to the lower mobility of the charge carriers with decreasing 

temperature. 

7.3.3 Conclusions 

In summary, low temperature electrical properties of BSmT ferroelectric thin films 

have been investigated, which suggest that BSmT thin films are very promising for 

extremely low temperature nonvolatile memory applications.  

7.4 CSD-derived BNdT films 

7.4.1 Results and discussion 

7.4.1.1 Structural properties 

1. XRD results 

 

Fig. 7.19 shows the XRD patterns of the BNdT films annealed at temperatures 

ranging from 600 °C to 750 °C (film thickness: ~ 450 nm). As annealing temperature 

increases to 600 °C, the BNdT thin film begins to crystallise. We can see that all the 

films have a bismuth-layered structure showing mixed orientations, and no pyrochlore 

phase. The correlation of the diffraction peaks of the BNdT with those of BiT implies 

that Nd substitution does not affect the layered-perovskite structure of BiT. The result 

indicates that the Nd3+ ions in the BNdT films do not form a pyrochlore phase, but 

dissolve into the pseudo-perovskite structure. Therefore, we can expect that the Nd 
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ions (1.11 Å) can substitute for Bi ions (1.17 Å)50,30. The peak intensities increased, 

and the FWHM of the peaks decreased with increasing annealing temperature; it can 

be assumed that the grain size of the film was increasing as annealing temperature 

increased. 
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Fig. 7.19 XRD patterns of BNdT thin films annealed at various temperatures 
 

2. Raman spectroscopy 

Fig. 7.20 shows Raman spectra of BNdT films annealed at various temperatures. The 

Raman spectra of BNdT films exhibit intense photon modes at ~ 268, ~ 550, and ~ 

850 cm-1 and several small peaks just above 200 cm-1 (the spectra below 200 cm-1 

were not measured due to equipment limitations). The peak around 268 cm-1 

corresponds to the TiO6 octahedron torsional bending mode, which is representative 

of the pseudo-perovskite structure in the BNdT. Peaks around 550 cm-1 and 850 cm-1 

are related to the TiO6 stretching mode.46 These three peaks become stronger and 

sharper with increase of the annealing temperature, which indicates that the 
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crystallisation of the perovskite structure is enhanced. 
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Fig. 7.20 Raman spectra of BNdT films annealed at different temperatures 
 

2. AFM images 

Fig. 7.21 shows AFM micrographs of the BNdT thin films as a function of annealing 

temperature. From these analyses, we found that the RMS surface roughness of the 

BNdT thin films increased with increasing annealing temperature, which is similar to 

the BSmT films. The effect may be related to the increase of the grain size with 

increasing annealing temperature. The values of RMS surface roughness of BNdT 

films (1µm × 1µm) were 4.2 nm, 6.5 nm, 9.4 nm, and 12.2 nm, for the annealing 

temperature of 600 °C, 650 °C, 700 °C, and 750 °C, respectively. 



Chapter 7 CSD-derived Sm- and Nd-doped bismuth titanate polycrystalline ferroelectric thin films 

 177 

 

(a)         (b) 

 

(c)         (d) 
Fig. 7.21 AFM surface images of the BNdT films annealed at: (a) 600 °C, (b) 650 °C, (c) 700 °C, 

and (d) 750 °C 

3. SEM images 

      

 
(a) SEI (35,000 ×)    (b) BSEI (35,000 ×) 

 

Fig. 7.22 Cross-sectional FE-SEM images of the film annealed at 650 °C. (a) SEI mode; (b) BSEI 
mode 
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Fig. 7.22 shows cross-sectional FE-SEM images of the film annealed at 650 °C. From 

the image of SEI mode, the film has a dense granular structure. The image of BSEI 

mode suggests that the film has a clear boundary with the bottom electrode layer. 

Fig. 7.23 shows FE-SEM images of films annealed at different temperatures, which 

confirm increasing grain size with increasing annealing temperature. The thickness 

remains little changed within this temperature range. 

 

  

(a)          (b) 
 

(a) Top view; (b) Cross-sectional FE-SEM images of film annealed at 600 °C 
 

   

(c)          (d) 
 

(c) Top view; (d) Cross-sectional FE-SEM images of film annealed at 650 °C 
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(e)        (f) 
 

(e) Top view; (f) Cross-sectional FE-SEM images of film annealed at 700 °C. 
 

  

 
(g) Top view; (h) Cross-sectional FE-SEM images of film annealed at 750 °C 

 
Fig. 7.23 FE-SEM images of films annealed at different temperatures 

 

7.4.1.2 Electrical properties 

1. Ferroelectric hysteresis loops 

Figs. 7.24 and 7.25 show the polarisation-electric field (P-V) hysteresis curves of the 

BNdT thin films annealed at temperatures ranging from 600 °C to 750 °C. The 2Pr 

increases with increasing annealing temperature. The improved ferroelectric 

properties for the BNdT thin films annealed above 650 °C may be attributed to 

increased crystallisation and larger grain size in comparison with the films annealed 
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below 650 °C. Fig. 7.24 (c) and 7.24(d) show well-defined P-V loops. The 2Pr and Vc 

values of BNdT films annealed at 700 °C and 750 °C were 35.6 and 41.4 µC/cm2, 4.5 

and 4.3 V (100.0 and 95.6 kV/cm at a film thickness of 450 nm) at an applied electric 

field of 400 kV/cm. This is higher than that of a BLaT thin film (2Pr = 27 µC/cm2)51, 

and that of a CSD-derived BNdT thin film reported by others (2Pr = 17.0 µC/cm2)52. 

The reason for this result may be explained by a large tilting of TiO6 octahedra in a 

layered structure due to substitution of Nd3+ for Bi3+. Since the ferroelectric properties 

are related to stoichiometry, grain size, and crystallinity of the film, the precise 

mechanism for the difference requires further investigation. 
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(c)        (d) 

Fig. 7.24 P-V hysteresis curves of the BNdT thin films annealed at: (a) 600°C, (b) 650 °C, (c) 700 
°C, and (d) 750 °C measured at various applied voltages (4 V ~ 18 V) 
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Fig. 7.25 P-V loops of BNdT films measured at 18 V 

2. Leakage current properties 
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Fig. 7.26 J-V of BNdT films annealed at various temperatures 
 

Fig. 7.26 shows the J-V curves of BNdT films annealed at various temperatures. As 

seen from the figure, the leakage current density is critically dependent on the 

annealing temperature. The leakage current density of the BNdT thin films annealed 

at 600 °C, 650 °C, 700 °C, and 750 °C were 2.0 × 10-5, 5.0 × 10-6, 5.0 × 10-7, 2.5 × 

10-6 A/cm2, respectively, at an applied DC voltage of 4.5 V (~ 100 kV/cm). As the 
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annealing temperature increases from 600 °C to 650 °C, the leakage current densities 

for the BNdT thin films decreased first, then increased at temperatures above 700 °C. 

It is assumed that higher leakage current may be caused by the higher surface 

roughness of the BNdT thin film, which causes an increase in the leakage current. 

Similar results were reported by previous researchers on Ce-substituted BiT thin 

films41. But Kojima et al. did not find any effect of surface roughness on the leakage 

in their lanthanide doped epitaxial BiT films31. Previous studies on various 

ferroelectric perovskite oxides indicate that conduction mechanisms can be affected 

by the grain size.53,54 The film annealed at 750 °C has worse leakage current property 

due to the higher roughness of the film surface as analysed above. 

3. Electrical fatigue behaviour 

The BNdT films annealed at lower temperatures (600 °C and 650 °C) fatigue quickly 

after 1.0 × 107 switching cycles. Fig. 7.27 shows the fatigue behaviour of the BNdT 

film annealed at 700 °C. 

The film shows little change in the switching polarisation (P*) and in the 

nonswitching polarisation (P^) up to 1.0 × 1010 read/write switching cycles at a 

switching electric field of 330 kV/cm (i.e., ±15V). The values of the non-volatile 

charge [i.e. (+P*)-(+P^), (-P*)-(-P^)] are approximately 35.0 µC/cm2, and basically 

remain constant throughout the switching cycles. The fatigue-free characteristics can 

be related to the chemical stability of the perovskite layers against oxygen vacancies, 

since oxygen vacancies were found at both the (Bi2O2)2+ and the (Bi2Ti3O10)2- 

perovskite layers, which will compensate for space charges.38 The film annealed at 

750 °C showed a similar behaviour to this. 
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Fig. 7.27 Fatigue characteristics of BNdT film annealed at 700 °C with 1 MHz bipolar pulses at 
15 V 

 

7.4.2 Conclusions 

Precursors of Bi-Nd-Ti which were stable for at least eight months were successfully 

developed and the BNdT films were fabricated using the spin-coating technique. 

The ferroelectric properties were enhanced with increasing annealing temperature. 2Pr 

and Ec of the films annealed at 700 °C and 750 °C are 35.6 µC/cm2 and 100 kV/cm, 

41.4 µC/cm2 and ~96 kV/cm, respectively. The film annealed at 700°C and 750 °C 

both show an excellent electrical fatigue resistance. 

Therefore, CSD-derived BNdT films show excellent structural and electrical 

properties and are suitable for Nv-RAM use. 



Chapter 7 CSD-derived Sm- and Nd-doped bismuth titanate polycrystalline ferroelectric thin films 

 184 

7.5 Effect of annealing atmospheres on CSD-derived 

BNdT films 

7.5.1 Motivation 

The leakage current of BNdT films must be minimised to preserve stored information 

as an electron charge in FeRAM cells.55 It is generally recognised that in ferroelectric 

films the conduction mechanism is Schottky emission in which leakage currents are 

controlled by the Schottky barrier.49 It was reported that the higher leakage current of 

ferroelectric thin films could be reduced by activated oxygen annealing56 or 

controlling gas ratio of O2/(O2+Ar) during deposition of films57,58 These results could 

be explained by the variation of oxygen vacancies in the films reported. Oxygen 

vacancies in ferroelectric films, which are usually generated during fabrication of the 

films, might be reduced by introducing oxygen atoms or repressing the out diffusion 

of oxygen. 

In this section, the results on the effect of annealing atmospheres on CSD-derive 

BNdT films will be presented. 

7.5.2 Experimental procedure 

The procedures of fabricating precursors for the BNdT films were the same as the 

BSmT films, except using Nd nitrate instead of Sm nitrate. After film deposition, 

films were then annealed at 700 °C for 30 minutes, instead of 10 minutes, in different 

atmospheres with different oxygen partial pressures (PO2) i.e. flowing oxygen 

(BNdT-O2), air (BNdT-air), and nitrogen (BNdT-N2) atmosphere. 
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7.5.3 Results and discussion 

7.5.3.1 Structural properties 

1. XRD studies 
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Fig. 7.28 XRD profiles of BNdT films annealed in different atmospheres 
 

Fig. 7.28 shows the XRD ?-2? patterns of the BNdT films annealed in different 

atmospheres. It can be seen that, on increasing the partial pressure of oxygen (PO2) in 

the annealing ambient, the crystallinity of the films improves (peaks become sharper 

and more intense). The perovskite phase was fully formed in the films annealed in 

oxygen and air, which both have a bismuth-layered structure showing mixed 

orientations. Apart from the main bismuth-layered perovskite phase, the BNdT-N2 

film also shows an unidentified impurity phase. This result indicates that the Nd3+ ions 

in the BNdT films are incorporated into the pseudo-perovskite structure for the films 

annealed in air and O2.
30 The FWHM of the perovskite phase peaks decreases with 

increasing oxygen partial pressure (0.70º, 0.25º, and 0.20º for peak (006), for the films 
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annealed in N2, air and O2, respectively), corresponding to an increase in the grain 

size. As the oxygen partial pressure was increased, the proportion of (117)-oriented 

grains, calculated from the equation (117) % = I (117)/(I(006)+I(117)), increased from ~ 

71.2% to ~75.0% to ~80.1%, showing clearly that oxygen ambience affects the 

crystallographic orientations of the films, probably by assisting the growth of 

(117)-oriented grains. 

2. AFM studies 

 

(a)         (b) 
 

 

(c) 
 

Fig. 7.29 AFM images of BNdT films annealed in: (a) N2, (b) air, and (c) O2 

 

Fig. 7.29 shows AFM micrographs of BNdT films annealed under different conditions. 
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The RMS surface roughness (1 µm × 1 µm) of the films is ~11.2 nm, ~14.6 nm, and 

~15.6 nm, for the film annealed in N2, air and O2, respectively. This is accompanied 

by an increase in the average grain size of the films from ~7 nm to ~ 20 nm, as seen 

from the AFM images, which suggests that the partial pressure of oxygen assisted 

grain growth of the BNdT films. The roughness value of BNdT-O2 is comparable to 

that reported for 200 nm-thick CSD-derived BNdT films prepared at 700 °C (~13.0 

nm).32 

 

   
(a) N2      (b) air     (c) O2 

 
Fig. 7.30 Cross-sectional FE-SEM images of BNdT films annealed in (a) N2, (b) air, and (c) O2 

 

FE-SEM images, shown in Fig. 7.30, confirmed the increase of grain size with 

increasing PO2 in the annealing ambient. The thickness of the films was almost the 

same (350 ~ 400 nm). 

3. Raman spectroscopy 

Fig. 7.31 shows Raman spectra of the same set of films. The peak at ~265 cm-1 

corresponds to the TiO6 octahedron torsional bending mode, which is representative 

of the pseudo-perovskite structure in the BNdT. 59 Peaks around 550 cm-1 and 850 

cm-1 are related to the TiO6 stretching mode.59 Three films all show similar peaks, 

which are consistent with the XRD results.  
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Fig. 7.31 Raman spectra of BNdT films annealed in: a) N2, b) air, c) O2 
 

7.5.3.2 Electrical properties 

1. Ferroelectric hysteresis behaviour 

Fig. 7.32 shows P-E hysteresis loops of the BNdT films at an applied electric field of 

~520 kV/cm and the electric field dependence of 2Pr. The 2Pr, Ec value of the film 

annealed in O2, air and N2, was ~57.2 µC/cm2, ~145 kV/cm; ~26.6 µC/cm2, ~160 

kV/cm; and ~19.7 µC/cm2, ~185 kV/cm respectively. As expected from structural 

properties, the BNdT-O2 shows the highest 2Pr and lowest Ec and 2Pr decreased with 

decreasing PO2. 

There are several possible reasons for the increasing 2Pr and decreasing Ec with 

increasing PO2 in the annealing ambient. 

1. Improved crystallisation. From the XRD, AFM, and FE-SEM results, we can 

clearly observe the enhanced phase formation and grain growth: the higher the PO2, 
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the higher proportion of the perovskite phase and the larger the grain size. 

2. More (117)-oriented grains. As previously discussed, bismuth layer-structured 

perovskite ferroelectric thin films are highly anisotropic. From the results of the 

PLD-grown BNdT films on different single crystal substrates, the c-axis-oriented 

films have very weak polarisation as compared to the more a/b-axis-oriented films (in 

our study, (118) and (104)-oriented films). Therefore, any tilt of the a/b-axis of grains 

towards the direction normal to the film surface plane should increase the polarisation 

of the film. As the XRD results suggested, more (117)-oriented grains were found in 

O2-annealed BNdT film, thus, higher 2Pr value were achieved as anticipated. 

3. Reducing oxygen vacancy. When defect concentration (mainly oxygen vacancies) 

decreases, the domain pinning by the defects will decrease, and consequently, domain 

switching will increase, which results in a polarisation increase. 
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Fig. 7.32 (a) Hysteresis loops; (b) electric field dependence of 2Pr for the films annealed in 
different atmospheres 
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2. Leakage current characteristics 

Fig. 7.33 shows the leakage current densities of BNdT films as a function of applied 

electric field. The three films show very distinct leakage properties: the BNdT-O2 film 

has the highest dielectric breakdown field (~ 320 kV/cm) and lowest leakage current 

(8 × 10-7 A/cm at 200 kV/cm). In contrast, the BNdT-N2 film has the worst properties: 

lowest breakdown field (~ 60 kV/cm) and highest leakage current (2 × 10 -3 A/cm at 

60 kV/cm). The BNdT-air film is in the middle. The value of leakage current density 

before obvious dielectric breakdown was: ~10-6, ~10-4, and ~10-3 A/cm2 for O2-, air-, 

and N2-annealed films respectively. Leakage in the O2-annealed film is comparable to 

that of CSD-derived BNdT thin films as reported by Wu et al. (5.0 × 10-6 A/cm2 at 

100 kV/cm)19 and MOCVD-derived BSmT reported by Kojima et al. (~10-5 A/cm2).60 

Oxygen vacancies are generated by processes such as 

''
2

1
2

2o oO V e O−= + +         (7.7) 

and these may act as electron trap sites, causing a high leakage current. 
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Fig. 7.33 J-E curves of the films annealed in different atmospheres 
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3. Electrical fatigue behaviour 

Fig. 7.34 shows the fatigue behaviour for the films annealed in different ambiences. 

We can see that the O2-annealed film has little change (~4 %) in the nonvolatile 

polarisation (Pnv) up to 5.0 × 109 read/write switching cycles at a switching electric 

field of ~±330 kV/cm (i.e. ±14 V), while the air-annealed film has ~10% reduction 

after the same number of switching cycles. However, the N2-annealed film has a very 

poor fatigue resistance, with more than 30 % reduction in Pnv even after just 1.0 × 108 

read/write switching cycles.  
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Fig. 7.34 Electrical fatigue characteristics of the films annealed in different atmospheres 

 

There are several possible explanations for our results about fatigue properties. 

1. Volatility of bismuth and stability of the metal-oxygen octahedra. Park et al.23 

reported fatigue-free properties in BLaT films. They ascribed this to some Bi ions 

near TiO6 octahedron layers substituting with La ions and therefore, the La doping 

suppressing the volatility of bismuth and increasing the stability of metal-oxygen 
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octahedra. In our case, lower PO2 during annealing may increase the volatility of 

bismuth ions and thus reduce the stability of the metal-oxygen octahedra. Therefore, 

the worst fatigue properties were obtained in N2-annealed films. 

2. Probability of oxygen vacancy diffusion. High oxygen vacancies increase the 

probability of domain wall pinning. 

7.5.4 Conclusions 

The results of Nd-doped BiT films annealed at different oxygen partial pressure (O2, 

air, N2) showed that: 

1. Oxygen ambience affected structural properties of the films by enhancing the 

growth of perovskite phase (phase formation), increasing grain size (grain growth), 

and assisting the growth of (117)-oriented grains (crystallographic orientations). 

2. As a result, the best electrical properties (high 2Pr, low Ec, low leakage current 

density, and best fatigue resistance) were achieved in O2-annealed films. 

3. Oxygen vacancies play an important role in the electrical properties of BNdT 

ferroelectric films. 

7.6 Discussion and conclusions 

Table 7.1 compares some properties of Sm- and Nd-doped BiT films annealed at 700 

°C and 750 °C. From the table we can clearly see that for both film types, the 750 

°C-annealed film has better electrical properties than the 700 °C-annealed one. For 

films annealed at the same temperature, Nd-doped films have higher 2Pr and lower Ec. 
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Table 7.1 Properties of BSmT and BNdT films annealed at 700 °C and 750 °C 
 

 700 °C 

 Grain size (nm) Roughness 

(RMS; nm) 

2Pr 

(µC/cm2) 

Vc (V) 

Ec (kV/cm) 

er J (A/cm2) 

at 100 kV/cm 

BSmT 100~150 ~9.0 23.0 ~6.3 

~170 

~170 4.0 × 10-6 

BNdT 100~150 ~9.4 35.6 ~4.5 

~100 

 5 × 10-7 

 750 °C 

BSmT 150~200 ~11.0 33.4 ~4.5 

~122 

~202 1.5 × 10-5 

BNdT 150~200 ~12.2 41.4 ~4.3 

~96 

 2.5 × 10-6 

 

For comparison, a list of the other films on Pt/Si substrates developed by other 

techniques or doped with other lanthanide elements is displayed in Table 7.2. 

Table 7.2 mainly shows La-, Nd-, Sm-doped BiT films, and some other doping 

elements (Eu, Pr) are also included. It can be seen that the 2Pr of our films are larger 

than the average value of La-doped films reported, and comparable to the Nd- and 

Sm-doped films reported by others. The Ec values of our films are also comparable to 

the reported values. However, the Ec values are still slightly higher than ideal values, 

which may be improved by doping other B-site elements, such as W, V, and Nb.71 

Low temperature electrical properties of BSmT ferroelectric thin films have been 

investigated, suggesting that BSmT thin films are very promising for extremely low 

temperature nonvolatile memory applications. 
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Table 7.2 Properties of BLnT films on Pt-coated Si (unless specified) 
 

Ferroelectric properties of films  Methods 

Films (x, doping level) 2Pr 

(µC/cm2) 

Ec (kV/cm) 

CSD (sol-gel) BSmT (0.50) 33.4 122 This study 

CSD (sol-gel) BNdT (0.50) 41.4 116 

References CSD 61 BLaT (0.75) 20.0 95 

 CSD 62 BLaT (0.75) 27.0 ~70 

 CSD 17 BLaT (0.75) 16.0 90 

 PLD 38 BLaT (0.75) 24.0 50 

 PLD 63 BLaT (0.75) 54.0 54 

 MOCVD 1 

SRO/STO 

BLaT (0.56) 34.0 145 

 CSD 35 (MOSD) BSmT (0.85) 49.0 100 

 PLD 64 BSmT (0.70) 42.0 130 

 CSD 65 BNdT (0.46) 50.0 Vc: 10 V 

 MOCVD 1 

SRO/STO 

BNdT (0.56) 50.0 135 

 CSD 19 BNdT (0.85) 20.0 ~50 

 CSD 66 BNdT (0.85) 56.0 156 

 CSD 67 BNdT (0.50) 38.0  

 CSD 68 BNdT (0.50) 64.0 126 

 CSD 17 BNdT (0.75) 52.0 60 

 CSD 69 (Sol-gel) BEuT (0.60)  38.0 150 

 CSD 70 (MOSD) BPrT (0.85) 40.0  
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Chapter 8 Piezoelectric properties of Sm-doped 

bismuth titanate ferroelectric thin films 

8.1 Motivation 

Along with high switching polarisation and excellent fatigue resistance, the high 

values of piezoelectric coefficients of lead-free bismuth-layered perovskite thin films 

offer promise for MEMS.1,2 Recently, Maiwa et al.2 have demonstrated that BNdT 

thin films are very promising candidates for lead-free thin-film piezoelectrics. 

However, detailed information about the electromechanical properties of lead-free 

bismuth-layered perovskite thin films is not yet available. Results of piezoelectric 

properties, such as piezoelectric constant (d33) and effective electrostriction 

coefficients ( effQ ), are normally essential input parameters for thermodynamical 

calculations and are very useful in the design and fabrication of MEMS. The 

determination of these parameters in thin films can also provide fundamental 

information when compared with corresponding bulk materials, which can elucidate 

the substrate clamping effect, domain contribution and size effect. Direct strain 

measurements are difficult in thin films due to an extremely low deformation level 3. 

For ferroelectric materials with a centrosymmetric paraelectric phase, the 

piezoelectric effect can be considered as the electrostriction effect biased by the 

spontaneous polarisation P:4 
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33 11 332 sd Q Pε=  ,        (8.1) 

 

where 33d  is the piezoelectric coefficient of the film, 11Q  is the electrostriction 

coefficient, 33ε  is the dielectric constant, Ps is the spontaneous polarisation. 

Considering the phenomenological equation regarding the intrinsic piezoelectric 

effect 

 

( ) 332zz eff E sd Q Pε= ,         (8.2)  

 

where zzd  is the piezoelectric coefficient along the film normal, ( )eff EQ  is the 

effective electrostriction coefficient which may depend on the domain configuration 

(i.e. on the applied electric field). Therefore, the absolute value of effQ  can be 

estimated if zzd , 33ε  and sP  are known. Effective electrostriction coefficients ( effQ ) 

are essential input parameters for thermodynamical calculations and are very useful in 

the design and fabrication of MEMS.  

Here we report the use of PFM to characterise the piezoelectric properties of BSmT 

films and their nanoscale piezoresponse behaviour, which include observation of 

domain switching, and determination of piezoelectric constant (d33) and effective 

electrostriction coefficients ( effQ ). The samples used in this chapter are PLD-grown 

and CSD-derived BSmT films, as described in the previous chapters. 
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8.2 Results and discussion 

8.2.1 Domain imaging  

Fig. 8.1 shows simultaneously obtained topographic and piezoresponse images of a 

PLD-grown ~470-nm-thick polycrystalline BSmT film after poling with 10 V DC bias. 

The details of the film preparation were described in Section 6.2.1.2, and the film was 

grown at 750 °C and 225 mJ. 

 
(a) 
 

 
(b) 

Fig. 8.1 Simultaneously obtained: (a) topographic and (b) piezoresponse images of a PLD-grown 
BSmT film. Bright and dark regions on the piezoresponse image correspond to positive and 

negative domains, respectively (The scan area is 1.00 µm × 1.00 µm) 
 

The topographic image reveals the crystallite structure of the film with clearly 
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resolved morphological features. The corresponding piezoresponse image shows 

regions of bright, dark and grey contrast. The bright areas and dark areas represent 

regions with opposite d33 piezoelectric constants and antiparallel polarisation vectors 

normal to the film surface. By monitoring the phase of the piezoresponse signal it was 

determined that bright regions in Fig. 8.1(b), which vibrate in phase with the AC 

imaging voltage, represent positive domains (polarisation is toward the bottom 

electrode), whereas dark regions correspond to negative domains with the polarisation 

vector orienting upward. From comparison of crystallite structure with the 

piezoresponse image, a strong effect of the film crystallinity on the domain 

arrangement can be seen: quite often domains are limited by the grain boundaries. 

 

(a)     (b)         (c) 
 

Fig. 8.2 Schematic diagrams showing possible film microstructures, piezoresponse images and 
corresponding cross-sectional plots illustrating different SFM imaging resolutions: (a) relatively 
thick film; (b) relatively thin film; (c) columnar film. Cross sections were taken along the lines 

marked by arrows in the piezoresponse images5 
 

A piezoresponse image of a well-oriented thin film, such as a single-crystal or 

epitaxial one, can be easily understood, provided the film is fully characterised prior 

to the PFM measurements. In a film oriented along the polar axis, dark and bright 

regions correspond to opposite domains with the polarisation vector normal to the 

film plane. However, for polycrystalline films, piezoresponse images present a much 
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more complex variation of contrast that reflects the complex arrangement of domains 

in the polycrystalline ferroelectric films. 

A problem of microstructure-domain correlation in ferroelectric thin films is one of 

the important issues that can be addressed using PFM. 

There are several possible reasons for grey piezoresponse contrast:5  

1. There may be several randomly polarised grains stacked in the direction normal to 

the film plane (Fig. 8.2(a)). The piezoresponse signal detected in the PFM 

piezoresponse mode is integrated over the entire range of the film thickness, and its 

amplitude and the phase provide information about the integral strain induced along 

the film thickness and about the direction of the polarisation, respectively. The applied 

electric field compresses grains with a given direction of polarisation and expands 

grains with opposite polarisation. If all grains in the direction normal to the film 

surface are polarised randomly, the integral piezoelectric response will be equal to 

zero because of compensation. As a result, grey contrast will be observed in the 

piezoresponse image. This situation is likely to occur in films with grains that are 

relatively small compared with the film thickness.6 

2. There could be domains with the polarisation vector deviating from the direction 

normal to the film plane. The piezoelectric signal from these domains will be weaker 

than from domains oriented with their polar axis normal to the surface plane of the 

film, and in the PFM piezoresponse images they should be represented by regions 

with contrast intermediate between dark and bright.  

In our study, XRD analysis showed that there are fractional amounts of (00l)-, and 

(117)-oriented grains in the film (see Figs. 6.2 and 6.4). Therefore, taking into account 
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the BSmT film thickness of 470 nm, which is relatively thick, it is reasonable to 

assume that grey regions in the piezoresponse images in Fig. 8.1 represent domains 

with the polarisation vector deviating from the direction normal to the film plane (Fig. 

8.2(a)).  

3. There may be an amorphous or a non-ferroelectric structure that does not exhibit 

piezoelectric properties. Confirmation of this hypothesis may require localised 

diffraction analysis to verify that the particular grey area is indeed amorphous. 

8.2.2 Domain manipulation (writing and switching) 

For a CSD-derived 700 °C-fabricated ~370 nm-thick BSmT film (preparation details 

were described in Section 3.1.2), a 10 µm × 10 µm area was scanned by PFM and the 

topographic and piezoresponse images are shown in Figs. 8.3(a) and 8.3(b), 

respectively. The piezoresponse image shows a uniform distribution, suggesting 

random orientation of the polarisations. 

To study the switching properties of the BSmT thin film, a 6 µm × 6 µm square was 

written with -6 V applied between the tip and bottom electrode to form a dark 

background region. Subsequently, a further -10 V and -15 V were applied on the same 

area. The central dark square area became darker and darker with the increasing 

poling voltages, as shown in Figs. 8.3(c)-(e). 

Then, a 2 µm × 2 µm square was written with +15 V within the background area (Fig. 

8. 3(f)). It was found that the BSmT thin films can be nearly uniformly polarised 

without being affected by the film roughness (the RMS roughness is about 12 nm). 

Subsequently, the square with the size of 6 µm × 6 µm, which was used as a dark 
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background with the white square in its central area, was completely poled by a +15 V 

scanning. After this operation, the area was switched to the opposite polarisation 

direction, which was denoted by the white colour, as shown in Fig. 8.3(g).  

To further confirm the switching, a 2 µm × 2 µm size within the central area of the 

white square was switched by applying -15 V voltage, which turned the area dark, as 

shown in Fig. 8.3(h). 

 

  
 

(a) Topography (10 µm × 10 µm) (b) Piezoresponse (original) 
 

  
 

(c) -6 V poling            (d) -10 V poling 
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          (e) -15 V poling                   (f) +15 V poling (central area) 
 

  
 

(g)  +15 V poling   (h)  -15 V poling 
 

Fig. 8.3 Simultaneously obtained (a) topographic and (b) domain images of a BSmT thin film. 
(c)-(h): The white area was written by positive voltages, while the black region was written by 

negative voltages 
 

From this simple demonstration, we can see that domain manipulation would be very 

useful to fabricate nanoscale devices, after careful domain writing and switching. 

8.2.3 Local ferroelectric measurement - d33 hysteresis 

measurement 

Fig. 8.4(a)-(d) shows piezoelectric hysteresis loops obtained at different locations 

(grains marked with A, B, C, and D) at the surface of the CSD-derived BSmT film 

(see Section 8.2.2) on a Pt-coated silicon substrate. Fig. 8.4(e) shows the surface 
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image marked with the grains from which the loops were measured. We can see that 

the shapes of the loops vary with different locations. This large spatial variation may 

stem from the following: 

1) Different crystallographic orientations.7,8,9 As stated in previous chapters, 

CSD-derived BSmT films on platinised silicon substrates are polycrystalline and 

randomly oriented. Since the BSmT films are highly anisotropic with polar axis in the 

a-b plane, large differences in polarisation between grains would be expected.  

2) Fluctuations of chemical composition in different grains. During the decomposition 

of the precursor during fabrication, small deviations in chemical composition may be 

possible, and there may be bismuth-excess and bismuth deficient grains, which can 

greatly affect polarisation. 

3) An inhomogeneous distribution of the tip-generated field9 (combined with a grain 

size effect). Fig. 8.5 illustrates the different domain switching process during the 

macroscopic (plane plate capacitor) and microscopic (PFM) cases. In the macroscopic 

scenario (Fig. 8.5(a)), a number of domains nucleate at the electrodes, and the domain 

size distribution during the growth process determines the hysteresis loop shape. In 

PFM, the electric field is concentrated directly below the tip, resulting in preferential 

domain nucleation at the tip-surface junction (Fig. 8.5(b)). 

The reversal of the electrical polarisation in ferroelectrics is a complicated process. 

When switching occurs in the inhomogeneous electric field of the AFM tip, the 

general stages of the polarisation reversal are the same as in the case of a ‘classic’ 

switching in a homogeneous field created by plain electrodes. However, the character 

of these stages may significantly vary relative to that in homogeneous fields. The 

switching starts with nucleation of a new domain near the tip of the AFM. The 
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direction of the polarisation vector of this domain coincides with that of the normal 

component of the external electric field. The newly formed domain then expands by 

motion of the domain walls. 
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(e) Surface image (2 µm × 2 µm) 
Fig. 8.4 (a)-(d): Piezoelectric hysteresis loops measured with different applied voltages, obtained 
at different locations at the surface of a CSD-derived BSmT film (only data from A, B, C, and D 
points are shown here). (e): surface image (2µm by 2µm) marked with the grains from which the 

loops were measured 
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Fig. 8.5 Schematics of the polarisation switching process in a) macroscopic hysteresis loop 
measurement; b) in the PFM experiment 9 

 

4) Grain size effect. Shvartsman et al.10 observed a clear correlation between the 

values of the effective piezoelectric coefficients and the size of the respective grains 

in relaxor ferroelectric thin films Pb(Mg1/3Nb2/3)O3–PbTiO3. In their study, small 

grains exhibit slim hysteresis loops with low remanent deff (effective d33), whereas 

relatively high piezoelectric activity and pronounced coercivity were characteristic of 

larger grains. The origin of both effects was attributed to the existence of strong 

internal bias field and mechanical clamping. In our measurement, no systematic 

correlation between grain size and polarisations were observed due to the strong 

anisotropy of the film (see Fig. 8.4), however, some variations may stem from the 

grain size, which may account for the differences in mechanical clamping. 

8.2.4 Local piezoelectric measurement – Qeff 

As just mentioned, to determine effQ , the measurement of zzd , 33ε  and sP  are 

needed. Therefore, the experimental procedure had three parts. 

1. Measurement of zzd  (see Section 3.2.1). The hysteresis loops were obtained by 

sweeping the bias voltage and recording the piezoresponse signal. 
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2. Measurement of 33ε . The measurements were carried out using an HP 4192A 

impedance analyser. A capacitor structure of 200 µm × 200 µm was used, as shown in 

Fig. 8.12. An AC bias of 50 mV at 1 kHz coupled with a DC bias of 0à14 Và-14 

Và0 at a step of 1 V cycle was applied to the capacitor, while the capacitance at each 

point was measured, then converted to the dielectric constant at each DC bias. e-V 

loops were then drawn. 

3. Measurement of sP . The measurement adopted the structure shown in Fig. 8.6 and a 

RT 6000 ferroelectric measurement system was used. P-V hysteresis loops were 

recorded at different bias voltages at 1 kHz. 

 

 
Fig. 8.6 Schematic of capacitor structure for macroscopic electric property measurements 

 

Typical P-V hysteresis loops measured at different applied bias voltages on a 

PLD-grown BSmT film (doping level: x = 0.70; see Section 6.4) are shown in Fig. 

8.7(a). The corresponding dzz-V hysteresis loops measured at different maximum 

applied bias voltages are shown in Fig. 8.7(b). A high similarity of the two loops was 

achieved, validating the results of PFM measurement, although the measurement was 

carried out on one grain of the film surface, as shown in Fig. 8.7(c). 



Chapter 8         Piezoelectric properties of Sm-doped bismuth titanate ferroelectric thin films 

 212 

-20 -16 -12 -8 -4 0 4 8 12 16 20
-20

-10

0

10

20

P
ol

ar
is

at
io

n 
(µ

C
/c

m
2 )

Applied Voltage (V)

 
 

(a) 

-20 -16 -12 -8 -4 0 4 8 12 16 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

d zz
 (p

m
/V

)

Applied Voltage (V)

 
 

(b) 
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Fig. 8.7 (a) Typical P-V hysteresis loops measured at different applied bias voltages; (b) 
Corresponding dzz-V hysteresis loops measured at different applied bias voltages; (c) The film 

surface of PFM measurement (the circle shows the measurement point) 
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Fig. 8.8 (a) Piezoelectric, (b) dielectric and polarisation hysteresis loops of BSmT films. Inset of 
(a): Piezoelectric hysteresis loops measured at the same point 

 

Fig. 8.8(a) shows a typical local piezoelectric loop measured by PFM obtained from 

the same PLD-grown film. Corresponding macroscopic dielectric constant, applied 

voltage (e-V) and polarisation, applied voltage (P-V) loops measured using the 
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deposited electrodes (200 µm × 200 µm) are shown in Fig. 8.8(b). The coercive 

voltage ((+Vc)-(-Vc))/2) determined by d33-V, P-V and e-V loops are 6.2 V, 5.3 V, and 

4.5 V respectively (with the coercive voltage for e is defined as a field at the maxima 

of e-V curves). d33-V and e-V hysteresis measurements are quasistatic (the 

corresponding frequency is in the order of mHz), whilst polarisation taken at a 

frequency of 1 kHz is dynamic. Therefore we would expect the coercive voltage 

derived by e-V to be smaller than that of P-V, as observed, since it is a typical feature 

of ferroelectric thin films to display smaller static coercive fields than dynamic ones. 

However, the coercive voltage of the d33 loop shows the largest value despite the 

quasistatic measurement, which may be the result of electric field concentration 

directly below the tip, resulting in only a small volume of domain switching at the 

tip-surface junction. In the P-V measurement, a possible macroscopic scenario is that 

a number of domains nucleate at the top electrode at the same time9. An alternative 

explanation is that, in d33 measurement, only a partial electric field is applied due to a 

poor electrical contact between the tip and the bare film surface11. It can also be seen 

that there is a horizontal asymmetry of the d33-loop, due either to asymmetry of the 

boundary conditions at the top and bottom interfaces12 or to a larger internal space 

charge field resulting from trapped electronic charges near the ferroelectric-electrode 

interfaces 13,14. 

Imprint behaviour, defined as a preference of one polarisation state over the opposite 

one15, is also observed. The most important manifestations of imprint are a shift of 

hysteresis loop along the voltage axis and the instability of one of the polarisation 

states. However, only application of PFM can provide a nanoscale insight into the 

scaling and intrinsic variability issues16,17. For macroscopic measurement of 

polarisation, this may result in a shift of the hysteresis loop along the electric field 
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axis, as the vertical position of the loop is arbitrarily set. This is because the 

polarisation measurement is performed by charge integration and thus requires an 

integration constant which is chosen arbitrarily. Therefore, for the measurement 

systems, the polarisation hysteresis loops are usually centred along the polarisation 

axis.18 These result in a shift along the electric field axis which is described in terms 

of an internal bias field.19 In contrast, the displacement measured in any 

piezoelectric-based method is well defined and therefore has an absolute value. 

The inset of Fig. 8.8(a) shows two typical piezoresponse loops measured at the same 

point, separated by a series of switching pulses. These display a consistent d33-V 

property for positive polarisation direction, different negative switching behaviour, 

and vertical and horizontal shifts. These phenomena may stem from the existence of 

an internal space charge field, which causes a preferential downward pre-polarisation 

state and the corresponding imprint. Other mechanisms have been proposed, such as 

domain locking near the ferroelectric-electrode interface,20 mechanical strain 

conditions at the interface,21, 22 and residual stress in the grains.23 A horizontal shift in 

d33-V loops has changed the asymmetry of the loop by causing different positive and 

negative coercive field, as discussed above. 

The electric field dependence of the effQ  derived using Equation (8.2) and data from 

Fig. 8.8 for the entire hysteresis loop is shown in Fig. 8.9. 

It can been seen that effQ  is rather stable ((1.27-1.72) × 10-2 m4/C2) when the applied 

field, and consequently the domain structure of the films, change dramatically, except 

where this method is not applicable, because sP  is close to zero, when V is close to 

Vc 
24. 
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Fig. 8.9 Qeff of BSmT films as a function of applied bias voltage 
 

In-field hysteresis loops were measured, with the probing AC voltage superimposed 

on the triangular waveform DC bias in order to measure the piezoelectric constant as a 

function of the applied field simultaneously. Therefore, the high voltage linear part of 

the loop is due to a real increase of the piezoelectric constant and can be used to 

estimate the local effQ . Equation (8.3) shows the relationships by considering the 

total polarisation P of the poled volume 25. 

 

33 332 ( )zz effd Q P Eε ε= +        (8.3) 

 

The slope of the linear component can be obtained by differentiating Equation (8.3) 

with respect to E for those regions where the ferroelectric polarisation P is constant, 

i.e. at the saturation stage (which is very important): 
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2
332 ( )zz

eff

d
Q

E
ε

∆
=

∆
        (8.4) 

 

From the above analysis and other reports24, ( )eff EQ  is independent of E at a high 

electric field (V>Vs, where Vs is the bias voltage beyond which the polarisation is 

saturated). We also assume e33 is a constant at a high bias electric field, beyond the 

saturation of polarisation (e33 under high DC bias were unable to be measured for Fig. 

8.8(b)). 

When E = 0, the relations between the Pr and remanent dzz, ( )zz rd , is given by 

 

( 0) 33( 0)( ) 2zz r eff V V rd Q Pε= ==        (8.5) 

 

So ( )eff V VsQ >  and ( 0)eff VQ =  can be estimated respectively from Equations (8.4) and 

(8.5) if the e33 at zero bias and beyond saturation are known from other measurements 

and ( )zz rd  is determined. 

Fig. 8.10 shows effective dzz-V loops measured at higher electric fields in order to 

obtain the linear part of the loop with a minimum effect of the unsaturated part of the 

loop. The remanent dzz (measured at zero bias field) is almost constant beyond 14 V, 

corresponding to saturated polarisation. The inset shows a sample of a linear fit of 

hysteresis loop when Vmax = 40 V, which is the equipment limitation. Linear fits of the 

loops at various Vmax (24 V ~ 40 V, not all shown here) have been carried out and the 

values are quite consistent with a range of 0.577~0.628 pm/V2. Combining this value 

with Equation (8.5), and a film thickness of ~400 nm, e33= 280 e0 at zero bias and 



Chapter 8         Piezoelectric properties of Sm-doped bismuth titanate ferroelectric thin films 

 218 

242e0 beyond Vmax = 14 V, ( )zz rd  is 10.5~12.7 pm/V and Pr = 15.1 µC/cm2. 

Substituting these values into Equations (8.4) and (8.5), the effQ (V>Vs) and 

effQ (V=0) are (2.67±0.12) × 10-2 m4/C2 and (1.55±0.15) × 10-2 m4/C2, respectively.  
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Fig. 8.10 Effective dzz-V loops at higher electric fields. Inset: a linear fit of hysteresis loop when 
Vmax = 40 V 

 

Table 8.1 Values of Qeff derived using the different voltage ranges 
 

Method 
effQ  

(× 10-2 m4/C2) 

( )eff V VsQ >  

(× 10-2 m4/C2) 

( 0)eff VQ =  

(× 10-2 m4/C2) 

( ) 332zz eff E sd Q Pε=  1.27~2.43  1.31 

2
332 ( )zz

eff

d
Q

E
ε

∆
=

∆
 

( 0) 33( 0)( ) 2zz r eff V V rd Q Pε= ==  

1.40~2.79 2.67±0.12 1.55±0.15  

 



Chapter 8         Piezoelectric properties of Sm-doped bismuth titanate ferroelectric thin films 

 219 

The values of effQ  derived using the different voltage ranges are shown in Table 8.1. 

From Table 8.1, we can see that ( 0)eff VQ =  are basically the same because the same 

methods were adopted at zero bias field. The variation is due to a slightly higher zero 

bias dzz value being adopted when calculating high bias voltage value. 

Values of effQ  and zzd  (biased and non-biased) obtained in this work are reported in 

Table 8.2 and are compared with other ferroelectric materials reported by other 

authors. 

Table 8.2 Piezoelectric parameters of some ferroelectric materials 
 

Materials 
effQ  

(×10-2 m4/C2) 

zzd  (pm/V) 

Zero bias 

zzd  (pm/V) 

Bias 

BSmT (this work) 

(370 ~ 450 nm) 

1.27-2.79 10.5~12.7 ~30.0  (at 40 V) 

PbZrxTi1-xO3 (PZT) film 

(250 ~ 350 nm) 

1.2~2.5 24 

 

  

SBT film 

 

2.0~4.0 24 

(~ 300 nm) 

8 24  

(~ 300 nm)  

17 at 300 kV/cm 26 

(~ 300 nm) 

BiT film 

 

0.142~0.152 4 

(~ 250 nm) 

4 27 

(~ 200 nm) 

 

BiT ceramics  20 27  

Nd-doped BiT film  38 2 

( ~ 1.0 µm) 

 

Pr-doped BiT film  60 28 

(~ 1.5 µm) 
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From Table 8.2, we can see that effQ  value of the BSmT films reported in this work 

is comparable to typical film piezoelectrics PZT and SBT, and much higher than 

undoped BiT films. For piezoelectric coefficients, the BSmT film has a much higher 

zzd  than SBT films, BiT ceramics and its thin films. It is lower than other much 

thicker lanthanide-doped bismuth titanate films (1-µm thick Nd-doped and 1.5-µm 

Pr-doped BiT films). Strong thickness-dependence of piezoelectric properties has 

been observed in Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 thin films 29 and 400% larger d33 

values have been obtained in a 400-nm-thick film than a 200-nm-thick one. Therefore 

for a detailed comparison a comparably thick BSmT film would be necessary. In 

conclusion, Sm-doped BiT films are promising piezoelectric materials for MEMS use. 

8.2.5 Piezoelectric properties of PLD- and CSD-derived 

BSmT films 

Piezoelectric properties of both film types (PLD and CSD) were measured by the 

PFM. Fig. 8.11 shows topographic and piezoresponse images of PLD-grown (Figs. 

8.11(a) and 8.11(b) and CSD-derived (Figs. 8.11(c) and 8.11(d)) films (Figs. 8.11(a) 

and 8.11(c) are topographic images and Figs. 8.11(b) and 8.11(d) are piezoresponse 

images). By monitoring the phase of the piezoresponse signal, it was determined that 

the bright regions in Figs. 8.11(b) and 8.11(d), which vibrate in phase with the AC 

imaging voltage, represent positive domains (polarisation is towards the top 

electrodes), whereas dark regions correspond to negative domains with the 

polarisation vector oriented downward.  

From the figures we can see that the PLD-grown film has a more distinct domain 

structure, which may stem from a higher piezoelectric coefficient than that of the 

CSD-derived film, and/or different grain structures of the films. The columnar grains 



Chapter 8         Piezoelectric properties of Sm-doped bismuth titanate ferroelectric thin films 

 221 

of the PLD films are more likely to lead to single-grain domains through the film 

thickness, which can be efficiently switched in comparison with more multi-grain 

domains for CSD films. We can also see, in top-view images, a strong correlation 

between topographic grain structure and domain structure in both film types. 

 
 

(a)        (b) 

    
 

(c)        (d) 
Fig. 8.11 (1 µm × 1 µm) PFM images of (a) (b) PLD-grown; (c) (d) CSD-derived BSmT films 

 

To further characterise the films, the piezoresponse signal was measured as a function 

of the poling voltage. The probing tip was positioned at the centre of a negatively 

polarised grain where the DC voltage poling pulses were applied. The clear 

ferroelectric hysteresis behaviour of the piezoresponse signal is a proof of domain 

polarisation reversal occurring under the applied voltages. The large spatial variation 

of the local PFM measurement, i.e. different loop shapes for different grains were 



Chapter 8         Piezoelectric properties of Sm-doped bismuth titanate ferroelectric thin films 

 222 

observed in both film types, as shown previously for CSD-derived films. 

Typical square-shaped saturated dzz-loops of PLD-grown and CSD-derived films 

measured at different bias voltages are shown in Figs. 8.12(a) and 8.12(b), suggesting 

distinct local scale ferroelectricity. The remanent dzz, i.e. dzz measured at zero bias 

field, is ~10.5 pm/V and ~6.1 pm/V for PLD and CSD films, respectively.  
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(a)          (b) 

 

Fig. 8.12 Typical dzz-loops of (a) PLD-grown films, (b) CSD-derived films measured at different 
applied bias voltages 

 

Since normal hysteresis measurement captures the superpositive response of all of the 

linear and non-linear components whist the remanent hysteresis measurement 

subtracts the nonswitching part of the normal hysteresis loop, the remanent hysteresis 

loops are more like the shapes of effective dzz-V loops (i.e. more square). The Pr 

values derived from remanent hysteresis loops are ~15 µC/cm2 and ~10 µC/cm2, 

respectively, for PLD- and CSD-derived BSmT films. These values correlate well 

with the remanent dzz values of both films, which are ~10.5 pm/V and ~6.1 pm/V for 

PLD- and CSD-derived films, respectively. 

To reveal more detailed comparison between PLD and CSD BSmT films, the 

ferroelectric hysteresis and remanent hysteresis loops of the two film types are shown 

in Fig. 8.13 (The details of the measurement were described in Section 3.2.2.2.) 
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(a) PLD (hysteresis)   (b) PLD (remanent hysteresis) 

 

(c) CSD (hysteresis)   (b) CSD (remanent hysteresis) 
 

Fig. 8.13 Normal hysteresis and remanent hysteresis loops of PLD-grown BSmT films ((a) and (b), 
respectively) and CSD-derived BSmT films ((c) and (d), respectively) 

 

 

 
(a)     (b) 

Fig. 8.14 Hysteresis loops of the (a) PLD-; (b) CSD-derived films 
 

Fig. 8.14 shows detailed information about all parts of hysteresis loops (switched 

non-switched, and remanent parts), we can see that the proportions of the remanent 
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part in the whole polarisation for both films are ~30% and ~34%, for PLD and 

CSD-derived films. This reflects that both films have similar switched and 

non-switched proportions, despite very different fabrication procedures. 

8.3 Conclusions 

Piezoresponse force microscopy (PFM) was adopted to characterise Sm-doped 

bismuth titanate (BSmT) films. Domain structures were clearly observed in a 

PLD-grown BSmT film, which were closely related to the grain structures. Domain 

manipulation was carried out in a CSD-derived BSmT film, showing the film can be 

nearly uniformly polarised, which can be used in nanoscale device fabrication. Clear 

hysteresis loops were measured by PFM, which was an important proof of 

ferroelectricity. 

Large spatial variations of piezoelectric hysteresis loops for the film surface of a 

CSD-derived BSmT film were observed and the possible reasons for that were 

proposed, such as different crystallographic orientations, fluctuations of chemical 

compositions in different grains, an inhomogeneous distribution of tip-generated field 

and grain size effect.  

Effective electrostriction coefficient of a PLD-grown BSmT film was measured by 

combining results for the macroscopic polarisation, dielectric constant measurement 

and microscopic piezoelectric constant and showed that BSmT films had better 

piezoelectric properties (higher Qeff, higher dzz) than SBT films, un-doped BiT 

ceramics and films. It suggests that BSmT films are promising piezoelectric materials 

for MEMS use. 
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Chapter 9 Conclusions and future work 

9.1 Conclusions 

9.1.1 PLD-grown W-substituted SBT thin films 

We fabricated SBT and W-doped SBT ferroelectric thin films by PLD on platinised 

silicon substrates. The effects of fabrication temperature (from 700 ºC to 800 ºC) and 

W-doping level (10 mol% and 20 mol%) on film properties were studied. The 

crystallinity of SBTW films improved with increasing fabrication temperatures, 

resulting in enhanced ferroelectric properties and dielectric properties above the 

fabrication temperature of 750 ºC: 10 mol% W-doped films fabricated at 800 ºC 

showed a 2Pr of 8 µC/cm2. W-doping of 20 mol% also reduced the coercive voltage 

(2Vc) from 4.0 V to 2.5 V. W-doping lowered the required annealing temperature of 

SBT films, which can explain the improvement of crystallinity, dielectric and 

ferroelectric properties. The lower required fabrication temperature will increase the 

chances of applications of SBT films in silicon integrated technology. 

9.1.2 PLD-grown epitaxial BNdT films 

Dense ceramic samples of Bi4-xNdxTi3O12 and Bi4-xSmxTi3O12 (x = 0, 0.55, 0.70, 0.85, 

1.00) were fabricated by solid state processing for PLD targets. XRD results 

confirmed that Sm or Nd doping successfully incorporate into the perovskite lattice. 

Highly epitaxially (001)-, (118)-, and (104)-oriented BNdT films were grown by PLD 

on (001)-, (011)-, and (111)-oriented STO single crystal substrates, respectively.  
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Two-dimensional epitaxial relationships between the BNdT films and their 

corresponding STO substrates were derived as: BNdT(001)//STO(001), 

BNdT(118)//STO(011), BNdT(104)//STO(111), and BNdT[ 110 ]//STO[100]. A 

three-dimensional orientation relationship between films and substrates was derived 

as: BNdT(001)//STO(001), BNdT[110]//STO[100]. The RMS surface roughness of 

(001)-, (118)-, and (104)-oriented BNdT films was 0.7 nm, 10.8 nm and 14.2 nm, over 

areas of 2×2 µm2.  

Films showed strong dependence of ferroelectric properties on the crystalline 

orientation. The highest remanent polarisation was exhibited by (104)-oriented films, 

whilst c-axis-oriented films showed very weak ferroelectric activity. These data 

confirm that the polar axis of the BNdT films remains in the a-b plane instead of 

along the c axis, as recently suggested by other researchers. In addition, the 

(104)-oriented film showed better leakage characteristics than the (118)-oriented one. 

No significant fatigue was observed in the films of (118)- and (104)-orientations. 

9.1.3 PLD-grown polycrystalline BSmT films 

The fabrication procedures for PLD-grown BSmT films on platinised silicon 

substrates were optimised by varying fabrication temperature and laser fluence. The 

fluorite phase (Bi2Ti2O7) was observed as an intermediate phase and fully transformed 

to the perovskite phase (Bi4Ti3O12) in the 750 ºC-fabricated film. A comparison of 

films grown using targets with and without bismuth excess suggested that using 

bismuth excess targets can facilitate the crystallisation of the perovskite phase. 

The film deposited at the optimised conditions (225 mJ and 750 ºC) has 

uniformly-distributed, closely-packed grains, a dense columnar structure, and is 
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continuous and chemically homogenous. Moreover, EDX results suggest that it has 

successful substitutions of Sm for Bi, and the film composition is close to the 

intended value. 

Effects of Pt bottom layer orientation and Sm doping level on BSmT film properties 

were studied. Silicon substrates with (111)- and (200)-preferred oriented Pt bottom 

layer were used to deposit BSmT film by PLD. A higher proportion of (117)-oriented 

grains was achieved for the films grown on Pt(111)/Si substrates (54.0%) than 

Pt(200)/Si substrates (19.5%). Both films show similar surface topography and a 

comparable surface roughness. An examination of atomic configurations confirmed 

good match of atomic planes of Pt (200) and BSmT (00l) if the following orientation 

relationship is satisfied: BSmT (00l) // Pt (200) and BSmT [001] // Pt [110]. The 

atomic arrangement between Pt (111) and BSmT (117) planes needs further 

investigation. 

The film grown on Pt(111) has a higher 2Pr than the film grown on Pt(200), which 

may be related to the higher proportions of (117)-oriented grains. This suggests that 

the polar axis of the Sm doped films is close to within the a-b plane, since in that case 

the polar axis of the (117)-oriented grains is closer to the normal direction of the film 

surface. 

Films of different Sm doping levels were fabricated on Pt-coated silicon substrates. 

XRD results show that the increasing Sm doping content increases the proportion of 

(117)-oriented grains. 

The inclusion of Sm3+ in the perovskite block is expected to influence the structural 

and electrical properties of BiT films in several ways by suppressing the Ps value 

(intrinsic effect) or increasing the non-c-axis-oriented grain growth (extrinsic effect). 
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In our study, remanent polarisations increase with the increasing Sm content up to x = 

0.70, then decrease with a further increase of x, which imply that the extrinsic effect 

(the crystallographic orientation of the films) dominates the ferroelectric properties 

during x = 0 ~ 0.70, then with a further increase of doping level, the effect of the 

decrease in Ps value dominates. 

After Sm doping, the Bi in the A sites becomes more stable than the undoped BiT, or, 

the oxygen vacancy-related domain-pinning reduces, resulting in the reduction in 

dissipation factor and improved fatigue resistance. 

For comparison, films grown on Pt/Si both with and without a LNO buffer layer 

between film and Pt layer substrates were fabricated by PLD. The bottom electrodes 

directly influenced the grain size and the surface roughness of the films. Films grown 

on Pt/Si have larger grains within a finer grained matrix. However, films grown on 

LNO/Pt/Si have a uniform and smaller grain size, but are rougher (the RMS surface 

roughness of the BSmT/Pt and BSmT/LNO/Pt films was ~9.7 nm and ~14.8 nm, 

respectively). There was an observation of a degradation of polarisation on LNO/Pt/Si. 

Unexpectedly, a BSmT/Pt film has a much lower leakage current density than a 

BSmT/LNO film, which may be related to the higher surface roughness for the film 

with the LNO buffer layer. 

9.1.4 CSD-derived polycrystalline BSmT and BNdT films 

In this study, an alkoxide-salt method was adopted to prepare the precursors for BSmT 

and BNdT film fabrication. Precursors of Bi-Sm(Nd)-Ti which were stable for at least 

eight months in air ambient were successfully developed and BSmT(BNdT) 

ferroelectric films were fabricated using the spin-coating technique. 
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In-situ FT-IR studies on the decomposition of the Bi-Sm-Ti precursor, which is an 

analogy of the pre-baking stage during film fabrication, reveals that acetic acid serves 

as chelating agent to improve the homogeneity of the precursor solution by generating a 

dense and homogeneous Ti-O-Ti polymeric network and, at a baking temperature of 

300 °C, most organic compounds are decomposed and evaporated. 

Raman spectroscopy reveals that an excitation of the active modes of perovskite phase 

becomes stronger with increasing temperature annealing above 600 °C, indicating the 

development of the crystallinity for the perovskite phase in BSmT films. 

XRD and Raman results confirm the existence of fluorite as an intermediate phase 

between the amorphous and perovskite phases of BSmT. Increasing annealing 

temperature favours the growth of c-axis-oriented grains and increases grain sizes. 

AFM and SEM images, as well as XRD patterns, all indicate an increase of grain size 

with increase of annealing temperature. FE-SEM images show that the films have a 

clear and sharp boundary with Pt bottom electrodes and a grainy structure. 

An increase in dielectric constant value with increasing annealing temperature was 

observed, which may be attributed to the increase in grain size and/or density of the 

films. The values of dissipation factor at 100 kHz of the same set of films decreased 

with increasing annealing temperature until 700 °C, and then increased at the 

annealing temperature of 750 °C, suggesting that tan δ is predominantly affected by 

the film density, since a slight reduction in density was seen at this temperature. 

Although the c-axis-oriented grains were favoured with increasing annealing 

temperature, the Pr increased with increasing annealing temperature, which was 

attributed to the enhancement of grain development. The higher leakage current 
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measured after a higher annealing temperature could be the result of the increased 

surface roughness. The BSmT and BNdT films annealed at 700 °C and 750 °C show 

excellent electrical fatigue resistance. The electrical properties of the films fabricated 

in this study (dielectric and ferroelectric properties, leakage current characteristics and 

electrical fatigue properties), are comparable or superior to those previously reported 

for similar films developed by other techniques or with other doping elements. 

A summary of previous studies of La-, Nd-, Sm-doped BiT films, and some other 

doping elements (Eu, Pr) was given. It can be seen that the 2Pr of our films are larger 

than the average value of La-doped films reported, and comparable to the Nd- and 

Sm-doped films reported by others. The Ec values of our films are also comparable to 

the reported values. 

Low temperature electrical properties of BSmT ferroelectric thin films have been 

investigated, suggesting that BSmT thin films are very promising for extremely low 

temperature nonvolatile memory applications. 

The results of BNdT films annealed at different oxygen partial pressure (O2, air, N2) 

showed that: 

1). Oxygen ambience affected structural properties of the films by enhancing the 

growth of perovskite phase (phase formation), increasing grain size (grain growth), 

and assisting the growth of (117)-oriented grains (crystallographic orientations). 

2). As a result, the best electrical properties (high 2Pr, low Ec, low leakage current 

density, and best fatigue resistance) were achieved in O2-annealed films. 

3). Oxygen vacancies play an important role in the electrical properties of BNdT 

ferroelectric films. 
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9.1.5 Piezoelectric properties of BSmT films 

Piezoresponse force microscopy (PFM) was adopted to characterise BSmT films. 

Domain structures were clearly observed in a PLD-grown BSmT film, which were 

closely related to the grain structures. Domain manipulation was carried out in a 

CSD-derived BSmT film, showing the film can be nearly uniformly polarised, and 

thus has applications in nanoscale device fabrication. Clear hysteresis loops were 

measured by PFM, which was an important proof of ferroelectricity.  

Large spatial variations of piezoelectric hysteresis loops across the surface of a 

CSD-derived BSmT film were observed and the possible reasons for that were 

proposed, such as different crystallographic orientations, fluctuations of chemical 

compositions in different grains, an inhomogeneous distribution of tip-generated field 

and grain size effect. 

Effective electrostriction coefficient of a PLD-grown BSmT film was measured by 

combining macroscopic polarisation, dielectric constant measurement and 

microscopic piezoelectric constant, and showed that BSmT films had better 

piezoelectric properties (higher Qeff, higher dzz) than SBT films, un-doped BiT 

ceramics and films. It suggests that BSmT films are promising piezoelectric materials 

for MEMS use. 

9.2 Future work 

1. Optimisation of film composition. 

Further optimisation can be done using a combination of A- and B-site doping, such 

as both Sm (or Nd) and W (or V) doping. The goal is to both increase the remanent 
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polarisations and decrease the coercive field. EDX analysis is needed to measure film 

compositions. 

2. Structural characterisation, especially high resolution TEM. 

For epitaxial films, high resolution TEM would be very useful to reveal the growth 

mechanism and the orientation relationships between films and substrates. 

A detailed high resolution TEM study of polycrystalline films on Pt/Si substrates 

would clarify the mechanism for preferred film orientation development. 

In the current study, a serial resistance effect of the interfacial layer between the oxide 

electrode and BSmT films was proposed to account for the degradation of polarisation 

in the BSmT films grown with LNO buffer layer on Pt/Si substrates. A direct 

observation (or not) of this layer using a high resolution TEM study would clarify this 

situation. 

3. Impedance measurements in the high temperature range (200 ~ 550 °C). 

High temperature complex dielectric and impedance analysis can reveal the 

mechanisms of charge migrations and dielectric relaxation; therefore, it can help us to 

understand electrical degradation (fatigue, imprint) and long-term instability 

(retention). It can also clarify the conductivity mechanisms about the contributions of 

different charge carriers in grains, grain boundaries and interfaces.  

Some preliminary measurements on BSmT films have been carried out in the present 

study (results not shown in the thesis), however, due to time limitation, they have not 

been finalised. A complete analysis therefore is needed in the future. 

4. DC leakage current measurements are needed over a wider temperature range, such 
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as at high temperature (up to 300~400 ºC), to reveal the conductivity mechanism in 

the films. 

5. Retention properties of the films at different temperature from room temperature up 

to 150 ºC would provide a complete assessment of the films and their suitability for 

FeRAM applications. 

6. Films showing satisfactory electrical properties can be used for FeRAM device 

fabrication in the near future to assess their viability for commercial applications. 

 

 


