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Kwong Ching Philip Leung

Abstract

Protoplanetary discs are flattened discs of gas and dust surrounding young stars that are
believed to be the sites of planet formation. They are believed to be threaded by large-scale
magnetic fields, which significantly affect their dynamics through processes such as the
magneto-rotational instability (MRI), or the launching of a magnetic wind. Understanding the
interplay between magnetic fields and protoplanetary disc structure and dynamics is crucial
to shedding light on the origin of the complex features uncovered in recent observations of
these systems, as well as the processes that contribute to planet formation. The paradigm that
has emerged over the past two decades is that protoplanetary discs are weakly ionised, so that
non-ideal magnetohydrodynamic (MHD) effects such as Ohmic resistivity, Hall drift, and
ambipolar diffusion have a major impact on both the activity of the MRI and the geometry
of the magnetic wind. They also affect the long-term radial transport of the large-scale
magnetic field threading the disc, which in turn determines the magnetic flux distribution
of the disc and has a feedback on the behaviour of the magnetic processes. To date, there
is no self-consistent model that can at the same time capture both the impact of magnetic
processes on disc structure and dynamics, and the evolution of the magnetic flux distribution.
This work makes a contribution towards the realisation of such a model, by exploring the
impact of non-ideal MHD effects on the disc’s magnetic flux transport, and how the interplay
between magnetic processes under different conditions expected in protoplanetary discs
influences the geometry of the magnetic field and disc dynamics.

The result from recent studies that protoplanetary discs are likely to be laminar in nature
owing to the presence of non-ideal MHD makes it possible to simplify the problem to
essentially one-dimensional vertical structure calculations based on radially local models.
Although local models cannot capture the full properties of disc winds, they can nevertheless
provide helpful insight into transport properties and geometry of the solutions that are found in
global studies. To help gain understanding into the results and explore a large parameter space
with potentially wide-ranging behaviour, I have invoked both semi-analytical techniques
and numerical simulations in the investigation. I find that magnetic flux transport depends
sensitively on both the inclination of the poloidal field and the non-ideal MHD effects that
are present. In particular, the impact of Hall drift depends on whether the Hall parameter
has the same sign as the scalar product between the magnetic field and disc rotation vector.
The presence and profile of non-ideal MHD effects can lead to the excitation of large-scale



viii

MRI channel modes that contribute to the eventual geometry of the magnetic field in the
disc and subsequent wind launching, while the specific long-term outcome can also depend
on the initial conditions used. The results obtained in this Thesis are consistent with the
flux transport rates and geometries obtained in previous studies of protoplanetary discs,
and contribute to a deeper understanding of the underlying physics that are at play in disc-
magnetic field interactions. This work paves the way to an eventual self-consistent theory of
magnetised protoplanetary disc evolution and its consequences for planet formation.
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Part I

Context and framework





Chapter 1

Origin and features of protoplanetary
discs

1.1 Origin

Protoplanetary discs are flattened discs of gas and dust in orbit around young stars. They
are believed to be the nurseries of planet formation. The idea of a protoplanetary disc was
first proposed theoretically by Swedenborg (1734) and elaborated on by Kant (1755), who
reasoned that the close alignment of the orbital planes of the planets of the Solar system
points towards a common origin from a primordial disc. Over time, this was developed into
the Nebular Hypothesis, where star systems form from the fragmentation of giant molecular
clouds. These fragments then further collapse to form dense cores of protostellar nebulae,
which evolve into stars and their surrounding discs. Each nebula has a certain amount of
intrinsic angular momentum, and materials accelerate in their rotation as they fall towards
the centre of the nebula to conserve angular momentum. Gas in the inner part of the nebula
with lower angular momentum collapses to form the protostar, while gas in the outer part of
the nebula settles into a flattened rapidly rotating disc where the gravitational pull inwards is
balanced by a centrifugal force outwards. Planets are then believed to form during the disc’s
evolution, as the disc slowly deposits mass (accretes) onto the new protostar. Since their
theoretical proposal, the existence of protoplanetary discs has been confirmed in observations
of young stellar systems in the past few decades. Understanding protoplanetary discs and
their evolution are therefore fundamental to understanding the processes that eventually led
to the conditions of our own Solar system, and other planetary systems we see today.

Protoplanetary discs are a sub-class of accretion discs, which are ubiquitous objects in
the Universe resulting from the conservation of angular momentum of material collapsing
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Fig. 1.1 Visible light image of the HH-30 protostellar disc as observed by Hubble. The
diameter of the disc is 450 AU. Image credit: NASA, Watson, Stapelfeldt, Krist and Burrows.

under gravity. Accretion discs also occur in other contexts such as active galactic nuclei, and
in the discs of close binary systems. Understanding protoplanetary disc dynamics therefore
also has the scope of aiding our understanding of processes that may be at play in other
astrophysical systems.

1.2 Observations

The first direct observation of a protoplanetary disc was in 1994 through the Hubble Space
Telescope’s images of HH-30 in the Orion nebula (O’dell and Wen, 1994) (see Figure
1.1). Beforehand, indirect observations from unresolved photometry only allowed for the
inference of disc properties from theoretical models and comparison with generated synthetic
observables, such as that of the expected infrared spectral energy density (SED) spectrum,
which required assumptions about the discs’ dust to gas ratio. These gave us coarse estimates
of properties such as total disc mass (Beckwith et al., 1990) and the characterisation of disc
types through their SEDs (Lada, 1987).

We place our work in the context of the discs of Class II Young Stellar Objects (YSOs),
as categorised by Lada (1987). These are Classical T-Tauri systems, where the accreting
envelope from the molecular clouds has all but dissipated, and the central star has been
born. The disc at this stage is a few percent of the central stellar mass, and its evolution is
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governed by dynamics such as accretion onto the central star, photoevaporation from stellar
and cosmic radiation, formation of structures in the disc, and interactions with stellar or
substellar companions (Williams and Cieza, 2011).

Hubble’s side-on view of the HH-30 system showed the disc as a dark band along the
mid-plane sandwiched between two bright curved regions, where light from the central
protostar has been scattered from the dust at the disc’s surface. A jet was also revealed to
be emanating from the inner region of the disc, expanding for several billion kilometres
from the star with a high level of collimation. Even though the spatial resolution was still
coarse (> 15−20 AU) compared to current standards, these first direct images have led to
new understanding of the structure of protoplanetary discs. Much progress has been made
in the advancement of instrumentation since then, particularly with the commissioning of
facilities like the Atacama Large Millimeter/submillimeter Array (ALMA). This has led to
higher resolution images, down to 5 AU at typical distances to nearby star-forming regions
of ∼ 150 pc, revealing a whole range of other interesting features in the discs’ substructure.
Today, a range of observational tools are used to probe different regions and properties of
protoplanetary discs. In order to have a better understanding of how these observations
inform and constrain theoretical models, we present here a summary of the techniques used,
and the disc regions and properties they probe:

• UV Excess: This measures the UV radiation emitted by the system in excess of that
expected from the host star, and is a signature of the accretion shock. This measurement
allows for the deduction of the accretion rate at the foot of the accretion column.

• Scattered Light: This observes light in the near and mid-infrared continuum, which
comes from small < µm-sized dust grains in the disc atmosphere scattering and
reflecting radiation from the central star. The dust disc is usually optically thick at
these wavelengths, so scattered light probes the very surface of the dust layer (Andrews,
2020; Lesur, 2020). This tracer gives us the geometry of the dust component of the
disc. Practical challenges for this probe are its dependence on contrast with the host
star, which prevents measurements of the inner disc, and its need for stellar photons
from the host star, which limits current measurements to discs with more luminous
hosts at medium radii.

• Continuum Emission: This observes the (sub)-millimetre continuum, and probes
the thermal emission from larger mm-sized dust grains in the disc. At low optical
depths, which are traditionally expected in the sub-mm, the emissivity scales with
the surface density of solids, and is also dependent on the temperature and particle
properties. This tracer has the advantage of being bright, negating limitations due to
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stellar contrast. It is also accessible at high resolution, hence most of our knowledge
about disc structures is based on continuum emission data. Continuum emission
from dust is used to determine disc masses and particle properties, though with large
uncertainties due to the significant underlying assumptions required (Armitage, 2015).

• Spectral Line Emission: This probes specific rotational transition spectral lines in
both the infrared and radio wavelengths of rare gas tracers, such as that of the J = 3−2
transition for the CO molecular gas. These lines are usually optically thick, and hence
only trace the gas in the disc surface layer. Their intensities depend on the temperature
of the atmosphere. At low optical depths, their intensities also depend on the gas
density. If the relative abundance of the tracer species to H2 is known, spatial maps of
optically thin spectral line emission can be used to constrain the gas surface density,
and also determine the disc velocity field (Andrews, 2020). Most of the information
about disc kinematics, chemical composition and turbulence is obtained using this
diagnostic (Armitage, 2015).

Figure 1.2, taken from Lesur (2020), summarises the different tracers and the disc regions
they probe. For a more detailed review on the nature of protoplanetary disc observations, we
refer to the recent review by Andrews (2020), which outlines the current state of the art in
great detail. Measurements of disc properties such as disc mass, accretion rate, spatial profile
of temperature, and gas and dust densities, provide valuable initial and boundary conditions
for constraining theoretical models of protoplanetary disc evolution and planet formation
processes.

1.3 Features of protoplanetary discs

Here, we summarise the key structural and dynamical properties of protoplanetary discs
determined from observations that are crucial for the context of our work. Protoplanetary
discs can be separated into two regions: a dust-free inner disc of hot gas from the disc inner
edge at a few stellar radii to the dust sublimation radius, and an outer disc of dust and gas,
with an outer edge ranging from 100 AU to 1000 AU. The typical dust to gas ratio in the outer
disc is still a quantity poorly constrained by observation. It has been common for people
to assume the dust content to be 1% of the total disc mass, the dust to gas ratio found in
the interstellar medium (ISM), such as in the minimum mass Solar nebula model (MMSN)
(Hayashi, 1981).
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Fig. 1.2 Observational diagnostics of protoplanetary discs. For simplicity, only the disc and
star are shown, and features such as disc wind and structure like rings and gaps are omitted.
From Lesur (2020).

1.3.1 Temperature structure

Protoplanetary discs are distinguished from their stellar-mass black hole accretion disc
counterparts by their relatively lower temperature profiles. While black hole accretion discs
can reach a surface temperature ranging between 104 −107 K, a protoplanetary disc usually
peaks at around 1000 K in the innermost region, before rapidly dropping off to several
hundred Kelvin by 10 AU (Najita et al., 2003). The main source of heating is from radiative
heating due to the central star, while secondary sources of heating such as external radiation
(D’Alessio et al., 1997), radioactivity (Cleeves et al., 2013), viscous dissipation (D’Alessio
et al., 1998), spiral shocks (Rafikov, 2016) and vertical structure perturbations (Dullemond
and Dominik, 2004) may also be present. As a result, temperature is generally modelled
as an increasing function of T (z) and a decreasing function of T (R), where z and R are the
cylindrical vertical and radial coordinates respectively. This, coupled to the generally lower
temperatures, lead to the lower ionisation fractions found in much of the disc, particularly
in the central mid-plane regions, significantly affecting the nature of magnetic processes in
those regions.
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1.3.2 Accretion

There is no direct way of measuring the accretion rate in protoplanetary discs, and all current
data come from two main indirect diagnostics: UV excess from the accretion shock at the
stellar surface, and the fraction of stars showing disc features as a function of stellar age.

The UV excess results from material at the inner edge of the disc being disrupted and
funnelled by the stellar magnetic field to the star’s surface at a nearly free fall speed, forming
an accretion shock that emits in the UV. Measurements of the UV excess translate to a typical
accretion rate of 10−8M⊙ yr−1, with a variation of up to an order of magnitude on either side
that is dependent on the particular system (Manara et al., 2016). However it should be noted
that this only corresponds to the accretion rate at the foot of the accreting column, and does
not take into account other processes such as vertical mass-loss due to a disc wind, or the
overall mass flow in the disc itself. Typical outflow rates from low-mass classical T-Tauri
stars have been found to be 10−9 to 10−7M⊙ yr−1 (Frank et al., 2014).

The second diagnostic relies on estimating of the ages of T-Tauri stars, and analysing
the decline of the fraction of systems with disc signatures (such as via the infrared excess
resulting from dust surround the star or the UV excess) with stellar age. Using this method,
Hernández et al. (2007) showed that typical disc fraction drops to 50% at around 3 Myr,
while Fedele et al. (2010) measured a mass accretion timescale of 2.3 Myr for the whole
system, and 3.0 Myr for the dust. Assuming a steady accretion and or wind mass loss rate
throughout the lifetime of the discs, protoplanetary disc masses can be inferred to be in the
range 10−3 − 10−1M⊙, consistent with results obtained via observations of the total dust
content of discs (Andrews et al., 2013).

1.3.3 Vertical outflows: winds and jets

As demonstrated in the case of HH-30, vertical outflows in the form of winds and jets are
often found to be associated with protoplanetary discs. In fact, current observations point to
most, if not all, young stellar systems having accretion-driven bi-polar outflows during their
formation (Frank et al., 2014).

Jets are usually narrow and highly collimated, and have velocities of order 100−1000
km s−1 (Frank et al., 2014). They consist of atomic and/or molecular gas, and are often
observed in forbidden emission lines (Lesur, 2020). Jets are believed to originate from
the innermost parts of the disc (R < 5 AU) due to their high velocity, and to be driven by
dynamical interactions of accreted matter with magnetic fields from the star and/or threading
the disc. Jets can propagate up to the parsec scale, significantly affecting the surrounding
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interstellar environment. The outflow rate can also be up to 10% of the accretion rate in
classical T-Tauri stars (Frank et al., 2014).

Winds are usually much slower, with velocities of order 1− 30 km s−1 (Frank et al.,
2014), and observed via the emission lines of molecular gas evicted with the outflows. Winds
are ejected from regions > 1 AU, and their ejection radius can extend up to 10-100 AU from
the central protostar (Bjerkeli et al., 2016; Lesur, 2020). They are believed to be either the
result of material being “swept up" by the jet into the environment, or due to hydrodynamic
or magnetohydrodynamic processes that drive a direct outflow from the disc (Frank et al.,
2014; Lesur, 2020).

Understanding the nature and origin of outflows is important for understanding proto-
planetary disc dynamics, as they can be significant sources of mass and angular momentum
removal vertically, which in turn could drive processes such as accretion, or even substructure
formation like that of rings and gaps (Riols and Lesur, 2019).

1.3.4 Turbulence

Turbulence can be an important driver for disc accretion, as given sufficient strength and
the correct properties, it can act as an effective viscosity, transporting angular momentum
radially outwards, and allowing mass to flow radially inwards. The presence of turbulence
can also have a significant effect on planet formation processes, as it prevents the settling of
dust to the disc mid-plane, and also affects the formation of planetesimals through collisions
(Johansen et al., 2014), and the migration rate of low-mass planets (Kley and Nelson, 2012).
Constraining the strength and nature of turbulence in protoplanetary discs is therefore crucial
for theoretical work in understanding their dynamics.

Turbulence is indirectly estimated in two ways: through the broadening of molecular
line profiles from turbulent motion of the gas (Armitage, 2015), and through measuring the
level of dust settling in the disc which in turn gives an upper limit on the level of turbulence
allowed (Pinte et al., 2016).

From theory, it is expected that turbulence in discs is subsonic. The contribution of
small-scale fluid turbulence to the line width can be estimated as

δν =
ν

c

√
2kBT
µmH

+ v2
turb, (1.1)

where ν is the central frequency and c is the speed of light, T is the temperature, µ is
the molecular weight of the observed species, and vturb is the root-mean-square velocity
estimator of the turbulence (Armitage, 2015). The low turbulent velocities expected therefore
increases the difficulty in measuring turbulence levels using the spectral line broadening
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method, and observations generally rely on the transitions of heavy molecules such as CO,
CN and CS. Recent measurements by Flaherty et al. (2015) and Flaherty et al. (2017) using
high resolution ALMA data have concluded negligible turbulence contribution to the line
broadening in the disc around the star HD 163296, with an upper limit of vturb < 0.1cs. Other
spectral line studies have also found that line broadening data for discs at large distances
(> 30 AU) yielded an upper limit of vturb < 0.03cs as best fit (Lesur, 2020). These results
suggest that protoplanetary discs are largely laminar in nature, with a turbulence level that is
insufficient in accounting for the accretion rates observed. This is further corroborated by
direct measurements of the dust layer thickness of the HL-Tau system by Pinte et al. (2016),
who found that 100 µm grains have settled towards the mid-plane with a vertical dust scale
height 10 times smaller than the gas scale height, implying very low levels of turbulence
present with vturb ∼ 10−2cs. These results separate protoplanetary disc dynamics from other
systems such as black hole accretion discs, where a high level of turbulence is expected, and
points to other mechanisms such as wind-driven accretion and photoevaporation as mainly
responsible for driving their evolution.

1.3.5 Structures

Perhaps the most fascinating and beautiful of protoplanetary disc features revealed by
observations so far are the large variety of structures observed in recent high resolution
studies. They show us that discs are not smooth and symmetrical as assumed in the past, but
rather possess features varying on the scale of our own Solar System.

Morphologically, these structures can be categorised into four types:

• Ring and cavity: Discs with this feature are also known as transition discs, and
account for between 5−25% of observed discs, depending on the precise definition
(Currie and Sicilia-Aguilar, 2011; Luhman et al., 2010). In these systems the outer
disc is fairly normal compared with other discs, but the inner disc is truncated at
some inner radius. However, most transition discs are also found to be accreting at
rates comparable to other Classical T-Tauri stars (Manara et al., 2014), implying that
the cavities, though devoid of dust, are not empty. These are usually gas-filled, and
accretion onto the star continues.

• Rings and gaps: This category consists of discs with concentric, axisymmetric bands
of brightness (rings) and darkness (gaps), reflecting the uneven radial distribution
of the tracer. The most famous example of this is that of HL Tau, which has seven
pairs of rings and gaps located between 20 AU and 100 AU (ALMA Partnership et al.,
2015). It is the most common morphology that is identified in both scattered light and
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mm-measurements (Andrews, 2020), and there exists a large variety of forms within
this category.

• Arcs: Also known as the horseshoe morphology, these are non-axisymmetric structures
organised as a crescent-shaped feature spanning a limited range of azimuth on one
side of the disc. Interestingly, this feature is only observed in mm and sub-mm
measurements of larger dust particles, and there is no observation of arcs in mid-IR
imaging of gas or µm-sized dust (Armitage, 2015). This morphology type is also much
rarer compared with the axisymmetric types (Andrews, 2020).

• Spirals: This morphology ranges from the large-scale symmetric two-armed spiral
of the m = 2 mode, to tightly-wound asymmetric structures. Only six systems with
spirals are currently known, three in mm measurements with the m = 2 mode (Huang
et al., 2018; Pérez et al., 2016), and three in spectral line measurements with extended
complex spirals (Christiaens et al., 2014; Tang et al., 2017, 2012; Teague et al., 2019).

Figure 1.3, taken from Andrews (2020), presents a gallery of images showing the four disc
types observed in both mm and scattered light measurements.

Many of these features are observed in both scattered light images of discs in the near
infrared using polarimetric differential imaging (e.g. in Benisty et al. (2015) and Ginski
et al. (2016)), and mm and sub-mm interferometric observations (e.g. ALMA and the
Submillimeter Array (SMA)). Interestingly, different morphologies are sometimes found to
co-exist in the same disc, but for different tracers. For example, for the system MWC 758,
spirals are observed in scattered light (Benisty et al., 2015), but rings, gaps and arcs are seen
in mm measurements (Dong et al., 2018). This may be an indicator of different mechanisms
simultaneously at work in the disc, and driving the evolution of different components of the
disc. There are also cases where multiple features are observed in the same tracer for the
same disc (Huang et al., 2018), and again may be an indicator of different physics being
simultaneously at work in the system.

Theorists have proposed that these features could be the result of fluid dynamical pro-
cesses in the disc, or of gravitational interactions of the disc with embedded planets. As of
today, there is no clear consensus as to which may be the more common explanation (Lesur,
2020). Hence the origin of structures in discs remain an open question, prompting more
theoretical research into mechanisms that can lead to their formation, and more detailed
observations to constrain plausible models.
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Fig. 1.3 A gallery of observations of protoplanetary discs grouped according to the four disc
types discussed: a) ring and cavity, b) rings and gaps, c) arcs and d) spirals. All images are
mm continuum measurements, with the exception of the bottom right three images of each
of a), b) and c), which are scattered light observations. Figure used with permission from
Andrews (2020). For full list of citations for each individual image, please see caption of
figure 11 of Andrews (2020).
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1.3.6 Magnetic fields

As we shall see in Chapter 2, magnetic fields are theorised to have a major impact on
astrophysical gas dynamics, and in the disc context they may be responsible for mechanisms
that lead to disc accretion, outflow, turbulence and structure formation. Magnetic fields
are thought to be intrinsic to the molecular clouds from which star-disc systems form
(Crutcher, 2012), and hence we should expect disc systems to have a certain degree of
magnetisation. Constraining the field morphology and determining typical field strengths
present are therefore crucial to understanding the feasibility and effectiveness of different
magnetic mechanisms that may be at play in protoplanetary discs.

Sadly, to date, there are few observational constraints of magnetic fields in protoplanetary
discs. Fields of sufficient strength and their topology can in theory be measured by the
circular polarisation induced by Zeeman splitting of molecular emission lines. Measurements
of magnetic fields in the inner disc using the Zeeman effect have yielded strong toroidal field
strengths of a few kG (Donati et al., 2015), but there is no way of telling whether this field is
from the host star or the disc. Theory has also predicted that field strengths could drop to a
few mG at a few tens of AU (Wardle, 2007), and so far, all measurements at larger distances
(>10 AU) using Zeeman splitting have only resulted in upper limits of Bz < 0.8 mG and
B < 30 mG (Vlemmings et al., 2019).

In principle, field morphologies can also be determined from the linear polarisation of
the dust thermal emission (mm continuum) (Bertrang et al., 2017; Cho and Lazarian, 2007).
Here, dust is assumed to be aligned perpendicularly to magnetic field lines, leading to the
preferential emission of thermal radiation with a specific polarisation that is 90◦ to the field
as the particles vibrate. However, self-scattering by dust grains (Kataoka et al., 2015) and
interplay from other grain alignment mechanisms (Kataoka et al., 2019; Tazaki et al., 2017)
can also polarise the radiation, polluting the results and causing great uncertainty in their
interpretation.

One final hint of the strength and orientation of protoplanetary disc field strengths comes
from measuring the remnant magnetisation in meteorites and comets in our Solar System
today, and assuming that the field was frozen into the objects during their formation in the
disc stage, and that other protostellar systems have also formed in a similar environment. This
has yielded field strengths of the order of 0.1 G around 1 AU from meteoric data (Fu et al.,
2014), and upper limits of B < 30 mG at around 15−45 AU from cometary observations
(Biersteker et al., 2019).
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1.4 The need for magnetohydrodynamics

For many years in accretion disc research, the processes that drive accretion to account for the
observed rates have been a puzzle (Balbus and Hawley, 1998). How is angular momentum
removed to allow for mass to be accreted?

1.4.1 Sources of radial angular momentum removal

Most accretion discs, including protoplanetary discs, can be approximated as fluids in
Keplerian rotation around the central star. In this regime, the angular velocity of the fluid
decreases with radial distance, leading to differential rotation and shear between the fluid
elements at different radii. The presence of a shear viscosity could in theory lead to angular
momentum transfer between these fluid elements, driving accretion. Indeed, the influential
model of accretion disc evolution by Shakura and Sunyaev (1973) was based on this idea
of the viscous spreading of the disc. Studies have shown that the standard microscopic
viscosities expected in discs are too small to provide any significant angular momentum
transfer that can account for the observed accretion rates (Clarke and Carswell, 2014; Spitzer,
1962). However, turbulent mixing might be a source of an effective viscosity that could
facilitate the radially outward removal of angular momentum from the disc. We therefore
turn to ask if there are any known processes that would cause the fluid flow to be destabilised,
and for turbulence to develop.

The failure of pure barotropic hydrodynamics

First, we demonstrate the failure of pure barotropic hydrodynamics in accounting for insta-
bility in accretion discs. In the most simple and idealised case, we assume the disc to be a
barotropic ideal hydrodynamic fluid. The linear stability of such an axisymmetric flow with
a smoothly varying angular velocity profile, Ω(r), is given by the classic Rayleigh’s criterion
(Pringle and King, 2007):

dl
dR

=
d

dR
(R2

Ω)> 0 → stability, (1.2)

where R is the radial distance from the star, and l is the specific angular momentum of the
fluid element. For a Keplerian disc, l ∝ R1/2 and Ω ∝ R−3/2, leading to dl/dR ∝ R−1/2 > 0,
hence we should expect stability. In fact, as long as the specific angular momentum increases
radially outward, which is the case in accretion discs, the differential rotation is always stable
to linear axisymmetric perturbations.
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There have been suggestions that the large Reynolds number (∼ 1014) (Clarke and
Carswell, 2014) expected in a primordial disc could lead it to be unstable to nonlinear pertur-
bations such as in the pipe or Cartesian shear flow contexts. However, to date, there are no
known instabilities in the rotating Keplerian shear flow context unique to astrophysical discs,
and both analytic and numerical arguments (Lesur and Longaretti, 2009) have suggested
that no non-linear instability could generate the levels of turbulence required for astrophys-
ical significance. These are further supported by laboratory experiments which show that
Keplerian rotation is hydrodynamically stable (Ji et al., 2006; Schartman et al., 2012).

Self-gravity

Other sources of instability have been proposed. Self-gravity can be important for discs or
disc portions when the Toomre criterion

Q ≡ csΩ

πGΣ
< Qcrit ∼ 1 (1.3)

is satisfied, where Σ is the disc surface density. This is usually the case in young, massive
discs, when the surrounding envelope is still contributing significantly to disc transport.
Self-gravity can lead to the generation of large-scale non-local features such as spiral density
waves, which in turn can lead to angular momentum transport and accretion (Rafikov, 2016).
However, self-gravity is more likely to be important during the earlier stages of star formation
(Armitage, 2015), and is unlikely to be a significant factor in the evolution of Class II discs
that our study is focused on when accretion from the envelope has largely ceased.

Entropy-driven instabilities

Another class of instabilities that may be present rely on the existence of non-trivial tem-
perature gradients in the disc. These are called “entropy-driven" instabilities, and include
examples like convection from vertical temperature gradients (Lesur and Ogilvie, 2010), the
vertical shear instability from radial temperature gradients (Nelson et al., 2013), and the
subcritical baroclinic instability (Petersen et al., 2007a,b), the last of which occurs when
surfaces of constant density are not parallel to surfaces of constant pressure, and can be
responsible for the generation of vortices. There have been numerous studies into each
of these instabilities in recent years, and they are shown to be able to generate a low but
noticeable level of transport (α ∼ 10−4 −10−3) that can account for disc dynamics where
magnetohydrodynamic processes are suppressed.
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Magnetohydrodynamic instabilities

This leaves us with the introduction of magnetohydrodynamic (MHD) instabilities, which
have been the subject of much research over the last 30 years. The seminal paper by Balbus
and Hawley (1991) noted that a weak magnetic field threading the disc can cause a linear
instability, now known as the magneto-rotational instability (MRI), that transports angular
momentum outwards. In its nonlinear stage, the MRI can lead to strong turbulence in the
disc (Hawley et al., 1995) which in turn can drive significant accretion.

The MRI has been very effectively applied to account for the level of turbulence in
well-ionised accretion disc systems such as black hole accretion discs, and discs in binary
systems. However, the lower temperatures and high opacities of protoplanetary discs means
that much of the disc is expected to be poorly ionised. In this regime, non-ideal MHD
effects such as Ohmic resistivity, Hall drift and ambipolar diffusion significantly affect the
nature and strength of MRI dynamics. The likely presence of non-ideal MHD dynamics in
protoplanetary discs, and their impact on magnetic instabilities like the MRI, will be the
subject of the next chapter.

1.4.2 Sources of vertical angular momentum removal

As noted in Section 1.3.3, outflows are commonly observed to be associated with protostellar
systems. Two mechanisms have been proposed to account for these vertical mass losses:
photoevaporation due to radiation from the central star, and magnetically driven winds.
While photoevaporation removes mass vertically from the disc and is likely to be responsible
for the inside-out clearing of discs that lead to the formation of transition discs (Haworth
et al., 2016; Owen et al., 2012), it by itself does not remove angular momentum, and cannot
account for accretion. Magnetically driven winds, on the other hand, can be an efficient
mechanism for extracting angular momentum as well as mass from the disc, and provide
another way for accretion in the disc to be driven (Blandford and Payne, 1982). This, coupled
with the observation of disc winds emitted from regions well inside the gravitational radius1

within which photoevaporation is inefficient (Ercolano and Pascucci, 2017), suggest that
magnetically driven winds indeed have a major role to play in the evolution of protoplanetary
discs. The exact mechanics and considerations of these magnetic winds in the protoplanetary
disc context will be explored in the next Chapter.

1The gravitational radius is given by Rg = GM⋆/c2
s , and is a characteristic length scale derived from

balancing the gravitational potential energy and the thermal energy of the disc. Beyond Rg, particles can
become sufficiently thermally excited from its gravitational potential to evaporate.



Chapter 2

Magnetohydrodynamics of
protoplanetary discs

2.1 General concepts

2.1.1 Ideal MHD

The equations of magnetohydrodynamics (MHD) are obtained by combining Maxwell’s
equations with the equations of fluid mechanics. We begin by considering the case where the
fluid is assumed to be perfectly conducting (ideal MHD), before moving on to the non-ideal
MHD regime more common in protoplanetary discs.

Maxwell’s equations are given by

∇ ·E =
ρe

ε0
, (2.1)

∇ ·B = 0, (2.2)

∇×E =−∂B
∂ t

, (2.3)

∇×B = µ0

(
J+ ε0

∂E
∂ t

)
, (2.4)

where E and B are the electric and magnetic fields respectively, ρe is the electric charge
density, ε0 and µ0 are the permittivity and permeability of free space respectively, and J is
the electric current density. The equations of fluid dynamics are given by

∂ρ

∂ t
=−∇ · (ρu), (2.5)
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ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p−ρ∇Φ+F, (2.6)

where ρ is the fluid mass density, u is the fluid velocity, p is the pressure, Φ is the combined
gravitational and centrifugal potential, and F represents other forces that may be present in
the system (e.g. from magnetic fields).

Consider the electric field in the fluid element’s rest frame, E′, given by:

E′ = E+u×B. (2.7)

Since we are regarding the fluid as a perfect conductor in the ideal MHD limit, this rest frame
electric field vanishes, resulting in

E =−u×B. (2.8)

Combining this result with the third Maxwell equation, we arrive at the induction equation
for ideal MHD:

∂B
∂ t

= ∇× (u×B). (2.9)

Next, we compute the Lorentz force component of F in the momentum equation. We
recognise that Lorentz force summed over all charged particles is

F = ρeE+J×B. (2.10)

We obtain an expression for J by noting that for fluid flow in the non-relativistic regime that
we are considering, the displacement current (second term on the RHS) in Equation (2.4)
can be neglected. This can be seen by considering motion on a characteristic length scale L
and time scale τ , such that u ∼ L/τ . Noting that µ0ε0 = 1/c2, and substituting in Equation
(2.8), the displacement current term has a magnitude ∼ uB/(c2τ). On the other hand, the
LHS of Equation (2.4) has a magnitude ∼ B/l. The ratio of their magnitudes is therefore
∼ u2/c2 ≪ 1, justifying our neglect of the displacement current term in non-relativistic flows.
Therefore, we arrive at

J =
1
µ0

∇×B, (2.11)

where J and B have a one-to-one correspondence.
Using the same argument based on characteristic scales, we can also show that the

electric part of the Lorentz force can be neglected compared to the magnetic part. Gauss’ law
(Equation (2.1)) gives us ρe ∼ E/(ε0l). Hence the ratio of the electric to magnetic terms of
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Equation (2.10) is ∼ [E2/(ε0l)]/[B2/(µ0l)]∼ u2/c2 ≪ 1. Hence the Lorentz force is given
by

F = J×B =
1
µ0

(∇×B)×B, (2.12)

and the full set of ideal MHD equations are:

∂ρ

∂ t
=−∇ · (ρu), (2.13)

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p−ρ∇Φ+

1
µ0

(∇×B)×B, (2.14)

∇ ·B = 0, (2.15)

∂B
∂ t

= ∇× (u×B). (2.16)

These are known as the continuity equation, the momentum equation, the solenoidal condition
and the induction equation respectively. We shall now discuss some of their properties that
are crucial for understanding our work below.

2.1.2 Magnetic pressure and tension

First we look at the Lorentz force terms, which can be split using standard vector identities
into two parts:

1
µ0

(∇×B)×B =−∇

(
B2

2µ0

)
+

1
µ0

(B ·∇)B. (2.17)

The first term on the RHS is the magnetic pressure force, where pm = B2/(2µ0) can be
treated as a magnetic pressure resisting compression of field lines. In literature it is common
to characterise the magnetisation of a disc by the dimensionless plasma beta parameter, which
relates the thermal energy density (proportional to the gas pressure) to the magnetic energy
density (equal to the magnetic pressure), and is defined as

β ≡ p
pm

=
2µ0 p

B2 . (2.18)

Mid-plane β values normally assumed to be characteristic of protoplanetary disc conditions
lie in the range 104 −106 (Guilet and Ogilvie, 2014; Okuzumi et al., 2014; Takeuchi and
Okuzumi, 2014), where a vertical field is assumed at the mid-plane, although observationally
it is still largely unconstrained. A disc typically has a density profile that decreases rapidly
at several scale heights above the mid-plane, and the height at which β ∼ 1 is noted to
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be the height from which magnetic winds are launched. The situation β ≈ 1 is known as
‘equipartition’, and is the case when the magnetic and thermal energy densities are comparable
to each other. It is often found to be a turning point in the behaviour of magnetic processes.

One physical significance of the magnetic pressure force is in understanding the launching
of vertical outflows from a weakly magnetised disc. The disc’s orbital motion can lead to
the winding up of the poloidal field lines, causing a large toroidal field to develop over an
extended range in z. The resultant magnetic pressure gradient can then lead to the launching
of vertical outflows due to the magnetic pressure force, and is sometimes referred to as a
magnetic tower flow (Lynden-Bell, 1996, 2003).

The second term on the right-hand side of Equation (2.18) is known as the curvature
force/magnetic tension, and is best thought of as the same as the tension in a taut string. The
term can be rewritten as

1
µ0

(B ·∇)B =
B2

2µ0
(b ·∇)b+bb ·∇

(
B2

2µ0

)
, (2.19)

where b ≡ B/|B| is the unit vector along the magnetic field. The first term on the right-hand
side is the magnetic pressure multiplied with b ·∇b, the vector curvature of the magnetic field,
and implies that bent field lines would naturally resist the curvature and want to straighten up.
The second term on the right-hand side is the component of the magnetic pressure gradient
in the direction of the field lines, and acts as a negative stress along the field lines.

The magnetic tension force is important for the operation of the magnetorotational
instability (see Section 2.2 for a more detailed discussion), as it gives rise to the return force
between displaced fluid elements that is responsible for the spring-like nature of magnetised
fluid elements. It is responsible for the driving of accretion or decretion flows in the disc
depending on how the field bends in the azimuthal direction when viewed in the z−φ plane.

2.1.3 Magnetic flux

The ideal induction equation

∂B
∂ t

= ∇× (u×B). (2.20)

has a simple and beautiful interpretation in that magnetic field lines are “frozen in” to the
fluid, and therefore moves with the flow. This can be seen by rewriting the induction equation,
using vector identities, into the form:

DB
Dt

≡
(

∂

∂ t
+u ·∇

)
B = B ·∇u−B∇ ·u, (2.21)
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where D/Dt ≡ ∂/∂ t +u ·∇ is the convective derivative that moves with the fluid flow. We
can then note from the mass conservation equation that

∇ ·u =− 1
ρ

Dρ

Dt
. (2.22)

Substituting this into the modified induction equation, and multiplying it by 1/ρ , we arrive
at

D
Dt

B
ρ
=

B
ρ
·∇u. (2.23)

This is the same equation satisfied by a material line element, δx, defined as an infinitesimal
line element that moves with the bulk velocity u of the fluid:

D
Dt

δx = u(x+δx)−u(x)≈ δx ·∇u. (2.24)

Hence a magnetic field line is advected and distorted the same way as a material curve by
fluid motion. This result is commonly known as Lundquist’s theorem.

One corollary that follows from Lundquist’s theorem is Alfvén’s theorem, which states
that the magnetic flux, which is a measure of the number of field lines passing through a
given closed loop, is conserved through any loop moving with the fluid. We can see this in
the case of a material surface element by considering the magnetic flux through it, given by
δΦ = B ·δS, where δS is the surface element. The convective derivative of the flux is then
given by:

DδΦ

Dt
=

DB
Dt

·δS+B · DδS
Dt

=

(
B j

∂ui

∂x j
−Bi

∂u j

∂x j

)
δSi +Bi

(
∂u j

∂x j
δSi −

∂u j

∂xi
δS j

)
= 0.

(2.25)

Flux freezing means that fluid flow can change the magnetic field strength. This can be
seen by considering the physical interpretation of the terms in Equation 2.21:

∂B
∂ t

+u ·∇B = B ·∇u−B∇ ·u. (2.26)

The second term on the left-hand side represents the advection of the field by the flow, while
the first and second terms on the right-hand side represent the effect of velocity gradients
stretching (and hence amplifying) the field by elongating the fluid elements, and finally
compression of the field by convergent or divergent fluid flows. This has a huge impact on
the MHD of astrophysical fluids, as it means magnetic fields can be amplified or weakened
and also have their geometry changed depending on the flow properties.
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It is important to note at this point that flux freezing only strictly applies in ideal MHD.
Once non-ideal MHD terms like resistivity, Hall drift and ambipolar diffusion are involved,
such as in the protoplanetary disc context, the flux movement becomes much more complex.
This will be explored in Section 2.4.2.

Magnetic flux in protoplanetary discs

One important diagnostic for protoplanetary discs is the poloidal magnetic flux threading it.
Its strength and inclination has a direct impact on the feasibility of both the operation of the
MRI and the launching of a magnetic wind. A large-scale axisymmetric poloidal magnetic
field can be described with a magnetic flux function ψ in cylindrical coordinates (r,φ ,z) by
(Ogilvie, 1997)

B = ∇ψ ×
eφ

r
(2.27)

or

Br =−1
r

∂ψ

∂ z
, Bz =

1
r

∂ψ

∂ r
, (2.28)

where eφ is the azimuthal unit vector, and Br and Bz are the radial and vertical components
of the magnetic field. The magnetic flux threading a disc of radius r is then given by∫ r

0
Bz(r′,z)2πr′dr′ = 2πψ, (2.29)

where we have set the integration constant to zero.
From its definition, B ·∇ψ = 0, hence ψ is a useful label for magnetic field lines and

defines their surfaces of revolution. It can be shown by integrating Faraday’s law (Equation
2.3) with respect to r that the time-evolution of the magnetic flux function of the disc evolves
in general as

∂ψ

∂ t
+ rvψBz =

∂ψ

∂ t
+ vψ

∂ψ

∂ r
= 0, (2.30)

where

vψ =
Eφ

Bz
(2.31)

is the radial transport velocity of the vertical flux at a given height, with Eφ being the
azimuthal component of the electric field (Guilet and Ogilvie, 2012). Calculating vψ is
important for determining the long term evolution and consequent distribution of magnetic
flux in the disc, and has been the subject of both semi-analytic (Guilet and Ogilvie, 2012,
2013, 2014) and numerical studies (Bai, 2017; Bai and Stone, 2017; Zhu and Stone, 2018).
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Fig. 2.1 Analogy of the MRI mechanism as masses (mi and mo) connected by springs in orbit
at different radii around a central mass (Mc). The inner mass mi has a higher angular velocity
and gets ‘ahead’ in the orbit, transferring angular momentum to the outer mass mo through
the magnetic tension. This promotes mo to a higher orbit while mi loses angular momentum
and moves to a lower orbit. This causes mi to have an even higher angular velocity and be
even further ahead in its orbit, and the process repeats and amplifies itself. Figure credit: H.
Ji.

2.2 Magnetorotational Instability (MRI)

We begin our discussion of the MRI by qualitatively outlining the physical processes gov-
erning its operation. Magnetic fields in a disc connect fluid elements as though they were
masses connected by a spring. Since a fluid element on an inner orbit rotates at a higher
angular velocity than the outer one, their relative position increases, causing the magnetic
tension binding the two elements together to also rise. This tension force slows down the
inner element and speeds up the outer element, transferring angular momentum from the
inner to the outer. As a result, the inner element moves to a lower orbit, while the outer
element is promoted to a higher one. This process then repeats and amplifies, as represented
by Figure 2.1. The MRI grows exponentially in the linear phase, followed by a nonlinear
mixing of fluid elements, resulting in turbulence.

2.2.1 Linear MRI in unstratified discs

Quantitatively, we consider the linear MRI in a local framework rotating with the disc,
where the characteristic length scale of motions is much shorter than the cylindrical radial
distance from the star. In this local model, which will be derived and discussed in more
detail in Chapter 3, x, y, and z correspond to the radial, azimuthal and vertical directions
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respectively. We also assume a pure vertical background magnetic field of strength B0, and
that perturbations from equilibrium have the form

X = X0 exp(ikz), (2.32)

where k is the wave number of the perturbation. The equations of motion for a fluid particle
are then:

d2Xx

dt2 = 2qΩ
2
0Xx +2Ω0

dy
dt

− v2
Ak2Xx, (2.33)

d2Xy

dt2 =−2Ω0
dXx

dt
− v2

Ak2Xy, (2.34)

d2Xz

dt2 =−Ω
2
0Xz, (2.35)

where Ω0 is the orbital angular velocity at some reference radius r0, defined as the centre
of the box, q ≡−∂ lnΩ/∂ lnr|r0 is the shear parameter, and vA = B0/

√
µ0ρ0 is the Alfvén

velocity.
The first term on the right-hand side of Equation (2.33) comes from the centrifugal force

which acts radially outward, while the second term of the right-hand side of Equation (2.33)
and the first term of the right-hand side of Equation (2.34) are the contributions from the
Coriolis force, acting perpendicularly to the fluid motion. The final terms on the right-hand
sides of Equations (2.33) and (2.34) are from the Lorentz force, and are restorative in nature.
They arise from noticing that the magnetic perturbation can be obtained by integrating the
induction equation with respect to time, giving us

δb = ikB0x, (2.36)

and that only the magnetic tension term appears in the horizontal direction, hence

F
ρ
=

B ·∇δb
µ0ρ

=−
k2B2

0
µ0ρ

X

=−v2
Ak2X.

(2.37)

Finally, the right-hand side term in Equation (2.35) arises from the vertical component of
the gravitational acceleration towards the star once the fluid particle is displaced from the
mid-plane.

The system of equations is separable in the vertical and horizontal directions. In the
vertical direction, we recover simple harmonic motion about the mid-plane at the orbital
frequency Ω0.
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The motion in the horizontal direction requires more thought. In the absence of magnetic
fields, we can show that epicyclic motion ensues. To see this, we first integrate Equation
(2.34) with respect to time. Without loss of generality, we can assume that the perturbation
does not change the angular momentum of the fluid particle and set the constant of integration
to zero, giving us

dXy

dt
=−2Ω0Xx, (2.38)

which can be interpreted as the conservation of angular momentum of the system, as L =
dXy

dt
+2Ω0Xx is the local angular momentum of the fluid particle. We then substitute this

result into Equation (2.33) to give us a second order differential equation for Xx:

d2Xx

dt2 =−2Ω
2
0(2−q)Xx. (2.39)

This is simply a harmonic oscillator with frequency

ω = Ω
2
0

√
2(2−q)≡ κ, (2.40)

and is commonly known as the epicyclic frequency. In Keplerian discs such as protoplanetary
systems, q = 3/2, hence κ is real, and the motion is an oscillation. Substituting the solution
to Xx to Equation (2.34) then gives us an equivalent differential equation in Xy with the same
epicyclic frequency. This is consistent with the result from Section 1.4.1 of Chapter 1 that
pure Keplerian flows are linearly stable.

Next, we turn to the magnetised case. The azimuthal tension force now breaks angular
momentum conservation, leading to instability. Let us assume the ansatz X ∝ expσt for the
growth of this instability, where σ is the growth rate. The horizontal equations of motion
then become

(σ2 + v2
Ak2)Xx = 2qΩ

2
0Xx +2Ω0σXy, (2.41)

(σ2 + v2
Ak2)Xy =−2Ω0σXx. (2.42)

This is a linear eigenvalue problem, from which we can extract the dispersion from the
determinant of the matrix L when the equations are cast into the form LX = 0. Hence we
obtain for the dispersion relation

σ
4 +σ

2(κ2 +2v2
Ak2)+ v2

Ak2(v2
Ak2 −2qΩ

2
0) = 0. (2.43)

We can check that the relation satisfies the behaviour we expect in different limits by noting
that when vA = 0, we recover pure epicyclic oscillations with σ2 =−κ2, while when Ω0 = 0,
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we recover pure Alfvén waves with σ2 =−v2
Ak2. A linear instability is present when σ2 > 0,

which is satisfied when

v2
Ak2 −2qΩ

2
0 < 0, (2.44)

and can be recast as a criterion for the wavelength as

λ

2π
>

B0√
2qΩ2

0µ0ρ

. (2.45)

This criterion shows us that the MRI is active when the magnetic tension is not too strong, as
the minimum wavelength must fit in with the size of the box. The MRI is therefore a weak
field instability, and can be stabilised by the presence of a strong magnetic flux.

Solving the dispersion relation (2.43) fully gives us further insights on the MRI in the
ideal MHD limit. Figure 2.2, taken from Lesur (2020), plots the solutions for the Keplerian

case q = 3/2. The maximum growth rate occurs at σmax = qΩ/2 when vAk =
√

Ω2
0 −κ2/16,

which for a Keplerian disc translates to σmax = 0.75Ω0. The value of the maximum growth
rate is actually a more general result, and is the absolute limit for the growth rate of the MRI
that is true even when non-ideal MHD effects are included (Desch, 2004). The stable branch
connected to the unstable branch at the instability condition is that of an Alfvén wave, and
shows that the MRI is an Alfvénic perturbation by nature. The two stable branches that are
unconnected to the instability are epicyclic modes that are stable for all magnetisations, and
take the classic frequency of κ when vA = 0.

2.2.2 Effect of stratification

In practice, real discs are vertically stratified, with decreasing density as height increases.
The effective wavenumbers become quantised, and the smallest possible wavenumber is set
by the scaleheight H of the disc such that kH = 1.1584 for the lowest order mode (Latter
et al., 2010). They are also found to satisfy the same dispersion relation as the non stratified
case when vA is set to be the value vA(z = 0) at the mid-plane. For an isothermal disc with
Bz only, the maximum vAk condition leads to the further result that there is a mid-plane β

value below which the disc would be stabilised, given by

β0 <
2(kminH)2

3
≃ 0.89. (2.46)

This again shows that the MRI is a weak field instability, which can be quenched by a strong
magnetic field. This result will affect the way we formulate our investigation of the disc’s
vertical structure and magnetic flux transport rate in Part II of the Thesis.
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Fig. 2.2 Solutions for the dispersion relation (2.43) for the case q = 3/2. Black branches
represent unstable modes, while red dashed lines are for stable modes. Figure from Lesur
(2020).

2.2.3 Channel modes

The most unstable and fastest growing modes of the MRI are those that vary only with height,
such that k = (0,0,kz) . These are known as “channel modes” due to their lack of horizontal
variation, and have the additional characteristic of being exact non-linear solutions of the full
MHD equations in the incompressible limit (Goodman and Xu, 1994; Latter et al., 2009),
which makes them both very robust and also significant as the disc saturates in the nonlinear
regime. For stratified compressible discs, a link has also been found between large-scale
MRI channel modes and the launching of magnetic winds from the disc surface (Lesur et al.,
2013; Ogilvie, 2012; Riols et al., 2016), an effect which will be reviewed in more detailed
in Chapter 9. In ideal MHD, channel modes take an “hourglass” (Bx = −Bx, By = −By,
ux = ux, uy = uy) or “slanted” (Bx = Bx, By = By, ux = −ux, uy = −uy) symmetry in the
vertical direction about the disc mid-plane. These symmetry properties will have particular
significance as we examine the effect of the MRI on the magnetic wind profiles in Part III of
the Thesis.
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Fig. 2.3 Bead-on-a-wire analogy for centrifugal acceleration by a magnetic field. Figure from
Spruit (1996).

2.3 Magnetically driven winds

In their seminal paper, Blandford and Payne (1982) applied the idea of the acceleration of
gas tied to a rotating magnetic field (first noted by Henriksen and Rayburn (1971)) to the
accretion disc context, proposing a mechanism for a disc driven magnetic wind. As with the
MRI, we first give a qualitative description of the mechanism. Consider a large scale poloidal
field anchored in the disc. Above the disc surface, gas density rapidly decreases so that the
magnetic energy density becomes dominant over the thermal and rotational energies. As a
result, the field in this region is approximately force-free, and rotates at the same angular
velocity as the part of the disc to which it is attached (Ferraro (1937)’s law of isorotation).
For a sufficiently ionised disc in the ideal MHD regime, the gas is tied to magnetic field lines
(flux freezing). Hence as the field lines co-rotate with the disc, gas at the surface is flung
out like beads on a wire when the component of the centrifugal force along the field line
exceeds the gravitational force holding it down (see Figure 2.3). This centrifugal acceleration
continues until the flow speed becomes comparable to the Alfvén speed. Beyond that point,
the magnetic field is no longer strong enough to enforce co-rotation, and the field gets wound
up. The outflow is then collimated into a jet parallel to the rotation axis by curvature forces
due to the azimuthal magnetic field.

Quantitatively, we consider the dynamics of a steady axisymmetric magnetic wind. In
ideal MHD, the induction equation gives us

∇× (u×B) = 0, (2.47)
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hence we can rewrite the electric field in terms of an electrostatic potential Φe where

∇Φe =−E = u×B. (2.48)

We now separate the velocity and magnetic field components into poloidal and toroidal parts
denoted by the subscripts ‘p’ and ‘φ ’ respectively:

u = up +uφ eφ . (2.49)

B = Bp +Bφ eφ . (2.50)

We can then rewrite the right-hand side of Equation (2.48) as

u×B =
[
eφ × (uφ Bp −Bφ up)

]
+[up ×Bp] , (2.51)

where the first term of the right-hand side is the poloidal component and the second term is
toroidal. Since Φe is axisymmetric, we expect ∂Φe/∂φ = 0, and the poloidal component of
Equation (2.51) must be zero. Hence the poloidal velocity field and magnetic field must also
be parallel to each other, and can be written in the form

ρup = kBp, (2.52)

where k is known in literature as the mass loading, and is the ratio of the mass flux to magnetic
flux. This is simply a consequence of the flux freezing in the ideal MHD conditions, as well
as the assumption that there is no flux transport - a common assumption but one that might
be questioned.

We now recall the flux function, ψ , introduced back in Equation (2.27) of Section 2.1.3 for
the poloidal component of magnetic fields. We also recall that by construction, Bp ·∇ψ = 0,
allowing us to use ψ to define magnetic surfaces of revolution. Similarly, it can be shown
from the steady mass conservation equation that the mass loading, k, also obeys the same
relation:

0 = ∇ · (ρu) = ∇ · (ρup) = ∇ · (kBp) = Bp ·∇k = 0, (2.53)

hence we can rewrite k as a function of ψ , such that k = k(ψ). This then allows us to write
the steady induction equation in terms of k and ψ (replacing up and Bp):

∇× (u×B) = ∇×
[
eφ × (uφ Bp −Bφ up)

]
= ∇×

[(
uφ

r
−

kBφ

rρ

)
∇ψ

]
= ∇

(
uφ

r
−

kBφ

rρ

)
×∇ψ,

(2.54)
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giving us another function that is constant on magnetic surfaces of revolution:

ω(ψ) =
uφ

r
−

kBφ

rρ
. (2.55)

This has units of time−1, and can be interpreted as the angular velocity of the magnetic
surface. Combining the definitions of Equations (2.52) and (2.55) then allows us to rewrite
the full velocity as

u =
kB
ρ

+ rωeφ , (2.56)

showing us that the velocity field is parallel to the magnetic field in a frame corotating with
the magnetic field at ω .

2.3.1 Angular momentum removal

We now consider the mechanism by which angular momentum is removed by the magnetic
wind. It can be shown by substituting Equation (2.56) into the azimuthal component of the
equation of motion that another invariant along magnetic surfaces is present known as the
angular momentum invariant (see section 9.5 of Ogilvie (2016) for derivation):

l = l(ψ) = ruφ −
rBφ

µ0k
. (2.57)

l is the angular momentum removed in the outflow per unit mass, with the first term on the
right-hand side being the angular momentum intrinsic to the outflowing mass, while the
second term represents angular momentum removed by the torque exerted by the magnetic
field on the disc.

The efficiency of angular momentum removal from the disc is given by the magnetic
lever arm, defined as

r2
A

r2
0
, (2.58)

where r0 and rA are the radii of the footpoint and the Alfvén point (where up = uAp the
poloidal Alfvén velocity) of the wind. This arises by recognising that uφ can be rewritten
using Equations (2.56) and (2.57) (see section 9.6 of Ogilvie (2016)) as

uφ =
r2ω −A2l
r(1−A2)

=

(
1

1−A2

)
rω +

(
A2

A2 −1

)
l
r
, (2.59)

where

A =
up

vAp
=

up
√

µ0ρ

Bp
= k
√

µ0

ρ
(2.60)
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is the ratio of the poloidal velocity to the poloidal Alfvén velocity, and is known as the
poloidal Alfvén number. The footpoint azimuthal velocity can then be shown to be ≈ r0ω ,
while at the Alfvén point, in order for uφ to be continuous, the numerator of Equation (2.59)
must also be zero, giving us l = r2

Aω there. As the outflow is accelerated far beyond the
Alfvén point (A ≪ 1), uφ ≈ 1/r → 0, hence for a mass outflow rate Ṁ, angular momentum
is lost at a rate Ṁl = Ṁr2

AΩ0 in a magnetised disc wind, compared with Ṁr2
0Ω0 in a purely

hydrodynamic outflow.
The magnetic lever arm increases if rA is significantly larger than r0, indicating more

efficient angular momentum loss. It is also a measure of the mass accreted compared with
the mass lost in the outflow, since the accretion of a unit of mass ∆Macc requires its angular
momentum r2

0Ω0∆Macc to be removed, while the angular momentum in the outflow removed
by mass ∆Mjet from r0 is r2

AΩ0∆Mjet, giving us ∆Macc/∆Mjet = r2
A/r2

0.

2.3.2 The Bernoulli equation and the nature of the magnetic wind

The nature of the wind can be examined by looking at the Bernoulli invariant, which measures
the energy content of the flow, and is obtained by the scalar product of the equation of motion
with u. The three components of the equation of motion in cylindrical coordinates are

ρup ·∇ur =
ρuφ

r
− ∂ p

∂ r
−ρ

∂ψG

∂ r
+ Jφ Bz − JzBφ , (2.61)

1
r

ρup ·∇(ruφ ) =
1

rµ0
∇ · (rBpBφ ), (2.62)

ρup ·∇uz =−∂ p
∂ z

−ρ
∂ψG

∂ z
− ∂

∂ z

(
B2

r +B2
φ

2µ0

)
+

Br

µ0

∂Bz

∂ r
, (2.63)

where ψG =−GM/
√

r2 + z2 is the gravitational potential due to the central star. Dotting the
equation of motion with u therefore yields

up ·∇
(

u2

2
+ψG

)
=−up ·

∇p
ρ

+u · J×B
ρ

. (2.64)

We follow Lesur (2020) in recasting the work done due to the Lorentz force in terms of
variables that are invariant on magnetic surfaces using Equations (2.56) and (2.52):

u · J×B
ρ

= rω
Jp ×Bp

ρ

= ω
Bp ·∇(rBφ )

ρ

= up ·∇
(

rωBφ

k

)
.

(2.65)
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The work due to pressure is also re-expressed in terms of the enthalpy per unit mass H and a
heating term, Q̇, which in the disc context would be mainly due to radiative processes:

up ·
∇p
ρ

= up ·∇H − Q̇. (2.66)

Since the velocity field is parallel to the magnetic field in a frame corotating with it at ω ,
streamlines coincide with surfaces of constant ψ , and we can integrate along a streamline a
to yield the Bernoulli energy budget on poloidal field lines and streamlines (equation 11.16
in (Lesur, 2020)):

B ≡ u2

2
+ψG +H −

∫
s(a)

Q̇ds−
rω(a)Bφ

k(a)
, (2.67)

where s represents the distance along the streamline , and a labels the chosen streamline.
It is worth noting that B, though a constant, is no longer the classical Bernoulli function,
as it takes into account the heating. For the wind to accelerate matter to z → ∞, we require
B > 0 . This can be achieved in three ways: (1) a thermally driven wind due to a hot disc,
which corresponds to a high initial H in the disc, (2) photoevaporative heating from stellar
and cosmic radiation as the gas accelerates along the streamline, which corresponds to the
integral term with Q̇, and (3) a wind driven by interactions between the magnetic field and
the disc rotation, which corresponds to the final term in the equation. Winds that are mainly
driven by the first two processes are known as “thermal winds”, while winds driven solely by
magnetic effects are known as “cold MHD winds”.

Recent works have shown that winds from protoplanetary discs are most likely driven by
a combination of both thermal and magnetic effects (Bai, 2017; Bai et al., 2016; Béthune
et al., 2017). These are known as “magneto-thermal” winds, where strong external heating on
the coronal regions can aid in the acceleration of the disc wind which is launched by magnetic
effects at the wind base. Compared to pure cold MHD wind solutions, magneto-thermal
winds are warmer, denser and slower, and can have high wind mass loss to mass accretion
ratios, while having moderate values of the magnetic lever arm (Lesur, 2020).

Magnetically driven winds can in turn be characterised into two regimes:

1. Magnetocentrifugal winds, where strong poloidal fields enforce approximate corotation
of the fluid with the wind base, and the picture of beads centrifugally accelerated on
rigid rotating wires is the appropriate way to describe their mechanics.

2. Magnetic pressure gradient driven winds, where corotation is not a good approximation
in the observer’s frame due to weak poloidal fields, and the acceleration is more
appropriately interpreted as due to the magnetic pressure gradient of the toroidal field
that results from the winding up of the poloidal field.
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Mathematically, both the centrifugal and magnetic viewpoints of acceleration are equally
valid, and as explained in Spruit (1996), depends on the frame of reference in which we
are working. On the one hand, in the frame corotating with the wind base, magnetic forces
‘disappear’ and the flow seems to be purely centrifugal, although it is actually the magnetic
forces that mediate the rotational energy to the flow. On the other hand, in the inertial frame,
the acceleration can be seen to be magnetic, where the poloidal Lorentz force is given by

Fp =
1
µ0

(∇×B)p ×Bφ

=−∇
B2

φ

2µ0
−

B2
φ

µ0
er,

(2.68)

and the pressure gradient and tension force from the toroidal field are seen as the main
drivers of the outflow. Net outward acceleration requires B2

φ
to decrease sufficiently rapidly

along the field line to overcome the axis-directed tension force, and it is more physically
intuitive to describe the wind as being driven by a magnetic pressure gradient. Recent
works have placed protoplanetary disc winds to lie in the magnetic pressure gradient driven
regime, with a smaller Alfvén radius (rA/r0 ∼ 1) and more heavy mass loading than winds
in the centrifugally driven wind regime (Lesur, 2020). This is due to the weakly magnetised
(mid-plane β ≪ 1) nature of protoplanetary disc outflows, which is required by observational
constraints that discs are generally massive with an average accretion velocity much smaller
than the sound speed (Lesur, 2020). Stronger field models launching magnetocentrifugal
winds would have led to much larger accretion velocities that are sonic with the same disc
surface density estimates, making them incompatible with observations.

2.3.3 Minimum poloidal magnetic field inclination for wind-launch

For the launching of a cold outflow from a thin accretion disc, a famous result of Blandford
and Payne (1982) is that a minimum inclination of 30◦ of the poloidal magnetic field to the
vertical is required. This can be seen by examining the contours of the effective potential
Φcg along a streamline, where both gravitational and centrifugal terms are included:

Φcg(s) =− GM√
r2 + z2

− 1
2

Ω
2r2. (2.69)

Here, Ω is the rotation of the gas, which would normally be nearly Keplerian if the footpoint
of the wind is in the disc and corotation is enforced by the magnetic field. Rewriting

Ω ≈ Ω0 =
√

GM/r3
0, where the subscript 0 denotes the footpoint of the wind, we can then

find the contours of equipotential passing through the footpoint through equating

Φcg(s0) =−GM
r0

− 1
2

Ω
2
0r2

0 (2.70)
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with

Φcg(s) =− GM√
r2 + z2

− 1
2

Ω
2
0r2. (2.71)

We follow Ogilvie (2016) by renomalising the equation using units such that r0 = 1. After
some algebra, this gives us the result (Ogilvie, 2016)

z =

√
(2− r)(r−1)2(r+1)2(r+2)

(3− r2)2 . (2.72)

A plot showing the contour lines of Φcg is shown in Figure 2.4, taken from Ogilvie (2016). In
order for a wind to be launched by centrifugal acceleration alone without thermal assistance,
its streamline must always be crossing contours of lower Φcg, which require a minimum
launch angle from the vertical whether the wind is directed towards or away from the star.
This angle can be found by taking the limit r → 1, z → 0 in Equation 2.72, which gives us

z ≈±
√

3(r−1), (2.73)

translating to a minimum launch angle of 30◦. This result would bear relevance to our work
later when we consider 1D isothermal disc models, and in whether we need to model the
launching of a wind for the range of poloidal magnetic field inclinations explored.

2.3.4 Critical points in the outflow

We end our current discussion of the magnetic wind with a consideration of the critical
points that the outflow must pass through, and which together with a given value of ρ0 at the
mid-plane, would constrain the wind solution. These critical points are derived by rewriting
the Bernoulli equation as B(s,ρ;k,rA), where the solution curve ρ(s) is a contour line of
the Bernoulli function in the s−ρ plane. In this scenario, we assume that there is no explicit
heating, and that we have an isothermal equation of state where p = c2

s ρ . Critical points are
stationary points of the saddle type, and must satisfy

∂B

∂ s
= 0,

∂B

∂ρ
= 0. (2.74)

It can then be shown that (Spruit, 1996)

ρ
∂B

∂ρ
=−

(u2
p −u2

sp)(u
2
p −u2

f p)

u2
p −u2

Ap
, (2.75)

where usp and u f p are the slow and fast poloidal magnetosonic speeds given by

us, f ;p =

√√√√c2
s +u2

A ±
√

(c2
s +u2

A)
2 −4c2

s u2
Ap

2
, (2.76)
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Fig. 2.4 Plot showing the contour lines of Φcg, as defined by Equation (2.69), in units
where r0 = 1. Downhill directions are denoted by dotted contours, while uphill directions
are denoted by solid contours. The bold arrow from the footpoint shows a possible wind
trajectory which crosses contour lines of lower potential in its path. For a centrifugal wind to
be launched without thermal assistance from a thin disc, its inclination at its footpoint must
be at least 30◦ to the vertical. Figure from Ogilvie (2016).
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with

uA =
B

√
µ0ρ

, uAp =
Bp√
µ0ρ

(2.77)

being the Alfvén speeds based on the total and poloidal field strengths respectively. The
critical points can be interpreted as the points at which the flow matches the speed of a
magnetosonic wave propagating opposite to the flow, and are known as the slow and the
fast point where up = usp and up = u f p respectively. There is an additional critical point
at the Alfvén point, where up = uAp. This comes not from Equation (2.75), where the
Alfvén point is simply a node in the family of solutions, but rather from considering the
Grad-Shafranov cross-field balance equation of motion for stationary axisymmetric flow. As
the Grad-Shafranov equation is beyond the scope of this discussion, we refer the reader to the
detailed arguments presented in Sakurai (1985) for understanding the nature of the Alfvén
critical point.

For a wind solution to be fully constrained, it must pass through all three critical points,
otherwise boundary effects can significantly alter the solution. Most radially local shearing
box wind solutions to date (see Chapter 3 for a description of the shearing box formalism),
including our own in this Thesis, pass through only the slow point and Alfvén point but
are not super-fast. It is therefore important to test their robustness by varying the boundary
conditions (Bai, 2015; Lesur et al., 2014).

2.4 Non-ideal MHD

2.4.1 Origin and key features

As mentioned in Section 1.3.1 of Chapter 1, protoplanetary discs are usually ‘cold’ discs that
are poorly ionised. In this regime, the ideal MHD approximation is insufficient to describe the
magnetic processes involved, and non-ideal MHD effects become important. We derive here
the generalised Ohm’s law and discuss the nature and key properties of each of the non-ideal
effects (Ohmic resistivity, Hall drift and ambipolar diffusion), before discussing their regions
of influence in protoplanetary discs, and their effect on both the MRI and magnetic winds in
later subsections.

There are two approaches to modelling non-ideal effects: through a conductivity tensor
taking into account the different ionised species present (Norman and Heyvaerts, 1985;
Wardle and Ng, 1999), or through the dynamical multifluid model (Balbus and Terquem,
2001). The two can be shown to be mathematically equivalent and are closely related (Königl
et al., 2010).
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The former approach was used in the vertical structure models of Königl et al. (2010);
Salmeron et al. (2011); Teitler (2011) because of its terseness and mathematical economy.
The non-ideal effects are incorporated through a modified Ohm’s law:

J = σ ·E′ = σOE′
∥+σHb×E′

⊥+σPE′
⊥, (2.78)

where b = B/|B|, E′ is the electric field in the frame comoving with the neutrals, J is
the current density, ∥ and ⊥ indicate the components of the electric field parallel and
perpendicular to b respectively, and the tensor

(σ)i j =


σP σH 0

−σH σP 0

0 0 σ∥

 , (2.79)

where σP and σH are the Pedersen and Hall conductivities respectively, describes the conduc-
tivity of the multi-component fluid. These conductivities are directly related to the chemistry
of the disc and evolve accordingly (Wardle, 1999).

The latter multifluid approach is used in studies that are more concerned with under-
standing the different dynamical behaviour of the three non-ideal mechanisms (Balbus and
Terquem, 2001; Wardle and Koenigl, 1993). This approach explicitly draws out the physics
of the coupling between the magnetic field and the disc. Numerical simulations in particular
often use this approach, having first computed the diffusivities from the full conductivity
tensor, as it bears more correlation with disc phenomenology (Bai and Stone, 2014).

Derivation using the multifluid approach

As dynamical behaviour, rather than complex chemistry, is also what our study is primarily
concerned with, we follow Balbus (2011) in our derivation of the non-ideal terms in its
multi-fluid model. We assume the fluid to be composed of neutrals, ions and electrons, and
that it is locally overall neutral. We ignore the effect of dust grains for now, and defer their
discussion to later. We denote ions and electron flow quantities by the subscripts ‘i’ and ‘e’
respectively, while we leave the neutral quantities which are dominant in the fluid without any
subscripts, or where it is necessary to distinguish them, with the subscript ‘n’. We assume
that each species is separately conserved, and that collisions are elastic in nature.

The equations of motion for the three species are then given by

ρ
∂u
∂ t

+ρ(u ·∇)u =−∇P−ρ∇Φ−pni −pne, (2.80)

ρi
∂ui

∂ t
+ρi(ui ·∇)ui =−∇Pi −ρi∇Φ+Zeni (E+ui ×B)−pin, (2.81)
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ρe
∂ue

∂ t
+ρe(ue ·∇)ue =−∇Pe −ρe∇Φ− ene (E+ue ×B)−pen, (2.82)

where pab denotes the rate of momentum transfer per unit volume from species a to species b,
Z is the ionisation number per ion, and e is the charge of a proton. By Newton’s Third Law, it
is worth noting that pab =−pba. Only the ion and electron equations have the Lorentz force
term (second last terms on the right-hand side of Equations (2.81) and (2.82)) in addition
to the momentum transfer terms (the p terms), as only these species are charged and under
the influence of electric and magnetic fields. We ignore pie and pei in Equations (2.81) and
(2.82) because they are proportional to nine, where n denotes the number density of a species,
which is minuscule in comparison to the other terms present.

We first derive expressions for the momentum exchange terms from properties of the
species. From conservation of energy and momentum, it can be shown that pni is given by

pni = nµni(u−ui)νni (2.83)

where n is the neutral number density, µni ≡ mimn/(mi +mn) is the reduced mass of the
ion and neutral particles, with m denoting the mass of each particle, and νni is the collision
frequency between a neutral particle with the ion population (Morse, 1963; Reed, 2018). The
collision frequency is then derived from the kinetic theory of gases (see e.g. Blundell and
Blundell (2009)), and takes the form

νni = ni⟨σniwni⟩, (2.84)

where ni is the ion number density, σni is the effective cross section for neutral-ion collisions,
wni is the relative velocity between neutrals and ions, and the angle brackets denote averaging
over a Maxwell-Boltzmann distribution for the relative velocity. This then gives us

pni = nniµni⟨σniwni⟩(u−ui), (2.85)

allowing us to determine the momentum transfer from the fluid properties of the species
involved. Using similar considerations, the neutral-electron momentum transfer is given by

pne = nneµne⟨σnewne⟩(u−ue)≃ nneme⟨σnewne⟩(u−ue), (2.86)

where the ≃ comes about because m ≫ me, hence µne ≃ me. As noted before, pin and pen

are simply given by −pni and −pne respectively.
We next note that for a weakly ionised gas, as is the case in protoplanetary discs, Equations

(2.81) and (2.82) would be dominated by the Lorentz force terms and the momentum transfer
terms. This can be seen by considering the typical dynamical timescale involved with the
Lorentz force terms, given by the ion and the electron gyroperiods respectively, which are
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much smaller than the macroscopic flow crossing time associated with the inertial force
terms for the ions and electrons when the ionisation is low (Balbus, 2011). This allows us to
approximate to a high level of accuracy that

Zeni (E+ui ×B)−pIn = 0, (2.87)

−ene (E+ue ×B)−pen = 0. (2.88)

We note that because of our charge neutrality assumption, Zeni = ene. Summing the two
expressions and rearranging, we obtain

ene(ui −ue)×B = pin +pen, (2.89)

J×B = pin +pen, (2.90)

where in going from line (2.89) to (2.90), we noted that ene(ui −ue) simply gives us the
current density J of the overall fluid. We can then use Newton’s Third Law to substitute
this expression back into the neutrals’ momentum equation, yielding the same momentum
equation as we had in ideal MHD:

ρ
∂u
∂ t

+ρ(u ·∇)u =−∇P−ρ∇Φ+J×B. (2.91)

This shows us that while the fluid may be weakly ionised, the neutral component still behaves
under the Lorentz force as though it was fully ionised due to momentum transfer with ions
and electrons. Indeed, it is in the induction equation that non-ideal MHD makes a difference,
which we shall derive now.

We first note that the Lorentz force acting on the neutrals through collisional coupling
can be rewritten as

J×B = ninµin⟨σniwni⟩(ui −u)+nenme⟨σnewne⟩[(ue −ui)+(ui −u)]. (2.92)

We then consider the ratio of the electron-neutral to ion-neutral collision cross section, which
can be assumed to be

⟨σniwni⟩
⟨σnewne⟩

=

(
me

εµin

)1/2

, (2.93)

where the approximately geometrical nature of σni and σne leads to the µ
−1/2
ne ≃ m−1/2

e and
µ
−1/2
ni dependencies, while ε < 1 reflects the larger ion-neutral cross section that results from

long range induced dipole interactions for ions, and which are much less present for the
electrons. Equation (2.92) can then be rearranged as

(uI −u)

[
1+

1
Z

(
εme

µin

)1/2
]
=

J×B
γρρi

+

√
εme

µni
Z(ui −ue), (2.94)
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where

γ ≡ ⟨σniwni⟩
mi +mn

(2.95)

is known as the drag coefficient, and comes from a common way to rewrite the ion-neutral
momentum transfer in astrophysical literature as

pIn = ρρiγ(ui −u). (2.96)

The second term in the square brackets in Equation (2.94) is much smaller than 1 due to
the (εme/µin)

1/2 dependence, and hence can be neglected, while the second term on the
right-hand side of the same equation can also be neglected for the same reason, provided
(ui −ue) is comparable to (ui −u).

Let us consider again Equation (2.88), with the expression for pen from Equation (2.86)
substituted in. We can rewrite the equation as:

E+[u+(ue −ui)+(ui −u)]×B+
nme⟨σnewne⟩

e
[(ue −ui)+(ui −u)] = 0. (2.97)

Substituting Equation (2.94) into Equation (2.97), and neglecting the terms that are insignfi-
cant as per the discussion above, we have

E+u×B− J×B
ene

[
1− meνenne

γρρi

]
+

(J×B)×B
γρρi

− J
σcond

= 0, (2.98)

where

σcond ≡
e2ne

meνen
(2.99)

is the electrical conductivity. Again, the second term in the square brackets in Equation (2.98)
can be neglected, as it is equal to (1/Z)(εme/µin)

1/2 ≪ 1. This leaves us with a modified
Ohm’s law for a non-ideal fluid

E+u×B− J
σcond

− J×B
ene

+
(J×B)×B

γρρi
= 0, (2.100)

which is the inverse of Equation (2.78). This can then be incorporated into the induction
equation via the normal procedure using Maxwell’s equations and the relation J = ∇×B/µ0

(see Section 2.1.1) to give us

∂B
∂ t

= ∇× [u×B−ηO∇×B−ηH(∇×B)×b+ηA([∇×B]×b)×b] , (2.101)

where b = B/|B|, and we have substituted the coefficients for the non-ideal diffusivities
given by

ηO =
1
µ0

men
e2ne

νen, (2.102)
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ηH =
1
µ0

|B|
ene

, (2.103)

ηA =
1
µ0

|B|2

γρρi
, (2.104)

for Ohmic resistivity, Hall drift, and ambipolar diffusion respectively.

2.4.2 General properties of the non-ideal terms

At this point, it is worth noting some of the key features of the three non-ideal effects from
their form in the induction equation.

Ohmic resistivity

For constant diffusivity, the Ohmic contribution in Equation 2.101 can be rewritten using
vector identities and the ∇ ·B = 0 condition as ηO∇2B/µ0, which is simply a diffusion term
for B. The presence of Ohmic resistivity breaks flux freezing, and can be interpreted as
the slippage of field lines across fluid elements when viewed in the rest frame of the fluid.
The strength of Ohmic resistivity is often characterised by the nondimensional magnetic
Reynolds number:

Rm =
LV
ηO

, (2.105)

where L and V are the characteristic lengthscale and velocity of the system. Astrophysical
plasmas often have high Rm, allowing ideal MHD to be a suitable approximation. However,
in protoplanetary discs, as we shall see later, there is a region where Rm < 103 known as the
“dead zone”, and Ohmic resistivity can no longer be neglected. Ohmic resistivity is isotropic
and linear, and dissipative in nature. Given the right conditions, it can contribute to electric
heating that can generate significant heat transport in protoplanetary discs (Béthune and
Latter, 2020).

Hall drift and ambipolar diffusion

Hall drift and ambipolar diffusion become important when the mean velocities of neutrals,
ions and electrons differ from each other significantly. The Hall drift term can be rewritten in
terms of a drift velocity in the form

uH ≡ ue −ui =− ηH

µ0|B|
∇×B =− J

ene
, (2.106)
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where it can be seen that it is the electron-ion drift that is responsible for this effect, whereas
the ambipolar diffusion term can be rewritten in terms of the ambipolar drift velocity

uAD ≡ ui −u =
ηA

µ0|B|2
(∇×B)×B =

J×B
γρρi

, (2.107)

where it can be seen that it is the ion-neutral drift that is responsible for this effect. The
non-ideal MHD induction equation then has the form

∂B
∂ t

= ∇× [(u+uH +uAD)×B−ηO∇×B]. (2.108)

The ambipolar diffusion term has a component which acts like Ohmic diffusion with a
tendency to straighten up field lines, but it also has an anisotropic nonlinear element which
can in some situations act as an anti-diffusion mechanism (Bai and Stone, 2014; Béthune
et al., 2016). The Hall effect, on the other hand, should not really be thought of as a diffusive
mechanism at all, as it is dispersive in character, and conserves magentic energy (it is non-
dissipative) (Polygiannakis and Moussas, 2001). Its behaviour is strongly dependent on the
geometry of the magnetic field present, as the Hall term behaves oppositely to the other terms
in the induction equation when the sign of B is reversed.

Figure 2.5, taken from Wurster (2017), illustrates the movement of field lines with respect
to fluid elements in regimes where each of the three non-ideal MHD effects dominate. In the
pure Ohmic case, neutrals, ions and electrons have similar mean velocities, and field lines
simply drift with respect to the fluid background to diffuse and straighten out. For the Hall
regime, field lines are tied to the electrons, and drift with respect to the ion background whose
contribution to the current can be neglected due to the ratio me/mi being negligible. Finally,
in the ambipolar diffusion dominated regime, field lines are tied to ions, while electrons are
tied to the field lines in turn. They drift with respect to the neutral fluid as the ions move at a
different mean velocity to the neutral particles.

2.4.3 Non-ideal regimes in protoplanetary discs

We now turn to consider the strength of each non-ideal effect in the protoplanetary disc
context. It customary in the literature to assess and compare the non-ideal effects using the
non-dimensional Elsasser numbers given by:

ΛO,H,A ≡
v2

A
ηO,H,AΩ

, (2.109)

where the subscripts O,H,A denote Ohmic, Hall and ambipolar diffusion respectively, vA ≡
|B|/√µ0ρ is the Alfvén speed, and Ω is the (usually assumed Keplerian) angular velocity
of the disc. The Elsasser number is an inverse measure of the diffusivity, and as will be
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Fig. 2.5 Schematic showing the movement of field lines with respect to fluid elements in
regions where each of the three non-ideal MHD regimes dominates. Red filled circles denote
ions, while blue dots denote electrons. The neutral particles with bound ion and electron are
shown in the background. Field lines are indicated by grey lines with arrows. Figure taken
from Wurster (2017).
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discussed in Section 2.5, is a useful quantity to determine whether the MRI is expected to be
active in the region, with any of the Elsasser numbers falling below unity usually leading to
stabilisation of the linear MRI.

Since both the Ohmic and Hall Elsasser numbers depend on the magnetic field strength,
with ΛO ∝ B2 and ΛH ∝ B, it is customary to use two other dimensionless numbers without
field strength dependence to characterise the two effects, the first of which we have already
seen in the magnetic Reynolds number, which when put into the disc context becomes

Rm ≡ ΩH2

ηO
, (2.110)

where H is the disc scale-height, while the other is the Hall Lundquist number, given by

LH ≡ vAH
ηH

. (2.111)

As these two numbers have no dependence on field strength, they are used to characterise
different regimes of nonlinear MRI saturation in the disc. The Hall Lundquist number is
closely related to the Hall length, given by lH = H/LH , which is also independent of the
magnetic field strength. It is the characteristic length scale below which the Hall effect
becomes important, and is given by the ratio of the Hall diffusivity to the Alfvén speed (Kunz
and Lesur, 2013).

We can assess the varying and comparative strengths of the non-ideal effects in the
disc by writing them in terms of the ionisation fraction and the density, while assuming a
constant value of 10−3 Gauss for the field strength (Wardle, 1997). We reference Fromang
(2013), who took typical values expected of protoplanetary disc mid-planes at 1 AU, with
n ∼ 1014 cm−3, γi = 2.81013 cm3 s−1 g−1, mi = 39mH and T ∼ 100 K. They then yielded
the following expressions for the diffusivities:

ηO ∼
(

103

xe

)
cm2 s−1, (2.112)

ηH ∼
(

50
xe

)(
1014cm−3

n

)
cm2 s−1, (2.113)

ηA ∼
(

2.6×10−3

xe

)(
1014cm−3

n

)2

cm2 s−1, (2.114)

where xe ≡ ne/n is the ionisation fraction. It is worth noting that all three non-ideal effects
have the same inverse dependence on ionisation fraction, indicating we should expect each
effect to weaken in strength as we move away vertically from the mid-plane, as the disc
goes from weakly to significantly ionised in the disc atmosphere due to less shielding from
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Fig. 2.6 Left: diffusivity profile from Wardle (2007) of a vertical slice of a MMSN model disc
at 1 AU for magnetic field strengths of 0.1 and 1 G (solid and dashed curves respectively).
Right: plot from Bai (2011) showing the regions where different diffusivities would dominate
for different field strengths in a vertical slice of a disc at 1 AU.

radiation. ηH ∝ n−1, while ηA ∝ n−2, hence we would expect the disc to pass from first an
Ohmic resistivity dominated region, followed by a Hall dominated region, and finally to an
ambipolar diffusion dominated region as we move towards lower density regions up from the
disc mid-plane. This is indeed the picture given by Wardle (2007) and Bai (2011), shown in
the two panels of Figure 2.6, in their detailed ionisation model calculations of the non-ideal
diffusivities in a disc at 1 AU, with no dust grains present.

As protoplanetary discs decrease in density as the radius increases, traditional models
predict the disc mid-plane itself to be Ohm-dominated in the innermost region, and to be
Hall-dominated beyond (R > 1 AU), before eventually ambipolar diffusion takes over at the
disc outer edge (R ∼ 100 AU). However, it should be noted with caution that these estimates
can be drastically affected by the various factors contributing to disc ionisation, as discussed
in the next subsection. The traditional assumption that discs can be divided neatly into
regions where each non-ideal MHD effect is assumed to be dominant has been subject to
question by recent analytical, semi-analytical and numerical studies which show that this
picture is likely to be an oversimplification (Wurster, 2021). They showed that the Hall
effect and ambipolar diffusion are more likely of comparable importance throughout most
of the outer disc (R > 1 AU), and when expressed in dimensionless numbers correspond to
10−1 < LH < 10 in most of the disc mid-plane region increasing abruptly at the disc surface,
while ΛA ≃ 1 throughout most of the disc (Lesur, 2020).
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Factors contributing to the ionisation fraction

A key parameter determining the various non-ideal strengths is the ionisation fraction, and
its variation in the disc, about which there is still much uncertainty and no general consensus
in the protoplanetary disc community. In Chapter 11 we present in detail two ionisation
models used by Lesur et al. (2014) and Béthune and Latter (2020) in calculating the different
non-ideal contributions in different parts of the disc. Here however, we will limit ourselves
to simply outlining the different factors that contribute to disc ionisation, and why there are
still great uncertainties in our understanding of their extent in discs.

Sources of ionisation come mainly in five forms: X-rays from the central star, cosmic
rays, radioactive nuclei present in the protostellar cloud, FUV ionisation from the central
star, and thermal ionisation. Here we discuss each of them in turn.

• X-ray ionisation arises from the Bremsstrahlung emission from the corona around the
central star (Bai and Goodman, 2009; Igea and Glassgold, 1999), and depends hugely
on its X-ray flux, which can lead to variations of up to an order of magnitude in the
ionisation fraction near the disc surface (Lesur, 2020).

• The ionisation rate due to cosmic rays can vary up to 6 orders of magnitude, due to
them both being possibly shielded by the stellar wind, which drastically reduces their
effect (Cleeves et al., 2015), or being accelerated in shocks surrounding the protostar
produced by the protostellar jet, which leads to drastic enhancement (Padovani et al.,
2018). Cosmic rays are responsible for most of the ionisation in the disc below two
scale heights, and can lead to 3 orders of magnitude of uncertainty in the ionisation
fraction.

• Radioactive decay ionisation is determined from current data from meteorites in the
Solar System, and estimating their abundance in the era of the Solar System formation.
The study most commonly quoted in the literature gives an radioactive ionisation rate
of ζrad = 10−19 s−1 (Umebayashi and Nakano, 2009).

• Stellar FUV photons arise from the stellar accretion shock and the stellar chromosphere.
They ionise carbon and sulfur atoms in the surface layers of the disc, and for the disc
composition and chemistry commonly assumed, lead to a floor value of xe > 10−5 at
column densities < 10−2 g cm−2 (Perez-Becker and Chiang, 2011).

• Thermal ionisation due to collisions between molecules may be present for inner parts
of the protoplanetary disc (R < 0.5 AU), as T > 300 K. However, as our work mostly
focuses on the outer parts of discs, we will neglect the discussion of thermal ionisation
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in those regions. The coronal region of the disc surface on the other hand is also
expected to be heated by stellar X-rays to temperatures in excess of 8,000 K (Aresu
et al., 2011), hence we should expect the fluid beyond around four scale-heights above
the mid-plane to be fully ionised due to thermal collisions.

Disc structure plays a significant role in how much the ionising sources affect the
ionisation fraction. Vertical column density determines both the penetration depth of X-rays,
cosmic rays and FUV radiation, as well as the recombination rate (which decreases with
decreasing density), and the height above which we expect X-ray heating to have fully ionised
the fluid. The temperature structure of the disc affects both the vertical density structure
and microphysics, while the disc surface density distribution can significantly change the
ionisation fraction by 2 orders of magnitude when varied between the commonly used denser
minimum mass solar nebula (MMSN) model, which leads to lower ionisation fractions, and
ones that are more observationally motivated. Disc surface densities generally decrease with
increasing radius, hence we expect ionisation to also increase accordingly.

Finally, disc metallicity as well as the presence of dust grains can also significantly affect
the ionisation fraction. The presence of metal atoms significantly modifies the reaction
network of ionisation and recombination, as metals recombine with electrons at a much lower
rate than molecular ions, and can lead to a dramatic increase in the ionisation fraction by up
to 3 orders of magnitude (Fromang et al., 2002). Grains on the other hand not only affect the
reaction network by typically reducing the ionisation fraction by 2-3 orders of magnitude, but
can also change the dependence of the diffusivities on the ionisation rate, as grains absorb
the charges present and become the dominant charge carriers instead near the mid-plane. The
latter effect could even change the sign of the Hall coefficient, as the dominant heavier charge
carrier becomes negatively charged instead. Overall, dust grains can increase diffusivities by
2-4 orders of magnitude, while the detailed microphysics depends on factors such as grain
size and abundance (Ilgner and Nelson, 2006; Salmeron and Wardle, 2008). This is also
affected by grain evolution from processes such as vertical settling that changes their spatial
distribution, and coagulation that changes their size. It is still unclear what dust abundances
and sizes are to be expected in protoplanetary discs, hence there is an overall uncertainty of
±3 orders of magnitudes of uncertainty in the diffusivities (Lesur, 2020). For most of our
study, we will be considering the “intermediate” case of a metal-free dust-free environment,
while at times we may arbitrarily change the diffusivities by a few orders of magnitudes to
mimic the effect of including metals and dust.
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2.5 Non-ideal effects on the MRI

The presence of non-ideal MHD significantly affects the operation of the MRI in discs,
and has been the subject of much investigation over the past two decades. Here, we limit
ourselves to sketching out the derivation and implications of non-ideal MHD on the linear
MRI in 1-D vertical variations that are most relevant to our Thesis. Our sketch largely follows
the more detailed discussion in the excellent review by Lesur (2020), which the reader can
consult for completeness.

Let us consider the linearised equations of small axisymmetric perturbations of a disc
with a background mean vertical and azimuthal magnetic field

B0 = B0,yey +B0,zez. (2.115)

For simplicity, we consider the unstratified case in which there is no vertical gravity, and
the flow is incompressible (∇ · u = 0). As before, we work in the radially local model,
where Cartesian x,y,z coordinates correspond to the R,φ ,z directions in the disc respectively.
Writing the perturbations from equilibirum as

u = vexp(ik ·x+σt), (2.116)

B = B0 +bexp(ik ·x+σt), (2.117)

where k = kzez is the wave vector, assumed to be purely vertical, σ the linear growth rate,
and b here is the initial perturbation amplitude of the perturbation (here b ̸= B/|B|), we
obtain the linearised equations

σv = i
k ·B0

µ0ρ
b+2Ωvyex − (2−q)Ωvxey, (2.118)

σb = ik ·B0v−qΩbxey −ηOk2b+ηH(k · B̂0)k×b

−ηA{(k · B̂0)
2b− (b · B̂0)([k · B̂0]k− k2B̂0)},

(2.119)

k ·v = 0, (2.120)

k ·b = 0. (2.121)

We can see from Equation (2.119) that the Ohmic diffusion term, as mentioned before, acts
purely as a linear dampener for the growth, with a greater effect on modes that have shorter
wavelengths. The Hall term on the other hand rotates the magnetic perturbation around the
wave vector while keeping its magnitude constant. The direction of rotation is dependent on
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the signs of B and ηH . Finally, the first ambipolar diffusion term acts as another pure linear
dampener, while the second term introduces anisotropic complexity to its behaviour.

Using Equations (2.120) and (2.121), we can reduce this set of equations into a fourth
order problem involving only horizontal components. This can then be solved using standard
matrix methods (we refer the reader to Lesur (2020), Kunz and Balbus (2004) and Desch
(2004) for details) to yield the well known dispersion relation:

σ
4 +C3σ

3 +C2σ
2 +C1σ +C0 = 0, (2.122)

where the C coefficients are given by

C3 = 2ηOk2
z + τA(k2

z v2
A +ω

2
A), (2.123)

C2 = κ
2 +2ω

2
A +η

2
Ok4 + τ

2
Aω

2k2
z v2

A + lHkzωA(lHkzωA −qΩ), (2.124)

C1 = C3(ω
2
A +κ

2), (2.125)

C0 = ω
2
A(ω

2
A −2qΩ

2)+κ
2k4

z η
2
O + lHωAkz[(4−q)Ωω

2
A −qΩκ

2 + lHωAk3
z ]

+κ
2
τ

2
Aω

2
Ak2

z v2
A,

(2.126)

with vA = B0/
√

µ0ρ being the Alfvén velocity, and we have defined ω ≡ k · vA to be the
Alfvén frequency, lH ≡ ηH/vA the Hall length, τA ≡ ηA/v2

A the ambipolar time, the timescale
at which neutral particles collide with ions, and κ2 ≡ 2Ω2(2−q) is the square of the epicyclic
frequency as before. In the vicinity of σ = 0, the necessary and sufficient condition for
stability is C0 > 0, because C1 > 0. We now turn to examine this condition for regimes where
different non-ideal effects dominate.

2.5.1 Ohmic diffusion and damping of the MRI

In the case of pure Ohmic resistivity, the C0 > 0 condition leads to

2qΩ2

k2
z v2

Az
−κ

2 η2
O

v2
Az

< 1 (2.127)

for a disc to be stable. For a Keplerian disc with κ2 = Ω2, the general condition for modes in
the disc to be stabilised is

3Ω2

k2
z v2

Az
−1 < Λ

−2
O , (2.128)

showing us that there is a minimum wave-number kz,min (hence largest wavelength that can
be fitted in the disc vertical domain) above (below) which the disc would always be stable.
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This shows that Ohmic resistivity preferentially stabilises the smaller wavelength modes of
the MRI, while increasing ηO increases the range of wavelengths that are fully stabilised.
Noting from Section 2.2 that the most unstable mode in ideal MHD has ωA = 3Ω/4, this
leads to the condition

Λ
2
O <

1
3

(2.129)

for the most unstable ideal MRI mode to be stabilised.
In real discs where stratification is present, the condition ΛO < 1 tends to be sufficient

in suppressing the MRI locally, leading to a region known as the ‘dead zone’ in the disc
mid-plane in the inner disc where the MRI is quenched. The presence of Ohmic resistivity
significantly alters the shape of the MRI eigenmode, flattening it in regions where ΛO is
low, as well as reducing the growth rate from its ideal MHD value. Strong resistivity at
the mid-plane also restricts communication between the two sides of the disc through the
quenching of Alfvén waves. This results in modes that are localised on one side of the disc
with identical growth rates to those located on the other (Lesur, 2020), and may be combined
to give overall “hourglass” or “slanted” modes. This can also be interpreted as the “hourglass”
and “slanted” modes becoming degenerate, as the localised modes can be obtained through
a linear combination of degenerate “hourglass” and “slanted” modes. The effect of Ohmic
resistivity on the shape and growth rate of the MRI modes will be explored more fully in
Chapter 10 as we consider Ohmic resistive only disc wind solutions.

2.5.2 Ambipolar diffusion and nonlinear dampening of the MRI

We follow the same procedure as for the pure Ohmic resistivity case, but now for pure
ambipolar diffusion. The C0 > 0 condition leads to

2qΩ2

k2
z v2

Az
−1 < κ

2
τ

2
A

(
vA

vAz

)2

(2.130)

for stability, recalling our definition of the ambipolar time as τA ≡ ηA/v2
A. Considering the

Keplerian case of κ2 = Ω2, the condition for general disc stability over all modes is given by

3Ω2

k2
z v2

Az
−1 < Λ

−2
A

(
vA

vAz

)2

, (2.131)

which is essentially the same result as Equation (2.128) for the Ohmic resistivity case when
vA = vAz (pure vertical field), showing that ambipolar diffusion also preferentially stablises
the smaller wavelength modes of the MRI, while increasing ηA increases the range of
wavelengths that are fully stabilised. It is also worth noting that when vA ̸= vAz, an overall
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background magnetic field tilted from the vertical axis, which in the case of discs would
usually result from a strong vAy arising from the winding up of the poloidal field, acts to
increase the stability of the system. Examining the most unstable ideal MRI mode where
ωA = 3Ω/4 then leads to the condition

Λ
2 <

1
3

(
vA

vAz

)2

(2.132)

for its stabilisation, which again is exactly the same result as Equation (2.129) for Ohmic
resistivity when vA = vAz.

These results show while ambipolar diffusion affects the MRI in much the same way
as Ohmic resistivity when the magnetic field is near vertical, key differences arise in cases
where By ≫ Bz, as it can lead to a stable disc even when ΛA > 1. This can be understood by
the fact that ηA increases quadratically with the overall magnetic field strength |B|, while the
MRI depends only on the magnetic tension due to Bz. An increase in By therefore increases
the diffusivity, but does not change the mechanics of the feedback loop as described in
Section 2.2, resulting in greater dampening on the MRI.

2.5.3 Hall drift and Hall driven linear waves

For the pure Hall case, and in the absence of disc rotation (Ω = 0), the dispersion relation
can be rewritten as

σ
4 +σ

2(2ω
2
A + l2

Hω
2
Ak2

z )+ω
2
A = 0, (2.133)

which corresponds to two waves with frequency ω ≡ iσ given by

ω = ωA

± lHkz

2
+

√
l2
Hk2

z

4
+1

 . (2.134)

The two branches become degenerate and reduce to Alfvén waves when kz → 0, but when
kz → ∞ they take on different behaviours. The positive solution corresponds to the whistler,
also known as electron-cyclotron modes, since for as kz →∞, ω →ωAlHkz =ωH , the whistler
wave frequency. The negative solution corresponds to ion-cyclotron modes, and as k → ∞,
ω → ωA/lHkz = ωIC, the ion-cyclotron frequency . Both positive and negative solutions
introduce helicity to the magnetic field, and when lH > 0, correspond to right-handed and
left-handed polarised waves respectively. When disc rotation is reinserted, these two waves
lead to two Hall-specific instabilities, known as the Hall shear instability (HSI) for the
positive case, and the ion-cyclotron instability (ICI) for the negative case.
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Hall shear instability

The Hall shear instability (HSI) (Kunz, 2008) occurs for the positive solution of Equation
(2.134), and arises from the action of the disc shear on whistler waves. It amplifies horizontal
fields, and its action can be seen by considering the Hall and shear terms for the horizontal
components of the induction equation, which are

∂Bx

∂ t
= · · ·+ Bz

µ0

∂

∂ z
ηH

∂

∂ z
By, (2.135)

∂By

∂ t
= · · ·−

(
Bz

µ0

∂

∂ z
ηH

∂

∂ z
+qΩ

)
Bx. (2.136)

When ηHBzΩ is positive (aligned configuration), the Hall effect rotates the azimuthal mag-
netic field into the radial direction such that Keplerian shear then generates from the radial
field an azimuthal magnetic field component of the same sign as before, and the process
repeats itself to amplify the overall horizontal field strength. On the other hand, when ηHBzΩ

is negative (anti-aligned configuration), the radial field that results from rotation of the
azimuthal field is of the opposite sign, and Keplerian shear generates from the radial field a
correspondingly opposite-signed azimuthal contribution to the azimuthal field, leading to
a negative feedback loop that weakens the horizontal fields. The action of the HSI, and its
amplifying or dampening nature due to the aligned or anti-aligned configuration, is shown
diagrammatically in Figure 2.7, which is taken from Lesur (2020).

The HSI comes from oscillations of the electron (or lighter) fluid, and Lesur (2020)
obtained a criterion for instability by examining the low magnetisation limit that allows us to
decouple the ions from the electrons. In this regime, where ωA → 0, while keeping lHωA > 0,
the dispersion relation becomes

(σ2 +κ
2)[σ2 + lHωAkz(lHkzωA −qΩ)] = 0. (2.137)

The condition for the HSI to be unstable for a Keplerian disc is then

lHvAzk2
z (lHk2

z vAz −qΩ)< 0, (2.138)

provided the configuration is aligned, which translates to the additional condition that
qlHvAz > 0. The inequality shows us that when k2

z lHvAz > qΩ, in other words when the
whistler frequency becomes too large, the HSI vanishes. The HSI is susceptible to small scale
quenching, and in a given system has a maximum kz (minimum wavelength) below (above)
which it can operate. Like the MRI, the maximum growth rate of the HSI is σmax = qΩ/2,
when k2

z lHvAz = qΩ/2, and the fastest growing modes vary in the vertical direction only,
manifesting themselves as channel-like modes.
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Fig. 2.7 Diagram illustrating the action of the HSI in amplifying/weakening fields in the
aligned/anti-aligned configuration (top/bottom). For a positive ηH , the direction of Hall
rotation of the field depends on the sign of Bz = B0. For positive B0 > 0, the rotated field is
amplified by shear, while for negative B0 > 0 it is damped. Figure taken from Lesur (2020).

Ion-cyclotron instability

The ion-cyclotron instability (ICI), also called ‘diffusive MRI’ by Pandey and Wardle (2012),
occurs only for anti-aligned configurations, and corresponds to the negative solution of
Equation (2.134). The instability arises from the coupling of the left handed Hall wave
to the epicyclic motion (Wardle and Salmeron, 2012). Lesur (2020) derived an instability
condition for the ICI by setting kz → ∞ to filter out the whistler wave (as the HSI becomes
quenched), while assuming that σ remains finite, and keeping only the highest O(k4

z ) terms
in the dispersion relation. Equation (2.122) then becomes

σ
2l2

Hk2
z ω

2
A +[ω2

A +(2−q)ΩlHωAkz][ω
2
A +2ΩlHωAkz] = 0. (2.139)

We see that in the limit Ω → 0, σ → ωIC, confirming to us that we are dealing with ion-
cyclotron modes here. The condition for these modes to be unstable is then

v2
Az

(2−q)Ω
>−lHvAz >

v2
Az

2Ω
, (2.140)

which naturally requires the anti-aligned configuration. There is no constraint on kz in the
instability condition, hence the ICI can operate on any sufficiently short length scale for
the approximation to be valid. However, it is only active within a restricted range of field
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strengths. Physically, these modes behave like the standard MRI picture, with δBφ generated
from δBr, except that here it is not differential shear of the radial field that is responsible for
the generation, but the Hall effect (Pandey and Wardle, 2012). This means δBr can lead to
generation of δBφ of the same sign, rather than of the opposite sign as in the shear-driven
case.

The left hand panel of Figure 2.8, taken from Lesur (2020), plots the Hall-MRI mode
growth rates in 2D plane characterised by a modified Hall Lundquist number,

L ∗
H =

1
lHkz

=
vA

ηHkz
, (2.141)

which gives us a measure of the strength of the Hall effect, against ωA the Alfvén frequency.
In the limit of low L ∗

H , the regions when σ > 0 are bounded by the HSI and ICI instability
conditions calculated in our limiting cases, which are represented by the solid and dashed
white curves respectively. As L ∗

H → ∞, we simply recover ideal MHD as expected. This
shows us that in the presence of the Hall effect, the behaviour of the MRI can vary drastically
depending on whether it is in the aligned or anti-aligned configuration. In the aligned
configuration, Hall drift has a stabilising effect on the MRI, while Hall drift has a destabilising
effect in the anti-aligned configuration. In the aligned configuration, Hall-MRI has a lower
mode frequency at which σ is maximum than the MRI in ideal MHD. This is because the HSI
is most efficient when ωA is comparable to the whistler wave, while for the MRI this happens
when it is comparable to the Alfvén wave. Since the whistler frequency is proportional to
lHkz and decreases as Hall strength is increased, the HSI leads to a higher growth rate at
lower ωA.

Ohm-Hall MRI

Ohmic resistivity can drastically affect the behaviour of Hall-MRI, and vice versa when
considered in the other sense of the impact of Hall drift on resistive-MRI. The effect of
Ohmic resistivity on Hall MRI was examined in detail by Wardle and Salmeron (2012) and
Pandey and Wardle (2012). Here we will only give an overview of the major results, while
sketching out the reasoning behind them.

Generally, resistivity stabilises Hall-MRI modes, starting from those with highest ωA

down to lower ωA as ΛO decreases. The ICI is first to be stabilised due to its higher |ωA|
values, while the HSI is also heavily damped. We can see this in the right hand panel of
Figure 2.8, which plots the growth rates in the L ∗

H −ωA plane for a disc with ΛO = 0.1. The
ICI branch is completely quenched, while the HSI is heavily damped from the pure Hall-MRI
case (compare with the left hand panel which is pure Hall-MRI). Interestingly, the unstable
region grows as L ∗

H is decreased, showing us that Hall drift can reinvigorate regions that
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Fig. 2.8 Plots of the Hall-MRI growth rate σ in a 2D plane characterised by the modified Hall
Lundquist number L ∗

H and Alfvén frequency ωA. The left hand plot is for the pure Hall-MRI
case, while the right hand plot has an Ohmic resistivity such that ΛO = 0.1. The dotted white
lines are the analytic bounds of Equation (2.139) for the ICI in the high |kz| limit, while the
white line is the analytic bound of Equation (2.138) for the HSI in the ωA → 0 limit. Both
plots are taken from Lesur (2020).

would normally have been rendered inactive by resistive stabilisation. The stabilising effect
of the HSI mode under the effect of resistivity is examined by Lesur (2020) taking the limits
ωA → 0 with lHωA > 0 in the dispersion relation, giving

(σ2 +κ
2)[(σ +ηOk2

z )
2 + lHωAkz(lHkzωA −qΩ)] = 0. (2.142)

This gives the criterion

Λ
2
O <

1
2

Λ
2
H (2.143)

for stabilising the most unstable HSI mode. However, if the reverse is true, then the HSI
can in theory revive regions in the disc that have been thought to have been rendered ‘dead’
by resistivity. These perturbations would be mostly magnetic in nature with minimal effect
on the velocity fields, as the HSI is ultimately an unstable whistler mode amplifying the
horizontal fields, but which leaves the main mass carriers of ions and neutrals unperturbed.
However, as we shall see in Section 2.6, they can lead to drastic changes in the overall
magnetic field geometry threading the disc, which can in turn affect the discs’ transport
properties. In the anti-aligned case on the other hand, the effects of Ohm Hall-MRI are
similar to that of the purely resistive case, but with slightly reduced growth rates for the MRI
modes compared with the purely resistive case.



56 Magnetohydrodynamics of protoplanetary discs

2.6 Non-ideal MHD effects on disc structure and magnetic
wind launch

The effect of non-ideal MHD on protoplanetary disc structure and the launching of the
magnetic wind has been studied in both semi-analytic models (Königl et al., 2010; Nolan
et al., 2017; Teitler, 2011; Wardle and Koenigl, 1993) and numerical simulations (Bai, 2017;
Béthune et al., 2017; Gressel et al., 2020, 2015; Riols et al., 2020). On the one hand, semi-
analytic models, such as the 1-D vertical structure models based on the work of Wardle and
Koenigl (1993), often require gross assumptions about the disc geometry, such as assuming
a standard “hourglass” symmetry of the large-scale magnetic field threading the disc (see
Figure 3.1 in Section 3.2). They also constrained the vertical flux radial transport rate to
zero, and they used simplified diffusivity profiles that are set to be constant throughout the
vertical extent of the disc. Although they demonstrate that diffusive discs can indeed launch
magnetic winds driving mass accretion under the gross conditions expected in protoplanetary
discs, and are indeed a useful first step towards eventually realising a global framework
for modelling the structure and evolution of wind-driven non-ideal MHD protoplanetary
discs, they are also limited by their construction as stationary steady-flow solutions, as
well as arbitrary restrictions on disc geometry and the requirement of self-similarity on
radial scales (Teitler, 2011). Numerical simulations, on the other hand, allow for the study
of discs in a time dependent manner and can explore different geometries under more
realistic conditions. However, they are limited by computing power, which in turn leads to
insufficient integration time for determining the long term outcome of solutions, and lower
resolution than semi-analytic studies. To gain insight into the effect of non-ideal MHD on
protoplanetary disc structure and wind launching therefore requires complementary studies
by both semi-analytical and numerical methods.

Recently, both radially local shearing box simulations (Bai, 2015; Lesur et al., 2014)
and global simulations (Bai, 2017; Béthune et al., 2017; Gressel et al., 2015) have shown
that when realistic prescriptions of all three non-ideal MHD effects are included, we should
expect turbulent activity from the MRI to be quenched throughout most of the disc, resulting
in a mostly laminar disc with steady flow. This is particularly the case when ambipolar
diffusion is included, which quenches MRI turbulence in the disc surface layers due to ηA’s
dependence on B2 quenching the surface modes before they develop into turbulence due to
the enhanced diffusivity from magnetic perturbation growth, and allows a weakly magnetised
outflow to be launched (Bai and Stone, 2013b; Lesur et al., 2014). On the other hand, the
presence of Hall drift in the aligned configuration leads to the generation of a strong laminar
stress in the disc through the action of the HSI, which enhances angular momentum and mass
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transport (Bai, 2015, 2017; Simon et al., 2015). This laminar stress is polarity dependent, and
is not present when the configuration is anti-aligned. The mostly laminar nature of the flow
recovered in both local and global simulations stretches from the inner disc (down to 0.3 AU)
to the outer disc region (up to 30 AU) (Bai, 2013, 2015), and shows that protoplanetary discs
are most likely wind-driven, rather than MRI turbulence-driven as in traditional pictures of
accretion disc transport. It also justifies the use of 1-D vertical structure models in modelling
radially local regions of protoplanetary discs, and is a simplification that will be employed in
the work of this Thesis.

Another important effect non-ideal MHD have on protoplanetary discs is in the overall
geometry of the large-scale magnetic field threading the disc, which also affects the vertical
variation of the velocity profile about the mid-plane and the overall geometry of the magnetic
wind. Bai and Stone (2013b) first noted in their local shearing box simulations that both
the traditional “hourglass” and less common “slanted” geometries can result from discs
with Ohmic and ambipolar diffusion prescriptions. They initially dismissed the “slanted”
symmetry as unphysical solutions resulting from the limitations of the shearing box formal-
ism, which neglects curvature terms and does not distinguish which direction the star is in,
hence the requirement that field lines should eventually bend to the same direction away
from the central object is not enforced. However, the repeated occurrence of the “slanted”
symmetry in subsequent shearing box simulations (Bai, 2014, 2015; Lesur et al., 2014), and
most strikingly the emergence of “slanted”-like solutions in global simulations where the
inward-directed field only bends away from the star high up in the coronal region (Bai, 2017;
Béthune et al., 2017) (see also Figure 2.9), have led to the conclusion that “slanted”-like
solutions are indeed a robust feature of protoplanetary discs, and are closely linked with the
presence of non-ideal MHD.

The origin of the “slanted” symmetry has never been clearly demonstrated, although there
have been various hypotheses. Bai (2017) suggested that in aligned cases where Hall drift is
included, the development of “slanted” regions in the disc may be a result of the HSI strongly
amplifying the horizontal field, particularly in the inner disc (< 10 AU). Lesur et al. (2014)
in their local simulations have similarly suggested that the HSI spontaneously saturates
into a “slanted” configuration. This is supported by the observation in both Béthune et al.
(2017) and Bai (2017) that “slanted” symmetries are more prevalent for discs in the aligned
configuration, and that anti-aligned cases or weak field conditions (βmid ≳ 104) lead to more
“hourglass” discs. On the other hand, “slanted”-like configurations have also been seen in
global simulations with both Ohmic resistivity and ambipolar diffusion (Gressel et al., 2020;
Riols et al., 2020), as well as simulations where only Ohmic resistivity is present (Rodenkirch
et al., 2020). The HSI therefore cannot be the sole explanation of this phenomenon, and it
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Fig. 2.9 Radial gas flow and poloidal field profile from one of the simulations (figure 7) in
Bai (2017), where the Hall effect is in the aligned configuration, and all three non-ideal MHD
effects are included with realistic prescriptions. Notice that at 10 AU, the poloidal field has a
“slanted” symmetry in the disc region before bending back away from the star in the coronal
region, resulting in an anti-symmetric radial velocity profile in the disc about the mid-plane.
On the other hand, at 18 AU, the poloidal field has an “hourglass” symmetry throughout, and
the resulting radial velocity profile is symmetric about the mid-plane.
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has been suggested that the “slanted” symmetry could be the result of explusion of the strong
mid-plane current layer required by the “hourglass” configuration, by strong diffusive effects
from Ohmic and ambipolar diffusion in the disc which render the sustenance of a strong
mid-plane current layer to be unstable (Bai and Stone, 2013b). Béthune et al. (2017) and
Bai (2017) have also noted that the eventual disc symmetry may be affected by the initial
conditions of the simulation, and this will be one of the areas we will be investigating in Part
III of the Thesis.

The changing of the geometry of the disc vertical profile and magnetic wind has important
consequences on its dynamics and long term transport properties. In local models, the
“slanted” symmetry leads to overall zero horizontal transport of mass and magnetic flux due
to the opposite directions of the horizontal flow above and below the mid-plane. Although
in global models the magnetic field eventually bends away from the star high up in the
corona, the “slanted”-like asymmetric solutions nonetheless have much reduced overall radial
transport properties than the “hourglass” symmetric solutions for the same disc parameters
(Bai, 2017). The different horizontal flow profiles resulting from the two symmetries also
have an impact on dust transport in discs governed by wind-driven accretion, with the radial
drift of small dust modestly enhanced in the presence of a mid-plane accretion flow in the
“hourglass” case compared with the asymmetric “slanted”-like case (Hu and Bai, 2021). The
question of the global outflow configuration is therefore an important one, and remains open
for further investigation.

2.7 Current paradigm and key questions

The current paradigm for protoplanetary disc structure and dynamics can be summarised as
follows. Protoplanetary discs are relatively cold and weakly ionised discs where non-ideal
MHD effects are prominent in shaping disc dynamics, most notably in suppressing turbulent
activity caused by the MRI, which is the dominant mechanism of disc accretion and angular
momentum removal expected in other accretion disc systems. Instead, protoplanetary discs
are expected to be threaded by a weak large-scale magnetic field, which, when coupled with
thermal heating of the disc surface layers from the central star, leads to the launching of
magneto-thermal winds from the disc surface. The magnetic nature of these winds means that
they remove angular momentum vertically, driving accretion through the mostly laminar disc.
While Ohmic resistivity acts as a simple diffusivity of the magnetic field suppressing the MRI,
Hall drift and ambipolar diffusion are anisotropic and nonlinear, leading to a whole variety
of effects on the disc vertical structure and transport properties. Under certain conditions, the
disc may adopt a “slanted” symmetry close to the disc mid-plane instead of the traditional
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“hourglass” symmetry where the poloidal field bends away from the star above and below the
disc. In a global setting, the “slanted”-like solution leads to an overall asymmetric profile
about the mid-plane, which can have significant effects on the overall disc dynamics.

One of the key questions that remains to be addressed is the long-term transport of
the large-scale magnetic field through the disc, as the behaviour of the magnetic processes
in the disc is highly sensitive to the amount of vertical magnetic flux threading the disc.
Understanding this is particularly crucial for the formulation of any secular theory of disc
evolution where the flux distribution is expected to change over time. Part II of this Thesis
is devoted to addressing this problem, and particularly the contribution of non-ideal MHD
effects to the long term radial transport of the vertical magnetic field.

Another key question flagged up by recent studies on protoplanetary discs is on the
origin of the “slanted” symmetry state and the factors that contribute to the disc adopting
one symmetry over another. As we have already seen, the symmetry adopted by the disc can
have a significant impact on long term transport and short term dynamical properties of the
disc, and is an important problem to address. Part III of the Thesis is devoted to the study of
this problem, and the proposal of a new mechanism that could be partly responsible for the
development of the “slanted” symmetry profiles we find in many studies of late.

In addition to the simplification of the problem to studying 1-D vertical slices of radially
local regions of a protoplanetary disc, we also adopt the isothermal assumption throughout
this Thesis. Although we will not be able to explore the detailed thermodynamics of the
disc or capture the “thermal” nature of the magneto-thermal wind launch, this simplification
allows us to simplify the physics and explore in a more systematic manner over a wider
parameter space the interaction between non-ideal effects, the MRI and magnetic winds.
Recent models of protoplanetary discs are often of such great complexity that it is often
very difficult to separate the physics and note what is the primary cause of an observed
phenomenon. Our aim in this work is to find the bare-bone essentials in what governs the
long-term magnetic flux transport, as well as the geometry of the disc profile and magnetic
wind configuration. Our goal is that our study will shed light on the interpretation of current
and future investigations where more physics is put back in to simulate protoplanetary discs
as realistically as possible, and to pave the way to a unified understanding of disc structure
and evolution.



Chapter 3

Multi-scale radially local approach

In this Chapter, we derive the radially local equations that will form the basis of the rest of the
Thesis. Guilet and Ogilvie (2012) were distinctive in using a multiscale asymptotic approach
in deriving their 1D radially local vertical structure equations, allowing radial gradients of
various quantities to be placed on the same footing as inclination and outflow in driving flux
transport. This approach is often employed in the study of warped discs where processes
vary at different spatial and time scales (Ogilvie, 1999). We follow the same multiscale
asymptotic approach, but here derive a more general formalism. All our subsequent work
is based on the equations derived using this formalism, and here we also use the equations
derived to make some general observations on the interplay between various source terms
and the angular momentum transport and magnetic flux evolution.

3.1 Governing equations

The continuity equation is given by

∂ρ

∂ t
+∇ · (ρu) = 0, (3.1)

and the conservation of momentum by

ρ

(
∂u
∂ t

+u ·∇u
)
=−ρ∇Φ−∇p+

1
µ0

(∇×B)×B+∇ ·T, (3.2)

where ρ is the density, u is the velocity, Φ is the gravitational potential, p is the pressure, B
is the magnetic field, and T is the viscous stress. The full viscous stress is given by

T = ρν

[
∇u+(∇u)T − 2

3
(∇ ·u)I

]
, (3.3)
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where ν is the kinematic viscosity and I is the unit tensor of second rank. We neglect
self-gravity and do not consider a thermal energy equation. For thermodynamic closure, we
assume an isothermal relation such that

p = c2
s ρ. (3.4)

We recall the full non-ideal MHD induction equation:

∂B
∂ t

=∇×
(

u×B−ηO(∇×B)−ηH(∇×B)×b+ηA [(∇×B)×b]×b
)
, (3.5)

where b=B/|B|, and ηO,ηH ,ηA are the Ohmic, Hall and ambipolar diffusivities respectively.
Ohmic and ambipolar diffusivities are always positive. The Hall coefficient, on the other
hand, can have either sign, depending on whether the more massive charge carrier in the
disc is positively (ηH > 0) or negatively (ηH < 0) charged. Ideal, Ohmic and/or ambipolar
diffusive-only discs are insensitive to the polarity of alignment of the large scale field with
the rotation of the disc. The Hall effect, on the other hand, does depend on the polarity of
the magnetic field. Reversing the sign of (B ·Ωx), where Ωx is the angular velocity vector,
has the same effect as reversing the sign of ηH on the equations. In this paper, we define the
positive (negative) polarity case as when ηH(B ·Ωx)> (<) 0.

We consider the problem in cylindrical polar coordinates (r,φ ,z), and assume an axisym-
metric potential Φ(r,z) that is symmetric about the midplane z = 0, given by

Φ(r,z) =− GM√
r2 + z2

. (3.6)

The orbital angular velocity Ω(r) is then defined via

−rΩ
2 =−∂Φm

∂ r
, (3.7)

where

Φm(r) =−GM
r

(3.8)

is the midplane potential. We also define the residual velocity as

v = u− rΩeφ , (3.9)

which is the departure from Keplerian motion.
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3.1.1 Asymptotic expansion

We perform an asymptotic expansion for the fluid variables, using an ordering scheme that is
well understood for thin discs. The characteristic angular semi-thickness of the disc is given
by the disc aspect ratio H/r = O(ε), where 0 < ε ≪ 1 is a small dimensionless parameter.
The sound speed to orbital velocity ratio in an isothermal disc is then of O(ε).

For a magnetised disc, the ordering scheme of the magnetic field depends on the strength
and orientation of the field (Ogilvie, 1997). We consider here a situation where the magnetic
energy density is comparable to the thermal energy density, and set both the Alfvén speed
and the adiabatic sound speed at O(ε) compared with the orbital velocity. For specific field
configurations, such as vertical field dominance in the Guilet & Ogilvie model described in
Chapter 6, we might set some of the asymptotic terms to zero for that particular situation.
Instead of including a viscous stress, which is normally intended to represent a turbulent or
eddy viscosity, we set the viscosity to zero to give us a laminar disc, as recent protoplanetary
disc simulations have shown them to be.

We assume axisymmetry and so neglect all ∂/∂φ terms. The internal structure of the thin
disc and its slow evolution in time are resolved through rescaled spatial and time coordinates

ξ =
r
ε
, ζ =

z
ε
, t1 = εt, t2 = ε

2t,

where ζ is a scaled vertical variable, t1 is the flux evolution timescale and t2 is the accretion
timescale. To incorporate the multiscale nature of our approach, we separate the radial
lengthscale into small variations of order H within a small radial region of the disc (ξ ∼
O(1)) and global radial variations of order r (r ∼ O(1)). Timescales are also separated
into a fast dynamical timescale of order Ω−1 (t ∼ O(1)), an intermediate magnetic flux
transport timescale (t1 ∼ O(1)), and a slow accretion timescale (t2 ∼ O(1)). The coordinate
transformations are hence given by

∂r 7→ ε
−1

∂ξ +∂r, ∂z 7→ ε
−1

∂ζ ,

∂t 7→ ∂t + ε∂t1 + ε
2
∂t2,

where we have introduced the shorthand ∂r ≡ ∂/∂ r, etc.
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We then use the following expansion of fluid variables (each of the terms in the expansion
is a function of r,ξ ,ζ , t, t1, t2):

ρ = ρ0 + ερ1 + · · · , (3.10)

p = ε
2 [p0 + ε p1 + · · · ] , (3.11)

v = ε [v0 + εv1 + · · · ] , (3.12)

B = ε [B0 + εB1 + · · · ] , (3.13)

ηO = ε
2[ηO0 + εηO1 + · · · ], (3.14)

ηH = ε
2[ηH0 + εηH1 + · · · ], (3.15)

ηA = ε
2[ηA0 + εηA1 + · · · ]. (3.16)

We can see that p/ρ ∼ O(ε2), giving us cs ∼ O(ε) as we would expect. We consider
departures from Keplerian motion comparable to the sound speed, and a similar order
for the Alfvén speed, hence set both v and B to be of O(ε). Variations across the disc
height due to diffusive effects are assumed to occur on the dynamical timescale, hence
ηO,H,A ∼ O(ε2r2/t) ∼ O(ε2). Finally, within the thin disc, the gravitational potential has
the Taylor expansion

Φ = Φm(r)+ ε
2
Ψ(r)

1
2

ζ
2 +O(ε4), (3.17)

where

Ψ = Ω
2 (3.18)

for the point-mass potential we have chosen.
At leading order (O(1) for mass conservation and O(ε) for the momentum equation), we

recover the standard shearing box equations. The next order equations can be thought of as
linear equations with source terms given by the solution of the leading order equations. We
give the expansion of these equations at the first two leading orders below.

3.1.2 Mass and momentum equations

The mass and momentum equations, assuming axisymmetry, can be rewritten as:

Dρ =−ρ∆, (3.19)

Dur −
u2

φ

r
=−∂rΦ− 1

ρ
∂r p+

1
ρ

(
Jφ Bz − JzBφ

)
, (3.20)

Duφ +
uruφ

r
=

1
ρ
(JzBr − JrBz) , (3.21)
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Duz =−∂zΦ− 1
ρ

∂z p+
1
ρ

(
JrBφ − Jφ Br

)
, (3.22)

where

D = ∂t +ur∂r +uz∂z, (3.23)

∆ =
1
r

∂r(rur)+∂zuz, (3.24)

and the current is given by

J =
1
µ0

∇×B. (3.25)

We introduce the following operators:

D = D0 + εD1 + ε
2D2 + · · · , (3.26)

with

D0 = ∂t + vr0∂ξ + vz0∂ζ , (3.27)

D1 = ∂t1 + vr1∂ξ + vr0∂r + vz1∂ζ , (3.28)

D2 = ∂t2 + vr2∂ξ + vr1∂r + vz2∂ζ . (3.29)

Also

∆ = ∆0 + ε∆1 + · · · , (3.30)

with

∆0 = ∂ξ vr0 +∂ζ vz0, (3.31)

∆1 = ∂ξ vr1 +
1
r

∂r(rvr0)+∂ζ vz1. (3.32)

Assuming the potential of Equation (3.8), the leading-order equations are then

D0ρ0 =−ρ0∆0, (3.33)

D0vr0 −2Ωvφ0 =− 1
ρ0

∂ξ p0 +
1
µ0

[(
∂ζ Br0 −∂ξ Bz0

)
Bz0 −Bφ0∂ξ Bφ0

]
, (3.34)

D0vφ0 +
1
r

∂r(r2
Ω)vr0 =

1
µ0

[
∂ξ (Br0Bφ0)+Bz0∂ζ Bφ0

]
, (3.35)
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D0vz0 =−Ψζ − 1
ρ0

∂ζ p0 +
1
µ0

[(
−∂ζ Bφ0

)
Bφ0 −

(
∂ζ Br0 −∂ξ Bz0

)
Br0

]
, (3.36)

At the next order, we have

D1ρ0 +D0ρ1 =−ρ1∆0 −ρ0∆1, (3.37)

D1vr0 +D0vr1 −
v2

φ0

r
−2Ωvφ1

=−(∂rΨ)
1
2

ζ
2 +

ρ1

ρ2
0

∂ξ p0 −
1
ρ0

(∂r p0 +∂ξ p1)

+
1
µ0

(
Jφ1Bz0 − Jz1Bφ0 + Jφ0Bz1 − Jz0Bφ1

)
,

(3.38)

D1vφ0 +D0vφ1 +
vr0vφ0

r
+

1
r

∂r(r2
Ω)vr1

=
1
µ0

(Jz1Br0 − Jr1Bz0 + Jz0Br1 − Jr0Bz1) ,
(3.39)

D1vz0 +D0vz1 =
ρ1

ρ2
0

∂ζ p0 −
1
ρ0

∂ζ p1

+
1
µ0

(
Jr1Bφ0 − Jφ1Br0 + Jr0Bφ1 − Jφ0Br1

)
,

(3.40)

with

µ0Jr0 =−∂ζ Bφ0, (3.41)

µ0Jr1 =−∂ζ Bφ1, (3.42)

µ0Jφ0 = ∂ζ Br0 −∂ξ Bz0, (3.43)

µ0Jφ1 = ∂ζ Br1 −∂ξ Bz1 −∂rBz0, (3.44)

µ0Jz0 = ∂ξ Bφ0, (3.45)

µ0Jz1 = ∂ξ Bφ1 +
1
r

∂r(rBφ0). (3.46)

3.1.3 Induction equation

Again we assume axisymmetry throughout this analysis. The full induction equation is then
given by

∂B
∂ t

+(u ·∇)B = (B ·∇)u−B(∇ ·u)−∇× [ηOJ]

−∇× [ηHJ×b]+∇×{ηA [J×b]×b} ,
(3.47)
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where b=B/|B|, and ηO,ηH ,ηA are the Ohmic, Hall and ambipolar diffusivities respectively.
We define

B ·∇ = MB = MB0 + εMB1 + ε
2MB2 + · · · , (3.48)

with

MB0 = Br0∂ξ +Bz0∂ζ , (3.49)

MB1 = Br1∂ξ +Br0∂r +Bz1∂ζ , (3.50)

MB2 = Br2∂ξ +Br1∂r +Bz2∂ζ . (3.51)

Note that this is of the same form as D with the exception of ∂t ,∂t1,∂t2 terms.
At zeroth order, all the terms cancel out. The first order equations are of order ε , and they

are:

D0Br0 = MB0vr0 −Br0∆0 (3.52)

D0Bφ0 +ΩBr0 = MB0vφ0 +Br0∂r(rΩ)−Bφ0∆0 (3.53)

D0Bz0 = MB0vz0 −Bz0∆0 (3.54)

The next order ε2 equations are:

D0Br1+D1Br0 −
Bφ0vφ0

r
−ΩBφ1

= MB0vr1 +MB1vr0 −
vφ0Bφ0

r
−Br1∆0 −Br0∆1

(3.55)

D0Bφ1+D1Bφ0 +
Br0vφ0

r
+ΩBr1

= MB0vφ1 +MB1vφ0 +
vr0Bφ0

r
+Br1∂r(rΩ)−Bφ1∆0 −Bφ0∆1

(3.56)

D0Bz1 +D1Bz0 = MB0vz1 +MB1vz0 −Bz1∆0 −Bz0∆1 (3.57)

We also have the zero divergence condition

∇·B = 0, (3.58)

which when written in cylindrical coordinates, gives:

∂zBz =−∂r(rBr). (3.59)

The resulting relations in increasing order are therefore:

∂ζ Bz0 =−∂ξ Br0, (3.60)

∂ζ Bz1 =−∂ξ Br1 −
1
r

∂r(rBr0). (3.61)
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3.2 Angular momentum and magnetic flux transport

Of particular interest to us are the leading terms for angular momentum and magnetic flux
transport rates. We consider the case where there is no wind-driven accretion. Assuming that
disc variables are periodic in ξ , we simplify the equations by averaging over the horizontal
directions. We note that with no mass loss vertically through the disc, the surface density
can only evolve because of radial mass fluxes, which are only possible because of angular
momentum removal. The lowest order at which angular momentum flux through the disc
allows an evolution of the surface density occurs at the classic viscous timescale t2. Therefore,
we proceed to average over the fast dynamical timescale t as well as the intermediate magnetic
flux transport timescale t1. The leading order angular momentum transport equation is then
recovered by combining the O(ε) φ -component of the momentum equation with the O(ε2)

mass equation, and integrating over the vertical extent with a vertical boundary condition
which forbids incoming or outgoing fluxes in ζ to give

∂t2Σ0 =
1
r

∂r

{[
∂r(r2

Ω)
]−1
[

∂r

(
r2
{
⟨ρ0vφ0vr0⟩−

1
µ0

⟨Br0Bφ0⟩
})]}

, (3.62)

where ⟨⟩ from here onwards denote both the spatial and temporal averagings and the ver-
tical integration mentioned, and Σ0 is the first order disc surface density. We recover the
well known ‘diffusion equation’ for an accretion disc, where mass transport is facilitated
through ‘viscous’ stresses arising from a Reynolds component associated with internal mo-
tions (⟨ρ0vφ0vr0⟩) and a Maxwell component associated with the horizontal magnetic field
components (−⟨Br0Bφ0⟩).

The vertical flux evolution is calculated from the z component of the induction equation
and using the condition ∇ ·B = 0:

∂t1⟨Bz0⟩+
1
r

∂r

(
r
[
⟨vr0Bz0⟩−⟨vz0Br0⟩+

〈
ηO0∂ζ Br0

〉
+

〈
ηH0

1
B0

{
Br0∂ξ Bφ0 +Bz0∂ζ Bφ0

}〉

+

〈
ηA0

1
B2

0

{
Br0Bφ0∂ζ Bφ0 +

(
B2

r0 +B2
z0
)(

∂ζ Br0 −∂ξ Bz0
)

+Bφ0Bz0
(
∂ξ Bφ0

)}〉 ] )
= 0.

(3.63)

The terms within the square brackets give us the vertical magnetic flux radial transport rate.
The first term describes advection with the radial flow, while the second term comes from B
being an advected solenoidal vector. Standard accretion disc models assume the large scale
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Fig. 3.1 General form of the open disc magnetic field geometry assumed in standard accretion
disc models. Magnetic field lines are shown in the meridional plane, while the dotted lines
indicate the surfaces of the disc. Figure taken from Ogilvie (1997).

magnetic field to have an open field geometry with the poloidal component bending outward
from the star (Ogilvie, 1997) (see Figure 3.1). In this configuration (where we have assumed
Bz > 0), flux transport comes from poloidal motion across the field lines, and drive radially
inward accretion of the flux (−⟨vz0Br0⟩< 0). For the Ohmic term, we expect ⟨∂ζ Br0⟩> 0
in the standard disc magnetic configuration. This means an overall effect of transporting
the magnetic field radially outwards, in agreement with other studies of the effect of Ohmic
resistivity in the presence of an inclined field (Guilet and Ogilvie, 2012).

The Hall and ambipolar terms are more complicated. We further simplify the problem by
assuming that only large scale radial gradients and vertical variations are present (in other
words we set ∂ξ = 0). Then the Hall term,〈

ηH0

(
Bz0

B0

)
∂ζ Bφ0

〉
, (3.64)

depends on the vertical gradient of the azimuthal field. The sign of the Hall term, and
consequently the direction of the flux transport induced by it, are also dependent on the sign
of the Hall coefficient and the vertical magnetic field, reversing if one of them changes. Its
effect is strongest when there is a strong vertical field threading the disc. From simulations
(Bai and Stone, 2017; Béthune et al., 2017), typically ∂ζ Bφ0 < 0 near the midplane and > 0
at the disc surface, hence we would expect the Hall flux transport to switch direction as
we go up from the disc midplane. For ηH(Bz ·Ωx)> (<) 0, we expect this transport to be
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radially inward (outward) near the midplane. This is indeed what is found in recent Hall
global simulations (Bai and Stone, 2017).

The ambipolar term on the other hand has both an ‘Ohm-like’ and a ‘Hall-like’ component.
The ‘Ohm-like’ component,〈

ηA0

(
B2

r0 +B2
z0

B2
0

)
∂ζ Br0

〉
, (3.65)

is outwardly directed assuming the standard configuration, and is strongest and equivalent in
form to Ohmic diffusion when B is purely poloidal. The ‘Hall-like’ component,〈

ηA0

(
Br0Bφ0

B2
0

)
∂ζ Bφ0

〉
, (3.66)

depends on the correlation between the horizontal components of the magnetic field. Nor-
mally, we expect the sign of Bφ to be opposite to that of Br because of Keplerian shear, and
Br0Bφ0 < 0. Hence the ‘Hall-like’ ambipolar term would act in the opposite (same) direction
as the Hall term for ηH(Bz ·Ωx)> (<) 0.

It is worth noting that Section 2 (and Figure 1) of Bai and Stone (2017) also provides
an analytic explanation on why the Hall term drives magnetic flux transport when a surface
toroidal field accompanied by a wind is present, with Equation 9 of Bai and Stone (2017)
essentially the same as our Equation (3.64). Although our analysis is more rigorous, the
essence of the Hall-mediated magnetic flux transport is the same.



Part II

Magnetic flux transport in
protoplanetary discs





Chapter 4

Introduction to the magnetic flux
transport paradigm

As discussed in Chapter 2, the strength and geometry of a large-scale magnetic field threading
the disc can drastically affect the operation of magnetic processes within it, such as the MRI
and magnetic wind launching. So far, two possible origins for this large-scale magnetic field
have been proposed: it is either created locally by a dynamo process (Brandenburg et al.,
1995; Hawley et al., 1996), or it arises from the concentration of the flux that is intrinsic to
the accreting gas (Lubow and Spruit, 1995; Spruit et al., 1995). It is yet unclear whether
the former can generate a significant magnetic field coherent over a scale comparable to the
radius (Spruit, 2010).

The latter case, where magnetic flux of the accreting gas is concentrated as it accumulates
in the inner regions of the disc, has been subject to increasing study. Semi-analytic work
such as carried out by Lovelace et al. (2009) and Guilet and Ogilvie (2012, 2013) studied the
competing effects of inward accretion due to advection with an accreting flow, and outward
diffusion due to a turbulent resistivity, in what is known as the ‘advection-diffusion’ paradigm.
The disc is assumed to be turbulent due to processes like the MRI. This, as mentioned before
in Section 1.4.1, leads to an effective viscosity, ν , which drives accretion of the material
towards the star, also advecting magnetic flux radially inwards. However, the same turbulence
also mixes up fluid parcels and their magnetic flux, driving reconnection processes on small
scales. This leads to an effective resistivity, η , which allows the magnetic field to diffuse, and
in the presence of an outwardly bending global poloidal field, results in an outward transport
of flux. The turbulent viscosity and diffusivity are linked via the effective magnetic Prandtl
number P ≡ ν/η . For MHD turbulence, P is expected to be of order unity (Fromang and
Stone, 2009; Guan and Gammie, 2009; Lesur and Longaretti, 2009).
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The first studies by van Ballegooijen (1989), Lubow et al. (1994), Heyvaerts et al. (1996)
concluded that outward diffusion would significantly outweigh any accretion for thin discs
with significant field bending. These subsequent studies, however, neglected the vertical
structure of the disc, which, as subsequently pointed out (Guilet and Ogilvie, 2012; Ogilvie
and Livio, 2001; Rothstein and Lovelace, 2008), has a significant impact on the averaging
procedure used in the calculations. These studies examined the impact of disc structure
using quasi-steady state radially local models, and found that for weak magnetic fields, the
contribution of the accretion flow to the flux transport velocity is much larger than the mass
transport velocity. This is due to larger radial velocities away from the mid-plane, which
barely affect mass flow but do affect flux transport. Further work by Guilet and Ogilvie
(2014); Okuzumi et al. (2014) and Takeuchi and Okuzumi (2014) applied the results from
these local models to the global evolution of large-scale magnetic fields, and verified that an
equilibrium is reached and that the maximum attainable field strength and a rough estimation
of its associated Maxwell stress are compatible with the steady-state accretion rate observed
in actual systems. Hence a possible solution to the too-efficient-diffusion problem of an
inclined magnetic field is provided.

This flux transport paradigm, however, is more relevant to well ionised discs such as
around black holes and compact stars, where turbulence can readily occur. Recent studies
and global simulations have shown that protoplanetary discs are likely to be laminar in most
parts, and therefore should not be modelled as turbulent (Bai and Stone, 2017; Béthune et al.,
2017; Suriano et al., 2017, 2018). Current advection-diffusion models also do not account for
the non-ideal effects of Hall drift and ambipolar diffusion, which are likely to be significant
throughout much of the protoplanetary discs. Recently numerical simulations have begun
examining the flux transport problem globally in the non-ideal MHD protoplanetary disc
context (Bai and Stone, 2017) and in the ideal MHD weak field regime (Zhu and Stone,
2018). However, they still suffer from current computational limitations of evolving a disc
for long enough to determine its long term global flux evolution (G. Lesur, priv. comm.). A
new model addressing these concerns and including all three non-ideal MHD contributions is
required for modelling the flux transport problem for the protoplanetary disc context, which
is what we seek to address here.

In this Part, we investigate the flux transport problem in the protoplanetary disc context
through 1D radially local semi-analytic models similar to that of Guilet and Ogilvie (2012),
but where non-ideal effects also have a significant role in the flux evolution (Fromang, 2013).
However, as many of the same principles can be applied to accreting discs in general, it is
hoped that the framework could be extended to the study of stellar mass black hole accretion
and AGN discs as well.
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The structure of this Part is as follows. Chapter 5 discusses the shearing box equations
vertical structure model, where we estimate flux transport rates due to an inclined B field
or a magnetic torque at the disc surface. Chapter 6 extends the Guilet and Ogilvie (2012)
model (hereafter GO model) to include all three non-ideal effects. It also examines the
flux transport driven by large scale radial gradients, in addition to that by a surface inclined
field or magnetic torque. The implications and limitations of our semi-analytic results are
discussed there, along with directions for future study. Both Chapters 5 and 6 are restricted
to cases where a magnetic wind is not explicitly present, and where the poloidal magnetic
field inclination is set below the wind launching threshold (see Section 2.3.3). In Chapter
7, we extend our study of the flux transport problem to discs with winds using numerical
simulations. We first confirm the steady state solutions of Chapter 5 by evolving discs with
the same parameters and boundary conditions. We then explore regimes where the poloidal
magnetic field inclination angle allows for magnetic wind launching and the presence of vz is
important, and sketch out an semi-analytic framework to help us interpret the results. Finally,
we summarise and conclude our findings in Chapter 8.





Chapter 5

Flux transport model at the shearing box
order

In our first investigation, we develop a semi-analytic radially local 1D vertical model that
includes all non-ideal MHD effects for the flux transport problem. Our first model is
essentially a local shearing box, where we solve the leading order equations, and assume
variations only in the vertical direction. This assumption is motivated by global non-ideal
MHD simulations such as those of Bai and Stone (2017), where quasi-steady states were
achieved and the 1D vertical disc profiles were measured. The goal of our approach is to
gain insight into the interpretation of their results.

We begin by examining the case with no magnetic wind present by restricting the range
of field inclinations explored to below the wind launching threshold, but then mimic the
presence of a vertical outflow by setting a non-zero azimuthal field, hence magnetic torque,
at the boundary. In our model, flux transport is driven by the interplay between the bending
of the poloidal field and the diffusivities present, as well as advection by the accretion flow
driven by the applied magnetic torque. We also restrict ourselves to discs that have the
traditional “hourglass” symmetry (see Sections 2.2.3 and 2.6) in its variables, allowing us to
solve for only the upper half of the disc.

5.1 Method

5.1.1 Leading order equations

We use the thin disc approximation (Jz = 0, see Equation (5.4)), and consider a Keplerian
rotating frame. We want to find the quasi-steady state equilibrium profiles, so the disc is set
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to be steady on the dynamical timescale (i.e. ∂t = 0). As before, we assume an isothermal
and inviscid flow. For now, there is also no vertical outflow, so we set vz = 0.

Without loss of generality, we use units such that Bz,Ω,cs,µ0 = 1, with Bz being a
constant in this model. The vertical coordinate z is then in units of the isothermal scaleheight,
H = cs/Ω, while diffusivities are given in units of H2Ω. The ratio of the Alfvén speed and
the sound speed (a measure of the field strength) is then defined by our choice of the midplane
(z = 0) density, ρ(0):

cs = 1 =⇒ va/cs = va, (5.1)

va =
B

√
µ0ρ

=

√
B2

x +B2
y +1

ρ
, (5.2)

va(0) =

√
1

ρ(0)
, (5.3)

where Equation 5.3 comes from recognising that the field is vertical at the mid-plane in the
hourglass symmetry. ρ(0)≫ 1 therefore corresponds to a weak magnetic field and ρ(0)≪ 1
to a strong one. When ρ(0) = 1, va = cs at the midplane. For an isothermal disc profile,
ρ(z) decreases as z increases, so we expect magnetic effects to become stronger compared to
hydrodynamic effects as we move away from the midplane.

The local equations are identical to the shearing box equations, and correspond to the
leading order equations of the multiscale asymptotic approach of Chapter 3. We consider
only vertical variations, setting ∂x = 0. To incorporate non-ideal effects, we use the modified
electric field in the rest frame of the multi-component fluid (E+v×B), with E being the
electric field in the shearing-box frame:

E+v×B = ηOJ+ηHJ×b−ηA(J×b)×b, (5.4)

where J = ∇×B is the current density, v is the Keplerian-shear subtracted velocity, and the
other variables are as before. This is another way of writing the modified induction equation,
since ∂tB =−∇×E. In our scheme here, the positive (negative) polarity configuration for
the Hall effect is achieved when ηH > (<) 0.

We then have the following governing equations:

−2ρΩvy = JyBz, (5.5)

1
2

ρΩvx =−JxBz, (5.6)
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0 =−ρΩ
2z− dp

dz
+ JxBy − JyBx. (5.7)

0 =
dEy

dz
, (5.8)

0 =−3
2

ΩBx −
dEx

dz
, (5.9)

dBz

dz
= 0, (5.10)

with currents given by

Jx =−
dBy

dz
, (5.11)

Jy =−dBx

dz
, (5.12)

Jz = 0, (5.13)

where x,y,z denotes the radial, azimuthal and vertical directions respectively, and we have
removed the ordering subscripts. Equations (5.5) to (5.7) are the three components of the
equation of motion, while the horizontal components of the induction equation are given by
Equations (5.8) and (5.9). These terms on the RHS of Equations (5.5) and (5.6) indicate that
the departure from Keplerian motion are driven by the Maxwell terms. We can also see that
the density structure is determined by the effects of gravity, pressure balance, and magnetic
compression, which are represented by the first, second and final pair of terms respectively
of Equation (5.7).

5.1.2 Flux transport

The flux transport rate is given by the azimuthal electric field Ey, which is constrained to be
a constant with varying disc height in our model. In Section 2.1.3 we saw that it measures
the flux transport rate by examining the equation governing the evolution of the poloidal
magnetic flux function Ψ(r,z). Ψ, and equivalently Bz (see Equation (2.29)), evolves on the
long accretion time-scale τa ≡ r/|vr| as the poloidal field drifts radially through the disc, and
we can define a radial flux transport rate to be given by

vΨ = Ey/Bz (5.14)

(Guilet and Ogilvie, 2012; Königl et al., 2010; Ogilvie and Livio, 2001). Ey is found in our
model as an eigenvalue of the solution, with Ey > (<) 0 implying a radially outward (inward)
transport of flux.
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5.1.3 Boundary conditions and numerical method

We use the standard assumption that the disc is antisymmetric about the midplane in Bx and
By, and symmetric in vx and vy. Give that Bz = 1, the value of Bx(z → ∞) sets the inclination
of the poloidal field, which is one of the parameters we vary. In a real disc, the inclination
would be determined by the global magnetic field geometry. For the case where there is no
wind, we expect no external magnetic torque to be acting on the disc, and set By = 0 as z → ∞.
In the case where we mimic the presence of a wind, we set By to be non-zero as z → ∞, since
there is now an external magnetic torque acting on the disc removing angular momentum
vertically. For an actual outflow, we would expect By(∞)< 0. The value of ρ(0) is another
parameter we vary and sets the field strength (from here on, we use the shorthand ρ0 to denote
the midplane density). In our units, ρ0 is equivalent to β0/2, where β = pthermal/pmagnetic

is the plasma beta. A large value of ρ0 would therefore indicate a weak midplane magnetic
field.

We recast Equations (5.5)−(5.9) into a fourth order ordinary differential system with
variables ρ , Bx, By and Ex by algebraically eliminating horizontal velocities through Equa-
tions (5.5) and (5.6) to obtain currents in terms of electric fields. The resulting equations are:

ρ
′ = c−2

s [−ρΩ
2z+ JxBy − JyBx], (5.15)

B′
x = µ0Jy, (5.16)

B′
y =−µ0Jx, (5.17)

E ′
x =−3

2
ΩBx, (5.18)

where the prime denotes differentiation with respect to z. We define the diffusion constants
as the following:

CH =
ηH

|B|
, (5.19)

CA =
ηA

|B|2
, (5.20)

such that

E+v×B =COJ+CHJ×B−CA(J×B)×B. (5.21)
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Then the currents are given byJx

Jy

=
1

ρ2 det(R)

A11 A12

A21 A22


Ex

Ey

 , (5.22)

with

ρ
2 det(R) = [CO +CA(B2

z +B2
y)][CO +CA(B2

z +B2
x)]ρ

2

+[(CHBz −CABxBy)ρ +(2Ω)−1B2
z ][(CHBz +CABxBy)ρ +2Ω

−1B2
z ],

(5.23)

A11 = [CO +CA(B2
z +B2

x)]ρ
2, (5.24)

A12 = (−CHBz +CABxBy)ρ
2 − (2Ω)−1

ρB2
z , (5.25)

A21 = (CHBz +CABxBy)ρ
2 +2Ω

−1
ρB2

z , (5.26)

A22 = [CO +CA(B2
z +B2

y)]ρ
2. (5.27)

Ey now becomes an eigenvalue of the problem, and we solve Equations (5.15) to (5.18)
using the shooting method. We integrate upwards from the midplane with values determined
by the boundary conditions and guessed midplane values for Ex and Ey. The ODE system is
integrated using a fourth-order Runge-Kutta method up to a sufficient height to mimic the
solution as z → ∞ (we set zend = 10H in our case, where H is the isothermal scale height.
Extending zend beyond this value is found to yield no significant variation in our results).
There, boundary conditions at infinity are applied. This is followed by Newton-Raphson
iterations to adjust the guessed solution until the variables converge to the desired upper
boundary conditions.

5.1.4 Diffusivity profiles

We used two different diffusivity profiles in our calculations. The first profile, ‘Uniform’,
assumes uniform ηO, ηH and ηA across all scale heights, and is useful for determining
the general behaviour of the disc due to each diffusivity. The second scheme, ‘CstIon’,
tries to capture PPD vertical diffusivity profiles more accurately by assuming only constant
ionisation across the vertical extent, leading to ηO = constant, ηH ∝ B/ρ and ηA ∝ B2/ρ2

(Balbus, 2011; Wardle, 2007). We also impose a rapid transition to the ideal MHD regime
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above a certain scale-height for each diffusivity to model the effect of photoionisation of the
disc surface from the star. Mathematically, this is given by:

ηO =


ηO,0, z ≤ zO,cut

ηO,0 exp
(
− χO

(z− zO,cut)2

)
, z > zO,cut

(5.28)

ηH =


ηH,0

(
B
ρ

/
B0

ρ0

)
, z ≤ zH,cut

ηH,0

(
B
ρ

/
B0

ρ0

)
exp
(
− χH

(z− zH,cut)2

)
, z > zH,cut

(5.29)

ηA =


ηA,0

(
B
ρ

/
B0

ρ0

)2

, z ≤ zA,cut

ηA,0

(
B
ρ

/
B0

ρ0

)2

exp
(
− χA

(z− zA,cut)2

)
, z > zA,cut

(5.30)

where B0 and ρ0 are the vertical magnetic field strength and density respectively at the disc
mid-plane. In all the plots that follow, the labelled values of η are true for the whole disc
in the ‘Uniform’ case, whereas for the ‘CstIon’ case, they are the values of the midplane
diffusivities ηO,0, ηH,0 and ηA,0. We also setχO zO,cut

χH zH,cut

χA zA,cut

=

1 1
3 2
5 2

 (5.31)

to reflect the regions above which we expect the different non-ideal effects to be reduced
rapidly to zero. It is worth noting that even the ‘CstIon’ profile is only a rough mimicking of
what diffusivity profiles in real discs are like, and a more thought-through prescription will
be used in the later simulations of Chapter 11.

5.1.5 Marginal stability analysis

According to Ogilvie (1998), steady state solutions where field lines bend several times as
they pass through the disc indicate their instability to the MRI in the ideal MHD regime.
Although it yet remains to be rigorously proven, we follow Ogilvie and Livio (2001) and
Guilet and Ogilvie (2012) in assuming that this to be true when non-ideal effects are included
as well. The multiple bending corresponds to the “channel mode” of the MRI for a vertical
field. The lowest order “n = 1” mode, which determines the overall marginal stability,
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has opposite symmetry in the disc to the fluid variables. There, ∆Bx and ∆By, where ∆

denotes a perturbation, would be symmetric about the midplane, while ∆ux and ∆uy would
be antisymmetric. Hence we can compute the level of magnetisation (in our case given by
ρ0 = β0/2) that leads to a marginally stable state to the MRI by solving for a set of linearised
equations of small perturbations on top of the nonlinear equations, with the appropriate
symmetry conditions.

This was done for a range of diffusivity coefficients using the shooting method described
in Section 5.1.3. Midplane values of ∆By and ρ were guessed along with Ex and Ey as before
(∆Ex is calculated as an output, while ∆Ey is zero due to the symmetry of the perturbation).
The mid-plane value of ∆Bx determines the amplitude of the marginal mode, and was
arbitrarily set to 10. Boundary conditions for the unperturbed variables were the same
as before. For the perturbed variables, mid-plane values are derived from the symmetry
conditions (∆ux =∆uy = 0), while the upper boundaries are set to enforce the fixed inclination
(∆Bx = 0) and magnetic torque (∆By = 0) conditions. Threshold field strengths are then
computed, which mark the field strengths below which the disc would be unstable to the
MRI, and where we would expect multiple bending in the vertical structure solutions.

5.2 Results

5.2.1 Disc vertical structure profiles

We found disc vertical structure profiles to be divided into stable and unstable solutions (see
Figure 5.1, more profiles are also presented in Figures 7.2 and 7.3) when the field is aligned
with the rotation. Weak field solutions with small non-ideal contributions show multiple
bending of the poloidal field lines, indicating an unstable configuration due to the MRI
or other instabilities (Ogilvie, 1998). Strong field solutions or those with large non-ideal
contributions, on the other hand, share the same general shape with a single bend and are
stabilised by the strong field and/or diffusive effects present. When the field is anti-aligned
with the rotation and the Hall effect is present, almost all solutions have multiple bends, and
the solver often failed to converge. This is interpreted as indicating that there are no stable
solutions in the anti-aligned case with the Hall effect in our 1D equilibrium model.

Qualitatively, we find that the ‘Uniform’ and ‘CstIon’ diffusivity profiles give us similarly
shaped vertical structures for the same set of midplane diffusivities. Differences lie in the
magnitude of the horizontal B field, which may contrast by up to an order of magnitude
(with those under ‘Uniform’ being larger than those under ‘CstIon’) due to the ‘CstIon’
profile allowing ηH and ηA to take significantly larger values away from the mid-plane as ρ
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Fig. 5.1 Vertical profiles for weak field (left three) and strong field (right three) cases,
Bx(∞) = 0.1, with midplane diffusivities of [ηO,ηH ,ηA] = [0.01,0.02,0.002] & [1,2,0.2]
respectively. In our units, Bz = 1. The top and bottom panels of each triplet plot plasma
β = p/pmag and By respectively, while the central panel plots the B field in the rz plane. In
all these plots, the ‘CstIon’ diffusivity profile is used.
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Fig. 5.2 Plots of threshold midplane densities against midplane values of the various non-ideal
effects with fixed non-ideal backgrounds characterised by their midplane values. In all these
plots, the ‘CstIon’ diffusivity profile is used, while the boundary conditions are Bx(∞) = 0.05
and By(∞) = 0.

decreases. Another difference is that the ‘CstIon’ solutions have less smooth features in their
vertical profiles at z ∼ 3−4, when the diffusivity profile rapidly drops off to the ideal MHD
regime, than their ‘Uniform’ counterparts. However, overall, their trends in the stability of
solutions and dependence on diffusivities and field strength are the same. In all the figures
that follow, we plot the solutions for the more realistic ‘CstIon’ diffusivity profile.

5.2.2 Threshold magnetisation for marginal stability and variation with
diffusive effects

We conducted the marginal stability analysis described in Section 5.1.5 to find the transition
field strength between stable and unstable configurations. Some representative plots of our
results are shown in Figure 5.2. As diffusive effects tend towards zero, the threshold mid-
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plane ρ0 for marginal stability tends towards the value of 0.4474, giving us a corresponding
β0 ≈ 0.89. This agrees with the value found in other studies1 for the largest value of Bz

allowing the MRI to operate in the ideal MHD regime (Gammie and Balbus, 1994a; Paris
and Ogilvie, 2018).

When ηH > 0 (positive polarity configuration), all three non-ideal effects help stabilise
the disc - the threshold mid-plane ρ0 increases (i.e. critical field strength decreases) with
increasing strength of each non-ideal effect. On the other hand, for negative polarity (which
in our case is when ηH < 0), increasing the magnitude of the Hall diffusivity decreases the
threshold ρ0 (critical field strength increases), showing that the Hall term has the effect of
destabilising the disc2.

Multiple branches are observed when we varied the strength of ambipolar diffusivity
under certain backgrounds. These were also observed as we varied the initial guessed value
of ρ0. We interpret these branches to correspond to the excitation of different modes of
instability, with higher modes giving multiple bends in the disc. Marginal stability should
therefore be given by the branch with the lowest ρ0 values giving us the lowest order mode,
where only one bend occurs.

5.2.3 Flux transport rate and variation with diffusive effects

The variation of Ey with parameters was calculated by solving for a particular set of diffu-
sivities, then iterating to either higher/ lower diffusivities using the previous solution. This
procedure allows us to identify different branches (if any) of solutions, which occur when
the disc is in an unstable configuration.

We studied most extensively the positive polarity case when ηH > 0. When ηH < 0
(negative polarity case), the solver failed to converge for the majority of cases. This may be
indicative of the destabilising effect a negative polarity coupled with ηH has, as found by
Balbus and Terquem (2001).

1In Paris and Ogilvie (2018), a value of Bz′ = 0.94 is found, where Bz′ = Bz/
√

µ0ΣΩcs and Σ =
∫

∞

∞
ρdz.

For an isothermal disc with small magnetic compression, ρ(z) follows a Gaussian profile and ρ0/Σ = 1/
√

2π ,
giving us β = p/pmag ≈ 0.894.

2The "stability" here refers to the threshold magnetisation for marginal stability, or in terms of local analysis,
to the critical wavenumber for instability. However, the Hall term also has the effect of enhancing the maximum
growth rate for ηH(Bz ·Ωx)> 0 (e.g., Figure 6 of Wardle and Salmeron (2012)), the phenomenon called the
Hall-shear instability (Kunz, 2008). For this reason, some authors, e.g., Wardle and Salmeron (2012), describe
the Hall effect for ηH(Bz ·Ωx) > 0 as "destabilising", which is true for our disc model as well if the disc is
already in the unstable regime, but irrelevant if our disc is in the regime stable to the MRI.
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Fig. 5.3 Ey and its variation with midplane diffusivities. Ey gives the radial flux transport velocity in
units of the sound speed cs. The flux transport of the top two rows are inclination (Bx(∞)) driven with
Bx(∞) = 0.1, while those of the bottom three rows are outflow (By(∞)) driven, with By(∞) =−0.1 for
rows 3 and 4, and By(∞) =−10 for row 5. Red vertical dashed lines mark the threshold diffusivity
for marginal stability calculated using the model in Section 5.1.5. Rows 1 and 3 show the weak field
case (ρ0 = 10,000) while rows 2 and 4 plot the strong field case (ρ0 = 1). Row 5 plots the case for an
intermediate field strength (ρ0 = 100) except the rightmost on which has a weak field (ρ0 = 10,000).
Background non-ideal effects are characterised by their mid-plane values. For rows 1 and 3, points of
marginal stability are not plotted as they exist at higher diffusivity values than the range explored,
whereas for the rightmost plots of both rows 2 and 5, the discs are already stable due to the background
diffusivities. In all these plots, the ‘CstIon’ diffusivity profile is used.
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Unstable solutions and bifurcations

In all cases, weak field solutions with low background non-ideal effects show multiple
branches when the direction of iteration is varied, indicative of unstable configurations. From
the marginal stability analysis, we expect the point of bifurcation at the largest value of the
varied diffusivity to correspond to an equivalent point there, or at least occur at a lower
diffusivity than the critical one calculated. Currently our study is not fully conclusive on this,
as not all branches have been exhaustively identified using our method. However, we do find
that all points of bifurcation occur at lower diffusivities than the critical points calculated. On
the other hand, strong field solutions with large diffusivities appear to be stable, and solutions
calculated by referencing in both directions agree.

Inclination driven flux transport

First, we explore the flux transport driven by inclination alone by setting the inclination
through the value of Bx(∞). We eliminate the effect of outflow driven flux transport by setting
By(∞) to zero.

In unstable configurations (top row of Figure 5.3), we find that the value of Ey flips
between positive and negative, with asymptotes in the diffusivity space where Ey →±∞.
This may be indicative of collective effects such as the presence of MRI channel modes.

In stable configurations (second row of Figure 5.3), both Ohmic resistivity and ambipolar
diffusion result in significant roughly linear increases in Ey, and facilitate radially outward
diffusion (Ey > 0) of the B field when Bx(∞)> 0 (i.e. field bends outwards) as in Figure 5.1.
This agrees with the prediction from our simple analysis in Section 3.2 for the Ohmic case.
For the ambipolar case, we expect the variation of Ey with ηA to follow the same pattern as
that with ηO as long as the ‘Ohm-like’ term in Equation (3.65) is significantly larger than the
‘Hall-like’ term in Equation (3.66). This condition is indeed met for the profiles considered,
as both Bx and By throughout the disc are significantly smaller than 1, leading the disc to be
largely dominated by the poloidal field component.

The Hall effect gives no flux transport (Ey = 0) when it is the only non-ideal effect
present, but reduces the magnitude of Ey when Ohmic and/or ambipolar diffusion are present,
tending to a limit as ηH becomes very large. When the Hall effect is the only non-ideal term
present, By = 0 throughout the disc, and there is a solution with a purely poloidal field, so
that the current and Hall drift are purely in the azimuthal direction.
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Outflow driven flux transport

Next, we explore the flux transport driven by outflow alone through setting a non-zero
negative value for By(∞). This provides a crude way of mimicking the effect of angular
momentum lost vertically in an outflow. We eliminate the effect of inclination driven flux
transport by setting Bx(∞) to zero.

Again, in the unstable configurations (third row of Figure 5.3), we find that the value
of Ey flips between positive and negative, with asymptotes in the diffusivity space where
Ey →±∞ indicative of collective effects such as the presence of MRI channel modes.

In stable configurations (bottom two rows of Figure 5.3), there is radially inward flux
transport even when all diffusive effects disappear. This is due to flux being dragged in with
the accreting gas as angular momentum is lost vertically through the disc. When |By(∞)|< 1
(fourth row of Figure 5.3), both Ohmic resistivity and ambipolar diffusion lead to roughly
linear but small increases in the magnitude of the flux transport, keeping the same radially
inward direction. This is expected as the “Ohm-like” component of the ambipolar term
would dominate since the disc field is largely poloidal in nature. The Hall effect, on the
other hand, contributes significantly to radially inward flux transport when coupled with the
outflow, with roughly linear increases between |Ey| and ηH . When |By(∞)|> 1 (bottom row
of Figure 5.3), variations with Ohmic and Hall coefficients remain the same as before, but
the trend with ambipolar diffusivity is reversed. Increasing the ambipolar effect now leads to
a marked decrease in the inward flux transport, tending to a limiting value at high ambipolar
diffusivities. This agrees with the picture described in Equation (3.5) when the “Hall-like”
component (3.66) of the ambipolar term dominates because of the large poloidal field now
present in the disc. This component operates in the opposite direction to the Hall effect in
the aligned polarity configuration, hence leads to a dampening of the inward flux transport
when present.

5.3 Analytic models

5.3.1 Incompressible limit - constant density profile

To help us understand and interpret the results, we examined solutions of the same set of
equations in the incompressible limit for two density profiles: (i) a constant density profile
with prescribed disc height, and (ii) a Gaussian density profile that takes into account the
hydrostatic balance in the disc, but ignores the effect of magnetic compression. Here, we
present the results of (i), which admit approximate analytic solutions, and how they inform
the relations between flux transport, diffusive effects and inclination/outflow.
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Approximate analytic solutions

We solve the same system of Equations (5.5)−(5.9) and set ρ = constant. The permeability
of free space, µ0 is set to 1. We assume a Keplerian disc and set the orbital parameter
q =−∂ lnΩ/∂ lnr to 3/2. For simplicity and the possibility of admitting analytic solutions,
we also assume that ηO = constant, and constant ionisation fractions in the disc. This means
η̃H , η̃A = constant, where they are field-independent coefficients given by

η̃H = ηH/|B|, (5.32)

η̃A = ηA/|B|2. (5.33)

This leads to the following form of the modified Ohm’s law including the non-ideal effects:

Ex =−vyBz +ηOJx + η̃HJyBz + η̃A[JxB2
z +(JxBy − JyBx)By], (5.34)

Ey = vxBz +ηOJy − η̃HJxBz + η̃A[JyB2
z − (JxBy − JyBx)Bx], (5.35)

with

Jx =−
dBy

dz
, (5.36)

Jy =
dBx

dz
. (5.37)

The ODE system is linear in the Ohmic and Hall only cases, and can be reduced to give
us the following wave equation:

d2Bx

dz2 + k2Bx = 0, (5.38)

with k2 given by

k2 =
3Ω2

v2
az

[
1+

η2
OΩ2

v4
az

(
1

1+ η̃HBzΩ/2v2
az

)
+

2η̃HBzΩ

v2
az

]−1

, (5.39)

where vaz = Bz/
√

ρ is the vertical component of the Alfvén velocity.
If we expect the disc to satisfy the symmetry and boundary conditions described in

Section 5.1.3, then the relevant solution is

Bx = Bx(∞)
sinkz
sinkH

, (5.40)

where the surfaces of the disc are at z = ±H, and above and below the disc we have
Bx =±Bx(∞) respectively.



5.3 Analytic models 91

The other variables can be deduced from Bx and the boundary conditions. If By =±By(∞)

at the upper and lower boundaries (where By(∞) can be zero), we have

By =
ΩηO

2v2
az

(
1

1+Ωη̃HBz/2v2
az

)
Bx(∞)

(
z
H

− sinkz
sinkH

)
+By(∞)

z
H
. (5.41)

The ambipolar contribution, on the other hand, has both a linear and a nonlinear part. The
linear part behaves as an additional Ohmic resistivity. The nonlinear part is of order B2

horizontal,
which is small if the surface value of Bhorizontal is also small. We limit our analysis here to
the cases when By(∞)< 1, and therefore only the “Ohm-like” component of the ambipolar
term contributes significantly to the flux transport. The system can hence be roughly solved
as the same set of linear equations with a modified Ohmic resistivity ηO,mod = ηO + η̃AB2

z

when ambipolar diffusion is also included.

Relation to Balbus and Terquem (2001)

Equation (5.39), which gives us the wavenumber of the field solution, is mathematically
identical to the wavenumber formula (Equation (46)) of a marginally stable Ohm and Hall
only MRI mode derived in Balbus and Terquem (2001). The problem they examined,
however, is different from the one investigated here. They determined the local stability of a
differentially rotating disc threaded by a weak vertical field and were looking at plane wave
disturbances of the form exp(ikz− iωt). The Boussinesq limit was used as it corresponds to
fluid displacements within a local approximation in z, rendering vertical structure unimportant.
Our work, on the other hand, solves for the disc vertical structure, but deliberately makes the
physically unrealistic uniform density approximation to simplify the equations. Our solution
therefore must obey the boundary conditions determined by field inclination and symmetry
criteria, which are not required in the problem examined by Balbus and Terquem (2001).

Marginal stability and variation with magnetisation and diffusivities

As in Section 5.1.5, we examine the case of a disc at marginal stability to the MRI. In
our approximate analytic model, because the equations are already linear, we solve the
same set of equations for the perturbed fluid variables. As before, these perturbations have
opposite symmetry about the mid-plane to the fluid variables, which in our case means that
δBx ∝ coskz. The boundary condition at z±H is now δBx = 0 and δBy = 0, to meet the fixed
inclination and outflow conditions. We expect the marginally stable mode to allow just one
bend of the field through the disc, hence we require the corresponding critical wavenumber
to satisfy kcritH = π/2. The condition for marginal stability then becomes:

2qΩ
2 =

π2v2
az

4H2

[
1+

η2
OΩ2

v4
az

(
1

1+ η̃HBzΩ/2v2
az

)
+

2η̃HBzΩ

v2
az

]
. (5.42)
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We can recast this in terms of a dimensionless magnetisation parameter:

µ =
Bz√

ΣHΩ2
, (5.43)

where Σ = 2ρH is the disc surface density, giving us

4q
π2 = µ

2 +
(

ηO

2H2Ω

)2
(

1
1+ η̃H

√
ρ/2

√
2Hµ

)
1

µ2 +

√
2ρΩ

η̃H
µ. (5.44)

Magnetisations that give us a stable solution can be determined when the left hand side of
Equation (5.44) is larger than the right hand side. We rearrange the terms in the equation to
give us the following quartic, with the inequality giving us the condition for a stable solution
as:

f (µ) = µ
4 +5H µ

3 +(4H 2 −Q)µ2 −QH µ +R2 ≥ 0, (5.45)

where we have defined the following dimensionless parameters:

R =
ηO

2H2Ω
, (5.46)

H =
η̃H

2H

√
ρ

2
=

η̃H

2
√

2H

√
ρ

Bz
=

ηH

2
√

2H
1

vaz
, (5.47)

Q =
4q
π2 . (5.48)

The shape of f (µ) vs. µ (see Figure 5.4) is determined by the Hall diffusivity only, while
Ohmic diffusivity stabilises the entire profile by adding a constant term to f (µ). At high
magnetisations, the disc is always stabilised whether the field is aligned with the rotation or
not. In the intermediate region, a large Hall parameter extends the region for instability when
the polarity is negative, but has a stabilising effect when the polarity is positive. This agrees
with our previous result that the Hall effect is responsible for destabilising the disc in the
anti-aligned case, while it is stabilising in the aligned case. In Appendix A, we explore in
more detail the consequences of Hall drift and Ohmic resisitivity on an incompressible disc’s
stability, and identify the criteria for different regimes and their behaviour.

Flux transport

For flux transport, the constant density model gives us this simple relation:

Ey =

(
2B2

z

Ωρ
+ η̃HBz

)
dBy

dz
+ηO

dBx

dz

=
ηO

H
Bx(∞)+

(
2B2

z

Ωρ
+ηH

)
By(∞)

H
,

(5.49)
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Fig. 5.4 Plot of f (µ) vs. µ for various Hall parameters H , with R = 0. The red line marks
f = 0, the boundary between stable and unstable disc configurations. Solutions below the
line are unstable, while solutions above the line are stable. Increasing R does not alter the
shape of the plot but shifts f up by R2. As H increases, the unstable ( f < 0) region expands
when µ < 0, while it contracts when µ > 0. f → ∞ as µ →±∞ for all values of H .

with the radial flux transport velocity given by Ey/Bz.
We can see that flux transport is directly proportional to the inclination and Ohmic

diffusivity, which is also the case in the numerical solutions of the compressible model.
When no diffusive effects are present, the relation suggests that the presence of an outflow
would still drive inward flux accretion, with a large magnetisation (small ρ) giving the fastest
rate. This is indeed what we observed in the compressible model, and can be interpreted to be
a result of the loss of angular momentum driving inward gas accretion, which in turn advects
the flux frozen into the gas along with it. A larger magnetisation would mean a higher degree
of flux freezing, hence advection with the accretion flow.

The flux transport rate modification due to the Hall effect coupled with inclination is not
explained here, but the constant density model predicts that the Hall effect coupled with a
non-zero By at infinity would also lead to a non-zero flux transport. A positive ηH coupled
with the negative B+

y expected for a wind would therefore lead to a negative Ey proportional
to ηH and B+

y , signifying a radially inward accretion of flux. This is indeed what we find in
the solutions of Section 5.2.3. Such an effect has been noted before in passing in Hall-wind
shearing box simulations (Bai, 2014) and also in the global simulations of Bai and Stone
(2017). It is also noteworthy that the ηH term in our flux transport equation is essentially of
the same form as Equation 10 of (Bai and Stone, 2017), although our analytic model is more
rigorous and would therefore provide a more accurate estimate.
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5.3.2 Incompressible limit - Gaussian density profile

For our second incompressible limit, we imposed a Gaussian density profile that takes into
account the balance between pressure and gravity in an isothermal disc, but ignores the effect
of magnetic compression from the horizontal field components. Solutions are calculated
numerically using the same method as the compressible case, but with the density profile
fixed. Comparing the solutions of this model to that of the compressible model allows us
to determine whether magnetic compression has a significant effect on the flux transport
observed.

The Gaussian density profile imposed is the following:

ρ = ρ0 exp
(
−z2/2

)
, (5.50)

where ρ0 is the mid-plane density value.
We found that solutions from the Gaussian incompressible model are very similar both

in form and magnitude to those of the compressible model. Figure 5.5 plots a selection of
Ey and its variation with mid-plane diffusivities for both compressible discs (top two rows)
and incompressible Gaussian discs (bottom two rows) with the same diffusivity paramters
between them under the ‘Uniform’ diffusivity scheme. The only significant differences arise
where bifurcations in the Ey-diffusivity space occur in the compressible model. There, the
Gaussian incompressible model yields vertical asymptotes on either side of the point of
divergence instead. This can be explained by the fact that as the instability encounters a point
of resonance, magnetic compression can provide the required change in density structure to
dampen its effect, hence allowing the solution branches to diverge rather than tend towards a
vertical asymptote. Therefore we can conclude that magnetic compression has no significant
effect on the flux transport, in the parameter space we have explored.
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Fig. 5.5 Ey and its variation with midplane diffusivities. Ey gives the radial flux transport
velocity in units of the sound speed cs. The flux transport is inclination (Bx(∞)) driven
with Bx(∞) = 0.1. The top two rows are for a compressible disc, while the bottom two
rows are for the Gaussian incompressible case. Rows 1 and 3 show the weak field case
(ρ0 = 10,000), rows 2 and 4 plot the strong field case (ρ0 = 1). Background non-ideal effects
are characterised by their mid-plane values. In all these plots, the ‘Uniform’ diffusivity
profile is used. To be compared with rows 1 and 2 of Figure 5.3.





Chapter 6

Flux transport model at Guilet & Ogilvie
order

Our second semi-analytic model follows the scalings used in Guilet and Ogilvie (2012)
(hereafter GO1). This scheme considers the case when the vertical field Bz dominates over
Br and Bφ by a factor of ε−1. The motivation for this is to put the effects from large scale
radial gradients (the ∂r terms) on the same footing as inclination and outflow. Again, instead
of using the residual velocity v = u− rΩêφ , we use the full velocity u (we do not relabel
it as v here). Compared to the multiscale approach in Chapter 3, we make the following
adjustments:

Br0,Bφ0,Bz1,ur0,uφ0,uz0,uz1 = 0, (6.1)

The next order terms are assumed to be dominant, and the higher order terms are neglected.
We extend the analysis of GO1 to derive the case for a laminar disc with all non-ideal
diffusivities present.

6.1 Governing equations

6.1.1 Leading order equations

The leading order radial component of the equation of motion is

−ρ0rΩ
2 =−ρ0∂rΦm, (6.2)

which describes the centrifugal force balance against the inward gravitational pull. For a
Keplerian disc this gives us Ω0 = (GM/r3)1/2.
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The vertical component of the equation of motion at leading order gives us the hydrostatic
equilibrium between the vertical gravitational force and the vertical pressure gradient:

0 =−ρ0Ψζ −∂ζ p0. (6.3)

For an isothermal disc, we have the familiar solution

ρ0 =
Σ0√
2πH0

exp
(
− ζ 2

2H2
0

)
, (6.4)

where H0 = cs/Ω0 is the isothermal scaleheight and Σ0(r,τ) is the surface density.
The horizontal components of the equation of motion and the induction equation come at

the next order, due to the terms that we set to zero in Equation (6.1). They are identical to
the equations in GO1 except for the addition of the Hall and ambipolar terms:

−2ρ0Ω0uφ1 =−ρ0∂rΨ
1
2

ζ
2 −∂r

(
p0 +

B2
z0

2µ0

)
+

Bz0

µ0
∂ζ Br1, (6.5)

ρ0ur1
1
r

∂r(r2
Ω0) =

Bz0

µ0
∂ζ Bφ1, (6.6)

0 = Bz0∂ζ ur1 +∂ζ [(ηO0 +ηA0)
(
∂ζ Br1 −∂rBz0

)
+ηH0∂ζ Bφ1], (6.7)

0 =Bz0∂ζ uφ1 +Br1r∂rΩ0 +∂ζ

[
(ηO0 +ηA0)∂ζ Bφ1 −ηH0

(
∂ζ Br1 −∂rBz0

)]
. (6.8)

Under these scalings, we can see that Ohmic and ambipolar diffusivities have the same effect
on the disc dynamics. The Hall term comes in at π/2 phase difference with the Ohmic and
ambipolar terms in the induction equation. This reflects the nature of the Hall term being
the magnetic field cross multiplied once with the Ohmic term, while the ambipolar term is
crossed twice with the magnetic field, and has the π/2 phase difference applied twice from
geometric rotation with respect to the Ohmic term, hence acts in the same direction at leading
order.

This analysis yields four linear equations for the unknowns ur1, uφ1, Br1 and Bφ1. The
linearity is a result of the assumption that we are examining the case of small deviations from
orbital motion and a vertical magnetic field.

6.1.2 Non-dimensionalisation

We follow the same approach as GO1 in non-dimensionalising our equations. We used the
following definitions:

ρ̃ ≡ ρ0H
Σ

, (6.9)
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ur ≡
r
H

vr1

cs
, (6.10)

uφ ≡ r
H

vφ1

cs
, (6.11)

br ≡
r
H

Br1

Bz0
, (6.12)

bφ ≡ r
H

Bφ1

Bz0
. (6.13)

A dimensionless vertical spatial coordinate is also defined as

ζ ≡ z/H. (6.14)

This ζ is different from the rescaled dimensional variable ζ defined earlier in Section 3.1.1.
We can then define dimensionless laminar diffusivities:

η̃O =
ηO,l

csH
, (6.15)

η̃H =
ηH

csH
, (6.16)

η̃A =
ηA

csH
. (6.17)

We assume a point-mass potential and circular Keplerian orbital motion at leading order.
An isothermal equation of state is also employed for simplicity.

The density profile in dimensionless form is

ρ̃ =
1√
2π

exp
(
−ζ

2/2
)
, (6.18)

and the differential equations (6.5)−(6.8) are rewritten as

−2uφ −
1

β0ρ̃
∂ζ br =

3
2
+DH −DνΣ +

(
3
2
−DH

)
ζ

2 − DB

β0ρ̃
, (6.19)

1
2

ur −
1

β0ρ̃
∂ζ bφ = 0, (6.20)

−∂ζ

(
[η̃O + η̃A]∂ζ br + η̃H∂ζ bφ

)
−∂ζ ur =−DB∂ζ (η̃O + η̃A) , (6.21)

−∂ζ

(
−η̃H∂ζ br +[η̃O + η̃A]∂ζ bφ

)
−∂ζ uφ +

3
2

br = DB∂ζ η̃H , (6.22)
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where

β0 ≡
µ0

B2
z

Σc2
s

H
, (6.23)

DH ≡ ∂ lnH
∂ lnr

, (6.24)

DνΣ = 2DH − 3
2
+

∂ lnΣ

∂ lnr
, (6.25)

DB ≡ ∂ lnBz

∂ lnr
. (6.26)

A key thing to note here is that the LHS of Equations (6.19)-(6.22) forms the differential
system, while the RHS are source terms that drive the advection and diffusion of flux. These
equations are in many ways similar to those we obtained in Section 5.1.1. The first two terms
on the LHS of Equation (6.19) correspond to the two terms in Equation (5.5), with the only
difference being the addition of large scale radial gradient and Keplerian source terms on the
RHS. Equation (6.20) is identical to Equation (5.6), while Equations (6.21) and (6.22) are
linearised versions of Equations (5.8) and (5.9) respectively.

6.2 Set-up and method of solution

6.2.1 Boundary conditions

We use the same boundary conditions as determined in Section 3.2 of GO1, which come
from analysing the same expected symmetry of the solutions as Section 5.1.3, with vr1 and
vφ1 being even functions of ζ , while Br1 and Bφ1 are odd. The following quantities can then
be determined to vanish exponentially fast as ζ →±∞:

ρur → 0, (6.27)

ρuφ → 0, (6.28)

br − (DBζ ±brs)→ 0, (6.29)

bφ − (±bφs)→ 0. (6.30)

The symmetry of the solutions also constrain the following mid-plane (ζ = 0) values to be
the following:

∂ζ ur = 0, (6.31)
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∂ζ uφ = 0, (6.32)

br = 0, (6.33)

bφ = 0. (6.34)

A non-vanishing bφs, the value of bφ at ζ → ∞, is again included for mimicking the effect of
angular momentum removal by a magnetic wind or magnetic braking due to interaction with
an external medium. As noted in GO1, the boundary conditions are homogeneous, except for
the linear source terms proportional to DB, brs and bφs in Equations (6.29) and (6.30).

6.2.2 Form of the solution for a laminar inviscid disc

The linearity of the equations means that the general solution is a linear combination of the
solution vectors corresponding to each source term, which appear either on the right hand
side of equations (6.19)−(6.22), or as a non-vanishing boundary condition at infinity in the
form of brs and bφs. We can thus write the general solution X = {ur,uφ ,br,bφ} as:

X =XK +XDH +XDνΣDνΣ +XDBDB +Xbrsbrs +Xbφsbφs, (6.35)

where XDH is the solution vector corresponding to the source term proportional to DH and so
on. XK corresponds to the solution vector when DH ,DνΣ,DB,brs,bφs = 0, where the source
terms arise only from the radial derivatives of the leading order Keplerian, gravitational and
geometric terms. Following GO1, we also define

Xhyd = XK +XDH, (6.36)

as the solution with hydrodynamic (‘Hydro’) source terms DH = 1 (corresponding to a disc
with a constant aspect ratio H/r) and DνΣ = 0 (for a steady accretion flow far from the inner
boundary). Under these definitions, we have

X = Xhyd +XDνΣDνΣ +XDBDB +Xbrsbrs +Xbφsbφs. (6.37)

The solution depends in a non-linear way only on the parameters β0, ηO, ηH and ηA

(we drop the ˜ in the text from this point onwards in this Chapter but refer to the non-
dimensionalised diffusivities). Since we consider a laminar inviscid disc, we set α to zero,
and can neglect the P dependence. ηO and ηA have the same effect at the order we are
considering, so we only need to examine one of them, which we choose to be ηO. For each
triplet of values of the three parameters β0, ηO and ηH , one needs to compute the six solution
vectors for each of the terms on the right hand side of Equation (6.35). The general solution is
then given by a linear combination of these solution vectors with the appropriate coefficients.
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6.2.3 Numerical method

To solve the system of ODEs, we employ the same pseudo-spectral method of GO1 using a
decomposition on a basis of Whittaker cardinal functions (see Appendix C for a description
of the method). These functions are well suited to problems on an infinite interval (Boyd,
2001; Latter et al., 2010). The use of Whittaker cardinal functions implicitly imposes the
condition that the variables have to vanish exponentially fast at infinity. Following GO1, we
replace br and bφ with the following variables:

b̃r ≡ br −DBζ −brs tanh(ζ 3), (6.38)

b̃φ ≡ bφ −bφs tanh(ζ 3). (6.39)

to satisfy this condition. We can then see that these new variables do vanish exponentially
fast at infinity from the boundary conditions given in equations (6.29) and (6.30).

6.3 Flux transport for uniform diffusivities

Flux transport is again calculated by integrating the radial component of the induction
equation:

uΨ = ur + η̃O(∂ζ br −DB)+ η̃H∂ζ bφ = constant, (6.40)

where

uΨ ≡ r
H

vΨ

cs
(6.41)

is the dimensionless magnetic flux transport velocity, same as the one defined in equation
(5.14).

For simplicity, we used constant diffusivity profiles where ηO,ηH ,ηA are each uniform
in the vertical extent in our calculations. We present here only results from the positive
polarity case of ηH(Bz ·Ωx)> 0, as most solutions for the negative polarity case failed to
converge, indicative of unstable configurations. Representative plots of the variation of uΨ

with diffusivities can be found in Figure 6.1. For all our solutions, we isolate a particular
source term and set its coefficient to 1. The case for bφs = 1 corresponds to a torque that
spins the disc up, leading to decretion rather than the normal accretion. To examine the case
for bφs =−1, which mimics the effect of a magnetic wind, we simply need to reverse the
sign of uΨ when interpreting the plots.
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Fig. 6.1 Plots of uΨ (in the plots they are labelled as vΨ) variation with diffusivities. Each
column corresponds to a specific mid-plane β0, with β0 = 25,25,2.5 ·104 from left to right
respectively. The first row shows the contribution due to the ‘Hydro’ source term, while the
rows below show the contributions due to the DB, brs and bφs source terms as we go down.
Values where uΨ < 0 are not plotted due to the logarithmic scales used, but they exist in the
unstable regions which are marked by the presence of multiple asymptotes.
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6.3.1 Variation with Ohmic resistivity

Characteristic plots of the variation of uΨ with ηO are displayed in the left and right columns
of Figure 6.1. We found that qualitatively, the ‘Hydro’ and DB source terms share the
same trend, while the brs and bφs source terms follow a different trend. As the mid-plane
field strength is decreased (β0 increased), solutions change from a single smooth curve, to
multiple curves separated by asymptotes in ηO. The multiple curves signify the onset of
instabilities, and this result is in agreement with the picture given by our model in Section 5,
with instabilities setting in below a critical field strength. The same is observed for when ηO

increases. Beyond a threshold diffusivity, the solution is stable and has only one branch.
In the stable configurations, both ‘Hydro’ and DB source terms contribute to radially

outward flux transport (uΨ > 0). Away from the asymptote, which appears to indicate a
region of instability, the flux transport velocity increases fractionally (< 10%) as ηO is
increased.

On the other hand, for both brs and bφs source terms, an increase in ηO leads to a similar
order of magnitude increase in uΨ, which is positive in the stable region. This confirms both
the picture in our previous model (see Section 5.2.3) that a positive inclination of the poloidal
field away from the star when coupled with diffusivity drives outward flux transport, and
also that the rate at which it does so correspond to roughly linear increases. Remembering
to reverse the sign for an actual wind, the results for bφs show us that a wind, coupled with
resistivity, leads to an accretion of flux (uΨ < 0), again in agreement with our results from
the shearing box model.

6.3.2 Variation with Hall diffusivity

When the Hall term was the only non-ideal MHD effect present, the solver did not converge.
Analytically, we can determine that we would have iso-rotation and no flux transport. We
therefore examined the cases where a background Ohmic resistivity was also present.

The variation of uΨ with ηH is found to share the same trend between the ‘Hydro’, DB

and brs source terms, while those for the bφs source term follow a different trend. Again,
as the mid-plane field strength is decreased, solutions go from a single smooth curve, to
multiple curves separated by asymptotes in ηH . The same is observed for when ηH increases.
Beyond a threshold diffusivity, the solution is stable and only has one branch.

In the stable configurations, ‘Hydro’, DB and brs source terms contribute to a radially
outward flux transport (uΨ > 0). Away from the final asymptote that marks the region of
instability, the flux transport velocity decreases to zero as ηH is increased. This is similar to
the picture in our previous shearing box model that indicates a decrease in the inclination
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driven flux transport rate with an increase in the Hall coefficient, with the only difference
being that the nonlinear Hall term in our previous model leads only to a minor correction
of the flux transport rate, whereas the linearised Hall term here reduces it to zero. On the
other hand, for the bφs source term, an increase in ηH leads to a similar order of magnitude
increase in uΨ. uΨ is positive in the stable region. Therefore for bφs =−1, mimicking the
effect of a magnetic wind, increasing the Hall contribution leads to a significant accretion of
flux (uΨ < 0), which is again in agreement with our results from the shearing box model.

6.4 Analytic models

To help us interpret the trends in flux transport, we developed three approximate analytic
models following the same procedure as Section 4.1 and Appendix A of GO1. Full mathe-
matical details of how these three models were calculated can be found in Appendix D, but
here we give a brief qualitative description of the procedure and assumptions used to derive
these models.

We split the disc into two regions: a passive field region with weak (passive) magnetic
field (β ≫ 1) around the mid-plane where hydrodynamic effects dominate over magnetic
effects; then further up the disc, we have a region with strong magnetic field (β ≪ 1) where
magnetic effects are dominant and the field is approximately force-free. The transition point
between the regions is where the magnetic pressure is equal to the thermal pressure, and is
given by:

ζB =

√
ln
(

2
π

β 2
0

)
. (6.42)

We can see from this that the lower the field strength, the larger the value of ζB, and the better
the approximation of the mid-plane region as under a ‘passive’ field.

The models are constructed by first calculating the general forms of the approximate
analytic profiles in each of the two regions, constrained by the given mid-plane and disc
surface (ζ → ∞) boundary conditions. We assume that the Lorentz force is negligible in
the passive field region hence ignore the effect of the magnetic field in the velocity profile
there. In the force-free region, nothing can compensate the Lorentz force, and the fluid is
frozen into the magnetic field lines, with iso-rotation being enforced as in the ideal MHD
case. The two regions are then connected across the transition region, which is assumed to
be infinitesimally thin about ζB. When connecting the regions, we assumed continuity of the
magnetic field components across the transition, and integrated the horizontal components of
the induction equation over the transition region to find the appropriate boundary conditions.
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The first two of the models represent different diffusivity regimes: the first assumes only
the presence of a constant Ohmic diffusivity, while the second addresses the situation when
the disc is dominated by Hall drift but with a small Ohmic contribution. Our third model
improves on the first model by using better boundary conditions that more appropriately
address the presence of the intermediate transition region, and is derived using the description
outlined in Appendix A of GO1.

6.4.1 Source terms and disc vertical profiles

Figures 6.2 and 6.3 show the vertical structure profiles in the case of a disc with only Ohmic
diffusion and a Hall dominated disc with small Ohmic contribution respectively. The red
lines are from the simple two-zone models that use the boundary condition of continuous
magnetic fields, while the purple lines in the Ohm only case are from the improved two-zone
model that take into account the intermediate region, and modifies the jump condition in the
magnetic fields at the transition point. They both provide good qualitative descriptions of the
solution, with the improved model matching very well to the actual numerical solution.

By analysing the mathematical forms of the analytic solutions (see Appendix D), we
can deduce how the various source terms affect the shape of the disc vertical profile in the
different variables. The radial magnetic gradient DB provides the background gradient in
ζ for the profile of br, while brs sets the limit of br(∞) when DB is absent, defining the
surface inclination of the poloidal field. Similarly, bφs sets the value of bφ (∞), and hence the
magnetic torque acting on the disc. Ohmic resistivity causes bends to occur in the passive
field region for the bφ profile, while the Hall drift, which operates at π/2 phase to Ohmic
diffusion, causes the bends to happen in br instead. ur tends towards the flux transport value
as ζ → ∞, but is largely zero in the passive field region. uφ is similarly very small in the disc,
but increases drastically in the force-free region as a result of iso-rotation with the magnetic
fields.

6.4.2 Flux transport rates

Here, we analyse only the flux transport driven by inclination and outflow, while we leave
those due to large scale radial gradients to a future investigation. Analytically, we find that
the flux transport is given by these simple expressions:

uΨ = ηO
brs

ζB
(6.43)
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Fig. 6.2 Vertical structure profiles of the radial (left-hand panels) and azimuthal (right-hand
panels) magnetic field (top panels) and velocity (bottom panels) for the Ohm only case with
ηO = 10 and β0 = 1000. We used the ’Hydro’ source terms, and also set brs, bφs and DB to
1. Red lines correspond to the simple two-zone analytic model (see Appendix D.1), while
purple lines include improved boundary conditions accounting for the transition region (see
Appendix D.3). The vertical dotted lines mark the height ζB where the transition between
passive and force-free field regions take place.
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Fig. 6.3 Same as Figure 6.2 but for the Hall dominated case with ηO = 1, ηH = 10. Red lines
correspond to the two-zone analytic model (see Appendix D.2).
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Fig. 6.4 Plots of radial flux transport rates given by uΨ and their variation with Ohmic (first
and third rows) and Hall (second and fourth rows) diffusivities, coupled with brs = 1 (top two
rows) and bφs = 1 (bottom two rows) source terms, at strong (β0 = 25, left hand column) and
weak (β0 = 25000, right hand column) magnetisations. Red lines correspond to the two-zone
analytic models for Ohm only (first row) and Hall dominated (second and fourth rows) cases,
while orange lines include improved boundary conditions accounting for the transition region
(first and third rows).
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for the Ohm only case,

uΨ = ηH
bφs

ζB
+ηO

brs

ζB
(6.44)

for the Hall dominated case, and

uΨ =
ηO

ζB

(
1− π

2ηO

)
− 1

ζB
ln
(

2
ηO

)(brs +
πbφs

ζ 2
B

)
(6.45)

for the Ohm only case with improved boundary conditions accounting for the transition
region.

These expressions do not involve the radial advection velocity in the ideal MHD limit
like second term in Equation (5.49) because of the separation of the disc into two zones,
with the flux transport value determined by the expression in the passive field region where
the only non-diffusive contribution, ur, is approximated to be zero. In the absence of any
diffusivity, it can be easily shown (see Appendix D.4) that the original equations admit an
analytic solution with uniform ur throughout the disc, and the flux transport is simply due to
advection via the wind torque, with uΨ = ur = 4bφs/β0. Hence our simple two-zone analytic
models should only be used in the high diffusivity regime, as is common in protoplanetary
discs.

As in the uniform density shearing box model (see Section 5.3.1), we find Ohmic
diffusivity to be linked with inclination, and Hall diffusivity with outflow, in driving flux
transport. Again, it is worth noting that the ηH term in Equation (6.44) is essentially of the
same form as Equation 10 of (Bai and Stone, 2017). In the modified analytic model where
jump conditions in the magnetic fields are calculated by taking the transition region into
account, we have a modified flux transport rate which also couples Ohmic resistivity with
outflow.

Figure 6.4 shows how these analytic predictions fit the actual flux transport rates calcu-
lated. We first look at the inclination cases which are the top two rows of the figure. Here
the red lines are from the simple two zone models, while the orange lines in the Ohm only
cases are from the third model that includes the modified boundary conditions. We see that
the analytic models offer good descriptions in the limit of weak field (β0 large) and high
diffusivity. This is because under these conditions, the passive field region is extended and
better matched by the assumptions used in the analytic model. Particularly, the asymptotes
of the modified analytic model appears to be able to predict the transition point to instability,
which occurs when the denominator of Equation (6.45) is equal to zero. It would be worth
investigating in the future how the region of instability is influenced by the balance between
diffusive effects (from ηO) and the field strength (from ζB).
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Next, we turn to the outflow cases, which are displayed in the bottom two rows of Figure
6.4. The orange lines in the top two Ohm only plots are from the modified analytic model,
while the red lines in the bottom two Hall dominated panels are from the simple analytic
model. We can see that again they predict the outflow driven flux transport fairly well in the
high diffusivity, weak field (β0 large) regime. The simple two zone models are unable to
describe the presence of the asymptote and transition to the unstable regime, but the model
with modified boundary condition matches the first asymptote in the Ohm-only case in the
weak field limit.

The relative success of the analytic models so far (though with limitations, such as in
the outflow case) in matching the numerical solutions suggest that it is also possible to
understand the flux transport driven by other source terms similarly, and we will be looking
at constructing these models and examining their interpretations in the future.

6.5 Discussion

6.5.1 Comparing the shearing box and Guilet & Ogilvie models

Both the shearing box and the GO models share the same qualitative trends of how diffu-
sivities, coupled with inclination and outflow, can be effective in driving flux transport. In
particular, approximate analytic solutions for both models under simplified schemes show
how Ohmic resistivity (and the ‘Ohm-like’ term of ambipolar diffusivity) is coupled with
inclination to drive radially outward flux transport, while Hall drift with ηH(Bz ·Ωx)> 0 is
coupled with outflow in facilitating radially inward flux transport. The similarity between
the expressions in Equations (5.49), (6.43) and (6.44) suggest that we can identify ζB, the
height at which magnetic pressure equals thermal pressure, as the relevant value for the disc
height H to be used in the constant density shearing box model of Section 5.3.1. Both models
also show similar trends and behaviour in how the stability of solutions vary with diffusivity
and magnetisation values. The large similarities between the results of the two models may
be due to the fact that horizontal magnetic field components are largely relatively small
compared with the vertical field for the parameter space explored, hence the effects due to
the nonlinearity of the Hall and ambipolar terms are less significant overall.

6.5.2 Comparison with current global simulations

While outward inclination coupled with Ohmic resistivity has long been known to facilitate
outward flux transport, the possibility of Hall drift coupled with an outflow driving significant
flux transport has only been briefly noted (Bai, 2014) in the past, and never extensively
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investigated. Only recently have global simulations (Bai and Stone, 2017; Béthune et al.,
2017; Suriano et al., 2017, 2018) begun exploring the flux transport problem in laminar
protoplanetary discs where all three non-ideal effects are accounted for. In Bai and Stone
(2017), the mechanism governing flux evolution can be described as a competition between
the Hall effect, ambipolar diffusion, and the magnetic wind driven accretion. In the positive
(negative) polarity configuration, the Hall effect transports flux (out)inwards rapidly in the
mid-plane regions and (in)outwards slowly in the disc upper layers. Ambipolar diffusion,
on the other hand, always transports flux outward, whereas magnetic wind driven accretion
advects flux inwards. In the aligned case, there is a cancellation effect between the inward
flux transport due to Hall drift and the magnetic wind and outward due to ambipolar diffusion,
while all three effects work to transport flux outward in the negative polarity case. Our
calculations also found a similar picture in that Hall drift reduces the effect of outward
flux transport due to ambipolar/Ohmic diffusion in the positive polarity case. However, it
is unclear from the results of Bai and Stone (2017) whether there is any specific coupling
between Hall drift and the wind that further enhances flux transport inwards. Our models also
agree with Béthune et al. (2017) and Bai and Stone (2017) that the polarity of the magnetic
field is a significant parameter on disc dynamics and flux transport when Hall drift is present.
However, we are not able to confirm the flux transport trends in the negative polarity cases
due to the breakdown of stable solutions in our models. Our model restricts the overall flux
transport rate in a radially local region to be constant across all scale-heights, which is indeed
what is found in global simulations (Bai, 2017; Bai and Stone, 2017).

A significant proportion of the parameter space explored yielded unstable solutions
characteristic of MRI channel modes, and it would be interesting to see in future studies if
they might relate to flux transport mechanisms reported in global simulations that are cyclic
in nature, such as those in Suriano et al. (2017, 2018, 2019).



Chapter 7

Effect of disc wind on flux transport
rates

The work up to this point has been concerned with flux transport in discs where the inclination
of the poloidal magnetic field to the vertical is small, and insufficient for modelling the
launching of a magnetic wind. In this chapter, we use the PLUTO code to extend our analysis
to solutions where the inclination is large, a magnetic wind is naturally launched, and vz

can no longer neglected. We first verify the validity of our flux transport calculations and
accompanying simplifications in Chapter 5 by performing shearing box simulations with
identical parameters. We then investigate the effect of a non-zero vz and wind launching in the
extended parameter space on the flux transport dependence on non-ideal effects uncovered in
the last two chapters. Finally, we sketch out an analytic framework to help us interpret some
of the results, before summarising.

7.1 The PLUTO numerical code

We introduce the PLUTO numerical code (Mignone et al., 2007), which is a widely-used and
well-documented compressible finite-volume MHD code. It is built on modern Godunov-type
shock-capturing schemes, which solves the relevant fluid equations by integrating a system of
conservation laws. The code is built as a multiphysics, multialgorithm modular environment,
allowing for the incorporation of additional physical effects with advances in computational
fluid dynamics. It also comes with an in-built standard shearing box module (Balbus and
Hawley, 2003; Hawley et al., 1995; Regev and Umurhan, 2008), which we use for computing
our radially local solutions.
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In this Thesis, we use a modified version of PLUTO 4.0, developed by Geoffroy Lesur,
where Hall drift and ambipolar diffusion are included (Lesur et al., 2014), in addition
to the Ohmic resistivity module which is part of the standard release of the code. The
implementation in PLUTO of ambipolar diffusion, and Hall drift in particular, is a difficult
task. This is due to the non-hyperbolic nature of the terms in the induction equation, while
the Godunov scheme is designed for solving hyperbolic conservation laws. The numerical
implementation of the Hall effect is quite involved, and we refer the reader to Appendix A
of Lesur et al. (2014) for details of the approximations used. The ambipolar module on the
other hand is included as a source term in a similar way to the Ohmic resistivity module, with
shearing sheet boundary conditions applied to the current density to prevent the occurrence
of spurious instabilities from the radial boundaries. We tested the validity of the Hall and
ambipolar modules by comparing the numerical growth rate and shape of MRI modes with
their predicted semi-analytic values (see Section 7.2), as well as confirming the steady state
solutions of the semi-analytic approach of Chapter 5 (see Section 7.3).

7.2 Comparing MRI modes between PLUTO and the semi-
analytic model

First, we verify the numerical implementation of Hall drift and ambipolar diffusion in
PLUTO by computing 1D MRI linear modes in a vertically stratified disc. These are tested by
conducting four simulations with uniform ηA and ηH profiles in the vertical extent initialised
at their predicted MRI modes, which were found along with their predicted growth rates
by a pseudospectral method solving for the full set of linearised equations (see Appendix E
for details). Their growth rates and mode shapes are then observed over the course of the
simulations to see if they correspond to those predicted. We used discs with β = 10 for all
our runs. It is worth noting that we artificially imposed vz = 0 in the simulation domain,
otherwise spurious instabilities grow in the upper disc regions. The resolution used was 1000
grid cells in the z direction over the extent |z| ≤ 5. Each simulation was run for 4Ω−1, and
the amplitude of the initial mode in bx = Bx/Bz and by = By/Bz was set to be of order 10−3.

Table 7.1 gives a list of the simulations and the measured growth rates of the MRI modes
being investigated, as well as their predicted growth rates from the semi-analytic model. The
runs are named such that the numerics after the letters ‘H’ and ‘A’ and before the hyphens
give the values of ηH and ηA used in code units respectively, with ‘p’ replacing decimal
points. The column ‘Mode (initial)’ indicates the mode obtained from the semi-analytic
calculation that was used to initialise each simulation, with the symmetry of the mode (‘Even’
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Table 7.1 Table showing the simulations run to test the implementation of Hall and ambipolar
terms in PLUTO. Runs are initialised with the profile indicated in ‘Mode (initial)’ while
‘Mode (final)’ indicates the dominant mode at the end of each run. ‘σ (SAM)’ and ‘σ (sim)’
gives the predicted and measured growth rates of the modes respectively. See text for more
details, and for an explanation of the nomenclature of the simulations.

Name Mode (initial) Mode (final) σ (SAM) σ (sim)
H0-A0p2-E1 Even (1) Even (1) 0.5746 0.5743
H0-A0p2-O2 Odd (2) Odd (2) 0.5264 0.5264
H1-A0p2-E1 Even (1) Even (1) 0.6900 0.6896
H0-A0p2-Spec Special Even (1) NA NA

or ‘Odd’ for bx and by in z) followed by the a number in brackets that gives its ranking in
growth rate among available modes with 1 indicating the fastest growing mode. Similarly,
‘Mode (final)’ gives the final mode that was dominant in the simulation at the end of the
run. ‘σ (SAM)’ gives the growth rate predicted for the initial mode from the pseudospectral
calculation, while ‘σ (sim)’ gives the growth rate measured through fitting the simulation
data over time with an exponential model.

Overall, we found the correspondence between simulation and prediction to be very good.
Runs initialised with modes specific to the diffusivity profile and background field strength of
the vertically stratified disc remain dominated by the same modes throughout the simulations,
with their growth in amplitude over time being exact exponential fits as would be expected
for the MRI, and measured growth rates that agree within 0.5% of the predicted values. An
example of this is shown in Figure 7.1, where the left hand plot shows a comparison between
the initial and final mode shapes of δBx and δBy (normalised such that max(δBx) = 1) for
the run ‘H0-A0p2-E1’, while the plot on the right shows the growth of bx at z = 0 from t = 0
to t = 4Ω−1 and its exponential fit for the same run. The final simulation ‘H0-A0p2-Spec’ is
initialised using the ‘Even (1)’ profile of ‘H1-A0p2-E1’, which has notable differences to its
own ‘Even (1)’ profile in shape and growth rate. We found that over time, the mode shape is
altered from its initial profile to fit that predicted by the linear model for its own diffusivity
profile. This gives us further proof that the ambipolar and Hall modules in the PLUTO code
indeed accurately capture the behaviour of the MRI in 1D vertically stratified discs.
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Fig. 7.1 Left: Mode shapes between the final state of δBx (blue solid) and δBy (blue dashed)
of the simulation ‘H0-A0p2-E1’, and the predicted shape of δBx (red solid) and δBy (red
dashed) of the linear model prediction. Right: plot of the growth of bx at z = 0 over time of
the same simulation (blue dots), with best exponential fit (red curve) plotted alongside, as
well as the measured growth rate σ displayed.

7.3 Confirming the steady state solutions of the semi-analytic
approach

To both verify the validity of the semi-analytic solutions in Chapter 5, as well as further
confirm that the numerical implementation of the non-ideal terms in our version of PLUTO is
correct, we perform shearing box simulations for a selection of field strengths and background
diffusivities to see if steady states are achieved, and how they compare with the solutions
from our semi-analytic model. To simplify our testing, we consider only the ‘Uniform’
diffusivity profile where ηO, ηH and ηA are constant throughout the whole vertical extent of
each simulation.

7.3.1 Set-up

Units

We set Ω = 1, cs = 1, and also the initial mid-plane density ρ0 = 1. The simulation time is
then a scaled time given in units of the dynamical timescale τdyn = Ω−1. The length-scale on
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the other hand is given in terms of the vertical scale height H = cs/Ω = 1. The vertical field
strength Bz is calculated from the β0 parameter of the disc, and is given by

Bz = cs

√
2ρ0

β
=

√
2
β
. (7.1)

Grid

We work in a shearing box of dimension L = (Lx,Ly,Lz) divided into N = (Nx,Ny,Nz)

grid points in the respective directions. We run full disc simulations with the vertical box
extending from z = −Lz/2 to z = Lz/2, and horizontal extents of x = −Lx/2 to x = Lx/2
and y =−Ly/2 to y = Ly/2. For our 1D simulations, Lx = Ly = 1 and Nx = Ny = 1, while
Lz = 10, and Nz = 512, with a resolution of 51.2 cells per H in the vertical direction.

Boundary conditions

For the shearing box to be valid, shearing periodic boundary conditions must always be
applied along the x-boundaries such that boxes are sliding with respect to each other at
relative velocity w = |qΩ0Lx|, where q =−3/2 is the shear parameter for a Keplerian disc.
The boundary condition in the x-direction is therefore given by:q(−Lx/2,y,z, t) = q(Lx/2,y−wt,z, t),

vy(−Lx/2,y,z, t) = vy(Lx/2,y−wt,z, t)+w,
(7.2)

where q here denotes all variables apart from vy.
For the y-direction, we use normal periodic boundary conditions, where

q(x,−Ly/2,z, t) = q(x,+Ly/2,z,y, t) (7.3)

is true for all variables q.
For the z-direction, we use outflow boundary conditions for the fluid velocities such that

∂v
∂ z

= 0. (7.4)

However, we fix the values of the magnetic fields at the upper and lower z boundaries as we
did in Chapter 5, where

Bx(x,y,±Lz/2, t) =±Bxs,

By(x,y,±Lz/2, t) =±Bys,

Bz(x,y,±Lz/2, t) = Bz,

(7.5)

and Bxs, Bys and Bz are set by the parameters of the problem.
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Solvers

For all runs, we used the modified HLL Riemann solver of Lesur et al. (2014) and the
constrained transport (CT) method of Evans and Hawley (1988), which by design maintains
the ∇ ·B = 0 condition to machine precision. The CT method updates the face-centred
magnetic field of grid cells by treating it as an area-weighted average on the zone face and
updating it using Stokes’ theorem. This requires computing the electromotive force at zone
edges by averaging the face-centred electromotive forces. We follow Lesur et al. (2014) by
using arithmetic averaging to achieve this. We then advance the equations in time using a
third-order-accurate Runge-Kutta scheme.

Initial conditions and time evolution

We initialise all our simulations with a purely vertical magnetic field, and random velocity
fluctuations of maximum amplitude of 0.1 in code units. We evolve each simulation for at
least 300Ω−1, by which time most have settled into a steady solution.

7.3.2 Results

Our results are summarised in Table 7.2. Simulations are named in the following manner:
btα-Oγ-Hδ -Aε-bxξ -byχ , where α denotes the value of β0 used in setting the vertical
magnetic field of the simulation, γ,δ ,ε are the strengths of ηO, ηH , ηA in code units
respectively, and ξ and χ give the values of bx = Bx/Bz and by = By/Bz respectively at the
upper boundary. In cases where a value is 0, we omit the Latin alphabet indicator beforehand
as well as the numeric 0. For all numerics, to avoid special symbols, we replace negative
signs with the letter ‘n’, and decimal points with the letter ‘p’. The simulation named ‘bt10-
H5-A2-byn0p1’ for example would then denote a run done with the parameters β0 = 10,
ηO = 0, ηH = 5, ηA = 2, bx(Lz/2) = 0 and by(Lz/2) =−0.1. β0 is the plasma β parameter
used to set the initial vertical field strength, while β0,thres is the threshold mid-plane plasma β

calculated using the method of Section 5.1.5, above which we expect the disc to be unstable
to the MRI. The column vb (SAM) is the flux transport velocity in units of cs calculated using
the same parameters as the simulation from the semi-analytic model of Chapter 5. The vb

(sim) and ṁw/10−6 (sim) columns give the flux transport and upper boundary mass outflow
values from the simulations averaged over the times when steady “hourglass” states have
been achieved respectively. The definition of vb is the same as that of vΨ in Equation (5.14)
of Chapter 5.

We found that all runs initially settle into steady “hourglass” symmetry (see Section 2.2.3
and 2.6) solutions of the type investigated in Chapters 5 and 6, and most solutions persisted
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Table 7.2 Table showing the flux transport velocities vb and mass loss rates through the upper
boundary ṁw for our low inclination simulation runs (denoted by sim), compared to the flux
transport velocities vb obtained using the semi-analytic method of Chapter 5 (denoted by
SAM). β0 is the plasma β parameter used to set the initial vertical field strength, while β0,thres
is the threshold mid-plane plasma β calculated using the method of Section 5.1.5, above
which we expect the disc to be unstable to the MRI. For an explanation of the nomenclature
of the runs, see the first paragraph of Section 7.3.2, and how it relates to the diffusivity
profiles and boundary conditions used.

Name β0 β0,thres vb (SAM) vb (sim) ṁw/10−6 (sim)
bt1-O2-bx0p1 1 1.17 0.144 0.145 0.430
bt1-A2-bx0p1 1 1.17 0.144 0.145 0.430
bt1-O2-H5-bx0p1 1 18.6 0.0963 0.0967 0.304
bt1-H5-A2-bx0p1 1 18.5 0.0963 0.0974 0.304
bt10-O2-bx0p1 10 1.17 0.186 0.187 1.46
bt10-A2-bx0p1 10 1.17 0.186 0.186 1.46
bt10-O2-H5-bx0p1 10 18.6 0.0792 0.0794 0.871
bt10-H5-A2-bx0p1 10 18.5 0.0792 0.0794 0.871
bt1-O2-byn0p1 1 1.19 -0.348 -0.345 0.310
bt1-A2-byn0p1 1 1.18 -0.348 -0.345 0.305
bt1-O2-H5-byn0p1 1 18.5 -0.584 -0.580 0.272
bt1-H5-A2-byn0p1 1 18.5 -0.584 -0.580 0.272
bt10-O2-byn0p1 10 1.19 -0.0946 -0.0945 1.03
bt10-A2-byn0p1 10 1.18 -0.0952 -0.0941 1.03
bt10-O2-H5-byn0p1 10 18.5 -0.242 -0.242 0.783
bt10-H5-A2-byn0p1 10 18.5 -0.242 -0.242 0.783
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for the duration of the runs. However, we found that the runs with β0 > β0,thres gradually
transit to overall unsteady asymmetric profiles with a “slanted” character while satisfying
the boundary conditions for the horizontal magnetic fields which are anti-symmetric about
z = 0. This is in line with the prediction from our marginal stability analysis that discs with
β0 above the threshold β values would be unstable to the MRI. It is interesting to note here
that the onset of the MRI is linked to the changing of the overall symmetry of the disc, and
this effect will be investigated in more detail in Chapters 10 and 11.

For the (quasi-)steady “hourglass” solutions that all runs initially settle into, we found that
the flux transport rates obtained via the numerical simulations agree with the rates calculated
using the semi-analytic method to a high degree of precision, differing by no more than
1% in the worst case, and often with a much smaller difference. Similarly, we found that
the magnetic field profiles between the numerical steady states and semi-analytic solutions
match up almost exactly. These are plotted in Figure 7.2 for the bx(Lz/2) = 0.1 cases, and
in Figure 7.3 for the by(Lz/2) =−0.1 cases. vz is sub-Alfvénic throughout the simulation
domain, and are orders of magnitude smaller than vx and vy in the disc region |z| < 3H,
before becoming comparable to the horizontal velocities near the boundaries at the vertical
extremes of the box. The total mass loss rate in each simulation is ∼ 10−6 in code units,
and cause negligible changes in the density profile and wind structure compared with the
vz = 0 semi-analytic models. These results all point to our semi-analytic models of Chapter
5 being adequate for estimating the flux transport rates as well as computing the vertical
structures of discs with small inclinations and no natural wind-launching. They also confirm
that the implementation of the non-ideal MHD terms in the PLUTO code indeed capture the
behaviour expected, particularly with regard to their effects on the shape and properties of
the steady state solutions.

When discs have settled into steady state solutions for their magnetic field profiles, we
found that this is often accompanied by a periodic oscillation in the absolute values of the
horizontal velocity profiles. These oscillations have a period of 2πΩ−1, and translate the
horizontal velocity profiles in their values without changing their shape. This likewise causes
a corresponding oscillation in the value of vb in the simulation while keeping its flat profile
in the vertical domain. This periodic oscillation, a case of which is shown in Figure 7.4, can
be understood as that of a horizontal epicyclic oscillation, which is an intrinsic property of
the shearing box formalism. These epicycles (see also discussion in Section 2.2.1) can be
interpreted physically as describing a slightly elliptical orbit (Ogilvie, 2012). Locally, they
cause the horizontal velocities to oscillate sinusoidally from the equilibrium profile, but do not
alter the equilibrium or the magnetic field profile. The equilibrium values of vb are obtained
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Fig. 7.2 Profiles of bx and by, plotted against z for the z > 0 half of the hourglass symmetric (quasi-)
steady solutions in the bx(Lz/2) = 0.1 cases. The name of the simulation is displayed in the title
of each plot. Red and blue solid lines are for the profiles obtained for bx and by respectively in the
simulations, while black and green dashed lines are for the profiles obtained for bx and by respectively
in the semi-analytic model of Chapter 5.
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Fig. 7.3 Same as Figure 7.3, but for cases where by(Lz/2) =−0.1.



7.4 Wind solutions 123

Fig. 7.4 Variation of vb given in units of cs with time give in units of Ω−1, for simulation
run bt10-O2-H5-bx0p1. Note that the period of the oscillation from t = 20Ω−1 onwards is
2πΩ−1, and that the oscillation is sinusoidal in nature, indicative of it being an epicyclic
oscillation intrinsic to the shearing box (Ogilvie, 2012).

by averaging over the values of vb over complete cycles of the epicyclic oscillation, and as
shown in Table 7.2, agree with the semi-analytic predictions with remarkable precision.

7.4 Wind solutions

We now extend our investigation to cases with bx(∞)> 1/
√

3, where wind-launching needs
to be properly included in the disc model and our semi-analytic model fails to describe it
adequately.

7.4.1 Set-up

We use the same simulation set-up as Section 7.3.1, but now include a mass replenishment
scheme to account for the more significant mass losses expected from the outflows and
allow a steady state to exist. We ran two different mass replenishment schemes: ‘wide’ and
‘narrow’. The ‘wide’ scheme keeps the total mass in the simulation domain constant by
computing the total mass within the simulation at the end of each time-step, and multiplying
the density everywhere by a constant factor to make up for the deficit. The ‘narrow’ scheme
operates similarly, but instead of multiplying the density everywhere by a constant factor, we
add a narrow Gaussian density function of the form ρadd ∝ exp(−z2/2z2

i ), where zi = 0.1H,
to the density to make up for the deficit. Both schemes technically break the conservation of
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Fig. 7.5 bx (red) and by (blue) profiles plotted against z for the simulation bt1000-O2-H2-
bx0p5-byn1 at t = 24Ω−1 (left) and t = 220Ω−1 (right).

Fig. 7.6 bx (red) and by (blue) profiles plotted against z for the simulation bt1000-O2-Hn2-
bx0p5-byn1 at t = 30Ω−1 (left) and t = 200Ω−1 (right).

momentum, as the added mass adopts the velocity profile of the disc, but are commonly used
in shearing box simulations where outflows are significant (Bai, 2014; Lesur et al., 2014;
Ogilvie, 2012; Riols et al., 2016). We ran simulations under both schemes for the Ohmic
resistive discs to see if the method of mass replenishment significantly alters the results, and
under the ‘narrow’ scheme only for ambipolar diffusive discs. All our simulations are done
with either Ohmic and Hall terms only, or ambipolar and Hall terms only, to allow us to
compare the effects between Ohmic resistivity and ambipolar diffusion on the solutions. We
also used a higher β0 value of 1000 in all the runs in this Section.
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Fig. 7.7 Space-time plots of bx for the simulations bt1000-A2-byn1 (left) and bt1000-A2-
H2-bx0p5-byn1 (right). The left-hand plot shows an unsteady hourglass symmetric state
with cyclic behaviour, while the right-hand plot shows a disc that transits from its initial
hourglass steady state (t ∼ 0−40Ω−1) to an unsteady asymmetric state with slanted character
(t > 80Ω−1).

7.4.2 Results

We found that similar to our results from Section 7.3.2, most discs initially settle into
hourglass symmetry (quasi-)steady states (e.g. the left panels of Figures 7.5 and 7.6). A
small subset of discs then transit to asymmetric states with “slanted” symmetry character for
the long term. These asymmetric profiles are either steady (e.g. the right panels of Figures
7.5 and 7.6), or vary in shape periodically (e.g. for t > 80Ω−1 of the right-hand plot of
Figure 7.7). We also found that some discs never settle into any (quasi-)steady states, but
instead have periodic asymmetric solutions with “hourglass” symmetry character (e.g. the
left-hand plot of Figure 7.7). All solutions are sub-Alfvénic in their vz profiles, and the bx

and by boundary conditions which are anti-symmetric about z = 0 are always satisfied.
The epicyclic oscillations affecting vx, vy and vb profiles are present in all solutions, but

are generally of much smaller magnitude than their counterparts in Section 7.3.2. They also
decay in magnitude rapidly over time. We attribute this to the presence of a more significant
mass outflow (100-fold of those in Section 7.3) from the disc. Since our mass replenishment
scheme does not conserve the angular momentum of the box, if the box is gaining or losing
angular momentum due to mass loss and replenishment, then the epicyclic oscillations would
be affected. Further evidence for this can be obtained if it can be shown that the decay
timescale of the oscillations is related to the mass loss timescale, given by 1/ṁw.

Our flux transport velocity and mass outflow rate results are shown graphically in the
plots of Figures 7.8, 7.9 and 7.10. The vertical axes of the left hand plots denote the flux
transport velocity in units of cs, while the vertical axes of the right hand plots denote the
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mass loss rate from one side of the disc averaged over the top and bottom boundaries in
units of ρ0cs. The horizontal axes for all plots denote the variables that are changed between
simulations. The title of each plot shows the parameters which are kept the same between
simulations in the plot, with bxs and bys being the bx and by boundary conditions on the
upper boundary respectively, O or A being the value of ηO or ηA respectively, and H being
the value of ηH . Cyan and blue markers and lines are for runs done with Ohmic and Hall
effects only, with cyan for runs under the ‘wide’ mass replenishment scheme, and blue for
runs under the ‘narrow’ scheme. Red markers and lines denote runs done with ambipolar
and Hall effects only under the ‘narrow’ scheme. vb values are calculated by averaging
out the epicyclic oscillations over time for each disc at its (quasi-)steady state(s), or over
a representative period of time for the case of unsteady discs. mw values are taken from
both the upper and lower boundaries of the disc, and averaged over the same time periods
as for calculating the vb values. Circle markers are for hourglass steady states, asterisks
for cyclical hourglass-like asymmetric states, triangle markers for asymmetric slanted-like
steady states, and square markers for cyclical asymmetric slanted-like steady states. Results
of the initial or persistent hourglass steady states are connected by solid lines, while results of
final asymmetric slanted-like steady states are connected by dashed lines. To avoid cluttering
the diagrams too much, we only plot the hourglass steady solutions of the runs done under
the ‘wide’ mass replenishment schemes, but note that in actuality, these discs exhibit similar
behaviour as discs done under the ‘narrow’ scheme, with some persisting in hourglass steady
states, and others transitioning to asymmetric slanted-like states for the long term.

For most runs, we find that using the ‘wide’ and ‘narrow’ mass replenishment schemes
do no significantly affect the flux transport velocities or mass outflow rates of the discs, with
results differing by no more than 10%. For the rest of the discussion we will restrict ourselves
to the results from the ‘narrow’ scheme, which was applied to both Ohmic and ambipolar
diffusive discs.

7.4.3 Discussion

Flux transport for (quasi-)steady hourglass discs

We first discuss the flux transport trends for the (quasi-)steady hourglass configurations of
the type explored in Chapters 5 and 6.

For inclination-driven only flux transport, we found that a positive value of bxs coupled
with Ohmic and/or ambipolar diffusion leads to radially outward flux transport (top left
plot of Figure 7.8), with a roughly linear increase in flux transport rate with diffusivity, in
agreement with the trend uncovered in Chapters 5 and 6. Adding a Hall term with positive
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Fig. 7.8 Plots of time-averaged flux transport velocities (left) and similarly time-averaged
mass loss rates from one side of the disc averaged over the upper and lower boundaries
(right) against diffusivity coefficients used in the simulations. Other parameters for the
simulations are indicated in the title, with more detailed explanation in the text. Circles
(connected by solid lines) are for simulation data taken for the hourglass symmetry (quasi-)
steady states, while triangles (connected by dashed lines) are for the subset of runs which
ended in asymmetric slanted-like steady states. Asterisks are for hourglass-like unsteady
solutions, while squares are for asymmetric slanted-like unsteady states. Cyan and dark blue
are for Ohmic resistivity and Hall drift only discs done under the ‘wide’ and ‘narrow’ mass
replenishment schemes respectively, while red is for ambipolar diffusivity and Hall drift only
discs done under the ‘narrow’ scheme.
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Fig. 7.9 Same as Figure 7.8, except the parameter varied within each plot on the x axis is
now bxs.
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Fig. 7.10 Same as Figure 7.8, except the parameter varied within each plot on the x axis is
now bys.
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Hall coefficient reduces the radially outward flux transport rate but does not reverse the
direction for discs in the hourglass (quasi-)steady symmetric state, while a negative Hall
coefficient increases the radially outward flux transport (bottom left plot of Figure 7.8), again
in agreement with the predictions of the flux transport models of the previous two Chapters.

For By torque-driven flux transport, a negative value of bys coupled with Ohmic and/or
ambipolar diffusion contributes to radially inward flux transport. On the other hand, a positive
Hall coefficient coupled with a negative bys increases (decreases) the inward (outward) flux
transport rate compared to a disc with the same parameters but with no Hall drift, while
a negative Hall coefficient coupled with a negative bys decreases (increases) the inward
(outward) flux transport rate, with both even reversing the direction of flux transport if the
coupling is strong enough. These results are again in agreement with the findings of the
last two Chapters, confirming to us that the presence of an outflow does not modify the
flux transport trends uncovered there, as long as the hourglass symmetry of the solution
is preserved. We are also able to explore the flux transport trends with the Hall effect for
cases with a negative Hall coefficient (which in our model translates to the anti-aligned
configuration), and show that they contribute in an opposite way to that of the aligned
configuration.

It is worth noting here that for most of the hourglass (quasi-)steady solutions, ambipolar
diffusive only discs have lower magnitude flux transport rates than Ohmic resistive only discs
with equal values of ηA and ηO. We attribute it to the way we have parameterised the problem,
such that ηA, which in normal circumstances is proportional to B2, is set to be constant instead
in the disc. As a result, we eliminated the B2

y effect (see Section 2.5.2) which would normally
have significantly increased the ambipolar diffusivity when by ≫ 1. Our current prescription
does the opposite to the normal situation whereby we reduce the B-independent parts of the
ambipolar coefficient when bx and by are large to keep ηA constant, resulting in a smaller
diffusive contribution to the flux transport than for the Ohmic resistive case. Real discs are
more likely to have ηA ∝ B2/ρ2, which would result in more complex differences between
Ohmic and ambipolar diffusive-driven flux transport than those presented here.

Trends in ṁw for hourglass steady solutions

For hourglass (quasi-)steady solutions, increasing bxs for the range explored generally leads
to a larger outflow rate. This is expected as increasing the inclination of the poloidal field
away from the vertical means a larger contribution of the centrifugal force in accelerating
gas outwards along poloidal field lines. Increasing the magnitude of −bys on the other hand
decreases the outflow rate. We rule out magnetic compression of the disc as the reason for
this decrease in outflow rate, as the density profiles between the discs in our weak field regime
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Fig. 7.11 bx (red) and by (blue) profiles of the runs bt1000-O2-bx1 (solid lines), bt1000-O2-
bx1-byn0p5 (dashed lines) and bt1000-O2-bx1-byn1p5 (dotted lines).

in the hourglass states all have negligible alterations from the hydrostatic Gaussian profile
for |z| < 3H. Instead, we speculate the decrease in ṁw with increasing −bys is due to the
smoothing the peaks in the by profiles as −bys increases, which far outweights the steepening
of the peaks in the bx profiles (see Figure 7.11). The decreasing magnetic pressure gradient
d(B2

x +B2
y)/dz from the peaks beyond |z| > 3H contributes to the vertical acceleration of

matter out of the disc, hence the weakening of the overall gradient leads to a lower overall
outflow rate.

Increasing ηO and ηA decreases the overall outflow rate (top right plot of Figure 7.8).
This is again due to weakening of the magnetic pressure gradient from beyond |z| > 3H
that contributes to the vertical acceleration of matter out of the disc. This results from the
smoothing of the peaks in the magnetic profile, this time in both bx and by, due to the higher
diffusive effects.

Increasing ηH when it is positive increases the overall outflow rate (right-hand side of
the bottom right plot of Figure 7.8), and may be attributed to increasing bx and by and their
peaks in the solution through the HSI, leading to greater mass loss vertically. Having an
increasingly negative ηH on the other hand results in a smaller outflow rate (left-hand side
of the bottom right plot of Figure 7.8), and may be attributed to their much flatter bx and by

profiles, drastically reducing the magnetic pressure gradient contribution to the outflow.
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Stability and symmetry of solutions

Next, we turn to examine the cases where the hourglass steady solutions do not persist, but
transition to asymmetric slanted-like solutions.

It is interesting to note that when we calculated the threshold β0 values using our marginal
stability method (see Section 5.1.5) for discs with the same parameters in diffusivity as those
used in this Section, we generally obtained β0,thes ∼ O(1)−O(10), with little dependence
on the values of bxs and bys used. The fact that many of our simulations settled into steady
hourglass solutions despite their much larger β0 = 1000 suggests that the much stronger
outflows we have in this Section, with ṁw ∼ 10−4, may be responsible for increasing the
stability of the discs here compared to the ones in the semi-analytic model where vz is
arbitrarily set to zero, or the simulations in Section 7.3.2 with a much smaller ṁw ∼ 10−6.

Discs where Ohmic resistivity and Hall effect only are present are more susceptible to
transitioning to the asymmetric slanted-like solutions than discs where ambipolar diffusivity
and Hall effect only are present. This is evidenced by the more numerous blue dashed
lines in our plots, which denote the former, than the red dashed lines, which denote the
latter. This may be due to the nonlinear anisotropic nature of the ambipolar term being
better at supporting the mid-plane current sheets present in the hourglass steady solution
than Ohmic resistivity (Brandenburg and Zweibel, 1994), leading to greater resilience of
ambipolar diffusive discs to transitioning away from the hourglass steady state. The effect of
ambipolar diffusivity on stabilising the mid-plane current sheet will be investigated in more
detail in Section 11.4 of this Thesis.

Discs where the Hall coefficient is positive are more likely to transition to the asymmetric
slanted-like states than those with no Hall drift present, or where the Hall coefficient is
negative (compare the middle left plots of Figures 7.9 and 7.10 with the top and bottom
left plots, as well as the right half of the bottom left plot of Figure 7.8 with the left half).
This is likely due to the HSI (see Section 2.5.3) being active when the Hall coefficient is
positive, amplifying horizontal fields, as we see in the left hand plot of Figure 7.5 compared
with the left hand plot of Figure 7.6, where all other parameters are the same with the
exception of the sign of the Hall coefficient being reversed. The amplified hourglass profile
then has a sharper current sheet at the mid-plane, which is less well supported when strong
diffusivities are present, leading to greater likelihood for its expulsion and transition to the
asymmetric slanted-like states. The HSI may also enhance the growth rate of the lowest
order MRI channel mode with slanted symmetry, which eventually takes over the disc profile.
The second effect and its possible role in transitioning discs from the hourglass symmetry
to a slanted-like configuration will be explored in more detail in Chapter 10 for Ohmic
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resistive-only discs, before application to discs where all three non-ideal effects are present
in Chapter 11.

Asymmetric slanted-like steady solutions generally have outflow rates ṁw that are one
or two orders of magnitudes larger than their hourglass (quasi-)steady counterparts, while
asymmetric periodic solutions have larger but similar magnitude outflow rates to the hourglass
(quasi-)steady solutions. This might again suggest a link between strong outflows and the
saturation of solutions to steady states, and will be further explored in Section 10.6.2.
Asymmetric slanted-like steady solutions also have bx and by profiles that are orders of
magnitude larger than their hourglass (quasi-)steady counterparts (compare the right-hand
plot of Figure 7.5 with the left-hand plot), providing the reason for the much greater outflow
rates of these solutions, as the stronger horizontal magnetic pressure gradient contributes
to the driving of the vertical outflow. The possible effects they have on the saturation and
stability of the solution will also be further explored in Section 10.6.2.

Flux transport and mass outflow trends for asymmetric steady solutions

In the cases examined in this Section, all asymmetric steady states have lower vb than their
hourglass steady counterparts. The differences become more pronounced with increasing ηH

and −bys, even leading to the switching of signs and hence the direction of flux transport,
while the differences become less pronounced with increasing bxs. The mass outflow rate
on the other hand increases sharply with increasing ηH , most likely due to the enhanced
horizontal fields resulting from the HSI creating larger magnetic pressure gradients for
driving vertical outflows. Increasing bxs and −bys on the other hand has little effect on ṁw,
except for the sudden drop in magnitude for bxs = 2 in the middle right plot of Figure 7.9.
ṁw can also be drastically different between the two sides of the disc due to the asymmetric
nature of the solutions, while vb is the same across the full vertical extent, as it is only
dependent on the steady-state nature of the solutions. Normally, for fully slanted symmetry
solutions in the shearing box, we would expect vb = 0. However, this is not the case in our
simulations, as the hourglass symmetric bx and by boundary conditions are still satisfied,
forcing the fields to bend back near the boundary, similar to what would need to occur in a
global symmetry where the fields must eventually bend away from the star. However, given
the limited ability of the shearing box formalism in exploring global geometries, we relegate
any further exploration of the flux transport and mass outflow trends of asymmetric steady
solutions to a future study where a more appropriate global formalism will be used.

Overall, it is interesting to note here that asymmetric slanted-like steady solutions have
significantly different flux transport velocities to those of the hourglass steady states they
have evolved. This points to the sensitivity of the flux transport process to the geometry of
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the solution, and the need to further investigate the conditions for a disc to transition between
states.

A comment on the cyclic nature of the unsteady solutions

Finally, we note that the cyclic nature of the unsteady solutions, as displayed in Figure 7.7
for both hourglass and slanted-like states, may be a manifestation of the MRI in the upper
atmospheric regions of the disc. We will explore this effect more fully in Chapter 10.



Chapter 8

Conclusion to Part II

In this Part, we have developed a formalism to compute the radially local effects of non-ideal
MHD effects coupled with inclination, the By torque of an outflow and large scale radial
gradients on disc dynamics through the use of a multiscale asymptotic approach. Using
semi-analytic methods, we investigated the flux transport due to inclination and outflow first
at the shearing box order, and then at the Guilet & Ogilvie order (Guilet and Ogilvie, 2012),
which also allows the computation of the additional contributions from large scale radial
gradients. Our findings from both models are qualitatively similar, and we examined the
trends of inclination and outflow driven flux transport and their variation with the three non-
ideal MHD effects. By developing approximate analytic models, we gained insights into how
diffusivities are coupled with the various other parameters in facilitating flux transport, and
derived simple relations for estimating this. We then confirmed the validity of the solutions
of our semi-analytic models in the small mass outflow regimes they were meant to represent
using numerical shearing box solutions in PLUTO, before using the same numerical method
in extending our investigation to regimes where a mass outflow is significant.

Our main findings include:

1. Stable disc configurations arise from having a strong field (low β0) and high diffusivity
values, while weak field and low diffusivities give rise to unstable configurations
characteristic of MRI channel modes.

2. In the positive polarity case, where ηH(Bz ·Ωx) > 0, all diffusivities are stabilising,
while the Hall effect becomes destabilising in the anti-aligned case.

3. Outward inclination of the poloidal field coupled with Ohmic and ambipolar diffusion
both drive radially outward flux transport which increases roughly linearly with diffu-
sivity, while the Hall effect coupled with outward inclination reduces the flux transport
rate but does not reverse its direction.
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4. When the toroidal field in the disc is small compared to the overall field, By torque-
driven flux transport is not significantly affected by the presence of Ohmic and ambipo-
lar diffusion, but is significantly enhanced when the Hall effect is present. In the high
β0, high diffusitivity limit common to protoplanetary discs, this scales roughly linearly
with ηH and the surface toroidal field strength. All By torque-driven flux transport is
radially inward, as would be expected from advection due to the accretion flow caused
by vertical removal of angular momentum in the outflow. When the toroidal field in the
disc is large, the flux transport behaviour with Ohmic and Hall coefficients remain the
same, while it is reversed in the ambipolar case, as the "Hall-like" component of the
ambipolar term dominates over the "Ohm-like" component, and acts in the opposite
direction to the Hall term.

5. When a vertical mass outflow is significant, discs with parameters that are predicted to
lead to instability by the vz = 0 semi-analytic models may instead have stable solutions.
This points to a possible link between strong mass outflows as a stabilising factor for
otherwise unstable discs.

6. A vertical mass outflow does not alter the overall trends in flux transport for the
hourglass (quasi-)steady states uncovered in our semi-analytic models, while Hall drift
in the negative polarity case contributes in an opposite way to the flux transport of the
positive polarity case.

7. Most discs initially settle into the standard hourglass configuration assumed in our
semi-analytic models. Discs that are unstable in the hourglass configuration eventually
transition to asymmetric states with slanted character that are either stable or have
periodic variations. The stable slanted solutions have much larger outflow rates
than their quasi-steady hourglass counterparts, while the flux transport rates are also
drastically different.

8. Discs with Ohmic resistivity and significant Hall drift in the positive polarity configu-
ration are more prone to transitioning to asymmetric slanted-like steady states, while
discs with ambipolar diffusion instead of Ohmic resistivity are more likely to remain
in the hourglass steady solution.

8.1 Implications, model limitations and future directions

One important implication of our results is the need to further investigate the interplay
between Hall drift and a wind outflow in facilitating flux transport. Bai (2016), who attempted
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to present a framework of global protoplanetary disc evolution incorporating the latest
advances in protoplanetary disc research, found disc evolution to be largely dominated by
wind-driven processes, while viscous spreading is suppressed. He noted that the timescale
of disc evolution is largely governed by the global flux evolution in the disc, and admitted
that an understanding of this and in particular of how the Hall effect affects magnetic flux
evolution is still lacking. To bridge this gap, a more detailed way of modelling the wind
outflow in the presence of the Hall effect than our simple prescription of a non-zero surface
Bφ would be required, where disc boundary conditions are formally matched to the Blandford
& Payne solutions. Our current work also separates out the different effects contributing to
the flux transport rate as if they were independent of and isolated from each other, when in a
real disc, they are likely to be present in varying degrees, and also are connected with each
other. Modelling the combined outcome from the various effects will therefore require a
self-consistent way of determining their presence and relation with each other. The feasibility
of an approach taking into account these concerns, tailored for the flux transport problem,
should be examined in future work.

The question of how to model asymmetrical solutions both numerically and semi-
analytically should also be looked into. In addition to the asymmetric solutions we uncovered
in Chapter 7, disc solutions with vertical symmetry breaking have also been observed in
many recent local (Bai and Stone, 2013b; Lesur et al., 2014; Simon et al., 2015) and global
(Bai, 2017; Béthune et al., 2016, 2017) disc simulations. They have drastic contrasts in
their overall flux transport and mass outflow rates compared to their standard symmetric
counterparts. It would therefore be worth investigating the conditions that lead to symmetry
breaking, on which we will make a start in Part III. It would also be instructive to develop a
semi-analytic model that can adequately model the properties of asymmetric discs in future
work. Currently, switching the even-odd symmetry of the variables completely would yield
the trivial result of zero net flux transport in our local models, as the transport from the
bottom and top parts of the disc will cancel each other out. Modelling the flux transport
meaningfully in such context therefore would require careful thought.

Future investigations should also seek to implement more realistic diffusivity profiles,
such as those used in these simulations (Bai, 2017; Béthune et al., 2016, 2017). The
flux transport mechanism reported in Suriano et al. (2018) is heavily dependent on the
variation on the ambipolar diffusivity in the disc, and involves a time-dependent periodic
flux concentration processes. This and other processes will have to be investigated through
shearing box simulations that give us insight into how the disc develops over time before
reaching equilibrium. We will begin working towards this goal through our more carefully
calculated diffusivity profiles in Chapter 11, while acknowledging there are still many
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uncertainties in the underlying processes affect the diffusivity parameters in protoplanetary
discs.

Finally, it would be good to combine these local models into a global flux evolution
framework, such as done by Guilet and Ogilvie (2014), Okuzumi et al. (2014) and Takeuchi
and Okuzumi (2014). The main challenge resides in the fact that Hall/wind-driven flux
transport requires knowledge of the disc surface toroidal field, while the models in the papers
mentioned only required the calculation of the poloidal field structure which is more readily
determined through the Biot-Savart law. Careful modelling of the global wind solution is
required, and should be looked into in a future investigation. In the absence of a magnetic
wind, the Hall effect (when ηH(Bz ·Ωx) > 0) reduces the radially outward flux transport
rate induced by Ohmic and/or ambipolar diffusion coupled with an inclined field. Hence
we should expect the protoplanetary discs where the Hall effect is present, where the field
is aligned with rotation, and where no outflow is launched, to settle into a more highly
magnetised steady-state solution than those previously calculated.

To summarise, this Part represents an initial effort toward modelling flux transport in
protoplanetary discs incorporating all three non-ideal effects, inclination of the large scale
field, outflow and the presence of large-scale radial gradients. At present, we have focused
on the local transport in the disc, with a range of parameters characterising the contribution
from each effect, and in our semi-analytic models assumed a quasi-steady equilibrium state.
Future work would need to address more fully the time-dependent aspect of disc evolution,
and also consider the flux transport globally under more realistic physical parameters for
better comparison and understanding to the results of present and future protoplanetary disc
simulations.



Part III

Symmetries of magnetised discs and
winds





Chapter 9

Introduction to symmetries of magnetic
winds

An interesting aspect of protoplanetary disc magnetic winds brought out by Chapter 7 as well
as by recent simulations in the literature is the symmetry of the disc and wind structure about
the mid-plane. Traditional models of magnetised discs assumed an ‘hourglass’ symmetry
of the magnetic field about the mid-plane (see Figure 9.1), where the poloidal field is
purely vertical at the mid-plane and bends away from the star above and below. Shearing
generates toroidal fields of opposite signs across the mid-plane, while the horizontal velocity
components have the same signs on both sides of the disc, consistent with there being a net
accretion flow. However, early local simulations of protoplanetary discs have shown that a
‘slanted’ symmetry state can also develop, where the poloidal field is slanted in one direction
at the mid-plane, bending in opposite directions above and below the disc, and a significant
toroidal field of a single sign also develops encompassing the whole disc (Bai and Stone,
2013a; Lesur et al., 2014). This slanted symmetry was later confirmed to occur not only
in local simulations (which inherently do not distinguish between the radially inward and
outward directions in relation to the star), but also in global simulations. The same features
as the local slanted solution were observed in the disc region and extending to the lower
atmosphere, before (in some cases) a kink occurs in the upper atmosphere bending the field
in the half of the disc that is slanted towards the star back outwards (Bai, 2017; Béthune
et al., 2017; Riols et al., 2020). In both local and global cases, the properties of the wind and
the disc are significantly affected by which symmetry the solution takes. In the local scheme,
a slanted symmetry solution implies no net accretion or magnetic flux transport because of
a cancellation of the contributions from the upper and lower halves of the disc. For global
solutions, even in cases where the field eventually bends back outwards from the star in the
upper atmosphere, both the disc wind and accretion flow are significantly changed (becoming
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Fig. 9.1 Cartoon illustrating the two disc symmetries found in local simulations. The dotted
line denotes the mid-plane, while the blue lines show the shapes of the poloidal magnetic
field lines. These have also been found in global simulations.

highly one-sided), and the overall radial transport of vertical flux is also greatly affected (Bai,
2017; Béthune et al., 2017).

Thus far, there has been no agreed explanation for the development of the slanted
symmetry state. Previous authors (Bai, 2017; Béthune et al., 2017) have invoked non-
ideal MHD effects such as the Hall-shear instability (Kunz, 2008), which arises from the
presence of Hall drift, to explain the development of the strong radial and toroidal net flux
characteristic of the slanted solution. Others (Gressel et al., 2020) have suggested that it could
be a manifestation of corrugation of the mid-plane by the vertical shear instability (VSI)
(Urpin, 2003; Urpin and Brandenburg, 1998). However, settling to the slanted symmetry
state was also observed in global simulations where Ohmic and ambipolar diffusion were the
only non-ideal effects present (Gressel et al., 2020), and even in purely Ohmic (Rodenkirch
et al., 2020) or ambipolar (Riols et al., 2020) discs. The latter simulation also uses a
cooling timescale that prevents the growth of the VSI, thus ruling it out as necessary for the
development of the slanted symmetry.

A mechanism that has been suggested to affect the disc wind configuration is the role of
the MRI in the wind generation process (Ogilvie, 2012; Suzuki and Inutsuka, 2009; Suzuki
et al., 2010). The MRI is a shear-induced instability which converts rotational energy in
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the disc to magnetic energy by amplifying the horizontal fields (Balbus and Hawley, 1998).
Lesur et al. (2013) first did a detailed investigation of the link between the MRI and magnetic
winds using local simulations, and showed that large-scale channel modes could naturally
produce steady outflows in the nonlinear regime. A further investigation by Riols et al. (2016)
uncovered how these modes can also drive wind cycles with periodic outbursts in discs near
the MRI marginal stability boundary. Since MRI channel modes naturally take either a
slanted or hourglass symmetry about the mid-plane (Gammie and Balbus, 1994b; Latter et al.,
2010; Sano and Miyama, 1999), they may also have a link to the wind configurations that
we see in protoplanetary disc simulations. Past work on wind-MRI interactions has so far
focused on the ideal MHD regime (Lesur et al., 2013) and much stronger fields (Riols et al.,
2016) than are usually considered in protoplanetary discs (Guilet and Ogilvie, 2014; Wardle,
2007). In this Part, we aim to see if such interactions are also relevant in the non-ideal MHD
weak field regime more suitable for modelling protoplanetary discs. We would like to find
out to what extent large-scale MRI dynamics may influence the launching and configuration
of magnetic disc winds, and how the wind in turn feeds back on the development of the
MRI. Our ambition ultimately is to characterise and predict what disc symmetries and wind
solutions may develop based on the different MRI modes being excited, and to provide a
greater understanding into the development of the slanted symmetry steady wind seen in
global simulations. We would also like to examine how factors such as disc magnetisation
may affect the evolution and outcome of disc configurations.

For that purpose, we performed radially local 1D vertical shearing box simulations of
stratified discs with a net vertical magnetic field using the PLUTO code. Although not
all physical processess (such as turbulence) are present because of its 1D and local nature,
the model is nevertheless sufficient to capture the large-scale channel modes we are after.
Another advantage of a local model is that we can explore a much wider parameter space
and run simulations for much longer than global ones, allowing us to access the long-term
outcomes of the wind. Chapter 10 explores the case when only Ohmic resistivity is present,
which simplifies the physics and is also relevant to the inner regions of protoplanetary discs
where it is the dominant non-ideal effect. Chapter 11 extends the study to discs where all three
non-ideal effects are present, and uses more realistic ionisation prescriptions to calculate their
coefficients at different radii from the star. Each Chapter in this Part is self-contained, while
a general conclusion summarising the results from both Chapters is presented in Chapter 12.





Chapter 10

Wind-MRI interactions: Ohmic
resistivity only

As slanted symmetry profiles have been reported even in simulations with only Ohmic
resistivity (Rodenkirch et al., 2020), we begin by restricting the non-ideal physics we
consider in the same way, to identify the minimum ingredients required for the disc to adopt
the different wind symmetries. While Hall drift and ambipolar diffusion also have significant
impact on protoplanetary disc dynamics (Bai, 2015; Lesur et al., 2014), their anisotropic and
nonlinear nature makes it much harder to isolate and evaluate their effects, and we relegate
their study to the next Chapter. In fact, an Ohmic only regime may also be appropriate
for the inner disc regions where it is significantly stronger than Hall drift and ambipolar
diffusion (Bai, 2011; Wardle, 2007). Finally, we used targeted triggering of MRI modes
through our initial conditions to better understand their effects on the wind topology. Using
this approach, we examined whether the history of the disc is important to the intermediate
and long term outcomes of the wind solution, and assessed the varying importance of MRI
modes of different morphologies.

This Chapter is organised as follows: In Section 10.1, we describe the model and justify
our use of the 1D local scheme. In Section 10.2, we explain our setup, particularly the tall
boxes we used as well as our modelling of the non-ideal physics. Section 10.3 details the
initial conditions we used for the targeted triggering of MRI modes, the different categories
of wind solutions we found: cyclic, transitive and steady, as well as a brief description of
their evolution and their dependence on disc parameters. In Sections 10.4, 10.5 and 10.6, we
investigate and propose the mechanisms behind the cyclic and transitive states and saturation
to the steady state wind respectively. We summarise our results in Section 10.7, and discuss
how they relate to wind solutions found in other simulations and possible astrophysical
applications.
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10.1 Model and equations

We use the standard Cartesian local shearing-sheet description (Goldreich and Lynden-Bell,
1965) to investigate the behaviour of a radially local patch of the disc. The x, y and z
coordinates represent the radial, azimuthal and vertical directions respectively. We assume
that variables do not vary in the horizontal directions (∂/∂x,∂/∂y = 0), motivated by the
laminar vertical 1D profiles found in both local (Bai, 2013) and global simulations (Bai,
2017; Bai and Stone, 2017). This assumption inevitably reduces the complex physics that
may occur in a real disc, but may be sufficient to capture the essential mechanisms that
influence wind launching.

For simplicity, we assume an isothermal disc with equation of state p = c2
s ρ , where cs

is the sound speed and is uniform in the domain. The system of equations governing the
development of the density ρ , velocity v and magnetic field B under these approximations is
then (Ogilvie, 2012)
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where η is the Ohmic diffusivity, and is allowed to vary with height, and ν is the kinematic
viscosity. Bz is a constant parameter of the 1D model, because of flux conservation. We can
define H = cs/Ω as the standard hydrostatic scale-height of the disc, while our unit of time is
given by Ω−1. The source term ς(z, t) in the continuity equation represents an artificial mass
injection that replenishes mass lost to the wind. In a real disc, this mass would be replenished
by radial flows from neighbouring parts of the disc, but these depend on radial gradients
and curvature effects that are not represented in the shearing sheet model. The various mass
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replenishment schemes used in this paper are outlined in Section 10.2.2 and their effects on
our results discussed in Section 10.3.4.

As noted in Riols et al. (2016), the shearing box gravity term gz =−Ω2z is only appro-
priate when the vertical scales of interest are small compared to the disc radius. However,
when z ≫ H, this term actually completely suppresses vertical outflow from the box, as the
gravitational potential well becomes infinite. We modify the vertical gravity in the same
manner as Riols et al. (2016), taking into account the finite distance from the central object
such that

gz =− GMz
(r2

0 + z2)3/2 =−Ω
2H

ẑ
(1+δ 2ẑ2)3/2 , (10.7)

where ẑ ≡ z/H and δ = H/r0, with r0 being the radial location from the star. Note that δ = 0
brings us back to the standard shearing box gravity term, leading to the Gaussian hydrostatic
density profile. When 0 < δ < 1, hydrostatic equilibrium is obtained by integrating with
respect to z the z momentum equation,

dρ

dẑ
=− ρ ẑ

(1+δ 2ẑ2)3/2 , (10.8)

giving us a modified solution

ρ(z) = ρ0 exp
[
− 1

δ 2

(
1− 1√

1+δ 2ẑ2

)]
, (10.9)

where ρ0 is the density at the mid-plane. Using binomial expansion, this solution can be
shown to tend towards the standard Gaussian hydrostatic equilibrium when δ ẑ ≪ 1, in other
words when z ≪ r0. When z → ∞, ρ(∞) differs from the Gaussian solution by settling at a
floor value of exp(−1/δ 2) instead of vanishing to 0.

Similar modified gravity terms to ours have been used by other authors in both modelling
accretion (Matsuzaki et al., 1997) and galactic discs (Kuijken and Gilmore, 1989). McNally
and Pessah (2015) went a step further to include the effect of vertical shear for their globally
vertical horizontally local model for accretion discs. Although a full treatment should in
theory also account for the variation of the radial gravity term at large scale heights, as a
simplification we assume that this is not important for the flow dynamics we are studying,
and only apply the vertical gravity modifications in our 1D models. Recent observations
of T-Tauri stars suggest that the typical δ for protoplanetary discs is between 0.03 and 0.2
(Andrews et al., 2009; Gräfe et al., 2013). Unless otherwise stated, we chose δ = 0.033 in
our simulations to represent a typical protoplanetary disc.
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10.2 Numerical setup and parameters

10.2.1 Numerical code

We used the shearing box module of the astrophysical code PLUTO, developed by Mignone
et al. (2007) (see Section 7.1 for more details). The fluxes here are computed by the HLLD
Riemann solver unless otherwise stated, and we found no significant differences to our results
when we varied the solver. Time stepping is done using a Runge-Kutta method of third order.

10.2.2 Boundary conditions and mass replenishment

Simulations are done for the whole vertical extent of the disc, with both sides of the disc
mid-plane explicitly calculated. This is distinct from the approach of Riols et al. (2016),
where symmetry was imposed with respect to the disc mid-plane and simulations were
restricted to the upper half of the disc. Our approach allows us to explore geometries different
from the classical hourglass symmetry wind-launching configuration, as discussed in the
introduction. Local simulations (Bai, 2015; Bai and Stone, 2013a, 2014) found that discs
may settle into the slanted symmetry, whether in the ideal MHD regime or not. Although
such a configuration would not be physical at large z, as it would imply that one part of the
field is bending towards the star, recent global simulations (Bai, 2017; Bai and Stone, 2017;
Béthune et al., 2017; Gressel et al., 2020) have suggested that in certain radial locations such
a symmetry is indeed adopted throughout the vertical extent of the disc region before field
lines bend back in the normal manner away from the star further up in the atmosphere. Hence
it will be useful to relax the symmetry assumptions of the solution to explore what factors
contribute to the disc adopting a particular configuration.

Following Bai and Stone (2013a), we use an outflow boundary condition in the vertical
directions that has zero vertical gradient for velocity and magnetic fields, while density is
attenuated to account for vertical gravity. This attenuation significantly reduces the excitation
of spurious artificial waves near the boundary. Lesur et al. (2013) noted that care is needed
in implementing the boundary conditions for the magnetic field, as they found that using a
zero vertical gradient condition prevented an outflow from being launched. However, this
was not found to be the case in our simulations. An explanation for this may be that all the
outflows in our simulations are super-Alfvénic, and therefore much less sensitive to the field
configuration at the boundary than some of the sub-Alfvénic outflows they were investigating.
Nevertheless, we ran simulations using both a vertical field boundary condition, and fixing
the horizontal fields to finite values at the boundary, and found them to have negligible impact
on our results.
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In a global disc, radial redistribution of the material would replenish mass in a local
patch that is lost to the wind. We mimic this in our local model by injecting mass near the
mid-plane at each numerical time step. In the system of equations, this is equivalent to adding
a source term in the mass conservation. We use the same source term as prescribed by Lesur
et al. (2013),

ζ (z, t) =
2ṁi(t)√

2πzi
exp
(
− z2

2z2
i

)
, (10.10)

where ṁi(t) is the mass injection rate, and zi controls the width of the region about the
mid-plane where most of the mass replenishment occurs. For most simulations, we replenish
the mass such that a constant disc surface density Σ =

∫ Lz
−Lz

ρdz is maintained in time, but we
also explored the effect of other schemes, described in Section 10.3.4. It is important to note
though that such injection of mass breaks momentum conversation in the shearing box, as the
mass is injected with the local velocity (injecting momentum so that the velocity stays the
same), while it leaves the domain with a different velocity at the upper and lower boundaries.
The loss of horizontal momentum from the box (including that from a torque exerted at
the vertical boundaries by the Maxwell stress), drives a mean horizontal flow, which was
interpreted by Riols et al. (2016) as the accretion flow for the x component, together with a
small departure from Keplerian motion for the y component.

10.2.3 Box size and resolution:

As pointed out by previous authors (Fromang et al., 2013; Lesur et al., 2013), the choice
of box size (which we label here as 2Lz, with Lz being the maximum height above the
mid-plane) and boundary conditions can have a strong effect on the wind solution obtained.
This is especially the case when critical points of the wind flow (see definitions in Ogilvie
(2012)) lie outside the simulation domain, allowing information to be propagated from the
box boundaries back to the disc and affecting its behaviour. For the weak field strengths
we consider in our simulations, the slow magnetosonic point and Alfvén point are always
crossed within the box as long as Lz ≫ H. However, like the simulations of Riols et al. (2016)
and in line with other studies (Lesur et al., 2013), we are unable to find solutions that pass
through the fast magnetosonic point. Hence it is possible that the vertical boundaries still
have an effect on the nature of our wind solutions, although we find that the properties of our
steady wind solutions converge with increasing box height, while the phenomenology of the
wind behaviours is also independent of box size as long as Lz ≫ H (see Section 10.3.4).

Another cause of non-convergent wind properties with increasing box size in traditional
shearing boxes is the nature of the standard shearing box gravity term being linear in z,
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leading to the gas being trapped in an infinite potential well. This effect has largely been
mitigated through the use of the modified gravity term we have adopted from Riols et al.
(2016), and becomes negligible when Lz/H > 1/δ , which in our case of δ = 0.033 translates
to Lz > 30H.

We mainly use two box sizes for our simulations. The first is a relatively ‘small’ box of
Lz = 12H, while the second is a ‘large’ box with Lz = 70H. The latter is chosen as it satisfied
the considerations outlined above with the exception of crossing the fast magnetosonic
point for the parameter space we explore. However, running simulations in such tall boxes
is costly, as they require a large number of grid points to resolve the dynamical features
appropriately. We find that the phenomenological behaviour of the wind states in the tall box
are the same even in much smaller boxes. Since our interest in this paper is in gaining an
understanding into the mechanisms behind the generation of these wind states, rather than
trying to predict the precise properties of real discs, we use the ‘small’ box simulations to
further our exploration of the parameter space and their effects on disc behaviour.

For the Lz = 12H small boxes, we use 200 grid points to resolve the mid-plane region
|z|< 2H, while the two atmospheric regions |z|> 2H are spanned by 500 points each. For
large boxes with Lz = 70H, we also use 200 grid points to resolve the mid-plane region
|z|< 2H, while the atmospheric regions |z|> 2H have 2400 grid points each. The finer grid
in the mid-plane region is motivated by small-scale structures that arise more naturally near
the mid-plane. We vary the resolution to make sure that solutions are not drastically affected
by the values we have chosen.

10.2.4 Physical parameters

The surface density in all simulations is fixed to be equivalent to that of a hydrostatic disc
with mid-plane density ρ0 = 1, which sets our unit of mass. We use units such that µ0,cs and
Ω are set to 1. The magnetic field Bz, independent of z and t in the shearing box formulation,
is derived from the mid-plane βz (ratio of gas pressure to magnetic pressure),

β0 ≡
2µ0c2

s ρ0

B2
z

, (10.11)

which we set as a dimensionless parameter for the problem.
As we are primarily interested in investigating how the general shape of the diffusivity

profile affects the phenomenology of the disc and wind, it is not necessary for us to solve the
complex chemical networks to determine a precise profile for the resistivity. In a protoplane-
tary disc the resistivity is high near the mid-plane but much lower in the atmosphere, where
the signficant ionisation due to FUV radiation and X-ray heating lead to near-ideal MHD
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conditions. To mimic this situation, we use a simplified analytic η profile which has a fixed
constant value in the disc mid-plane region, before decaying exponentially to a floor value in
the atmosphere. Mathematically, this is given by

η =

 η0, |z|< zc,

(η0 −η∞)exp [−5(|z|− zc)]+η∞, |z|> zc.
(10.12)

η0 and η∞ are the mid-plane and atmospheric diffusivity values respectively, while zc sets the
height at which the transition occurs. To estimate suitable values to use for our simulations,
we used the ionisation model of Lesur et al. (2014) coupled with accounting for dust-enhanced
recombination from Béthune and Latter (2020) (where the ionisation fraction further lowered
by a factor of 102) to yield mid-plane η0 values of 5.8 H2Ω and 1.07 · 10−2 H2Ω at disc
radii R = 1 and 5 AU respectively. Ionisation calculations (in the absence of FUV radiation)
indicate an increase in the ionisation fraction, xe, by a factor of between 102 and 104 from
the mid-plane to the atmosphere at these radii (see figure 1 of Béthune and Latter (2020)).
This in turn corresponds to a decrease of between 10−2 and 10−4 in the resistivity, which
varies as x−1

e . When FUV is included, this increases the ionisation fraction in the upper
regions beyond |z|= 4H even further to near ideal MHD conditions. For most simulations,
we used η0 = 2 H2Ω, representative of the conditions in the inner disc, while we varied the
floor value η∞ from 1/200 that of the mid-plane value (for most simulations), down to 0 to
examine the effects of ideal MHD atmospheric conditions on the solutions we obtain. zc is
set to 2H for all simulations, which follows the ionisation depth for FUV photons estimated
in Simon et al. (2015) for the η∞ = 0 case, while this cut-off height also corresponds well
with the ionisation profile of Béthune and Latter (2020) in the absence of FUV when the
higher η∞ value of 0.005 H2Ω is used.

We mostly assume inviscid discs, motivated again by the laminar protoplanetary disc
solutions recovered in local and global simulations. For simulations with large boxes
(Lz > 30H), we found that strong numerical instabilities appear near the upper and lower
boundaries in our steady wind solutions. In order to avoid these instabilities, we followed
the prescription of Riols et al. (2016) by introducing a small, uniform dynamic viscosity ρν ,
such that the kinematic viscosity ν ∝ 1/ρ has the value 10−5 in the mid-plane but increases
with |z|. We found that while the general shape of the solution is not changed significantly by
this addition, numerical instabilities are indeed smoothed out when the viscosity is included.
As noted in Riols et al. (2016), this prescription might also be physically relevant in the
isothermal case, as ν can be estimated as the product of the thermal velocity and the mean
free path, which scales as 1/ρ (Maxwell, 1866). For our runs with Lz < 30H we used a zero
viscosity treatment, while we only added the artificial viscosity for runs with Lz > 30H as
the solutions tend towards the steady state.



152 Wind-MRI interactions: Ohmic resistivity only

Fig. 10.1 Initial bx profiles, see Section 10.3.1 for their analytic forms.

10.3 Categorisation of wind solutions

10.3.1 Initial conditions and obtaining a solution

It is not practical to initialise a simulation in a tall box with a small δ value from a hydrostatic
equilibrium state, because the very low density in the atmosphere leads to a very high Alfvén
speed that forces the time-step to be extremely small. We used two different methods to
obtain wind solutions (which have much higher atmospheric densities than the hydrostatic
state) in our extended boxes. The first loosely follows the prescription of Riols et al. (2016).
We start with a medium box of size Lz = 15 and a high δ value of 0.33, which leads to a floor
density of 1.028 ·10−4 in the modified hydrostatic equilibrium. The disc is embedded in a
vertical field of a strength corresponding to the value of β that we wish to investigate. Small
random perturbations in the velocity profiles are then introduced, which are amplified by the
MRI instability. As the wind solution develops, the density profile becomes more spread out,
reaching above 10−3 at the boundaries. After the solution has reached steady state, we slowly
reduce δ back to our desired value of 0.033, while we extend the size of the box gradually by
uniform extrapolation of the boundary values, and allowing each model to settle into the new
equilibrium wind solution. Using this method, we were able to obtain the slanted symmetry
steady states described in Section 10.3.2. However, unlike in Riols et al. (2016), we did not
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find that the wind solution bifurcates to a periodic outflow as the box size was increased
beyond a certain height. Rather, solutions initiated with steady state profiles of smaller boxes
always relaxed to the same type of steady state profiles, with converging wind properties.

The second method began with a medium box of size Lz = 12 and the desired δ value of
0.033. Again, we used a hydrostatic disc threaded by a vertical field as the initial condition,
except this time we arbitrarily added a small fraction of the mid-plane density to the entire
disc, to avoid the high Alfvén speeds that lead to impractically small time-steps in the
atmosphere. For most simulations, a value of 10−4 in code units was chosen, motivated by
the typical density measured by Riols et al. (2016) at their upper disc boundaries.

Instead of using random velocity perturbations, we started the simulations with three
different profiles of Bx to examine the excitation of MRI modes of different symmetries, and
its effect on the wind solutions obtained. The first, denoted ‘bxSINmod’, has the form

Bx(t = 0) = 0.01Bz sin [kzz]exp(−z2/2), (10.13)

where kz = 2π/Lz is the wavenumber of a complete wave across the vertical domain, giving
the initial profile an hourglass symmetry about the mid-plane. The second profile, ‘bxGauss’,
explores perturbations with a slanted symmetry, and is simply a Gaussian function,

Bx(t = 0) = 0.01Bz exp(−z2/2). (10.14)

The third, denoted ‘bxASYM’, explores the effect of starting with an asymmetric profile
about the mid-plane but with an hourglass geometry in the atmosphere, motivated by the
asymmetric steady state profiles observed in both local and global simulations (Bai, 2017;
Bai and Stone, 2013a). It has the form

Bx(t = 0) = 0.01 f (z)Bz exp(−z2/15), (10.15)

where

f (z) =


−cos(kz(z+3.5)/2), z <−3.5

cos(π(z+2.5)), −3.5 < z <−2.5

1, |z|< 2.5

cos(kz(z−2.5)/2), z > 2.5

. (10.16)

A plot showing these initial Bx profiles is shown in Figure 10.1 (note the lower case ‘b’
denotes normalisation with respect to Bz).

Under these conditions, we found that solutions relax, depending on the initial conditions
used, to one of two cyclical states that persist for 100s of orbits, before a growing mid-plane
perturbation slowly transited the disc to the steady state profile of slanted symmetry obtained
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using the first method. We restarted simulations from both the cyclic states and the slanted
symmetry steady state in taller boxes with constant extrapolation to examine the effect of the
extended vertical domain. We found that the same type of wind behaviour is retained, with
the solution converging to an extended version of either the cyclic or slanted symmetry steady
wind solutions of the smaller box runs. For the cyclic solutions, an eventual convergence to
the steady wind solution is then again observed after a timescale of 100s of Ω−1.

Note that the runs are named such that the numbers after ‘b’ denote the β0 value, while
the letter after the underscore denotes the initial bx profile, with ‘A’ for ‘bxASYM’, ‘S’ for
‘bxSINmod’ and ‘G’ for ‘bxGauss’. Unless otherwise labelled in the name, all runs have
δ = 0.033, ẑi = 0.5 and Lz = 12H. For example, b1e5_S has β0 = 105 and is initiated from
the ‘bxSINmod’ profile, while b200_G has β0 = 200 and is initiated from the ‘bxGauss’
profile.

10.3.2 Phenomenology of wind solutions

In our simulations, the wind solutions obtained can be put into four general types: (i) a
cyclic solution with hourglass (odd-z in bx,y) symmetry about the mid-plane, (ii) a cyclic
solution with slanted (even-z in bx,y) symmetry about the mid-plane, (iii) a cyclic to steady
wind transition state, and (iv) a steady wind solution with slanted (even-z in bx,y) symmetry
about the mid-plane. All four types of behaviour can be seen in the space-time plots of by in
Figure 10.2. In general, simulations begun with a slanted symmetry initial condition (the
‘bxGauss’ profile) move into the slanted symmetry cyclic state, while those began with an
hourglass symmetry initial condition (the ‘bxSINmod’ profile) settle into the odd symmetry
cyclic state. Simulations started with the ‘bxASYM’ profile were found to settle into the
hourglass symmetry cyclic state. After 100s of Ω−1, a mid-plane perturbation exits these
cyclic states through an intermediate and short-lived transition state to the slanted symmetry
steady state. After that, no further qualitative changes were observed. Below, we give a more
detailed description of the properties of each of the four states and their behaviour.
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Fig. 10.3 Space-time plot of bx (top) and by (bottom) for the hourglass symmetry cycles
observed in run b1e5_S.

Hourglass symmetry cycles

The hourglass symmetry cycles are long-lived time-dependent states where horizontal mag-
netic fields bx and by have opposite signs across the mid-plane, and the horizontal velocity
fields vx and vy are even in z. As an example, we consider here the cyclic solutions obtained
for run b1e5_S, with parameters β0 = 105, δ = 0.033, ẑi = 0.5, and initiated from the ‘bxS-
INmod’ profile. Figure 10.3 shows the space-time variation of the horizontal magnetic fields
bx and by, where the lower case b denotes that they have been normalised with respect to the
vertical field strength. Owing to the hourglass symmetric nature of the solutions, we only
describe the upper half of the disc where z > 0.

The period of the cycle is roughly equal to 50Ω−1, i.e. eight orbital periods, and is
divided equally into two half-cycles where the dynamics are identical with the exception of
the horizontal magnetic and velocity fields being oppositely signed. The vertical outflow,
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Fig. 10.4 Space-time plot of ṁw for the hourglass symmetry cycles observed in run b1e5_S.
The white line indicates the sonic point, while the magenta line marks the Alfvén point(s).

ṁw, defined as the average from the boundary at one side of the disc, is not affected by this
change of sign, and repeats itself every half-cycle with a period of roughly 25Ω−1. A strong
and brief outburst roughly 6 times the quiescent value at the boundary marks the end of each
half-cycle. We observe a slow and minute sinusoidal oscillation of the mid-plane horizontal
fields about 0 with the same period as the overall cycle. The horizontal magnetic fields bx and
by are always anti-correlated with each other, and drive radial accretion or decretion flows by
vertical transport of angular momentum through the ByBz stress depending on the sign of the
fields. Figure 10.4 shows the spatial variation and temporal evolution of the vertical outflow
in time. The location zAz of the Alfvén point, defined as the point above which vz exceeds
vAz, fluctuates between z = 4H and z = 5H. It is interesting to note here that zAz is generally
lower than the sonic point zs, a consequence of the relatively weak-field regime explored in
our simulations. The fast magnetosonic point is mostly approached at the simulation domain
boundary, but sometimes crossing briefly occurs in the simulation domain though without
significant impact, due to fluctuations in the bx and by profiles as the outbursts pass through
the atmosphere.

The quiescent stage outflow is largely steady, with ṁw ∼ 1.4× 10−4 in code units. In
the atmospheric region z ∼ 3.8−7.5H, the inclination of the poloidal field with respect to
the vertical axis is significantly larger than the critical value of 30◦ (which is a necessary
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but not sufficient criterion for a magneto-centrifugal outflow), allowing a steady wind to be
launched from z ∼ 4H and gas to be accelerated along field lines by the magneto-centrifugal
effect. The outflow is then further enhanced by the magnetic pressure gradient in the upper
atmosphere before it leaves the box.

The outburst is initiated around z ∼ 4H at t = 8Ω−1, when bx and by are both significantly
growing in the same region and are about to reach their maximum field strengths in the
half-cycle. The shape of the growing horizontal fields consists of a mid-plane region where
they are flat and near zero, before developing into two peaks of opposite signs in quick
succession beyond z ∼ 3H. The peaks of bx and by are then accelerated upwards out of the
box, with the outburst following the point where the magnetic pressure gradient is greatest
between the maximum and minimum peaks of bx and by. This indicates that the gas parcel
is pushed out of the box by the horizontal magnetic field peaks leaving the vertical domain.
The outburst lasts for a duration of ∼ 3Ω−1, and at its peak has ṁw = 8.55× 10−4, up to
6 times the quiescent value. However, the amount of gas ejected per outburst, 7×10−4, is
still only a tiny fraction of the overall disc mass Σ = 1, and compares with 2.9×10−3 that
is ejected over the longer quiescent interval between the outbursts. The peaks in bx and by

start decreasing in magnitude as they move beyond z ∼ 4.7H. At this time, a peak of the
same sign slowly develops behind the lower altitude peak at around z ∼ 4H which eventually
becomes the higher altitude peak for the next outburst, while a peak of the opposite sign
begins developing at z ∼ 3H, becoming the new lower altitude peak. The next half-cycle
then repeats the same dynamics, except the horizontal magnetic and velocity fields have now
effectively switched signs compared with the previous half-cycle.

Slanted symmetry cycles

Like the hourglass symmetry cycles, these solutions are long-lived time-dependent states,
but with bx and by being even in z, while vx and vy are odd. In almost all properties, these
cycles are identical to the hourglass symmetry cycles, with the bx and by having small
amplitudes and a nearly flat profile in the disc region (|z|< 3H), while in the atmosphere,
cycles of outburst up to 6 times the mass flux of the quiescent steady outflow are driven
by the same form of bx and by peaks growing and moving up out of the vertical domain
of the box. From Figure 10.2, we can see that the slanted and hourglass symmetry cycles
under the same simulation parameters share the same period of around 50Ω−1 for β0 = 105,
δ = 0.033, ẑi = 0.5, and Lz = 12, a property which is also observed for other sets of simulation
parameters. This suggests that the high diffusivity in the mid-plane region effectively cuts
off magnetic communication between the upper and lower halves of the disc, and since these
cycles are connected to and driven by the growth and movement of peaks in bx and by, there
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is (similar to Bai and Stone (2013a)) an equal chance of adopting either symmetry unless it
is already set by the initial condition.

Cyclic to steady wind transition state

The hourglass and slanted symmetry cycles typically survive on a timescale of 100s of Ω−1,
with a weaker vertical field leading to a longer survival time. In fact, for runs initialised
using ’bxSINmod’ with β0 = 105 and 106, the hourglass symmetry cyclic solutions show
no sign of transitioning throughout the entire run time of the simulation up to 700Ω−1.
Transition to the intermediate state begins with a small mid-plane bulge in bx which gets
sheared into a corresponding mid-plane bulge of opposite sign in by. This bulge then grows
slowly but exponentially in magnitude, as shown in Figure 10.5 for runs b1e5_A (solid
lines) and b1e5_G (dashed lines). As long as the magnitude of the bulge in by is lower than
that of the by peaks of the hourglass/slanted symmetry cycles, there is minimal effect of
the growing mid-plane dynamics on the properties of the cyclic wind states, with both the
magnitudes and periods of the cycles on the whole unaffected. However, once the mid-plane
by has reached the magnitude of maximum wind cycle by peak strength, the period of the
half-cycle lengthens or shortens if the sign of the mid-plane by is of the same or opposite
sign of the higher altitude by peak respectively. The nature of the solution then changes to
that of a steady wind over the next half-cycle, and the cycles stop. As in the case with the
hourglass/slanted symmetry solutions, the mid-plane region disconnects the two sides of the
disc, and each side of the disc effectively behaves independently from the other and interacts
with mid-plane region individually.

Slanted symmetric steady state

For our simulations in Figure 10.2 with β0 = 105, at around t = 300Ω−1, the exponential
growth of the mid-plane bx and by slows down, and a steady wind solution is reached by
t = 500Ω−1. Throughout the saturation stage, the disc has a slanted symmetry with bx and by

even in z and of opposite signs, while vx and vy are odd in z. bx and by have large amplitudes
(> 1) and a flat profile near the mid-plane, but ∂zbx,∂zby ̸= 0 at the z boundaries of the box.
A plot showing the profile for β0 = 105 is shown in Figure 10.6. bx has amplitude maxima in
the region where the bx peaks are observed to start growing in the cyclic phase (|z| ∼ 3.15H),
while by has its amplitude maximum at the mid-plane. The flat mid-plane profiles of bx and
by may be attributed to the large diffusivities there suppressing bending of the field lines,
while the absolute strength of the magnetic field at the mid-plane corresponds to β = 7.95. bx

and by in the atmosphere always tend towards zero as |z| increases. The Alfvén point occurs
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Fig. 10.5 Plot of mid-plane bx (red) and by (blue) against time for b1e5_A (solid lines) and
b1e5_G (dashed lines).

at around |z| = 2.7H, while the fast magnetosonic point is approached at the simulation
domain boundary but not crossed. A strong, steady and slow wind of up to 10 times the ṁw

value of the quiescent state in the cyclic phase is launched.

10.3.3 Dependence on the vertical field

We varied the vertical field strength from β0 = 102 to β0 = 106 and examined its effect on
both the cyclic state of hourglass symmetry, and its transition to the slanted symmetry steady
wind solution.

Cyclic state

The variation of several key properties of the cyclic solution with β0 are shown in Figure
10.7. For the cyclic states, as β0 decreases, the mid-plane horizontal fields bx and by become
less flat, as the increased magnetisation allows a stronger current to flow there despite the
higher resistivity. However, most of the bending still occurs above the region |z| ∼ 3H,
while the positions of the peaks as they grow are similarly located in the lower atmospheric
region where η decreases dramatically to the atmospheric value. The period of the cycles
generally shortens as the magnetisation is increased, although it reaches a minimum value at
around β0 = 500 beyond which the period increases slightly again. Both the outburst and
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Fig. 10.6 Vertical profiles of bx and by for the slanted symmetry steady state with β0 = 105.

quiescent outflow strength increase as the magnetisation increases, and the vertical flow also
becomes quicker with a lower sonic point. While the Alfvén point continues to vary within
each half-cycle, the range of heights over which it varies stays roughly the same between
4H < |z|< 5H from β0 = 105 to 5000, before drastically increasing and covering the whole
simulation domain by β0 = 200. The height from which the outburst is launched is always
located at the lower atmosphere, although it decreases from |z| ∼ 4.7H to |z| ∼ 2.8H as the
magnetisation is increased from β0 = 105 to 200.

Transition state

For the transition to the slanted symmetry steady wind, an increase in field strength leads
to less time spent in the cyclic state of hourglass symmetry, and a more rapid transition.
Empirically, we find that the mid-plane bx and by bulge initial growth rate satisfies the relation

σ ≈ 100.41 ·β−0.44
0 , (10.17)

where σ is the growth rate measured before saturation flattens out the exponential growth
profile. Figure 10.8 plots σ against β0 and the empirical fit we are able to obtain. This
roughly gives us σ ∝ Bz, suggesting that the mid-plane growth mechanism is magnetic in
nature. The tendency for more strongly magnetised discs to more rapidly transit to the slanted
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Fig. 10.7 Variation of wind properties with β0 for the hourglass symmetry cycles. The left
panel shows the period of the cycle. The middle panel shows the average quiescent outflow
strength (red) and average outburst strength (blue). The right panel shows the minimum
(blue) and maximum heights (red) of the Alfvén point(s) in the cycle.



10.3 Categorisation of wind solutions 163

Fig. 10.8 Plot of log10 of exponential growth rate (y) against log10 of β0 (x) with best fit line.

symmetry steady wind solution has been previously noted in the simulations of Bai and Stone
(2013a), with the difference between our simulations being that they used more realistic
diffusivity profiles, while ambipolar diffusion was also included. However, they did not
examine the mechanism behind the transition, and only attributed it as possibly due to an
increased difficulty in maintaining a strong current layer in the lower atmosphere (as seen in
the cyclic stage with the bx and by peaks) as the field strength is increased.

Steady wind

Finally, we examine the variation of the properties of the steady state slanted symmetry wind
with disc magnetisation, which are plotted in Figure 10.9. The mass loss rate decreases with
decreasing field strength and follows a power law of the form

ṁw ∝ β
−0.51
0 . (10.18)

This is again similar to the relation obtained in Bai and Stone (2013a) for their slanted
symmetry steady winds, where the index has a value of −0.54. Both of these values roughly
give us ṁw ∝ Bz, and again suggest that the vertical magnetic field still has a crucial role to
play in the launching of the outflow despite being dominated by the horizontal fields in the
wind-launch region. The value of the overall mid-plane β decreases slightly from 7.95 for
β0 = 105 to 1.15 for β0 = 102, but its magnitude remains of order unity. The Alfvén point
generally falls with magnetisation, and flattens off beyond β0 = 5000 to zAz ∼ 2.6H.
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Fig. 10.9 Variation of wind properties with β0 for the slanted symmetry steady state. Left:
position of zAz, middle: outflow strength ṁw, right: plasma β value taking into account all
three magnetic field components at the mid-plane.
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Table 10.1 Comparison between Lz = 12H and Lz = 70H runs. For the cycles, the lower ṁw
value is for the quiescent outflow, while the higher one is for the outburst, whereas the Alvén
points indicate the range within which they vary.

Property 12H cycles 70H cycles 12H steady 70H steady
Period (Ω−1) 50 57.6 NA NA
ṁw (10−4) 1.4, 8.6 0.48, 5.3 10 6.02
zAz (H) [3.7, 5.0] [3.6, 5.6] 2.65 3̃
bx,max 5.0 8.5 0.804 0.86
by,max 18 23 107 121
βmid NA NA 7.95 5.54

10.3.4 Robustness of the wind behaviour

Variation of box sizes

In order to confirm that our wind behaviour is not a result of our small box size of Lz = 12H,
we also ran simulations for our β0 = 105 simulations in boxes with Lz = 70H. We found that
the same types of wind behaviour are preserved. A comparison of the key properties between
runs at the two different scale heights is listed in Table 10.1.

For the hourglass symmetry cycles, we found that both periodicity and mass loss rate
converge as box size is increased. Our Lz = 70H cycles have a period of 57.6 Ω−1 compared
with a period of 50 Ω−1 in our Lz = 12H runs. Both the quiescent and outburst outflow
strengths are slightly weaker in the taller box, which is expected as a larger box means a
greater gravitational potential for the gas to overcome to escape from the box. The bx and
by peaks in the cycles are slightly increased in magnitude as Lz increases, and is probably
because of the reduction of the escaping flux at the boundaries due to the smaller mass
outflows (Suzuki et al., 2010). The overall cycle dynamics, including the relative positions of
the wind launch point, the bx and by peaks, and the variations of the Alfvén points, remain
roughly the same.

For the transition state, the mid-plane bulge exponential growth rate converges as box size
is increased and is only slightly modified, with σ = 0.2 for our Lz = 70H runs, compared
with σ = 0.18 for Lz = 12H.

The steady wind state shows similar trends in convergence to the cyclic state, with a
slightly lower mass loss rate in the taller box as we would expect, and fractionally higher
horizontal magnetic field strengths. Otherwise, there is no qualitative difference between the
steady wind profile of the smaller box compared with the larger one.

Overall, the fact that most properties of our wind solutions were only slightly altered
between our Lz = 12H and 70H simulations justifies our usage of the more computationally
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cost-friendly Lz = 12H runs to explore the parameter space, and determine the mechanisms
responsible for the different types of wind behaviour we have observed.

Mass replenishment

In order to check that the forms of the wind solution are independent of the mode of artificial
mass injection, we used two different mass replenishment schemes: narrow and wide. The
narrow scheme is the one used in our simulations unless otherwise stated, applying the source
term of Lesur et al. (2013) and Riols et al. (2016), as presented in equation 10.10, with
zi = 0.1 such that mass is injected a narrow |z|< 0.1H region about the mid-plane. The wide
scheme, denoted ‘mrw’, injects mass in proportion to the local density instead, and was used
in the simulations of Bai and Stone (2013a). For both injection schemes, mass replenished at
each time-step is equivalent to the mass lost at the boundaries, so that the total mass of the
disc is kept constant.

We found that while the four types of wind solutions still occur when we used the ‘wide’
scheme, there are small differences (< 10%) to the locations of the bx,y peaks in both the
cyclic phases and the slanted symmetry steady state. In general, their locations are higher up
in the disc, which may reflect the fact that under the ‘wide’ scheme, the disc’s density profile
is more spread out than the ‘narrow’ scheme, as mass is injected at every point rather than
simply the mid-plane region. This would then imply that the locations of the growth peaks
are tied to the relative strength of the vertical field to the density at that point. Another small
but notable difference between the ‘wide’ and ‘narrow’ schemes is in the cycle dynamics.
In our runs for β0 = 105, while the bx and by peaks in the ‘narrow’ scheme are always
monotonically moving away from the mid-plane, the peaks in the ‘wide’ scheme have a brief
period of small oscillations of its position in the region 3H < |z|< 4.75H during which its
growth rate also decreases and increases, before the same rapid acceleration out of the box
occurs once they pass beyond |z| ∼ 4.75H. Again, we attribute this difference to the fact that
the ‘wide’ scheme artificially changes the density profile across the whole disc, and points to
the sensitivity of the cycle mechanism to the density profile in the 3H < |z|< 4.75H region
as the reason for the small oscillation in the bx and by peaks’ position. Both the mass loss rate
and periodicity also only slightly altered by the ‘wide’ scheme and its effect is not significant.

To see whether the outburst behaviour is linked to the sudden increase in mass replen-
ishment at those times, we did a run for our β0 = 105 simulation in the cycle phase, where
we set the mass replenishment to be constant in time instead. We found that cycle dynamics
is unaffected by this change, which is not surprising given that even though the outbursts
have significantly higher mass loss rates than the quiescent stage, they are still small when
integrated in time compared with the total disc mass. We also did a few runs where there is
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no mass replenishment at all, and found the cycles and periodic outburst behaviour to still
persist in the absence of mass injection, and as long as the overall mass loss is not significant,
there is no notable quantitative difference between the solutions.

Ideal MHD in the atmosphere

One caveat in our model with regard to mimicking real protoplanetary discs is in the diffu-
sivity profile used. In particular, for most of our runs we lower the Ohmic diffusivity to be
0.5% that of the mid-plane value in the atmosphere, whereas one might argue that it would
be more realistic to have ideal MHD due to the high FUV ionisation there. To test whether
an ideal MHD atmosphere would make a difference to our results, we conducted four runs
for our β0 = 105 simulations, initialised from each of the four wind solution states, but with
η∞ set to 0.

We found that while the general dynamics of the cyclic states is not changed, the peaks
in bx and by become more pronounced, with bx,max = 11.3 and by,max = 23.2 compared with
bx,max = 5.0 and by,max = 18.0 when η∞ = 0.005η0. The period of the cycles also becomes
shorter, with T = 20Ω−1 instead of T = 50Ω−1 previously. The range of heights through
which the Alfvén point moves also becomes lower, from 4H < |z|< 5.5H to 2.89H < |z|<
4.11H, and a lower height above which the peaks will be significantly accelerated up out
of the disc. The outburst becomes about 3 times stronger than in the more diffusive case,
corresponding to the greater density of the lower launch point in the disc.

For our slanted symmetry steady state run, we observe almost no quantitative difference
for the background steady state when η∞ = 0. A very small (period of 73Ω−1) perturbation
in bx sometimes occurs near the twin peaks at |z| ∼ 3H, which gets rapidly advected upwards
out of the disc, but is generally negligible compared with the profile.

Overall, this points to our simulation runs with the more diffusive atmosphere as still
being able to capture the essential behaviour of the wind solutions as we would expect from
the more realistic ideal MHD atmosphere. The more enhanced peaks in the ideal MHD
atmosphere runs point towards the sensitivity of the mechanism behind the cyclic state to the
resistivity profile of the disc, an effect which will be explored in greater detail in section 10.4.

Half disc simulations

We conducted a number of half disc simulations with 0 < z < Lz only where we enforced
the traditional hourglass symmetry through equatorial symmetry conditions at the mid-
plane, with ρ(−z) = ρ(z), vx,y(−z) = vx,y(z), vz(−z) = −vz(z), Bx,y(−z) = −Bx,y(z) and
Bz(−z) = Bz(z). Unsurprisingly, only hourglass symmetry cycles were recovered in this
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regime, with the exact same properties as the ones in our full disc simulations. In cases where
the growing mid-plane bulge rapidly disrupts the cyclic stage, we used data from these half
disc simulations to analyse the behaviour of the cyclic phase.

10.4 Investigation of the wind cycle mechanism

In light of the various types of wind solutions recovered in our simulations, there are several
questions we would like to address: What is the mechanism behind the wind cycles? What
causes the transition from a cyclic wind to a steady one? Why is there a mid-plane bulge in
bx and by that grows exponentially, and what causes it to saturate in the slanted symmetry
steady state? We begin in this section by investigating the wind cycle mechanism, while
Section 10.5 discusses the transition from cycles to steady wind, and Section 10.6 addresses
the growing mid-plane bulge and its saturation.

We present here a more detailed description and interpretation of the cyclic solutions
based on the hourglass symmetry run obtained for β0 = 105, δ = 0.033, zi = 0.5H. However,
it should be noted that the same dynamics is also present across the cyclic solutions, and that
the same mechanism is at work.

First, we analyse the region 3H < |z|< 4H, where new bx and by peaks are observed to
grow at the beginning of each cycle. We hypothesise that this growth is a manifestation of an
MRI mode, which becomes active in this region. It is a well known result that the MRI is
largely suppressed by Ohmic diffusion when the Elsasser number

Λ ≡
v2

Az

ηΩ
(10.19)

is smaller than 1 (Sano and Miyama, 1999). In the mid-plane region under the resistivity
profile we have chosen, Λ at the mid-plane is of order 10−5, and increases to only 10−3 at
z = 2H, far too small for the MRI to be active. However, this changes dramatically at around
z ∼ 3H, where the diffusivity is rapidly reduced to its atmospheric value, coupled with a
rapid decrease of the local density. At z = 3H, we have Λ ≈ 0.04, but by z = 3.9H, Λ has
reached 1, and continues to increase with height. We should therefore expect the MRI to
cause growth of bx and by as |z| approaches 3.9H, and a significant increase in growth rate
when |z| surpasses it, which is indeed what we observe in the behaviour of the peaks. We
identify the relevant MRI modes as those with vertical mode number n = 2 or 3, in which
the profiles of bx and by each have a single node on each side of the mid-plane, the n = 3
mode also having a node at the mid-plane. These modes are usually discussed in the ideal
MHD context, but given the mid-plane region is highly resistive, the node in the mid-plane
for n = 3 is of less importance, because the mode is largely suppressed in this region. The



10.4 Investigation of the wind cycle mechanism 169

Fig. 10.10 Plot of bx peaks strength against time. The blue line is for peaks that are maxima,
while the magenta line is for peaks that are minima, and the analysis is done only for the
upper half of the disc.

high mid-plane resistivity effectively shuts down communication between the two sides of
the disc for this mode, allowing each side to have the further from mid-plane peak as either
positive or negative, depending on the history of the half-disc profile. This may explain
why the hourglass and slanted symmetry cycles share the same periodicity, as the MRI-dead
mid-plane causes neighbouring modes of opposite symmetry (in particular the n = 2 and
n = 3 modes) to become degenerate and share the same growth rate, and also to have the same
eigenfunction and share the same mode shape, with the exception of the overall symmetry
about the mid-plane. Figure 10.10 shows how the peaks of bx, both primary and secondary,
grow with time in the upper half of the disc over around one and a half cycles. By applying
fits, we verified that the initial growth of these peaks is indeed exponential, with a measured
growth rate σ = 0.18. However, as the peaks themselves rapidly reach saturation in the
non-linear regime and are of the same order of magnitude as the background, we do not
expect the modes to be recovered in a linear mode analysis, which ignores time-dependent
terms and assumes a steady background.

Having established that the growth of the bx and by peaks is mostly due to the n = 2
or 3 MRI mode, we now turn to examine what contributes to their saturation and eventual
acceleration up out of the disc. The Alfvén point marks the height above which vertical
advection dominates over MRI dynamics. We would therefore expect MRI modes excited
above the Alfvén point to be rapidly advected out of the disc, preventing further growth.
Figure 10.11 gives detailed space-time plots of the density (top), vertical velocity (middle)
and vertical Alfvén velocity (bottom) over one half-cycle, with the Alfvén point(s) marked
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with magenta dots. At the beginning of a half-cycle (which we define as after the previous
outburst has been clearly emitted from the disc surface), the Alfvén point is at around
|z|= 4.5H. A slow wind is present upwards of |z| ∼ 4.5H, which is driven by the gradually
weakening but nevertheless significant magnetic pressure gradient from by of the previous
half-cycle. This weakening magnetic pressure gradient correspondingly leads to a lower
vertical velocity in the slow wind region, and an overall small increase in height of the
vertical Alfvén point.

As this is happening, the n = 2 or 3 mode is active at a lower height of around z ∼ 3.15H,
with a primary peak in bx beginning to grow there of opposite polarity to the bx profile in the
upper atmosphere, which becomes the secondary peak of the mode. The corresponding by of
opposite sign is generated through shearing of bx. Figure 10.12 plots snapshots of the bx and
by profiles over the half-cycle, as well as the horizontal magnetic pressure proportional to
B2

x +B2
y . At the same time, the disc undergoes a slow expansion of its density profile, which

we attribute to the disc moving back to hydrostatic equilibrium, having lost significant mass
from the |z| ∼ 4H region in the previous outburst. This expansion slowly pushes the MRI
mode further upwards into the atmosphere, while the background vertical velocity remains
roughly constant. As the bx and by peaks grow however, the node between adjacent peaks
results in a magnetic pressure trap that begins to confine gas from the upper layers of the disc
and move them higher up with the mode into the atmosphere. Eventually, by about 2/3 of
the way into the half-cycle, the increase in density in the lower atmosphere decreases the
vertical Alfvén speed there so much that a second Alfvén point forms at a lower altitude
of z ∼ 3.75H below the bx and by peaks. As a result, advection now dominates the mode
dynamics, accelerating the peaks upwards into the upper atmosphere and stopping their
growth. As the MRI peaks are accelerated upwards, the large magnetic pressure dip between
them continues to trap gas in that region, and moves it upwards out of the disc with the peaks.
This then forms the outburst gas parcel that marks the end of the half-cycle as it leaves the
simulation domain. Finally, with the loss of the gas parcel, the overall density profile is
reduced back to the more compact state at the start. The half-cycle then repeats itself with
the horizontal field variables taking values of the opposite polarity, and the old primary peak
profile becomes the secondary peak of the new half-cycle.

10.4.1 Changes in the dynamics with increasing magnetisation

Here, we explain the changes in cycle dynamics with disc magnetisation described in Section
10.3.3 using our mechanism. Even for the strongest field strength we used of β0 = 200, the
Ohmic Elsasser number Λ is still very much < 1 in the mid-plane region, and only reaches
the critical value of 1 for bx and by peak growth at |z|= 3.27H. Hence the two sides of the
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Fig. 10.11 Space-time plots zooming into the MRI-wind region in run b1e5_S over one
half-cycle. The magenta lines plot the Alfvén point(s).
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Fig. 10.12 Time snapshots of bx (top), by (middle) and the horizontal magnetic pressure
B2

x +B2
y (bottom) in run b1e5_S over one half-cycle. The two blue dotted lines in each plot

mark the locations z = 3.15H and z = 3.75H.
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disc are still ‘disconnected’ from each other concerning the n = 2 or 3 MRI modes, and
the peak growth mechanism driving the cycle dynamics continues to occur in the lower
atmosphere. The period of the cycles is tied to how rapidly the n = 2 or 3 mode peaks
grow sufficiently to trap gas in the disc surface layers and move them upwards to cause the
occurrence of the second Alfvén point. Given a stronger vertical field, we would expect
the growth rate of the mode to increase as long as the field is not so strong that the MRI
is suppressed (Latter et al., 2010). Hence it is not surprising that the period of the cycles
decreases as the magnetisation increases. The stronger vertical field also lowers the region
in which Λ > 1, allowing the n = 2 or 3 mode peaks to develop lower in the disc where the
density is higher, resulting in a stronger outflow in the outbursts. The outflow in the quiescent
stage is enhanced slightly by the stronger magnetisation, as the horizontal fields are stronger
and therefore can produce a steeper magnetic pressure gradient. Perhaps the greatest change
to the cycle dynamics, as seen in Figure 10.7, is the range of heights that the Alfvén point
traverses as the magnetisation is increased. We will address the issue of the maximum height
the Alfvén point reaches in the next subsection, but we confirmed that the same mechanism
is indeed at work in driving the cycles by observing that the outbursts are launched at the
times when the second Alfvén point appears. The position of this Alfvén point does not
necessarily matter, as long as it is lower than the bx and by peaks, which is the case for all
our simulations.

10.4.2 The absence of higher order modes

One question concerning our explanation of the cyclic state mechanism is why we only
see the excitation of the n = 2 or 3 mode, while higher order modes are absent. For discs
with β0 > 103, we hypothesise that it is due to the generally low height (|z|< 6H) that the
Alfvén point reaches even at its maximum in the cycle, thus higher order modes with multiple
peaks, some of which would be located above this height, are advected rapidly out of the disc
before any significant development. We confirmed this theory by repeating our runs in this
regime from the cyclic state but with vz arbitrarily set to 0 at each time-step. We see the rapid
development of modes with multiple peaks in bx and by in the upper atmosphere not present
before, which quickly outgrow the original n = 2 or 3 mode peaks in the lower atmosphere.
For discs with lower β0, on the other hand, the Alfvén point varies over a much wider range,
and reaches the box boundary and beyond for significant parts of each half-cycle. In these
cases, we attribute the lack of higher order modes to the fact that they are shut down by the
higher magnetisation, as seen in figure 2 of Lesur et al. (2013). We tested this hypothesis by
again setting vz to 0 for discs in the low β0 regime, and confirming that the n = 2 or 3 modes
in these cases are indeed the fastest growing modes.
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10.4.3 Comparison with the cycle dynamics of Riols et al. (2016)

In the vertical 1D MHD simulations of Riols et al. (2016), they also observed the formation of
wind cycles. These were mostly done in the ideal MHD regime, but were shown to be robust
even in the presence of Ohmic resistivity. Here we would like to examine the differences
between their work and ours, and why our wind cycle mechanism is distinct from the one
proposed by Riols et al. (2016).

First, we note the very different magnetisation regimes that are considered in our papers.
While their work focuses on a narrow range of strongly magnetised discs with 2.51 < β < 16,
ours explores a much more weakly magnetised regime of 102 < β < 106. The corresponding
strengths in the horizontal magnetic fields Bx and By mean that their discs are much more
significantly compressed in certain phases of the cycle than ours, as indicated by the middle
and bottom panels of their Figure 2. Consequently, while compression of the disc by the
growing magnetic perturbations is the major cause of the shutting down of the MRI modes in
their paper, our discs are still expanding when the MRI mode stops growing and is advected
out of the disc. In a way, the MRI in our discs never truly shuts down, but rather, as one
mode is advected out of the disc due to having crossed the Alfvén point, a new one develops
in its place at a lower altitude and with the opposite polarity. Often this happens at the same
time as the mode advection, hence making it difficult in our case to define when exactly a
half-cycle ends or begins. In contrast, the cycles of bx and by in the Riols et al. (2016) paper
are always well separated in time, and the modes preserve the same sign across cycles. There
is also a significant phase shift in time between the bx and by maxima in the Riols cycles,
whereas ours are always in phase.

Second, the nature of the outbursts themselves is significantly different. While ours are
due to material trapped by the peaks of the magnetic perturbation being advected of the disc,
forming a short, concentrated burst, theirs involves expansion of the disc atmosphere over a
longer timescale pushing material out of the disc, forming a more spread out wind maximum.

Third, even though Riols et al. (2016) ran simulations with a resistive background, the
values they used correspond to a minimum Λ of 1.7, which is not sufficient to significantly
suppress the MRI. They also used a uniform diffusivity profile, and so would not have the
situation as we do of a mid-plane region that effectively cuts off communication between the
two sides of the disc, at least concerning the cycle dynamics.

To summarise, the cycles we recover here are significantly different from the ones found
by Riols et al. (2016). Rather than compression-driven as in the Riols cycles, where a strong
magnetic compression shuts down the MRI and its weakening then allows the disc to be
MRI active again, our periodic cycles are rather advection-driven, where the rapid advecting
of MRI modes out of the disc is the mechanism that prevents its further growth, and the
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Fig. 10.13 A sketch of the proposed cycle mechanism. To be compared with figure 14 of
Riols et al. (2016).

weakening of this advection allows the growth of the mode for the next half-cycle. Figure
10.13, which gives a sketch of our cycle mechanism, should be compared with figure 14 of
Riols et al. (2016) to illustrate the differences between our cycles.

10.5 Mechanism for the transition to a steady wind of slanted
symmetry

The aim of this section is to explain what causes the transition from a cyclic wind to a steady
one of slanted symmetry. We do not address the origin of the mid-plane bulge itself, which
we will examine in detail in the next section. The key questions we would like to answer are:
Why does the final half-cycle where the horizontal fields of the atmosphere are of the same
sign as the mid-plane bulge lengthen? What is the dynamics of the final shortened half-cycle
and of the shutdown of the cycles?

We first recall our conclusion from the previous section that the cycles are primarily
driven by the MRI combined with vertical advection, and that they depend on a delicate
arrangement of the relative positions of the Alfvén points and the peaks of the fast growing
n = 2 or 3 MRI mode in the atmospheric region. As noted in Section 10.3.2, the cycles
pretty much continue as before until the magnitude of by of the growing mid-plane bulge is
comparable to the maximum magnitude that is observed in the by peaks of the cycles. We
now expand on why this is indeed a significant turning point in the disc dynamics from cycles
to a steady wind, and how this transition occurs. To illustrate the dynamics of this process,
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we focus on the transition as observed in the run b1e5_G, where β0 = 105, Lz = 12H and
δ = 0.033. The transition is from the slanted symmetry cyclic state to the slanted symmetry
steady wind, but the same mechanism can also be individually applied to each half of the
discs transiting from the hourglass symmetry cycles.

10.5.1 Lengthening of the final half-cycle of the same sign

First, we address the penultimate half-cycle where bx and by begin with the same sign as the
mid-plane bulge at t = 205 Ω−1. The top two panels of Figure 10.14 shows time snapshots
of the bx and by profiles respectively. As in a normal half-cycle, new bx and by peaks of
opposite sign to the current state grow in the |z| ∼ 3.5H region of the more compact disc,
becoming more visible from t = 215 to t = 235. At this stage in the cycle, we expect the
disc to be expanding slowly from its more compact form by the gas pressure gradient, having
lost mass in the wind launch region from the previous outburst. However, this time, as the
peaks need to be connected to the mid-plane bulge, an additional magnetic pressure gradient,
particularly from by, is formed at |z| ∼ 3.5H, which expands a much larger portion of the
disc with the growing mode. The disc, on the other hand, is prevented from just spreading
out into the atmosphere by another magnetic pressure gradient with opposite sign just below
the new bx and by primary peaks. This results in a much more expanded disc than before, as
can be seen by comparing the first panel of Figure 10.11 and Figure 10.15. The dramatic
increase in the height of the disc surface (which we define to be where ρ = 5×10−3) leads
to a much higher Alfvén point in the atmosphere despite its slow increase with respect with
the disc surface as in a normal half-cycle. This is further enhanced by the extended time
it takes for the new n = 2 or 3 peaks of opposite sign at the disc surface to gain sufficient
strength to trap and move the gas parcel of the upper disc layers to cause the formation of the
second Alfvén point beneath the peaks, as the mode peaks have to overcome the initial bias
of opposing sign due to the mid-plane bulge. As a result, the half-cycle is lengthened, before
the same outburst behaviour as the cyclic stage occurs due to advection once the second
Alfvén point forms beneath the mode peaks.

10.5.2 Shutdown of the cycles

Having addressed the lengthening of the second last half-cycle, we now turn to the final
shortened half-cycle and the shutdown of the cycles. As the disc returns to the more compact
state at t = 248Ω−1, the new by peak that develops is now of the same sign as the mid-plane
bulge, but is completely dwarfed by the mid-plane bulge strength. The bx and by peaks
fail to develop sufficiently to cause a node to appear between the primary and secondary
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peaks. As a result, no magnetic pressure barrier develops to keep the disc from spreading out
without check into the atmosphere. At the same time, a large magnetic pressure gradient,
particularly from By due to connection of the profile with the now overwhelming mid-plane
bulge, pushes gas in the disc upwards, dramatically altering the density profile as can be
seen from t = 248Ω−1 onwards in Figure 10.15. This in turn causes a dramatic decrease of
the Alfvén speed in both the lower and upper atmosphere due to the significant increase in
density, and consequently the Alfvén point falls dramatically and becomes lower than the
n = 2 or 3 MRI mode active region. The n = 2 or 3 mode which is responsible for driving the
cycles is shut down, with the mid-plane bulge completely taking over the bx and by profiles.
The nature of the wind also changes to that of a slow wind launched from the disc by the
magnetic pressure gradient of by.

10.6 Growing mid-plane bulge of the horizontal fields and
its saturation

10.6.1 MRI linear stability analysis

To confirm our suspicion that the slowly but exponentially growing mid-plane horizontal fields
are indeed a manifestation of the n = 1 MRI mode, we perform a normal mode analysis on the
equations looking for axisymmetric modes with frequency ω . However, unlike the approach
used in previous studies where simplifying assumptions are made about the background field
variables, we allow for the background to take any values that form a valid disc solution, but
not necessarily a steady state. The normal mode analysis solves the linearised equations,
ignoring any time-dependence of the background state. The results should be meaningful if
the background evolves sufficiently slowly, or perhaps if the variations (e.g. cyclic) in the
background can be averaged over.

We assume the standard ansatz

δQ = δQ(z)exp(−iωt) (10.20)

for the perturbations, where Q denotes a generic field variable. The growth rate is then given
by the imaginary part of ω , which we label as σ ≡ Im(ω). The full set of linearised equations
are listed in Appendix E. Since the mid-plane bulge in bx and by grows on a significantly
longer timescale (100s of Ω−1) compared with the period of the wind cycles (1−10 Ω−1),
we attempt to account for the growth rate of the bulge by computing the linear mode of each
snapshot of the simulation as the background, and averaging the growth rate computed over
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Fig. 10.14 bx and by time snapshots over the transition in run b1e5_G. The top two plots
depict the lengthening of the final half-cycle of the same sign as the bulge, while the bottom
two plots depict the shutdown of the cycles.
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Fig. 10.15 Space-time plot of density zooming into the MRI-wind region in run b1e5_G.
The magenta line depicts the Alfvén point.

the cycles to find the effective exponential growth rate that would be observed. Assuming
that the mode growth has the form

f (t) ∝ exp [γ(t) t], (10.21)

where γ(t) is the instantaneous growth rate at a particular point in time, then it can be shown
that the effective growth rate over the time period from t1 to t2 would be given by (see
derivation in Appendix F)

γeff =

∫ t2
t1 γ(t)dt

t2 − t1
. (10.22)

To solve the system of equations, we used a pseudo-spectral method with a decomposition
on Whittaker cardinal functions (i.e. sinc functions) (Boyd, 2001). The Whittaker functions
naturally tend to 0 as |z| → ∞. The equations were recast in terms of momenta δm ≡ ρδv
instead of velocity δv to help with the convergence of solutions. In the case of the standard
shearing box in the absence of an outflow, the magnetic fields are force-free in the low-density
region at large |z|, and we would expect δBx and δBy to tend to 0. ρ would also tend to 0
following the isothermal Gaussian profile as |z| → ∞, allowing us to use the momenta δm
instead of velocity as suitable variables for the Whittaker basis. However, in our case, things
are complicated not only by the presence of an outflow, but also the modified gravity. The
density, ρ , no longer tends to 0 as |z| → ∞, and we should not expect either B or m to tend
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to 0 at the boundaries. Nevertheless, as we are applying the solver to the simulation region
of |z|< 12H, ρ is still very small at the boundary and of the order 10−5. Although δB and
δm do not technically vanish exponentially in the regimes we study, our solver was able to
yield consistent results as the resolution was increased. The full set of modified equations
used in our pseudo-spectral method can be found in Appendix E.2. As we have not applied
any simplifying assumptions such as vz = 0 or a pure vertical B field, it is not possible to
reduce the system of six equations (Equations (E.8) to (E.13)) into any simpler form, as is
usually done in other studies of the MRI linear modes (Salmeron and Wardle, 2005; Sano
and Miyama, 1999). We did, however, check that our solver yielded the same results as
previous studies in these simplified regimes, as well as agreeing with the modes calculated in
the vertical field only hydrostatic case using a simple shooting code solver, details of which
can be found in Appendix E.3.

For most of our calculations, we used grids of 2201 and 2301 points over the domain
|z|< 12H to analyse data from our Lz = 12H simulations. Using two different resolutions
allows us to assess the convergence of solutions, and also flags up cases for exclusion when
modes are obscured by numerical oscillations which may be excited in the pseudo-spectral
method by using specific grid resolutions. Generally, the modes showed good convergence,
and no qualitative difference was observed from further increases in resolution. In order to
speed up the calculations and also allow the matrices to be computationally soluble, we used
the assumption that modes take either a slanted or hourglass symmetry about the mid-plane,
reducing the number of elements in each dimension by half. This condition arises naturally
when the background field variables also adopt a slanted or hourglass symmetry about the mid-
plane, but its validity is more dubious in the case when the background is asymmetric. Our
linear analysis is therefore better suited to studying the cyclic states, the steady state solution,
and the early/late stages of the asymmetric transition between the hourglass symmetry
cyclic and the slanted symmetry steady state where there is great semblance to one of the
symmetries, while our results for the middle of the asymmetric transition period should be
treated with caution. It should be noted though that the transition from slanted symmetry
cyclic to slanted symmetry steady state always preserves the slanted symmetry, and there
should not be any symmetry concerns regarding our method of calculation in that case.

10.6.2 Direct analysis of the simulation states

Examining the cyclic states

As the mid-plane bulge begins its growth through amplifying perturbations of bx and by in
the cyclic states, we begin our investigation by applying our linear analysis directly to the
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simulations by using data of our Lz = 12H hourglass symmetry cycle run b1e5_S as the
background disc. As we are primarily interested in whether the slow growing mid-plane
mode can be understood through such analysis, we filtered out modes with an hourglass
symmetry and only included the fastest growing mode with a slanted symmetry. However, it
is interesting to note that the fastest growing modes obtained are almost exclusively of the
slanted nature, with mode shapes resembling that of the growing mid-plane bulge observed.
We attribute the lack of n = 2 or 3 modes to the rapidly changing dynamics of the cycles,
which suggest that the modes are in the non-linear regime, and therefore not captured by our
linear calculations. In order to remove modes obscured by rapid numerical oscillations, we
compared results from two runs with different resolutions and only included modes whose
growth rates differ by no more than 10%. We also applied a fast Fourier transform on the
mode profiles and excluded modes dominated by extremely high frequencies.

We did both calculations where we inputted all the variables from our simulations as the
background state for the linear analysis, as well as ones where only ρ,vz and Bz are included
and the other variables vx, vy, Bx and By are set to 0. The latter calculations, denoted with the
suffix ‘rhovz’, are motivated by the observation in the previous section of the importance of
outflow and change in density profile in affecting the growth of the magnetic fields. Isolating
these variables allows us to examine to what extent they are responsible for the behaviour we
find. Figure 10.16 shows the linearised growth rates calculated from the hourglass cycles in
run b1e5_S where β0 = 105. The blue curve is for calculations with all variables, denoted
‘Full’, while the orange curve is for the ‘rhovz’ case. They both vary periodically with the
phase of the cycles, although apart from the decrease in magnitude from t = 13 Ω−1 up to
the end of the peak at t = 22 Ω−1, both the behaviour and magnitude of the growth rates
are notably different. It is interesting to note that the times when the ‘Full’ case yielded
negligible growth rates for the slowly growing ‘bulge’ mode are when the bx and by peaks of
the n = 2 or 3 mode in the background are beginning to significantly grow again in the MRI
active region of 3.15H < |z|< 4.75H.

The shape of the modes in both the ‘Full’ and ‘rhovz’ calculations highly resembles the
horizontal magnetic fields of the slanted symmetry steady state profile reached at the end
of the simulations. Figure 10.17 shows the horizontal magnetic fields of one of the modes
in the ‘Full’ calculation at t = 22.2Ω−1. Like the slanted symmetry steady state, the profile
has δBx peaks at |z| ∼ 3.15H, and a significantly larger magnitude δBy of the opposite sign
in the mid-plane. We interpret the mode shape to be a result of the instability being active
at |z| ∼ 3.15H leading to the bx peaks there. The strong resistivity at the mid-plane causes
the dense disc region to be linearly stable against the MRI, but the strong diffusion leaks
the bx flux from the MRI active surface layers to the disc, resulting in a significant net bx
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in the mid-plane region. This is similar to the mechanism described in Turner et al. (2007).
Shearing of the bx field then generates the large by that we see until saturation occurs.

When averaged using equation (10.22), the ‘Full’ calculations give an effective linear
growth rate of γeff = 0.0122, while the ‘rhovz’ results give γeff = 0.0155. As we did not
observe any mid-plane bulge growing in the run b1e5_S (see Section 10.3.2), this growth
rate should be compared with the measured initial growth rate of σ = 0.18 in runs b1e5_A
and b1e5_G. While the calculated growth rates are both slightly lower than the measured
growths in the simulations, they are comparable and of the same order of magnitude. The
difference in growth rates may be attributed to the effect of further changes in the background
when the mid-plane bulge is already present and growing. Indeed, when we applied the linear
mode solver using data from the runs b1e5_A and b1e5_G as background discs, we obtained
closer values of γeff = 0.0192 (Full),0.0200 (rhovz) and γeff = 0.0185 (Full),0.0143 (rhovz)
respectively. This strongly suggests that the mid-plane bulge is indeed the result of a slow
MRI mode of slanted symmetry growing on top of the cyclic state background.

Robustness in behaviour across magnetisations

We also repeated the same analysis for simulations with different β0, the results of which
are plotted in Figure 10.20. As can be seen, the calculated linear growth rate and its trend
with β0 closely follows that of the measured initial growth rates. This suggests that the mid-
plane bulge growth is indeed a manifestation of the MRI across the different field strengths
investigated.

Progression to the slanted symmetry steady state

In order to investigate the saturation mechanism, we applied the linear growth rate calculations
to our full disc runs beginning in the cyclic stage (mostly hourglass), right up to them reaching
the slanted symmetry steady states. Figure 10.18 shows a moving average of the growth rates
(over 20Ω−1) calculated from b1e4_G and b1e5_G, with blue denoting the results for the
‘Full’ scheme and orange for ‘rhovz’. We found that they all follow the same pattern. The
linear growth rate varies in magnitude periodically with the cycles in the cyclic stage but
with a moving average γeff value close to the measured growth rate at those times. As the
disc goes through the transition and the cycles shut down, the linear growth rate begins to
gradually decrease in magnitude. During this time, the mid-plane bulge is also observed to
slow down in its growth. Upon saturation to the slanted symmetry steady state, the largest
linear growth rate becomes negative. While the ‘Full’ and ‘rhovz’ calculations have notable
differences in the cyclic stage though yielding similar γeff (see section 10.6.2), their growth
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Fig. 10.16 MRI growth rates obtained using linear analysis on the background fields of the
hourglass symmetry cycles in run b1e5_S. The blue dotted line is for full background, while
the orange dotted line is when only ρ , vz and the background vertical field are included.

Fig. 10.17 Mode at t = 22.2Ω−1 calculated from b1e5_S using the ‘Full’ scheme.
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rates converge as the cycles shut down and the slanted symmetry steady state is reached.
The rate of convergence is quickest for simulations with stronger magnetic fields (β0 ≤ 104).
This suggests that for discs threaded by strong magnetic fields, the slowing of the growth of
the mid-plane bulge and its eventual saturation are mostly due to the changes in the density
profile and outflow, whereas in the case of weak magnetic fields, the mid-plane by also has a
significant effect in slowing the growth of the MRI. The eventual saturation however is still
maintained by the density and outflow modifications, as shown by the convergence of the
two curves as steady state is reached.

The significance of a large by in suppressing the mid-plane bulge growth rate was noted
in the local dispersion analysis of the MRI by Sano and Miyama (1999). In section 3.2
(see also Figures 5 and 6) of their paper, they showed that the maximum growth rate is
decreased as Bφ (equivalent to our By) is increased. They explained this effect by pointing
out that the toroidal field acts as a magnetic pressure on the axisymmetric perturbations,
suppressing the unstable growth. This effect was found to be significant when the azimuthal
Alfvén speed, vAy = |By|/

√
µ0ρ , becomes faster than the sound speed. Figure 10.19 plots

the profiles of vAy in the slanted symmetry steady states for our runs with different β0. As
is clearly shown, the vAy values are of order unity when compared with the sound speed,
with only a small decrease in magnitude as the magnetisation decreases, with the disc region
vAy becoming slightly lower than the sound speed at around β0 = 103. This suggests that
By should indeed have a significant impact in suppressing MRI growth for the range of
magnetisations considered. On the other hand, steady state runs with higher magnetisations
(lower β0) have higher mass outflows and likewise greater changes in their density profiles
(to preserve mass conservation). We therefore hypothesise that the greater mass outflow and
corresponding flattening of the density profile also has an effect of suppressing the mid-plane
MRI growth, and is the dominant mechanism for saturation in the low β0 cases.

10.6.3 The significance of density modification, outflow and azimuthal
magnetic field on the MRI

To assess the importance of outflow, density profile modification, and the azimuthal field in
suppressing the n = 1 mode of the MRI, we used a simplified model where we ignored the
physics of wind-launching, and the backgrounds are comprised of analytic profiles governed
by easy to interpret parameters. For the density, we used a profile of the form

ρ = ρ0 exp(−z2/2)+ρ1

(
|z|

1+ z2

)
, (10.23)
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Fig. 10.18 Plots of linear growth rate against time, calculated from bt1e4_G (top) and
bt1e5_G (bottom).
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Fig. 10.19 Vertical profiles of the azimuthal Alfvén speed (in units of the sound speed) for
runs with different β0, as indicated by the legend.

where ρ0 and ρ1 are parameters governing the normalisation of the density and the flattening
out of the hydrostatic Gaussian density profile due to an outflow respectively. We keep ρ0 = 1
for all our runs so that as before the magnetisation of the disc is set through varying Bz, while
the larger the value of ρ1, the more flattened the profile becomes. The vertical velocity is
calculated through

|ρvz|= ṁw = constant, (10.24)

where ṁw is the outflow rate and is one of our input parameters. It can then be shown in our
model that, for |z| ≫ 1,

ρ ∼ ρ1

|z|
, (10.25)

and

vz ∼
ṁw

ρ1
z. (10.26)

The vertical magnetic field strength Bz is set by the β0 parameters as before, and we used the
same resistivity profile with η0 = 2 and η∞ = 0.01 as in most of our runs. For the azimuthal
field, we set the value of By such that vAy, which we use as the input parameter, is always
constant, and is given by

By =
√

vAyρ. (10.27)
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Fig. 10.20 Plots of log of the time-averaged effective linear growth rate, γ , against log(β0).
Blue is for the case when all variables from the simulations are included as the background,
while red is for when only ρ and vz and Bz from the simulations are included, and all other
variables are set to 0. The growth rates are calculated from full disc simulation runs. The
blue and red lines, whose equations are given by y1 and y2 respectively, are the best fit lines
for the ‘Full’ and ‘rhovz’ results. This plot is to be compared with Figure 10.8 of the growth
rates observed in the simulations.
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All other field variables are set to 0, and we ignore any additional physics that might be
operating in the disc. After the linear calculation, in most cases we extract the n = 1 mode
by restricting our result to the highest growth rate mode of the slanted symmetry, which
we also checked to corresponds to the expected form of a mode with no nodes. When we
reduced ṁw to 0 however, we found that for high β0 discs, the highest growth rate mode
of slanted symmetry is no longer the n = 1 mode as before. This is in agreement with the
calculations of Latter et al. (2010), who showed that as disc magnetisation is weakened, the
highest growth rate mode moves from the n = 1 mode to higher order modes. However, for
the background disc parameters relevant to our study of the saturation to the slanted wind
state (particularly the condition that zAz < 4H), the n = 1 mode is always the fastest growing
mode.

Our results are plotted in Figure 10.21 in the following manner. Each dot corresponds to a
result from a different background profile, with the log10 of the linear growth rate calculated
shown by its colour. Each vertical column of dots has the same set of parameters with the
exception of the mass outflow, which is indicated by the vertical coordinate of the Alfvén
point of the background profile, with a lower Alfvén point corresponding to a larger mass
outflow. The vertical columns are grouped horizontally in clusters according to their β0

values of 102,103,104 and 105. The top plot has clusters of three columns for each β0 value,
where ρ1 varies in the order 0.0005, 0.005,0.05 from left to right, with vAy kept at 0 for
all these runs. The bottom plot has clusters of five columns for each β0 value, where vAy

varies in the order 0,0.1,0.5,0.8,1 from left to right, while ρ1 is always 0.0005 for these
runs. Figure 10.22 plots the variation of the background azimuthal field, characterised by
vAy, against the magnetisation, characterised by β0. The growth rate of the fastest growing
mode is indicted by its colour, but is not necessarily the n = 1 mode, as discussed above.
The columns in the triplet for each β0 value correspond from left to right to the three density
modifications of ρ1 = 0.0005,0.005 and 0.05, while ṁw is set to 0 indicating no outflow for
these calculations.

Effect of density modification

We begin by examining the effect of modifying the density distribution. As the density profile
becomes flatter with a larger ρ1 (moving across the columns within each triplet in the top plot
of Figure 10.21), the linear growth rate of the n = 1 mode decreases for almost all outflow
strengths and disc magnetisations explored. The only exception is the case when there is a
large vAy and no outflow present. We attribute the general trend to the decrease in the Ohmic
Elsasser number Λ in the atmospheric regions as the density profile becomes flatter, since
Λ ∝ 1/ρ . This is turn extends the region over which the quenching effect of Ohmic resistivity
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on the MRI is significant, lowering the overall growth rate. We can see this reflected in the
mode shapes as δBx and δBy vanish at the boundaries less rapidly from the central bulge
as ρ1 is increased. Generally, the effect of density modification corresponds to a 10-fold
decrease in the linear growth rate when the density in the atmosphere is increased 100-fold.
This most likely is a significant contributing factor to the shutdown of the n = 1 MRI mode
in the slanted wind, as the atmospheric density does experience a roughly 100-fold increase
in the simulations compared with that of the cyclic state at all the magnetisations explored.
However, Figure 10.22 shows us that in the absence of outflow and an azimuthal field, a
significant linear growth rate of O(0.1) still remains, so density modification alone is not
sufficient to account for the saturation of the steady wind.

Effect of outflow

The presence of an outflow drastically reduces the linear growth rate when the Alfvén point
zAz is lowered beyond |z| ∼ 3.15H. This corresponds to a strong and dense wind launched
from the lower atmosphere below the δBx peaks of the n = 1 mode, which we suggested
back in section 10.6.2 when coupled with diffusion of the horizontal field to the mid-plane
may be responsible for driving the mode development. Hence, once zAz is lowered below the
peaks, we expect vertical outward advection of the MRI mode to dominate, shutting down
the MRI completely, which is indeed what we find. The behaviour of the MRI when a weaker
wind is present such that zAz > 4H in our background configuration is less clear, and there
are indications that under certain conditions, such as when β0 = 103 and ρ1 = 0.005 (2nd
column of the 2nd cluster from the left of the top plot of Figure 10.21), as the wind weakens,
there may be a brief shutdown of the n = 1 mode before its growth rate is restored to its high
no-outflow value (Figure 10.22). However, as the Alfvén points in the saturation phase of our
simulations is always below |z|= 4H, we can conclude that a strong outflow (zAz < 3.15H)
induced advection of the n = 1 mode does have a critical effect of its eventual shutdown. The
rapid decrease of the growth rate to 0 as zAz < 3.15H is also most prominent for more highly
magnetised (lower β0) discs, a result which is in line with the generally higher Alfvén points
we found for the saturated slanted winds for lower β0 discs.

Effect of azimuthal field

Finally, we examine the effect of azimuthal field strength. As vAy increases from 0 to 1 (left
to right in each cluster of five columns in the bottom plot of Figure 10.21), in the majority
of cases, the growth rate is abruptly and rapidly reduced to 0 as vAy increases beyond 0.8.
There is a limited range of intermediate outflow strengths (where 3H < zAz < 4H) when the
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quenching effect of the azimuthal field on the MRI is less significant, particularly for the
more highly magnetised discs. However, for the parameters that most closely resemble the
saturated states of our simulations, the effect of vAy ∼ 1 is indeed significant in contributing
to the shutdown of the MRI. This, coupled with our analysis in Section 10.6.2, suggests that
the saturation mechanism is largely a combination of vertical advective damping from the
outflow, and a large azimuthal field strength in quenching axisymmetric perturbations.

10.7 Discussion and astrophysical implications

10.7.1 Summary of the results

By using radially local 1D vertical resistive shearing box simulations in the parameter regime
relevant to protoplanetary discs, we have found wind solutions which go through three stages
of development: cyclic, transitive and slanted symmetry steady winds, the last of which bears
great resemblance to the slanted winds seen in other local and global simulations. We have
assessed, in particular, the importance of large-scale MRI channel modes in driving these
wind states. Figure 10.13 shows the mechanism we proposed to be responsible for the cyclic
state, which is driven by periodic excitation of the n = 2 or 3 MRI channel mode, coupled
with advective eviction when the Alfvén point falls below the mode peaks. We have shown
that the mid-plane bulge which eventually causes the transition to the steady wind is a result
of a much slower growing n = 1 MRI mode, and the transition occurs when the mid-plane
By value is larger than the maximum peak By strength in the cyclic stage. Saturation of the
growing bulge to the steady state wind of slanted symmetry occurs due to both a combination
of advective damping from the strong wind, and suppression of the instability from a large
toroidal field. We also found that a more magnetised disc would speed up the process of
transition and saturation to the steady wind through our parameter study, and confirmed the
robustness of our results by varying both the box size and mass replenishment schemes.

10.7.2 Connection of our results with other MRI-driven wind simula-
tions

The first implication of our results is in understanding the essential ingredients for the
development of the slanted wind observed in both local (Bai, 2013; Lesur et al., 2014) and
global simulations (Bai, 2017; Béthune et al., 2017; Gressel et al., 2020; Riols et al., 2020;
Rodenkirch et al., 2020). We have shown that it is the result of a slowly growing n = 1 MRI
mode, characterised by a mid-plane bulge in Bx and By. This bulge eventually flips the disc
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Fig. 10.21 Plots of log10 of the linear growth rate with β0 of the background profile varying
horizontally taking the values 102,103,104,105, and zAz varying vertically. The top plot
has vAy = 0 for all data points, while each triplet of columns with the same β0 value has
ρ1 = 0.0005,0.005 and 0.05 from left to right. The bottom plot fixes ρ1 = 0.0005 for all
data points, while each quintet of columns with the same β0 value has vAy = 0,0.1,0.5,0.8,1
from left to right.
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Fig. 10.22 Plot of log10 of the fastest linear growth rate (not necessarily the n = 1 mode) with
β0 of the background profile varying horizontally taking the values 102,103,104,105, and vAy
varying vertically. Each triplet of columns with the same β0 value has ρ1 = 0.0005,0.005
and 0.05 from left to right.

symmetry from the traditional hourglass configuration to the slanted wind, shutting down
other MRI modes that may be present via advective damping from the dense low-Alfvén
point winds launched. This process seems to only require the presence of a strongly diffusive
mid-plane region, which forces all higher order modes than the n = 1 one to be localised in
the disc lower atmosphere or above. These modes are in turn are shut down as the Alfvén
point falls below those regions, allowing the slower n = 1 mode to grow and eventually
dominate the profile. Therefore, we should expect all discs with highly Ohmic diffusive
mid-plane regions to eventually settle into the slanted state regardless of its history, which is
in line with what has been reported by certain authors in global simulations (Béthune et al.,
2017; Riols et al., 2020). In particular, the simulations of Béthune et al. (2017) showed a
convergence to the slanted profile on a timescale of 100s of Ω−1 (see their Figure 23), which
is in agreement with the timescales we have found in our study. Our parameter study suggests
that we should expect lower β0 discs (i.e. discs with higher magnetisations) to be more prone
and quicker to develop the slanted symmetry wind state. This is also noted in other local
simulations (Bai and Stone, 2013a), while figure 31 of Béthune et al. (2017) also appears to
indicate the same trend. It would be interesting for future global simulations to explore this
in more detail as the parameter space is further expanded and simulations are run for longer
periods of time.
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The periodic outbursts observed in our cyclic stage are reminiscent of cyclic outbursts
found in other local simulations (Fromang et al., 2013; Riols et al., 2016; Suzuki and Inutsuka,
2009; Suzuki et al., 2010). Similar to our cycles, the cycles in their simulations show a
strong correlation between development of the horizontal magnetic fields and the outburst
behaviour, suggesting that horizontal magnetic fields are involved in the cyclic launching
mechanism. As we have already discussed in Section 10.4.3, our outbursts are different in
nature and mechanism from those of Riols et al. (2016), which is most likely due to our lower
field strengths and the dead-zone resistivity profile we used. There are greater similarities in
both the outburst strength, period and launch region between our results and those of Suzuki
et al. (2010), which also used a dead-zone profile over and β0 = 106, but over a much smaller
box size (Lz = 4H). Their simulations were done in 3D, and it was noted that their disc
winds were partly driven by the breakup of channel flows triggered by the MRI in the lower
atmosphere, although they did not do a detailed analysis of the mechanism as we have done
here. This confirms that even though are our simulations are in 1D, they are nevertheless able
to capture one of the key behaviours that may be responsible for driving periodic outbursts.
We are also able to conduct simulations for longer and with lower β0 values than Suzuki
et al. (2010), hence showing that the slanted symmetry state would eventually take over and
change the wind behaviour, which was hinted at in their snapshots by the slightly slanted
fields at the mid-plane, but were not fully developed to the extent that the cycles would be
shut down and morph into the slanted steady wind, due to both their shorter run time and the
very high β0 value they used. Outburst behaviour was also observed in the initial stages of
the Ohmic-only global simulations of Rodenkirch et al. (2020) before settling of the disc to
the slanted symmetry wind state, and it would be interesting to investigate to what extent the
cyclic outburst behaviour we uncovered is also present in global discs.

It is also worth comparing our 1D resistive shearing box calculations with simulations
where other non-ideal MHD effects are present. Notably, the simulations of Bai and Stone
(2013a) showed no periodic wind solutions despite similar parameter regimes to us in
resistivity and field strength (β0 = 106 −103). We attribute this difference to the presence of
ambipolar diffusion in their lower atmosphere (absent in ours), which may have stemmed
the growth of the n = 2 or 3 MRI mode peaks in bx and by before they are strong enough
to modify the density profile sufficiently to cause the occurrence of a second Alfvén point
beneath the peaks to drive the outbursts. The slanted wind profiles in Bai and Stone (2013a)
also have a longer and quasi-steady transition state, where a strong current layer is maintained
at z ∼ 3H for about 100 orbits, before a full slanted wind solution is recovered. Again, we
attribute this difference to the presence of ambipolar diffusion in their simulations, which
would have altered the shapes and growth rates of the MRI channel modes. Simulations
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where the Hall effect is also included (Bai, 2014, 2015; Lesur et al., 2014; Simon et al., 2015)
showed that its presence may enhance the development of a mid-plane azimuthal magnetic
field and progression to the slanted wind state, depending on which polarity the Hall term has
with respect to the vertical field. All this shows that the additional of other non-ideal effects
presents a wide parameter space for exploration which could have significant enhancements
and changes to our Ohmic only picture, and will be investigated in the next Chapter.



Chapter 11

Magnetic wind symmetries - full
non-ideal MHD generality

The previous chapter examined the effect of an Ohmic dead-zone in the vertical profile of
a radially local patch of the disc on the symmetries of the magnetic wind solutions that
develop. Through the use of a simple analytic profile that mimics the resistive dynamics
of the inner disc (R ∼ 1 AU), we revealed a wealth of behaviour from wind cycles to the
eventual adjustment of the disc to the slanted symmetry.

In this chapter, we extend our investigation to full non-ideal MHD generality, as well as
using more realistic semi-analytic prescriptions for the ionisation profiles at different disc
radii.

11.1 Computing the non-ideal MHD coefficients

As noted in Section 2.4.3, there is great uncertainty in the ionisation profile present in
protoplanetary discs. Many of the considerations that factor into its calculation are still
poorly constrained by observations. We describe here two schemes used in the literature
by Lesur et al. (2014) and Béthune and Latter (2020), which we roughly follow to give a
sense of how the underlying model affects the results obtained, and to provide a means of
comparing our results to those previously obtained by other authors.

11.1.1 Disc models

We begin by considering the underlying disc models that describe the temperature and surface
density variation with radius. From here onwards, we denote the model following Lesur et al.
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(2014) by the abbreviation ‘L14’, while ‘BL20’ denotes the model following Béthune and
Latter (2020).

Surface density profile

Both L14 and BL20 use the radial surface density of the minimum mass Solar nebula model
(MMSN; Hayashi (1981)), where

Σ(R) = 1700(R/1 au)−3/2 g cm−2, (11.1)

and R is the cylindrical radial distance from the star. The MMSN is a protoplanetary disc
with the minimum amount of solids required to account for the planets of the Solar system.
Although the model by Hayashi (1981) is the most widely used in literature, it is by no
means an agreed quantity, and depends sensitively on assumptions about the dust and gas
composition of the disc as well as dynamical processes in the formation of planets such as
planet migration (Crida, 2009). Chiang and Laughlin (2013) used 1,925 exoplanets observed
by Kepler to produce a minimum mass extrasolar nebular that is roughly twice as dense as
the MMSN and with a slightly steeper exponent of −1.6, while Desch (2007)’s calculation
resulted in a model that is 10 times denser than that of Hayashi (1981). Recent surveys on
the other hand point towards shallower surface density profiles Σ ∼ r−1/2 (Andrews and
Williams, 2007; Tazzari et al., 2017). While large uncertainties remain in both observations
of disc masses and ages (Bergin and Williams, 2017) as well as in the theoretical modelling,
the MMSN model we use facilitates easier comparison with earlier works, and its steeper
profile allows us to capture a broad enough range of disc conditions to compensate for the
lack of clear information on actual protoplanetary discs.

Temperature profile

For the temperature profile, we treat the disc as locally isothermal at each radius throughout
its vertical extent.

L14 follows the prescription given by Hayashi (1981)’s MMSN model with

T (R) = 280(R/1 au)−1/2 K. (11.2)

This is calculated by assuming that the gaseous disc is almost everywhere transparent to the
Solar visible radiation, but not to Solar UV.

BL20 assumes the disc to be a blackbody in equilibrium with heating from the central
star. Using the Sun as a typical star, the surface temperature of the disc is then given by

Tbb(R) = T⊙

(
R⊙
R

)1/2(H
R

)1/4

, (11.3)
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where R⊙ = 6.957× 1010 cm is the Solar radius, and the surface temperature of the star
is taken to be T⊙ = 5777 K. The mid-plane temperature in Béthune and Latter (2020) is
generally higher by a factor of O(1) to the disc surface temperature, with a slightly different
radial scaling. However, in our BL20 model, we used Tbb as the temperature of the whole
vertical portion of the disc of our isothermal model. The passive opening angle of the disc is
given by (see Dullemond (2000) for its derivation)

H
R

=

(
kBT⊙

√
R⊙R

MrmuGM⊙

)4/7

, (11.4)

where H is the pressure scale-height, kB is Boltzmann’s constant, Mr = 2.353 is the mean
molecular weight of the gas for a prescribed Solar composition, mu the atomic mass unit, and
M⊙ = 1.989×1033 g the mass of the Sun.

Density profile

Assuming hydrostatic balance in the vertical direction, the initial disc has an isothermal
Gaussian profile about the mid-plane:

ρ = ρ0(R)exp(−z2/2H2), (11.5)

where H(R)≡ cs/Ω is the isothermal scale height.
In the majority of L14 simulations, we used a constant aspect ratio ε ≡ H/R = 0.05,

following Béthune et al. (2017). The mid-plane density is then calculated from the relation
Σ =

√
2πρ0H, giving us

ρ0(R) = 9.07×10−10
(

R
1 au

)−5/2

g cm−3. (11.6)

In this case, the local sound speed is artificially imposed by the disc aspect ratio profile and
the gravitational potential of the central star.

For a more self-consistent calculation, the sound speed should be calculated through the
ideal gas equation and the temperature profile,

cs =

√
kBT

Mrmu
. (11.7)

The disc aspect ratio is then given by

ε ≡ H
R

=
1

RΩ

√
kBT

Mrmu
, (11.8)

which for a Sun-like star and the MMSN temperature and surface density profiles gives us

ε ≡ H
R

= 0.0334
(

R
1 au

)1/4

, (11.9)
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ρ0(R) = 1.4×10−9
(

R
1 au

)−11/4

g cm−3. (11.10)

It should therefore be noted that the density profile of our L14 discs has a slightly shallower
decrease of mid-plane density ρ0 with radius than that used in Lesur et al. (2014) and Simon
et al. (2015), which follows the more consistent treatment. However, over the range of
radii (5−100 AU) considered in our simulations, this should not too drastically affect the
comparison of our results1.

For BL20, we use Equation (11.4) for our disc aspect ratio. Following the same calcula-
tion, we arrive at a mid-plane density relation of

ρ0(R) = 3.89×10−10
(

R
1 au

)−39/14

g cm−3, (11.11)

giving us a steeper mid-plane density profile than L14.

11.1.2 Ionisation profile

To calculate our diffusivities, we use a semi-analytic ionisation prescription. For simplicity,
the vertical ionisation profile is assumed to be constant throughout the simulation, although
in real discs changes would be expected from the mixing of species through fluid movement.
Our ionisation prescription is based on the same framework as that used in Lesur et al.
(2014) and Béthune and Latter (2020), where the ionisation fraction xe is treated as a balance
between local ionisation and recombination rates. We consider a dust-free environment with
75% hydrogen and 25% helium.

We consider contributions from stellar X-rays (Igea and Glassgold, 1999), cosmic rays
and radioactive decay to the local ionisation in the following manner.

X-ray ionisation

For L14 runs, X-ray ionisation due to 3 keV photons is computed using the model of Bai and
Goodman (2009):

ζ eff
X

LX/1029 erg s−1

(
R

1 au

)2.2

= ζ1[e−(NH1/N1)
α

+ e−(NH2/N1)
α

]

+ζ2[e−(NH1/N2)
β

+ e−(NH2/N2)
β

],

(11.12)

where NH1,2 is the column density of hydrogen nuclei vertically above and below the point
of interest, and LX is the luminosity of the central star, which is assumed to be 1030 erg s−1.

1At 5 AU and 10 AU, our model gives ρ0 = 1.62×10−11 g cm−3 and ρ = 9.07×10−15 g cm−3 respectively,
compared with ρ0 = 1.67×10−11 g cm−3 and ρ = 4.43×10−15 g cm−3 of the more consistent model.



11.1 Computing the non-ideal MHD coefficients 199

The constants in the equation are: ζ1 = 6.0× 10−12 s−1, N1 = 1.5× 1021 cm−2, α = 0.4,
ζ2 = 1.0×10−15 s−1, N2 = 7.0×1023 cm−2 and β = 0.65. The first exponential represents
attenuation of X-ray photons by absorption, while the second exponential incorporates a
contribution from scattering. The column densities of hydrogen nuclei are calculated by

NH1,2 = Σ1,2/Mr ×0.75/mu, (11.13)

where Σ1,2 are the column mass densities above and below the point of interest.
For BL20 runs, we use the fit of Gressel et al. (2015) (first term of their equation 4) for

better comparison to the Béthune and Latter (2020) results. The X-ray ionisation rate here is
based on a similar analysis to Bai and Goodman (2009), and is given by:

ζX = 10−15 s−1
[

exp
(
−
(

Σ1

Σsc

)α)
+ exp

(
−
(

Σ2

Σsc

)α)]
R−2, (11.14)

where Σ1,2 are the same as in (11.13), and the shape coefficients are Σsc = 7×1023 cm−2,
and α = 0.65 for scattered X-rays. We do not further enhance the incident X-ray flux by a
factor of 5 as done in Gressel et al. (2015).

Cosmic rays and radioactive decay

For both cosmic rays and radioactive decay, we use the same method for both L14 and BL20
runs, and cosmic rays are assumed to penetrate the disc vertically from both sides.

Ionisation from cosmic rays is given by

ζcr = ζ0
[
exp(−Σ1/96 g cm−2)+ exp(−Σ2/96 g cm−2)

]
, (11.15)

with ζ0 = 10−17 s−1 (Umebayashi and Nakano, 1981).
Radioactive decay is regarded as contributing a constant rate of ionisation of

ζrad = 10−19 s−1 (11.16)

(Umebayashi and Nakano, 2009).

Ionisation fraction and FUV contribution

Following Lesur et al. (2014), we balance the total ionisation rate ζ from the sum of the
contributions with dissociative recombination in a metal- and dust-free environment (Fromang
et al., 2002; Gammie, 1996):

xe =

√
ζ

nnαdr
+ xFUV, (11.17)
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where αdr = 3×10−6 T−1/2 cm2 s−1 is the dissociative recombination rate coefficient for
molecular ions, nn is the neutral number density given by ρ/Mrmu, and xFUV is an additional
contribution from FUV ionisation from the star.

Stellar FUV is known to ionise carbon and sulphur in the uppermost layers of the disc, and
can lead to ionisation fractions as high as 10−4 for a penetration depth of up to 10−2 g cm−3

(Perez-Becker and Chiang, 2011). FUV ionisation is estimated by

xFUV = 2×10−5
(

exp
[
−(Σ1/0.03 g cm−2)4]

+ exp
[
−(Σ2/0.03 g cm−2)4]), (11.18)

following the rough model of Lesur et al. (2014).
Figure 11.1 plots the ionisation fraction at selected radii for the L14 and BL20 models,

and can be compared with figure 1 of Lesur et al. (2014) and figure 1 of Béthune and Latter
(2020) respectively.

11.1.3 Diffusivities calculation

Ohmic, Hall and ambipolar diffusivities are calculated in the absence of dust grains from
the ionisation fraction using expressions from the multi-fluid approximation (Balbus and
Terquem, 2001; Wardle, 2007) (see Section 2.4.1). We convert them from SI units to the
CGS units used in the PLUTO code, which gives us:

ηO =
c2me

4πe2
n
ne
⟨σv⟩e, (11.19)

ηH =
Bc

ene
√

4π
, (11.20)

ηA =
B2

γiρρi
, (11.21)

where

⟨σv⟩e = 8.28×10−9
(

T
100 K

)0.5

cm3 s−1 (11.22)

is the electron-neutral collision rate (Draine et al., 1983), ρi is the ion mass density,

γi =
⟨σv⟩i

mn +mi
, (11.23)

with

⟨σv⟩i = 1.3×10−9 cm3 s−1 (11.24)
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Fig. 11.1 Vertical profiles of ionisation fraction xe for the L14 (top) and BL20 (bottom)
models at selected radii (see legends).
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being the ion-neutral collision rate (Draine, 2011), and mn and mi are the average masses of
the neutrals and ions respectively. From Balbus and Terquem (2001), the dominant ion of
interest will generally be the once-ionised potassium K+ with a mean ion mass of mi = 39mp,
where mp = 1.6726×10−24 g, while the neutral mass is given by mn = Mrmu.

Our model is unable to account for thermal ionisation in the hot corona, with the upper
layers of protoplanetary discs at 1 AU likely heated by X-rays to temperatures of up to ∼ 8000
K (Aresu et al., 2011). Under such conditions, the gas can be effectively modelled in ideal
MHD limit, especially with respect to the MRI. We mimic this by following Lesur et al. (2014)
in arbitrarily multiplying our diffusivities by a constant factor of exp(−0.01/Σ1,2 g cm−2)

when Σ1,2 ≤ 0.01 g cm−2, leading to the expected ideal MHD conditions in the upper
atmosphere.

There is great uncertainty about the abundance and distribution of dust grains and/or
metals in protoplanetary discs, and their inclusion can alter the ionisation fraction, and conse-
quently the diffusivities, by several orders of magnitude (Lesur, 2020). We follow Béthune
and Latter (2020) in their simple way of accounting for the dust-enhanced recombination rate
by artificially reducing the ionisation fraction by a constant factor of 10−2 for runs where we
are mimicking a dusty disc.

11.2 Method

11.2.1 Framework

We used a similar set up of 1D vertical stratified shearing-box approximation with modified
vertical gravity to that described in Section 10.1. The box is centred on a radially local
patch at radius R, and rotates with the disc at the Keplerian angular velocity Ω ≡ ΩK(R).
We assume an isothermal disc with equation of state p = c2

s ρ , and take viscosity to be zero
everywhere.

The governing equations are the same as those in Section 10.1 with the exception of
the induction equation, where we now include all three non-ideal MHD terms. The x and y
components are then given by:

∂Bx

∂ t
=

∂

∂ z
(vxBz − vzBx)+

∂

∂ z

(
η

∂Bx

∂ z

)
+

∂

∂ z

(
ηH

B
Bz

∂By

∂ z

)
+

∂

∂ z

(
ηA

B2

[
(B2

x +B2
z )

∂Bx

∂ z
+BxBy

∂By

∂ z

]) (11.25)
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and

∂By

∂ t
=−3

2
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∂ z
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∂By
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,

(11.26)

where B =
√

B2
x +B2

y +B2
z is the total magnetic field strength.

For the modified gravity term in Equation (10.4), we have

gz =− GMz
(R2 + z2)3/2 =−Ω

2H
ẑ

(1+δ 2ẑ2)3/2 , (11.27)

where ẑ ≡ z/H and δ = H/R. A fully consistent treatment would set δ to be equal to ε ,
the disc aspect ratio. We use the consistent treatment for all our BL20 runs, but note that
most of our L14 runs had a fixed δ value of 0.033, giving us a slightly slower drop-off in
gravitational potential than would be the case in a more self-consistent treatment.

11.2.2 Implementation of diffusivities

We implemented the diffusivities in PLUTO by approximating the ionisation fraction profiles
calculated in Section 11.1.3 using analytic forms obtained through Matlab ’s fitting algorithm.
The Gaussian, Fourier and Sine models of up to the 8th order are used for this purpose. The
analytic form that best fits the values of the actual profile is selected, and care is taken to
made sure that the resulting profile is symmetrical about the mid-plane. While this is not as
accurate as implementing the diffusivities through a lookup table, it is easier to code, and
the great uncertainties in the literature about the ionisation profiles render the errors through
our approximation insignificant for our purpose of gauging the general behaviour of discs.
Figure 11.2 displays example Elsasser number profiles given by

ΛO,H,A =
B2

ηO,H,AρΩ
(11.28)

of the diffusivities for the L14 and BL20 runs approximated this way for discs with β0 = 103

at the beginning of the simulations. It should be noted that only the initial ΛA profile
is independent of the vertical field strength, while the initial ΛO profile is ∝ β

−1
0 , and

ΛH ∝ β
−1/2
0 . As we increase β0 between simulations, the initial ΛO and ΛH will therefore

decrease accordingly. Since the Elsasser number profiles are sensitive to both the overall
field strength as well as the density profile, they change as the discs settle into different
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configurations. The initial profiles are useful for predicting the initial behaviour of the discs
as perturbations grow, but the saturation into different states require more careful analysis of
the profiles as they evolve.

11.2.3 Set-up

We used the same outflow boundary conditions and mass replenishment scheme as in Section
10.2.2, where we took zi the mass injection width to be 0.1H.

We also followed Section 10.2.3 in our box size and resolution, using the ‘small’ box
where Lz = 12H, with 200 grid points for |z|< 2H, and 500 points each for the two atmo-
spheric regions where |z|> 2H.

The Lesur-modified shearing box module of PLUTO (see Mignone et al. (2007) and also
Section 7.1) is once again employed to solve the full non-ideal MHD equations. To ensure
compatibility with the Hall MHD module, fluxes are computed by the modified HLL solver.
Time stepping is done using a Runge-Kutta method of third order.

11.2.4 Physical parameters and initial conditions

We used the same definition of β0 as in Section 10.2.4, as well as the same prescription of
the density profile such that the initial mid-plane density ρ0 = 1 in the simulations. We ran
simulations at β0 = 103,104,105 for each disc profile at different radii for the two ionisation
profiles used. A selection of runs have either Hall or ambipolar diffusion arbitrarily switched
off to isolate the effects they may have on the disc evolution, while both the aligned and anti-
aligned configurations for the Hall effect are explored. Some runs also have the ionisation
fraction reduced by a factor of 100 to mimic a disc profile with significant dust content. To
extend our investigation on the impact of initial conditions on the outcome of the solutions
into the full non-ideal MHD regime, we use the ‘bxSINmod’ and ‘bxGauss’ profiles of Bx

as described in Section 10.3.1 as initial conditions for the different runs done. We ran most
simulations up to t = 1000Ω−1, although for some we ran up to t = 2000Ω−1 to be confident
of the long term outcome of the system, especially when it was clear that the solution was
still transitioning to a different state at t = 1000Ω−1.

Our simulations are named in the following way: the first letter denotes the ionisation
scheme used to calculate the diffusivity profiles, with ‘L’ for the L14 scheme and ‘B’ for the
BL20 scheme. This is followed by the letter ‘R’ and a numeric showing the radius at which
the ionisation profile is calculated. The letter ‘b’ then follows with another numeric, where
3,4,5 denotes that the simulation is run with β0 = 103,104,105 respectively. Runs where the
Hall effect or ambipolar diffusion is turned off then has ‘H0’ or ‘A0’ following respectively,
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Fig. 11.2 Elsasser number profiles at the beginning of the simulations indicated in the titles
of each plot where β0 = 103. Blue, red and yellow lines are for ΛO, ΛH and ΛA respectively.
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whereas runs where the Hall effect is in the aligned or anti-aligned configuration has ‘H+’
or ‘H-’ following respectively. In cases where we reduce the ionisation fraction by a factor
of 100, we add on ‘r2’ to the end of the first part of the name string. Finally, names of runs
initiated with the ‘bxSINmod’ profile end with ‘S’, while those initiated with the ‘bxGauss’
profile end with ‘G’. As an example, the run BR10b3H+A0r2S denotes a simulation done at
R = 10 AU of the BL20 ionisation profile, with β0 = 103, an aligned configuration for the
Hall term, an arbitrarily removed ambipolar diffusion, a reduction by a factor of 100 in the
ionisation fraction everywhere, and an initial condition of the ‘bxSINmod’ profile in bx.

11.3 Results

11.3.1 Separation in behaviour between discs and winds

Compared with the simulations of the previous Chapter, our simulations here with full non-
ideal MHD and more realistic diffusivity profiles exhibit a much wider range of behaviour
than the four wind states uncovered there. One key difference between the simulations here
and the purely Ohmic simulations there is a more prominent separation of solutions into a
slowly varying and in some cases steady state ‘disc’ part near the mid-plane, and a rapidly
varying ‘wind’ part beyond a certain number of scale heights from the mid-plane, where wind
cycles of a similar nature to those of Chapter 10 are observed. In a way, such a separation
is also present for our solutions in Chapter 10, as the wind cycles there are only launched
beyond a certain number of scale heights, while the mid-plane region is slowly varying and
has bx and by near zero due to the high level of Ohmic resistivity there. The main difference
in this Chapter is that rather than simply having a near vertical magnetic field in the disc
region, with the only change brought about by the slowly growing n = 1 bulge mode that
causes the whole disc-wind system to eventually transit to the slanted steady state, the disc
solutions here exhibit a much wider variety of behaviour that may or may not transit to the
slanted steady state, while the wind cycles also appear to operate rather independently of the
disc solution, and may even continue after the disc section has reached a slanted steady state.
We begin our discussion by describing the broad categories of disc solutions uncovered in
our simulations here, before moving on to discuss the wind part, the various parameters that
affect the behaviour of the disc-wind system, and how our previous work is both related to
and superseded by our work here.
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Fig. 11.4 Same as Figure 11.3, except here all the runs are initialised with the ‘bxGauss’
profile.

11.3.2 Phenomenology of disc solutions

In this section, the subsection titles give the names of the types of disc solutions obtained,
followed in brackets by the abbreviations used to label them in the plots of Figures 11.3
and 11.4. Figures 11.3 and 11.4 plot the disc type (indicated by the marker symbol) and the
strength of the wind cycles in the wind part of the solutions (indicated by the marker colour)
against disc radii on the x axis, and log10(β0) on the y axis. The disc model, implementation
of the non-ideal MHD effects and initial conditions are given by the title of each plot. The
wind cycle strength scale is defined by the amplitude of bx and by of the cycles compared
with their maximum amplitude in the disc solution, with 0 indicating no wind cycles present,
1 indicating that the wind cycle amplitude is less than 50% of the disc profile amplitude, 2
when the wind cycle amplitude is roughly the same as the disc profile amplitude, 3 for when
the wind cycle amplitude exceeds 150% of the disc profile amplitude, and 4 for when the
wind cycle amplitude is more than 10 times that of the disc profile amplitude.

Hourglass steady discs (H)

First, we have the classic hourglass steady disc solution, with bx(z) =−bx(−z) and by(z) =
−by(−z), accompanied by a strong current layer at the mid-plane. An example of this
configuration as a persistent disc solution is shown in the space-time diagram of by for the
disc BR10b4H+S in the top left panel of Figure 11.5, particularly from t = 200Ω−1 onwards.
In some cases, the mid-plane current layer may experience small oscillations about z = 0, but
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Fig. 11.5 Space-time plots of by to demonstrate the phenomenology of disc solutions dis-
cussed in Section 11.3.2. The title of each plot indicates the simulation it depicts. The
disc types depicted from top left to bottom right reading first across and then down are as
follows: hourglass steady (H), displaced hourglass steady (D), slanted steady mid-plane
bulge (SB) with no wind cycles, same as previous but with small wind cycles, slanted steady
with multiple bends (SM), and asymmetric one-sided varying (AO) discs.
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Fig. 11.6 Space-time plots of by to demonstrate the phenomenology of disc solutions dis-
cussed in Section 11.3.2. The title of each plot indicates the simulation it depicts. The disc
types depicted from top left to bottom right reading first across and then down are as follows:
slanted cyclic (C-S), alternating cyclic (C-A), overlapping cyclic (C-O), and chaotic (CH)
discs.
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they are insufficient to expel it from the mid-plane region. These oscillations have the same
period as the wind cycles in the ‘wind’ region (in this case |z|> 3H) of the system, and may
be a result of the wind cycles in the atmospheric regions modifying the disc configuration in
a minor way.

Displaced hourglass steady discs (D)

Next, we have the displaced hourglass steady disc solution, where the disc portion of the
solution initially settles into the classic hourglass configuration, but the strong current layer
gradually moves away from the mid-plane, and eventually settles one or two scale heights
away from the disc. The resulting long term configuration in the disc is asymmetric, but we
call it ‘displaced hourglass’ to reflect both its evolutionary history, as well as the fact that
the solution resembles that of an hourglass one except with the current layer displaced to
one side of the disc. The top right panel of Figure 11.5 shows an example of such a solution,
taken from the run LR60b3H+S. The displaced hourglass steady solution is settled by about
t = 300Ω−1, and persists without any major changes. Like the hourglass steady solution of
BR10b4H+S discussed previously, there are small oscillations of the current layer and the
disc solution in z that are the result of wind cycles in the atmospheric regions. The wind
cycles are however unchanged in periodicity and strength between the disc being in the
hourglass steady state and the displaced hourglass steady state.

Slanted steady mid-plane bulge discs (SB)

We move on to the slanted steady mid-plane bulge solution, which is the same as the slanted
steady state described in Chapter 10, and is characterised by a mid-plane bulge in bx and
by resembling the n = 1 mode of the MRI. The left panel of the second row of Figure 11.5
shows the disc BR1b4H+S settling into this configuration after t = 85Ω−1. In most cases,
discs with this solution also shut down the wind cycles in the atmosphere, like in the solutions
of Chapter 10. However, there are also cases, such as BR10b4H+G (right panel of the second
row of Figure 11.5), where small cycles continue to exist in the upper atmospheres without
drastically affecting the slanted steady solution in the bulk of the disc.

Slanted steady multiple-bend discs (SM)

The slanted steady mid-plane bulge solution is however not the only slanted steady configu-
ration uncovered in our simulations. We also found slanted steady solutions characterised by
two sharp bends and changes of signs in bx and by on both side of the mid-plane, such as that
of BR30b3H0G depicted in the left plot of the third row of Figure 11.5 from t = 250Ω−1
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onwards. These solutions only occur for simulations initiated with the ‘bxGauss’ initial
condition, and where Hall drift is arbitrarily switched off, or is set to be in the anti-aligned
configuration. The slanted steady multiple-bend solutions then persist for the remainder of
the simulations, with varying degrees of wind cycles in the ‘wind’ region beyond |z|> 3H.

Asymmetric one-sided varying discs (AO)

The final disc configuration of a nearly steady nature is the asymmetric one-sided varying
solution, which is characterised by the solution from t = 600Ω−1 onwards of BR10b3H0G on
the bottom right plot of Figure 11.5. This configuration is usually evolved from an hourglass
steady disc which has its mid-plane current layer slowly expelled from the disc over 100s
of Ω−1. The disc portion then settles into a slanted-like asymmetric configuration, but with
occasional variations in bx and by driving outbursts on the side of the disc from which the
mid-plane current layer was expelled. The overall behavioural pattern of the state remains
similar indefinitely, and has a clear separation from the much more rapid wind cycles in the
‘wind’ region.

Slanted cyclic discs (C-S)

Our next disc type, depicted by the top left plot of Figure 11.6, has a different nature from
the ones so far discussed. Here, the disc alternates between slanted steady mid-plane bulge
states of opposite signs, with the transition initiated by a growing mid-plane dip in the bx and
by profiles that eventually takes over as the new mid-plane bulge, and changes the sign of the
overall configuration. The time period between flips is of order 100s of Ω−1, and the pattern
steadily repeats itself after it has been established. We call this disc type the slanted cyclic
disc to reflect the cyclical nature of the flips between slanted bulge states of opposite sign.

Alternating cyclic discs (C-A)

The next two states are distinctive from the others in that they affect the whole solution,
and it is no longer meaningful to talk about a divide between a slowly varying mid-plane
‘disc’ portion and a separate fast-varying ‘wind’ portion. Rather, the whole solution takes on
a wind-like nature, with rapid variation in bx and by on the order of 1−10s of Ω−1. Both
types are found only in discs where either ambipolar diffusion is arbitrarily set to zero, or
where the Hall effect is in the anti-aligned configuration. The first, depicted by the top right
panel of Figure 11.6, we call the alternating cyclic disc. The solution alternates in a random
fashion between what looks like an hourglass state, such as at t = 110Ω−1 and t = 280Ω−1,
and what appears to be a more slanted configuration.
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Overlapping cyclic discs (C-O)

The second type we call overlapping cyclic discs, and an example of this solution is depicted
in the bottom left panel of Figure 11.6. Here, the solution takes the same form as the wind
cycles of Chapter 10, except the launching region is at or very near the mid-plane, and
the launching of the next wind cycle begins while the previous wind cycle is still in the
simulation domain being advected outwards. The upper and lower halves of the disc behave
semi-independently, with the phases showing signs of matching up but also at times showing
discrepancies.

Chaotic discs (CH)

Finally, we have the chaotic discs, so named because the disc portion follows no set pattern
in its evolution. An example of this is depicted in the bottom right plot of Figure 11.6 from
t = 500Ω−1 onwards. These solutions still demonstrate a clear separation in timescale from
the faster-varying ‘wind’ portion further from the mid-plane. They are usually found at large
radii and for more highly magnetised discs.

11.3.3 Dependence on non-ideal MHD effects and vertical magnetic
field strength

Both BL20 and L14 models show similar trends in the dependence of solutions on disc
radius, which sets the profiles of the non-ideal MHD effects, and vertical magnetisation used.
This shows us that the small differences between the two disc models generally do not affect
the overall trends in disc behaviour. In the following discussion, we will refer only to the
sets of simulations displayed in Figures 11.3 and 11.4, and note that corresponding sets of
simulations of the other disc profile show the same trends.

Strength of wind cycles in the ‘wind’ region

First, we note that when we talk of wind cycle strength in this Section, we are not talking
about its absolute strength in launching mass outflows, but rather its relative strength in
driving outbursts compared with the outflows that are launched from the configurations of
the generally steadier ‘disc’ region. For the ‘C-A’ and ‘C-O’ solutions where the whole disc
behaves like the wind region, we attribute a wind cycle strength of 2 to indicate that the
outflow strengths of the two regions are the same.

The height from the mid-plane beyond which wind cycles may be present decreases with
increasing radius, and corresponds well to the height at which the Elsasser profiles of the disc
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rapidly increase in magnitude (see Figure 11.2). This suggests that the separation of solutions
to ‘disc’ and ‘wind cycles’ portions is largely due to the shape of the diffusivity profiles,
which in turn are determined by ionisation processes in the disc. The ‘disc’ portion generally
has ΛO < 1 for R < 10 AU and ΛA ≲ 1 for R ≲ 100 AU, leading to suppression of the MRI
near the mid-plane, and the possibility of settling into (quasi-)steady states. The ‘wind’
portion on the other hand has near ideal MHD conditions, and depending on the level of
magnetisation can be highly unstable to the MRI. When we switched off ambipolar diffusion
in the BL20:H+A0S runs, discs with R ≥ 10 AU notably no longer have the disc-wind
separation, as Ohmic resistivity alone is not enough to enforce the suppression of the MRI in
the ‘disc’ region for those radii. The whole system then takes on the nature of a wind cycle,
as represented by the ‘C-A’ and ‘C-O’ states.

The ambipolar Elsasser number in general remains at low values much further away
from the mid-plane than the Ohmic Elsasser number, and the high ambipolar diffusivity
in the lower atmosphere is likely to be responsible for shutting down the wind cycles in
some of the slanted steady discs of the BL20:H0+S runs compared with the wind cycles
of the slanted steady discs of the BL20:H+A0S runs at the same radii and magnetisations.
The presence of the Hall effect in the positive configuration also helps with the shutting
down of cycles in the wind region (compare the runs of BL20:H+S with BL20:H0S). This
is in line with the result from Chapters 5 and 6 that Hall drift in the positive configuration
contributes to the stabilisation of the MRI with respect to the threshold requirement for
marginal stability. Switching the Hall configuration from positive to negative on the other
hand increases the presence of wind cycles (compare L14:H+S results to those of L14:H-S),
and may be attributed to the destabilising effect the negative Hall configuration has on the
system.

Generally, switching of the configuration in the ‘disc’ portion between different long-
term states does not alter much the strength of the wind cycles. This is evidenced by
comparing data from BL20:H+S and BL20:H0S in Figure 11.3 with those from BL20:H+G
and BL20:H0G respectively in Figure 11.4, and noting the similarity in wind-cycle strength
despite the different profiles in the ‘disc’ portion. We also checked that the cycles had similar
absolute strengths in their outbursts across the two sets of data. Hence cycle dynamics
is largely independent of the solution in the disc portion, and is rather dependent on the
underlying diffusivity profile determined from the disc model. In the previous Chapter, we
concluded that the shutting down of wind cycles in the ‘wind’ region is largely due to the
large outflow rate produced by the mid-plane bulge profile of the saturated slanted steady
state, which may seem to contradict the results we have here. However, there is one crucial
difference our discs have to those of Chapter 10, in that the hourglass steady solutions we
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have here in the ‘disc’ portion also launch strong outflows, and have maximum values in
bx and by that are similar in strength to their slanted mid-plane bulge steady counterpart.
Therefore, different long term configurations of the ‘disc’ portion under the same diffusivity
parameters have similar contributions to the dampening or shutting down of the wind-cycles
from their outflow rates, leading to wind-cycles of similar relative and absolute strength in
the ‘wind’ regions.

Across all our simulations, the strength of wind cycles generally increases with increasing
radius and β0 within each disc model. Discs in the positive Hall configuration with R ≤ 15
AU at β0 = 103 and with R ≤ 4 AU at β0 = 104 have no wind cycles at all and are overall
steady. The trend of increasing wind cycle strength with increasing radius can be attributed
to the overall increase in the profiles of ΛO and ΛA, as the disc becomes more ionised further
away from the star, resulting in weaker ηO and ηA profiles that act less to quench the MRI.
As wind cycles are driven by a delicate balance between MRI mode growth and advective
eviction (see Section 10.4), slowing of the former by lower ΛO or ΛA values could lead to
shutting down of the cycles in less highly ionised discs at smaller radii, and advection expels
the modes from the box before they are sufficiently strong to modify the disc profile.

The increase in relative strength of wind cycles with decreasing vertical magnetisation of
the disc on the other hand is harder to explain. We speculate that it may be due to a stronger
field shutting down the growth of MRI in the wind region. However, we also note that where
wind cycles are present, runs with higher β0 have wind cycles with longer periods than those
with lower β0. This suggests that lower β0 leads to higher growth rates of the MRI which
drive the wind cycles more rapidly in discs where wind cycles exist. These opposing trends
may be due to two competing effects that affect that growth rates of the MRI modes that
drive the wind cycles, with a sufficiently strong field quenching the modes completely, while
too weak a field would lead to smaller growth rates.

Type of solution in the ‘disc’ region initiated with the ‘bxSINmod’ profile

For discs initiated with ‘bxSINmod’ where all three non-ideal effects are present in the
positive Hall configuration, the type of solution found for the long term state of the ‘disc’
region shifts from slanted mid-plane bulge steady solutions at lower radii and higher mag-
netisations, to hourglass steady, and eventually displaced steady or asymmetric one-sided
solutions as we move to larger radii and lower magnetisations. The greater susceptibility
to the slanted mid-plane bulge steady state for disc slices at lower radii is likely to be due
to the higher levels of Ohmic diffusivity near the mid-plane, which lends less support for
a strong current layer in the mid-plane region present in any hourglass-like configurations,
but rather eventually expels it, transitioning it to a more slanted-like configuration. As disc
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radius increases, the dominant ‘diffusive’ non-ideal effect in the ‘disc’ region switches from
Ohmic to ambipolar diffusion (see Figure 11.2). Ambipolar diffusion, as we shall investigate
in Section 11.4, naturally supports the formation of strong current layers, a result that was
first noted by Brandenburg and Zweibel (1994). We speculate that this is one of the reasons
for discs at larger radii to be able to retain an hourglass steady or displaced hourglass steady
state in the ‘disc’ region for long periods of time and resist transition to the slanted mid-plane
bulge steady state. On the other hand, the trend of having more hourglass steady discs at
lower magnetisations is most likely due to the much slower rate at which the mid-plane
bulge in bx and by grows (similar to the discussion on the transition state in Section 10.3.3),
leading to much longer survival of the hourglass state. Given that in our idealised set-up we
initialised the ‘bxSINmod’ runs with a perfectly hourglass state, it would take a long time
for a very slowly growing mode to amplify numerical effects that would break the original
symmetry of the disc. Indeed, some of our hourglass steady disc solutions at β0 = 105 do
show a strong current layer with ever-increasing, albeit small departures from the mid-plane,
which we speculate will continue to increase and move the current layer out of the disc if the
simulation is run for much longer. We also note that, as we shall show later in Section 11.4,
ambipolar diffusion can support the formation of sharper current layers when no vertical
field is present than when a strong vertical field is there. This might be another factor that
contributes to less vertically magnetised discs being more likely to retain hourglass steady
states with sharp mid-plane current layers than more highly magnetised ones.

When the Hall effect is switched off compared with the positive configuration, discs are
more likely to take an hourglass steady configuration than a slanted steady one (compare
BL20:H0S runs to BL20:H+S). We attribute the tendency towards more slanted solutions
of the positive Hall case to the HSI, which is active in this configuration amplifying the
horizontal magnetic fields, leading to sharper current layers that are less sustainable in discs
with strongly Ohmic diffusive mid-planes. The HSI may have also increased the growth rate
of the n = 1 bulge mode in bx and by which is responsible for the transition to slanted steady
states in at least some of the discs at lower radii (see Section 11.3.4), increasing the likelihood
of a disc being in the slanted configuration by the end of our run time. When the Hall
polarity is switched from positive to negative on the other hand, disc portions at all radii and
magnetisations have an even greater tendency to take on slanted states (compare L14:H+S
solutions with L14:H-S in Figure 11.5) and also have much smaller horizontal magnetic
fields (compare the horizontal magnetic field profiles of LR10b3H+S and LR10b3H-S in the
left hand plot of Figure 11.7). The negative feedback loop of the negative Hall configuration
(see Section 2.5.3 and the bottom half of Figure 2.7) weakens the horizontal magnetic fields,
causing by to take smaller values in the mid-plane ‘disc’ regions where the Hall effect is
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Fig. 11.7 Left: bx (red) and by (blue) profiles of the runs LR10b3H+S (solid lines) and
LR10b3H-S (dashed lines) at t = 948.4Ω−1. The profiles are largely steady in time with
small variations that do not change their overall shape. Right: space-time plot of by for run
LR5b4H-S.

strongest than would be generated by shearing of bx in the normal MRI. The bx profile also
takes on near zero values in the mid-plane regions. We note that bx and by can be of the
same sign in parts of the mid-plane regions, possibly due to the ion-cyclotron instability (ICI)
generating by from bx of the same sign. Discs with a negative Hall polarity are also generally
more unstable than discs with a positive polarity, or where the Hall effect is not present at all,
and some of the slanted solutions take on more of a cyclic nature, such as in the right-hand
plot of Figure 11.7.

Finally, when we reduced the disc ionisation by a factor of 100 for discs with all three
non-ideal effects in the positive Hall configuration to mimic the effect of dust, we find
that solutions generally take on a slightly more slanted nature, but with the general trends
discussed unaffected (compare L14:H+S results with L14:H+r2S). This is likely to be due to
less ionised discs being more diffusive, so providing less support for the strong mid-plane
current layer in hourglass configurations. This shows that dusty discs are more likely to take
the slanted configuration than hourglass discs, but the overall trends in variation with radius
and magnetisation are unaffected.

Type of solution in the ‘disc’ region initiated with the ‘bxGauss’ profile

When discs are initiated with the ‘bxGauss’ profile, the vast majority of solutions of the
BL20:H+G and BL20:H0G disc models settle into slanted-like states, with discs at lower
radii (R ≲ 10 AU) generally taking the slanted mid-plane bulge steady state. This shows that
the long term state of a solution is strongly dependent on the history of the disc profile, and is
more inclined toward a slanted state than an hourglass one. Some of the BL20:H0G discs at
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larger radii settled into slanted multiple-bend states rather than the traditional mid-plane bulge
configuration. This may be due to the dominance of ambipolar diffusion in the mid-plane
region over Ohmic diffusion at larger radii allowing strong current layers that are present
in the slanted multiple-bend state to be supported. At R ≥ 30 AU, discs become less steady
and may take the more variable asymmetric one-sided solution rather than slanted steady
configurations, which can be attributed to the reduced significance of all non-ideal MHD
effects at large radii.

11.3.4 Nature of the transition

A key question for our full non-ideal MHD investigation in this Chapter is whether the n = 1
mid-plane bulge MRI mode is still valid for transitioning discs from hourglass states to
slanted steady states, as occurred in the solutions of the previous Chapter. We find that this
is generally still true for discs at small radii (R ≲ 2 AU) where the mid-plane has sufficient
Ohmic resistivity to suppress other MRI modes in this region. At larger radii, we find that
while the bulge growth mechanism is still at work, the evolution of the mid-plane is also
influenced by other factors.

The mid-plane bulge MRI growth-induced transition of discs at small radii is verified
by confirming that the growth of the mid-plane values of bx and by is indeed exponential,
with similar saturation to those found in Chapter 10. The top left plot of Figure 11.8 shows
the mid-plane values of bx and by plotted over time for the run BR0p5b3H+S, which can be
compared in form to Figure 10.5. The initial growth fits perfectly with an exponential of the
form exp(σt) for both bx and by, with σ = 0.496 and 0.493 respectively (see bottom plots of
Figure 11.8) agreeing with each other to a high degree of precision. We find that discs which
transit to slanted mid-plane bulge steady states in BL20:H+S discs satisfy similar properties
up to R = 2 AU, while discs up to R = 10 AU in both BL20:H+S and L14:H+S discs also
have similarly shaped growths of mid-plane bx and by in time, but with ever-increasing
departures from pure exponential growth in the early stages, and increasing spikes in bx and
by in the saturation stage of the solution. This can be seen in the top right plot of Figure
11.8 for the disc BR4b3H+S. For discs that end up in the slanted steady state at or beyond
R = 30 AU, the mid-plane bx and by values may even end up oppositely signed to their
initial direction of increase. We take this to imply that as we move to disc slices at higher
radii, there are additional factors at work that are transitioning the disc away from hourglass
symmetry to slanted symmetry, and that the slowly growing mid-plane bulge MRI mode
characteristic of discs with high levels of Ohmic resistivity near the mid-plane is no longer
the only or dominant mechanism in causing the transition. The precise identification of these
additional factors is beyond the scope of this Thesis, but may be linked with the nonlinear
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Fig. 11.8 Plots of mid-plane bx (red) and by (blue) against time for BR0p5b3H+S (top left)
and BR4b3H+S (top right). Bottom plots shows the exponential fits for bx (left) and by (right)
for BR0p5b3H+S between t = 17 and 36.5Ω−1.
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Fig. 11.9 Plots of vz at the position of the strong current layer originally at the mid-plane
(blue) and dz/dt of the same current layer (red dashed) against time for discs BR0p5b3H+S
(left) and BR30b4H+S (right).

and anisotropic nature of Hall drift and ambipolar diffusion that dominate the ‘disc’ portion
in the limit of large radii.

We also verified that the movement of the strong current layer away from the mid-plane
in the early stages is not purely due to vertical advection by the outflow by computing dz/dt
of the position of the current layer and comparing it with vz of that location at the same time.
Two examples of this are shown in Figure 11.9 for two different discs’ current layers that
were originally at the mid-plane. While there is a strong correspondence between vz at and
dz/dt of the current layer once it has moved beyond a certain distance from the mid-plane
(e.g. from t = 1300Ω−1 onwards in the right-hand plot of Figure 11.9), where it probably
crossed the Alfvén point and its motion then became dominated by vertical advection, there is
significant difference in the early stages of its journey, suggesting that other effects, perhaps
the growth of MRI modes or the presence of non-ideal effects, are responsible for shifting
the position of the current layer in addition to vertical advection.

11.4 Analysis of the ambipolar diffusion-supported current
layer

One of the key factors identified in the previous Section that could affect how likely an
hourglass steady configuration is to exist is the ability of ambipolar diffusion to support the
formation of sharp current layers near the mid-plane of the disc.

Brandenburg and Zweibel (1994) investigated the formation of sharp structures around
magnetic nulls (where Bx = By = 0) using a 1D vertical incompressible model with no
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vertical magnetic field, uniform density and only the presence of ambipolar diffusion. They
also neglected the effect of shear. They found that ambipolar diffusion has a self-focussing
effect, forming current layers that scale like z−2/3, where z is the vertical displacement from
the null point. We follow their analysis but include both a vertical magnetic field and Ohmic
diffusion to see what their effect on the solution may be. The induction equation that we
need to solve can be rewritten in the form:

∂tB = ∇× (u×B+uAD ×B−ηO∇×B), (11.29)

where

uAD =
ηA

µ0|B|2
(∇×B)×B (11.30)

is the ion-neutral drift velocity. The magnetic field is given by B = (Bx(z, t),By(z, t),Bz), and
we rewrite the horizontal components in terms of a complex number as B ≡ Bx + iBy. We
also introduce the ambipolar factor D−1

A = ηA/µ0|B|2.
We follow the procedure in Brandenburg and Zweibel (1994) in assuming that the density

is uniform (such that ∂zDA = 0) and that we have hydrostatic equilibrium so that u = 0. We
also assume that ΛA and ηO are uniform in the domain considered. These assumptions are
reasonable if the thickness of the current layer is small compared to the vertical scale height.
The induction equation would then only have non-zero entries in the x and y components of
the form:

∂tB = DA∇× ([(∇×B)×B]×B)−ηO∇× (∇×B)

= DA


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)
∂ 2
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z By +∂z(B2
y∂zBy +BxBy∂zBx)

0


,

(11.31)

which can be rewritten as

∂tB = DA

[(
B2

z +
ηO

DA

)
∂

2
z B+∂z

(
B

2
∂z|B|2

)]
. (11.32)

We can see at this point that the inclusion of a vertical magnetic field has the same kind
of effect on the solution as including Ohmic resistivity, which we know from Zweibel and
Brandenburg (1997) resists the formation of ambipolar diffusion-induced sharp current layers.
We should therefore expect a strong vertical magnetic field to similarly resist the sustaining
of sharp current structures by ambipolar diffusion in our simulations.
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To obtain a steady state solution, we need to set ∂tB = 0. Integrating (11.32), we obtain:

K
DA

=

(
B2

z +
ηO

DA

)
∂zB+

B

2
∂z|B|2, (11.33)

where K is the constant of integration. The solution when Bz = ηO = 0 is B ∝ |z|1/3, with
infinite current density at z = 0. The inclusion of a non-zero first term of the right-hand side
of Equation 11.33 when either Bz or ηO ̸= 0 on the other hand does not permit the appearance
of any infinite currents in the solution for non-zero values of DA, and therefore places a limit
on the sharpness of the current layer.

11.5 Discussion and relation to other works

It is worth comparing the trends uncovered in our results with the trends identified in other
simulations, such as those of Lesur et al. (2014) where all three non-ideal effects (OHA) are
included for discs at R = 1−10 AU, or Simon et al. (2015) which extends their work to discs
up to R = 100 AU.

Lesur et al. (2014) found that all their OHA discs exhibited slanted symmetry in their
saturated states, while we find that our R ≤ 10 AU discs do settle into the slanted symmetry
if initiated with the slanted ‘bxGauss’ profile, but may remain at the steady hourglass
configuration when initiated with the hourglass ‘bxSINmod’ profile for discs at higher radii
and lower magnetisations. The difference in our results may be due to the fact that the
Lesur et al. (2014) simulations are in 3D, and therefore can admit a wider variety of MRI
modes in the initial stages of the simulation that are otherwise limited by our 1D vertical
model. Although their simulations eventually settle into largely laminar states, the symmetry
breaking elements introduced by the MRI modes in the early stages would have sowed the
seeds for the disc to transit to the more stable slanted symmetry within the run time. The
results of Lesur et al. (2014) also only show wind cycles of the kind observed in the ‘wind’
region of our simulations for their Ohmic resistive-only discs, at which point the solutions
largely resemble those uncovered in Chapter 10. However, no significant wind cycles were
observed for their discs where Hall and ambipolar diffusion are also present, while for the
same range of radii considered, we do find small wind cycles in the upper atmospheric
regions of our β0 = 104 −105 discs. The difference here may be due to the fact our wind
cycles for these discs are launched from |z|> 5H, whereas the boxes used in the Lesur et al.
(2014) only extended up to 6H on either side of the mid-plane. Otherwise, our solutions
do resemble the form of solution displayed in the figures of Lesur et al. (2014), and agree
with their analysis that the inclusion of the Hall effect in the positive configuration leads
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to more likely formation of a strong azimuthal magnetic field in the disc mid-plane which
increases the vertical scale-height of the disc and launches strong steady outflows, while a
negative Hall polarity would have the opposite effect, leading to a pronounced bimodality
with respect to the Hall configuration in the solution profile for discs at R ≤ 10 AU. We also
find that ambipolar diffusion has a stabilising effect on the solution up to a larger scale-height
of z ∼ 5H for R ≲ 10 AU discs, in agreement with their result that inclusion of ambipolar
diffusion reduces the surface activity of the discs.

At larger radii (R ≥ 10 AU), we found that discs with ambipolar diffusion-dominated
profiles can exhibit steady outflows with hourglass symmetry at |z| > 3.5H with a strong
off-midplane current layer (e.g. our LR60b3H+S run). The form of these solutions is similar
to some of the solutions of Bai and Stone (2013b) for their ambipolar diffusion-dominated
discs, and lends support to the claim that ambipolar diffusion may be responsible for retaining
a strong current layer in the ‘disc’ portion of the solution, rather than advection out of the
simulation domain and transition to full slanted symmetry.

The more variable slanted-cyclic solutions we found for some of our L14:H-S runs fit in
well with the findings of Simon et al. (2015) that a negative Hall configuration can lead to
unstable solutions, which in the case of their 3D simulations led to bursts of turbulent stress
in the region R ∼ 5−10 AU. Unlike their simulations though, our 1D runs do not permit
the non-axisymmetric HSI modes which they identify as the source of the large-amplitude
variability they observed. We therefore conjecture that an axisymmetric Hall instability, such
as the ICI, is also at work in destabilising solutions when the Hall effect is in the negative
configuration. Similar to Simon et al. (2015), we find that the importance of the Hall polarity
on the solution decreases as we go to higher radii, with discs becoming more prone to take
hourglass or displaced hourglass steady configurations as ambipolar diffusion becomes the
dominant non-ideal MHD effect governing disc evolution.
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Conclusion to Part III

In this Part, we have investigated various factors that may impact on the overall symmetry
of the magnetic disc-wind solution in a vertical slice of a protoplanetary disc through 1D
radially local shearing box simulations. We began by examining the purely Ohmic case
with a prescribed resistivity profile that is large in the mid-plane, characteristic of what we
would expect in the inner disc. We then implemented all three non-ideal effects through more
realistic ionisation calculations, and surveyed the types of disc and wind solutions obtained
over a wide range of radii and magnetisation.

Overall, we found that both the evolution and the final state of solutions are highly
dependent on three factors: the diffusivity profile of the disc, the vertical magnetisation, and
the history of the disc profile. They can be summarised as follows:

• High levels of non-ideal MHD effects in the mid-plane region separate solutions
into ‘disc’ regions which vary on a long timescale (O(10)−O(100)Ω−1), and ‘wind’
regions beyond a certain distance from the mid-plane, which have more rapidly varying
(O(1)−O(10)Ω−1) periodic wind cycles.

• The wind cycles are driven by periodic excitation of the n = 2 or 3 MRI channel mode
coupled with advective eviction when the Alfvén point falls below the mode peaks, and
result in the cyclic states identified in Chapter 10 that can be either hourglass or slanted
owing to the degeneracy of the n = 2 and 3 MRI modes when the strong diffusivities
of the mid-plane region cut off communication between the two sides of the disc.

• A much slower growing (O(10)−O(1000)Ω−1) n = 1 MRI channel mode with mid-
plane bulge in bx and by is also present, and may take over the profile of the ‘disc’
portion and transition it to a slanted mid-plane bulge steady state, similar to the slanted
steady wind solutions observed in other local and global simulations.



226 Conclusion to Part III

• The evolution and long-term state of the ‘disc’ portion is highly dependent on the
history of its profile. An hourglass initial condition leads to it first settling into a
(quasi-)steady hourglass state, before possible transition to the slanted steady state
depending on the vertical magnetisation and diffusivity profile. A slanted initial
condition on the other hand almost always leads to a slanted symmetry long-term state.

• Strong Ohmic resistivity near the mid-plane leads to the ‘disc’ region about the mid-
plane initially taking on a near vertical magnetic field profile with bx and by ≈ 0.

• Strong Hall drift in the positive configuration near the mid-plane leads to amplification
of the horizontal fields by the HSI. Amplification of horizontal fields that have initially
settled into the hourglass configuration may cause it to transition into the slanted wind
state owing to the limited ability of a highly resistive mid-plane to sustain strong
currents. This may be one of the factors contributing to more slanted-steady final disc
configurations for discs with positive Hall polarity.

• Strong Hall drift in the negative configuration about the mid-plane leads to the opposite
effect of dampening the amplitude of the horizontal fields since the operation of the
HSI is now reversed. We also found that the disc region is rendered less stable, which
we speculate to be caused by the operation of the ICI. Discs with negative Hall polarity
usually settle into slanted wind solutions with smaller mid-plane bulges in bx and by

than their positive Hall polarity counterparts.

• Strong ambipolar diffusivity near the mid-plane encourages the formation of sharp
current layers in the mid-plane region, leading to longer or permanent survival of the
‘disc’ solution in an hourglass or displaced hourglass steady state.

• Stronger vertical magnetisation in general leads to a greater tendency to transition to
slanted states for the long-term. It also leads to a weakening (relative to the outflow
launched from the ‘disc’ region) or complete shutting down of the wind cycles in the
‘wind’ region.

• Discs with negligible levels of Ohmic resistivity and marginally stable levels of Hall
and ambipolar diffusivity, such as those at large radii (R ≳ 60 AU), generally have less
stable profiles than those with higher levels of all three non-ideal diffusivities. This
is in line with our results from Part II concerning the contribution of non-ideal MHD
effects to the overall stability of the system.

With the disc models we used, our results overall point to a picture of protoplanetary
discs where, when the Hall effect is present in the positive configuration, the disc symmetry
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would start off at small radii (R ≲ 10 AU) in a slanted mid-plane bulge configuration
with small cyclical outbursts in the atmosphere, before moving to more hourglass-like
configurations with increasing levels of outbursts, and perhaps even breaking into turbulence
in the atmospheric regions, as we move to large radii (R ≳ 30 AU). On the other hand,
protoplanetary discs in a negative Hall configuration would also start off in the slanted
mid-plane bulge configuration at small radii (R < 5 AU), before undergoing ‘bursts’ of
turbulent activity at the mid-plane at small to intermediate radii (R ∼ 5−10 AU). It would
then return to the slanted symmetry but with much stronger wind cycles at intermediate
radii (R ∼ 15−30 AU), before moving towards more hourglass configurations at large radii
(R > 100 AU). In the positive Hall configuration, a larger magnetic field would lead to a
greater tendency of disc slices to settle into more slanted-like solutions, whereas for the
negative Hall configuration, it appears that their effect may be opposite in supporting more
hourglass-like configurations.

One area of interest for future investigations is a more precise description of how the
transition of the disc to the slanted or asymmetric one-sided wind state impacts on the
accretion and radial transport of poloidal magnetic flux in the disc. By nature of the slanted
symmetry, a disc with such configuration cannot (at least in the local model) support a net
radial steady state transport of matter or poloidal magnetic flux, as contributions from the
two sides cancel out. Global simulations (Bai, 2017; Béthune et al., 2017; Gressel et al.,
2020; Riols et al., 2020), as well as our simulations in Chapter 7, have also shown that such
symmetry may lead to a reduction in both overall accretion and flux transport rate, and may
even cause the disc wind and accretion stream to be restricted to one hemisphere only. Since
the slanted symmetry steady state is more easily reached when the local Bz flux is strong, it
may contribute to an automatic shut-down mechanism for the flux transport when the local
build-up of Bz flux becomes too strong and the disc transitions to the slanted state. This
in turn, could have an interplay with the magnetic wind driven ring formation mechanism
recently uncovered by Riols and Lesur (2019); Riols et al. (2020), which assumes the wind
to already have the slanted symmetry in the more highly magnetised gap regions. A future
study probing the importance of the transition to the slanted wind state for the working of
this mechanism, as well as the long term radial transport of vertical flux, would be needed to
address these questions.

Finally, the periodic outbursts observed in our solutions show that MRI-wind outburst
cycles could in theory operate in the protoplanetary disc regime, and may be linked to the
time variability observed in some protoplanetary discs (Bary et al., 2009; Muzerolle et al.,
2009; Wisniewski et al., 2008). However, the simplified 1D radially local nature of our study
does not allow us to form any firm conclusion on the possible link between our cycles and
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observations. Future work will need to be done with better informed disc ionisation profiles,
as well as addressing the problem in the global simulations, to ascertain if such connections
exist.



Part IV

Conclusion





Chapter 13

Conclusion

In this Thesis, we have examined the role a large-scale magnetic field plays in the structure
and evolution of protoplanetary discs. We looked at how non-ideal MHD effects arising
from disc microphysics in the form of Ohmic, Hall and ambipolar diffusivities impact on
the evolution of the long-term radial transport of the large-scale magnetic field threading the
disc. We also investigated the different factors that contribute to the overall configuration
of the large scale magnetic field and the accompanying dynamics of a radially local vertical
slice of the disc. Our work has shed light on the importance of effects arising from coupling
between locally determined non-ideal MHD effects and globally determined disc properties
such as the inclination of the disc surface magnetic field in driving global flux transport. We
have also identified the local disc profile, the history of the disc and the triggering of specific
MRI modes as crucial factors that influence the long term configuration of the disc slice, and
whether we should expect outburst behaviour in the atmosphere.

Our work utilised the property uncovered in recent global simulations that protoplanetary
discs are likely to be laminar due to the presence of non-ideal MHD effects, and therefore
can be modelled by local vertical slices at different radial locations. Using this approach,
we were able to isolate and determine the different factors and mechanisms that contribute
to flux transport and disc configuration in radially local patches. In reality, disc slices are
all interconnected, forming a continuum from the inner to the outer disc, and global effects
are likely to have an important role in determining their properties. We have attempted
to include an element of this in our Thesis by inputting global gradients as a parameter
in some of our models. However, to obtain a full picture of protoplanetary disc dynamics
under the influence of magnetic fields, we ultimately require a global approach where all
such effects are included self-consistently. Our work paves the way towards the realisation
of such a model by identifying the key factors on a local scale that must be included in
the development of a global framework, and extends the work of previous authors in our
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understanding of the interplay between magnetic fields and disc dynamics in the conditions
unique to protoplanetary discs.



Appendix A

Stability of an uniform density disc with
Hall drift and Ohmic resistivity

We examine the stability of the disc profiles and their variation with both diffusivity parame-
ters and the degree of magnetisation. The wavenumber for a given set of disc parameters is

k2 =
2qΩ2ρ0

B2
z

[
1+ρ

2
0

η2
Oκ2

B4
z

(
1

1+ρ0η̃Hκ2/2ΩBz

)
+ρ0

2η̃HΩ

Bz

]−1

. (A.1)

Marginal stability requires kcrit = π/2H. If k < (>) kcrit, then the solution would be (un)stable
to the MRI. We used the density, ρ , as a measure of degree of magnetisation, as we have done
before in Chapter 5. However, it is no longer meaningful to relate ρ to β in the incompressible
regime. Instead, we can see that ρ0 is related to the dimensionless magnetisation parameter
µ through

√
ρ =

Bz√
2HΩ

1
µ
. (A.2)

In the Keplerian case and setting |Bz|= H = Ω = 1, this reduces to

ρ =
1

2µ2 , (A.3)

and conversely

µ =±

√
1

2ρ
, (A.4)

with +(−) for the case when Bz is (anti-)aligned with Ω. Hence we can see that a high (low)
ρ would indicate a low (high) degree of magnetisation in the disc.
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When Ohmic resistivity is non-zero, we found that the behaviour of k with ρ0 fall into four
sub-regimes (see Figure A.1) depending on whether the rotation is aligned or anti-aligned
with the field (or equivalently whether ηH is positive or negative), and on whether Ohmic or
Hall diffusive effects are dominant. The criterion for Ohm (Hall) dominated regimes is given
by

ηO > (<)
1
2
|η̃H |Bz. (A.5)

Without loss of generality, we describe the sub-regimes in the case when Bz is always aligned
with Ω, and change to sign of ηH to reflect the change in polarity. The plots in Figure A.1
are related to Figure 5.4 in that the point(s) of critical stability marked by the red lines in
former appear as points on the intersection between the relevant curve and the f (µ) = 0 line
in the latter. In Figure A.1, solutions to k below kcrit (marked by a horizontal red line) are
stable, while solutions above the line are unstable.

ηH > 0, Ohm dominated regime

Here, k has only one turning point in the plot (see Figure A.1a). The largest possible k value
is found at this turning point, which occurs at

ρmax =
B2

z

κ(ηO − η̃HBzκ/2Ω)
. (A.6)

The corresponding value of kmax can then be calculated. If kmax < kcrit, then all magnetisations
are stable. If kmax > π/2H, unstable solutions exist. The limiting wavenumber value at zero
magnetisation is given by

k(ρ → ∞) =

√
η̃HBz

4qΩ3(η2
O + η̃2

HB2
z )
. (A.7)

If this value is larger than kcrit, then unstable magnetisations are contained in the region

ρ0 > ρcrit, (A.8)

where ρcrit is the density corresponding to k = kcrit. If k(ρ → ∞)< kcrit, then there are two
values of ρ0 at which marginal stability can occur. The unstable magnetisations are then
contained in the region between the two critical values:

ρcrit, lower < ρ0 < ρcrit, upper. (A.9)
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ηH > 0, Hall dominated regime

In this case, the k versus ρ plot no longer has a turning point (see Figure A.1b). The largest
possible k value is found at zero magnetisation, when ρ → ∞, which is given by the same
expression as equation (A.7). If k(ρ →∞)> kcrit, then unstable solutions exist for ρ0 > ρ0,crit.
Otherwise, the disc is stable for all magnetisations.

ηH < 0, Ohm dominated regime

The change in polarity causes k2 < 0 at low magnetisations (large ρ), yielding complex unsta-
ble modes of k (see Figure A.1c). As in the ηH > 0 Ohm dominated case, the largest possible
k value is found at the turning point. This occurs at the same value as that given by equation
(A.6), with its corresponding kmax value. Again, if kmax < kcrit, then all magnetisations are
stable. If kmax > kcrit, then unstable solutions can exist. The ρ value at which k = 0 is given
by:

ρ0,k=0 =−2ΩBz

η̃Hκ2 , (A.10)

and is always > ρ0,tp. Hence there are always two solutions to marginal stability, and the
unstable region occurs when

ρcrit, lower < ρ0 < ρcrit, upper. (A.11)

ηH < 0, Hall dominated regime

In this regime, the value of k2 has two asymptotes in its variation with ρ , and there are
always two solutions for marginal stability (see Figure A.1d). The values of ρ at which the
asymptotes occur are at

ρasym± =
2ΩB2

z

−κ(η̃HBzκ ±2ηOΩκ)
. (A.12)

Graphically, one marginally stable state must be between the two asymptotes, while the other
must be when ρ > ρasymp+.

Hall only case

When Ohmic resistivity is set to zero, the condition E ′
y = 0 forces B′′

y to also be zero, and
By is no longer linked to Bx through ηO as before. The value of k for Bx however, can still
be calculated using equation (5.39). There would be no overall flux transport. Since B′

y is
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Fig. A.1 k or k2 vs. ρ (denoted ρ0 here) are plotted (blue) in the various regimes. Red hori-
zontal dotted/dashed lines indicate the k value for marginal stability, while the corresponding
vertical lines show the ρ value at which this occurs. Purple lines indicate either asymptotes
(vertical) or regions where the solution is complex (horizontal). For the bottom plots, the
green lines mark out where the various turning points are. Top left (a): ηH > 0, Ohm domi-
nated case (ηO = 5, η̃H = 2). Top right (b): ηH > 0, Hall dominated case (ηO = 5, η̃H = 20).
Bottom left (c): ηH < 0, Ohm dominated case (ηO = 5, η̃H =−2). Bottom right (d): ηH < 0,
Hall dominated case (ηO = 5, η̃H =−20). For (a)−(c), disc surface zend = 10, while (d) has
zend = 1, hence the different values of k required for marginal stability to occur (displayed in
the title of each plot).
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a constant, we require it to also be zero, as B′
y ̸= 0 would imply a magnetic torque on the

disc exterior. The k2 vs. ρ plots would be of the same form as that of the Hall dominated
regime cases in the limit of ηO → 0. For the negative polarity case (ηH < 0) case, we can
find the positions of the asymptotes on the graph by setting the expression within the square
brackets of equation (5.39) to zero. When expressed in the Hall strength parameter x, they
correspond to the points when x =−1,−4, with unphysical complex k solutions occuring
when x is between those two values. This is in agreement with the result found in the pure
Hall anaylsis of Balbus and Terquem (2001).





Appendix B

Linearised equations for marginal
stability analysis

The equations I seek to linearise are

ρ
′ = c−2

s [−ρΩ
2z+ JxBy − JyBx], (B.1)

B′
x = µ0Jy, (B.2)

B′
y =−µ0Jx, (B.3)

E ′
x =−3

2
ΩBx. (B.4)

E ′
y = 0. (B.5)

Let the following be a perturbation from the equilibrium solution

ρ = ρeq +∆ρ

Bx = Bx,eq +∆Bx

By = By,eq +∆By

Ex = Ex,eq +∆Ex

Ey = Ey,eq +∆Ey

(B.6)

The linearised equations are then

∆ρ
′ = c−2

s [−∆ρΩ
2z+∆JxBy + Jx∆By −∆JyBx − Jy∆Bx], (B.7)

∆B′
x = µ0∆Jy, (B.8)
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∆B′
y =−µ0∆Jx, (B.9)

∆E ′
x =−3

2
Ω∆Bx. (B.10)

∆E ′
y = 0. (B.11)

For an induction equation of the form

E+v×B =COJ+CHJ×B−CA(J×B)×B, (B.12)
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z ][(CHBz +CABxBy)ρ +2Ω

−1B2
z ]

(B.14)

and

M =

 [CO +CA(B2
z +B2

x)]ρ
2 (−CHBz +CABxBy)ρ

2 −
ρB2

z

2Ω

(CHBz +CABxBy)ρ
2 +

2ρB2
z

Ω
[CO +CA(B2

z +B2
y)]ρ

2.

 (B.15)

Then the current perturbations from equilibrium are given by∆Jx

∆Jy

=
−∆(ρ2 det(R))

(ρ2 det(R))2 M

Ex

Ey

+
∆M

ρ2 det(R)

Ex

Ey

+
M

ρ2 det(R)

∆Ex

∆Ey

 ,(B.16)
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where

∆(ρ2 det(R)) =

(
−ρ

2
0CA0Bx0By0 +ρ

2
0 BzCH0 +

ρ0B2
z

2Ω

)
(ρ1CA0Bx0By0 +ρ0CA0Bx0By1

+ρ0CA0Bx1By0 +ρ0CA1Bx0By0 +ρ1BzCH0 +ρ0BzCH1)

+

(
ρ0CA0Bx0By0 +ρ0BzCH0 +

2B2
z

Ω

)
(
−2ρ0ρ1CA0Bx0By0 −ρ

2
0CA0Bx0By1 −ρ

2
0CA0Bx1By0

−ρ
2
0CA1Bx0By0 +2ρ0ρ1BzCH0 +ρ

2
0 BzCH1 +

ρ1B2
z

2Ω

)
+ρ

2
0

((
CA0B2

y0 +CA0B2
z +CO0

)
(
2CA0Bx0Bx1 +CA1B2

x0 +CA1B2
z +CO1

)
+
(
CA0B2

x0 +CA0B2
z +CO0

)
(

2CA0By0By1 +CA1B2
y0 +CA1B2

z +CO1

))
+2ρ1ρ0

(
CA0B2

x0 +CA0B2
z +CO0

)(
CA0B2

y0 +CA0B2
z +CO0

)
,

(B.17)

∆M11 = ρ
2
0

(
2CA0By0By1 +CA1B2

y0 +CA1B2
z +CO1

)
+2ρ1ρ0

(
CA0B2

y0 +CA0B2
z +CO0

)
,

(B.18)

∆M12 = 2ρ0ρ1CA0Bx0By0 +ρ
2
0CA0Bx0By1 +ρ

2
0CA0Bx1By0 +ρ

2
0CA1Bx0By0

−2ρ0ρ1BzCH0 −ρ
2
0 BzCH1 −

ρ1B2
z

2Ω
,

(B.19)

∆M21 = 2ρ0ρ1CA0Bx0By0 +ρ
2
0CA0Bx0By1 +ρ

2
0CA0Bx1By0

+ρ
2
0CA1Bx0By0 +2ρ0ρ1BzCH0 +ρ

2
0 BzCH1 +

2ρ1B2
z

Ω
,

(B.20)

∆M22 = ρ
2
0

(
2CA0By0By1 +CA1B2

y0 +CA1B2
z +CO1

)
+2ρ1ρ0

(
CA0B2

y0 +CA0B2
z +CO0

)
,

(B.21)

with the subscript 0 terms being the values of the variables and diffusivities of the equilibrium
solution profile, and subscript 1 terms are the first order deviation of the ∆ terms of the
perturbation from equilibrium.





Appendix C

Pseudo-spectral method

We have a system of N linear differential equations with variables v1(z),v2(z), · · · ,vN(z)
dependent on coordinate z. In operator form, the equations can be written in matrix form on
a grid in z of size M as:

L X = S, (C.1)

where L is the NM×NM matrix operator acting on the NM column vector of variables in z
space, and S is the NM column vector of source terms.

The matrix L is arranged as:

L =


L 1,v1 L 1,v2 · · · L 1,vN

L 2,v1
...

L N,v1 · · · L N,vN

 , (C.2)

where the first part of the subscript denote the equation it is describing, while the second part
denotes the variable on which it is acting. Each L n,vn is a M×M matrix.

The vector of variables is arranged as:

X =



v1(z)
↓

v2(z)
↓
...

vN(z)
↓


. (C.3)
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Likewise, S is arranged as

S =



f1(z)
↓

f2(z)
↓
...

fN(z)
↓


, (C.4)

where fn(z) denotes the source term dependent on z of the nth equation.

C.1 Solving the eigenvalue problem (with no source terms)

We want to solve

L X = (L base +σL σ )X = 0, (C.5)

where L base is the operator with all σ terms removed, and L σ is the σ only terms of the
operator.

We can then rearrange the equation so that

L baseX =−σL σ X, (C.6)

and

(−L −1
σ L base)X = σX, (C.7)

which in other words is an eigenvalue problem for the matrix −L −1
σ L base.



Appendix D

Mathematical derivation of analytic
models for analysing GO model

D.1 Analytic model Ohmic diffusion only

This section follows the same procedures as Section 4.1 of Guilet & Ogilvie (2012). We
assume constant Ohmic diffusivity throughout the disc.

Passive field regime

β → ∞ and the equations become:

−2uφ =
3
2
+DH −DνΣ +

(
3
2
−DH

)
ζ

2, (D.1)

ur = 0, (D.2)

ηO∂
2
ζ

br = 0, (D.3)

−ηO∂
2
ζ

bφ −∂ζ uφ +
3
2

br = 0. (D.4)

The azimuthal velocity can then be written as:

uφ = uφ0 +uφ2ζ
2, (D.5)

uφ0 =−1
2

(
3
2
+DH −DνΣ

)
, (D.6)

uφ2 =
1
2

(
DH − 3

2

)
. (D.7)
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From (D.3), and the boundary condition br(0) = 0, we can deduce that:

br = br1ζ . (D.8)

We can then find bφ by substituting (D.5) and (D.8) into (D.4), giving us:

∂
2
ζ

bφ =
1

ηO

(
−2uφ2 +

3
2

br1

)
ζ . (D.9)

This, with the boundary condition bφ (0) = 0, has the solution

bφ =
1

6ηO

(
−2uφ2 +

3
2

br1

)
ζ

3 +bφ1ζ . (D.10)

The flux transport in this region is given by Equation (82):

uΨ = ηO(∂ζ br −DB). (D.11)

Force-free regime

β ≪ 1, nothing can compensate the Lorentz force resulting in force-free magnetic fields with
current parallel to the field lines. The equations become:

∂ζ br = DB, (D.12)

∂ζ bφ = 0, (D.13)

∂ζ ur = 0, (D.14)

−∂ζ uφ +
3
2

br = 0. (D.15)

For our case where the field is almost vertical, the radial and azimuthal currents vanish.
Diffusive effects no longer have any importance, and:

∂ζ bφ = 0, (D.16)

∂ζ br −DB = 0. (D.17)

With our boundary conditions at infinity, we find that throughout the force-free region:

bφ =±bφs, (D.18)

br =±brs +DBζ , (D.19)

where ± stands for the sign of ζ .
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For the azimuthal velocity, substituting (D.19) and (D.18) to (D.15):

uφ =
3
2

(
brs|ζ |+

DB

2
ζ

2
)
+u′φ0, (D.20)

where u′
φ0 is an integration constant to be determined.

From Equation (82), the radial velocity is equal to the flux transport velocity and is a
constant:

ur = uΨ. (D.21)

Two-zone model

The height at which the magnetic pressure is equal to the thermal pressure is given by:

ζB =

√
ln
(

2
π

β 2
0

)
. (D.22)

We assume that for ζ < ζB we have a ‘passive field’, and for ζ > ζB, we have a ‘force-free
field’. We neglect the thickness of the transition where β is of order unity, and determine
proper boundary conditions at ζ = ζB. Four conditions are needed to constrain the four
unknowns.

Two boundary conditions can be obtained from the analysis of the induction equation.
Using (D.11), (D.8) and (D.10) at ζ = 0, we obtain:

uΨ = ηO
[
∂ζ (br1ζ )−DB

]
= ηO (br1 −DB) . (D.23)

The azimuthal component of the induction is more complicated because br acts as a
source term. We integrate between two heights ζ1 and ζ2 to get:[

ηO∂ζ bφ +uφ

]ζ2
ζ1
=

3
2

∫
ζ2

ζ1

brdζ . (D.24)

We can use this relation between ζ
−
B and ζ

+
B to connect the two regions. We neglect the

width of the intermediate region, so the RHS of the equation vanishes. This is equivalent to
the condition that horizontal electric field components are continuous across the boundary.
Including the force-free conditions that ∂ζ br(ζ

+
B ) = DB and ∂ζ bφ (ζ

+
B ) = 0, we obtain:

uφ (ζ
+
B )−uφ (ζ

−
B ) = ηO∂ζ bφ (ζ

−
B ). (D.25)

The other two boundary conditions come from assuming that the magnetic field does not
vary significantly at the transition between the two regions:

br(ζ
−
B ) = br(ζ

+
B ) = brs +DBζB, (D.26)
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bφ (ζ
−
B ) = bφ (ζ

+
B ) = bφs. (D.27)

The radial magnetic field profile in the passive-field region is then given by:

br(ζ ) = br1ζ =

[
brs

ζB
+DB

]
ζ . (D.28)

While the azimuthal magnetic field profile in the passive-field region is:

bφ =
1

6ηO

(
−2uφ2 +

3
2

br1

)
ζ

3 +bφ1ζ . (D.29)

where

br1 =
brs

ζB
+DB, (D.30)

bφ1 =
bφs

ζB
− 1

6ηO

(
−2uφ2 +

3
2

br1

)
ζ

2
B . (D.31)

The azimuthal velocity field in the passive-field region is given by (D.5), while in the
force-free field region we use (D.25) to find:

uφ =
3
2

(
brs|ζ |+

DB

2
ζ

2
)
+u′φ0, (D.32)

u′φ0 = ηO∂ζ bφ (ζ
−
B )+uφ (ζ

−
B )− 3

2

(
brs|ζB|+

DBζ 2
B

2

)
. (D.33)

To calculate the flux transport, we evaluate the gradients of the horizontal magnetic fields
in the passive-field region:

∂ζ b−r =
brs

ζB
+DB, (D.34)

∂ζ b−
φ
=

1
3ηO

(
−2uφ2 +

3
2

br1

)
ζ

2 +bφ1. (D.35)

This gives us the flux transport velocity as:

uΨ = ηO
brs

ζB
. (D.36)

This shows us that the Ohm term can drive flux transport given the presence of an inclination
in the poloidal field to the vertical. A large scale radial magnetic gradient also contributes to
flux transport.
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D.2 Approximate analytic model when ηH ≫ ηO

We follow the same procedure as Appendix D.1 but with ηH included.

Purely hydrodynamic, β → ∞ [Passive field]

The equations become:

−2ũφ =
3
2
+DH −DνΣ +

(
3
2
−DH

)
ζ

2, (D.37)

ũr = 0, (D.38)

∂ζ

(
ηO∂ζ br

)
+∂ζ

(
ηH∂ζ bφ

)
= DB∂ζ (ηO) , (D.39)

∂ζ

(
η̃H∂ζ br

)
−∂ζ

(
η̃O∂ζ bφ

)
−∂ζ uφ +

3
2

br = DB∂ζ η̃H . (D.40)

From (D.37), we can write

uφ = uφ0 +uφ2ζ
2, (D.41)

uφ0 =−1
2

(
3
2
+DH −DνΣ

)
, (D.42)

uφ2 =
1
2

(
DH − 3

2

)
. (D.43)

Assuming constant diffusivities, we have:
(D.39):

ηO∂
2
ζ

br +ηH∂
2
ζ

bφ = 0, (D.44)

(D.40):

ηH∂
2
ζ

br −ηO∂
2
ζ

bφ −2uφ2ζ +
3
2

br = 0. (D.45)

We find Br via (D.45)×ηH + (D.44) ×ηO, which after some rearrangement gives us:

∂
2
ζ

br +
3
2

(
ηH

η2
O +η2

H

)
br = 2uφ2

(
ηH

η2
O +η2

H

)
ζ . (D.46)

This can be solved as a second order ODE using standard techniques:

br,CF = B1 cos(κζ )+B2 sin(κζ ), (D.47)
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κ =

√
3
2

(
ηH

η2
O +η2

H

)
, (D.48)

br,PI =
4
3

uφ2ζ , (D.49)

br,GS = br,CF +br,PI. (D.50)

Applying midplane boundary conditions, we obtain B1 = 0. Hence,

br(ζ ) = B2 sin(κζ )+
4
3

uφ2ζ , (D.51)

uφ2 =
1
2

(
DH − 3

2

)
. (D.52)

Note that when ηH = 0, ∂ 2
ζ

br = 0, and

br = br1ζ , (D.53)

where br1 is a constant to be determined.

We find Bφ via (D.44)×ηH − (D.45)×ηO, which after rearranging gives us:

∂
2
ζ

bφ =
3
2

B2

(
ηO

η2
O +η2

H

)
sin(κζ ). (D.54)

When ηO ̸= 0, ηH = 0:

∂
2
ζ

bφ = 0, (D.55)

bφ (ζ ) = bφ1ζ . (D.56)

When ηO,ηH ̸= 0:

bφ =−B2
ηO

ηH
sin(κζ )+bφ1ζ . (D.57)

As ηH → 0, κ → 0 but the limit is such that bφ →±∞.
The flux transport in this region is given by Equation (82):

uΨ = ηO(∂ζ br −DB)+ηH∂ζ bφ . (D.58)
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Force-free magnetic field

By the same arguments outlined in Appendix D.1, we have:

∂ζ bφ = 0, (D.59)

∂ζ br −DB = 0. (D.60)

With our boundary conditions at infinity, we find that throughout the force-free region:

bφ =±bφs, (D.61)

br =±brs +DBζ , (D.62)

where ± stands for the sign of ζ .
The absence of a current means that the magnetic field cannot diffuse. Velocity is

dtermined by the fact that the fluid is frozen into the magnetic field lines.
For the azimuthal velocity, substituting (D.62) and (D.61) to Equation (64) and integrating

over ζ :

uφ =
3
2

(
brs|ζ |+

DB

2
ζ

2
)
−DBηH +u′φ0. (D.63)

The radial velocity is equal to the flux transport velocity and is a constant:

ur = uΨ. (D.64)

Two-zone model

The height at which the magnetic pressure is equal to the thermal pressure is given by:

ζB =

√
ln
(

2
π

β 2
0

)
. (D.65)

We make the same assumptions and follow through the argument of Appendix D.1 to
determine the boundary conditions at ζ = ζB to connect the two zones.

Two boundary conditions can be obtained from the analysis of the induction equation.
Using (D.58), (D.51) and (D.57) at ζ = 0, we obtain:

uΨ = ηO

[
4
3

uφ2 −DB

]
+ηHbφ1. (D.66)
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The azimuthal component of the induction is more complicated because br acts as a
source term. We integrate between two heights ζ1 and ζ2 to get:[

ηO∂ζ bφ +ηH(DB −∂ζ br)+uφ

]ζ2
ζ1
=

3
2

∫
ζ2

ζ1

brdζ . (D.67)

We use this relation between ζ
−
B and ζ

+
B to connect the two regions and neglect the width of

the intermediate region, so the RHS of the equation vanishes. The force-free condition gives
us ∂ζ br(ζ

+
B ) = DB and ∂ζ bφ (ζ

+
B ) = 0. Hence,

uφ (ζ
+
B )−uφ (ζ

−
B ) = ηO∂ζ bφ (ζ

−
B )−ηH∂ζ br(ζ

−
B ). (D.68)

The two other conditions come from the two components of the equation of motion.
Assuming that the magnetic field does not vary significantly at the transition between the two
regions:

br(ζ
−
B ) = br(ζ

+
B ) = brs +DBζB, (D.69)

bφ (ζ
−
B ) = bφ (ζ

+
B ) = bφs. (D.70)

The radial magnetic field profile in the passive-field region is given by:

br(ζ ) = B2 sin(κζ )+
4
3

uφ2ζ , (D.71)

where

B2 =

brs +

(
DB −

4
3

uφ2

)
ζB

sin(κζB)
, (D.72)

The azimuthal magnetic field profile in the passive-field region is:

bφ =−B2
ηO

ηH
sin(κζ )+bφ1ζ . (D.73)

The azimuthal velocity field in the passive-field region is given by (D.41), while in the
force-free field region it is:

uφ =
3
2

(
brs|ζ |+

DB

2
ζ

2
)
−DBηH +u′φ0, (D.74)

u′φ0 = ηO∂ζ bφ (ζ
−
B )−ηH∂ζ br(ζ

−
B )+uφ (ζ

−
B )

− 3
2

(
brs|ζB|+

DBζ 2
B

2

)
+DBηH .

(D.75)
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The gradients of the horizontal magnetic fields in the passive-field region are:

∂ζ b−r = B2κ cos(κζ )+
4
3

uφ2, (D.76)

∂ζ b−
φ
=−B2κ

ηO

ηH
cos(κζ )+bφ1. (D.77)

The flux transport is then explicitly calculated as:

uΨ = ηH
bφs

ζB
+ηO

brs

ζB
. (D.78)

D.3 Ohmic diffusion only incorporating effects from the
intermediate transition region

Here, we assume intermediate region to the thin, and concentrate only on the DB, brs and bφs

source terms (neglecting Keplerian and Hydrodynamic source terms).
The density profile around ζB is approximated by:

ρ̃ ≃ 1
2β0

exp(−ζBx), (D.79)

where x ≡ ζ −ζB. The intermediate region where β ∼ 1 has a typical thickness of x ∼ 1/ζB,
and our assumption of a thin transition is valid if ζ 2

B ≫ 1.
The differential system is then rewritten as:

−2ũφ −2eζBx
∂ζ br =−2eζBxDB, (D.80)

1
2

ũr −2eζBx
∂ζ bφ = 0, (D.81)

∂ζ

[
η̃O
(
∂ζ br −DB

)
+ur

]
= 0, (D.82)

∂ζ

(
η̃O∂ζ bφ +uφ

)
=

3
2

br. (D.83)

We integrate between two heights ζ1 and ζ2 to get:[
ηO∂ζ bφ +uφ

]ζ2
ζ1
=

3
2

∫
ζ2

ζ1

brdζ . (D.84)

As before, we use this relation between ζ
−
B and ζ

+
B to connect the two regions, neglecting

the width of the intermediate region, so the RHS of the equation vanishes. The force-free
condition is also employed where ∂ζ br(ζ

+
B ) = DB and ∂ζ bφ (ζ

+
B ) = 0. Hence,

uφ (ζ
+
B )−uφ (ζ

−
B ) = ηO∂ζ bφ (ζ

−
B )−ηH∂ζ br(ζ

−
B ). (D.85)
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and

uΨ = ur +ηO(∂ζ br −DB)

=−ηODB.
(D.86)

Thus,

ur = uΨ −ηO(∂xbr −DB), (D.87)

uφ = ∆uφ −ηO∂xbφ , (D.88)

where ∆uφ = uφ (ζ
+
B )−uφ (ζ

−
B ) = ηO∂ζ bφ (ζ

−
B ).

We substitute these relations into (D.80) and (D.81):

ηO∂xbφ − eζBx(∂xbr −DB) = ∆uφ , (D.89)

ηO(∂xbr −DB)+4eζBx
∂xbφ = uΨ. (D.90)

We can treat them as simultaneous equations in ∂xbr −DB and ∂xbφ :

−eζBx(∂xbr −DB)+ηO∂xbφ = ∆uφ , (D.91)

ηO(∂xbr −DB)+4eζBx
∂xbφ = uΨ. (D.92)

We find ∂xbr via (D.92)×ηO−(D.91)×4eζBx, which after rearranging gives:

∂xbr = DB +
ηOuΨ −4eζBx∆uφ

η2
O +4e2ζBx

. (D.93)

We find ∂xbφ via (D.91)×ηO−(D.92)×eζBx, which after rearranging gives:

∂xbφ =
ηO∆uφ + eζBxuΨ

η2
O +4e2ζBx

. (D.94)

Integrating over x, we compute the jump in br across the intermediate region if eζBx ≫ 1:

br(x)−br(−x)

≃ 2DBx

+
1
ζB

uΨ

ηO
·

{
2ζBx− 1

2
ln
(

4
η2

O
e2ζBx

)}

− π

ζB

∆uφ

ηO
.

(D.95)
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The jump condition is thus:

∆br =− π

ηO

∆uφ

ζB
− ln

(
2

ηO

)
uΨ

ηOζB
. (D.96)

Doing the same for bφ , we have:

bφ (x)−bφ (−x)

≃ 1
ζB

{
∆uφ

ηO

}
·

{
2ζBx− 1

2
ln
(

4
η2

O
e2ζBx

)}
+

π

ζB

uΨ

4ηO
.

(D.97)

The jump condition is thus:

∆bφ =
4π

ηO

uΨ

ζB
− ln

(
2

ηO

)
∆uφ

ηOζB
. (D.98)

These new boundary conditions can be injected into the two zone model such that

br(ζ
−
B ) = br(ζ

+
B )−∆br, (D.99)

bφ (ζ
−
B ) = bφ (ζ

+
B )−∆bφ . (D.100)

Hence for br, we have

br1ζB =
π

ηO

∆uφ

ζB
+ ln

(
2

ηO

)
uΨ

ηOζB
+brs +DBζB. (D.101)

After some algebra, we obtain

br1 =
1

ζB

(
1− π

2ηO

)
− 1

ζB
ln
(

2
ηO

)
×
{

πbφs

ζ 2
B

+brs +DB

[
ζB −

1
ζB

ln
(

2
ηO

)]}
.

(D.102)

For bφ , we obtain

bφ1 =

[
ζB − ln

(
2

ηO

)
1
ζB

]−1

×

[
bφs −

π(br1 −DB)

4ζB
− 1

4ηO
br1ζ

3
B

+ ln
(

2
ηO

)
ζB

ηO

[
3
4

br1)

]] (D.103)

Under these new conditions, the flux transport is:

uΨ = ηO
[
∂ζ (br1ζ )−DB

]
, (D.104)

uΨ = ηO (br1 −DB) . (D.105)
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D.4 Ideal MHD case

The equations become:

−2uφ −
1

β0ρ̃
∂ζ br =

3
2
+DH −DνΣ +

(
3
2
−DH

)
ζ

2 − DB

β0ρ̃
, (D.106)

1
2

ur −
1

β0ρ̃
∂ζ bφ = 0, (D.107)

∂ζ ur = 0, (D.108)

−∂ζ uφ +
3
2

br = 0. (D.109)

ur and bφ form a closed system through (D.107) and (D.108). uφ and br form a separate
closed system through (D.106) and (D.109).

From (D.108), we have constant radial velocity:

ur(ζ ) = constant. (D.110)

The azimuthal momentum balance gives us an error function profile for bφ :

bφ =
β0ur

2

∫
ζ

0
ρ(ζ )dζ . (D.111)

If bφ → bφs as ζ → ∞, we have:

ur =
bφs

β0

2∫
∞

0 ρdζ
. (D.112)

For the Gaussian profile we are using,
∫

∞

0 ρdζ = 1/2, so

ur = 4 ·
bφs

β0
. (D.113)

We can see that a larger magnetic field strength (lower β0) leads to a larger radial outflow,
while a larger magnetic torque (larger bφs) also brings about the same result. The flux
transport is simply given by the radial velocity:

uΨ = ur. (D.114)



Appendix E

Linear expansion of the equations on a
general background

E.1 Linearised equations for Ohmic only case

We study the behaviour of the MRI modes using a linear expansion of the perturbations on top
of a general background assumed to vary on a longer timescale. In the local approximation
the governing equations are

ρ(∂tvx + vzDvx −2Ωvy) = BzDBx, (E.1)

ρ

(
∂tvy + vzDvy +

1
2

Ωvx

)
= BzDBy, (E.2)

ρ(∂tvz + vzDvz) =−ρΩ
2z−Dp−ByDBy −BxDBx, (E.3)

∂tρ +ρDvz + vzDρ = 0, (E.4)

∂tBx = BzDvx − vzDBx −BxDvz +(Dη)(DBx)+ηD2Bx + fx(ηH ,ηA), (E.5)

∂tBy =−3
2

ΩBx−vzDBy−ByDvz+BzDvy+(Dη)(DBy)+ηD2By+gy(ηH ,ηA),(E.6)

where I have used units such that µ0 = 1, v is the departure from steady Keplerian rotation,
and fx(ηH ,ηA) and gy(ηH ,ηA) are the contributions from Hall and ambipolar terms to the x
and y components of the induction equation respectively, which we set to zero for in this part
of the analysis. In a 1D vertically stratified shearing box, only the “Ω effect” due to shear is

present in the term −3
2

ΩBxey. Using the ansatz

δQ = δQ(z)exp(−iωt) (E.7)
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for perturbations δQ, and using the notation D ≡ ∂/∂ z, the linearised equations are

−ρvzDδvx +BzDδBx

= Bz(DBx)
δρ

ρ
− iωρδvx −2ρΩδvy +ρ(Dvx)δvz,

(E.8)

−ρvzDδvy +BzDδBy

= Bz(DBy)
δρ

ρ
+

1
2

ρΩδvx − iωρδvy +ρ(Dvy)δvz,
(E.9)

Dδ p+ρvzDδvz +BxDδBx +ByDδBy

= (Dp+ByDBy +BxDBx)
δρ

ρ
+ρ(iω −Dvz)δvz

− (DBx)δBx − (DBy)δBy,

(E.10)

vzDδρ +ρDδvz = (iω −Dvz)δρ − (Dρ)δvz, (E.11)

ηD2
δBx +BzDδvx −BxDδvz − (vz −Dη)DδBx

= (DBx)δvz − (iω −Dvz)δBx,
(E.12)

−ηD2
δBy −BzDδvy +ByDδvz +(vz −Dη)DδBy

= − (DBy)δvz −
3
2

ΩδBx +(iω −Dvz)δBy.
(E.13)

We have six equations and six unknowns:

δρ,δvx,δvy,δvz,δBx,δBy, (E.14)

and one eigenvalue,

ω. (E.15)

This is therefore a complete system of equations for obtaining a solution in combination with
boundary conditions and an arbitrary normalisation condition.

E.2 Recasting into operator form for pseudospectral anal-
ysis

As described in Section 10.6.1, it is more useful to use mx,y,z than δvx,y,z to encourage
convergence when using Whittaker functions. The corresponding changes are given by

δvx,y,z →
1
ρ

δmx,y,z. (E.16)
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Recasting the equations in operator form (using isothermal equation of state with c2
s = 1):

−Bz(DBx)
δρ

ρ
+

[
vz

(
Dρ

ρ
−D

)
+ iω

]
δmx

+2Ωδmy − (Dvx)δmz +BzDδBx = 0,
(E.17)

−Bz(DBy)
δρ

ρ
− 1

2
Ωδmx

+

[
vz

(
Dρ

ρ
−D

)
+ iω

]
δmy − (Dvy)δmz +BzDδBy = 0,

(E.18)

[
D− 1

ρ
(Dρ +ByDBy +BxDBx)

]
δρ

+

[
vz

(
D− Dρ

ρ

)
− iω +Dvz

]
δmz

+(BxD+DBx)δBx +(ByD+DBy)δBy = 0,

(E.19)

(vzD− iω +Dvz)δρ +Dδmz = 0, (E.20)

ηρD2
δBx +Bz

(
D− Dρ

ρ

)
δmx

+

[
Bx

(
−D+

Dρ

ρ

)
−DBx

]
δmz

+[(−vz +Dη)ρD+ρ(iω −Dvz)]δBx = 0,

(E.21)

−ηρD2
δBy +Bz

(
−D+

Dρ

ρ

)
δmy

+

[
By

(
D− Dρ

ρ

)
+DBy

]
δmz

+
3
2

ρΩδBx +[(vz −Dη)ρD+(−iω +Dvz)ρ]δBy = 0.

(E.22)

E.3 Simplied regime: reduced equations and the shooting
method

In the limit, vz,Bx,By,δvz = 0, we obtain:

BzDδBx =−iωρδvx −2ρΩδvy, (E.23)

BzDδBy =
1
2

ρΩδvx − iωρδvy, (E.24)



260 Linear expansion of the equations on a general background

0 = (Dp)
δρ

ρ
−Dδ p, (E.25)

0 = iωδρ, (E.26)

ηD2
δBx +BzDδvx +(Dη)DδBx =−iωδBx, (E.27)

−ηD2
δBy −BzDδvy − (Dη)DδBy = − 3

2
ΩδBx + iωδBy. (E.28)

Notice that if a mode exists, δρ = 0, hence we only have four equations effectively.
Using an isothermal equation of state, and units such as c2

s = 1, this becomes

DδBx =−iω
ρ

Bz
δvx −2

ρ

Bz
Ωδvy, (E.29)

DδBy =
1
2

ρ

Bz
Ωδvx − iω

ρ

Bz
δvy, (E.30)

ηD2
δBx +BzDδvx +(Dη)DδBx =−iωδBx, (E.31)

ηD2
δBy +BzDδvy +(Dη)DδBy =

3
2

ΩδBx − iωδBy. (E.32)

We can further express δvx and δvy in terms of DδBx and DδBy:

δvx =
1

Ω2 −ω2

(
Bz

ρ

)
(−iωDδBx +2ΩDδBy) , (E.33)

δvy =− 1
Ω2 −ω2

(
Bz

ρ

)(
Ω

2
DδBx + iωDδBy

)
. (E.34)

Substituting this into the second order equations, we get:

ηD2
δBx +

v2
Az

Ω2 −ω2

(
− iωD2

δBx +2ΩD2
δBy

− Dρ

ρ
[−iωDδBx +2ΩDδBy]

)
+(Dη)DδBx =−iωδBx,

(E.35)

ηD2
δBy −

v2
Az

Ω2 −ω2

(
Ω

2
D2

δBx + iωD2
δBy

− Dρ

ρ

[
Ω

2
DδBx + iωDδBy

])
+(Dη)DδBy =

3
2

ΩδBx − iωδBy.

(E.36)
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Using the same definitions as Sano & Miyama, where

σ = (Ω2 −ω
2)

η

v2
Az

− iω, (E.37)

S =

[
iω

Dρ

ρ
+

(Ω2 −ω2)

v2
Az

Dη

]
DδBx

−2Ω
Dρ

ρ
DδBy + iω

(Ω2 −ω2)

v2
Az

δBx,

(E.38)

T =
Ω

2
Dρ

ρ
DδBx +

[
iω

Dρ

ρ
+

(Ω2 −ω2)

v2
Az

Dη

]
DδBy

− (Ω2 −ω2)

v2
Az

[
3
2

ΩδBx + iωδBy

]
,

(E.39)

the equations are recast as

σD2
δBx +2ΩD2

δBy =−S , (E.40)

−Ω

2
D2

δBx +σD2
δBy =−T . (E.41)

This gives us finally

D2
δBx =

−σS +2Ωτ

Ω2 +σ2 , (E.42)

D2
δBy =

−(Ω/2)S −στ

Ω2 +σ2 , (E.43)

which reproduces the results of Sano and Miyama (1999), and can easily be solved for δBx

and δBy using the shooting method via standard techniques.

E.4 Inclusion of Hall and ambipolar terms

We now consider the contributions from Hall and ambipolar terms to the linearised equations.
To simplify some of the expressions, we use η̃H = ηH/|B| and η̃A = ηA/|B|2. The terms
fx(ηH ,ηA) and gy(ηH ,ηA) are:

fx(ηH ,ηA) = η̃H(D2By)Bz +(Dη̃H)DByBz

+ η̃A{(D2Bx)B2
z +(D2ByBy +[DBy]

2 +D2BxBx +2[DBx]
2)Bx

+(DByBy)DBx}
+(Dη̃A)[DBxB2

z +(DByBy +DBxBx)Bx],

(E.44)
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gy(ηH ,ηA) = − η̃HD2BxBz − (Dη̃H)DBxBz

+ η̃A[D2ByB2
z +(D2ByBy +2[DBy]

2 +D2BxBx +[DBx]
2)By

+(DBxBx)DBy]

+ (Dη̃A)[DByB2
z +(DByBy +DBxBx)By].

(E.45)

The inclusion of Hall and ambipolar effects only affects the x and y components of the
induction equation, and so we include them in the linearised equations by inserting the
relevant linearised components flin(ηH ,ηA) and glin(ηH ,ηA) into them respectively, giving
us

ηD2
δBx +BzDδvx −BxDδvz − (vz −Dη)DδBx + flin(ηH ,ηA)

= (DBx)δvz − (iω −Dvz)δBx,
(E.46)

ηD2
δBy +BzDδvy −ByDδvz − (vz −Dη)DδBy +glin(ηH ,ηA)

= (DBy)δvz +
3
2

ΩδBx − (iω −Dvz)δBy.
(E.47)

where

flin(ηH ,ηA) = δ η̃H(D2By)Bz + η̃H(D2
δBy)Bz

+(Dδ η̃H)DByBz +(Dη̃H)DδByBz

+δ η̃A[(D2Bx)B2
z +(D2ByBy +[DBy]

2 +D2BxBx

+2[DBx]
2)Bx +(DByBy)DBx]

+ η̃A[(D2
δBx)B2

z

+(D2
δByBy +D2ByδBy +2DByDδBy

+D2
δBxBx +D2BxδBx +4DBxDδBx)Bx

+(D2ByBy +[DBy]
2 +D2BxBx +2[DBx]

2)δBx

+DδByByDBx +DByδByDBx +DByByDδBx]

+ (Dδ η̃A)[DBxB2
z +(DByBy +DBxBx)Bx]

+ (Dη̃A)[DδBxB2
z

+(DδByBy +DByδBy +DδBxBx +DBxδBx)Bx

+(DByBy +DBxBx)δBx].

(E.48)
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glin(ηH ,ηA) = −δ η̃HD2BxBz − η̃HD2
δBxBz

− (Dδ η̃H)DBxBz − (Dη̃H)DδBxBz

+δ η̃A[D2ByB2
z +(D2ByBy +2[DBy]

2

+D2BxBx +[DBx]
2)By +(DBxBx)DBy]

+ η̃A[D2
δByB2

z

+(D2
δByBy +D2ByδBy +4DByDδBy

+D2
δBxBx +D2BxδBx +2DBxDδBx)By

+(D2ByBy +2[DBy]
2 +D2BxBx +[DBx]

2)δBy

+DδBxBxDBy +DBxδBxDBy +DBxBxDδBy]

+ (Dδ η̃A)[DByB2
z +(DByBy +DBxBx)By]

+ (Dη̃A)[DδByB2
z

+(DδByBy +DByδBy +DδBxBx +DBxδBx)By

+(DByBy +DBxBx)δBy].

(E.49)

Note that δQ · · · is implicitly included in δ η̃H,A while DQ · · · is incorporated in Dη̃H,A.

E.4.1 Vertical magnetic field only background

In the case where the background magnetic field is purely vertical and uniform, Bx,By = 0.
Hence we can simplify the additional linear terms to:

flin =
[
η̃AB2

z D2 +(Dη̃A)B2
z D
]

δBx +
[
η̃HBzD2 +(Dη̃H)BzD

]
δBy. (E.50)

glin =
[
−η̃HBzD2 − (Dη̃H)BzD

]
δBx +

[
η̃AB2

z D2 +(Dη̃A)B2
z D
]

δBy. (E.51)

We can also revert back to normal diffusivities, as η̃H = ηH/Bz and η̃A = ηA/B2
z , giving us:

flin =
[
ηAD2 +(DηA)D

]
δBx +

[
ηHD2 +(DηH)D

]
δBy. (E.52)

glin =
[
−ηHD2 − (DηH)D

]
δBx +

[
ηAD2 +(DηA)D

]
δBy. (E.53)

In this limit, it is worth noting that ambipolar diffusivity has the same effect on the system as
Ohmic resistivity.





Appendix F

Calculating the average exponential
growth

The linear MRI analysis yielded a varying growth rate, the average effect of which may be
able to explain the slow exponential increase we observe in the mid-plane bx and by values.
We need a suitable average to see its effective exponential growth over one cycle.

In the constant exponential growth rate model:

f (t) = Aexp(γt), (F.1)

such that
1
f

d f
dt

= γ. (F.2)

But now, suppose that B(t) is a varying function with time, then
1
f

d f
dt

= γ(t). (F.3)

We integrate the equation∫ f (t2)

f (t1)

d f ′

f ′
=
∫ t2

t1
γ(t) dt, (F.4)

and obtain

ln
(

f (t2)
f (t1)

)
=
∫ t2

t1
γ(t) dt. (F.5)

Hence

f (t2) = f (t1)exp
[∫ t2

t1
γ(t) dt

]
= f (t1)exp [γeff(t2 − t1)], (F.6)

and the effective growth rate over the time period is

γeff =

∫ t2
t1 γ(t) dt

t2 − t1
. (F.7)

The numerator of γeff can be found through numerical integration.
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