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SUMMARY

Gene fusions represent an important class of so-
matic alterations in cancer. We systematically inves-
tigated fusions in 9,624 tumors across 33 cancer
types using multiple fusion calling tools. We identi-
fied a total of 25,664 fusions, with a 63% validation
rate. Integration of gene expression, copy number,
and fusion annotation data revealed that fusions
involving oncogenes tend to exhibit increased
expression, whereas fusions involving tumor sup-
pressors have the opposite effect. For fusions
involving kinases, we found 1,275 with an intact
kinase domain, the proportion of which varied signif-
icantly across cancer types. Our study suggests that
fusions drive the development of 16.5% of cancer
cases and function as the sole driver in more than
1% of them. Finally, we identified druggable fusions
involving genes such as TMPRSS2, RET, FGFR3,
ALK, and ESR1 in 6.0% of cases, and we predicted
immunogenic peptides, suggesting that fusions
may provide leads for targeted drug and immune
therapy.

INTRODUCTION

The ability to determine the full genomic portrait of a patient is a

vital prerequisite for making personalized medicine a reality. To
This is an open access article und
date, many studies have focused on determining the landscape

of SNPs, insertions, deletions, and copy number alterations in

cancer genomes (Kanchi et al., 2014; Kandoth et al., 2013; Ku-

mar-Sinha et al., 2015; Lawrence et al., 2014; Vogelstein et al.,

2013; Wang et al., 2014). Although such genomic alterations

make up a large fraction of the typical tumor mutation burden,

gene fusions also play a critical role in oncogenesis. Gene fu-

sions or translocations have the potential to create chimeric

proteins with altered function. These events may also rearrange

gene promoters to amplify oncogenic function through protein

overexpression or to decrease the expression of tumor suppres-

sor genes.

Gene fusions function as diagnostic markers for specific can-

cer types. For example, a frequent translocation between chro-

mosomes 11 and 22 creates a fusion between EWSR1 and

FLI1 in Ewing’s sarcoma. Also, the Philadelphia chromosome

9–22 translocation is characteristic of chronic myeloid leukemia,

resulting in the fusion protein BCR–ABL1. This fusion leads to

constitutive protein tyrosine kinase activity and downstream

signaling of the PI3K and MAPK pathways, which enables cells

to evade apoptosis and achieve increased cell proliferation (Cil-

loni and Saglio, 2012; Hantschel, 2012; Ren, 2005; Sinclair et al.,

2013). Fibrolamellar carcinoma (FLC) in the liver is characterized

by a DNAJB1–PRKACA fusion. A recent study of The Cancer

Genome Atlas (TCGA) tumors revealed this fusion transcript is

specific to FLC, differentiating it from other liver cancer samples

(Dinh et al., 2017). In contrast, FGFR3–TACC3 is an inframe acti-

vating kinase fusion found in multiple cancer types, including

glioblastoma multiforme (GBM) (Lasorella et al., 2017; Singh

et al., 2012) and urothelial bladder carcinomas (BLCA) (Cancer
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er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:lding@wustl.edu
https://doi.org/10.1016/j.celrep.2018.03.050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.03.050&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Genome Atlas Research Network, 2014). Other recurrent fusions

have also been reported in multiple cancer types (Bass et al.,

2011; Jones et al., 2008; Palanisamy et al., 2010), and functional

characterization of a few selected fusion genes in cellular model

systems has confirmed their oncogenic nature (Lu et al., 2017).

Recently, large-scale genomic studies have used the TCGA

RNA sequencing (RNA-seq) data corpus to systematically iden-

tify and compile fusion candidates across many cancer types.

For example, as part of its goal to develop a comprehensive,

genome-wide database of fusion genes, ChimerDB (Lee et al.,

2017) has analyzed RNA-seq data of several thousand TCGA

cases. Giacomini et al. (2013) performed breakpoint analysis

on exon microarrays across 974 cancer samples and identified

198 candidate fusions in annotated cancer genes. A searchable

portal of TCGA data includes 20,731 fusions called from 9,966

cancer and 648 normal samples (Hu et al., 2018). Some studies

focus on important classes of genes, such as kinase fusions

(Stransky et al., 2014), which may have particular structural

properties that are selected for during oncogenesis and

cancer progression. However, most efforts have used only a

single fusion calling algorithm. Because disagreements among

different callers are common, there is a need to develop a

comprehensive approach that combines the strengths of various

callers to achieve higher fusion calling accuracy. Furthermore,

large-scale analyses are likely to expand the targetable land-

scape of fusions in cancer, revealing potential treatment options

for patients.

Here, we leverage multiple newly developed bioinformatic

tools to methodically identify fusion transcripts across the

TCGA RNA-seq data corpus using the Institute for Systems

Biology (ISB) Cancer Genomics Cloud. These tools include

STAR-Fusion, Breakfast, and EricScript (STARMethods). Fusion

calling across 9,624 TCGA tumor samples from 33 cancer types

identified a total of 25,664 fusion transcripts, with a 63.3% vali-

dation rate for the samples having available whole-genome

sequencing data. Furthermore, we investigated the relationship

between fusion status and gene expression, the spectrum of

kinase fusions, mutations, and fusions found in driver genes,

and fusions as potential drug and immunotherapy targets.

RESULTS

Fusion Detection Pipeline and WGS-Based Validation of
a Subset of Fusion Predictions
We analyzed RNA-seq data from 9,624 tumor samples and 713

normal samples from TCGA using STAR-Fusion (STAR

Methods), EricScript (Benelli et al., 2012), and Breakfast (STAR

Methods; Table S1). A total of 25,664 fusionswere identified after

extensive filtering using several panel-of-normals databases,

including fusions reported in TCGA normal samples, GTEx

tissues (Consortium, 2013) and non-cancer cells (Babiceanu

et al., 2016) (STAR Methods; Figure 1A; Table S1). Our pipeline

detected 405 of 424 events curated from individual TCGAmarker

papers (Table S1) (95.5% sensitivity).

We further cross-confirmed our transcriptome sequencing-

based fusion detection pipeline by incorporating whole-genome

sequencing (WGS) data, where available.WGSpaired-end reads

aligned to the partner genes of each fusion were used to validate
228 Cell Reports 23, 227–238, April 3, 2018
fusions detected using RNA-seq. Using all available WGS,

including both low-pass and high-pass data, from 1,725 of the

9,624 cancer samples across 25 cancer types, we were able to

evaluate 18.2% (4,675 fusions) of our entire fusion call set. Of

that subset, WGS validated 63.3% of RNA-seq-based fusions

by requiring at least three supporting discordant read pairs

from the WGS data (Figure S1).

Fusion Landscape across 33 Cancer Types
Categorizing the 25,664 fusions on the basis of their breakpoints,

we found that the majority of breakpoints are in coding regions

(CDS) of both partner genes (Figure 1B). Surprisingly, there are

many more fusions in 50 UTRs compared with 30 UTRs for both

partner genes, given that 30 UTRs are generally longer (Mann-

Whitney U test, p < 2.2e-16). This could be explained by having

more open chromatin in the 50 UTR region (Boyle et al., 2008), the

larger number of exons in 50 UTRs than 30UTRs (Mann-Whitney

U test, p < 2.2e-16) (Mignone et al., 2002), but could also indicate

some regulatory mechanisms, such as alternative use of the pro-

moter region of a partner gene.

For different cancer types, the total number of fusions per

sample varies from 0 to 60, with a median value of 1 (Figure S1).

Cancer types with the fewest number of fusions per sample are

kidney chromophobe (KICH), kidney renal clear cell carcinoma

(KIRC), kidney renal papillary cell carcinoma (KIRP), low-grade

glioma (LGG), pheochromocytoma and paraganglioma (PCPG),

testicular germ cell tumors (TGCT), thyroid carcinoma (THCA),

thymoma (THYM), and uveal melanoma (UVM), each with a me-

dian of 0. Other cancer types show a range of medians between

0.5 and 5 fusions per sample, although most samples demon-

strate zero or only one inframe, disruptive fusion relevant to

oncogenesis.

Frequencies of recurrent fusions found in each cancer are

illustrated in Figure 1C (Table S1). The most recurrent example

within any cancer type was TMPRSS2–ERG in prostate adeno-

carcinoma (PRAD; 38.2%). We found FGFR3–TACC3 to be the

most recurrent fusion in BLCA (2.0%), cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC, 1.7%),

and lung squamous cell carcinoma (LUSC, 1.2%). Other top

recurrent fusions include EML4–ALK in lung adenocarcinoma

(LUAD; 1.0%), CCDC6–RET in THCA (4.2%), and FGFR2–

BICC1 in cholangiocarcinoma (CHOL; 5.6%).

Fusion Gene Expression in Oncogenes and Tumor
Suppressors
Fusion events may be associated with altered expression of

one or both of the fusion gene partners, a well-known example

being multiple myeloma tumors in which translocation t(4;14)

fuses the highly expressed IGH locus with the tyrosine protein

kinase FGFR3 (Manier et al., 2017). We integrated gene expres-

sion, copy number, and fusion annotations to systematically

test for associations between gene expression and fusion

status.

For each fusion having an oncogene, kinase, or tumor sup-

pressor gene (TSG) (Table S2), we determinedwhether that sam-

ple was an expression outlier for that gene and subsequently

examined resulting percentages of both under- and overex-

pressed genes in each cancer type (Table S3). Figure 2A shows
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Figure 1. Fusion Detection and Landscape in Cancer

(A) Fusion calling and filtering pipeline.

(B) Cartoon overview of fusion gene partner breakpoints. Purple indicates the 50 gene partner, and green indicates the 30 gene partner. For both the 50 and 30 gene
partners, fusion gene breakpoints can occur in the following genomic regions: 50UTR (triangle), coding sequence (CDS; rectangle), 30UTR (circle), and non-coding

region (rounded rectangle). For each fusion event, a dotted line connects the breakpoints in the 50 and 30 gene partners to create the predicted fusion and the circle

size, while number represents the total fusion events classified into the associated fusion category.

(C) The dot plot shows the frequency of recurrent fusions found in each cancer type. The most recurrent fusion in each cancer type is labeled. Cancer types

without recurrent fusions are not shown.
that between 6% (mesothelioma [MESO]) and 28% (KIRP) of ki-

nase fusions displayed outlier overexpression of the kinase part-

ner. Oncogenes tended to show higher likelihoods of overex-

pression, whereas TSGs displayed lower likelihoods. Between

3% (breast invasive carcinoma [BRCA]) and 38% (PCPG) of

TSG fusions showed outlier underexpression, generally higher

than both oncogenes and kinases.

Figure 2B illustrates themedian percentile expression levels of

the most highly recurrent oncogenes and TSGs involved in fu-
sions (Table S3). Samples with fusions involving oncogenes,

such as EGFR, ERBB2, and RET, showed increased expression

of those genes relative to samples without fusions across cancer

types. Most TSGs showed inconsistent patterns of expression

across cancer types. However, the global trend for TSGs is

decreased expression compared with non-fusion samples.

We also examined the relationship between TSG mutations

and fusions to determine whether frequently fused TSGs were

also disrupted by other mutation types. A variety of patterns
Cell Reports 23, 227–238, April 3, 2018 229
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Figure 2. Fusion Expression Outliers
(A) The dot plot indicates the percentage of fusions called in which one of the partner genes is an expression outlier (overexpression or underexpression). The size

of the dot corresponds to the number of fusions called in each cancer type. Color corresponds to genes of interest coming from lists of oncogenes, protein

kinases, and tumor suppressor genes.

(B) The dot plot shows the relative expression level of samples with fusions compared with those without fusions. Each sample has a particular expression

percentile at a given gene, and color indicates the median percentile of samples with a fusion in that gene. Genes are the 15most recurrent oncogenes and tumor

suppressor genes. Size corresponds to the number of samples in each cancer type with a fusion at that gene.

(C and D) Expression of samples at RET and CBFB in thyroid carcinoma (THCA) (C) and acute myeloid leukemia (LAML) (D), respectively. Color indicates a

categorical copy number ranging from deep deletion to high amplification.
were noted. For example, TP53 is affected by mutations rather

than fusions in most cancer types. However, in sarcoma

(SARC), both fusions and mutations affecting TP53 were de-

tected. In acute myeloid leukemia (LAML), several CBFB fusions
230 Cell Reports 23, 227–238, April 3, 2018
but no mutations were observed, yet other cancer types also

exhibited CBFB mutations (Table S3; Figure S2). Our results

suggest that alternative mechanisms are used by tumor cells in

a cancer type-specific manner.
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Figure 3. Protein Kinase Fusions

(A) The bar chart indicates the number of protein

kinase fusions with the kinase at the 50 or 30 end,
inframe or frameshift, and kinase domain intact or

disrupted.

(B) The left bar plot shows the percentage of

samples with kinase fusions across different can-

cer types. The number of samples with a kinase

fusion is also indicated at the end of each bar.

Light green and blue denote 50 kinase and 30

kinase fusions, respectively. The right bar plot

shows the normalized percentage of kinase fu-

sions broken down by kinase groups.

(C) The dot plot shows the numbers of samples for

recurrent fusions across different cancer types.

Light green and blue denote 50 kinase and 30 ki-
nase fusions, respectively.
We also observed associations between fusion status and

expression level in well-known fusions (Table S3), such as

RET–NTRK1 in thyroid cancer, EML4–ALK in lung cancer (Stran-

sky et al., 2014), and DNAJB1–PRKACA in the FLC subtype of

liver cancer (Dinh et al., 2017). RET fusions in thyroid THCA

and LUAD are inframe protein kinase fusions with overexpres-

sion of the 30 RET oncogene (Figure 2C). Recurrent CBFB–

MYH11 fusions in LAML are significantly associated with

decreased expression of the tumor suppressor CBFB, which

functions as a transcriptional regulator (Haferlach et al., 2010)

(Figure 2D).

In breast cancer, copy number amplification is a well-known

mechanism of ERBB2 overexpression, and treatment of these
C

HER2+ patients with trastuzumab is an

established and effective targeted ther-

apy (Smith et al., 2007). Interestingly,

three of four samples with ERBB2 fusions

and two samples without a called fusion

showed HPV integration within 1 Mb of

ERBB2 (Cao et al., 2016). ERBB2 fusion

gene partners PPP1R1B and IKZF3 are

genomic neighbors of ERBB2, suggest-

ing that these fusions could be a by-prod-

uct of local instability, potentially induced

by the viral integration and subsequent

breakage fusion events. By careful anal-

ysis of the association between fusions

and expression, we have identified stra-

tegies for improving both sensitivity and

specificity of fusion calls.

Structure and Spectrum of Kinase
Fusions
Some oncogenic kinase fusions are sus-

ceptible to kinase inhibitors (Stransky

et al., 2014), suggesting that additional

therapeutic candidates might be discov-

ered by examining fusion transcripts

involving protein kinase genes. In

total, we detected 2,892 such events,
comprising 1,172 with kinase at the 30 end (30-kinase), 1,603

with kinase at the 50 end (50-kinase), and 117 with both partners

being kinases (both-kinase) (Figure 3A; Table S4). Analysis of the

catalytic kinase domains using the UniProt/PFAM domain data-

base (STAR Methods) showed that 1,275 kinase fusions (44.1%)

retained an intact kinase domain (Figure 3A).We further predicted

open reading frames for these fusions and separated them into

three categories with respect to the frame of the 30 gene: inframe,

frameshift, and no frame information (e.g., breakpoint at UTR,

intron, or non-coding RNA). In general, there were more inframe

fusions than frameshift fusions, especially for 30-kinase fusions,

because preserving the reading frame is required to keep the ki-

nase domain intact. For subsequent kinase analyses, we focused
ell Reports 23, 227–238, April 3, 2018 231



only on those 1,275 fusionswith intact domains, further classifying

the both-kinase group into 30-kinase or 50-kinase on the basis of

the position of the intact domain.

Comparison of kinase fusions across different cancer types

indicated that kinase fusions are significantly enriched in THCA

(35.6%, Fisher’s exact test, p < 2.2e-16) (Figure 3B). Moreover,

themajority were 30-kinase fusions (94.0%), a significantly higher

percentage than what we observed in other cancer types

(Fisher’s exact test, p < 2.2e-16).We further divided these fusions

into eight categories on the basis of different kinase groups,

including AGC, CAMK, CK1, CMGC, STE, TK, and TKL. In gen-

eral, we found that the percentages of different categories vary

across cancer types (Figure 3B). For example, there are more

TK fusions in THCAandGBM,moreCK1 fusions in uterine corpus

endometrial carcinoma (UCEC), colon adenocarcinoma (COAD),

and esophageal carcinoma (ESCA) andmore AGC fusions in liver

hepatocellular carcinoma (LIHC). Across different cancer

types, we found an enrichment of TK and TKL kinase fusions

for 30-kinases but no strong preference for 50-kinases (Figure S3).
Recurrent kinase fusions are of great interest as potential drug

targets. Overall, we detected 744 50-kinase and 531 30-kinase fu-
sions. Of these, 147 and 99 were recurrent, respectively, mostly

across cancer types rather than within cancer types (Figure S3).

As expected, fusions in the FGFR kinase family (FGFR2 and

FGFR3) are the most frequent 50-kinase fusions, given their high

recurrence in individual cancer types (Figure 3C). WNK kinase

family fusions (WNK1 andWNK2) were also detected in multiple

cancer types. The WNK family is phylogenetically distinct from

the major kinase families, and there is emerging evidence of its

role in cancer development (Moniz and Jordan, 2010). Here, we

found a total of 23 WNK-family fusions, most of which resulted

in higher expression of WNK mRNA (Figure S4). The increased

expression was not generally accompanied by copy number

amplification; for example, neither WNK1 nor WNK2 was ampli-

fied in ESCA or LIHC. Incidentally, ERC1–WNK1 was also de-

tected recently in an independent Chinese esophageal cancer

cohort (Chang et al., 2017). For 30-kinase fusions, all the top ten

kinase genes are tyrosine kinases, most of which are enriched

in THCA, including RET, BRAF, NTRK1, NTRK3, ALK, and

REF1 (Figure 3C). FGR fusions were found in seven samples

the same partner gene WASF2, five of which showed higher

expression of FGR gene. In these five samples, the breakpoints

for the two genes are the same (50UTR of both genes) resulting

in usageof the strongerWASF2promoter for theFGRgene. Inter-

estingly, recurrentMERTK fusions are singletons in each individ-

ual cancer type with TMEM87B, and PRKACA fusions are

observed only in liver cancer with DNAJB1 (Figure S3).

To further understand the regulation of kinase fusions, we

compared the gene expression patterns between the kinase

gene and partner gene. There are in total 1,035 kinase fusions

with both gene expression and copy number data available. To

control for the effect of copy number amplification on gene

expression, we focused on the fusions with copy numbers

between 1 and 3, including 439 50-kinase and 339 30-kinase fu-

sions (Figures 4A and 4B). For 50-kinase fusions, the kinase

gene expression quantiles are uniformly distributed, indicating

that the kinase gene expressions in the samples with fusion are

not significantly different from the samples without fusion (Fig-
232 Cell Reports 23, 227–238, April 3, 2018
ure 4A). However, 30-kinase genes tend to show higher expres-

sion in samples with a fusion compared with the ones without.

To explain this, we classified the fusion events into three cate-

gories on the basis of the relative expression pattern between

the kinase gene and its partner in samples from the same cancer

type. Most (66.7% [293 of 439]) 50-kinase fusions showed lower

expression in the partner gene compared with the kinase. In

contrast, 70.5% of 30-kinase fusions (239 of 339) showed higher

partner expression (Figures 4A and 4B). Moreover, those 30-ki-
nase fusions involving a more highly expressed 50 partner also
show higher kinase expression (Figure 4C). For example, we

found a TRABD–DDR2 fusion in one head and neck squamous

cell carcinoma (HNSC) sample, which fused the stronger TRABD

promoter with DDR2, resulting in its overexpression (Figure 4D).

This patient could potentially be treated using dasatinib, which

targets overexpressed DDR2 in HNSC (von Massenhausen

et al., 2016). DDR2 fusions were also detected in another nine

samples from five different cancer types, which could be treated

similarly given sufficient DDR2 overexpression (Table S1).

Mutual Exclusivity between Fusions and Mutations
Although mutations in oncogenes or TSGs may lead to tumori-

genesis, fusions involving those genes are also an important class

of cancer driver events. We systematically profiledmutations and

fusions in 299 cancer driver genes (Table S2; Bailey et al., 2018) to

assess the contributions of fusion genes in carcinogenesis in the

8,955 TCGA patients who overlap between the mutation call set

(Key Resources Table, Public MC3 MAF; Ellrott et al., 2018) and

our fusion call set. We characterized patients as having a driver

mutation, amutation in a driver gene, and/or a driver fusion (fusion

involving a driver gene).

Although the majority of cancer cases have known driver mu-

tations (48.6%, mean 6.8 mutations) or mutations in driver genes

(28.1%, mean 4.2 mutations), we found that 8.3% have both

driver mutations and driver fusion events (mean 5.5 mutations

and 1.2 fusions), 6.4% have both mutations and fusions in driver

genes (mean 4.2 mutations and 1.3 fusions), and 1.8% have

driver fusions only (mean 1.1 fusions) (Figure 5A). This distribu-

tion is consistent with the notion that only a few driver events

are required for tumor development (Kandoth et al., 2013).

We further examined the total number ofmutations for samples

and observed a low mutational burden in the group with driver

fusion only, which is comparable with the group with no driver al-

terations (Figure 5B). The significant decrease in the numbers of

mutations (Mann-Whitney U test, p < 2.2e-16) reflects the func-

tionality of fusions acrossmultiple cancer types.Moreover,within

cancer types, we observed a range of 0.2% (HNSC) to 14.0%

(LAML) of tumors with fusions but no driver gene mutations.

Among those LAML tumors that have fusions and no driver

gene mutations, we identified several well-recognized fusions

relevant to leukemia, such as CBFB–MYH11 (number of sam-

ples = 3),BCR–ABL1 (n = 2), and PML–RAR (n = 2). We also iden-

tified the leukemia-initiating fusion NUP98–NSD1 in two LAML

tumors (Cancer Genome Atlas Research Network et al., 2013b).

We then examined the relationship of fusions and mutations in

the same driver gene (Figure 5C). The result shows that when

fusion events are present in a gene, mutations in the same

gene are rarely found, supporting a pattern of mutual exclusivity
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Figure 4. Kinase Gene Expression Regulated by Fusion
(A) The scatterplot shows the gene expression quantile (y axis) for the 50-kinase without copy number variation (between one and three copies; x axis). All genes

are classified among three categories: kinase expression higher, equal, and lower, comparedwith partner expression,marked in blue, gray, and red, respectively.

The density plot for expression quantile is also shown on the right.

(B) The scatterplot shows the gene expression quantile (y axis) for the 30-kinase without copy number variation (between one and three copies; x axis). The colors

represent the same three categories as (A). The density plot for expression quantile is also shown.

(C) Boxplot comparing the distribution of kinase gene expression quantile between the three groups defined in (A) for 50-kinase and 30-kinase, respectively.
(D) Schematic of TBABD–DDR2 fusion gene structure in an HNSC sample and scatterplot ofDDR2 copy number versusmRNA expression in HNSC. The samples

with and without this fusion are marked in red and blue, respectively.
of the two types of genomic alteration. This trend was observed

across many patients and many cancer types. Our results sug-

gest that a considerable number of tumors are driven primarily

or solely by fusion events.

Contributions of Fusions to Cancer Treatment
We investigated potentially druggable fusion events in our call

set using our curated Database of Evidence for Precision
Oncology (DEPO; Sun et al., unpublished data) (Table S5). We

defined a fusion as druggable if there is literature supporting

the use of a drug against that fusion, regardless of cancer

type (allowing for ‘‘off-label’’ drug treatment). We found poten-

tially druggable fusions across 29 cancer types, with major

recurrent druggable targets in PRAD (TMPRSS2, 205 samples),

THCA (RET, 33 samples), and LAML (PML–RARA, 16 samples)

(Figure 6A). FGFR3 was a potential target (both on-label and
Cell Reports 23, 227–238, April 3, 2018 233
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Figure 5. Mutual Exclusivity between Driver Mutations and Driver Fusions

(A) The bar plot shows the percentages of samples with driver mutations only (green), mutations only (orange), driver mutation and fusion (blue), mutation and

fusion (pink), or fusion only (light green) events in 299 cancer driver genes.

(B) Distribution of mutation burden across each alteration group designated in all figures.

(C) All sampleswith fusions ormutations in any of the genes indicated on the left are displayed on the x axis. For each gene, samples are clustered by the alteration

group. Bottom bar indicates cancer type.
off-label) in 15 cancer types. Overall, we found 6.0% of samples

(574 of 9,624 samples) to be potentially druggable by one or

more fusion targeted treatments. Further study of fusions in hu-

man cancer will facilitate the development of precision cancer

treatments.

We analyzed patterns of fusion druggability in LUAD, strati-

fying by smoking status. In this dataset, 15% of LUAD samples

(75 of 500 samples with known smoking status) were from never

smokers, while a significantly higher percentage of never

smokers (15 of 75 samples) versus smokers (9 of 425 samples)

were found to have druggable fusion (chi-square test, p < 1e-6)

(Figure 6B). Several Food and Drug Administration (FDA)-

approved drugs exist to targetALK fusions in lung and other can-

cer types. We observed ALK fusions in 20 samples from eight

cancer types (5 samples in LUAD). In most cases, fusion status

corresponded to copy number neutral overexpression of ALK

(Figure 6D). In 17 of 20 cases,ALKwas the 30 partner of the fusion
pair, with EML4 being the most frequent 50 partner (7 of 17).
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ESR1 encodes an estrogen receptor with important and drug-

gable relevance to breast cancer (Li et al., 2013). We detected

ESR1 fusions in 16 samples from five different cancer types

(9 samples from BRCA). Of the 9 BRCA samples, 8 are known

be from the luminal A or B subtype. We observed strict mutual

exclusivity between ESR1 mutations and fusions (Figure 5C).

Of the 16 fusions, 11 have ESR1 at the 50 end and 5 at the 30

end. When ESR1 is the 50 gene in the fusion, the transactivation

(AF1) domain is always included (Figure 6D). When ESR1 is the

30 gene, the transactivation (AF2) domain is always included.

Those samples with ESR1 fusion tend of have higher ESR1

expression, especially in the 9 BRCA samples (Figure S5). Simi-

larly, ESR1 expression is higher when ESR1 is mutated in BRCA,

CESC, and UCEC, which are all hormone receptor-related can-

cer types (Cancer Genome Atlas, 2012; Cancer Genome Atlas

Research Network et al., 2013a, 2017). Further functional study

to determine the mechanism of ESR1 fusions could suggest

drug development directions.
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Figure 6. Druggable Fusion Targets

(A) The bar chart indicates the number of samples potentially treatable on the basis of their fusion status.

(B) Percentages of LUAD samples with known smoking status.

(C) ESR1 domains kept in ESR1 fusions across cancer types.

(D) ALK expression across cancer types indicating ALK fusion status.
Immunotherapy based on tumor-specific neoantigens shows

promise in treating cancer patients (Bobisse et al., 2016). Gene

fusions found in tumor cells can generate peptides, which may

serve as neoantigen candidates. However, patients with known

driver fusions may be poor candidates for immunotherapy

because of their reduced mutational burden, especially without

clear evidence of immune cell infiltration and overall immunoge-

nicity. As an exploratory and speculative analysis, we investi-

gated neoantigens produced by gene fusions (Andreatta and
Nielsen, 2016). On average, there were 1.5 predicted neo-

antigens per fusion across different cancer types (Figure S6;

Table S5). Themean number of predicted neoantigens per fusion

ranged from 0.33 in KICH to 2.88 in THYM. We also compared

the number of neoantigens for inframe and frameshift fusions

(Figure S6). Results show that frameshift fusions can generate

more immunogenic epitopes than inframe fusions (mean value

2.2 versus 1.0), though nonsense-mediated decay might reduce

some of this potential difference.
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We further investigated seven fusions for which there were at

least four samples having one or more neoantigen candidates

(Figure S6). In particular, TMPRSS2–ERG, CCDC6–RET, and

FGFR3–TACC3 have the highest number of samples with pre-

dicted neoantigen candidates. Our results show that the fusion

product is only immunogenic in a small subset of patients,

especially for TMPRSS2–ERG fusions. Again, without clear

evidence of immune cell infiltration and overall immunoge-

nicity, any fusion neoantigen analysis remains exploratory and

speculative.

DISCUSSION

In this study, we applied multiple RNA-seq fusion callers, namely

STAR-Fusion, EricScript, and Breakfast, followed by a stringent

filtering strategy, to identify potential driver fusion events across

33 cancer types. We were able to successfully identify 95.5% of

fusions reported in TCGA marker papers. Although existing

studies have published fusion calls across the TCGA cancer

cohort (Hu et al., 2018; Stransky et al., 2014), we have improved

on prior analyses by integrating results across multiple fusion

callers and by applying stringent filtering to derive a confident

dataset of fusion events from 9,624 tumor samples. Importantly,

we investigated the biology and evaluated the significance of fu-

sions in the cancer context. Of the 25,664 fusions we detected,

18.2% could be tested for validation using available WGS data,

leading to a 63.3% validation rate.

By integrating gene expression, copy number, and fusion

annotation data, we evaluated the biological and therapeutic

implications of fusion events. Kinase- and oncogene-related fu-

sions tended to be overexpression outliers, whereas fusions

involving TSGs showed the opposite effect overall. When

comparing fusion events with the remainder of the cancer

cohort, fusions involving oncogenes such as EGFR, ERBB2,

and RET had increased expression. Overexpressed fusions,

especially inframe kinase fusions, are commonly targeted for

therapy because of their susceptibility to kinase inhibitors.

For all 2,892 kinase fusions, we translated the resulting pep-

tide sequence, finding that 1,275 had functional catalytic kinase

domains. Comparison of kinase fusions across different cancer

types showed that THCA has significantly more kinase fusions,

most of which were 30 kinase fusions. In addition to well-known

recurrent fusions such as FGFR3–TACC3, we also detected 245

kinases with recurrent fusions to different partner genes, which

may ultimately prove to be successful drug targets.

We showed that a meaningful percentage of patients (1.8%)

harbor fusions involving cancer driver genes but have no driver

gene mutations. Notably, 6.0% of cancer patients could poten-

tially benefit from existing drugs targeting fusion products. More-

over, our analysis also highlights an important consideration for

immunotherapy treatment in patients with fusions. The signifi-

cant decrease in mutational burden observed in patients

with fusions in driver genes points toward a reduced efficacy

of immunotherapy in these patients, despite fusion peptides

themselves potentially being good immunogenic targets. Many

fusions are already known to be drug targets.

Our study demonstrates the necessity of performing fusion

analysis across multiple cancer types. Our approach integrated
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the results of multiple fusion calling algorithms, lending confi-

dence to fusions with lower levels of RNA-seq read support

that might otherwise have been discarded. We sought to priori-

tize fusions relevant to cancer by highlighting their associations

with gene expression, potential for targeted therapy, and roles

in cancer hallmark pathways. Fusion allele frequency is an

elusive measure from RNA-seq data, and tracking the clonal

evolution of fusions within a tumor remains an exciting opportu-

nity for study. Fusions play an increasingly appreciated role in

tumorigenesis and progression and represent an important

source of improved treatment options. Ultimately, our multi-

tool, integrative bioinformatic detection approach helps define

the universe of fusions in cancer. Furthermore, it reminds us

that developing robust and widely applicable clinical diagnostic

approaches that can document fusions across cancer types is

vital. Such approaches are critical to identifying those patients

who can benefit from both established treatments and clinical

trials.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Public MC3 MAF Ellrott et al., 2018 https://gdc.cancer.gov/about-data/publications/

UniProt/PFAM domain database See link http://www.uniprot.org/database/DB-0073

Database of Precision Oncology See link http://dinglab.wustl.edu/depo

Essential Genes/Drivers genes used Bailey et al., 2018 Table S2; https://gdc.cancer.gov/about-data/publications

ISB Cancer Genomics Cloud See link https://isb-cgc.appspot.com/

Software and Algorithms

STAR-Fusion Hass et al., 2017 https://github.com/STAR-Fusion/STAR-Fusion/wiki

EricScript Benelli et al., 2012 https://sites.google.com/site/bioericscript/

Breakfast See link https://github.com/annalam/breakfast

AGFusion Murphy and Elemento, 2016 https://github.com/murphycj/AGFusion
CONTACT FOR REAGENT AND RESOURCE SHARING

For further information regarding data, please contact Li Ding (lding@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TCGA collected both tumor and non-tumor biospecimens from human samples (https://cancergenome.nih.gov/abouttcga/policies/

informedconsent).

METHOD DETAILS

Dataset Description
Aligned RNA-seq bam files were analyzed using the ISB Cancer Genomics Cloud (https://isb-cgc.appspot.com/). These 33 cancer

types included in this study are adrenocortical carcinoma [ACC], bladder urothelial carcinoma [BLCA], brain lower grade glioma

[LGG], breast invasive carcinoma [BRCA], cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC], cholangio-

carcinoma [CHOL], colon adenocarcinoma [COAD], esophageal carcinoma [ESCA], glioblastoma multiforme [GBM], head and neck

squamous cell carcinoma [HNSC], kidney chromophobe [KICH], kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell

carcinoma [KIRP], acute myeloid leukemia [LAML], liver hepatocellular carcinoma [LIHC], lung adenocarcinoma [LUAD], lung

squamous cell carcinoma [LUSC], lymphoid neoplasm diffuse large B cell lymphoma [DLBC], mesothelioma [MESO], ovarian serous

cystadenocarcinoma [OV], pancreatic adenocarcinoma [PAAD], pheochromocytoma and paraganglioma [PCPG], prostate adeno-

carcinoma [PRAD], rectum adenocarcinoma [READ], sarcoma [SARC], skin cutaneous melanoma [SKCM], stomach adenocarci-

noma [STAD], testicular germ cell tumors [TGCT], thymoma [THYM], thyroid carcinoma [THCA], uterine carcinosarcoma [UCS],

uterine corpus endometrial carcinoma [UCEC], and uveal melanoma [UVM]. The sample set consists of 10,337 total TCGA samples,

9,624 tumor samples, and 713 normal samples.

Level-3 gene expression (RSEM) and segment-based copy number data were downloaded from Broad GDAC firehose

(https://gdac.broadinstitute.org) (version: 2016_01_28). Gene-based copy number data were obtained by intersecting with RefSeq

gene annotation bed file (version: 2013-07-27). Mutation calls were provided by theMulti-Center Mutation Calling inMultiple Cancers

(MC3) working group within TCGA (Key Resources Table; Ellrott et al., 2018).

Fusion Detection and Filtering
TCGA RNA-seq data were downloaded from Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu) and analyzed using the

ISB Cancer Genomics Cloud (https://isb-cgc.appspot.com/). For each sample, the fastq file was mapped to the human genome

(build 38) followed by fusion calling using STAR-Fusion (parameters:–annotation–coding-effect), EricScript (default parameters)

(https://sites.google.com/site/bioericscript/) and BREAKFAST (two different minimum distance cut-offs were used: 5 kb and
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100 kb) (https://github.com/annalam/breakfast). STAR-Fusion showed higher sensitivity in detecting the fusions reported in previous

TCGA studies. Therefore, we focused on the STAR-Fusion output and integrated EricScript and BREAKFAST output in one of the

following filtering steps: 1) an exclusion list of genes was curated, including uncharacterized genes, immunoglobulin genes, mito-

chondrial genes, etc. Fusions involving these genes were filtered; 2) Fusions from the same gene or paralog genes (downloaded

from https://github.com/STAR-Fusion/STAR-Fusion_benchmarking_data/tree/master/resources) were filtered; 3) Fusions reported

in normal samples were filtered, including the ones from TCGA normal samples, GTEx tissues, and non-cancer cell study (Babiceanu

et al., 2016); 4) For the fusions reported by only STAR-Fusion, a minimum value of FFPM > 0.1 (fusion fragments per million total

reads) was required, as suggested by the authors; for the fusions reported by two or more callers, no minimum FFPM was required.

5) Finally, fusions with the same breakpoints inR 10 samples across different cancer types were removed unless they were reported

in previous TCGA studies.

Validation of Fusion Transcripts
For fusion events where low-pass whole genome sequencing data orWGS data were available from the ISBCancer Genomics Cloud

(https://isb-cgc.appspot.com/), we obtained high quality (-q 20) reads mapping to each partner gene and the 100kb region up and

downstream using SAMtools. At least 3 discordant reads fromWGSwere required to determine if the fusion prediction was validated.

Gene Expression Analysis
We collected gene expression, copy number, and fusion annotations to test for associations between gene expression and fusion

status. We used Tukey’s definition of outliers to determine if the expression level at a given gene was an outlier or not. An overex-

pression outlier means the sample’s expression level at a given gene was greater than (75th percentile) + 1.5*IQR, where IQR is

the interquartile range. An underexpression outlier means the sample’s expression level at that gene was less than (25th percentile) -

1.5*IQR. To test for a significant association between expression and fusion status, we calculated p values using both a t test and

Fisher’s Exact Test. If either of those results passed stringent FDR multiple test correction, three or more fusions were reported,

and if the median expression of the fusions was in the top or bottom decile of the data, we reported those genes for manual review.

Protein Kinase Fusion Analysis
We curated a list of kinase genes from previous publications and public databases (Table S5). Then we compared this list with

UniProt/PFAM domain database (http://www.uniprot.org/database/DB-0073) to retain the ones with an annotated kinase domain.

For the fusions involving kinase genes, we used AGFusion (https://github.com/murphycj/AGFusion) to check whether the annotated

kinase domain was still present in the fusion transcript to separate them into fusions with an intact kinase domain versus those with a

disrupted kinase domain. We compared the breakpoint positions in each fusion with the annotation file to check whether the

breakpoint was in the 50UTR, CDS, or 30UTR region. Kinase genes are classified into eight groups: AGC, CAMK, CK1, CMGC,

STE, TK, TKL, and others based on the PhosphoSite Database (Hornbeck et al., 2015). The percentage of kinase genes in each group

across different cancer types was defined as the number of kinase genes with fusions in each group divided by their sum, denoted

as pg. For each cancer type, the number of kinase genes in each group was first normalized by pg, denoted as ng. Then each number

was divided by their sum ng=
P

ng to calculate a normalized percentage of kinase genes in each group.

Neoantigen Prediction
For each predicted fusion, we obtained translated protein sequences for novel transcripts from STAR-Fusion. The wild-type protein

sequences are obtained from Ensembl Database. We constructed different epitope lengths (8-11-mer) from the translated protein

sequence. Each sample’s HLA type comes from the TCGA Pan-Cancer Immune Group (Synapse ID: syn5974636). We predicted

the binding affinity between epitopes and the major histocompatability complex (MHC) using NetMHC4 (Andreatta and Nielsen,

2016). Epitopes with binding affinity % 500nM which are also not present in the wild-type transcript are reported as neoantigens.

We required at least 5 splitting reads for supporting junctions to filter fusions with low expression.

Mutual Exclusivity Analysis
For TCGA tumor samples where both MC3 (Key Resources Table; Ellrott et al., 2018) mutation calls and gene fusion calls were avail-

able, we obtained the genetic alteration events, including fusion, inframe deletion, inframe insertion, missense mutation, nonsense

mutation, nonstopmutation, splice sitemutation, and translation start sitemutation in 299 driver genes.We separated all the genomic

alterations and events into ‘‘drivermutation,’’ ‘‘mutation,’’ and ‘‘fusion’’ categories, and compiled a genomic alteration profile for each

sample. To test if the total number of mutations are significantly different among groups, we took samples without mutations in the

following genes: POLE, MLH1, MLH3, MGMT, MSH6, MSH3, MSH2, PMS1, and PMS2, to exclude the confounding factor stemming

from microsatellite instability. We then calculated p values by using Mann-Whitney U Test.
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DEPO
DEPO is a curated list of druggable variants filtered such that each variant corresponds to one of several categories: single nucleotide

polymorphisms or SNPs (missense, frameshift, and nonsensemutations), inframe insertions and deletions (indels), copy number var-

iations (CNVs) or expression changes. Each variant/drug entry in DEPO was paired with several annotations of potential interest to

oncologists. DEPO is available as a web portal (http://dinglab.wustl.edu/depo).
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