Supplementary Information Carbon vs. cost option mapping: A tool for improving early-stage design decisions

H.L. Gauch^a, W. Hawkins^b, T. Ibell^b, J.M. Allwood^a, C.F.Dunant^a

^aDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK ^bDepartment of Architecture and Civil Engineering, University of Bath, UK

1. Cost model coefficients

The cost model reflects current practice in early-stage cost estimates produced by quantity surveyors. The rates for materials include the costs for transport to the site and the construction itself. The values were obtained through conversations with civil engineering practitioners and quantity surveyors in the UK. The values are therefore most suitable for the UK and can be expected to vary for other countries. The cost rates were normalised by the cost for a cubic meter of concrete due to their proprietary nature. The values used in both test cases are given in Table 1.

Material/ Operation	Element	Cost type	Cost rate	Cost rate unit	Multipliers
	Beams, Columns	Steel	15.2	$\bar{\mathcal{L}}/\mathrm{t}$	$m_{\rm beams}, m_{\rm columns}$
	Connections, Plates	Steel	15.2	£/t	$m_{\rm conns}, m_{\rm plates}$
	Beams, Columns	Paint	2.73	$\bar{\pounds}/t$	$m_{\rm beams}, m_{\rm columns}$
Steel	Column	Base plates	3.03	$\bar{\pounds}/\text{plate}$	$n_{\rm baseplates}$
Steel	Shear studs	Steel	15.2	$\bar{\pounds}/t$	$m_{\rm shear studs}$
	Frame	Cladding connection	0.394	$\bar{\pounds}/\mathrm{m}$	$l_{ m perimeter}$
	Beams, Columns, Con- nections, Plates	Sundries	5.0	%	steel costs
	Slab, Columns, Foun- dations	Concrete	1.0	$\bar{\pounds}/m^3$	V _{conc}
	Slab, Columns, Foun- dations	Rebar	6.67	$ar{\pounds}/ ext{t}$	$m_{ m rebar}$
Reinforced	Steel decking	Steel deck	0.273	$\bar{\pounds}/m^2$	A_{floor}
Concrete	Slab, Foundations	Side form- work	0.121	$\bar{\pounds}/m^2$	$A_{\rm fw,side}$
	Slab	Soffit formwork	0.303	$\bar{\pounds}/m^2$	$A_{\rm fw, soffit}$
	Slab	Cladding connection	0.394	$\bar{\mathcal{L}}/\mathrm{m}$	$l_{ m perimeter}$
	Slab	Surface finishing	0.0152	$\bar{\pounds}/m^2$	A_{floor}
	Precast decking	Precast Concrete	0.303	$\bar{\pounds}/m^2$	A _{floor}
	Columns	Formwork	0.424	$\bar{\pounds}/m^2$	$A_{\rm fw,col}$
	Slab, Columns, Foun- dations	Sundries	5.0	%	RC costs
	Beams, Columns	Glulam	9.09	$\bar{\pounds}/m^3$	$V_{ m beams}, V_{ m columns}$
Timber	CLT decking	CLT	0.833	$\bar{\pounds}/m^2$	A_{floor}
	Frame	Cladding connection	0.606	$\bar{\pounds}/m$	$l_{ m perimeter}$
Excavation	Substructure	Excavation & Disposal	0.303	$\bar{\pounds}/m^3$	V _{exc}
	Pile Foundation	D<600 mm	0.606	$\bar{\mathcal{I}}/m$	l _{piles}
Piling	Pile Foundation	$\begin{array}{c} D \ge 600 \text{ mm}, \\ D < 800 \text{ mm} \end{array}$	1.06	$\bar{\pounds}/\mathrm{m}$	$l_{ m piles}$
	Pile Foundation	<i>D≥</i> § 00 mm	1.52	$\bar{\mathcal{L}}/m$	l _{piles}
	Foundation	Pile mat	0.152	$\bar{\pounds}/m^2$	$A_{\rm floor}$

Table 1: Coefficients of the cost model used for both case studies. The cost rates are normalised due to their proprietary nature.

2. Embodied carbon model coefficients

The embodied carbon coefficients used for the test cases cover the life-cycle stages A1–A5 (cradle-to-completion) and reflect current industrial practise [1]. The life-cycle stages B–D are not considered here, as their influence on embodied carbon is very low (B), low (C), or uncertain and in the distant future (C,D) [1]. Obviously, other sets of coefficients can be provided as input to include more life-cycle stages, to adapt to regional differences, or to make use of new or higher quality data. The embodied carbon coefficients for the life-cycle stages A1–A3 (cradle-to-gate) were taken from the open-access ICE database [2]. In accordance with EN 15804 [3], any permanent storage of biogenic carbon is not included. This is achieved by using the A1–A3 carbon coefficients given in Jones and Hammond [2] which neglect sequestration.

The further carbon arising from transport of materials to the construction site and the construction itself were estimated using a current IStructE guidance document [1]. In order to calculate emissions from transport to site, average distances and transport mode splits need to be assumed for every material. These are given in Tables 2 and 3. The contribution of A4 emissions then results from multiplying the assumed distances per mode with the transport emissions factors given by the UK Government [4], assuming average loading of HGVs. Emissions caused by construction activities (A5) are calculated by accounting for material wastage on site and by estimating the emissions caused by site activities, i.e. on-site electricity consumption and fuel use. Both waste factors and the site activity emission factor are taken from Gibbons and Orr [1] and are given in Table 2 and 4, respectively.

The embodied carbon coefficients used in the test cases are given in Table 4.

Material/product	Transport category	Waste rate [%]	
Steel reinforcement	UK	5	
Steel frame	UK	1	
Steel deck	UK	10	
Concrete in situ	Local	5	
Concrete precast	UK	1	
Glulam frame	Europe (Road)	1	
CLT deck	Europe (Road)	10	
Formwork	Global (Ship)	10	

Table 2: Assumed transport categories and waste rates per material.

Transport enterory	Road distance	Sea distance	A4 carbon factor
	[km]	[km]	$[\rm kgCO_2e/\rm kg]$
Local	50	0	0.00533
UK	300	0	0.0320
Europe (Road)	1500	50	0.161
Global (Ship)	200	10000	0.183

Table 3: Distances by mode and total emissions per transport category.

Material/ Operation	Element	Emissions Type	Emissions Rate	Emission Rate Unit	Multipliers
	Beams, Columns	Steel	1.60	$\rm kgCO_2e/kg$	$m_{ m beams},$ $m_{ m columns}$
Steel	Connections, Plates	Steel	3.10	$\rm kgCO_2e/kg$	$m_{ m conns}, \ m_{ m plates}$
	Beams, Columns	Paint	13.5	$\rm kgCO_2e/m^2$	$A_{ m beams},$ $A_{ m columns}$
	Shear studs	Steel	2.30	$\rm kgCO_2e/kg$	$m_{ m shear \ studs}$
	Piles	Concrete C30/37	0.127	$\rm kgCO_2e/kg$	$m_{ m conc, 30/37}$
Reinforced	Slabs, Columns, Pads	Concrete C32/40	0.127 $kg CO_2 e/kg$		$m_{ m conc,32/40}$
Concrete	Pile caps	Concrete C35/45	0.134	$\rm kgCO_2e/kg$	$m_{ m conc,35/45}$
	Slab, Columns, Foun- dations	Rebar	2.13	$\rm kgCO_2e/kg$	$m_{ m rebar}$
	Steel decking	Steel Deck	3.10	$\rm kgCO_2e/kg$	$m_{\rm comp, deck}$
	Slab, Columns, Foundations	Formwork	0.980	$\rm kgCO_2e/kg$	m_{fw}
	Precast decking	Precast concrete	0.209	$\rm kgCO_2e/kg$	$m_{ m floor}$
Timbor	Beams, Columns	Glulam	0.681	$\rm kgCO_2e/kg$	$m_{ m beams}, \ m_{ m columns}$
1 Imper	CLT decking	CLT	0.605	$\rm kgCO_2e/kg$	$m_{ m deck}$
Construction	Whole Structure	Plant	0.007	$kgCO_2e/f$	total project cost

Table 4: Coefficients of the embodied carbon model used for both case studies. The modelledlife cycle stages are A1-5 (cradle to completion).

3. Input parameters for the test cases

The parameters defining the examined test cases are given in Tables 5-7. We note that except for geometry and soil properties the used input parameters for both test cases were identical. The span tables used to design deckings are provided as a collection of text files together with the output data on the data repository [insert link].

		test case 1	test case 2	
	layout	Fig. 2a	Fig. 2b	
	number of storeys	5	4	
geometry	column spacing range	$4-12\mathrm{m}$		
	storey height	4	m	
	max. structural zone	$1500\mathrm{mm}$		
	permanent loads floors	$2.5\mathrm{kN/m^2}$		
	variable loads floors	2.5 kl	$2.5\mathrm{kN/m^2}$	
looda	permanent loads roof	$2.5\mathrm{kl}$	N/m^2	
loads	variable loads roof	0.75 k	N/m^2	
	facade load	$2.5\mathrm{kl}$	N/m^2	
	parapet load	0.751	$0.75\mathrm{kN/m}$	
	max. utilisation ratio	1.0		
	min. fire rating	60 mi	nutes	
	steel beam total load deflection	l/2	250	
	steel beam dead load deflection	l/2	200	
	steel beam imposed load deflection	l/3	360	
utilisation $\&$	composite beam construction deflection	l/250		
serviceability limits	composite beam total deflection	l/250		
	steel beam natural frequency limit	4.0	Hz	
	timber beam instantaneous	<i>l/</i> 300		
	imposed load deflection			
	timber beam final imposed load deflection	l/200		
	timber beam final total load deflection	l/250		
	timber beam natural frequency limit	8.0 Hz		
	reinforced concrete deflection	ection 1/250		
	enforced via span-to-depth ratio method)			

Table 5: Geometry, loading, and serviceability limits used for the test cases.

		test case 1	test case 2	
	concrete grade: slabs, columns, pads, raft	C	32/40	
	concrete grade: piles	C30/37		
	concrete grade: pile caps	C	35/45	
	concrete density (reinforced, hardened)	2548	$3 \mathrm{kg/m^3}$	
	concrete density (reinforced, unhardened)	2650	$0 \mathrm{kg/m^3}$	
	steel grade: beams, columns	S355		
Materials	steel rebar yield strength	50	$500\mathrm{MPa}$	
	steel density	7850	$0 \mathrm{kg/m^3}$	
	glulam grades: beams, columns	G	L24h	
	glulam density	420	$\rm kg/m^3$	
	CLT density	475	$\rm kg/m^3$	
	formwork density	700	$\rm kg/m^3$	
	formwork thickness	18	8 mm	
	concrete slab thickness range	100-	800 mm	
	concrete slab thickness increment	2	$5\mathrm{mm}$	
	ground-bearing slab thickness	15	$0\mathrm{mm}$	
	ground-bearing slab steel reinforcement rate	51	$ m kg/m^2$	
	concrete column width range	150-	$1000\mathrm{mm}$	
	concrete column width increment	2	$5\mathrm{mm}$	
	base mat rebar sizes [mm]	$\{8,10,12,16,20,25,32\}$		
Design anage	base mat rebar spacing	$100-250\mathrm{mm}$		
Design space	base mat rebar spacing increments	25 mm		
	additional rebar sizes [mm]	{6,8,10,12,1	$16,20,25,32,40\}$	
	steel beam sizes	all UB sections		
	steel column sizes	all UC sections		
	max. glulam beam depth	25	50 mm	
	max. glulam beam width	56	$0\mathrm{mm}$	
	glulam beam depth,width increment	20) mm	
	max. glulam column width	$560\mathrm{mm}$		
	glulam column width increment	20 mm		
	deckings	see collection	n of span tables	

Table 6: Material grades and design space definitions for the test cases.

	test case 1	test case 2	test case 2	test case 2	test case 2
		soil 1	soil 2	soil 3	soil 4
depth of made ground [m]	0.4	0.4	0.4	0.4	0.4
depth of ground water table [m]	2.0	2.0	20.0	2.0	20.0
weight density $\gamma'~[\rm kN/m^3]$	19.0	19.0	19.0	19.0	19.0
soil type	cohesive	cohesive	cohesive	granular	granular
friction angle φ' [°]	-	-	-	28.0	35.0
undrained shear strength	75.0	60.0	120.0	_	_
at top of stratum $c_u \; [\rm kN/m^2]$	10.0	00.0	120.0		-
undrained shear strength	0.0	0.0	0.0	_	_
gradient $dc_u/dz \; [kN/m^3]$	0.0	0.0	0.0		

Table 7: Soil properties used in the test cases.

References

- O. Gibbons, J. Orr, How to calculate embodied carbon, 1.0 ed., The Institution of Structural Engineers, 2020. ISBN: 978-1-906335-47-2.
- [2] C. Jones, G. Hammond, ICE Database V3.0, 2019. URL: https:// circularecology.com/embodied-carbon-footprint-database.html (last accessed: 2022-01-11).
- [3] British Standards Institution, BS EN 15804:2019: Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products., BSI, London, 2019. ISBN: 978-0-539-19042-7.
- [4] UK Government, Greenhouse gas reporting: conversion factors 2020, 2020.
 URL: https://carbon.tips/cf2020 (last accessed: 2022-01-12).