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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The paper “A neural network trained by 3D printed biomimetic cochleae provides clinical 

informatics for cochlear implant patients” presents the development of a neural network model 

that is informed by measurements in 3D printed biomimetic cochleae with realistic conductivity 

and anatomy. The model uses 4 geometric features to predict the intracochlear voltage (electric 

field imaging; EFI). The model has been also used to infer the cochlear geometries based on the 

measured EFIs. 

The research presented in the manuscript is highly innovative and covers a wide range of 

challenging methods including neural networks, electric field measures in vivo, 3D printed models, 

finite element method, image analysis through CT and CBCT and a few more. The methods used 

are highly complex and require a high level of expertise. Unfortunately, the validation of the model 

predictions in human CI users cannot keep up with this quality. For instance, the 3PNN model has 

only been validated in 6 subjects with 1 electrode type. Moreover, these 6 subjects had very 

similar EFI profiles as well as similar geometry descriptors (Fig.5bc). 

The option to “infer” the in vivo bone resistivity (which is advertised in the abstract and forms a 

substantial part of the discussion) is not validated at all. 

 

The reviewer has some general concerns and a list of detailed corrections presented below. 

 

General Comments 

- In general, the methodology presented in the manuscript is innovative and promising and well 

presented with an exceptional level of detail. The quality of both engineering and scientific work in 

developing the methodology seems to be very high. Even if it may be logical to think that the 

spread or width of the EFIs may be related to speech understanding performance, there is no 

much evidence in the literature for this (see for example: Jürgens et al 2018, PloseOne). In my 

opinion the third line in the abstract should weakened or look for other alternative main 

motivations for modeling EFIs. 

- It has been previously reported that EFIs or transimpedance measurements relate to electrode 

angular depth of electrode insertion (Aebischer et al. 2020, IEEE). Insertion depth depends on 

different factors including cochlear anatomy (length and shape), surgical procedure or even 

surgeon. Moreover, it is possible that impedances are affected by electrode-modiolar distance (e.g. 

Saunders et al 2002, Ear Hear). In your neural network and in your models you did not studied the 

effect of different electrode locations for the same cochlea on the EFI. In other words, two subjects 

having the same exact cochlea anatomy may receive the cochlear implant electrode contacts in 

different locations which would lead to different EFIs, however based on your model the same EFI 

would be predicted for both subjects as only cochlear anatomical features are used. 

- Include supplementary table with specs of the 82 printed biomimetic cochlea models 

-Why do you use different threshold criterions for the backward 3PNN model? E.g. 8% MAPE (line 

652), 6% MAPE (line 660), 10% MAPE (line 668) etc. 

- Not clear how the impedance recordings were conducted. According to Vanpoucke et al (2004), 

IEEE, the measurement electronics of the AB device may take samples at a rate of 56 kHz. How 

were you able to sample at 83 kHz? In In clinical impedance measures only one value during each 

stimulation pulse is recorded to characterize the so-called “impedance”, so that the frequency of 

stimulation/recording does not play a role. However, in your impedance spectroscopy you used an 

83 kHz frequency, did you use here analog stimulation? How does your impedance spectroscopy 

relate to the EFI measures with the CI? 

- Effect of reference electrodes in the impedance measures. Typically, EFIs are measured using a 

stimulating electrode and a reference electrode for the stimulation and a recording electrode and a 

reference electrode for the recording. Which electrodes did you use in your methods and how 

much were the measurements affected in your model by the fact that you do not have a head in 

your cochlear printed models? 

- The limited characteristics or input features used in the 3PNN to predict EFIs cause that the 

applications mentioned in the discussion sound too optimistic at this stage of the research. 

Modeling of tissue growth, ossification of the cochlea and different electrode locations should be 

incorporated into the model to be able to successfully use the 3PNN for the mentioned clinical 

applications. 



- Sometimes you give a value followed by the units and sometimes followed by space and the 

units. Check format. 

 

Detailed Commentsd 

Abstract 

Line 20-23 “(…) the model can reconstruct patients’ clinical electric field imaging (EFI) profiles 

arising from off-stimulation positions with a 90% mean accuracy (n=6).” 

Only shown for slimJ users with very similar EFI profiles. It would be interesting to see the 

accuracy for different electrode types and more varying EFI profiles. 

Line 25-27 “This work (…) directly reveals individual patient’s in vivo cochlear tissue resistivity (0.6 

– 15.9kΩcm, n=16) by CI telemetry.” 

 No, this method is not validated. At most, you can claim that your model is able to "estimate" 

the resistivity, but it is not "revealed". 

 

Introduction 

Line 32 “restore electrical functions” typically a CI is used to restore “neural function” rather than 

“electric function”. Even if neural function is based on electric function, electric seems to be too 

simple. 

Line 35 Reference 4 is about optogenetics… sounds inappropriate here. 

Line 38 Unfortunately, the CI does not preserve the tonotopy completely. There are large 

misalignments between the electrode locations and the frequencies associated to the electrodes. 

Maybe rewrite slightly this sentence. Maybe something like CI try to mimic the tonotopical 

structure of the cochlea … 

Line 63 Cochlear implants are typically classified as neural implants rather than electric implants. 

Line 67 “auditory nerve fibers” instead of “auditory nerves”. 

 

Results 

Line 132 “…the operating frequencies of CIs (i.e. f=1-100kHz)” 

 should this be 1 Hz – 100 kHz or 1 kHz – 100 kHz? 

Line 148 Here you measure the resisitivity matrices at 83 kHz. I do not understand how this 83 

kHz frequency relates to the EFI recorded through the cochlear implant. In the cochlear implant, 

the EFI is typically recorded with single pulses and only one sample for each stimulating pulse is 

recorded. This requires clarification. 

Fig. 4a, b In the subfigures below these subpanels, I was wondering where is the round window 

placed? And whether different electrode locations (electrode insertion depth and electrode 

insertion trajectories) are possible for the same cochlea. These different electrode locations would 

result in different EFIs. 

Fig.4d Don’t need the “doubled” panels 

Fig. 4d Not sure if in these plots the impedance of the stimulating electrode is also plotted. 

Actually it seems that it is plotted given the large impedance at the location corresponding with 

the stimulating electrode. If so, why is the electrode impedance of the stimulating electrode shown 

here if this is not used in the models? 

Line 281-283 How do you define the “similarity”? 

Fig.5b The results do not look very patient-specific, maybe because of the measurements that are 

also very similar. 

However, it would be nice to compare the performance of the 3PNN predictions against an 

“average” EFI profile and/or to compare predicted EFIs with EFIs from other subjects. 

Fig.5c i) Color-coding is not visible 

ii) Are the huge error bars for CT-measured features correct? 

Line 304 Predictions are based on data from 6 subjects, where is the 1000 predicted set obtained 

from? 

Line 315 Here you present Equation 1 which defines a function to fit the EFIs. It is however well 

know that the EFIs do not go to zero and have a sometimes a constant ground or base level which 

needs to be taken into account to fit properly the potential function shown in Equation (1). Did you 

observe a constant base level in your EFIs? How did you account for it in the fittings of A and b? 

Line 322 I would define “r” as “the distance between the stimulating and the recording 

intracochlear electrode” to be more specific 

Lines 322-225 Also in Fig 6. In the EFIs of the apical and basal electrodes it is not possible to fit 

any potential function towards the apex or toward the base respectively. Did you remove these fits 



for the analysis of the variables A apex A base, b apex and b base? 

Line 337 This may be a typo: neurones  neurons 

Fig.6a What do the marker colors stand for (color bar missing)? 

Fig.6d I do not understand the "electrode-distance-distance" plots in (i) as well as the plots in 

(iii)/(iv) 

Fig.6d ii and iii Not clear what are the peaks. Are these the peaks of the second diagonal? Peaks 

need to be defined 

Fig.7 Color-coding for predicted resistivity is not needed as it is shown at the y-axis. 

Line 394-422 The “deduction” (I would rather call it “fitting”) of patient-specific bone resistivities 

lacks validation. This is rather a hypothesis and not a method, this should be pointed out more 

clearly. 

Discussion 

Line 431-432 What about the surgical procedure to insert the cochlear implant, or even the fact 

that different surgeons insert the same implant differently? An extreme case would be 

cochleostomy vs round window approach which theoretically should have significant effects on the 

electrode locations and EFIs which your model do not take into account. It would have been much 

better the inclusion of different electrode arrays from different manufacturers and having different 

insertions in the same cochlea to have more variability in measured EFIs. 

Line 438 Why the electrode locations were not required? 

Line 441-442 Two different electrode arrays having different dimensions, including inter-electrode 

spacings (1.3 mm vs 1.1 mm as acknowledged in line 648), were used for training and testing the 

algorithm which adds more difficulty to the aim of predicting the EFIs. 

Line 462-465 Your model does not consider ossification of the cochlea, tissue growth across the 

electrode array and effect of electrode location. In my opinion, the potential application of the 

3PNN for the applications here mentioned seems very optimistic at this stage. 

 

Methods 

Lines 531-534 Are you sure that the acquisition was done at 83 kHz? I though the AB can record 

at most at ~50 kHz? Which type of stimulation was used to measure the EFIs, analog stimulation 

or biphasic pulses? Most manufacturers only use biphasic pulses and clinically only one sample for 

each stimulation pulse is available. Which reference electrodes were used for stimulation and 

recording and how do these reference electrodes affect the EFI? How does this relate to the 

position of the reference electrode in the printed cochlear models? 

Line 551 Which spacing d has been used? 

Line 552 Are you sure that the stimulation rate in one electrode was 83 kHz? Again typically, 

biphasic pulses are used to record impedances and definitely at much lower rates. Authors should 

explain in detail how this fast stimulation or recording rate (not clear) was generated with the AB 

implant. 

Line 596-598 “The EFI profiles were collected using the telemetry function of the CI with the AB’s 

Volta software as part of the intraoperative evaluation at our centre.” 

 what about postoperative impedance changes ? 

Line 603 I am a bit concerned about the quality of the CT sans and the variability of the derived 

anatomical measures. How much did the resolution of the CT scan (0.4x0.4x0.4 mm3) impact the 

anatomical measures of the cochlea? At least you will have an error of half voxel size. Specially 

looking at Fig.5 in supplementary material Section II) the resolution of the human CBCT scans 

looks quite limited. 

Line 621-621 “(..) a grid search varying the number of hidden layers from 1 to 10 (1, 2, 3, 5, 10) 

and nodes from 16 to 64 (16, 24, 32, 64) was performed to determine the best performing 

hyperparameters.” 

 are these values appropriate? Specially when increasing the number of layers to 3,5,10 it seems 

that the number of parameters is extremely large in comparison to the small dataset used for 

training. 

 

Supplementary information 

Supp. line 94-97 “The rationale for using a 1w/v% NaCl solution is that 1w/v% NaCl solution at 

ambient temperature has the most similar conductivity to human cerebrospinal fluid, which is 1.79 

S/m at body temperature14, and it is known that the electrical conductivity of cerebrospinal fluid is 

similar to the conductivity of perilymph.” 

 provide reference 



Supp. Fig.3b Why such a large difference between Y2(C) and Y2(E) ? 

Supp. Fig.4a The lowest resistivity reported for live human skulls should be 0.6 kΩcm, not 500 

Ωcm – see Supp. Fig.1b and main text (lines 114, 135). 

Supp Fig.5 On the small subplots you show the real CT scans. The upper plots show the cochlea 

after doing image processing (maybe segmentation and some filter for enhancing). How much did 

these filtering affect the estimation of anatomical dimensions? when enhancing edges and contours 

of the CBCT scans you modify the grey scale that gives information about the bone. These 

questions are related to the concerns about the resolution of the scans to estimate the detailed 

anatomical features of the cochlea. 

Supp. Note 1 i) Line 174: explain v (Poisson’s ratio) 

ii) For the “Global deformation” part, it is difficult to follow the calculus because the equations are 

unnecessarily rearranged multiple times. 

For instance, use γ=F/AG instead of G=F/Aγ. The equation in line 175 is not needed then. 

iii) Line 182-184: “Therefore, as the global shear strain and local normal strain caused by CI 

electrode array insertions are insignificant, we expect that the insertion of CI electrode (…) will not 

impose any significant deformation to the matrix.” 

 what is your criterion to call these values insignificant? How large would the strain have to be in 

order to be significant? 

Supp. Fig.6ab It is very difficult to see the electrode array in these plots 

Supp. Fig.6e Which boundary condition is applied here? (compare Supp. Fig.7) 

Supp. Fig.7 The influence of the boundary condition is very interesting. What are the 

consequences? Which boundary condition fits best to the in vivo or the in vitro (3D-printed 

cochleae) cases? This needs to be addressed in the discussion. 

Supp. Fig.8 Figure title: “Electrode-to-spiral centre distance” 

Supp. Fig. 11c Provide the dimension of the input and output layers. 

Supp. Tab.1 3rd row, 2nd column: should be “Ld,1turn” 

Supp. Fig.9 This figure is not referenced at all 

Supp. Fig.13cd i) indicate units (mm) on x-axis in panels c,d (can be confused with electrode 

number in a,b,e) 

ii) it seems that only spread distributions with a minimum of 4 data points have been fitted 

Supp. Fig.14 Flip y-axes? 

Supp. Fig.15 Line 395-396: How did you select the values for the 3D printed model? Some of them 

are very off-centered. The simplest way would be to use the medians. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors are to be commended for their timely and innovative work. Cochlear models would be 

very useful for improving cochlear implant electrode design, surgical planning, and basic research 

to name a few possibilities. To my knowledge, the work is novel and has potential to impact 

hearing science and patients in the future. Many of my questions focus on the 3D printed models 

that guide the development of the neural network. 

 

1. Line 92-93: I wasn’t clear if your modeling approach resolves the issues concerning boundary 

conditions. If so, can you point me to where the boundary conditions are discussed for your 

approach. 

 

2. Lines 165-170: Great care was exercised in designing the matrix to ensure a CI electrode can 

be inserted without damage to the electrode. If models are to be used in a patient-specific 

framework, are the final positions similar to those in patients? 

My concern is that later (lines 188-190) we are told that intracochlear structures (e.g., basilar 

membrane) are not modeled. Does the presence of intracochlear structures not affect electrode 

insertion? If it does not, please provide evidence. 

 

3. The modeling done in this work is quite complex and involves a number of approximations and 

assumptions. It would help me if sources of errors in modeling could be tabulated in one place and 

their effects could be quantified. As an example, cochlear geometry is modeled using a few 

parameters. How close are these models to that of the patient being modeled? Global and local 



metrics as used in the following article would be a nice way to quantify these discrepancies: 

 

Noble JH, Labadie RF, Majdani O, Dawant BM. Automatic segmentation of intracochlear anatomy in 

conventional CT. IEEE Trans Biomed Eng. 2011;58(9):2625-2632. 

doi:10.1109/TBME.2011.2160262 

 

An error map as in Figure 8 of that paper would be useful. 

 

If there are discrepancies between the model geometry and the patient’s geometry as revealed by 

imaging, how do these propagate to errors in EFI simulations? 

Similarly, other assumptions and approximations should be considered. A sensitivity analysis 

would help tremendously. 

 

4. It is mentioned that the model can reconstruct patients’ EFI profiles arising from off-stimulation 

positions with a 90% mean accuracy (n = 6). From a clinical perspective, what is a sufficient level 

of accuracy and what is the justification for this level? The accuracy of EFI should be discussed to 

help the reader appreciate why it is a suitable technique for testing of the model. 

 

Also, does n = 6 provide sufficient statistical power in light of the large variability in cochlear 

anatomy? 

 

5. Line 285: It is noted here that “the predictive quality in cochlear height is less satisfactory 

compared to …”. How could prediction of cochlear height be improved? 

 

6. Line 592: It is noted that EFI profiles were chosen randomly from 16 adults. Do these 16 

capture the range of variability seen in EFI profiles in the patient population? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Very nice and comprehensive work. 

 

The idea of using PDMS via embedded printing is not the most ideal but the results show that it 

works as and matches the electro-mimetic performance of cochleae. Supplementary results and 

video is also supportive of the work. 

 

To improve the quality of the paper, I suggest that the authors also add some information on 

challenges related to such embedded printing and what future work should be done. What about 

longer-term performance? Does such a PDMS device can be used multiple times or should be used 

as a one-time device? Some analysis of mechanical performance from vibration-related fatigue 

behavior - will that be a factor? 

 

Overall, the results are certainly very exciting. 
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REVIEWER COMMENTS 
 
 
Reviewer #1 (Remarks to the Author): 
 
The paper “A neural network trained by 3D printed biomimetic cochleae provides clinical 
informatics for cochlear implant patients” presents the development of a neural network 
model that is informed by measurements in 3D printed biomimetic cochleae with realistic 
conductivity and anatomy. The model uses 4 geometric features to predict the intracochlear 
voltage (electric field imaging; EFI). The model has been also used to infer the cochlear 
geometries based on the measured EFIs. 
The research presented in the manuscript is highly innovative and covers a wide range of 
challenging methods including neural networks, electric field measures in vivo, 3D printed 
models, finite element method, image analysis through CT and CBCT and a few more. The 
methods used are highly complex and require a high level of expertise. Unfortunately, the 
validation of the model predictions in human CI users cannot keep up with this quality. For 
instance, the 3PNN model has only been validated in 6 subjects with 1 electrode type. 
Moreover, these 6 subjects had very similar EFI profiles as well as similar geometry 
descriptors (Fig.5bc).  
The option to “infer” the in vivo bone resistivity (which is advertised in the abstract and 
forms a substantial part of the discussion) is not validated at all.  
 
The reviewer has some general concerns and a list of detailed corrections presented below.  
 

We appreciate the reviewer’s time for his/her careful reading of the manuscript and the 
constructive comments. We have now addressed the comments, and a detailed point-by-point 
response to all comments can be found below.  
 

General Comments 
 

1. In general, the methodology presented in the manuscript is innovative and promising and 
well presented with an exceptional level of detail. The quality of both engineering and 
scientific work in developing the methodology seems to be very high. Even if it may be 
logical to think that the spread or width of the EFIs may be related to speech 
understanding performance, there is no much evidence in the literature for this (see for 
example: Jürgens et al 2018, PloseOne). In my opinion the third line in the abstract 
should weakened or look for other alternative main motivations for modeling EFIs.  
 
We appreciate the reviewer’s viewpoint here. Although there are mixed reports on the 
correlation between spectral resolution and speech intelligibility, there is now a fair 
amount of evidence from literature supporting the association between current spread and 
speech comprehension. For example: 1) Goehring et al, 2020, J. Assoc. Rec. otolaryngol. 
shows that simulated current spread in humans degrades speech comprehension; 2) 
Srinivasan et al, 2013, Hear. Res. shows that speech perception in noise is improved with 
partial tripolar stimulation in subjects as partial tripolar stimulation reduces spread of 
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excitation; 3) In Jurgens et al 2018, PLOS One, they also showed that ‘...In the model, the 
wider electrical field spatial spread functions will cause wider modelled neural 
excitations, resulting in spectrally smeared IRs.’. Hence, we believe that the undesired 
spread of excitation should ultimately have a negative impact on speech comprehension, 
at least beyond a certain limit. Acknowledging the Reviewer’s comment, we have now 
adjusted the original statement in the revised Abstract (P.1-2).  

 
2. It has been previously reported that EFIs or transimpedance measurements relate to 

electrode angular depth of electrode insertion (Aebischer et al. 2020, IEEE). Insertion 
depth depends on different factors including cochlear anatomy (length and shape), 
surgical procedure or even surgeon. Moreover, it is possible that impedances are affected 
by electrode-modiolar distance (e.g. Saunders et al 2002, Ear Hear). In your neural 
network and in your models you did not studied the effect of different electrode locations 
for the same cochlea on the EFI. In other words, two subjects having the same exact 
cochlea anatomy may receive the cochlear implant electrode contacts in different 
locations which would lead to different EFIs, however based on your model the same EFI 
would be predicted for both subjects as only cochlear anatomical features are used.  

 
We thank the reviewer for this insightful comment.  
 
a. Overall comment 
First, it is important to emphasize that 3PNN gives a statistical prediction, with the most 
likely outcomes presented by the clustering of prediction points. Using the example 
given by the Reviewer, indeed two subjects having the same cochlea anatomy could have 
different EFIs due to cochlear implant electrode contacts in slightly different locations. 
But if we were to acquire EFIs on many pseudo-patients having the same cochlea 
anatomy, a “most probable” EFI will result. This is because shifts in electrode placement 
longitudinally or laterally along the cochlear lumen are attributed to extrinsic statistical 
variability (e.g. surgical practices, etc), which are important to determine individual cases, 
but are considered as secondary factors. In comparison, the cochlear anatomy is the 
dominating, intrinsic factor that governs the ‘bounds’ where a CI electrode array can be 
located.   
 
Secondly, the stimulating electrode positions and the recording electrode positions are the 
underlying inputs in 3PNN. Patient-specific values of the electrode positions are not 
required in 3PNN as an assumption that the electrode positions follow the implant 
specification is taken for all predictions. Supplementary Table 2 provides details of the 
input values of the electrode positions of different implant types used in 3PNN, as stated 
in their specifications.  
 
With the above principle in mind, we have now further provided information regarding 
the effect of electrode locations in our 3D printed models on EFIs and the capability of 
3PNN (i.e. 3D printing and neural network co-modelling) in predicting off-stimulation 
EFIs of different electrode types that have different electrode locations, see below.    
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b. Comment on electrode-to-modiolus distances 
In Fig.4c(i), we demonstrated that the electrode-to-modiolus distances of CI 
electrodes in human cochleae (replotted from Davis et al, 2016, Otol. Neurotol. for 
Advanced Bionics® HiFocusTM 1J electrode) are statistically close to the electrode-to-
spiral centre distance of CI electrodes in our 3D printed biomimetic cochleae. The 
interquartile range (IQR) of the electrode-to-modiolus distance in human cochleae is 
1.2 – 0.9 mm, and the IQR of the 3D printed cochleae is 1.1 – 0.8 mm. This confirms 
that the cochlear anatomy governs the ‘bounds’ to which a CI electrode array can be 
located. 

 
c. EFIs measured with different CI electrode types in same 3D printed models 

We have now measured EFIs in the same 3D printed models using different types of 
CI electrode arrays and examined their effects. Supplementary Fig.10a compares the 
off-stimulation EFI measurements of HiFocusTM 1J electrode array (CI1J) and 
HiResTM Ultra HiFocusTM SlimJ electrode (CISlimJ) (n = 6), and the off-stimulation 
EFI between CI1J and Cochlear Corporation Nucleus® CI522 slim straight electrode 
(CI522) (n = 9). It is important to note that CI1J, CISlimJ and CI522 were manufactured 
by different CI companies, and have different electrode spacings (Supplementary 
Table 2). The 3D printed models here were randomly selected and exhibited different 
model descriptors (Supplementary Fig.10c). The results show that the off-stimulation 
EFIs measured in the same model by the different CI electrode types have very 
similar overall shape and trend, providing confidence that 3PNN can be broadly 
implemented for different CI electrode arrays and EFIs are predominantly governed 
by the cochlear electroanatomy. 
 

d. 3PNN predictions for different electrode arrays 

To confirm the applicability of 3PNN beyond the CI1J electrode array which is used to 
generate the training dataset, we applied 3PNN to predict off-diagonal EFI (for up to 
18.5 mm) of CISlimJ and CI522 electrode arrays. Supplementary Fig.10b shows the 
predicted off-stimulation EFIs of CISlimJ (n = 6) and CI522 (n = 9) up to 18.5 mm 
along the cochlear lumen. The predictions were carried out with their corresponding 
electrode positions and electroanatomical descriptors as the inputs (Supplementary 
Table 2). The prediction accuracy of CISlimJ and CI522 off-stimulation EFIs complies 
with the prediction accuracy of CI1J EFIs, with ~10% MAPE. Therefore, 3PNN has 
the capacity to predict EFIs of other electrode types. 
 

e. Unpredictable factors  
We agree that there are several unpredictable factors (i.e. surgical variation) that will 
lead to a change in the insertion depth and affect the EFIs. Thus, in our revised 
manuscript, we emphasise that 3PNN aims to forecast the most likely EFI outcomes 
and assumed the electrode positions follow the implant specification in all patient 
predictions (P.13, Lines 287-289; P22, Line 471; P31, Lines 694-696).  
 
To investigate how much the surgical variation in the insertion depth affects EFIs, we 
evaluated the change in EFIs when there is a ± 2 mm difference in the insertion depth 
in our 3D printed models, as shown in Supplementary Fig.19b. The median absolute 
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percentage error (MAPE) between the off-stimulation EFIs is ~ 8% when the insertion 
depth was changed by ± 2 mm (n = 18). This has been pointed out in the revised 
manuscript (P.21, Lines 449-454).   
 
 

CI electrode array Electrode spacing (mm) Electrode positions along the CI (mm) 
Advanced Bionics® HiFocusTM 

SlimJ electrode (CISlimJ) 
1.3  [3, 4.3, 5.6,.…, 17.3, 18.6] 

Advanced Bionics® HiFocusTM 1J 
electrode (CI1J) 

1.1 [2, 3.1, 4.2,.…, 17.4, 18.5] 

Cochlear TM Nucleus® slim 
straight electrode (CI622) 

0.9 [3.85, 4.75, 5.65,.…, 17.35, 18.25] 

Cochlear TM Nucleus® slim 
straight electrode (CI522) 

0.9 [3.85, 4.75, 5.65,.…, 17.35, 18.25] 

Supplementary Table 2: Input values of the stimulating and the recording electrode positions of 
different electrode types used in 3PNN. (SI, P.21) 

 

 

Fig.4c(i): The electrode-to-spiral centre distance measured for the CI electrodes in the biomimetic 
cochleae, compared to that measured in the human cochleae with the same CI electrode type. (P.10) 
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Supplementary Fig.10: Applicability of 3PNN on different electrode types. a, Experimental off-
stimulation EFIs or transimpedance matrices acquired by either CI1J, CISlimJ or CI522 in same 

biomimetic cochlea samples. b, Accuracy of 3PNN in predicting (i) CI522 transimpedance matrices 
and (ii) CISlimJ EFIs. c, Specifications of the samples tested here. (SI, P.22) 
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Supplementary Fig.19b: (i), Boxplot summarised the MAPEs of the experimental CI1J EFIs acquired 

when there was a ± 2 mm variation in the electrode insertion depth in our 3D printed models (n = 
18). (ii), Comparisons of the EFIs acquired with typical insertion depth and the EFIs subject to ± 2 
mm insertion depth variation. The values at the upper right indicate the MAPE between the two EFI 

profiles. (SI, P.31) 

3. Include supplementary table with specs of the 82 printed biomimetic cochlea models 
The input parameters of the 82 printed cochlear models are now summarised in 
Supplementary Table 3 (SI, P.36). 
 

4. Why do you use different threshold criterions for the backward 3PNN model? E.g. 8% 
MAPE (line 652), 6% MAPE (line 660), 10% MAPE (line 668) etc. 
In the inverse 3PNN model, we employed the ABC-SMC (Approximate Bayesian 
Computation-Sequential Monte Carlo) algorithm that uses a sequence of decreasing 
MAPE threshold [ε0 > ε1 > ε2 > ε3 >…. > εf] to converge towards the optimal approximate 
posterior distribution through a number of intermediate posterior distributions. εf  is the 
optimal (final) MAPE threshold, which is the smallest achievable MAPE in each patient 
prediction. In the predictions of the four geometric descriptors, εf was found by running 
the inverse programme with a threshold sequence from 20% to 2% in increments of 0.5%, 
and εf  is the smallest MAPE value that the programme can reach from the previous 
threshold level within two hours. The smallest achievable value depends on the patients’ 
EFIs, therefore different values of MAPE threshold were used.  
 
We have added additional detail about the method of finding the optimal MAPE threshold 
(εf ) used in the inverse predictions in the Methods section (P.30, Lines 684-688). A table 
summarising the optimal MAPE thresholds (εf) used in the predictions is added in 
Supplementary Information (Supplementary Table 4, SI, P38). 
 

5. Not clear how the impedance recordings were conducted. According to Vanpoucke et al 
(2004), IEEE, the measurement electronics of the AB device may take samples at a rate 
of 56 kHz. How were you able to sample at 83 kHz? In In clinical impedance measures 
only one value during each stimulation pulse is recorded to characterize the so-called 
“impedance”, so that the frequency of stimulation/recording does not play a role. 
However, in your impedance spectroscopy you used an 83 kHz frequency, did you use 
here analog stimulation? How does your impedance spectroscopy relate to the EFI 
measures with the CI? 



8 
 

We thank the reviewer for pointing this out, this was an error. The 83 kHz stated in the 
original manuscript was the communication frequency with the software. We used a 
stimulation rate as per standard of Advanced Bionics®, which is 56 kHz. All results 
associated with the stimulation frequency in the manuscript, including the 
electrochemical impedance spectroscopy and resistivity measurements, are now updated 
using 56 kHz.  
 

6. Effect of reference electrodes in the impedance measures. Typically, EFIs are measured 
using a stimulating electrode and a reference electrode for the stimulation and a recording 
electrode and a reference electrode for the recording. Which electrodes did you use in 
your methods and how much were the measurements affected in your model by the fact 
that you do not have a head in your cochlear printed models? 
In all EFI measurements, including the new data measured by CISlimJ electrode array and 
CI522 electrode arrays in the revision, the reference electrode is the extracochlear plate 
ground of the electrode array (known as the ‘case ground’ of CI1J and CISlimJ, or the ‘MP2 
plate extracochlear electrode’ of CI522). The case ground electrode was located 
underneath and was in direct contact with the 3D printed cochlear samples during EFI 
measurements. We have clarified this in the Methods section (P.25, Lines 552-553).  
 
Although the 3D printed cochlear models do not include the entire head configuration, 
our 3D printed biomimetic cochlear model exhibits a similar impedance property to the 
cadaveric cochlea in a head, as shown in Fig.2a. This ‘impedance matching’ ability over a 
wide frequency range is the key for replicating patients’ EFI profiles. The main text (P.6, 
Line 131) and the Methods section (P.27, Line 597) are now amended to further 
emphasize that the EIS measurement of the cadaveric cochlea was conducted in a head.  

 
Fig.2a: Bode plot showing the impedance properties of a cadaveric cochlea in a head, and 3D 

printed cochlear models made of an electro-mimetic bone matrix and a hydrogel. (P.7) 
 

7. The limited characteristics or input features used in the 3PNN to predict EFIs cause that 
the applications mentioned in the discussion sound too optimistic at this stage of the 
research. Modeling of tissue growth, ossification of the cochlea and different electrode 
locations should be incorporated into the model to be able to successfully use the 3PNN 
for the mentioned clinical applications. 
We have now updated the Discussion section (P.21, Lines 457-469), to state that disease 
modelling would require future validation and further studies.  
 

8. Sometimes you give a value followed by the units and sometimes followed by space and 
the units. Check format. 
We have ensured that the format of the units is the same throughout the manuscript. 
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Detailed Comments 
Abstract 

9. Line 20-23 “(…) the model can reconstruct patients’ clinical electric field imaging (EFI) 
profiles arising from off-stimulation positions with a 90% mean accuracy (n=6).” 
Only shown for slimJ users with very similar EFI profiles. It would be interesting to see 
the accuracy for different electrode types and more varying EFI profiles. 
We agree with the reviewer that using more electrode types and more varying EFIs would 
be advantageous in the validation. Thus, in our revised manuscript, we validated the 
accuracy of 3PNN with three electrode types and a wide range of clinical dataset.  
 
In total, 31 sets of paired patient CT scans and EFI profiles were used. This clinical 
dataset encompasses 17 Advanced Bionics® HiFocusTM SlimJ electrode (CISlimJ), 6 
CochlearTM Nucleus® CI622 slim straight electrode (CI622) and 8 CochlearTM Nucleus® 
CI522 slim straight electrode (CI522). Further, we also ensure the population 
representativeness of our data by comparing to 97 clinical EFI data (Supplementary 
Fig.12a). 
 
As elucidated in the updated Discussion ‘…Starting with our forward-3PNN, we 
predicted the patients’ off-stimulation EFI profiles based on the four geometric 
descriptors measured from their CT scans, while taking the matrix resistivity input as 9.3 
kΩcm (the mean reported resistivity of live human skulls obtained during surgery22–26, see 
Supplementary Fig.2a). Without any model adjustment for the different CI types, 28 out 
of the 31 EFI reconstructions achieve a MAPE (median absolute percentage error) < 12% 
(Fig.5b and Supplementary Fig.11), despite of the limited resolution of patients’ cochlear 
CT scans, and the substitution of the unknown patient cochlear tissue resistivities with the 
reported mean human skull resistivity. For a selected patient (subject 4CI522) whose EFI 
profile matches the population (n = 97) mean EFI, forward-3PNN was shown to achieve a 
MAPE = 8.6% for the EFI reconstruction (Fig.5bi and Supplementary Fig.12b-c). We 
further validated our 3PNN by inversely inferring the distribution of the four cochlear 
geometric descriptors that could match a patient’s off-stimulation EFI profile with a 
similarity > 89% (Similarity (%) = 1 – MAPE (%)). Comparing the predicted 
distributions of the geometric descriptors with the corresponding patient’s features 
measured from their CT scans, the median MAPE is ≤ 8% (Fig.5c and Supplementary 
Fig.13). This high statistical prediction accuracy demonstrates the capacity of 3PNN to 
autonomously predict clinical EFIs for different electrode types without further need to 
adjust the machine learning model that is trained by the dataset acquired from the CI1J.' 
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Supplementary Fig.12: a, The clinical EFIs (n = 31) used in 3PNN validation to represent the EFI 
variation in patient population (n = 97). b, The mean of patients’ EFI profiles (or transimpedance 
matrix profiles) (n = 97) and the EFI of subject 4CI522. c, Performance of (i) forward-3PNN and (ii) 

inverse-3PNN on subject 4CI522. (SI, P.25) 

 
 
 

 

Fig.5: b, Validation of forward-3PNN for predicting patient off-stimulation EFI. (i) Representative 
off-stimulation EFI predictions of each implant type, as compared to the corresponding clinical 
patient data; and (ii) boxplots summarised the overall performance of forward-3PNN, with the 

median MAPE of each CI electrode type indicated on the figure. c, Overall performance of inverse-
3PNN for inferring the patients’ cochlear descriptors for different CI electrode types, with the median 

MAPE stated for each descriptor. (P.15) 
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Supplementary Fig.11: Full validation results of forward-3PNN. The boxplot at the lower right 
summarises the MAPE values in all predictions. A median MAPE of 8.6% is observed. (SI, P.24) 
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Supplementary Fig.13: Full validation results of inverse-3PNN. (SI, P.26) 

10. Line 25-27 “This work (…) directly reveals individual patient’s in vivo cochlear tissue 
resistivity (0.6 – 15.9kΩcm, n=16) by CI telemetry.” 
 No, this method is not validated. At most, you can claim that your model is able to 
"estimate" the resistivity, but it is not "revealed". 
We agree with the Reviewer and have now changed the word to ‘inferring’ in the 
sentence (P.2, Line 28). 
 

Introduction 
11. Line 32 “restore electrical functions” typically a CI is used to restore “neural function” 

rather than “electric function”. Even if neural function is based on electric function, 
electric seems to be too simple.  
We have now revised the sentence (P.2, Line 34).  
 

12. Line 35 Reference 4 is about optogenetics… sounds inappropriate here. 
The original reference is now replaced by a new reference (P.2, Line 37) (McRackan et 
al, 2018, Laryngoscope) – ‘Over 500,000 cochlear implants (CIs) have been implanted 
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worldwide with this number expected to rise with an aging population and expanding 
indications.’.  
 

13. Line 38 Unfortunately, the CI does not preserve the tonotopy completely. There are large 
misalignments between the electrode locations and the frequencies associated to the 
electrodes. Maybe rewrite slightly this sentence. Maybe something like CI try to mimic 
the tonotopical structure of the cochlea … 
We thank the reviewer’s suggestion. We have now rewritten the sentence as follows:  
‘It also attempts, in broad terms, to reproduce the tonotopic architecture of the cochlea by 
delivering frequency specific programmed stimulation at localised regions of the cochlear lumen.’ 
(P.2, Lines 40-42).  
 

14. Line 63 Cochlear implants are typically classified as neural implants rather than electric 
implants. 
This sentence is now revised as follows:  
‘A major limitation of today’s neural prostheses is their imprecise control of the administered 
stimulus, arising from the intrinsic conductive nature of biological tissues8,9, and particularly of 
the biological fluids in the inner ear5,7’ (P.3, Line 64). 
 

15. Line 67 “auditory nerve fibers” instead of “auditory nerves”. 
This is now corrected (P.3, Line 68). 

 
Results 

16. Line 132 “…the operating frequencies of CIs (i.e. f=1-100kHz)”  
 should this be 1 Hz – 100 kHz or 1 kHz – 100 kHz? 
This should be 1 kHz – 100 kHz, and it is now specified more clearly (P.6, Line 131).  
 

17. Line 148 Here you measure the resisitivity matrices at 83 kHz. I do not understand how 
this 83 kHz frequency relates to the EFI recorded through the cochlear implant. In the 
cochlear implant, the EFI is typically recorded with single pulses and only one sample for 
each stimulating pulse is recorded. This requires clarification. 
Thanks for pointing this out. As discussed above (comment 5), all the graphs and the 
main text associated with the stimulation frequency are now updated with the correct 
stimulation rate (56 kHz). 
 

18. Fig. 4a, b In the subfigures below these subpanels, I was wondering where is the round 
window placed? And whether different electrode locations (electrode insertion depth and 
electrode insertion trajectories) are possible for the same cochlea. These different 
electrode locations would result in different EFIs. 
The 3D printed models do not structurally capture the round window features. In our 
experiment, the electrode array was inserted into the opening of the printed cochlear 
lumen of the models until the distal marker of the CI was positioned at the opening, as 
depicted in Supplementary Fig.22. This procedure is similar to the standard surgical 
procedure, where the distal marker of CI is positioned at the round window. This is now 
stated in the Methods section (P.25, Lines 549-551).  
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Though the models do not mimic the anatomical feature of round window, we expect that 
its effect on EFIs is small because the electrode positions in a patient’s cochlea and in a 
3D printed model that has similar geometric descriptors are close to the same, as shown in 
Supplementary Fig.7b. The 3D printed model and the patient’s cochlea were implanted 
with the same type of electrode array (CISlimJ). The angular insertion depths of the 
electrode array in that patient’s cochlea and in the 3D printed model are approximately 
identical, at ~420o.  
 

 
Supplementary Fig.22: Photo demonstrating the insertion of a CI electrode array in a biomimetic 

cochlea during EFI measurements. (SI, P.37) 
 

 
 

Supplementary Fig.7: b, The electrode positions in (i) a patient’s cochlea and (ii) the 3D printed 
cochlea that has similar geometric descriptors. (iii) Overlap of the patient’s x-ray and the µ-CT 
image of the 3D printed cochlea to show their similarity in the electrode positions. Scale bar = 2 

mm. (SI, P.16) 
 

19. Fig.4d Don’t need the “doubled” panels  
We have now revised the graph.  
 

 
Fig.4d: Comparison of the mean patient EFI profile (n = 97) and the EFI profiles obtained from 

3D printed models made of hydrogel, PDMS and electro-mimetic bone matrix. (P.10) 
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20. Fig. 4d Not sure if in these plots the impedance of the stimulating electrode is also 
plotted. Actually it seems that it is plotted given the large impedance at the location 
corresponding with the stimulating electrode. If so, why is the electrode impedance of the 
stimulating electrode shown here if this is not used in the models? 
We have now removed the impedance of the stimulating electrodes of patients’ EFIs, but 
we would like to keep the impedance of the stimulating electrodes of our models’ EFIs as 
an indication of the stimulation point on the graph. (P.10) 
 

21. Line 281-283 How do you define the “similarity”? 
Similarity is defined using the equation below,  

Similarity (%) = 100% −  MAPE (%) 
, where MAPE is the median absolute percentage error between the off-stimulation EFI 
profile and the predicted profile. We have now added a statistical method section (P.32) 
in the Methods to denote the formulae used for calculating MAPE and similarity. The 
similarity equation is also stated at its first appearance in the main text (P.14, Line 301). 
 

22. Fig.5b The results do not look very patient-specific, maybe because of the measurements 
that are also very similar. However, it would be nice to compare the performance of the 
3PNN predictions against an “average” EFI profile and/or to compare predicted EFIs with 
EFIs from other subjects. 
As discussed in comment 9, we have now included more diverse EFI data from 3 
electrode types. In total, 31 paired sets of clinical data were used in our validation.  
 
In addition to this, as suggested, we examined the performance of 3PNN in predicting an 
‘average’ EFI profile. The ‘average’ EFI profile was calculated from 97 clinical EFI intra-
operative profiles (91 profiles provided by Advanced Bionics® and 6 EFIs of CI1J 
electrode array acquired in our centre). As the implant types of the Advanced Bionics® 
profiles are not known here, the insertion depth of these 97 EFI profiles was assumed to 
be equal to the suggested insertion depth of CI1J electrode array. We found that subject 
4CI522 has the closest match to the ‘average’ EFI profile, with MAPE ~ 6%, see 
Supplementary Fig.12b. Therefore, subject 4CI522’s EFI is used to represent the mean 
population EFI profile. The predictive performance of 3PNN on subject 4CI522 is high, 
with 8.6% MAPE in the forward prediction and < 10% MAPE in the inverse prediction. 
(P.13, Lines 284-307)   
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Supplementary Fig.12: b, The mean of patients’ EFI profiles (or transimpedance matrix profiles) 
(n = 97), and the EFI of subject 4CI522. c, Performance of (i) forward-3PNN and (ii) inverse-3PNN 
on subject 4CI522. (SI, P.25) 
 

23. Fig.5c i) Color-coding is not visible 
ii) Are the huge error bars for CT-measured features correct? 
Fig.5c is now revised to a new graph. The full validation results of inverse-3PNN is now 
moved to Supplementary Fig.13. (SI, P.26) 
 
The huge error bars of the CT-measured features arise from the low resolution of patient’s 
clinical CT scans. We approximate the error bars of the CT-measured features as half 
pixel size of the patient’s CT scan. In the response to comment 41, we also performed a 
sensitivity analysis to evaluate the effect of the uncertainty in the CT measurements on 
the EFI predictions by 3PNN.  
 

24. Line 304 Predictions are based on data from 6 subjects, where is the 1000 predicted set 
obtained from? 
As stated in the Methods section (P.31, Lines 688-691), the ABC-SMC algorithm used in 
the inverse predictions estimates a posterior distribution of the model descriptors that 
satisfies the MAPE threshold defined by the user (i.e. a statistical approach). As the 
predicted distribution of the model descriptors does not have a closed-form expression, 
we approximated the distribution by drawing 1000 samples from the predicted 
distribution. Therefore, the range of each inverse prediction is described by the 1000 sets 
of the model descriptors.  
 

25. Line 315 Here you present Equation 1 which defines a function to fit the EFIs. It is 
however well know that the EFIs do not go to zero and have a sometimes a constant 
ground or base level which needs to be taken into account to fit properly the potential 
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function shown in Equation (1). Did you observe a constant base level in your EFIs? How 
did you account for it in the fittings of A and b? 
We thank the reviewer for raising this comment. Yes, we do see a baseline feature in our 
EFIs, and we agree with the reviewer that the previous fitting function cannot describe the 
‘non-zero’ baseline feature of EFIs. Therefore, in our revised manuscript, we employed 
the following fitting function, 

|z| = ax + C −Eq. 1 

, where |z| is the transimpedance magnitude, a and b are the fitting coefficients and C is 
the baseline of the EFI that is defined as the minimum value of the EFI here. The new 
fitting function can capture the baseline feature of EFIs as |z| approaches the baseline 
when x → ∞.  

 
To ensure that Eq.1 is the best-fit function, we also examined other fitting function forms 
(Eq.2 and Eq.3) that can potentially describe the baseline feature.  

|z| =
a

x
+ C −Eq. 2 

|z| = ae + C −Eq. 3 

Supplementary Fig.16 evaluates their goodness-of-fit by comparing the MAPE between 
the actual patients’ EFIs and the expected EFIs obtained from the fitting functions. The 
graph indicates that Eq.1 outperforms Eq.2 and Eq.3, best-fitting the patients’ EFI data (n 
= 75), with MAPE = 4%. Therefore, Eq.1 is used in our manuscript to parameterise the 
voltage spread characteristics of EFIs.  

In our revised manuscript, we revised the method of evaluating the gradient (dy/dx) of the 

spread distributions of EFIs (i.e. sharpness of the voltage drop) by calculating 
| |

=

−abx  at x = 1mm from the stimulating electrode. Further details can be referred to 
P.16 - 17 of the revised manuscript. 
 
 

 
Supplementary Fig.16: Goodness-of-fit test to evaluate the choice of the fitting forms. (SI, P.29) 
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26. Line 322 I would define “r” as “the distance between the stimulating and the recording 
intracochlear electrode” to be more specific 
We have now updated the definition of ‘r’ to ‘the distance between the stimulating and 
the recording intracochlear electrodes’. (P.16, Lines 344-345) 
 

27. Lines 322-225 Also in Fig 6. In the EFIs of the apical and basal electrodes it is not 
possible to fit any potential function towards the apex or toward the base respectively. 
Did you remove these fits for the analysis of the variables A apex A base, b apex and b 
base?  
Yes, fittings were only performed on spread distributions with at least 4 data points. We 
have now clarified the method of the fitting analysis in Supplementary Fig.15 (SI, P.28, 
Lines 517-518). 
 

28. Line 337 This may be a typo: neurones  neurons 
We have now standardised the spelling. ‘Neurons’ is now used. (P.17, Line 356)  
 

29. Fig.6a What do the marker colors stand for (color bar missing)? 
Fig.6a is now revised to a new figure (P.18). The original color coding is not used.  
 

30. Fig.6d I do not understand the "electrode-distance-distance" plots in (i) as well as the 
plots in (iii)/(iv) 
Fig.6d ii and iii Not clear what are the peaks. Are these the peaks of the second diagonal? 
Peaks need to be defined 
We apologise for the confusion. We have now improved the graph in the revised 
manuscript (Fig.6c, P.18). The 3D model in c(i) shows the 3D overviews of the locations 
of the electrode array in the printed lumens that is reconstructed from µ-CT scans. To 
examine the electrode array locations in the 3D lumens clearly, the locations of the 
electrodes inside the lumen were viewed via the top view (Fig.6c(iii)) and via the side 
view (Fig.6c(iv)). The color-filled regions in Fig.6c(iii) and (iv) outline the boundary of 
the 3D printed cochlear lumens in the corresponding plane.  
 
The peak in Fig.6c(ii) is defined as the maximum |z| of the spread distribution at off-
stimulation positions. This is now stated in the figure caption (P.18, Lines 388-389). 
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Fig.6: c, Reconstructed 3D µ-CT volumes of the cochlear lumens of the biomimetic cochleae with 
a CI electrode array inserted (marked green). Scale bar = 2 mm; (ii) Off-stimulation EFI profiles 

of the models with the peaks indicating the maximum |z| of the spread distributions at off-
stimulation positions; (iii) Top view and (iv) side view of the cochlear lumens of the models. (P.18) 

 
31. Fig.7 Color-coding for predicted resistivity is not needed as it is shown at the y-axis. 

This original Fig.7 is now moved to Supplementary Fig.18 (SI, P.30) and the color-
coding is removed. 
 

32. Line 394-422 The “deduction” (I would rather call it “fitting”) of patient-specific bone 
resistivities lacks validation. This is rather a hypothesis and not a method, this should be 
pointed out more clearly. 
Following the Reviewer’s comment, we have changed the word ‘deducing’ to ‘inferring’ 
in the sentence (P.19, Line 414), and have now clarified this in the Discussion section 
(P.21, Lines 457-460). As direct resistivity measurement of cochlear bone in live human 
remains to be established, we believe that validating this would be intriguing for future 
research. 
 

Discussion  

33. Line 431-432 What about the surgical procedure to insert the cochlear implant, or even 
the fact that different surgeons insert the same implant differently? An extreme case 
would be cochleostomy vs round window approach which theoretically should have 
significant effects on the electrode locations and EFIs which your model do not take into 
account. It would have been much better the inclusion of different electrode arrays from 
different manufacturers and having different insertions in the same cochlea to have more 
variability in measured EFIs. 
We agree that the variation in surgical procedure could cause deviation in the insertion 
depth from the implant specification, and therefore the EFIs. One of the authors is a CI 
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surgeon, who has used both methods for CI insertion. The distance between the 
cochleostomy and the round window is usually around 1 – 2 mm in surgeries. Therefore, 
as discussed in comment 2, we investigated how much the EFIs were changed when 
varying the insertion depth by ± 2 mm. We observed a 8% median MAPE, and this is 
considered as a source of uncertainty in our prediction. This is now elucidated in the 
Discussion (P.21, Lines 449-454).  
 
In addition, we performed an insertion study in a cadaveric cochlea to examine the 
change in the EFI when the insertion is via a) the round window approach, via b) the 
cochleostomy approach with the round window left open, and via c) the cochleostomy 
approach with the round window closed with fascia (see the graph below as reviewer-
only information). The results show that EFIs obtained via different insertion approaches 
are very similar, with alike magnitude and shape, indicating that the effect is insignificant. 
 
As discussed in comment 2, we have now included additional information regarding EFIs 
measured with different electrode arrays from different manufacturers. The findings in 
Supplementary Figs.9-13 (SI, P.20-26) demonstrate that the EFIs measured with different 
electrode types in the 3D printed models have a similar general shape (Supplementary 
Fig.10a), and 3PNN displays a good accuracy in predicting EFIs of different electrode 
types. 
 
 

 
EFIs obtained in the same cadaveric cochlea when the insertion is via a) the round window 
approach, via b) the cochleostomy approach with the round window left open, and via c) the 

cochleostomy approach with the round window closed with fascia. 
 

 
34. Line 438 Why the electrode locations were not required? 

This is because 3PNN takes the assumption that the insertion depth follows the electrode 
locations suggested by the implant specification unless further specification. The 
assumption of the electrode location is now emphasised in the Results (P.13, Lines 287-
289), Discussion (P.22, Line 471) and Methods (P.31, Lines 694-696) sections.  
 

35. Line 441-442 Two different electrode arrays having different dimensions, including inter-
electrode spacings (1.3 mm vs 1.1 mm as acknowledged in line 648), were used for 
training and testing the algorithm which adds more difficulty to the aim of predicting the 
EFIs. 
We thank the reviewer in suggesting using the same electrode array in training and 
validating the model. As addressed in comment 2 previously, in Supplementary Figs.9 – 
10 (SI, P.20&22), we have showed that EFIs measured with different electrode arrays in 
same biomimetic cochleae have similar overall shape, and have validated that 3PNN is 
capable of predicting EFIs of different electrode arrays (CI1J, CISlimJ and CI522). These 
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results give confidence that using different electrode arrays in prediction and training 
does not complicate the prediction; in addition, 3PNN demonstrates the versatile 
application for predicting EFIs of different electrode arrays without needing model 
adjustment. 
 

36. Line 462-465 Your model does not consider ossification of the cochlea, tissue growth 
across the electrode array and effect of electrode location. In my opinion, the potential 
application of the 3PNN for the applications here mentioned seems very optimistic at this 
stage. 
We agree that further study is needed to explore the versatility of 3PNN on disease 
modelling. We have now emphasised this in the Discussion section (P.21, Lines 464-
469).  
 

Methods 

37. Lines 531-534 Are you sure that the acquisition was done at 83 kHz? I though the AB can 
record at most at ~50 kHz? Which type of stimulation was used to measure the EFIs, 
analog stimulation or biphasic pulses? Most manufacturers only use biphasic pulses and 
clinically only one sample for each stimulation pulse is available. Which reference 
electrodes were used for stimulation and recording and how do these reference electrodes 
affect the EFI? How does this relate to the position of the reference electrode in the 
printed cochlear models? 
Thanks for pointing this out. The stimulation rate should be 56 kHz. We have updated all 
the graphs related to the stimulation rate.  
 
As discussed in comment 6, in all EFI measurements, including the new data measured by 
CISlimJ and CI522 electrode arrays in the revision, the reference electrode is the 
extracochlear plate ground of the electrode array (known as the ‘case ground’ of CI1J and 
CISlimJ, or the ‘MP2 plate extracochlear electrode’ of CI522). This is now stated in the 
Methods section (P.25, Lines 551-553). We did not study the effect of the reference 
electrodes as the case ground is the only reference electrode available in CI1J and CISlimJ 
electrode arrays. The position of the reference electrode was located underneath and was 
in direct contact with the 3D printed cochlear samples during EFI measurements to mimic 
the configuration in patients. In our experiments, we found that the position of the 
reference electrode does not matter as long as the base thickness of the model is at least ~ 
4 mm thick.   

 
38. Line 551 Which spacing d has been used? 

The spacing between the two inner electrodes was 8.4 mm in our measurements. This is 
now specified in the Methods section (P.26, Line 578).  

 
39. Line 552 Are you sure that the stimulation rate in one electrode was 83 kHz? Again 

typically, biphasic pulses are used to record impedances and definitely at much lower 
rates. Authors should explain in detail how this fast stimulation or recording rate (not 
clear) was generated with the AB implant. 
All results related to the stimulation rate are now corrected using 56 kHz.  
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40. Line 596-598 “The EFI profiles were collected using the telemetry function of the CI with 
the AB’s Volta software as part of the intraoperative evaluation at our centre.” 
 what about postoperative impedance changes? 
We did not examine the post-operative impedance changes in this manuscript, since our 
focus is on evaluating the off-stimulation EFI indicating ‘current spread’. Exploring post-
operative EFIs (in particular for on-stimulation) will be of interest in our future work.  
 

41. Line 603 I am a bit concerned about the quality of the CT scans and the variability of the 
derived anatomical measures. How much did the resolution of the CT scan (0.4x0.4x0.4 
mm3) impact the anatomical measures of the cochlea? At least you will have an error of 
half voxel size. Specially looking at Fig.5 in supplementary material Section II) the 
resolution of the human CBCT scans looks quite limited. 
We understand the reviewer’s concern here. Indeed, the resolution of the patients’ clinical 
CT scans is not ideal. Therefore, we performed a sensitivity analysis to determine the 
impact of the uncertainty in the CT measurements on the EFI predictions (n = 31). We 
assume the uncertainty in the CT measurements is equal to half pixel size of the patient 
CT scan. Supplementary Fig.19a shows the MAPE of the predicted EFIs when one of the 
input geometric descriptors is subject to ± uncertainty, in comparison with the predicted 
EFIs using raw measurements. We found that the impact of the uncertainty in the 
measurements of basal lumen diameter, cochlear width and cochlear height on the EFI 
predictions is insignificant, while the uncertainty in the taper ratio might cause an effect 
on the predictions. However, the overall impact is expected to be low as the median 
MAPE is ~7%. This is now stated in the Discussion section (P.21, Line 449-453) and 
Supplementary Information (SI, P.31). 

 
Supplementary Fig.19: a, The effect of the uncertainty in the CT measurements of the geometric 

features on EFI predictions. (SI, P.31) 
 

42. Line 621-621 “(..) a grid search varying the number of hidden layers from 1 to 10 (1, 2, 3, 
5, 10) and nodes from 16 to 64 (16, 24, 32, 64) was performed to determine the best 
performing hyperparameters.” 
 are these values appropriate? Specially when increasing the number of layers to 3,5,10 
it seems that the number of parameters is extremely large in comparison to the small 
dataset used for training. 
The grid search was initially performed on number of hidden layers = [1, 5, 10] and nodes 
= [16, 24, 32, 64]. As we found that one hidden layer yields the best performance, we 
then narrowed down the search space, and further examined the performance of our 
neural network when the number of hidden layers was set to 2 and 3. We found that one 



23 
 

hidden layer still gives us the best performance, hence one hidden layer is used in our 
final hyperparameter configuration. 
 

Supplementary information 

43. Supp. line 94-97 “The rationale for using a 1w/v% NaCl solution is that 1w/v% NaCl 
solution at ambient temperature has the most similar conductivity to human cerebrospinal 
fluid, which is 1.79 S/m at body temperature14, and it is known that the electrical 
conductivity of cerebrospinal fluid is similar to the conductivity of perilymph.” 
 provide reference 
Perilymph has a similar ionic composition to cerebrospinal fluid as it is in continuity with 
the cerebrospinal fluid in the subarachnoid space in human cochleae (Nin et al, 2016, Eur 
J Physiol). Therefore, we used the conductivity of cerebrospinal fluid to approximate the 
conductivity of perilymph. The sentence is now amended with the reference added (SI, 
P.9, Lines 192-198). 
 

44. Supp. Fig.3b Why such a large difference between Y2(C) and Y2(E) ? 
Supplementary Fig.3 is now moved to Supplementary Fig.4 (SI, P.10). Y2 of CPE2 can be 
affected by bone compositions, cadaver age, anatomical geometries, CI insertion depth, 
etc. (Jiang et al, 2020, APL Mater.; Swanson, et al, 1972, J. Biomech.; Lin et al, 2015, 
Conf. Proc. IEEE Eng. Med. Biol. Soc.). Since the 3D printed cochlear sample (sample E) 
was not fabricated exactly with the same cochlear geometries to cadaver (C), it was 
reasonable to see some variations.  
 
In cadaveric cochleae, we found that the values of Y2 varies from 0.5 to 3 nS due to the 
variation in the cadaveric cochleae (Jiang et al, 2020, APL Mater.). This range is of a 
similar magnitude to the value of Y2 obtained from sample E, which is ~0.7 nS. 
Therefore, we believe the difference between Y2(C) and Y2(E) is reasonable. 
 

45. Supp. Fig.4a The lowest resistivity reported for live human skulls should be 0.6 kΩcm, 
not 500 Ωcm – see Supp. Fig.1b and main text (lines 114, 135). 
This is now updated (SI, P.11, Supplementary Fig.5a). 
 

46. Supp Fig.5 On the small subplots you show the real CT scans. The upper plots show the 
cochlea after doing image processing (maybe segmentation and some filter for 
enhancing). How much did these filtering affect the estimation of anatomical dimensions? 
when enhancing edges and contours of the CBCT scans you modify the grey scale that 
gives information about the bone. These questions are related to the concerns about the 
resolution of the scans to estimate the detailed anatomical features of the cochlea. 
Supplementary Fig.5 is now moved to Supplementary Fig.6 (SI, P.14). We have now 
remeasured all the patients’ features from their CT scans, and ensured that no filtering 
effect was used and the greyscale value was not adjusted to avoid errors due to the use of 
different settings. In the response to comment 41, we studied the sensitivity of the EFI 
predictions caused by the uncertainty in the CT measurements.  
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47. Supp. Note 1 i) Line 174: explain v (Poisson’s ratio) 
This is now amended (SI, P.13, Line 284). 
 

48. ii) For the “Global deformation” part, it is difficult to follow the calculus because the 
equations are unnecessarily rearranged multiple times.  
For instance, use γ=F/AG instead of G=F/Aγ. The equation in line 175 is not needed then. 
We thank the reviewer for the careful reading. This is now amended (SI, P.13, Line 282).  
 

49. iii) Line 182-184: “Therefore, as the global shear strain and local normal strain caused by 
CI electrode array insertions are insignificant, we expect that the insertion of CI electrode 
(…) will not impose any significant deformation to the matrix.” 
 what is your criterion to call these values insignificant? How large would the strain 
have to be in order to be significant? 
Based on our calculation in Supplementary Note 1, the local normal strain and the global 
shear strain are in an order of magnitude of 10-5 (0.001%). As an example, we can 
imagine that the elongation of the matrix caused by an insertion is only around 0.0001 
mm in a cochlear model with a cochlear width of 10 mm. Therefore, we believe that a 
strain less than 1% can reasonably be considered as insignificant, and the strain of our 
model is far less than 1%. 
 

50. Supp. Fig.6ab It is very difficult to see the electrode array in these plots 
Supplementary Fig.6ab is now moved to Supplementary Fig.1. An inset photo of the 
electrode array is now added.  

 
Supplementary Fig.1: Finite element models of a(i) a simplified spiral cochlea without the 

intracochlear membrane structures, and b(ii) a cochlea with the Reissner’s membrane and the 
Basilar membrane. Scale bar = 2 mm. (SI, P.4) 

 
51. Supp. Fig.6e Which boundary condition is applied here? (compare Supp. Fig.7) 

Supplementary Fig.6e is now moved to Supplementary Fig.1b. The ground was applied to 
an infinitely surrounding sphere. This is now specified (SI, P.6, line 154). 
 

52. Supp. Fig.7 The influence of the boundary condition is very interesting. What are the 
consequences? Which boundary condition fits best to the in vivo or the in vitro (3D-
printed cochleae) cases? This needs to be addressed in the discussion. 
Thanks for the comment. Following the reviewer’s suggestion, we performed additional 
tests to examine which boundary condition fits best with the physical (3D printed 
cochleae) model cases. In Supplementary Fig.1a(ii), we compare the experimental EFIs of 
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five 3D printed cochlear models with the simulated EFIs obtained from our COMSOL 
FEM built with the same model descriptors. These results show that the ground 
placements affect the EFI result significantly. Although placing the ground at the lumen 
opening in the COMSOL model (condition I) yields the EFI most matching the physical 
measurements compared to other types of placements, the resemblance is still not ideal. 
When performing the same comparative study for a linear geometry, as shown in 
Supplementary Fig.1a(iv), the MAPE can be > 180%. Although our comparative results 
can be used to guide the boundary condition choice in FEM, the real implication of these 
results is to confirm the advantages of using a physical model when the modelling 
parameters or the physical empirical laws are undetermined and complex. Our 3D printed 
cochlear models can replicate clinical EFIs with high fidelity, and are robust to changes in 
measurement configuration. This is now pointed out in the Discussion (P.20, Line 439-
441) and Supplementary Information (SI, P.4-6).  
 

 
Supplementary Fig.1: a(i), Finite element models of a simplified spiral cochlea without the 
intracochlear membrane structures. Scale bar = 2 mm. a(ii), Off-stimulation EFI profiles 

simulated with the common choices of boundary condition used in literature, in comparison with 
the experimental results acquired from the corresponding 3D printed cochlear models that have 

the same electroanatomical model descriptors as the COMSOL models. The location of the 
ground is indicated in blue (the ground in condition (VI) is applied to an infinitely surrounding 
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sphere). The values at the upper right indicate the MAPEs between the simulated and the 
experimental EFIs. a(iii), A finite element model of a linear uncoiled cochlea without the 

intracochlear membrane structures. Scale bar = 10 mm. a(iv), Off-stimulation EFI profiles 
simulated with different choices of boundary condition. Full caption description can be found in 

SI. (SI, P.4-6) 
 

53. Supp. Fig.8 Figure title: “Electrode-to-spiral centre distance” 
This figure is now moved to Fig.4c(i) in the main text (P.10) with the correct caption. 
 

54. Supp. Fig. 11c Provide the dimension of the input and output layers. 
The original Supplementary Fig.11 is now Supplementary Fig.9 in the revised 
manuscript. The figure caption is now updated as follows (SI, P.21, Lines 422-428). 
 
‘…In summary, the input layers consist of 7 parameters – basal lumen diameter, taper ratio, 
cochlear height, cochlear width, matrix resistivity, an array of the stimulating electrode positions 
and an array of the recording electrode positions; one hidden layer with 32 nodes is used; the 
output of the NN model is a transimpedance matrix (known as EFI for Advance Bionics® 
implants, or transimpedance matrix for Cochlear Corporation® implants), of which the 
dimension equals to the product of the dimension of the recording position array and the 
dimension of the stimulating position array.’ 
 

55. Supp. Tab.1 3rd row, 2nd column: should be “Ld,1turn” 
This is now corrected (SI, P.15). 
 

56. Supp. Fig.9 This figure is not referenced at all 
The original Supplementary Fig.9 is now Supplementary Fig.21 in the revised 
manuscript, and it is now referenced in the Methods section (P.24, Lines 521-522). 
 

57. Supp. Fig.13cd i) indicate units (mm) on x-axis in panels c,d (can be confused with 
electrode number in a,b,e) 
ii) it seems that only spread distributions with a minimum of 4 data points have been 
fitted 
The original Supplementary Fig.13 is now Supplementary Fig.15 in the revised 
manuscript. The unit (mm) is now included in our revised figure (SI, P.28). Yes, only 
spread distributions with a minimum of 4 data points were fitted. We have added this 
description in the figure caption (SI, P.28, Lines 517-518).  

 
58. Supp. Fig.14 Flip y-axes? 

In our fitting analysis, in order to convert the x-axis to ‘distance between the stimulating 
and the recording intracochlear electrode along the CI’, we transformed the left part of the 
curve via flipping the curve over y-axis, f(x) → f(-x), and shifted the curve horizontally 
so that the stimulus positions begins at 0. To better clarify our methodology here, we have 
now removed this statement in the figure because the conversion to ‘distance between the 
stimulating and the recording intracochlear electrode’ already indicates the flipping of y 
axis.  
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59. Supp. Fig.15 Line 395-396: How did you select the values for the 3D printed model? 
Some of them are very off-centered. The simplest way would be to use the medians. 
The original Supplementary Fig.15 is now Supplementary Fig.17 in the revised 
manuscript. We thank the reviewer for this suggestion. We agree that it is more 
appropriate to use the median values here. Thus, we fabricated the on-demand patient-
specific models using the median values of the predicted model descriptors, as indicated 
in Supplementary Fig.17. 

 

 
Supplementary Fig.17: The predicted distribution of the model descriptors of subjects 11J and 21J, 
and the selected parameters for fabricating on-demand patient-specific biomimetic cochleae. (SI, 

P.29) 
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Reviewer #2 (Remarks to the Author): 
 
The authors are to be commended for their timely and innovative work. Cochlear models 
would be very useful for improving cochlear implant electrode design, surgical planning, and 
basic research to name a few possibilities. To my knowledge, the work is novel and has 
potential to impact hearing science and patients in the future. Many of my questions focus on 
the 3D printed models that guide the development of the neural network. 

 

1. Line 92-93: I wasn’t clear if your modeling approach resolves the issues concerning 
boundary conditions. If so, can you point me to where the boundary conditions are 
discussed for your approach. 
We thank the reviewer for his/her valuable comments on our manuscript. Our manuscript 
focuses on the development of 3PNN – where EFIs acquired from 3D printed cochlear 
models, along with their physical model descriptors, are used as the input dataset for 
training a neural network machine learning model.  
 
In our revised manuscript, we investigated which boundary condition in FEM can lead to 
most similar EFI profiles to the 3D printed cochleae (in vitro case), as shown in 
Supplementary Fig.1a (SI, P.4-6) (please also refer to the response to comment 52, 
reviewer1). Although placing the ground at the lumen opening in FEM (condition I) is 
found to yield EFI profiles better matching the experimental EFIs of the 3D printed 
models for the same model descriptors, the model accuracy is low (MAPE between ~25% 
to ~180% depending on model geometry). This finding highlights the advantage of 3PNN 
compared to FEM, as FEM has not been able to replicate all underlying physics in the 
physical system (e.g. conduction at the electrolyte and electrode interface), despite the 
FEM model replicates all the geometric parameters and bulk materials properties in the 
3D printed model (condition VII in Supplementary Fig.1a(ii)). In summary, by generating 
training dataset using 3D printed models (physical systems), we have bypassed the 
sensitivity in the choice of boundary conditions and physical laws that were normally 
faced by FEM. This is pointed out in the introduction (P.4, Lines 92-93) and in the 
discussion (P.20, Lines 439-441).   
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Supplementary Fig.1: a(i), Finite element models of a simplified spiral cochlea without the 
intracochlear membrane structures. Scale bar = 2 mm. a(ii), Off-stimulation EFI profiles 

simulated with the common choices of boundary condition used in literature, in comparison with 
the experimental results acquired from the corresponding 3D printed cochlear models that have 

the same electroanatomical model descriptors as the COMSOL models. The location of the 
ground is indicated in blue (the ground in condition (VI) is applied to an infinitely surrounding 

sphere). The values at the upper right indicate the MAPEs between the simulated and the 
experimental EFIs. a(iii), A finite element model of a linear uncoiled cochlea without the 

intracochlear membrane structures. Scale bar = 10 mm. a(iv), Off-stimulation EFI profiles 
simulated with different choices of boundary condition. Full caption description can be found in 

SI. (SI, P.4-6) 
 

2. Lines 165-170: Great care was exercised in designing the matrix to ensure a CI electrode 
can be inserted without damage to the electrode. If models are to be used in a patient-
specific framework, are the final positions similar to those in patients? 
My concern is that later (lines 188-190) we are told that intracochlear structures (e.g., 
basilar membrane) are not modeled. Does the presence of intracochlear structures not 
affect electrode insertion? If it does not, please provide evidence. 
We acknowledge the reviewer’s concern here. In our revised manuscript, we compared 
the positions of the electrode array in a patient’s cochlea and in a 3D printed model that 
has similar geometric descriptors, as shown in Supplementary Fig.7b. Both the 3D printed 
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model and the patient’s cochlea were implanted with the same type of electrode array 
(CISlimJ). Though our 3D printed models do not capture the intracochlear structures, the 
positions of the electrode array in the patient’s cochlea and in the 3D printed model are 
almost identical, with an angular insertion depth ~420o. This finding is now added in the 
Results section (P.11, Lines 233-238). 
 

 
Supplementary Fig.7: b, The electrode positions in (i) a patient’s cochlea and (ii) the 3D printed 
cochlea that has similar geometric descriptors. (iii) Overlap of the patient’s x-ray and the µ-CT 
image of the 3D printed cochlea to show their similarity in the electrode positions. Scale bar = 2 

mm. (SI, P.16) 
 

3. The modeling done in this work is quite complex and involves a number of 
approximations and assumptions. It would help me if sources of errors in modeling could 
be tabulated in one place and their effects could be quantified. As an example, cochlear 
geometry is modeled using a few parameters. How close are these models to that of the 
patient being modeled?  
Global and local metrics as used in the following article would be a nice way to quantify 
these discrepancies: 
 
Noble JH, Labadie RF, Majdani O, Dawant BM. Automatic segmentation of intracochlear 
anatomy in conventional CT. IEEE Trans Biomed Eng. 2011;58(9):2625-2632. 
doi:10.1109/TBME.2011.2160262 
 
An error map as in Figure 8 of that paper would be useful. 
 
If there are discrepancies between the model geometry and the patient’s geometry as 
revealed by imaging, how do these propagate to errors in EFI simulations? 
Similarly, other assumptions and approximations should be considered. A sensitivity 
analysis would help tremendously. 
 
We thank the reviewer for this insightful comment. We have now provided answers 
according to the three main points listed below.   
 

a, Comments on the use of 4 geometric parameters in cochlear geometry modelling 
1. Reasons for using parametric modelling 
The use of the four geometric parameters does not intentionally aim to thoroughly 
capture the patient’s cochlear geometry. There are several reasons why we chose 
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parametric modelling to model cochlear geometry, rather than modelling the entire 3D 
surface contour, which is complex and computationally expensive. A key benefit of 
parametric modelling is the ease of modelling. Simple models with fewer parameters 
are always preferred over complex models with many parameters due to the simplicity 
of interpretation, as long as the most relevant parameters are captured in the model. 
Having more parameters not only increases the demand for experimental data and 
computational time, but may also increase the noise of the model. 
 
Here, we selected the basal lumen diameter, taper ratio, cochlear width, cochlear 
height and cochlear resistivity as the modelling parameters because the intracochlear 
voltage distribution is mainly governed by volume conduction and the angular 
insertion depth of the electrode array. While the four geometric descriptors control the 
conduction volume, the cochlear width predominantly controls the angular insertion 
depth, as shown in Supplementary Fig.7c. The graph also reveals that our 3D printed 
cochleae display a similar correlation between the angular insertion depth and the 
cochlear width, compared to the patient’s trend. This indicates that the patients’ 
angular insertion depth features can be replicated by 3D printed models that have 
similar cochlear width. 
 
2. The discrepancy between the patient’s cochlear geometry and the biomimetic 

cochlear lumen modelled by 4 geometric descriptors 
In Supplementary Fig.7a, the 3D volumes of the patient’s cochlea and the biomimetic 
cochlea that have similar geometric descriptors are overlapped. Despite only 4 
parameters are used to model the patient’s cochlear geometry, the 3D printed model 
can capture the approximate shape of the patient’s cochlea. A good match is observed 
between the model’s and the patient’s geometries from 0o – ~540o (~1.5 cochlear 
turn). Though the geometry similarity reduces for insertion beyond ~1.5 turn (540o) 
of the cochlea, we suggest the effect is minor because the electrode array will not 
reach a depth of 540o in normal scenarios (the mean angular insertion depth in 
patients is ~420o

, P.O’Connell et al, 2017, Otol. Neurotol.). In particular, as 
mentioned in comment 2 above, when using the same electrode array type in a 
patient’s cochlea and in a 3D printed model that has similar geometric descriptors, 
the positions of the electrode array are almost identical (Supplementary Fig.7b).  
 
Given the outstanding geometry matching between the patient’s cochlea and the 
printed lumen of the model up to 1.5 turn, we expect that the propagation error in EFI 
predictions is not significant as the minor differences in surface contour does not 
affect the configuration of the electrode array (as proven in Supplementary Fig.7b) 
and the regional volumetric conductance of cochlear lumen. 
 
The above finding is now included in the revised manuscript (P.11, Lines 233 - 240).  
 

b, Assumptions and uncertainty in 3PNN 
The key assumption taken in all predictions in this study is that the electrode positions 
of the implant follow the CI specification as 3PNN aims to forecast the statistically, 
most likely EFI outcomes. This has now been clarified in the Results (P.13, Lines 287-
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289, Discussion (P.22, Line 471) and Methods (P.31, Lines 694-696) sections, and 
details of the input values of the electrode positions of different implant types used in 
this study can be found in Supplementary Table 2 (SI, P.21).    
 
There are two main potential sources of uncertainty in 3PNN, as noted in the 
Discussion of the revised manuscript (P.21, Lines 449-454). The first is the uncertainty 
in the clinical CT measurements, which are normally at low resolution quality. We 
examined its impact on the patients’ EFI predictions (n = 31) with the assumption that 
the uncertainty in the clinical CT measurements is equal to half pixel size of the patient 
clinical CT scan (Supplementary Fig.19a). We found that the impact of the uncertainty 
in the CT measurements of basal lumen diameter, cochlear width and cochlear height 
on the EFI predictions is negligible, while the uncertainty in the taper ratio might cause 
a slight effect on the predictions, with a median MAPE ~7%. The second is the 
uncertainty in the CI electrode insertion depth. In clinical scenarios, the insertion depth 
in patients could slightly vary from the specification due to different surgical practices. 
Therefore, we performed a sensitivity analysis to evaluate the change in EFI 
measurements when there is a ± 2 mm difference in the electrode insertion depth in our 
3D printed models (Supplementary Fig.19b). The median MAPE is ~ 8% when the 
insertion depth was changed by ± 2 mm (n = 18).  

 

 

Supplementary Fig.7: a, Superimposing the CT volumes of a patient cochlea and the cochlear 
lumen of a 3D printed biomimetic cochlea that have similar values of the four geometric features. 
b, The electrode positions of the patient and the 3D printed cochlea shown in (a). Scale bar = 2 
mm. c, The relationship between the angular insertion depth of the CI electrode array and the 

cochlear width in patients’ cochleae (n = 19) and in the 3D printed biomimetic cochleae (n = 8). 
(SI, P.16) 
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Supplementary Fig.19: a, The effect of the uncertainty in the CT measurements of the geometric 
features on EFI predictions. b, The effect of the uncertainty in the electrode insertion depth on 

EFI measurements. (i) MAPEs of the experimental CI1J EFIs acquired when there was a ± 2 mm 
variation in the electrode insertion depth in our 3D printed models (n = 18). (ii) Comparison of 
the EFIs acquired with typical insertion depth and the EFIs subject to ± 2 mm insertion depth 
variation. The values at the upper right indicate the MAPE between the two EFI profiles. (SI, 

P.31) 
 

4. It is mentioned that the model can reconstruct patients’ EFI profiles arising from off-
stimulation positions with a 90% mean accuracy (n = 6). From a clinical perspective, 
what is a sufficient level of accuracy and what is the justification for this level? The 
accuracy of EFI should be discussed to help the reader appreciate why it is a suitable 
technique for testing of the model. 
 
Also, does n = 6 provide sufficient statistical power in light of the large variability in 
cochlear anatomy? 
a, Comments on the sufficient level of accuracy 

To our knowledge, there is no general consensus on the accepted level of accuracy 
from literature. From our viewpoint, being able to recognise the EFI ~ 90% mean 
accuracy would be clinically useful as most clinical tests with a sensitivity of 90% 
would be considered good tests if the false-positive rate is low. In our revised 
manuscript (P.13, Lines 284-307), we validated the accuracy of 3PNN 
(autonomously, with no model adjustment) using varying clinical EFIs acquired from 
different implant types (17 EFIs from Advanced Bionics® HiFocusTM SlimJ electrode 
(CISlimJ), 6 EFIs from CochlearTM Nucleus® CI622 slim straight electrode (CI622) and 
8 EFIs from CochlearTM Nucleus® CI522 slim straight electrode (CI522)). 
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Supplementary Fig.11 shows that 28 out of 31 clinical EFI predictions achieve a 
MAPE < 12% (accuracy > 88%) when substituting the patient’s cochlear resistivity 
with the mean reported resistivity of live human skull (9.3 kΩcm). The median 
prediction MAPE is 8.6% (boxplot at the lower right, Supplementary Fig.11). The 
result confirms the high accuracy and the low false-positive rate of 3PNN. To 
illustrate how much the prediction error is when the MAPE is ~ 8%, the graph below 
compares the clinical EFI of subject 4CI522 and its predicted EFI, which exhibits a 
MAPE = 8.6%. The prediction closely resembles the clinical EFI.  
 

b, Representativeness of the clinical data used in validation 
We have now validated the accuracy of 3PNN using more varying EFIs of different 
electrode types. In total, as mentioned above, 31 paired sets of patient CTs and EFI 
data of three different electrode types (CISlimJ, CI622 and CI522) were used. These 31 
clinical data used in validation can represent the EFI variation in patient population, 
as shown in Supplementary Fig.12a by comparing the 31 clinical data used in 
validation with 97 clinical EFI data. The validation results shown in Supplementary 
Fig.11 and Supplementary Fig.13 suggest that both forward-3PNN and inverse-
3PNN exhibit a good performance quality, with median MAPE < 9% in forward 
predictions and median MAPE < 8% in inverse predictions. In addition, a similar 
performance quality is observed in predicting the patient population mean EFI profile 
(Supplementary Fig.12c). Clinical profile of subject 4CI522 is chosen to represent the 
patient population mean as the profile is close to the mean EFI profile derived from 
97 patients, as shown in Supplementary Fig.12b. The above finding confirms the 
accuracy of 3PNN in predicting the EFI outcome in normal patient population.  
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Supplementary Fig.11: Full validation results of forward-3PNN. The boxplot at the lower right 
summarises the MAPE values of all predictions. (SI, P.24) 
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Comparison of subject 4CI522’s EFI and the predicted EFI, which exhibits a MAPE of 8.6%. 

 

 

Supplementary Fig.12: a, The clinical EFIs (n = 31) used in 3PNN validation to represent the EFI 
variation in patient population (n = 97). b, The mean of patients’ EFI profiles (or transimpedance 
matrix profiles) (n = 97) and the EFI of subject 4CI522. c, Performance of (i) forward-3PNN and (ii) 

inverse-3PNN on subject 4CI522. (SI, P.25) 
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Supplementary Fig.13: Full validation results of inverse-3PNN. (SI, P.26) 

5. Line 285: It is noted here that “the predictive quality in cochlear height is less satisfactory 
compared to …”. How could prediction of cochlear height be improved? 
We thank the reviewer for raising this comment. In our opinion, the less satisfactory 
predictivity for the cochlear height is because the EFIs might be less sensitive to the 
cochlear height, as the average CI insertion depth in patients is 420o (<1.5 turns) instead 
of the full height of the cochleae.  
 

6. Line 592: It is noted that EFI profiles were chosen randomly from 16 adults. Do these 16 
capture the range of variability seen in EFI profiles in the patient population? 
As far as we are aware, there is no literature reported the EFI variation in the patient 
population. To address the reviewer’s concern here, as mentioned in comment 4, we have 
widely expanded the clinical dataset used in the revised manuscript. In summary, 3PNN 
was validated with 31 paired sets of clinical EFIs (3 electrode types) and CT scans. The 
representativeness of these 31 clinical data is ensured by compared the variation in 97 
clinical EFIs (91 of them were acquired independently by Advanced Bionics®) in 
Supplementary Fig.12a (SI, P.25). The mean patient EFI profile used in the revised 
manuscript was derived from 97 clinical EFIs (Supplementary Fig.12b, SI, P.25), and on-
demand patient-specific models were fabricated to reproduce two extreme clinical EFIs 
(Fig.6b, P.18). We believe the analyses performed in this study is applicable to the 
variation seen in the patient population. 
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Reviewer #3 (Remarks to the Author): 
 
Very nice and comprehensive work.  
 
The idea of using PDMS via embedded printing is not the most ideal but the results show that 
it works as and matches the electro-mimetic performance of cochleae. Supplementary results 
and video is also supportive of the work.  
 
To improve the quality of the paper, I suggest that the authors also add some information on 
challenges related to such embedded printing and what future work should be done. What 
about longer-term performance? Does such a PDMS device can be used multiple times or 
should be used as a one-time device? Some analysis of mechanical performance from 
vibration-related fatigue behavior - will that be a factor?  
 
Overall, the results are certainly very exciting. 

 
We thank the reviewer for his/her comments.  

a, Challenges in this study 
Indeed, there are several challenges associated with 3D printing modelling. The key 
challenge is material selection. It is challenging to find a material that can be tuned over a 
wide resistivity range and, at the same time, possesses suitable rheological properties for 
embedded printing. This difficulty is addressed by creating tuneable interconnected 
network of sacrificial materials embedded in a PDMS matrix, where the PDMS acts an 
embedded printing medium at the same time. The second limitation is data generation and 
interpretation. Without a computational model, large amount of experimental data may be 
required for recognising trends in a multivariable problem. We thus employed a neural 
network machine learning model that learned the experimental data behaviour for EFI 
modelling. As per the reviewer’s suggestion, the challenges in this study are discussed in 
the Results section (P.7, Lines 150-153), in the Supplementary Information 
(Supplementary Fig.5a, SI, P.11 & Supplementary Note 2, SI, P.17). 
 

b, Future work 
In future investigations, it will be of interest to explore the use of 3PNN in disease 
modelling, such as abnormal cochlear anatomy and resistivity. Validating the deduction 
of the patient-specific cochlear resistivity of 3PNN will also be an intriguing area for 
further research. The above is now included in Discussion (P.21, Lines 457-469). Apart 
from these, future studies can be undertaken to exploit a spatially heterogeneous 
architecture in the matrix for mimicking the spatially-dependent tissue properties of 
human cochleae.  
 

c, Long-term performance of the biomimetic cochleae 
Regarding the long-term performance of the biomimetic cochleae, as the models are made 
of PDMS, they can be used multiple times and are long-lasting, as opposed to models 
made of hydrogels that are lack of stability, mechanical properties and resistivity 
tuneability. In Supplementary Fig.5c, we examined if the EFI of the same model will 
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change after a year. The EFIs measured with a time space of one year are almost 
identical, proving the long-lasting properties of the models.  
 
We believe that vibration during the insertion is unlikely to cause any detrimental effects 
on the mechanical properties of the model as only very little force is applied to the model 
during CI insertion (~0.004 N, Majdani et al, 2010, Acta Otolaryngol.). From our 
mechanical deformation analysis in Supplementary Note 1 (SI, P.13), we found that the 
local normal strain and the global shear strain are in an order of magnitude of 10-5 

(0.001%). In Supplementary Fig.5d, we show that the change in the EFI measurements is 
negligible after 8 insertions. The above finding confirms that the insertion of the implant 
will not impose any significant deformation to the matrix.  
 

 

Supplementary Fig.5: c, EFIs measured in the same biomimetic cochlear model before and after a 
year storage. d, EFIs measured in the same cochlear model after multiple CI insertions. (SI, P.11) 

 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

We are very thankful to the reviewers for addressing all the comments and corrections. The 

manuscript improved in clarity, especially the inclusion of additional electrode arrays and the good 

corresponding results clearly strengths this work. Still there are some points that need 

clarification. One of this points is the description of the method used to record (trans-)impedances 

with the cochlear implant, which seems insufficient and it could be even incorrect. The authors 

need to clarify which sampling frequency was used, which stimulation rate was used to measure it 

(typically only one pulse is used), which stimulation level and which reference electrode was used 

in each device (cochlear and AB). In the characterization of the impedance, impedance 

spectroscopy the frequency of 56 kHz is marked. However to this reviewer is not clear the relation 

between what I believe it is the maximum sampling rate configured in the CI to record a single 

value of the impedance and the marker of 56 kHz on the spectroscopy. 

 

The second point is the MAPE measure, which for this reviewer it is difficult to interpret. It would 

be nice to show that MAPE between the EFI of two subjects or the MAPE between the EFI of one 

subject and the average EFI across subjects, or between the EFI predicted for one subject and the 

real EFI of another subject. The same analysis could be made for the inverse 3PNN when 

predicting the cochlear anatomy. It is necessary to understand the range of the MAPE error 

measure. What is a large error in MAPE and what is a small error in MAPE? 

 

Answer to Previous General Comments 

1. Ok 

2. a, b. Ok c, d. I do not understand the color-coding of the new Supp. Fig. 10. The legend in a 

seems to be wrong? Apart from this, it is good that different electrode types have now been used. 

e. Ok 

3. Perfect 

4. Thank you for the clarification. 

5. Not clear how the (tran-s) impedance was measured. See comment above. 

6. Ok 

7. Ok – sounds more realistic now 

8. Ok 

9. Supp. Fig. 12a: Nice figure, but “patients” (gray lines) are missing in the legend. 

Supp. Fig. 11 & 13 (full validation of forward & inverse 3PNN) are very good. 

10. Ok 

Answer to Previous Specific Comments 

 

Introduction 

11. Ok 

12. Ok 

13. Ok 

14. Ok 

15. Ok 

 

Results 

16. Ok 

17. I still do not understand the frequency of 56 kHz. This seems to be the maximum sampling 

rate the device but not its stimulation frequency/rate. Typically a single pulse is used for 

stimulation and single value is recording within one pulse. The authors should clearly explain the 

method used to stimulate and record during the impedance measure. Depending on when the time 

point is sampled within the pulse, the (trans-)impedance can be very different. The voltage rise 

within the pulse depends on the electrode nerve interface. 

18. Supp. Fig. 22: Electrode positions are similar from a top view, but also from a side view? This 

is related to comment 2 of reviewer2. It is good that the membrane structures have no significant 

influence on EFI profiles for fixed electrode positions (compare Supp. Fig. 1b), but it is clear that 

they restrict the placement of the electrode array to the volume corresponding to the scala 

tympani whereas the array can be inserted into the whole cochlea lumen in the 3D printed models. 



Discuss consequences. 

19. Good 

20. It is not an important point, but the stimulation point is also clearly indicated if the impedance 

of the stimulating electrode is left out (compare Supp. Fig. 12a,b) 

21. Good 

22. Inclusion of more electrode types is very good. 

The comparison with the “average” EFI profile is not what I meant with the comment. I would like 

to test the 3PNN predictions versus a “dummy” predictor that always predicts the average EFI 

profile (for a given electrode type), i.e. without additional knowledge of the patient’s individual 

geometric features. What MAPE do you get with such a “dummy” predictor, and how much better 

is 3PNN that uses the individual geometric features? This would help to interpret the MAPE values 

obtained through 3PNN (compare also comment 4 of reviewer2). Same as general comment. 

23. Good 

24. Ok 

25. Good 

26. Ok 

27. Good 

28. Ok 

29. Ok 

30. Ok 

31. Ok – but why did the predicted resistivities for the 1J subjects change? Compare Fig. 7 from 

the old manuscript and Supp. Fig. 18 from the new manuscript. 

32. Good 

 

Discussion 

33. Very good 

34. Ok 

35. Ok 

36. Ok 

 

Methods 

37. Needs further clarification. 

38. Ok 

39. 56 kHz was the stimulation rate, or it was the maximum sampling rate of the device? 

40. Ok 

41. Good 

42. Ok 

43. Ok 

44. Ok 

45. Ok 

46. Ok 

47. Ok 

48. Ok 

49. Ok 

50. Good 

51. Ok 

52. The influence of the boundary condition on FEM outcomes is very impressive. Need to discuss. 

Also, it seems that MAPE is not a very good measure of the similarity between EFI profiles: 

compare first column of Supp. Fig. 1a(ii), MAPE=35% vs MAPE=39%. 

53. Ok 

54. Good 

55. Ok 

56. Ok 

57. Good 

58. The comment corresponded to Supp. Fig. 14 (not 13), which has apparently not been included 

in the revised manuscript. 

59. Good 

 

 



 

Reviewer #3: 

Remarks to the Author: 

The authors made substantial modifications to this article and addressed all issues that I was 

concerned about. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors have addressed all my comments and improved the manuscript. However there are 

still some questions remained unanswered. 

1- The authors insist that 3PNN is better than FEM since it bypasses the sensitivities in the choice 

of boundary conditions. This actually raise the question of the accuracy and validity of the 3PNN, 

as it seems that the multiple assumptions made in the current work are cancelling each other! The 

significance of these boundary conditions (specially geometry) has been shown by works on spatial 

arrangement (tonotopy) of cochlea. One clear advantage of the FEM is the possibility of studying 

individual boundary condition/parameter at a time, without dealing with such combinational 

effects. This has been done by isolating parameters/boundary condition and studying their effect 

by sweeping parameters, etc. The authors should either investigate the sensitivity of their model 

to each boundary condition, or simply clearly state that it is not possible in 3PNN to perform such 

sensitivity analyses. 

2- Thanks for comparing the final insertion in 3D printed model and in one patient (Supp. Fig 7.b). 

Please comment on having n=1 comparison. Also, it would be great if the authors could show this 

comparison from other angles as well. In the presented views, it is unclear how far the electrode is 

placed away from the basilar membrane. For example, Figure 4 b(ii) shows the positioning of the 

electrode in printed model from a side view, which indicates the trauma caused to basilar 

membrane due to intrascalar penetration, if such insertion was made in a patient. It would be 

great to include more of patient-model comparison and provide quantitative analysis of such 

comparisons. 

3- Thanks for adding the sources of uncertainty in the Discussion. It would greatly help the 

readers if error maps were incorporated, as requested. Also, the authors did not respond to the 

question regarding the effect of geometrical discrepancies between model and patient’s data on 

EFI profile. Considering the effect of geometry, material properties of solid and fluids being the key 

factors in electrical conductivity. The authors should clearly specify the sensitivity of their network 

to each factor, separately. Having EFI profiles matching, does not mean all factors are correct. As 

requested, the authors should specify/tabulate the source of error in each step and discuss them 

quantitatively. Supplementary Fig.7 is only one case and the images show some mismatching. 

Such mismatches should be clearly quantified and discussed. 

4- Pietsch’s model is limited to cochlear duct length at lateral wall, and does not provide 

information about the cochlear scalae cross-sections. Authors should provide quantitative 

comparison of the cochlear scalae cross-sections between their models and human data and 

discuss the effect of cross-sections on possible mismatch on the EFI measurements. 
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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
We are very thankful to the reviewers for addressing all the comments and corrections. The 
manuscript improved in clarity, especially the inclusion of additional electrode arrays and the 
good corresponding results clearly strengths this work. Still there are some points that need 
clarification. One of this points is the description of the method used to record (trans-)impedances 
with the cochlear implant, which seems insufficient and it could be even incorrect. The authors 
need to clarify which sampling frequency was used, which stimulation rate was used to measure 
it (typically only one pulse is used), which stimulation level and which reference electrode was 
used in each device (cochlear and AB). In the characterization of the impedance, impedance 
spectroscopy the frequency of 56 kHz is marked. However to this reviewer is not clear the 
relation between what I believe it is the maximum sampling rate configured in the CI to record a 
single value of the impedance and the marker of 56 kHz on the spectroscopy. 

 
The second point is the MAPE measure, which for this reviewer it is difficult to interpret. It 
would be nice to show that MAPE between the EFI of two subjects or the MAPE between the 
EFI of one subject and the average EFI across subjects, or between the EFI predicted for one 
subject and the real EFI of another subject. The same analysis could be made for the inverse 
3PNN when predicting the cochlear anatomy. It is necessary to understand the range of the 
MAPE error measure. What is a large error in MAPE and what is a small error in MAPE? 

We thank the reviewer for his/her valuable comments. Please see below, in blue, our detailed 
response to the Reviewer’s comments. The question numbers in the previous general and specific 
comments refer to the comment numbers in the first round of revision. We have excluded the 
comments that have been addressed in the first round of revision. 

 

Comment on the method to record transimpedances 

We thank the reviewer for pointing this out again. All the EFI measurements presented in this 
study (patients’ clinical data or 3D printed models) were acquired using the AB volta software of 
Advanced Bionics® or the Custom Sound® EP 5.1 of CochlearTM using the default clinical setting. 
We have now further clarified the stimulation and the recording configurations of the EFI 
measurements taken by the ‘AB volta’ software with a senior software engineer from Advanced 
Bionics®. For the AB volta software, during an EFI measurement, each electrode contact is 
stimulated one-by-one with a single biphasic stimulation pulse. The pulse width and amplitude 
for the biphasic pulse stimulation are 36 μs per phase and 32 μA, and the maximum recording 
sampling rate was 56 kHz. For the Custom Sound® EP 5.1 software, the pulse width and 
amplitude are 25 μs per phase and 125.3 μA.  

Based on the quoted biphasic pulse (quasi-square wave) of 36 μs and 25 μs pulse width, the 
stimulation rates can be theoretically estimated to have fundamental frequencies of ~14 kHz and 
20 kHz, respectively, as described by the Fourier series expansion of a square wave in Eq.1. We 
have now clarified this information in Method (P.26, Lines 585 - 590) and removed the 
misleading term ‘EFI acquisition rate = 56 kHz’ throughout the manuscript.  
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f x = 4π 1n sin 2πnf ∗x∞

, , ,…  -- Eq.1 

where ∗is the fundamental frequency that is equal to 	 	 	  = 14 kHz (AB Volta) or 

20 kHz (Custom sound®), ∗ is the nth order harmonic frequency, and x is wave position. 

Regarding the matrix impedance characterization based on EIS in Fig.2a (also shown below), we 
used continuous sinusoid stimulation and recording over the frequency range of 10 Hz – 100 kHz 
(where 100 kHz is the upper limit of our EIS instrument). As seen in the EIS Bode plot in Fig.2a, 
the impedance magnitudes of the 3D printed biomimetic cochleae and the cadaveric cochleae 
were closely matching, which indicates they have similar impedance properties, over a wide 
frequency range (f) of 10 Hz – 100 kHz. Further, the impedance magnitude reaches a plateau 
magnitude (i.e. impedance plateau) from ~300 Hz. In other words, impedance magnitude 
measured at high frequencies are relatively frequency-independent. Relevant to the stimulation 
pulse of 36 μs (AB Volta) and 25 μs (Custom sound®) per phase, the associated fundamental 
frequencies (f*~14 kHz and 20 kHz) lie in the impedance plateau region. Furthermore, the 
dominant high order harmonics (n) associated with the Fourier series, i.e. for up to n = 7 (14×7 = 
98 kHz) and n = 5 (20x5=100 kHz) could be captured within the upper 100 kHz limit of the EIS 
measurement.  

Overall, we thank the Reviewer for pointing out the need for a more clear explanation of our 
experiment here. Instead of saying the matrix impedance was measured at a specific frequency 
(i.e. 56 kHz), we should have said a ‘representative plateau impedance’ was measured from the 
EIS. The resistivities of the electro-mimic bone matrices were determined using the plateau 
impedance magnitudes and their sample sizes. We have now changed the terminology from 
‘matrix resistivity (56 kHz)’ to ‘matrix resistivity (plateau value)’. 

 

 

Fig. 2: Electrical properties of electro-mimetic bone matrices. (P.7) 
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Comments on the MAPE measure 

In response to the Reviewer’s comment, we have further clarified the use of MAPE below.  
 
The reason we chose MAPE (median absolute percentage error, Eq.2) as the error measure 
instead of using other measures such as RMSE (root mean square error, Eq.3) or MAE (mean 
absolute error, Eq.4) is because of the improved ease of interpreting the values, as MAPE 
presents the percentage change rather than the absolute change (which is often harder to 
interpret). In addition, median absolute percentage error is used rather than mean absolute 
percentage error (Eq.5) because the value of mean can be distorted by outliers, especially in 
skewed populations. This is now stated in Methods (P.34, Lines 765 - 767). 

As per the reviewer’s suggestion, Supplementary Table.3 shows (1) the MAPE values calculated 
between the 3PNN prediction (using known patient geometric factors) and the corresponding 
patient’s off-stimulation EFI; and (2) the MAPE values calculated between the patient mean (n = 
97) and each patient’s off-stimulation EFI. The table shows that based on the MAPE value 
comparison, 3PNN-predictions outperform the ‘dummy’ patient average. The finding here 
provides additional confidence in the patient-specific predictability of 3PNN, and is now included 
in Results (P.14, Lines 308 - 311). 

Regarding the question about the acceptable error in MAPE, from our viewpoint, being able to 
recognise the EFI ~ 90% mean accuracy would be clinically useful as most clinical tests with a 
sensitivity of 90% would be considered good tests if the false-positive rate is low. From our 
validation results shown in Supplementary Fig.11 (SI, P.23), 28 out of 31 EFI predictions achieve 
a MAPE < 12% (accuracy > 88% and median MAPE = 8.6%). This confirms the accuracy and 
the low false-positive rate of 3PNN.   
 
 
 
 

Median	APE = median	of	 | |
, 
| |

, …. ,  
| | x	100%  -- Eq. 2 

RMSE = 	 ∑ Predicted − ActualN  -- Eq. 3 

MAE = 1N |Predicted − Actual | -- Eq. 4 

Mean	APE = 1N |Predicted − Actual |Actual  -- Eq.5 

 

 Subjects 

MAPE between the 
3PNN-predicted EFI 
and actual subject’s 

EFI (%) 

MAPE between the 
mean patient EFI 

and the actual 
subject’s EFI (%) 

C
ISl

im
J  

Subject 1SlimJ 6.6 21.4 
Subject 2SlimJ 7.9 18.9
Subject 3SlimJ 7.5 13.3 
Subject 4SlimJ 6.8 19.0 
Subject 5SlimJ 7.4 8.1 
Subject 6SlimJ 4.9 17.0 
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Subject 7SlimJ 9.3 25.2 
Subject 8SlimJ 6.4 23.5 
Subject 9SlimJ 11.8 29.7 
Subject 10SlimJ 5.1 10.8 
Subject 11SlimJ 6.5 17.2 
Subject 12SlimJ 9.7 20.3 
Subject 13SlimJ 9.6 18.9 
Subject 14SlimJ 5.7 11.0 
Subject 15SlimJ 7.4 18.9 
Subject 16SlimJ 8.4 21.4 
Subject 17SlimJ 11.3 11.8 

C
I6

22
 

Subject 1CI622 11.0 29.0 
Subject 2CI622 11.3 23.0 
Subject 3CI622 55.8 7.0 
Subject 4CI622 10.0 38.2 
Subject 5CI622 11.8 40.6 
Subject 6CI622 10.3 41.4 

C
I5

22
 

Subject 1CI522 7.8 36.2 
Subject 2CI522 10.6 39.2 
Subject 3CI522 7.4 37.5 
Subject 4CI522 8.6 28.2
Subject 5CI522 10.3 24.5 
Subject 6CI522 22.3 16.2 
Subject 7CI522 60.7 5.0 
Subject 8CI522 6.4 29.9 

 Median 8.6 21.4 

 
Interquartile 
range (IQR) 

7.1 – 10.8 16.6 – 29.3 

 

Supplementary Table 3: Table showing first column, the MAPE value between the 3PNN prediction 
(using known patient geometric factors) and the corresponding patient’ off-stimulation EFI; and 

second column, the MAPE value calculated from the patient mean (n = 97) and each patient’s off-
stimulation EFIs. (SI, P.25) 

 

Answer to Previous General Comments 
2. a, b. Ok c, d. I do not understand the color-coding of the new Supp. Fig. 10. The legend in a 
seems to be wrong? Apart from this, it is good that different electrode types have now been used. 
e. Ok 
Thanks for the comment. We have now used a uniform color to represent the EFIs of each 
electrode type in Supplementary Fig.10a, and used alternating color in Supplementary Fig.10b to 
represent the EFIs of different samples. 
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Supplementary Fig.10: Applicability of 3PNN on different electrode types. a, Experimental off-
stimulation EFIs or transimpedance matrices acquired by either CI1J, CISlimJ or CI522 in same 

biomimetic cochlea samples. b, Accuracy of 3PNN in predicting (i) CI522 transimpedance matrices 
and (ii) CISlimJ EFIs. c, Specifications of the samples tested here. (SI, P.22) 

 
5. Not clear how the (tran-s) impedance was measured. See comment above. 

Please see our response above and in method (P.26, Lines 584 - 590).  
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9. Supp. Fig. 12a: Nice figure, but “patients” (gray lines) are missing in the legend. 
Supp. Fig. 11 & 13 (full validation of forward & inverse 3PNN) are very good. 

The legend is now updated.  

 

Supplementary Fig.12: a, The clinical EFIs (n = 31) used in 3PNN validation to represent the EFI 
variation in patient population (n = 97). (SI, P.24) 

 

 
Answer to Previous Specific Comments 
 
Results 
17. I still do not understand the frequency of 56 kHz. This seems to be the maximum sampling 
rate the device but not its stimulation frequency/rate. Typically a single pulse is used for 
stimulation and single value is recording within one pulse. The authors should clearly explain the 
method used to stimulate and record during the impedance measure. Depending on when the time 
point is sampled within the pulse, the (trans-)impedance can be very different. The voltage rise 
within the pulse depends on the electrode nerve interface. 

The same clinical software (AB Volta) was used to measure the EFI profiles of the 3D printed 
models, therefore the measurements were taken using the same default setting (i.e. same 
stimulation pulse width and sampling rate) as the clinical data. Please refer to the response to 
‘Comments on the method to record transimpedances’ above and the Method of the revised 
manuscript (P.26, Lines 584 - 590) for the specification of the default stimulation setting used in 
the software.  

 

18. Supp. Fig. 22: Electrode positions are similar from a top view, but also from a side view? 
This is related to comment 2 of reviewer2. It is good that the membrane structures have no 
significant influence on EFI profiles for fixed electrode positions (compare Supp. Fig. 1b), but it 
is clear that they restrict the placement of the electrode array to the volume corresponding to the 
scala tympani whereas the array can be inserted into the whole cochlea lumen in the 3D printed 
models. Discuss consequences. 

Thanks for the comment, we are afraid it is not possible to compare the electrode locations at 
other angles because only plain x-ray anterior-posterior images were collected in our centre’s 
routine post-operative patient assessment.  
 
To address the reviewer’s question in an alternative fashion, we performed a FEM analysis to 
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examine how much the EFI changes when the vertical position (the dimension not captured in our 
plain x-ray films) of the electrode array in the cochlear lumen is shifted by 0.5 or 1 mm 
(Supplementary Fig.20b). We found that the effect is negligible with a MAPE just < 0.5% when 
the matrix resistivity of the model is set to 9.3 kΩcm (the mean resistivity of live human skull). 
The MAPE is increased to ~ 5% when the vertical position is shifted by 1 mm in an extreme 
model that has a matrix resistivity of 0.6 kΩcm (the lowest bound of the resistivity of live human 
skull). We have now clarified this limitation in our 3D printed models in the Results (P.11, Lines 
249 – 251) and Discussion section (P.21, Line 462). Future study can explore the possibility of 
incorporating the membrane structures in 3D printed cochlear models. 

 

Supplementary Fig.20: b, Using COMSOL simulation, off-stimulation EFI profiles were examined 
when the z-position (vertical position) of the electrode array is shifted by (b) 0.5 mm, and (b) 1 mm 

for different matrix resistivities. The value at the upper right indicates the MAPE between the z-
shifted and the reference (no shifted) cases. The geometrical features of the COMSOL model are the 

same as the conditions used in the model without the membrane structures in Supplementary 
Fig.1b(ii) and the ground was placed at the outer surface of the 8mm radius sphere. (SI, P.34) 

 
22. Inclusion of more electrode types is very good. 
The comparison with the “average” EFI profile is not what I meant with the comment. I would 
like to test the 3PNN predictions versus a “dummy” predictor that always predicts the average 
EFI profile (for a given electrode type), i.e. without additional knowledge of the patient’s 
individual geometric features. What MAPE do you get with such a “dummy” predictor, and how 
much better is 3PNN that uses the individual geometric features? This would help to interpret the 
MAPE values obtained through 3PNN (compare also comment 4 of reviewer2). Same as general 
comment. 

We thank the Reviewer for pointing out our misunderstanding in your comment in the first round. 
The response for this comment was addressed in ‘Comments on the MAPE Measure’ above.  

 
31. Ok – but why did the predicted resistivities for the 1J subjects change? Compare Fig. 7 from 
the old manuscript and Supp. Fig. 18 from the new manuscript. 
 
We thank the Reviewer for pointing this out. The results did not change. There was an error in the 
graph after we added more clinical data in the first-round revision. Supplementary Fig.19 (old 
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Supplementary Fig.18) is now updated, and we have now double-checked and ensured that all the 
patient number labels throughout the manuscript and the SI are consistent.  

 

Supplementary Fig.19: 3PNN estimating patient-specific resistivity of the cochlear tissue. (SI, P.33) 

 

Methods 
37. Needs further clarification. 

The specification of the stimulation and recording configurations of the EFI measurements was 
now clarified in the manuscript (P.26, Lines 584 - 590).  

 

39. 56 kHz was the stimulation rate, or it was the maximum sampling rate of the device? 

56 kHz is the maximum sampling rate of the device under EFI measurements, and was not the 
stimulation rate of the CI we used. The stimulation from the AB device is a single biphasic pulse 
with a pulse width of 36 μs and pulse amplitude of 32 μA. In the revised manuscript the 
information for EFI stimulation and recording was clarified (P.26, Lines 584 - 590). 

 

52. The influence of the boundary condition on FEM outcomes is very impressive. Need to 
discuss. 

Indeed, it was interesting to us that the choice of boundary condition affects the FEM outcomes 
significantly. This was also illustrated in a previous independent study [1] as well. As our 
manuscript focuses on developing 3PNN, where FEM was used as a complementary tool, we 
included the reference in the SI for the readers (SI, P.5, Lines 127 - 129).   

[1] Wong, P. et al. Development and validation of a high-fidelity finite-element model of monopolar stimulation 
in the implanted Guinea pig cochlea. IEEE Trans. Biomed. Eng. (2016). 
 
Also, it seems that MAPE is not a very good measure of the similarity between EFI profiles: 
compare first column of Supp. Fig. 1a(ii), MAPE=35% vs MAPE=39%. 
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We understand the reviewer’s concern here. This is due to a visual illusion of the graphs caused 
by 16 off-stimulation spread curves of the two EFIs plotted on the same graph, and different y-
axis scale of the two graphs. To show the difference between the two EFIs (condition 1.I vs 
condition 3.I), below graphs compare the individual stimulation spread curves, which correspond 
to the individual stimulating electrode, of the condition 1.I EFI (MAPE = 35%) and the condition 
3.I EFI (MAPE = 39%). The y-axes of the graphs are set to be in the same scale. From the graphs, 
we can see that the discrepancy between EFIs in condition 1.I and the discrepancy in condition 
3.I are roughly similar, where condition 3.I has a visually slightly larger discrepancy. This is 
consistent with the information provided from the MAPE values, where the MAPEs of condition 
1.I and condition 3.I are of a similar magnitude, and condition 3.I has a slightly larger MAPE 
than that of condition 1.I. Hence, we believe MAPE is a good and valid measure for this study.  

Considering the reviewer’s comment, we have now updated the Supplementary Fig.1a.ii with the 
same range and scale in the y-axis.  

 

 

Figures showing the off-stimulation EFIs simulated from COMSOL using a) condition 1.I and b) 
condition 3.I, in comparison with their corresponding 3D printed cochlear model that have the same 

electroanatomical model descriptors as the COMSOL model.  
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Supplementary Fig.1aii: Off-stimulation EFI profiles simulated with the common choices of 
boundary condition used in literature, in comparison with the experimental results acquired from the 
corresponding 3D printed cochlear models that have the same electroanatomical model descriptors 

as the COMSOL models. (SI, P4) 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors made substantial modifications to this article and addressed all issues that I was 
concerned about. 
 
 
Reviewer #4 (Remarks to the Author): 
 
The authors have addressed all my comments and improved the manuscript. However there are 
still some questions remained unanswered. 
1- The authors insist that 3PNN is better than FEM since it bypasses the sensitivities in the choice 
of boundary conditions. This actually raise the question of the accuracy and validity of the 3PNN, 
as it seems that the multiple assumptions made in the current work are cancelling each other! The 
significance of these boundary conditions (specially geometry) has been shown by works on 
spatial arrangement (tonotopy) of cochlea. One clear advantage of the FEM is the possibility of 
studying individual boundary condition/parameter at a time, without dealing with such 
combinational effects. This has been done by isolating parameters/boundary condition and 
studying their effect by sweeping parameters, etc. The authors should either investigate the 
sensitivity of their model to each boundary condition, or simply clearly state that it is not possible 
in 3PNN to perform such sensitivity analyses. 

Comparison between 3PNN and FEM 

We thank the reviewer for the constructive comments. We would like to clarify that we do very 
much value the advantages of FEM for some uses, and have adopted FEM as an ancillary 
measure at several points in our study to validate several assumptions undertaken in 3PNN that 
are not easily examined by 3PNN alone (e.g. how the presence of the intracochlear membranes 
affects EFIs). Any computational modelling has both advantages and disadvantages. The benefits 
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of FEM are manifold, which notably include, the possibility of studying individual boundary 
condition/parameter at a time (as the Reviewer has noted), with a graphical user interface. The 
3PNN co-modelling approach proposed in this study provides a complementary, statistical and 
data-driven approach derived from 3D printed biomimetic cochleae. Key benefits of 3PNN are its 
effectiveness in deciphering the trend (or sensitivity) in a high-dimensional problem (to be 
elaborated on in the section below), and its capabilities for inferring the patient’s 
electroanatomical features, and for producing on-demand physical models that generate patients’ 
individual EFIs. In response to the reviewer’s comment, we have now included in the Discussion 
section (P.23, Lines 512 - 513) that by integrating the two methods, would provide new routes to 
create ‘digital twins’ of cochleae for cochlear implant patients [see Discussion - 
‘…Complementary to FEM, the 3D printed biomimetic cochleae offer a robust physical means to 
replicate the dynamics of ionic conduction and the electron-ion interaction in cochleae with 
implanted CIs. This is useful as it bypasses the sensitivity in the choice of boundary conditions 
that are required in FEM (Supplementary Fig.1a), and it intrinsically captures physical 
phenomena that could be difficult to replicate fully in FEM. (P.20, Lines 449 - 453)… Adopting 
machine learning along with parametric descriptions of the cochlear geometry, 3PNN requires 
only a fraction of the computation time per EFI prediction (estimated 300 times faster) compared 
to our FEM models (for Intel i5 CPU) (P.21, Lines 474 - 476)… Complemented with FEM, 3PNN 
could form a building block for future cochlear digital twins for CI testing (P.23, Lines 512 - 
513)’] 
 

Comments about the cancelling effect of multiple assumptions 

All modelling approaches involve assumptions and simplifications. For example, some of the 
physical laws in FEM associated with the ionic conduction effects (e.g. ionic conduction at the 
electrolyte and electrode interface on a molecular level) have yet to be fully established for 
computational simulation, particularly for dynamically changing conditions, under which 
polarisation of electrode and electrolyte could take place. In FEM, by model-to-model adjustment 
of the locations of boundary conditions or setting a voltage offset boundary condition, it was 
possible to obtain an EFI similar to a patient’s. This has been depicted in an independent work by 
Wong et al. (IEEE, 2016) [1], where a voltage offset on the temporal bone surface was used to 
yield a close match to the in vivo EFI. Further, as shown in Supplementary Fig.1a of this work, 
inputting the measured bulk material resistivity and micro-CT geometry of the 3D printed 
cochleae into the FEM, it still yielded vastly different EFI profiles between simulation and actual 
data. By arbitrarily adjusting the ‘ground position’ (i.e. boundary condition), the level of EFI 
mismatch can be reduced from over 450% to 25%. These findings prove two important points: 
(1) Many factors, such as the details of material/ solution response to surfaces or current injection 
etc, are essentially unknown to us; in other words, the associated mechanisms cannot be 
accounted for explicitly and fully in FEM. (2) Arbitrary adjustment in simulation parameters in 
FEM, such as boundary conditions (i.e. the ground position) or voltage off-set, could also cause 
the cancelling of parameters and increase matching of FEM to measured data. Hence, while 
overall FEM might be possible to construct highly detailed geometries and structures, the 
physical phenomenon descriptions are likely to still be incomplete.  
 

[1] Wong, P. et al. Development and validation of a high-fidelity finite-element model of monopolar stimulation 
in the implanted Guinea pig cochlea. IEEE Trans. Biomed. Eng. (2016). 
 

How local geometrical discrepancy/ details might have an effect on the EFI modelled 

We have now investigated this effect in the response of Comment 3.  
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Comment on the possibility of performing sensitivity analysis of individual parameters with 
3PNN  

It is possible to perform sensitivity analysis of how individual model descriptors (or parameters) 
affect EFIs using 3PNN. Fig.6a(ii) (P.19) is a simple version of such a sensitivity study. It 
displays the trend of how each model descriptor affects the stimulation spread (quantified by Eq.1 

& 2, |z| = A|x| + C	; |slope| = | | = 	 −Abx = 			at	x = 1mm). This was 

performed by computing 3125 EFIs that are associated with 5x5x5x5x5 (=3125) combinations of 
the 5 electroanatomical parameters, to represent the entire modelling space (i.e. 5 evenly spaced 
values were sampled along the range of each parameter).  

 
In our revised manuscript, we have additionally employed a global sensitivity analysis based on 
Sobol’s method [2] (P.17, Lines 371 – 377; with codes provided in the supplementary dataset). In 
the Sobol sensitivity analysis, the first order sensitivity indices reflect the independent importance 
of each parameter (x1, x2,…) on the model output (y1, y2,…); the second-order indices indicate the 
significance caused by the interaction of any two parameters on y1, y2,…; and the total-order 
indices take into account the first-, second- and higher-order indices, such that the indices reflect 
the variance of y1, y2,… caused by the parameter solely and together with other parameters. A 
large value of the sensitivity index (S) implies the greater importance of the associated parameter 
on the outcome relative to others, and the sum of the first-order indices should be less than or 
equal to 1.  
 

Sobol’s method was used to evaluate the importance of each model descriptor (x1 to x5) on the 
values of the slope of the stimulus spread (defined as | |  = Ab) and the baseline 
coefficient, C, denoted in Eqs.1 & 2 in the main text. The first-and the total-order indices 
(Supplementary Fig.17, SI, P.30) suggest that taper ratio is the most important factor affecting the 
stimulus spread of EFI; while the matrix resistivity and the cochlear width are the dominant 
factors affecting C (the baseline). In addition, as implied by the small values of the second-order 
indices in Supplementary Table 4 (SI, P.31), the variance caused by the interaction of any two 
model descriptors is less significant.     
 

To further prove the capability of 3PNN for sensitivity analysis on EFI, we use Sobol’s method to 
quantify the overall importance of each model descriptors on the full forms of simulated EFIs 
(each EFI is a 16x16 matrix) within the model boundary. To note due to the large amount of 
dataset (twenty 16x16 matrices for first, second and total order results), only the first-order results 
of the sensitivity analysis on EFI for different model descriptors were provided in Supplementary 
Table 5 (SI, P.32). The second-order and the total-order indices will be made available from the 
GitHub repository. 
 

It should be noted that the same number of simulations (~168,000) are required to run in FEM in 
order to perform a thorough sensitivity analysis of a high dimensional problem (in this case, five 
parameters with 16x16 matrix). As 3PNN leverages machine learning, it can present a fast and 
automated prediction of EFIs, where a vast number of predictions can be simulated within a 
realistic timeframe. As an example, ~0.4 s per simulation was needed in forward-3PNN EFI 
prediction, versus ~ 2 min per simulation in our simplified FEM using Intel i5 CPU computing 
power (i.e. 300 times faster). This is particularly important for deciphering trends and performing 
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sensitivity analysis across each parameter in a high dimensional space, which is the case of our 
problem.  

[2] Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. 
Math. Comput. Simul. (2001) 

 

 

Supplementary Fig.17: (a) First-order, Si, and (b) total-order, ST, sensitivity indices obtained from 
Sobol sensitivity analysis of (i) the coefficient product Ab (| | ) toward the apex and the 

base associated with different stimulating electrodes, and (ii) the coefficient C (the baseline 
coefficient) associated with Eq.1 and Eq.2 in the main text. BLd = basal lumen diameter, ρmatrix = 

matrix resistivity, Tra = taper ratio, Wc = cochlear width and hc = cochlear height. (SI, P.30) 

  

Comment on the possibility of performing sensitivity analysis of boundary conditions with 
3PNN  

We did not use 3PNN to study the effect of ‘boundary conditions’ normally associated with FEM. 
This is because the training data were collected from 3D printed (physical) cochlear models with 
wall thickness > 4 mm where the EFIs are independent of the wall thickness. From our viewpoint, 
the reason why different boundary conditions were tested in existing FEM studies of cochlear 
stimulation is because none of these perfectly match the in vivo situation, hence different 
conditions were tested to attempt to match the in vivo results. This statement is supported by 
Wong et al. (IEEE, 2016) [1], which states that ‘…This is problematic for VCMs (volume 
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conduction models) of the cochlea simulating monopolar (MP) stimulation because the return 
electrode lies outside the physical domain of the model. Existing models deal with this issue by 
assuming that the end of the auditory nerve is grounded, that the ground is infinitely far away, or 
that boundary box surfaces are grounded — none of these perfectly match the in vivo situation.’ 
 
[1] Wong, P. et al. Development and validation of a high-fidelity finite-element model of monopolar stimulation 
in the implanted Guinea pig cochlea. IEEE Trans. Biomed. Eng. (2016). 
 
 
2- Thanks for comparing the final insertion in 3D printed model and in one patient (Supp. Fig 
7.b). Please comment on having n=1 comparison. Also, it would be great if the authors could 
show this comparison from other angles as well. In the presented views, it is unclear how far the 
electrode is placed away from the basilar membrane. For example, Figure 4 b(ii) shows the 
positioning of the electrode in printed model from a side view, which indicates the trauma caused 
to basilar membrane due to intrascalar penetration, if such insertion was made in a patient. It 
would be great to include more of patient-model comparison and provide quantitative analysis of 
such comparisons. 
 
We acknowledge the Reviewer’s comment. We have now provided additional imaging examples 
on the comparison of the CI insertion depths in 3D printed models and in patients’ cochleae (n = 
3 in total). The figure (Supplementary Fig.7b, SI, P.16) shows that the insertion depths are 
satisfactorily matching when their geometrical descriptors are similar. In addition, Supplementary 
Fig.7c (SI, P.16) compares the insertion depth in the 3D printed models and in the patients’ 
cochleae that have different values of the geometrical descriptors. The figure reveals that the 3D 
printed models result in a similar correlation between the angular insertion depth and the cochlear 
width, to those seen in patient’s (n > 8).  

For comparing the CI electrode position from other angles, we are afraid that in routine post-
operative assessment process conducted in our centre, only plain antero-posterior x-ray images 
are taken; thus we cannot compare CI positions at other angles. Further, standard clinical CT 
scans do not have enough resolution to show the position of the basilar membrane, hence it is not 
possible to assess how far the electrodes are away from the basilar membrane, although 
assumptions can be made when electrodes clearly pass from the scala tympani to the scala 
vestibuli. To address the reviewer’s question in an alternative manner, we performed a FEM 
analysis to examine how much the EFI changes when the vertical position of the electrode array 
in the cochlear lumen is shifted by 0.5 or 1 mm (Supplementary Fig.20b, SI, P.34). We found that 
the effect is negligible with a MAPE just < 0.5% when the matrix resistivity of the model is set to 
9.3 kΩcm (the mean resistivity of live human skull). The MAPE is increased to ~ 5% when the 
vertical position is shifted by 1 mm in an extreme model that has a matrix resistivity of 0.6 kΩcm 
(the lowest bound of the resistivity of live human skull).  
 

Regarding the comments on Fig.4b(ii) (P.10), there might be some confusion. Fig.4b(ii) shows an 
exemplar 3D printed cochlear model that is not patient-specific. As stated in the study design (in 
lines 184 - 195 , P.9 in the main text), our 3D printed models do not capture the intracochlear 
membranous structure. Another factor is a limitation of our model already noted in the Discussion 
(P.21, Lines 466 - 470) ‘…the 3D printed biomimetic cochleae did not account for the frictional 
force generated during CI electrode insertions beneath the basilar membrane in human cochleae, 
which may occasionally cause electrode array buckling or even intracochlear trauma affecting 
CI performance. We suggest that friction could have attributed to the localised buckling 
configuration of the CI electrode array captured in the 3D model giving the ‘mid-dip’ EFI…’,  
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Although it would be great to have a patient model that captures the friction and buckling 
phenomena, typical clinical CT scans do not permit the identification of the membranous 
structures, and fabricating features in a few µm range is in general challenging with the current 
3D printing technology (the reported thicknesses of the Basilar membrane and the Reissner’s 
membrane are ~4 µm and ~2.5 µm in literature [3-4]). Therefore, the incorporation of the 
membrane structures is beyond the scope of the paper. Future study can explore the possibility of 
incorporating the membrane structures in 3D printed cochlear models, and coupling 
computational mechanics in the modelling process. 

[3] Frijns, J. H. M., de Snoo, S. L. & Schoonhoven, R. Potential distributions and neural excitation patterns in a 
rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. (1995). 
[4] Harada, Y. & Harada, Y. Reissner’s membrane. in Atlas of the Ear (1983) 

 
 

 
 

Supplementary Fig.7: a) Comparison of the dimensional discrepancies between patients’ cochlear 
CT and the lumen of the 3D printed biomimetic cochleae that have similar geometrical descriptors. 

The dimensional discrepancy is encoded with color with a defined tolerance of ± 0.3 mm, which is the 
mean pixel size of the patients’ CT scans, using AutoDesk Recap Photo. b) The electrode positions in 
the patients’ cochleae (P) showed in (a) and their corresponding 3D printed models (M). The images 
on the right show their overlap images. The angular insertion depths are i) ~420o, ii) ~429o and iii) 

380o; c) The relationship between the angular insertion depth of the CI electrode array and the 
cochlear width in patients’ cochleae (n = 19) and in the 3D printed biomimetic cochleae (n = 8) with 

different geometric descriptors. (SI, P.16) 
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Supplementary Fig. 20b: Using COMSOL simulation, off-stimulation EFI profiles were examined 
when the z-position (vertical position) of the electrode array is shifted by (b) 0.5 mm, and (b) 1 mm 

for different matrix resistivities. The value at the upper right indicates the MAPE between the z-
shifted and the reference (no-shifted) cases. The geometrical features of the COMSOL model are the 

same as the conditions used in the model without the membrane structures in Supplementary 
Fig.1b(ii) and the ground was placed at the outer surface of an 8mm radius sphere. (SI, P.34) 

 
3- Thanks for adding the sources of uncertainty in the Discussion. It would greatly help the 
readers if error maps were incorporated, as requested. Also, the authors did not respond to the 
question regarding the effect of geometrical discrepancies between model and patient’s data on 
EFI profile. Considering the effect of geometry, material properties of solid and fluids being the 
key factors in electrical conductivity. The authors should clearly specify the sensitivity of their 
network to each factor, separately. Having EFI profiles matching, does not mean all factors are 
correct. As requested, the authors should specify/tabulate the source of error in each step and 
discuss them quantitatively. Supplementary Fig.7 is only one case and the images show some 
mismatching. Such mismatches should be clearly quantified and discussed. 

Error maps and the effect of geometrical discrepancies between model and patient’s data 

We have now provided the color-encoded error maps and additional results to examine the 
dimensional discrepancy between the patients and the models that have similar geometrical 
descriptors using AutoDesk RaCap Photo (Supplementary Fig.7a, SI, P.16). In the analysis, we 
defined a tolerance level of ± 0.3 mm, as 0.3 mm is the mean pixel size of patient’s CT scans. 
The figure shows that most region of the 3D volumes up to 1.5 cochlear turn (encapsulates the 
angular insertion depth in patients) has a dimensional discrepancy within the tolerance level, 
despite the alignment of the 3D volumes is not optimised here. This is now stated in the Results 
(P.11, Lines 238 - 242). 

 
We have now also investigated the effect of the geometrical discrepancy on EFIs by comparing 
the simulated EFIs when the patient’s lumen diameter is subject to ± 0.3 mm at different matrix 
resistivities by (1) 3PNN (by changing the input values of basal lumen diameter and taper ratio) 
and by (2) FEM (by enlarging and shrinking the 3D volume of the patient’s cochlea by ± 0.3 
mm). Supplementary Fig.20d (SI, P.34) shows that the resulting MAPEs obtained from both 
methods range from 2% to 20.8%, depending on the matrix resistivity value. The median MAPE 
is 4.8% in 3PNN and 8.1% in FEM. This is now pointed out in the discussion (P.21, Lines 463 - 
465).  



17 
 

Sensitivity analysis  

As mentioned in comment 1, we have now provided a thorough global sensitivity analysis using 
Sobol’s method (Supplementary Fig.17 and Supplementary Tables 4-5, SI, P.30-32). The finding 
is included in the main text (P.17, Lines 371 – 377) 

 

Source of errors 

Regarding the potential uncertainties in 3PNN, we agree with the reviewer that it is clearer to 
tabulate the source of uncertainty. The requested information is now provided in Supplementary 
Table 6 (SI, P.35) and discussed in the revised manuscript (P.21, Lines 458 - 466).  
 

 

Supplementary Table 20d: The MAPE between the simulated EFIs when the lumen diameter is 
subject to ± 0.3 mm at different matrix resistivities computed by i) 3PNN and ii) FEM. IQR = 

interquartile range. (SI, P.34) 

 
Potential uncertainty in 3PNN  Approximated error on EFI (MAPE) 

Absence of the membranous structures in the 
3D printed models (Supplementary Fig.1b) 

IQR = 2.8 – 5.0% 
Median = 4% (n = 5) 

Uncertainty in patients’ CT measurements 
(Supplementary Fig.20a) 

BLd IQR = 2.3 – 4.7%, Median = 2.9% (n = 31) 
Tra IQR = 4.0 – 16.4%, Median = 6.8% (n = 31) 
Wc IQR = 0.4 – 0.5%, Median = 0.5% (n = 31) 
hc IQR = 0.2 – 0.3%, Median = 0.2% (n = 31) 

Uncertainty in z-position of CI electrode array 
in cochlear lumen (shifted from 0.5 – 1 mm) 

(Supplementary Fig.20b) 

IQR = 0.3% - 2.8% 
Median = 0.4% (n = 6) 

Variation in CI insertion depth due to different 
surgical practices (± 2 mm) 
(Supplementary Fig.20c) 

IQR = 6.4 – 9.6% 
Median = 7.9% (n = 18) 

Geometrical discrepancy between patient 
cochlea and model’s geometry (± 0.3 mm) 

(Supplementary Fig.20d) 

IQR = 3.2 – 7.4% (3PNN) or 6.2 – 10.1% (FEM) 
Median = 4.8% (3PNN) or 8.1% (FEM) (n = 18) 

Supplementary Table 6: Potential uncertainties in 3PNN, and their estimated effect on off-stimulation 
EFIs. IQR = interquartile range. (SI, P.35) 

 
4- Pietsch’s model is limited to cochlear duct length at lateral wall, and does not provide 
information about the cochlear scalae cross-sections. Authors should provide quantitative 
comparison of the cochlear scalae cross-sections between their models and human data and 
discuss the effect of cross-sections on possible mismatch on the EFI measurements. 

i)   3PNN   

 
Lumen diameter changed by + 0.3 mm Lumen diameter changed by - 0.3 mm

0.6 kΩcm 9.3 kΩcm 26.6 kΩcm 0.6 kΩcm 9.3 kΩcm 26.6 kΩcm 
Patient 1 7.9% 3.1% 2.4% 4.9% 4.7% 5.0%
Patient 2 2.7% 4.5% 5.1% 4.3% 11.7% 20.8%
Patient 3 2.0% 3.5% 3.2% 5.9% 9.1% 15.8%

IQR 3.2 – 7.4 %
Median 4.8% 

ii)   FEM 
 Lumen diameter changed by + 0.3 mm Lumen diameter changed by - 0.3 mm
 0.6 kΩcm 9.3 kΩcm 26.6 kΩcm 0.6 kΩcm 9.3 kΩcm 26.6 kΩcm 

Patient 1 7.9% 8.5% 7.6% 6.1% 10.6% 11.7%
Patient 2 4.9% 8.5% 8.2% 4.0% 10.3% 10.5%
Patient 3 5.5% 6.5% 6.1% 7.4% 10.2% 9.8%

IQR 6.2 – 10.1 %
Median 8.1% 
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This question is related to Q3 above. We are aware that Pietsch’s model is limited to cochlear 
duct length at lateral wall. Similar to our response to Q3 above, Supplementary Fig.7a (SI. P.16) 
shows the dimensional discrepancy in the cross-section of the entire cochlear lumen. Within the 
CT resolution (0.3 mm mean pixel size) limit, the cross-section between the 3D printed model 
and the human data match satisfactorily for up to 1.5 turns. Also, as mentioned earlier, in 
Supplementary Fig.20d (SI. P.34), we investigated the effect on EFI when the diameter of the 
lumen cross-sections is changed by ± 0.3 mm, the discrepancy leads to a median MAPE < 8.1%, 
depending on the geometry and the matrix conductivity values.  

 

== 

Concluding response: 

Overall, we thank the Reviewers again for their careful reading of our manuscript. 3PNN does not 
intentionally aim to capture the full geometrical details of human cochleae. As stated in our study 
design, as clinical CT scans were used, the inherent CT resolution does not allow for detail 
construction of cochlear surface contour, nor the inclusion of the membranous structures. Using 
standard-of-care clinical patient CT scans is practical for clinical translation, as micro-CT scans 
cannot be performed in living patients. The parametric modelling of the cochlear geometry used 
in 3PNN, instead of inputting full cochlear CT surface contours, further offers the advantages of 
ease of interpretation, and reducing data collection and modelling time and costs (as previously 
noted, 3PNN simulation is about 300 times faster than a simple FEM for predicting patient EFI). 
Finally, a model is useful if it is fit-for-purpose. 3PNN was demonstrated to be predictive for 
correlating the off-stimulation EFI and the geometric parameters collected from clinical patient 
CTs (as shown in Supplementary Fig.11 (SI, P.23), where we tested for four implant types in an 
autonomous fashion without model adjustments, and 28 out of 31 predictions show good 
accuracy, MAPE < 12% and median MAPE = 8.6%). 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript has much improved during the review process and should now be accepted - no 

further comments or questions from my side. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors addressed all issues that I was 

concerned about. 
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