
Testing the assumptions underlying ocean mixing methodologies using1

direct numerical simulations2

J.R. Taylor∗3

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge, CB3 0WA, U.K.

4

5

S.M. de Bruyn Kops6

Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst,

Amherst, Massachusetts, USA 01003

7

8

C. P. Caulfield9

BP Institute & Department of Applied Mathematics and Theoretical Physics10

University of Cambridge, Cambridge, CB3 0EZ, U.K.11

P.F. Linden12

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge, CB3 0WA, U.K.

13

14

∗Corresponding author address: John R. Taylor, CMS, DAMTP, University of Cambridge, Wilber-

force Road, Cambridge, UK, CB3 0WA.

15

16

E-mail: J.R.Taylor@damtp.cam.ac.uk17

Generated using v4.3.2 of the AMS LATEX template 1



ABSTRACT

2



Direct numerical simulations of stratified turbulence are used to test several

fundamental assumptions involved in the Osborn, Osborn-Cox, and Thorpe

methods commonly used to estimate the turbulent diffusivity from field mea-

surements. The forced simulations in an idealized triply periodic computa-

tional domain exhibit characteristic features of stratified turbulence includ-

ing intermittency and layer formation. When calculated using the volume-

averaged dissipation rates from the simulations, the vertical diffusivities in-

ferred from the Osborn and Osborn-Cox methods are within 40% of the value

diagnosed using the volume-averaged buoyancy flux for all cases, while the

Thorpe scale method performs similarly well in the simulation with a rela-

tively large buoyancy Reynolds number (Reb ' 240) but significantly overes-

timates the vertical diffusivity in simulations with Reb < 60. The methods are

also tested using a limited number of vertical profiles randomly selected from

the computational volume. The Osborn, Osborn-Cox and Thorpe scale meth-

ods converge to their respective estimates based on volume-averaged statis-

tics faster than the vertical diffusivity calculated directly from the buoyancy

flux which is contaminated with reversible contributions from internal waves.

When applied to a small number of vertical profiles, several assumptions un-

derlying the Osborn and Osborn-Cox methods are not well-supported by the

simulation data. However, the vertical diffusivity inferred from these methods

compares reasonably well to the exact value from the simulations and out-

performs the assumptions underlying these methods in terms of the relative

error. Motivated by a recent theoretical development, it is speculated that the

Osborn method might provide a reasonable approximation to the diffusivity

associated with the irreversible buoyancy flux.
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1. Introduction43

Small-scale turbulence, defined here as three-dimensional overturning motions, plays an impor-44

tant role in setting the large-scale properties and circulation of the ocean. Turbulence influences45

the depth of the surface and bottom mixed layers by entraining stratified water into the mixed46

layer (e.g. Large et al. (1994); Pacanowski and Philander (1981)) thereby influencing biological47

productivity and the exchanges of heat and carbon between the atmosphere and ocean (Marra et al.48

1990). On long timescales, turbulence gradually mixes distinct water masses in the ocean interior,49

thereby influencing the pathways of the global overturning circulation (Wunsch and Ferrari 2004;50

Marshall and Speer 2012).51

Here we use the term ‘mixing’ to refer to the irreversible homogenization of a scalar quantity.52

This stands in contrast to ‘stirring’ which refers to the down-scale transfer of scalar variance and53

the generation of structures such as filaments by turbulent motions. Mixing relies on molecular54

diffusion of the scalar substance (e.g. heat or salt) which occurs at very small scales, while stirring55

is inevitably associated with larger scales. For a statistically homogeneous turbulent flow, mixing56

occurs at scales close to the Batchelor scale, lB = lK/
√

Pr where lK =(ν3/ε)1/4 is the Kolmogorov57

scale, Pr = ν/κm is the Prandtl (or Schmidt) number, ν is the kinematic viscosity of the fluid, κm58

is the molecular scalar diffusivity, and ε is the dissipation rate of kinetic energy. For typical59

open ocean conditions where ε ' 10−10− 10−6m2/s3, the corresponding Kolmogorov scale is60

lK ' 1mm− 1cm and the thermal Batchelor scale is lB ' 0.3− 3mm while the haline Batchelor61

scale is an order of magnitude smaller. The very small scales involved make it difficult, if not62

impossible, currently to resolve scalar mixing in measurements or models.63

Due to the difficulty associated with resolving the small scales involved in scalar mixing, ob-64

servational methods generally involve calculating various proxies for mixing. A near-universal65
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assumption in the ocean mixing literature is that an ensemble of turbulent motions can be mod-66

elled through a turbulent diffusivity, defined as the ensemble-averaged scalar flux (in a particular67

coordinate direction) divided by the ensemble-averaged gradient (in an independently chosen di-68

rection). Although the turbulent diffusivity is a second rank tensor, our focus here will be on the69

vertical component, which we define as70

κ ≡ −〈w
′c′〉

∂ 〈c〉/∂ z
, (1)

where w is the vertical velocity, c is a scalar quantity, angle brackets indicate an unspecified averag-71

ing operator assumed to be equivalent to ensemble-averaging, and primes denote departures from72

this average. Note that in some contexts (e.g. at fronts or in isopycnal coordinate ocean models)73

the diapycnal diffusivity might be more appropriate than the vertical diffusivity. In the simulations74

that will be analyzed here, the large-scale buoyancy gradient is aligned with the vertical direction,75

and hence the vertical and diapycnal diffusivities are equivalent by construction.76

Indeed, estimating κ is one of the central aims of the ocean mixing community. Perhaps the77

most direct approach is to measure the vertical turbulent scalar flux 〈w′c′〉 through simultaneous78

measurements of the vertical velocity and scalar concentration. While this method is in princi-79

ple possible (e.g. Moum (1996)), it can be extremely difficult to measure the vertical velocity80

accurately, and the correlation between the velocity and scalar concentration introduces another81

possible source of error. In addition, as we will see later, internal waves can induce a significant82

reversible contribution to the turbulent scalar flux and removing these contributions can be very83

difficult.84

Other indirect methods of measuring the turbulent diffusivity necessarily rely on assumptions85

about the nature of small-scale turbulence. Indirect methods can be arranged in two categories:86

‘finescale’ methods and ‘microstructure’ methods, each based around different assumptions. Sev-87
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eral finescale methods rely on the assumption that small-scale turbulence in the ocean interior is88

forced by the ambient internal wave field. These methods then link the mixing via small-scale89

turbulence with the properties of the internal wave field (e.g. Henyey et al. (1986); Gregg (1989a);90

Polzin et al. (1995); MacKinnon and Gregg (2003)).91

Rather than relying on measurements of internal waves, microstructure methods use measure-92

ments of small-scale turbulence to infer the turbulent diffusivity. Two prominent microstructure93

methods are the Osborn-Cox method (Osborn and Cox 1972), which uses measurements of tem-94

perature or salinity variance and infers the scalar variance dissipation rate and diffusivity; and95

the Osborn method (Osborn 1980), which relates measurements of shear to the turbulent dissi-96

pation rate, and hence to the diffusivity. Gregg et al. (2018) provide a review and discussion of97

microstructure methods and their underlying assumptions.98

An additional method for inferring the rate of mixing is the Thorpe-scale method. This method99

is perhaps best classified as intermediate between finescale and microstruture methods as it uses100

measurements of the scalar fields to infer the size of the largest turbulent motions. In this method101

unstable ‘overturns’ in a measured temperature, salinity, or density profile are first related to the102

dissipation rate and then to the turbulent diffusivity following the Osborn method (Osborn 1980).103

These methods and their underlying assumptions will be described in more detail in Section 3c104

below.105

The primary objective of this paper is to evaluate microstructure and Thorpe-scale methods using106

output from direct numerical simulations (DNS) of forced stratified turbulence. By definition107

a DNS resolves all scales of turbulent motion. The simulations here have a molecular Prandtl108

number Pr = 7, a typical value corresponding to the diffusion of heat in seawater. Hence, the109

resolution of the simulations must be sufficient to capture scales near the Batchelor scale (∼ 1mm110

in dimensional terms). Our aim is to simulate typical turbulent conditions in the ocean interior.111
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Even with a limited domain size, this makes the simulations extremely computationally expensive112

- here the simulations exceed 1012 gridpoints. The advantage of DNS is that turbulent quantities113

such as the dissipation rate and scalar flux can be evaluated exactly. This allows us to distinguish114

between uncertainties associated with measurement techniques from uncertainties associated with115

the underlying assumptions inherent in each method. Here, our focus is on such assumption-116

associated uncertainties.117

The DNS that are analyzed here simulate turbulence in a relatively small (∼ 5− 10m) three-118

dimensional domain. Periodic boundary conditions are applied to the velocity in all three direc-119

tions, while a constant vertical background stratification is imposed. The computational domain120

can be interpreted as a small region embedded in the ocean interior. The simulations are forced121

by applying a scale-selective deterministic body force to the momentum equations to energize the122

large scales of the horizontal velocity. While the forcing term is intended to represent energy in-123

put from uncaptured large-scale motions, we do not attempt to simulate a particular internal wave124

spectrum at the large scales. We therefore do not attempt to test any finescale parameterizations125

and instead focus on microstructure and Thorpe-scale-based methods.126

Many microstructure measurement techniques involve fitting a canonical spectrum to the mea-127

sured spectrum obtained from a depth window (Gregg 1999) or spatially averaging over a pre-128

scribed depth interval (Moum et al. 1995) or an identified turbulent patch (Moum 1996). This ef-129

fectively produces one value of dissipation or diffusivity for a given depth interval. Similarly, the130

Thorpe-scale method requires the calculation of the root-mean-square (rms) displacement scale131

with respect to a finite depth window. In section 3d we will apply the Osborn, Osborn-Cox,132

and Thorpe-scale methods to quantities calculated from vertical profiles extracted from the DNS,133

which generically can cover more than one ‘patch’ of turbulence in any single profile.134
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Turbulence in strongly stratified fluids is often highly intermittent in space and time (see e.g.135

Rorai et al. (2014); Portwood et al. (2016)). This raises the following question: how well can a136

limited set of observations reproduce the volumetrically-averaged turbulent diffusivity? In section137

3d, we will also address this question by calculating the turbulent diffusivity with a limited number138

of vertical profiles extracted from the DNS. This can be interpreted as a best case scenario for139

observations of turbulent mixing without any measurement errors. In section 4, we discuss our140

results, and draw some conclusions.141

2. Simulation setup and methodology142

a. Governing Equations143

The objective of the DNS is to simulate stratified turbulence in a quasi-equilibrated state where144

the energy input from large-scale forcing is balanced by small-scale dissipation and mixing. Peri-145

odic boundary conditions are applied in all three spatial directions, the details of which are given146

below. We do not directly consider the influence of any physical boundary and hence the compu-147

tational domain can be viewed as a relatively small box embedded within the water column.148

The simulations solve the non-hydrostatic Boussinesq equations that can be written in non-149

dimensional form normalized by a characteristic velocity scale, U , length scale, L, and background150

buoyancy frequency, N0. The non-dimensional equations are151

∇ ·u = 0 (2a)
152

∂u
∂ t

+u ·∇u =−
(

1
Fr

)2

ρ ẑ−∇p+
1

Re
∇

2u+F (2b)

153

∂b
∂ t

+u ·∇b+w =
1

RePr
∇

2b , (2c)
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where the nondimensional parameters are a characteristic Froude number, the Prandtl number and154

a characteristic Reynolds number, defined as155

Fr≡ U
N0L

, Pr≡ ν

κm
and Re≡ UL

ν
.

Note that the diffusion of the scalar is specified by a characteristic Péclet number Pe ≡UL/κm =156

RePr. The buoyancy, b ≡ −gρ/ρ0 can be related to temperature through a linear equation of157

state, b = αg(T −T0) where ρ0 and T0 are reference density and temperature and α is the thermal158

expansion coefficient. The buoyancy b in Eq. 2c is defined as the departure from an imposed159

background gradient such that the total buoyancy is bT = b+N2
0 z. Periodic boundary conditions160

are then applied to b. In effect, this maintains a constant buoyancy difference between the top and161

bottom of the computational domain.162

The periodic boundary conditions that are used here have implications for the flow that can de-163

velop. First, the relatively small domain size limits the scale of the motions that we are able to164

directly simulate. The body force (F in Eq. 2b) is meant to mimic the down-scale transfer of165

momentum and energy from motions that are larger than our computational domain, albeit in an166

idealized way. The periodic boundary conditions applied to the velocity and the departures from167

the background stratification imply that the local momentum and buoyancy flux at the top of the168

computational domain match the values at the bottom of the computational domain. However,169

these fluxes do not need to remain constant within the domain. As a result (and as we will see be-170

low), the simulations develop layers with relatively weak and strong stratification and the vertical171

shear associated with the horizontally-averaged velocity is non-zero.172
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b. Numerical methods173

Equations (2) are solved in a triply periodic domain with the pseudospectral technique discussed174

in Almalkie and de Bruyn Kops (2012b). Spatial derivatives are computed in Fourier space, the175

nonlinear terms are computed in real space, and the solution is advanced in time in Fourier space176

with the variable-step, third-order, Adams-Bashforth algorithm with pressure projection. The non-177

linear term in the momentum equation is computed in rotational form, and the advective term in178

the internal energy equation is computed in conservation and advective forms on alternate time179

steps. These techniques are standard to ensure conservation of energy and to eliminate most alias-180

ing errors, but the simulations reported in this paper are fully de-aliased in accordance with the 2/3181

rule via a spectral cutoff filter.182

The body force F in (2) is implemented using the deterministic forcing schema denoted Rf183

in Rao and de Bruyn Kops (2011). The objective is to force all the simulations to have the same184

spectra Eh(κh,κz) with κh < κ f and κz = 0. Eh is the power spectrum of the horizontal contribution185

to kinetic energy averaged over annuli of constant horizontal wave number κh and vertical wave186

number κz. The highest wave number forced is κ f = 16π/Lh, with Lh the horizontal dimension of187

the numerical domain. Deterministic forcing requires choosing a target spectrum E f (κh < κ f ,0).188

In contrast to turbulence that is isotropic and homogeneous in three dimensions, there are no189

theoretical model spectra for E f (c.f. (Overholt and Pope 1998)). Therefore, run 2 from Lindborg190

(2006) was rerun using a stochastic forcing schema similar to that used by Lindborg and denoted191

schema Qg in Rao and de Bruyn Kops (2011). The spectrum for Eh(κh < κ f ,0) was computed192

from this simulation and used as the target for the simulations reported in the current paper.193

In addition to forcing the large horizontal scales, 1% of the forcing energy is applied stochas-194

tically to the horizontal velocity components through wave number modes with κh = 0 and195
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κz = 2π j/Lv, j = 2,3,4. Here Lv is the vertical dimension of the numerical domain. This random196

forcing induces some vertical shear (Lindborg 2006). There is no forcing of the vertical velocity197

in the simulations.198

The extent of the domain in the horizontal and vertical directions are Lh and Lv with Lh/Lv199

chosen to accommodate the vertical motions that develop in the flow. While the simulation do-200

mains are not cubes and the vertical extent of the domain varies with the chosen characteristic201

Froude number, the grid spacing ∆ is the same in all directions. It is assumed for the purpose202

of choosing the resolution of the numerical grid that the flows are approximately isotropic at203

the smallest length scales in the simulation. Therefore, a three-dimensional grid with spacing204

∆ = Lh/Nx = Lh/Ny = Lv/Nz with Nx, Ny, and Nz being the number of grid points in the x, y, and205

z directions, respectively, is used and any small-scale anisotropy in the flows can be attributed to206

flow physics rather than to numerical artifacts of an anisotropic grid (c.f. Waite (2011)).207

c. Parameters208

Three simulations (labeled A, B and C) are analyzed here, and the related non-dimensional pa-209

rameters are listed in Table 1. In each case the non-dimensional horizontal domain size is 2π .210

Simulations A and B have the same characteristic Froude number, Fr = 0.0416, representing211

relatively strong stratification. The Reynolds number is larger in Simulation A compared to Simu-212

lation B. Simulation C has a moderate Reynolds number and a larger characteristic Froude number213

representing weaker stratification.214

Equations (2) are time-stepped until a statistically steady state is reached. The simulations can be215

described using non-dimensional parameters derived using turbulent properties in the final state.216

For this purpose it is useful to define the turbulent kinetic energy (TKE), k ≡ 〈u′ ·u′〉1/2
V /2, and217
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the TKE dissipation rate, 〈ε〉V ≡ 2ν
〈
si jsi j

〉
V , where218

si j ≡
1
2

(
∂u′i
∂x j

+
∂u′j
∂xi

)
(3)

is the fluctuating rate of strain tensor, 〈·〉V denotes an average over the full computational volume219

and primes denote departures from this volume average. The Reynolds number of the turbulent220

flow can then be characterized using the horizontal rms velocity, urms ≡
〈
u′h ·u′h

〉1/2
V and a char-221

acteristic length scale. Two choices for the length scale are the integral length scale, Lh, and the222

turbulent length scale, Lt ≡ 〈k〉3/2
V /〈ε〉V , thereby forming two derived Reynolds numbers,223

Reh ≡
urmsLh

ν
, and Ret ≡

urmsLt

ν
. (4)

Here Lh is computed from the longitudinal horizontal velocity spectra using the method of Comte-224

Bellot and Corrsin (1971) (see their Appendix E). Similarly, the relative strength of stratification225

can be quantified by two derived Froude numbers,226

Frh ≡
urms

N0Lh
, and Frt ≡

urms

N0Lt
. (5)

The integral scale Lh is a direct estimate of the length scale of the motions responsible for most227

of the kinetic energy in a flow. Since calculation of Lh requires two point statistics to compute,228

Lt has long been used as a surrogate, and we provide it here to facilitate comparisons with other229

data. For isotropic homogeneous turbulence, D ≡ Lh/Lt ≈ 0.5 (Pope 2000), and for decaying230

unstratified turbulence it has been observed to be as high as 1.81 (Sreenivasan 1998; Wang et al.231

1996). For stratified turbulence with unity Pr, D ranges from 0.3 to 0.5 (de Bruyn Kops 2015;232

Maffioli and Davidson 2016) and decreases with decreasing buoyancy Reynolds number (defined233

in the next paragraph) (de Bruyn Kops and Riley 2019). In the current simulations with Pr = 7, D234

is approximately 0.1.235

Stratification and viscosity can both act to inhibit turbulence motions. The combination of these236

effects can be quantified using a buoyancy Reynolds number (also referred to as a turbulent activity237
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coefficient Dillon and Caldwell (1980); Gibson (1980)),238

Reb ≡
〈ε〉V
νN2

0
. (6)

From this definition, the buoyancy Reynolds number can be related to a ratio of Ozmidov and239

Kolmogorov scales, Reb = (LV
O/LV

K)
4/3, where240

LV
K ≡

(
ν3

〈ε〉V

)1/4

, and LV
O ≡
〈ε〉1/2

V

N3/2
0

. (7)

Loosely, the Ozmidov scale characterizes the size of the largest turbulent overturns permitted by241

stratification and the Kolmogorov scale characterizes the size of the smallest motions permitted242

by viscosity. Therefore, Reb provides a measure of the dynamic range associated with turbulent243

overturning motions, largely unaffected by either buoyancy or viscosity. The simulations in Table244

1 are listed in order of increasing Reb. Values of Reb in this range are common in the ocean245

interior according to a recent estimate based on ARGO data (Salehipour et al. 2016) and fine-scale246

parameterizations (Gregg 1989b). Larger values of Reb are also observed (Moum 1996), but these247

are not currently accessible with DNS of strongly stratified flows with realistic Pr.248

For comparison with observations it is useful to construct a set of dimensional parameters for249

each simulation. Here, this is done by setting the dimensional vertical domain size to 5m and250

the kinematic viscosity to 10−6m2s−1, appropriate for water. The dimensional domain size was251

chosen to match roughly the size of typical turbulent patches in the ocean interior and the vertical252

size typically used for averaging microstructure measurements (Moum 1996; Smyth et al. 2001).253

The horizontal dimensional domain size is 40m in Simulations A and B and 10m in Simulation254

C. As we will see, the domain size is sufficient to accommodate many turbulent overturns. For255

comparison the largest dimensional domain size used in the simulations of Smyth et al. (2001) (for256

Pr = 7) was 2.73×1.36×0.34m.257
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Once the dimensional domain size and kinematic viscosity are set, the dimensional time scale258

can be found from the characteristic Reynolds number, Re. Some of the dimensional parameters259

are listed in Table 2. The dimensional values of the background buoyancy frequency, N0, are in the260

range 3.7×10−3s−1 to 1.4×10−2s−1, corresponding to buoyancy periods ranging from 28.0 to 7.4261

min. The weakest stratification considered here is within the range observed by Moum (1996) in262

the main thermocline while the strongest stratification considered here is more typical of the sea-263

sonal pycnocline (e.g. Alford and Pinkel (2000b)). The dimensional average turbulent dissipation264

rate spans more than two orders of magnitude and contains values typically measured in the ocean265

interior (e.g. Moum (1996); Gregg (1989b)). The vertical turbulent diffusivity calculated with the266

volume-averaged horizontal buoyancy flux, κV
d ≡ −〈B〉V /

〈
N2〉

V ranges from 2.2× 10−6m2s−1
267

in Simulation A to 7.2× 10−5m2s−1 in Simulation C. The very small diffusivity in Simulation268

A is consistent with the observation by Ivey and Imberger (1991) that turbulence collapses for269

Reb . 15. However, as discussed by Rorai et al. (2014); Portwood et al. (2016), strongly stratified270

turbulence is highly intermittent in space and time and (as we will see below) the volume-averaged271

statistics are not indicative of the turbulence at single points in space.272

3. Results273

a. Vertical section and profiles274

Turbulence and mixing are intermittent across a wide range of scales in the DNS. On small275

scales, the statistics of energy and buoyancy variance dissipation are skewed with a small number276

of large events dominating the volume average. This is a well-known property of high Reynolds277

number turbulence in unstratified flows (Sreenivasan and Antonia 1997) and intermittency in scalar278

mixing is discussed extensively in Warhaft (2000). On larger scales, turbulence occurs in localized279
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bursts separated by relatively quiescent flow. Similar behavior has been observed in numerous280

previous studies (e.g. Riley and de Bruyn Kops (2003); Hebert and de Bruyn Kops (2006a); Rorai281

et al. (2014); Portwood et al. (2016)).282

The top row in Figure 1 shows a vertical cross-section of buoyancy, b, and the TKE dissipation283

rate, ε , from Simulation C. The other simulations (not shown) have qualitatively similar features.284

A series of distinct layers are visible in the buoyancy field with relatively thick weakly stratified285

regions separated by relatively thin and more strongly stratified interfaces. The turbulent dissi-286

pation rate exhibits localized patches of strong turbulence similar to those described in Portwood287

et al. (2016). Maximum local values of ε are up to 30 times larger than the volume average.288

The lower panels in Figure 1 show a close-up view of the flow in the boxed regions labeled 1, 2,289

and 3 in the top panels. In order to quantify mixing in each region, it is convenient to introduce the290

perturbation potential energy. In a volume with constant background buoyancy gradient N2
0 , the291

perturbation potential energy is
〈
b′2
〉

V /(2N2
0 ) and its associated dissipation rate can be written as292

χ ≡ κm∇b′ ·∇b′

N2
0

. (8)

Since N2
0 is constant in our simulations, χ is proportional to the dissipation rate of buoyancy293

variance, and hence is a natural measure of irreversible mixing (see Salehipour and Peltier (2015)294

for a detailed discussion).295

Region 1 is associated with relatively large kinetic and potential energy dissipation rates. As296

seen in the buoyancy field, in the middle of this region is a∼ 0.5 m vertical overturn. At the center297

of the overturn χ is relatively weak while ε remains large. Along the edges of the overturn χ and298

ε are of similar magnitude. In other words, mixing is more efficient on the flanks of the overturn299

than in the center of the overturn.300
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Region 2 exhibits a moderate value of ε and an undulating density interface passes through301

the region. While ε is relatively uniform in the region, χ is significantly larger near the density302

interface than in the mixed regions above and below the interface. Small overturns, 5-10 cm in303

height, appear along the density interface, but these features appear irregular.304

Region 3 is characterized by relatively small values of ε and a relatively flat density interface.305

A vertically-sheared flow exists on either side of the density interface (not shown) and a series of306

what appear to be shear-induced billows can be seen. These billow-like structures are highlighted307

by relatively large values of χ .308

Statistics collected along a single vertical profile corresponding to the white dashed line in Fig-309

ure 1 are shown in Figure 2. The red dashed line in Figure 2(a) shows the 1D sorted buoyancy310

profile. The displacement scale Ld is the change in height of a fluid parcel from its unsorted to311

sorted positions. Several features in the profiles shown in Figure 2 resemble qualitatively the ob-312

served profiles reported in Moum (1996) such as the step-like structure in the density field and the313

corresponding structure in the Thorpe displacement scale (see, e.g. Figure 1b in Moum (1996)).314

The buoyancy flux, w′b′, alternates in sign along the vertical profile, indicating reversible transfer315

between perturbation potential and kinetic energy.316

The kinetic and potential energy dissipation rates are highly intermittent (see panels d and 3 in317

Figure 2). There is no clear correlation between locations with large ε and χ . As a result, a local318

mixing efficiency, η(x, t), which may be defined as319

η(x, t)≡ χ

χ + ε
, (9)

fluctuates rapidly between 0 and 1 (Figure 2f).320
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b. Length scales321

The relative importance of stratification and viscosity to the turbulent motions at a particular322

scale can be quantified by comparing various length scales associated with stratified turbulence323

(Smyth and Moum 2000). Figure 3 shows characteristic length scales for each simulation, plotted324

as a function of the buoyancy Reynolds number, Reb. Here, dimensional values are plotted, where325

the vertical domain size is set to 5m as discussed above.326

In dimensional terms, the Kolmogorov scale, LK , ranges from 2.4mm to 8.7mm, while the Batch-327

elor scale, LB = LK/
√

Pr ranges from 0.9mm to 3.3mm. The isotropic grid spacing, ∆x,y,z is always328

less than twice the Batchelor scale, ensuring that the DNS is sufficiently well-resolved. The wide329

scale separation between the domain size and the grid spacing gives an indication of the large330

computational cost of these simulations.331

There are several different ways to construct a Thorpe scale from a three-dimensional dataset332

(see Smyth and Moum (2000) and Mashayek et al. (2017a) for further discussion). For example, it333

would be possible to sort a three-dimensional density field (e.g. Winters and D’Asaro (1996)) and334

calculate the Thorpe scale from the rms vertical displacements with respect to the volumetrically-335

sorted profile. Here, motivated by oceanographic observations where three-dimensional sorting is336

typically not possible, we instead vertically sort the density profile at each horizontal gridpoint.337

The Thorpe scale is then calculated from each vertical profile and the result shown in Figure 3 is338

averaged over all horizontal gridpoints. Specifically,339

LV
T ≡

〈〈
L2

d
〉1/2

z

〉
x,y

, (10)

where 〈·〉z denotes an average in the vertical direction and 〈·〉x,y denotes an average in the horizon-340

tal directions. Later, in section 3d, we will examine the sensitivity of the Thorpe scale estimates341

calculated with a limited number of vertical profiles.342
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The dimensional Thorpe and Ozmidov scales calculated using volumetric simulation data, LV
T343

and LV
O are both ' 10 cm and increase somewhat with increasing buoyancy Reynolds number.344

The Ozmidov scale increases with Reb faster than the Thorpe scale such that the ratio LV
O/LV

T is345

0.53 in simulation A, 0.56 in simulation B, and 0.92 in simulation C. This can be compared with346

LO/LT ' 0.8 suggested by Dillon and Caldwell (1980). The dependence of this ratio on the flow347

parameters is consistent with the recent conclusions of Mater et al. (2015) and Scotti (2015).348

c. Testing of Osborn, Osborn-Cox, and Dillon methods349

In this section, we will compare the vertical turbulent diffusivity diagnosed directly from the350

simulations with values inferred from the Osborn, Osborn-Cox, and Dillon methods. Before giving351

the results, a brief description of each method is given below, highlighting in particular some of352

the key assumptions behind each method.353

1) OSBORN-COX METHOD354

Starting from an equation for entropy density, Osborn and Cox (1972) derived a method to355

estimate the vertical turbulent diffusivity from measurements of microscale temperature or con-356

ductivity. Here, we will write the equations in terms of buoyancy b with the understanding that357

this is more closely related to temperature than salinity since the Prandtl number is 7 in the DNS.358

The buoyancy variance budget (as noted above this is linearly related to the perturbation potential359

energy in this context) can be written as360

(
∂

∂ t
+ 〈u〉 ·∇

)〈
b′2
〉
+∇ ·

(〈
u′b′2

〉
−κm∇

〈
b′2
〉)

=−2
〈
u′b′
〉
·∇〈b〉−2κm

〈
∇b′ ·∇b′

〉
, (11)

where angle brackets denote an average over some arbitrary volume (e.g. Pope (2000)). Assuming361

that terms on the left hand side, the time rate of change and flux divergence, are both small, Eq. 11362
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reduces to a production-dissipation balance363

−
〈
u′b′
〉
·∇〈b〉= κm

〈
∇b′ ·∇b′

〉
= 〈χ〉

〈
N2〉 , (12)

using Eq. 8. Further neglecting the horizontal buoyancy flux and defining the vertical diffusivity in364

terms of these (arbitrary) volume average, i.e. κ ≡−〈B〉/
〈
N2〉 yields an estimate of the vertical365

turbulent diffusivity,366

κO−C ≡
−〈B〉
〈N2〉 '

〈χ〉
〈N2〉 . (13)

367

2) OSBORN METHOD368

The Osborn method (Osborn 1980) provides a way to estimate the vertical diffusivity associated369

with small-scale turbulence from the TKE dissipation rate. In deriving the method, Osborn made370

several key assumptions (see e.g. Mashayek et al. (2013) for further discussion), including that the371

vertical diffusivity is dominated by fully developed turbulence, and that the turbulence exhibits a372

quasi-steady balance between production, dissipation and diapycnal mixing when suitably aver-373

aged so that the mixing can be related to the dissipation rate. Therefore, the TKE budget reduces374

to a balance between production, buoyancy flux, and dissipation, (with crucially no contribution375

from advective or boundary processes) i.e.376

〈P〉= 〈ε〉−〈B〉 , (14)

where377

〈P〉 ≡ −
〈
u′iu
′
j
〉 ∂ 〈ui〉

∂x j
(15)

is the turbulent shear production. Osborn (1980) further assumed that small-scale turbulence is378

isotropic so that the dissipation rate can be determined from just one component of the defor-379

mation rate tensor. We do not test this assumption here and instead evaluate the production and380
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dissipation using the full deformation rate tensor. The appropriateness of the assumption of small-381

scale isotropy for stratified turbulence has been discussed extensively in recent papers (e.g. Hebert382

and de Bruyn Kops (2006b); Almalkie and de Bruyn Kops (2012a); de Bruyn Kops (2015)). Os-383

born (1980) further suggested that the assumption of quasi-steadiness and hence the averaging384

operator could be applied to vertical profiles through turbulent patches ranging from 1-10 m in385

size.386

Using the classical definition of the flux Richardson number, R f ≡ −〈B〉/〈P〉 (or R f =387

〈B〉/(〈B〉− 〈ε〉) using Eq. 14) the buoyancy flux may be expressed in terms of the TKE dissi-388

pation rate ε as389

〈B〉=−
(

R f

1−R f

)
〈ε〉 . (16)

Then, the vertical turbulent diffusivity, κ =−〈B〉/
〈
N2〉, can be related to ε to yield the estimate390

κO = Γ
〈ε〉
〈N2〉 , (17)

where Γ ≡
(

R f
1−R f

)
. The turbulent flux coefficient Γ is often referred to as a ‘mixing efficiency’,391

although in principle it can be greater than one, and there has been much recent activity attempting392

to produce appropriate parameterizations for this quantity in terms of various flow parameters, see393

for example Salehipour et al. (2016); Mashayek et al. (2017b); Monismith et al. (2018).394

3) THORPE-SCALE METHOD395

Thorpe (1977) proposed a method to estimate the averaged dissipation rate based on vertical396

profiles of potential density. An advantage of this method is that it can be applied to more readily397

available data (Gargett and Garner 2008). To calculate the Thorpe scale, a density profile is first398

sorted so that the sorted density is a monotonic function of height. The displacement length Ld399

is the difference in height of a water parcel from its unsorted to sorted location (figure 2(c)). The400
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Thorpe scale is then calculated by taking the root mean square of Ld , i.e.401

LP
T =

〈
L2

d
〉1/2

P , (18)

where angle brackets are typically taken to represent an appropriate ‘patch’ average, for example402

taken over a single overturning turbulent patch or an ensemble of such patches obtained from403

vertical profiling instruments (Thorpe 2005). Thorpe (1977) conjectured that LP
T may be linearly404

related to the Ozmidov scale calculated with patch-averaged quantities, LP
O = 〈ε〉1/2

P
〈
N2〉−3/2

P .405

This then gives an estimate of the dissipation rate406

〈ε〉P = R2
OT
(
LP

T
)2 〈

N2〉3/2
P , (19)

where the coefficient of proportionality, LP
O/LP

T ≡ ROT ' 0.8, is based on observations by Dillon407

and Caldwell (1980), although there is mounting evidence that estimates of this coefficient can be408

both biased and uncertain (Mater et al. 2015; Scotti 2015; Mashayek et al. 2017a). Then, using409

Eq. 17 yields an estimate for the vertical turbulent diffusivity,410

κT = 0.64Γ
(
LP

T
)2 〈

N2〉1/2
P . (20)

4) COMPARISON411

The underlying assumptions behind the three methods described above are questionable in412

strongly stratified flows where turbulent events are highly intermittent in time and space as il-413

lustrated in Figure 1. This concern becomes stronger when a small subset of the flow is sampled,414

for example using a small number of vertical profiles, since the various averages being taken be-415

come less reliable as representative of turbulent mixing events within the flow. Before addressing416

the issue of incomplete sampling and averaging, we will first examine the performance of the ap-417

proximate methods described above, compared with the ‘direct’ calculation of κ formed using the418
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volume-averaged buoyancy flux and stratification, i.e.419

κ
V
d =
−〈B〉V
〈N2〉V

. (21)

When calculated using data from the full computational volume, the vertical turbulent diffusivity420

associated with the Osborn-Cox, Osborn, and Thorpe methods can be written421

κ
V
O−C =

〈χ〉V
〈N2〉V

, κ
V
O = Γ

〈ε〉V
〈N2〉V

, κ
V
T = 0.64Γ

(
LV

T
)2 〈

N2〉1/2
V , (22)

respectively, where 〈·〉V denotes an average over the full computational volume and LV
T is de-422

fined in Eq. 10. Figure 4 shows κV
O−C, κV

O and κV
T , normalized by κV

d as defined in Eq. 21 and423

plotted against the buoyancy Reynolds number to differentiate the three simulations. The dimen-424

sional values of κV
d are 2.2×10−6m2s−1 in Simulation A, 1.8×10−5m2s−1 in Simulation B, and425

7.2× 10−5m2s−1 in Simulation C, roughly spanning typical values found in the ocean interior426

(Waterhouse et al. 2014).427

Even with perfect sampling of the 3D volume, there are significant differences between the var-428

ious estimates of κ . The estimates using the Osborn and Osborn-Cox methods, κV
O and κV

O−C are429

within 40% of κV
d , and there is no clear trend with Reb. The Thorpe-scale method underestimates430

κV
d by about 50% in Simulation C, but significantly overestimates κV

d in Simulations A and B.431

Recall that our simulations are analyzed at a statistically steady state. It is possible that temporal432

variability could lead to larger biases when these methods are applied to oceanographic data. In433

addition, when the Thorpe scale is small and/or when the density contrast is weak, it can be dif-434

ficult to distinguish between real overturns and measurement error associated with a CTD profile435

(Ferron et al. 1998; Alford and Pinkel 2000a; Johnson and Garrett 2004).436
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d. Vertical profile-averaged statistics437

The estimates of the vertical turbulent diffusivity described above were calculated using simu-438

lation data extracted from the full three-dimensional volume. In contrast, data collected from the439

ocean are necessarily much more limited. In this section, we explore the sensitivity of the esti-440

mates of κ when calculated with limited data. Note that we do not consider instrument error or441

biases introduced when converting measured quantities into physical quantities like the dissipa-442

tion rate. Instead, we assume that the simulated field can be sampled perfectly at discrete points443

in space and focus on the influence of limited data availability.444

The most common sampling strategy to infer κ is to collect velocity, temperature and/or con-445

ductivity along roughly vertical profiles. Measurements from distinct regions within one or more446

profiles are often averaged to reduce the uncertainty in the measurement. Here, we will calculate447

κ using the methods described in the previous section based on a limited number of 1D vertical448

profiles extracted from the simulations. Note that the profiles that we use are taken instantaneously449

and are perfectly vertical. How well this describes oceanographic measurements depends on the450

fall speed of the instrument and the speed of the currents. Some platforms such as microstructure451

gliders make significantly inclined profiles, although these data are often analyzed in a similar way452

to free-falling profilers (e.g. Palmer et al. (2015)).453

We extract data from the simulations by randomly selecting a set of vertical profiles from a sin-454

gle three-dimensional field. Since the simulations were sampled when the flow is in a statistically455

stationary state, sampling at different spatial locations should give the same statistical result as456

sampling at different time intervals. Treating a limited number of samples as independent verti-457

cal profiles is justified by the horizontal de-correlation of statistical quantities. For example, the458

horizontal autocorrelation length associated with the profile-averaged TKE dissipation rate 〈ε〉z459
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drops to zero at a distance of Lz/2 or 5 m in Simulation C and a distance of ∼ 2Lz or ∼ 10 m460

in Simulations A and B. Note that the properties of the large-scale flow in the simulations will461

be influenced by the forcing scheme used. In the ocean, where turbulence is associated with ed-462

dies, internal waves, and shear layers across a wide range of horizontal scales, the de-correlation463

distance between profile-averaged statistics could be much larger than 10 m.464

Before testing the methods for estimating κ it is useful to quantify the variability in profile-465

averaged statistics induced by intermittent stratified turbulence. Figure 5 shows the probability466

density function (PDF) of the buoyancy flux, TKE and potential energy dissipation rates, and467

squared Thorpe scale, each normalized by the corresponding volume average. Here the Thorpe468

scale is calculated by averaging the rms displacement over one vertical profile such that469

Lz
T ≡

〈
L2

d
〉1/2

z . (23)

Each PDF is calculated using the full 3D computational volume (i.e. vertical profiles were col-470

lected at every horizontal gridpoint). The Thorpe scale is squared for comparison with the other471

quantities since this quantity appears in the expression for κT .472

The modes of the PDFs for all quantities shown in Figure 5 are skewed towards values smaller473

than the volume average. It is well known in the turbulence literature that the point-wise TKE and474

variance dissipation rates are similarly skewed such that a small number of large values contribute475

significantly to the volume average (Pope 2000). The PDFs of local (pointwise) ε and χ are476

typically assumed to be lognormal, following Kolmogorov (1962). de Bruyn Kops (2015) shows477

that distributions of local ε and χ in stratified turbulence are well-approximated by the lognormal478

model provided that Reb > O(10). The TKE dissipation rate measured in the ocean thermocline is479

similarly skewed (Baker and Gibson 1987; Gregg et al. 1996). Evidently the intermittency inherent480

in the point-wise statistics extends to the profile-averaged statistics.481
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Here, we calculate ε and χ using derivatives of all three velocity components and buoyancy in482

all three spatial directions. Field measurements of these quantities generally involve a subset of the483

velocity and/or gradient information and assumptions about the isotropy of the small-scale turbu-484

lence are invoked to fill in the missing information. The PDFs of the surrogates for ε and χ based485

on a subset of the velocity and scalar gradients are significantly different from those of the exact486

quantities. In particular, the left side of the distributions of the surrogates tend toward exponential487

(Almalkie and de Bruyn Kops 2012a; de Bruyn Kops 2015) and the mean of the surrogates are488

significantly different from the exact values when Reb is low (Hebert and de Bruyn Kops 2006b).489

The variance associated with the buoyancy flux is much larger than the variance in other quan-490

tities. This appears to be associated with a large contribution from internal waves. Figure 2 shows491

regions with alternating sign of w′b′, indicating active exchange between kinetic and potential en-492

ergy. The profile-averaged buoyancy flux is often negative (not shown in Figure 5). As we will493

see below, the large variability in the profile-averaged buoyancy flux has significant implications494

for the estimates of κ .495

Based on simulations of Kelvin-Helmholtz (K-H) instability, Smyth et al. (2001) proposed that496

the ratio of the Ozmidov and Thorpe scales provides a measure of the ‘age’ of a turbulent event.497

Their simulations started with a laminar stratified shear layer that was unstable to K-H. During498

initial roll-up of the K-H billows, they found that the Thorpe scale grows quickly, but dissipa-499

tion remains low and as a result LO/LT << 1. In the later stages of their simulations, three-500

dimensional turbulence develops, and LO ∼ LT . In simulations at substantially higher Reynolds501

number, Mashayek et al. (2017a) found analogous behaviour, although they interpreted the (over-502

all) monotonic increase in LO/LT during the turbulent life cycle as being due to the relatively503

slower decrease in LO compared to LT during the turbulent decay phase of the life cycle. Mater504

et al. (2015) apply a similar argument to explain variations in LO/LT in convectively-generated505
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turbulence. Observations reported in Smyth et al. (2001), Mater et al. (2015) and Mashayek et al.506

(2017a) all show relatively broad distributions of LO/LT .507

Probability density functions of Lz
O/Lz

T (where the dissipation rate and Thorpe displacement are508

calculated based on averages over individual vertical profiles) is shown in Figure 6(a). The peak509

in the distribution for Simulation C is relatively close to the value of LO/LT = 0.8 proposed by510

Dillon and Caldwell (1980), and the distribution qualitatively resembles the observations reported511

in Smyth et al. (2001). The ratio of the Ozmidov to Thorpe scale is somewhat smaller in Sim-512

ulations A and B. This is consistent with the observations reported in Mater et al. (2015) which513

suggest that LO/LT is not constant and depends on the properties of the flow. The spread in the514

distributions of Lz
O/Lz

T suggests that the collection of profile-averaged statistics can be viewed as515

an ensemble of turbulent events as visualized in Figure 1.516

Figure 6(b) shows PDFs of mixing efficiency calculated using the profile-averaged dissipation517

rates, i.e. 〈χ〉z /
(
〈χ〉z + 〈ε〉z

)
, which exhibits significant scatter about the volume average. The518

mean and mode of the distributions increase from Simulation A to Simulation C as the buoyancy519

Reynolds number increases. The mean values are somewhat larger than the canonical value of520

1/6, ranging from 0.18 in Simulation A to 0.28 in simulation C, although the spread about the521

mean is considerable. For example ∼ 22% of the profiles taken from Simulation C have a mixing522

efficiency larger than 0.4, although such large values do arise in idealised flows subject to strong523

Kelvin-Helmoltz-like shear-driven overturning motions (see for example Mashayek et al. (2013,524

2017a)).525

Some recent studies have suggested that the mixing efficiency depends on the buoyancy526

Reynolds number, Reb ≡ ε/(νN2) (e.g. Shih et al. (2005); Mater and Venayagamoorthy (2014);527

Salehipour et al. (2016); Mashayek et al. (2017b); Monismith et al. (2018)). Although there are528

differences in the details of various proposed scalings, most of the observations and simulations529
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reported in these papers suggest a decrease in the mixing efficiency when Reb exceeds a critical530

value. Figure 6(c) shows the mixing efficiency plotted against Reb, with each quantity calculated531

from the profile-averaged dissipation rates. For small Reb the mixing efficiency is very close to532

the value of 0.17 proposed by Osborn (1980), and consistent with previous numerical simulations533

(e.g. Shih et al. (2005)). A peak in mixing efficiency for moderate values of Reb as seen in Figure534

6(c) also occurs in some of the simulations from Shih et al. (2005) (see also Mater and Venayag-535

amoorthy (2014) and Salehipour and Peltier (2015)). Here, the mixing efficiency decreases with536

increasing buoyancy Reynolds number for Reb & 800. This value is significantly larger than the537

threshold value found by Shih et al. (2005), but smaller than the value from observations reported538

in Lozovatsky and Fernando (2013) and well within the range of other simulations and observa-539

tions (Mater and Venayagamoorthy 2014; Monismith et al. 2018).540

Estimates of the vertical diffusivity calculated using sets of randomly selected vertical profiles541

are shown in Figure 7. Specifically, when applied to n vertical profiles, the vertical diffusivity542

estimated from the Osborn-Cox, Osborn, and Thorpe methods can be written543

κ
z,n
O−C =

〈χ〉z,n
〈N2〉z,n

, κ
z,n
O = Γ

〈ε〉z,n
〈N2〉z,n

, κ
z,n
T = 0.64Γ

(
〈Lz

T 〉n
)2 〈N2〉1/2

z,n , (24)

respectively, where 〈·〉z,n denotes an average over n vertical profiles and Lz
T is defined in Eq. (23).544

Similarly, the vertical diffusivity associated with the direct method applied to n vertical profiles is545

κ
z,n
d =

−〈B〉z,n
〈N2〉z,n

. (25)

Note that here
〈
N2〉

z,n = N2
0 due to the periodicity of the computational domain. In Figure 7 each546

estimate of κ is dimensionalized such that the height of the vertical domain and the length of547

each profile is 5 m. Solid colored lines show ±1 standard deviation about the mean and the area548

between these curves is shaded to highlight the uncertainty associated with each estimate. Black549
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dashed lines indicate the vertical diffusivity calculated with the volume-averaged buoyancy flux,550

i.e. κV
d .551

In all cases, κ
z,n
d converges very slowly to κV

d . Figure 8 shows the standard deviation of the552

averages of the buoyancy flux, kinetic and potential energy dissipation rates, and the squared553

Thorpe scale for a given number of vertical profiles. In all cases the standard deviation decreases554

with the square root of the number of profiles (compare with dashed line) as expected from the555

central limit theorem for independent random variables. However, even with 20 profiles, negative556

values of κ
z,n
d are within one standard deviation of the mean in Simulations A and B. The variance557

is smaller in Simulation C where the flow is more turbulent.558

The standard deviations associated with the profile-averaged dissipation rate and Thorpe scales559

are much smaller than the standard deviation of the buoyancy flux in Simulations A and B. As560

seen in Figure 4, the Osborn and Osborn-Cox methods give a relatively good estimate of κV
d561

in these cases. Interestingly, the standard deviations of 〈ε〉z,n and 〈χ〉z,n are significantly larger562

in Simulation C and as a result the Osborn and Osborn-Cox methods require more profiles to563

converge in this case. Since Simulation C is the most turbulent, having the largest dissipation rate,564

diffusivity, and buoyancy Reynolds number, the slow convergence of the Osborn and Osborn-565

Cox methods is unexpected and an explanation for this behavior is not immediately clear. In566

comparison, the Thorpe-scale method converges relatively quickly in Simulation C.567

e. Validity of assumptions underlying the Osborn and Osborn-Cox methods568

Remarkably, when applied to a limited number of vertical profiles, the Osborn and Osborn-Cox569

relations (Equations 17 and 13) outperform their underlying assumptions. Figure 9 shows the570

normalized residual associated with the classic Osborn relation (Eq. 17, solid blue curve) and the571

classic Osborn-Cox relation (Eq. 13, dashed blue curve). Here, the normalized residual is defined572
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as the absolute value of the sum of the terms in each relation (with all terms on one side of the573

relevant equation) divided by the sum of the absolute values of each individual term.574

For the Osborn model, we also evaluate the assumption that the turbulent flux coefficient Γ is575

constant (solid green curve), and the assumed quasi-steady balance (unaffected by advection) in576

the TKE budget (Eq. 14, solid red curve). The vertical and profile average is not shown in the577

legend for notational clarity but is applied to ε , B, P, and N2 individually. We also evaluate the578

assumption underlying the Osborn-Cox model that the buoyancy variance budget reduces to a579

production/dissipation balance with B' χ (dashed red curve).580

One might expect the error associated with the Osborn and Osborn-Cox relations to be at least581

as large as that of the worst assumption underlying these relations. Instead, the error associated582

with the Osborn relation is significantly less than the errors associated with the equations for the583

flux coefficient and TKE budgets for Simulations A and B. In case C the error in the Osborn re-584

lation is comparable to the error associated with the flux coefficient and smaller than the error585

associated with the TKE budget. A similar conclusion applies to the Osborn-Cox model where the586

Osborn-Cox relation (dashed blue curve in Fig. 9) significantly outperforms the assumption of pro-587

duction/dissipation balance in the buoyancy variance equation (dashed red curve) in Simulations588

A and B.589

An important difference between the Osborn and Osborn-Cox relations and the equations for the590

flux coefficient and the TKE and buoyancy variance budgets underlying these relations is that the591

buoyancy flux does not appear explicitly in the Osborn or Osborn-Cox relations. Figure 7 showed592

that the buoyancy flux exhibits very large scatter about its mean value, and this is particularly true593

in Simulations A and B. One explanation for the relatively low normalized residuals associated594

with the Osborn and Osborn-Cox relations is they are it is not influenced by the reversible contri-595

butions of internal waves to the buoyancy flux. Indeed, central to the averaging at the heart of the596
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Osborn method is the assumption that reversible processes in the buoyancy flux are filtered out,597

leaving only the irreversible component, capturing the actual mixing occuring within the flow.598

Relatively recently, Salehipour and Peltier (2015) proposed a ‘generalized Osborn relation’ us-599

ing the framework introduced by Winters and D’Asaro (1996), designed explicitly to identify, as600

a function of time, the diapycnal diffusivity in terms of an appropriate definition for an inherently601

irreversible mixing efficiency. They showed that the diapycnal diffusivity κρ can be written as602

κρ =
E

1−E

ε

N2
∗
, (26)

where E is the irreversible and instantaneous mixing efficiency defined in Caulfield and Peltier603

(2000) and N∗ is the buoyancy frequency calculated using the sorted density profile. Since this604

expression relies on quantities calculated from (volume) sorted data, it is a global measure of the605

mixing within the entire domain under consideration, but can in principle be calculated at every606

time instant within a temporally evolving flow. As the key parameters (such as an appropriately607

defined buoyancy Reynolds number and Richardson number) describing their simulated flow also608

vary in time, the results of their simulations, showing temporal variation of E can be interpreted as609

evidence that E depends on such parameters (Salehipour and Peltier 2015; Salehipour et al. 2016).610

Importantly, Eq. (26) does not rely on any assumptions aside from the Boussinesq approximation.611

Salehipour and Peltier (2015) noted the clear structural similarity between Eq. (26) and the Os-612

born relation, Eq. (17). For strongly stratified flows with relatively small isopycnal displacements613

one might anticipate that the globally sorted buoyancy frequency N∗ ' N. To the extent that the614

flux coefficient Γ in Eq. (17) approximates the irreversible flux coefficient E /(1−E ), the Osborn615

relation could then provide a relatively robust approximation to the diapycnal diffusivity. Funda-616

mentally, the key point is that assuming that the irreversible buoyancy flux is some fraction of the617

turbulent dissipation rate appears to be a reasonable assumption.618
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The dissipation rates of turbulent kinetic energy (ε) and perturbation potential energy (χ) both619

represent irreversible losses from turbulence. As noted above, the partitioning of the total energy620

lost between these two terms is broadly consistent with the value of the flux coefficient used in621

the Osborn method, even though the theoretical arguments and assumptions presented by Osborn622

to justify this partitioning are not satisfied, not least due to the contaminating effects of reversible623

processes. The apparently robust partitioning between perturbation kinetic and potential energy624

dissipation might help explain why the Osborn method, applied using a limited number of vertical625

profiles, appears to be less prone to errors introduced by the presence of internal waves and other626

reversible processes than the failure of its underlying assumptions might suggest. It should be627

kept in mind that this discussion pertains to averaged quantities and that in local, transient mixing628

events the relative size of ε and χ can vary substantially.629

4. Conclusions and discussion630

In this paper we tested the performance of the Osborn, Osborn-Cox, and Thorpe-scale meth-631

ods using high resolution direct numerical simulations (DNS). The simulations used an idealized632

triply periodic computational domain with an imposed background stratification. Turbulence was633

forced using a deterministic body force added to the momentum equations. The simulations can634

be viewed as a model of turbulence in a small region embedded within the thermocline. Three635

simulations were run with varying stratification and turbulence levels, typical of conditions in the636

main and seasonal thermoclines.637

When the Osborn and Osborn-Cox methods are applied to the volume-averaged TKE and pertur-638

bation potential energy dissipation rate, the resulting estimates of the vertical turbulent diffusivity639

(κV
O and κV

O−C) are within 40% of the value obtained directly from the volume-averaged turbulent640

buoyancy flux, κV
d . When the Thorpe scale is calculated using individual vertical profiles and then641
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averaged over the full computational domain, the resulting estimate, κV
T is very close to κV

O in642

Simulation C but significantly overestimates κV
d in Simulations A and B with relatively small Reb.643

In Simulation A, κV
T is more than 2.5 times larger than κV

d .644

Consistent with previous simulations of forced stratified turbulence, we find that turbulence645

is inherently patchy and intermittent. For example, the PDFs of the dissipation rates of kinetic646

energy and buoyancy variance are skewed with a small number of very intense events, associated647

with vigorous, shear-driven overturnings. We find that this intermittency extends to the statistics648

averaged over one-dimensional vertical profiles, despite the fact that the simulations are set up649

such that each profile has the same average stratification.650

This finding has important implications for the interpretation of limited observational datasets651

and for sampling strategies. For example, to ensure that the average dissipation rate can be cor-652

rectly calculated, it would be necessary to ensure that enough of the extreme events are captured.653

The rate at which the various estimates of κ converge to the values calculated with volume-654

averaged statistics depends on Reb. In general, the Osborn and Osborn-Cox methods converge655

relatively quickly in the simulations with small values of Reb, while the Thorpe-scale method656

converges somewhat faster in Simulation C at larger Reb than in Simulations A and B.657

In comparison to the Osborn and Osborn-Cox methods, the diffusivity calculated directly from658

the vertical buoyancy flux using a small number of vertical profiles exhibits a very large scatter659

about the mean. Remarkably in Simulations A and B, negative values of κ are within one standard660

deviation of the average even when using 20 vertical profiles, each 5m in length. The convergence661

to the mean is faster in Simulation C where the flow is more turbulent. The slow convergence of662

the buoyancy flux for small Reb appears to be due to large (and inherently reversible) contributions663

from internal waves. In an internal wave field the sign of w′b′ fluctuates as energy is transferred664

between the kinetic energy reservoir and the potential energy reservoir. A large averaging window665
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(in space, in time or in ensemble) is required to eliminate these reversible contributions to the666

buoyancy flux.667

Here, we have not tested the performance of finescale methods which rely on measurements of668

internal waves. The large-scale forcing that was used to drive turbulence in the DNS was idealized669

and was not necessarily intended to replicate the properties of the finescale internal wave field.670

Simulations that simultaneously resolve a typical finescale internal wave spectrum (e.g. Gargett671

et al. (1981)) while also resolving small-scale turbulence and mixing could be used to test (and672

perhaps improve) finescale methods.673
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Label L̃x,y L̃z Nx,y Nz Re Fr Pr Frh Frt Reh Ret Reb

A 2π π/4 9216 1152 6452 0.0416 7 0.071 0.0019 7048 82755 12.1

B 2π π/4 18432 2304 2410 0.0416 7 0.080 0.0025 23069 231575 57.5

C 2π π 13104 6552 4679 0.1667 7 0.45 0.015 2985 25597 241.5

TABLE 1. Nondimensional simulation parameters and derived quantities.
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Label Lx,y Lz ∆x,y,z N2
0 〈ε〉V LV

O LV
K κV

d

A 40m 5m 4.3mm 1.41×10−5s−2 1.71×10−10m2s−3 5.6cm 8.7mm 2.2×10−6m2s−1
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TABLE 2. Dimensional simulation parameters and derived quantities. The values here have been made dimen-

sional by setting the vertical domain height Lz = 5m and kinematic viscosity ν = 10−6 m2s−1 in each simulation.
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by directly averaging the flux over the full volume of the simulations as defined in Eq. 21. Note that the limits

of the vertical axis are different in each panel.
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FIG. 8. Standard deviation associated with quantities averaged over n vertical profiles, normalized by the 3D

volume average. Dashed lines show the n−1/2 scaling expected from the Central Limit Theorem.

912

913

52



0 20 40 60 80 100
Number of vertical profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 re

si
du

al

0 20 40 60 80 100
Number of vertical profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
no

rm
al

iz
ed

 re
si

du
al

0 20 40 60 80 100
Number of vertical profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 re

si
du

al

Simulation A Simulation B Simulation C

Osborn model:

Osborn-Cox model:

FIG. 9. Normalized residual associated with the Osborn and Osborn-Cox relations (blue) and several assump-

tions used to derive these relations (green and red). The values of ε , χ , B, P, and N2 correspond to an average

across the vertical domain and for the specified number of vertical profiles, e.g. 〈ε〉z,n, and the averaging opera-

tors are omitted for clarity.
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