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THE DYNAMIC RESPONSE OF SHORT-SPAN 

HIGHWAY BRIDGES TO HEAVY VEHICLE LOADS 

Mark Finkle Green 

Summary 

This dissertation investigates the dynamics of highway bridges subjected to heavy 

vehicle loads. 

A convolution method based on bridge mode shapes is developed to predict the 

dynamic response of a bridge to a given set of wheel loads. The convolution integral 

is solved by transformation to the frequency domain. 

In order to validate the bridge response calculation method, an experimental 

procedure, consisting of impulse tests to determine the bridge modal properties 

and vehicle tests, is presented. The measured modal properties of the bridges are 

compared against predictions from beam theory and finite element calculations. 

Good agreement between theory and measurement is shown. The modal parameters 

are combined with measured wheel loads in the convolution calculation to predict 

bridge responses. These predicted responses are compared with the measurements 

and good agreement is found. 

The convolution method is extended by an iterative procedure to include vehicle 

models and two parametric studies are performed. In the first, the importance of 

the dynamic interaction between vehicles and bridges is investigated, and guidelines 

for determining when interaction can be ignored are presented. In the second study, 

the effects of vehicle suspension design on bridge dynamic response are considered. 

Vehicles with leaf-spring and air-spring suspensions are considered. 
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INTRODUCTION 

Bridges serve a vital role in our transportation systems. In a typical journey, 

a heavy goods vehicle encounters dozens of bridges. During each bridge crossing, 

it applies dynamic wheel loads which cause the bridge to vibrate. The repeated 

application of these loads can lead to deterioration and a resulting reduction in the 

service life of bridges. 

In recent years, there has been a tendency towards larger heavy goods vehicles to 

increase efficiency as well as an increase in heavy vehicle traffic. There is a pressing 

need to understand the implications of these larger loads on bridge vibrations. 

At the same time that dynamic loads on bridges are increasing, new materials 

and improved design methods have resulted in lighter and more flexible bridges. 

Because of these engineering advances, highway bridges are increasingly susceptible 

to vibration. Not only are modern bridges more sensitive to dynamic loads, but they 

also have natural frequencies in the the same range as those of heavy vehicles. The 

first resonant frequency of highway bridges is usually below 10Hz and often as low as 

2 or 3Hz [8, 11]. Because most heavy vehicles generate their dynamic wheel loads in 

the 1.5 to 4.5Hz frequency range [17, 19, 26], excitation of one system by the other 

is significant. To complicate matters further, bridge damping is low (approximately 

2 percent of critical in the first bending mode [80, 89]) and does not significantly 
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reduce the vibrations caused by the bridge-vehicle interaction. 

Notwithstanding the importance of vehicle-induced bridge dynamics, major bridge 

failures are not normally caused by dynamic wheel loads [16]. They cause more sub­

tle problems and contribute to fatigue, surface wear, and cracking of concrete which 

leads to corrosion problems. Thus dynamic loads continually degrade bridges, and 

increase the necessity of regular maintenance. 

Maintenance costs for highway bridges are extremely high. In the U.K., £20 

million [60] are spent each year keeping the network of concrete bridges serviceable. 

Even this expenditure is not sufficient to account for the new 38 tonne vehicles and 

the Department of Transport has allocated £2000 million for bridge upgrading over 

the next 10-15 years. Furthermore, an additional £700 million in strengthening costs 

is estimated for the transition to 40 tonne vehicles [1]. It is not known what portion 

of bridge damage is caused by heavy vehicle loads because the dynamic response of 

bridges to heavy vehicle loads is not adequately understood. Nevertheless, even if 

only a small percentage arises from bridge vibrations then these dynamics account for 

major expenditure. This connection between dynamic wheel loads and maintenance 

costs was highlighted by Husband & Co. [50] in their 1980 report to the Department 

of Transport concerning the effects of heavy vehicles on bridges. 

"Because of ... variable factors it is not possible to provide an accu­

rate estimation of dynamic effects ... The extent to which heavy vehicles 

contribute to dynamic effects is mostly related to the running surface of 

the carriageway. Both an increase in the number of heavy axles and an 

increase in the weight of heavy axles will increase the rate of wear on 

road surfacing making maintenance necessary more frequently. If main­

tenance is not undertaken in time, as the road surface deteriorates the 

magnitude of dynamic effects will increase and with metal structures, 

the fatigue life will be shortened." [50] 

A better understanding of the dynamics of the bridge-vehicle system is necessary 

in order to build bridges to resist vibrations, to design better vehicles to reduce 
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bridge damage, or to regulate vehicle loads and suspensions. 

1.1 Background 

The first recorded research into bridge vibration appears to be a report published 

III 1849 by Willis [98], which discussed the causes of the collapse of the Chester 

Railway Bridge in 1847. This report presented the results of simple laboratory ex­

periments with carriages on light girders, and proposed theoretical equations by 

ignoring the inertia of the bridge. These equations were later solved by Stokes [86]. 

Over the next century, investigations into bridge dynamics were mainly concerned 

with developing analytical solutions for special types of moving loads such as con­

stant forces, sinusoidally varying forces, and linearly increasing forces. Most of these 

studies were summarized by Inglis [53] in 1934, who also increased the numerical 

accuracy of the previous solutions. 

Digital computers introduced a new era in bridge vibration research because 

the complexities of bridge and vehicle systems could finally be modelled. Several 

computational studies have been attempted (see Section 2.1), and extensive test­

ing programmes conducted (see Section 3.1). Even so, a number of fundamental 

questions still remain unanswered: 

(i) Is it possible to model the bridge-vehicle system with sufficient accuracy 

to predict bridge vibrations? 

(ii) How important is the dynamic interaction between bridges and vehicles? 

(iii) How do the design parameters of modern vehicles affect bridge response 

and damage? 

(iv) Are current static design methods adequate for the design of bridges for 

dynamic vehicle loads? 

The first question requires examination before any theoretical investigation is 
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Figure 1.1: Schematic diagram of bridge-vehicle interaction 

attempted. The complexity of the problem has been noted by several researchers 

and was aptly summarized by Wheeler in 1984 [97]: 

"Dynamic response of bridges to vehicles is a highly complex interaction 

and one that is unlikely to be amenable to theoretical analysis." 

This type of thinking has led some researchers to favour large scale experimental 

tests [7, 8, 14]. Experiments by themselves, however, have disadvantages. Valuable 

data can be obtained, but it can be difficult to interpret without theoretical models. 

In addition, the experimental results cannot always be extrapolated to untested 

bridges. Developing theoretical models that can be experimentally validated is the 

best compromise. 

Regarding the second question, the largest bridge vibrations are known to occur 

when the bridge and vehicle natural frequencies are close together [7]. Figure 1.1 

shows a schematic diagram of bridge-vehicle interaction. The vehicle is excited 

by road roughness as well as dynamic deflection of the bridge. As a result, the 

vehicle generates dynamic wheel loads which in turn excite the bridge causing larger 

dynamic displacements to be fed into the vehicle. This feedback mechanism of 

interaction forces couples the dynamic response of the bridge to that of the vehicle. 
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It is not clear, however, under what circumstances large bridge responses are caused 

mainly by the vehicle being excited by the road (i.e. little interaction), or being 

excited substantially by the bridge. Guidelines are needed for determining when 

bridge-vehicle interaction can be ignored. 

The importance of vehicle characteristics is the topic of the third question. Ve­

hicles with suspension systems cause lower dynamic bridge responses than unsprung 

vehicles [8, 94], but no systematic comparison of the dynamic effects of different ve-

hicle suspensions has been found in the literature. Nevertheless, there has been 

some evidence to suggest that some suspension types tend to cause larger dynamic 

bridge responses than others [74]. A parametric study concerned with the effects of 

different types of vehicle suspensions and bridge dynamics is needed. 

The final question refers to bridge design practices. Currently, most bridge de­

sign codes contain no specific provisions for dynamic analysis. Dynamic effects are 

considered simply by increasing the static design loads with an empirical dynamic 

load allowance (or impact factor) that is usually related to span length [4] . This 

method is easy to apply, but it does not reflect the nature of the dynamic sys­

tem. This incompatibility has led the ASCE1 Committee on Loads and Forces on 

Bridges [4] to raise the following three questions about the AASHT02 dynamic load 

allowances: 

1. "Should they be made more conservative?" 

2. "Should they be made less conservative?" 

3. "Should they be replaced or restructured?" 

The ASCE Committee [4] also suggested as a long term goal that "rational pro­

cedures for dynamic live load analysis in lieu of the use of specified dynamic al­

lowances" should be identified. This opinion coincides with that of the Ontario 

Highway Bridge Design Code (OHBDC) [75] which encourages designers to conduct 

tests or dynamic analyses. Further details of the bridge design specifications for dy­

namic wheel loads in the U.K., U.S.A., and Ontario are contained in Appendix A. 

1 American Society of Civil Engineers 

2 American Association of State Highway and Transportation Officials 
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The role of dynamic loads in bridge fatigue has received little attention in the 

past as only stress cycles caused by moving static loads have been considered [2, 10, 

75, 82]. Recently, more emphasis has been placed on the contribution of stress cycles 

from bridge vibrations [16, 103]. Fatigue is also becoming a concern for concrete 

structures [16] so more highway bridges are under scrutiny. In order to calculate the 

dynamic fatigue effects, realistic models of vehicles and bridges are needed [16]. 

1.2 Conclusions 

This dissertation investigates some of the problems outlined in the previous sec­

tion. The five basic goals of this research are as follows: 

(i) to develop a computational method for predicting the dynamic response 

of bridges to heavy vehicle loads, 

(ii) to experimentally validate the method of (i), 

(iii) to identify and quantify the importance of the dynamic interaction be­

tween vehicles and bridges, 

(iv) to study the effects of different vehicle properties on bridge response and 

damage. 

The main body of the work is divided into six chapters with reviews of the 

pertinent literature contained in the appropriate chapters. 

The equations of motion describing the dynamic response of bridges are presented 

in chapter two along with a new convolution method for solving the equations. The 

chapter also contains comparisons of the results of the new method with other 

theoretical solutions. 

Chapter three outlines the procedures used for collecting the experimental data 

necessary to validate the calculation method. The test descriptions are divided into 

two parts: impulse tests to determine characteristic bridge responses, and vehicle 
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tests in which the dynamic wheel loads and bridge responses were measured simul­

taneously. Specifications of the test bridges and vehicles are presented along with 

details of the instrumentation and data processing equipment. 

Data analysis procedures are described in chapter four. Vehicle wheel loads and 

bridge responses are presented along with the results of the modal analysis. The 

presentation of the test results leads logically to the topic of chapter five, namely, 

the model validation. In chapter five, the measured modes are compared against 

theoretical mode shapes, and the bridge response calculation method is validated 

experimentally. 

In chapter six, the convolution method is extended to include vehicle models 

and a parametric study of the importance of bridge-vehicle interaction is conducted. 

Chapter seven presents a parametric study of bridge responses calculated using 

the validated model. The effects of different vehicle speeds and suspensions are 

considered. The final chapter summarizes the results of the research and makes 

recommendations for further research. 
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MODELLING VEHICLE-INDUCED 

BRIDGE DYNAMICS 

Predicting vehicle-induced bridge vibrations involves theoretical modelling of two 

complicated systems. Models of vehicle dynamics have been validated by various 

researchers, but although many authors have studied vehicle-induced bridge vibra­

tions, only a few have attempted to validate their models with experiments. 

A convolution method for simulating bridge dynamics is presented in this chap­

ter. The time domain convolution integral is solved by transformation to the fre­

quency domain by the Discrete Fourier Transform. The method is well-suited to 

experimental validation as it can incorporate measured bridge properties, and arbi­

trary wheel loads. Other advantages are that it is not dependent on anyone vehicle 

or bridge model, is faster than time domain calculations, and can accommodate 

the dynamic coupling of the bridge and vehicle. Before the convolution method is 

presented, other bridge models and solution methods will be discussed. 
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2.1 Dynamics of Bridges and Vehicles 

2.1.1 Bridge Models 

There are two common theoretical approximations for bridges. The most preva­

lent is a one-dimensional Euler-Bernoulli beam [6, 25, 28, 42, 43, 45, 51, 52, 54, 56, 

66, 72, 74, 83, 84, 87, 94, 99, 100] . By far the most common way of applying this 

beam approximation is through discretization techniques such as the finite element 

method [25, 28, 38, 42, 43, 45, 52, 54, 72, 87, 94] but some authors have opted for 

continuous models [6, 51, 56, 66, 83, 99, 100]. 

In general, continuous models are used when the vehicle is modelled as a moving 

constant force or unsprung mass, while finite element calculations have been applied 

with more complex vehicles. The finite element method allows more complex bridge 

geometry and loading cases to be considered. 

The beam analysis ignores any two dimensional response properties of bridges 

and thus makes calculations simpler. Nevertheless, there have been some attempts to 

account for the fact that bridges may exhibit torsional modes of vibration. A simple 

way of accounting for this two dimensional behaviour is to add torsional degrees 

of freedom to the beam idealization [42, 43], but the two dimensional problem has 

most often been approached by approximating the bridge as a plate [40, 42, 43, 55, 

57, 71, 94]. 

Gupta and Traill-Nash [42,43] compared three models of bridges: a beam ideal­

ization, a beam with torsional degrees of freedom, and an orthotropic plate. They 

concluded that the beam idealization is adequate for preliminary analysis of long, 

narrow bridges while the orthotropic plate model is a better approximation for other 

bridges. They also stated that the beam model with torsional degrees of freedom 

adds complexity to the beam idealization without yielding solutions comparable to 

those predicted by orthotropic plate analysis [43]. 

Kulkarni and Ng [57] proposed an interconnected beam idealization of a two 

dimensional plate structure that involved dividing a plate into a series of beams and 
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then imposing compatibility conditions between the beams. By analysing individual 

beams instead of the whole plate, this method reduces the mathematical complexity 

of the plate model and at the same time models torsional responses [57]. 

Two other assumptions are usually made for bridge response computations. The 

first is that the effects of rotary inertia and shear deformation are ignored, and the 

second that damping is viscous [80]. If the height to span ratio of the bridge is 

less than /0' then the first assumption is valid [34]. Viscous damping is acceptable 

because bridge damping is usually light and the response is relatively insensitive 

to the damping model [36, 94]. Some authors have ignored damping completely to 

simplify calculations [23, 57, 83, 101]. 

On the other hand, Eyre and Tilly [33] found that bridge damping varied with 

the amplitude of vibration. A schematic representation of the damping behaviour 

they measured is provided in figure 2.1. The damping curve has two plateaus, corre­

sponding to what Eyre and Tilly called 'lower damping' and 'upper damping.' They 

suggested the lower damping value corresponds to the damping of the superstruc­

ture while the higher value incorporates the effects of joints and abutments. Since 

'lower damping' usually only occurs with very small oscillations, Eyre and Tilly [33] 

suggested that the higher damping values be used in practice. Nevertheless, they 

cautioned that the range of validity of this assumption should be investigated. 

A calculation procedure utilizing measured bridge characteristics such as mode 

shapes would help solve some of the problems associated with completely theoretical 

models, providing the measurement procedure used loads of representative ampli­

tude. Such a method would not depend, to the same extent, on assumptions about 

damping, material properties, or torsional behaviour. 

2.1~2 Solution Methods 

For most analyses of bridge dynamics, the response is calculated as a sum of con­

tributions from individual modes. This process of modal expansion is very popular 

because of the convenience of uncoupling the modes [9, 23, 35, 48, 57, 71, 92, 99]. 
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In some cases, sufficient accuracy is obtained by considering only the first mode [9, 

57, 59, 92, 99]. Veletsos and Huang [94] suggested that the first three modes make 

the most significant contributions to the response of simply-supported bridges. 

Other authors have used influence functions [34, 90] to define an integro-differential 

equation for bridge dynamics. Fryba [34] compared this integral method with modal 

expansion and found the former more laborious but faster to converge. In addition 

he presented a combined method that has some of the advantages of both meth­

ods. He suggested modal expansions should be used to compute deflections, but the 

combined method should be used for obtaining bending moments and shear stresses. 

In this study, the bridge response is formulated as a convolution of the vehicle 

wheel loads with bridge impulse response functions. The latter are expressed as com­

binations of mode shape values which can be obtained from bridge measurements, 

continuous models, or finite element calculations. 

Regardless of the formulation of the bridge-vehicle model, several different meth­

ods of solving the resulting equations of motion exist. Step by step numerical in­

tegration techniques are the most widely used and the general procedure, at each 

time step, is as follows 

(i) assume displacements or accelerations based on the results from the pre­

vious time step, 

(ii) integrate the equations of motion for the bridge and the vehicle to predict 

the quantities assumed in (i), 

(iii) compare the calculations of (ii) with the assumptions of (i), 

(iv) repeat (i) to (iii) until the solution converges with the required tolerance. 

Different authors have used the Newmark-,B method [25,48,52, 101], the Wilson-{;} 

method [45], or the Finite Integral Method [72,87], but the basic concept is the same. 

One alternative to numerical integration is the finite difference method, and it 

has been used with some success [37, 90]. 
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The numerical methods mentioned in this section rely on calculations done com­

pletely in the time domain. Solving the equations in the frequency domain and then 

transforming the solution to the time domain can be much more efficient. This is 

especially the case if one desires bridge responses to known vehicle loads. 

2.2 Calculating Bridge Response to Vehicle Loads 

In this work, the bridge and vehicle are modelled separately and then combined 

through dynamic contact forces and displacements. This requires an iterative so­

lution, but enables the combination of any vehicle model with any chosen bridge 

model. The rest of this chapter presents general equations of motion for the bridge 

along with a convolution method for solving them. 

2.2.1 Equation of Motion: Bridge 

A relatively general formulation of the equation of motion will be considered 

here. Assuming viscous damping, linear elasticity, small deflections, and neglecting 

the effects of shear deformation and rotary inertia, the equation of motion for a 

typical bridge can be written in the following form [70] 

where £ 

82 {8} m(x)7j#(x, t) + c %¥:(x, t) + £ {y(x, t)} = f(x, t) 

is a self-adjoint linear differential operator with 

respect to the spatial variables (see Appendix B), 

x is a two dimensional posi tion vector, 

m(x) is the mass per unit surface area, 

y(x, t) is the transverse deflection of the bridge, 

C is a viscous damping operator with respect to the 

spatial variables, 

and f(x, t) is the force exerted by the vehicle on the bridge. 

(2.1') 

It has been shown [70] that the response of a system governed by equation 2.1, 
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to an input, f(xj, t) is given by the following convolution integral 

y(x, t) = i: h(x, xf, t - T )f(xf, T) dT (2.2) 

where h(x, xf, t) is the impulse response function at position x for an impulse ap­

plied at position xf' Therefore, equation 2.1 may be solved by determining the 

appropriate impulse response function. In order to relate the impulse response func­

tion to mode shapes, the deflection, y(x, t), is expressed in terms of normal mode 

functions, </>(n)(x), as follows 
00 

y(x, t) = L </>(n) (x) qn(t) (2.3) 
n=l 

where n is the mode number, 

and qn (t) is the response of the nth normal coordinate. 

This coordinate transformation allows the modal responses to be uncoupled if 

the mode shape functions satisfy the following orthogonality relationships [70] 

j,n = 1,2,3, .. . 00 (2.4) 

j,n = 1,2,3, ... 00 (2.5) 

j, n = 1,2,3, .. . 00 (2.6) 

where w(n) is the nth natural frequency (rad/s), 

((n) is the nth modal damping ratio, 

R is the surface area of the bridge, 

and bjn is uni ty if j = n and zero otherwise. 

If the mode shape functions satisfy the undamped free vibration equation corre­

sponding to equation 2.1, then the first two orthogonality conditions will be satisfied 

(Appendix B). The third orthogonality condition will be satisfied if the damping op­

erator has the following form: 

c { ~(x, t) } = Cl m(x) ~(x, t) + C2 £ { ~(x, t) } (2.7) 
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where Cl and Cz are arbitrary constants. Viscous damping of this form is known as 

Rayleigh damping [79]. Newland [70] states Rayleigh damping is "usually satisfac­

tory for lightly-damped structures." As mentioned in section 2.1.1, bridge damping 

is usually light and the response is insensitive to the damping model [36, 94], and so 

the Rayleigh damping assumption is reasonable. Rayleigh damping not only allows 

the modes to be uncoupled, but also ensures that the mode shapes for the damped 

and undamped cases are identical [70]. 

Now that the orthogonality relationships are defined, the modal expansion (equa­

tion 2.3) can be substituted into the differential equation (equation 2.1). Multiplying 

by <jJ(j) (x), integrating over the surface of the bridge, and applying the orthogonali ty 

conditions gives the normal coordinate equation 

(2.8) 

where the generalized force, Qn(t), is given by 

Qn(t) = k <jJ(n) (x)!(x, t) dx. (2.9) 

This equation can be used to determine modal impulse response functions, h(n)(t), 

by setting Qn(t) = 8(t) where 8(t) is the Dirac delta function. The impulse response, 

Mn)(t) = qn(t), can be shown to be 

(2.10) 

where w~n) is the nth damped natural frequency such that 

(2.11) 

and ((n) < 1. 

For the case of a force applied at one position on the bridge (as in equation 2.2), 

the generalized force of equation 2.8 is equal to the product of the mode shape 

function and the force at that posi tion x f 

(2.12) 
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The convolution integral (equation 2.2) can be applied to equation 2.8 to obtain the 

normal coordinate solution 

(2.13) 

Invoking the modal expansion formula (equation 2.3), gives the bridge response as 

y(X, t) = t <p(n) (x) i: h(n)(t - T) <p(n) (Xj) f(xj, T) dT. 
n=1 

(2.14) 

Comparing equations 2.2 and 2.14 illustrates that the impulse response function 

corresponding to equation 2.1 is obtained by an appropriate combination of the 

mode shape functions, 

00 

h(x, Xj, t) = L <p(n) (x) <p(n)(Xj) h(n)(t) (2.15) 
n=1 

Up to this point it has been assumed that loads are applied to the bridge at 

only one position. This is obviously not the case for a moving vehicle, but the ideas 

that have been developed can be extended to moving loads. For example, consider 

a vehicle with Nt tyres . The vehicle forcing function can be described in terms of 

the dynamic wheel loads, PI(t), . 

Nt 

f(xj, t) = - L 8(xj - XI(t)) PI(t) (2.16) 
1=1 

where XI is the position of the [th force (see figure 2.2). Each wheel force is still 

applied at position Xj, but Xj is now moving with the vehicle. The negative sign is 

included because displacements and forces are assumed to be positive upwards for 

both the bridge and vehicle systems. Therefore, wheel loads which act upwards on 

the vehicle are defined as positive. This means they are negative with respect to the 

bridge. 

Substituting this forcing function (equation 2.16) into equation 2.14, and replac­

ing Xj with XI for I = 1,2, ... , N t gives 

<p (n) (XI ( T ) ) PI ( T ) . 
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With the general equations of motion in this convolution format, the bridge vi­

bration problem (equation 2.1) can be solved by evaluating the convolution integral. 

This integral may be evaluated in either the time or frequency domains. For this 

study, a frequency domain method was chosen and the solution procedure is outlined 

in the next section. 

2.2.2 Solution in the Frequency Domain 

The Fourier transform of the response is defined as [69, 70]: 

1 100 . Y(x, w) = - y(x, t)e- 1wt dt 
21l' -00 (2.19) 

where Y(x, w) is the response transform at position x and frequency w, and i = .J=T. 
Substituting the convolution (equation 2.17) into the Fourier integral (equa­

tion 2.19) gives 

(2.20) 

Rearranging variables by letting (3 = t - T results in 

Y(x, w) = - E E ~(n)(x) 2~ 1: 1: h(n)(fJ) 9(n,I)(7) e-;W(~+') dfJd7 

N t 00 
Y(x,w) = - I: I: cfy(n) (x) H(n)(w) G(n,I)(w) (2.21 ) 

1=1 n=l 

where H(n)(w) is the nth modal frequency response function such that 

H(n)(w) = 2 1 
(w(n) - w2 ) + 2i((n)w(n)w 

(2.22) 

and a(n,I)(w) is the Fourier transform of g(n,I)(t). 

Once Y (x, w) is computed in the frequency domain, the inverse Fourier transform 

can be used to recover the time domain solution. The inverse Fourier transform is 

defined as follows [69, 70]: 

y(x, t) = 1: Y(x, w )eiwt dt. 
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2.2.3 Computer Implementation 

To solve these equations by computer, the Discrete Fourier Transform can be 

used to approximate the continuous Fourier transform. The first step is to compute 

the transform of g(n,l)(t). The function is sampled to obtain N equally spaced values, 

g(n,l) where r , 

g~n,l) = g(n,l)(rtl) r = 0,1,2, ... , N - 1 (2.24) 

and tl is the time increment. The Discrete Fourier Transform is then applied to the 

sample as follows [69, 70] 

(2.25) 

where, k = 0,1,2, ... ,N-1. Discrete versions of Y(x,w) are given by 

N t 00 

Yk(X) = - L L <p(n) (x) H(n) (ktlw) G~n,l) (2.26) 
1=1 n=1 

where tlw is the frequency resolution. Finally, · the solution is recovered with the 

Inverse Discrete Fourier Transform given by [69, 70] 

N-1 

Yr(x) = L Yk (x)e i (27rkr/N) (2.27) 
r=O 

where Yr(x) = y(x, rtl), r = 0,1,2, ... , N - 1. 

2.2.4 Computational Considerations 

In order to implement the discrete transforms in the convolution calculation, the 

time record must be long enough to obtain the required frequency resolution, tlw, 

where [69] 

tlw = 271" 
T 

and T is the length of the time record such that T = N tl. 

(2.28) 

In addition, tl must be small enough to avoid aliasing of high frequency com­

ponents into the low frequency range of the transform [69J. Aliasing is prevented 
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by ensuring that the maximum frequency present in the signal is smaller than the 

N yquist frequency: 

· f 1 H N yqUlst requency = 2.6. z. (2 .29) 

Finally, allowance must be made for the fact that the convolution defined by 

the Discrete Fourier Transform is circular. The circularity of the discrete transform 

means that all the time records in the convolution are assumed to repeat themselves 

with period T when they are, in fact, not periodic. It has been shown [85] that the 

differences between circular and linear convolutions can be eliminated by choosing 

T such that 

(2.30) 

where Th and Tvp are the lengths of the non-zero portions of the time records of the 

impulse response function and the vehicle force input, respectively. 

To satisfy all these criteria, the time record must be significantly longer than the 

vehicle crossing time, Tvp . 

For example, consider a simply supported 40m bridge with a first natural fre­

quency of 3Hz traversed by a 10m long vehicle at 25m/s. 1f.6. is chosen to be 

0.01 seconds, then the Nyquist frequency is 50Hz (314rad/ s). With this Nyquist 

frequency, the first three bridge modes can be included because the third natural 

frequency is at 27Hz. Vehicle vibration is usually below 20Hz so the 50Hz Nyquist 

frequency presents no problems . If the damping ratio of the first bridge mode is 

assumed to be 0.02 then 

e-O.377t 

h(l)(i) = 18.8 sin(18.8i) . (2.31 ) 

The impulse response never completely dies away, but for computational purposes 

the response can be ignored when the amplitude is below 0.1 % of the initial am­

plitude. With this definition, Th is equal to 18.3 seconds while Tvp is 2.0 seconds. 

Therefore the time record should be chosen to be greater than 20 .3 seconds and with 

.6. = 0.01 seconds, at least 2030 points are required . For efficiency in computing the 
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Discrete Fourier Transform, the number of points should be a power of 2 and so 

2048 is selected. Finally, the frequency resolution is computed from equation 2.28 

as 0.05Hz. This is more than adequate to resolve the frequencies of interest. 

To compare the efficiency of frequency and time domain methods, suppose that 

for the preceding example a time history of total length 4 seconds (400 points) was 

required. To evaluate the convolution integral in the time domain requires 160000 

(4002 ) multiplications. On the other hand, the Fast Fourier Transform algorithm 

requires !Nlog2 (N) multiplications [69] to compute each transform. The frequency 

domain method includes two transform calculations and one N point multiplica-

tion giving a total of N + Nlog2 (N) multiplications. For 2048 points, only 24576 

multiplications are required making the frequency domain method about 7 times 

faster! Even further time savings can be achieved when Tvp is approximately the 

same length as Th . 

2.2.5 Comparison with Known Solutions 

Once the convolution calculation was implemented in a computer program, it 

was possible to verify the method by comparing the results with known solutions 

for simple cases. A bridge reported in the literature [33, 63, 99] is used as a test 

case for the remainder of this chapter. 

The bridge is idealized as a simply supported beam. The equation of motion for 

free vibrations of a Bernoulli-Euler beam with viscous damping is 

!tJL {QJL} ~ m at2 (x, t) + C at (x, t) + El ax4 (x, t) = 0 

where m is the mass per unit length of the beam, 

C is the damping operator representing Rayleigh damping, 

x is the position along the length of the beam, 

E is the Young's modulus of the material, 

and I is the second moment of area of the cross-section. 
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As stated in section 2.2.1, the mode shapes for the damped and undamped cases 

are the same for Rayleigh damping. The free vibration equation without damping 

IS 

(2.33) 

Using a modal expansion (equation 2.3), and the boundary conditions for a 

simply-supported beam, the natural frequencies are given by 

(2.34) 

and the normalized mode shapes are represented by 

( ) (£ . (n7rx) cP n (x) = - sm -
mL L 

(2.35) 

where L is the length of the beam. 

The parameters describing the bridge were based on measurements of the Pir­

ton Lane highway bridge in Gloucester by Wills [99], Leonard [63], and Eyre and 

Tilly [33]. They reported the bridge length as 40 metres, and the first natural fre­

quency as 3.2Hz with a modal damping ratio of 0.02. The mass per unit length was 

estimated from drawings in the papers as 12000kg/m. Three modes were used in 

the analysis, and the natural frequencies of the second and third modes were cal­

culated from equation 2.34. The modal damping ratio was assumed to be constant 

for the first two modes and the damping ratio for the third was chosen to satisfy 

equation 2.7. 

Mode Number . Natural Frequency (rad/s) 
1 w(1) = 20.0 
2 W(2) = 80.0 
3 w(3) = 180.0 

Damping Ratio 
0.02 
0.02 
0.04 

Three different types of moving loads were considered: a constant force, a sinu­

soidally varying force, and a linearly increasing force. On each of figures 2.3 to 2.5, 

two curves are drawn. One is the solution obtained by the method described in this 

chapter and designated as the 'calculated' solution. The second curve is produced 

by using theoretical formulas derived by Fryba [34]. 
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Figure 2.3 shows the effect of speed on the bridge midspan deflection from a 

constant force. The theoretical curves are only shown for the time the force is on 

the bridge, and are set to zero otherwise. The deflection increases as the speed of 

the force increases. Calculated and theoretical curves agree closely. 

The beam response to a sinusoidally varying force is presented in figure 2.4, while 

figure 2.5 contains the response of the beam to a linearly increasing force. In both 

cases, deflection is plotted at midspan and the velocity is 25m/s. Once again, the 

calculated solutions compare well with the theoretical solutions. 

2.3 Conclusions 

A convolution method for calculating the response of a bridge to vehicle loads 

was developed. The method was implemented on a computer using Fourier trans­

forms to solve the equations of motion for the bridge in the frequency domain. This 

procedure is considerably more efficient than equivalent time domain methods. The­

oretical verification of the method was accomplished by comparing some results with 

predictions of analytical solutions. 

The next three chapters discuss the experimental validation of the convolution 

method presented in this chapter. 
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EXPERIMENTAL PROCEDURE 

A theoretical method for the prediction of vehicle-induced bridge vibration was 

developed and compared with other theories in Chapter 2. In order to validate 

this method, an experimental procedure, combining bridge modal tests with vehicle 

tests, was adopted. The procedure consisted of four main steps. The first step was 

the measurement of the bridge transfer functions and mode shapes . Excitation was 

provided by an instrumented hammer. Step two consisted of single vehicle tests 

in which vehicle wheel forces and bridge responses were measured simultaneously. 

In step three, the measured dynamic wheel forces were combined with the bridge 

modal responses to predict bridge responses. Finally, these predicted responses 

were compared with the measured bridge responses to validate the model. The 

experimental procedures for conducting the validation programme are described in 

this chapter. 
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3.1 Background 

Dynamic testing provides valuable evidence of bridge behaviour. For this reason, 

many researchers have conducted dynamic experiments on bridges. The dynamic 

tests have been used to assess bridge deterioration [78, 96], to provide information 

about 'dynamic increments' [8, 13, 14, 22, 28, 32, 41, 74], to measure modal charac­

teristics [8, 33, 58, 62, 63, 64,67, 99], to measure dynamic wheel loads [6 , 22, 72, 76], 

or to validate bridge models [6 , 72, 87]. Some of the results of these testing pro­

grammes will be summarized in this section. Details of standard testing techniques 

are available in the literature and will not be discussed at great length here. For in­

stance, Prakash Rao, Tamhanker, and Sharma [78] compare different types of static 

and dynamic tests, and assess the various methods of instrumenting bridges. 

3.1.1 Modal Tests 

Almost all bridge dynamic testing programmes have been concerned with mea­

suring natural frequencies and damping, but only a few researchers have attempted 

to measure mode shapes. This section will focus on mode shape measurement, but 

some damping measurements will also be presented. 

During an extensive testing programme in Ontario, Canada, Billing [8] obtained 

limited mode shape measurements from vehicle-induced bridge responses, but did 

not confirm them with any theoretical predictions. 

On the other hand, Maguire and Severn [64] tested bridge beams during demo­

lition of an old bridge and observed simple beam modes. They measured the first 

three natural frequencies, but only obtained mode shape values at a limited number 

of positions. 

Shepherd, Brown, and Wood [84] compared measured mode shapes with more 

complicated theoretical models. They tested a three span truss bridge and modelled 

it with finite elements. Once again, they measured mode shape values at a limited 

number of points, and therefore found it difficult to identify the overall form of the 

modes. Their theoretical analyses facilitated this identification and they obtained 
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reasonable agreement between their finite element model and the measured mode 

shapes. 

Kumarasena, Scalan, and Morris [58] recently conducted mode shape measure­

ments on a two span suspension bridge to confirm the predictions of a finite element 

model. Once again, only a small number of measurements were made and therefore 

the mode shapes were not uniquely determined. Nevertheless, they obtained reason­

able agreement between their measurements and finite element predictions. They 

concluded that for response prediction purposes, measured natural frequencies and 

damping ratios should be combined with the finite element mode shapes. 

Cantieni [15] recently conducted modal tests on a concrete box girder bridge in 

Switzerland and compared his results with a finite element model of the bridge. He 

found reasonable agreement between the model and his measurements. Even so, he 

only measured mode shape values at a few positions over the length of the bridge, 

and therefore was not able to discern whether discrepancies between measurement 

and theory were caused by errors in measurement or modelling. 

The most comprehensive modal testing of bridges in the V.K. was conducted in 

the early 1970's by the Transport and Road Research Laboratory (TRRL) [33, 62, 

63, 89, 99]. The main objective of these tests was to determine damping behaviour, 

but mode shapes were also measured. 

Wills [99] compared the measured modal properties from the TRRL tests with 

simple beam and finite element models. Agreement was good for both models, but 

understandably better for the finite element predictions. The best agreement was 

obtained for the lowest frequency modes. Natural frequency predictions overesti­

mated the measurements for higher modes. Wills suggested including the effects of 

rotary inertia and shear deformation to improve the agreement, but did not test his 

hypothesis. Because extensive mode shape measurements were made, Wills was able 

to compare the forms of predicted and measured mode shapes rather than simply 

notice that a few isolated points agreed with theory. He found good agreement in 

most cases, but some unexplained discrepancies were noticed. 

As mentioned earlier, damping measurements were the prime objective of the 
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TRRL tests. Leonard [63] concluded that no significant relationship existed be­

tween damping and temperature while Eyre and Tilly [33] noted a correlation be­

tween damping and vibration amplitude (see section 2.1.1). The TRRL damping 

measurements are presented in the following along with some measurements by re-

searchers in other countries: 

Author Country Damping ratio ((1) 
Eyre and Tilly [33] V.K. 0.003 - 0.010 (steel) 

0.003 - 0.015 (concrete) 
Billing [8] Ontario, 0.004 - 0.007 (steel) 

Canada 0.008 - 0.038 (concrete) 
Green [41] Ontario 0.006 - 0.024 
Cantieni [13] Swi tzerland 0.003 - 0.057 

All these researchers measured similar bridge damping levels which were rarely larger 

than 2%. 

This review of modal testing indicates that reliable measurement of bridge mode 

shapes is possible, but has rarely been attempted. Several measurement positions 

distributed evenly throughout the structure give the best results. Comparison of 

measurements with beam and finite element predictions provides useful insight into 

bridge behaviour. Most authors have found good agreement between theory and 

measurement, thus illustrating the reliability of the testing technique. 

3.1.2 Dynamic Wheel Loads 

Most bridge testing has concentrated on measuring dynamic bridge responses, 

but vehicle wheel loads have been measured during a few tests. 

Biggs, Suer, and Louw [6] recorded wheel loads during dynamic bridge tests in 

order to compare measured forces with predictions from a simple vehicle model. 

They assessed the measurements in a qualitative manner, but did not present any 

analysis to determine the statistics of the measured loads. 

Page [76] conducted a large number of dynamic wheel force measurements on 

30 different bridges in the V.K. In order to review his results, the dynamic load 
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increment, DII , will be defined as 

(3.1 ) 

where Pst is the static wheel load and P is the dynamic wheel load. Page measured 

peak dynamic load increments ranging from 0.09 to 0.75, but noticed that all the 

peak loads occurred near the ends of the bridges. On all but one of the bridges, 

90% of the bridge length was subjected to loads with increments below 0.25. The 

effect of speed on the dynamic load increment was also measured. No significant 

relationship was noticed for bridges with smooth surfaces, but with rougher surfaces 

the dynamic load increments increased with speed. 

Finally, Cantieni [15] measured wheel loads during bridge tests on the Diebul 

bridge in Switzerland, but this author has not found any published results of his 

wheel load analysis. 

3.1.3 Dynamic Response Increments 

The bridge dynamic response increment, D IT) is defined analogously to dynamic 

load increment as 

DIr = Y - Yst. 
Yst 

(3.2) 

where Yst is the static bridge response and Y is the dynamic response. Many investi­

gators have recorded dynamic response increments and some results of their studies 

are presented in this section. 

Comprehensive research into the dynamics of bridges in Ontario resulted in new 

design provisions [75] (see Appendix A). Measurements of maximum dynamic re­

sponse increments were fundamental to this development. Billing [8] reported many 

of the test results, and they are reproduced in figure 3.1. The most important point 

to notice is the significant increase in the measured dynamic increments in the 2 

to 5Hz frequency band. These increased responses occur because heavy vehicles 

generate most of their wheel loads in this frequency range. The new Ontario design 

provisions are also illustrated on the figure. The design provisions account for the 
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increased response between 2 and 5Hz. As part of the Ontario testing programme, 

Green [41] analysed the effect of speed on the measured dynamic increments. He 

noticed an increase in response for faster speeds, especially with rough approaches. 

Cantieni [11, 13, 14] computed dynamic increments for bridges in Switzerland 

and obtained results similar to those in Ontario. He noted a relationship between 

the dynamic response increment and the bridge fundamental frequency. Some of 

his results are reproduced in figure 3.2. Cantieni also conducted tests with several 

vehicles and compared different vehicle configurations. Rigid vehicles with 2, 3, or 

4 axles produced larger dynamic increments than articulated vehicles. When more 

than one vehicle was on the bridge, dynamic increments were reduced. Finally, 

Cantieni's results showed that dynamic response increments were largest with the 

roughest bridge surfaces and that this effect was most noticeable at high speeds. 

This last conclusion correlates well with the observations of Green [41]. 

A research project to identify vehicles that cause large dynamic increments is 

currently in progress in Queensland, Australia [22, 21, 72, 73, 74]. Dynamic incre­

ments as large as 1.32 with an average of 0.5 were measured on a simply-supported, 

single span bridge [22, 74] with a fundamental frequency of 10.8Hz. These reported 

dynamic increments are much larger than those measured in Ontario or by Cantieni. 

Large increments occurred with both heavy and light vehicles, even though heavy 

vehicles caused smaller increments on average. The reasons for the large dynamic 

increments are currently being investigated by the researchers. 

3.1.4 Bridge Response Validation 

This review has found only a few papers concerned with the validation of vehicle­

induced bridge response. Measured modal properties have been compared with the­

ory by several authors (section 3.1.1), but very few authors have compared measured 

bridge responses with theoretical predictions. 

A study by Biggs et al [6] contained the first validation of the bridge-vehicle 

system. The models were simple. Only simply-supported bridges were considered, 
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and vehicle models were restricted to one degree of freedom. Both laboratory and 

field experiments were included in the validation. Comparisons were made between 

measured bridge responses and those predicted by the simple models. The labo­

ratory results were better than those conducted in the field, but in both cases the 

quasi-static effects dominated the comparison between theory and measurements. 

The dynamic components of the predicted and measured responses were often out 

of phase with each other, although magnitudes were approximately correct. Im­

provement in the comparison was obtained by using measured wheel loads which 

indicated that some errors were caused by improper modelling of the vehicle and of 

the bridge surface roughness. The validation was successful, but the simplicity of 

the models restricts their applicability to modern vehicles and bridges. 

Kulkarni and Ng [57] conducted laboratory experiments to validate their inter­

connected beam idealization for bridges (see section 2.1.1) . They obtained reason­

able results, but their errors were relatively large. Theoretical and experimental 

response curves were often out of phase with each other. 

More recent validations with more complicated models were conducted in Aus­

tralia. Swannel and Miller [87] considered a two axle, four degree of freedom vehicle 

including non-linear suspension stiffness. They used a lumped mass model for the 

bridge. Viscous damping was assumed throughout. The surface profile of the bridge 

was measured, and bridge responses from the passage of a test vehicle were recorded. 

The recorded responses were compared with the computer simulations. Although 

reasonable agreement was obtained, quasi-static effects dominated the responses. 

The comparison between theory and experiment for the superimposed dynamic re­

sponses was not good. No explanation was given for the discrepancies except to note 

that the system is a "complex dynamic response environment where minor changes 

in parameters (e.g. vehicle vertical motion at bridge entry) can produce important 

effects" [87]. 

Finally, Mulcahy, Pulmano, and Traill-Nash [68] obtained a good validation of 

their bridge and vehicle models with field tests. Nevertheless, their results were again 

dominated by quasi-static effects and had some sizeable errors at the magnitude of 
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the superimposed dynamics. Furthermore, they mentioned that tests other than 

those presented indicated deficiencies in their model validation. 

This brief summary of vehicle-bridge validations illustrates there is a need for 

validated models of bridges and vehicles representative of those currently in use. 

Correctly validated models should reproduce accurately the dynamic components of 

vehicle-induced bridge response. 

3.2 Site Selection 

Several highway bridges were inspected for possible testing. The two most suit­

able bridges were chosen according to the following criteria: 

(i) convenient location for testing by TRRL vehicles 

(ii) easy access for instrumentation 

(iii) straightness of the bridge and approaches so that the vehicles could at­

tain a wide range of speeds 

(iv) the bridge was not skew 

(v) low traffic density. 

The first bridge was chosen from amongst four prestressed concrete box girder 

bridges crossing the M4 motorway in Berkshire. All the bridges were similar in 

design, and on a TRRL bridge testing route. The bridge on Drift Road was chosen 

because it was the straightest one and had the lightest traffic. 

The location of this bridge is shown in figure 3.3 while the cross-section and 

elevation details are in figure 3.4. Figure 3.6 shows a photograph of the north-western 

half of the bridge including the instrumented span which was located directly above 

the eastbound lanes of the motorway. The bridge superstructure is continuous over 

the three supporting columns. Although the four spans are not all equal, the bridge 

is symmetric about its middle column. 
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In order to provide more data and to avoid some of the measurement problems 

experienced with the Drift Road bridge, it was decided to test another bridge. One 

problem with the Drift Road bridge was that it was easily excited by the aerodynamic 

effects of large vehicles passing underneath the bridge, so it was decided to select 

a bridge that did not cross another road. To provide a contrast to the Drift Road 

Bridge, an additional requirement was that the second bridge was of a different 

construction type. The bridge at Lower Earley over the River Lodden was chosen. 

The Lower Earley bridge consists of three spans (see figure 3.5), but the inverted 

T-beams are not continuous over the supports. Even so, there is some continuity 

because the concrete slab is continuous throughout the length of the bridge and the 

T-beams are joined at the piers by reinforced concrete diaphragms (see figure 3.7). 

3.3 Instrumentation 

3.3.1 Transducers 

In order to record bridge vibrations due to different types of excitation, appro­

priate transducers were necessary. The measuring devices had to be easy to install 

and readily available. A review of bridge testing literature indicated three classes of 

instrumentation: displacement transducers [8, 32, 83, 84], strain gauges [8, 74, 83], 

and accelerometers [8, 32, 61, 72]. 

Strain gauges were rejected for three reasons. Firstly, strain is not a convenient 

quantity to measure for modal testing because the modal analysis procedure as­

sumes displacement, velocity, or acceleration measurements. Secondly, strain mea­

surements are dependent on local values of mass and stiffness and thus may not 

represent the behaviour of the whole structure [12]. Finally, strain gauges can be 

difficult to install in the field [22J. 

Displacement transducers were considered, but they require an inertial platform 

which was impractical for these measurements. A laser method for measuring dis-
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placement was recently developed by Cantieni [12]. His method avoids the necessity 

of an inertial platform, but the equipment was not available for these tests. 

Piezoelectric accelerometers were seen as a good choice since they are easy to 

install and remove, operate over a large range of frequencies, and are readily avail­

able. 

Four B&K type 8318 high sensitivity accelerometers with internal charge am­

plifiers were used for the tests. The internal amplification reduces signal loss in 

transmission to the recording apparatus. Figure 3.8 shows one of the accelerometers 

along with an external line drive supply for powering the charge amplifier. 

The accelerometers were mounted on aluminium discs which were glued with 

strong adhesive to the bridges. For the Drift Road bridge, the accelerometer discs 

were secured inside the bridge on the bottom of the box girder, while for the Lower 

Earley bridge the accelerometers were attached upside down on the underside of the 

bridge. 

Ground loops can be a problem when accelerometers or their charge amplifiers 

are not electrically isolated [49]. Since the accelerometers were mounted on dry 

parts of the bridge, the concrete was assumed to be an effective electrical isolator 

and it was not deemed necessary to build an electrical isolation system into the 

mounts. The accelerometer charge amplifiers were battery powered by external line 

drive supplies which completed the isolation of the whole system. 

Finally, the selection of piezoelectric accelerometers meant it was not possible 

to measure extremely low frequency vibrations. The internal charge amplifiers have 

a cut-off frequency at O.lHz which means measurements at frequencies below 1Hz 

are suspect. This did not cause problems with the hammer tests, but the vehicle 

passage induces a quasi-static deflection that has a period approximately double the 

time for the vehicle to cross each span. With a 20m bridge span and a 15m vehicle 

travelling at 5m/s, the passage frequency is O.14Hz which is at the lower limit of the 

measuring capabilities of the accelerometers. Fortunately, this is not too much of 

a problem because the passage frequency is essentially a static effect, which is not 

vital for this study of the dynamic response of bridges. 
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3.3.2 Signal Processing 

The acceleration signals were filtered and amplified before being captured by the 

data-logger. To prevent aliasing, Kemo VBF /3 filters were used. These are fourth 

order Butterworth low pass filters incorporating ac high pass filters (feo = 0.125Hz) 

and select able gains of 1, 3, or 10. 

In some cases, additional amplification was required before digitising and storing 

the raw data. An eight channel analogue amplifier was developed with variable gains 

of 1, 3, 10, 30, and 100. 

3.3.3 Data Logging and Storage 

The analogue signals had to be digitized and stored before any analysis could 

proceed. Because of the large amount of data to be collected, the data was digitized 

in the field. With 16 channels, sampling rates up to 133 kHz, and storage for 106 

data points, the available CED 1401 data logger readily met the requirements. The 

data logger was driven by an IBM-PC (AT). Figure 3.9 illustrates the general set-up 

for the tests including the van with the signal processing and data logging facilities. 

A schematic diagram of the set-up is shown in figure 3.10. 

3.3.4 Instrumented Hammer 

In order to extract modal information from bridge measurements, it was neces­

sary to obtain a matrix of transfer functions relating excitation at different points on 

the bridge to responses at other points [30]. Because of the large number of points 

required, either the excitation source or the accelerometers had to be portable. It 

was decided to fix the accelerometers in place and develop a portable method of 

exciting the bridge. 

The bridge testing literature was surveyed to assess excitation methods. The 

possibilities include: the release of an imposed deflection [89], a vehicle driven over 

a bump [89] (in this case the dynamics of the vehicle confuse the issue), a blow by 

an impulse hammer or a falling weight [61, 64, 89], or sinusoidal excitation from a 
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shaker [89]. The first two methods were discarded as inappropriate for this study. 

Because sinusoidal shakers of suitable size are expensive to acquire and difficult to 

move, impulse excitation was chosen. 

The impulse was applied with an instrumented hammer that was built for a 

study of ground vibration [49]. It consisted of a 20kg mass at the end of a slender 

2m, 3kg arm (figure 3.9). An accelerometer was fixed to the back of the hammer 

head to measure the acceleration of the head and thus deduce the force applied 

(see figure 3.11). Unfortunately, the accelerometer also recorded vibration from the 

hammer arm and this caused the measurements to be erroneous in the region of 

the natural frequency of the hammer. Figure 3.13 shows a typical impulse and its 

Fourier spectrum which is defined as the magnitude of the Fourier transform as de­

scribed by Bendat and Piersol [5]. This Fourier spectrum is more appropriate than 

power spectral density for analysis of transient data and will be used throughout this 

dissertation. The initial impulse is followed by hammer arm vibration and eventu­

ally a second impulse (about 0.3 seconds after the first impulse). The effects of the 

second impulse are discussed in detail in Appendix C where the second impulse is 

shown to cause the Fourier spectrum to vary sinusoidally. The spectrum also shows 

the hammer arm vibration because the peak near 40Hz corresponds to the natural 

frequency of the hammer arm. Since the important bridge frequencies were below 

30 Hz, hammer vibration was not deemed to be a critical problem. Nevertheless, 

the hammer was redesigned to incorporate a force transducer (figure 3.12) for the 

second set of tests. Although this modification virtually eliminated the hammer 

resonance problem, an acceleration signal was still required to measure the inertia 

force contribution from the mass of the hammer head outboard of the force trans­

ducer. Figure 3.14 shows the contributions of the force transducer output and the 

outboard mass correction to the total force applied to the bridge. The hammer arm 

vibration is almost completely removed with no noticeable peak in the frequency 

domain (figure 3.14b). 

For the second set of tests the hammer was dropped on foam rubber to increase 

the low frequency content of the hammer impulse [30]. A comparison of figures 3.13b 

37 



and 3.14b illustrates the redistribution of energy to lower frequencies. 

Finally, the possibility that the reaction force at the hammer base contributed 

to the bridge loading was investigated. Four rubber tubes were used as springs 

to support the hammer base, and their stiffness was measured by placing different 

weights on the hammer base and recording the resulting deflections. The hammer 

was dropped from its full height and the base deflection was measured. By combin­

ing the deflection information with the tube stiffness, an estimate of the reaction 

force was obtained. This force estimate is shown in figure 3.15 (peak for ~ 200N), 

and when compared with the impulse at the hammer head (peak force ~ 20kN; 

figures 3.13 and 3.14) the reaction force is insignificant. 

3.3.5 Vehicle Instrumentation 

The test vehicles were owned, operated, and instrumented by the Transport 

and Road Research Laboratory (TRRL) . Two different methods of logging the data 

were employed. On the first set of tests the raw analogue signals were recorded on 

magnetic tape. After the tests, the analogue information was filtered and digitized. 

By the time the second set of tests were conducted, TRRL had acquired a mobile 

data-logger and thus the magnetic tape recorder was eliminated. 

Each axle of the test vehicles was instrumented with two strain gauges and two 

accelerometers as shown in figure 3.16. The total wheel force is a combination of 

the static force, the strain gauge force, and two inertia correction terms. The in­

ertia corrections are obtained from the measured accelerations. The procedure for 

determining the wheel forces from these measurements has been outlined elsewhere 

[17, 26], and will not be discussed in detail. Cole [26] has estimated that the maxi­

mum error in the measured wheel forces is ± 6.6%. Average errors should be in the 

region of 2 or 3%. 
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3.4 Equipment Calibration 

Table 3.1 contains specifications and calibration factors for the instrumentation 

used for the bridge tests. This section describes the procedures for calibrating the 

instrumentation. 

3.4.1 Accelerometers 

Small accelerometers were calibrated by attaching them to a B&K type 4291 

accelerometer calibrator. A sinusoidal vibration of 2g peak-peak at 500rad/s is 

produced by the calibrator. 

Since the accelerometers used on the bridge were too heavy to be mounted on the 

B&K calibrator, they were placed on a shaker table alongside a previously calibrated 

accelerometer. The calibrated accelerometer was used to determine the calibration 

constant for the larger accelerometers. 

3.4.2 Force Transducer 

A check was made to ensure the factory calibration of the hammer force trans­

ducer was reasonable. The force transducer was attached to a shaker table, and 

various masses were securely fastened to the top of the transducer. A calibrated 

accelerometer was fixed to the top of the attached mass, and the shaker table was 

driven at different amplitudes over a frequency range of 1 to 100Hz. The record­

ings were used to estimate the calibration constant as well as the outboard mass of 

the force transducer. Within the accuracy of the method, the measured calibration 

constant was found to be equal to the factory calibration, and the outboard mass 

was estimated as half the total mass of the force transducer. 



3.4.3 Amplifiers 

The charge amplifiers were calibrated by passmg a voltage signal through a 

capacitor connected to the amplifier input. By comparing the input charge with the 

output voltage, the calibration constant was obtained. 

The procedure for the calibration of the voltage amplifier was similar except the 

capacitor was not necessary. 

3.5 Impulse Test Procedures 

The primary purpose of the impulse tests was to determine the bridge modal 

properties. The repeatability and linearity of the measurements were also assessed. 

Two sets of tests were performed on the Drift Road bridge, but only one on the Lower 

Earley bridge. The first tests at Drift Road were conducted during November 1988, 

while the second tests and the Lower Earley tests were done during September and 

October 1989. 

3.5.1 Data Logging Configuration 

The sampling rate was governed by the requirements of the impulse hammer. 

Both bridges have first natural frequencies below 10Hz and vehicle excitation is not 

expected to exceed 20Hz [17, 26], so measurement of frequencies up to 100Hz was 

more than adequate. The impulse hammer, however, applies significant energy at 

higher frequencies (see figures 3.13 and 3.14). 

A sampling frequency of 500Hz was selected and the filter cut-off frequency was 

set to 150Hz. With the Nyquist frequency at 250Hz (equation 2.29), there was no 

chance of aliasing because only frequencies above 350Hz would alias into the range 

between 0 and 150Hz. 

Figure 3.17 shows the effect of the transient response of the filter on the impulse. 

The solid curve was filtered at 150Hz while the dotted one was obtained with a 

filter cut-off of 1000Hz. With the lower filter cut-off frequency, an overshoot IS 



evident immediately after the impact. Nevertheless, the frequency components of 

the Discrete Fourier Transform (DFT) below the cut-off frequency are the same 

whether or not the overshoot is present. Figure 3.17b presents the Fourier spectra 

of both impulses. The solid and dotted curves are almost identical. 

For the first set of tests on the Drift Road bridge, the record length was set 

at 1024 points. When the responses were analysed in the laboratory it became 

evident that the sample length was too short. The low frequency modes had not 

died away completely. This was not evident during the tests because the high 

frequencies dominated the response and died away before the end' of the sample 

time. A windowing analysis procedure to account for the truncation of the response 

is presented in section 4.2.3. In order to avoid any truncation on the second set of 

tests, a 4096 point record of length 8.2 seconds was chosen. 

The four accelerometers were mounted on the bridges as shown in figures 3.18 

and 3.19. Each accelerometer position was numbered as shown in the two figures 

and in table 3.2. 

3.5.2 Repeatabilityand Linearity 

Repeatability was measured by dropping the hammer from the same height 5 

times. Linearity was determined in a similar manner except that the hammer was 

dropped from three different heights. In order to compare the responses from im­

pulses of varying magnitude, normalized impulse response functions were calculated. 

The calculation procedure is as follows: 

(i) remove any dc offset from both the impulse and the response, 

(ii) calculate the DFT of both the impulse and the response, 

(iii) compute the transfer function by dividing the response transform by the 

impulse transform, 

(iv) apply a filter in the frequency domain to remove components of the 

transfer function above the anti-aliasing filter cut-off frequency, 



(v) perform the inverse DFT on the transfer function to obtain a normalized 

impulse response function. 

In figure 3.20, three normalized impulse responses from both bridges are pre­

sented. For each bridge the curves were obtained from measurements made with the 

hammer dropped from its full height. The hammer and the accelerometer were both 

positioned at the midspan of the instrumented spans. The fact that all three curves 

on each figure are nearly coincident illustrates that both bridges exhibit repeatable 

behaviour. 

Normalized impulse responses from hammer drops of three different magnitudes 

were compared to assess the linearity of the system. Figure 3.21 shows the nor­

malized impulse responses for three different hammer heights on both bridges. The 

hammer was dropped from three heights: 2.0m, l.6m, and l.Om. Both bridges 

exhibit linear behaviour over this range. 

3.5.3 Modal Tests 

In order to determine the mode shapes of the bridges, many impulse tests were 

conducted. Two parallel lines, representing the wheel tracks of the test vehicles , 

were marked on each bridge. The hammer was dropped at several points along each 

track. The matrix of tests for each bridge is shown in figures 3.18 and 3.19. For the 

Drift Road bridge, hammer tests were conducted at 25 positions while for the Lower 

Earley bridge the hammer was dropped at 56 different positions. At each position 

the hammer was dropped 5 times. 

Figure 3.18 shows that the tests on the Drift Road bridge concentrated on span 2 

which was directly above the London bound traffic of the M4 (see also figure 3.6) . 

Most ofthe tests were conducted on the wheel track near the bridge centre-line. Ten 

hammer positions on one half of the span and two positions on the other half were 

chosen. To estimate mode shapes along both wheel paths, three sets of impulse tests 

were conducted on the outside wheel track. Finally, the adjacent span was tested at 

10 different positions to determine the continuity of the mode shapes between the 
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two spans. The other two spans were not tested because the mode shapes could be 

determined from symmetry. 

A more comprehensive testing programme was conducted on the Lower Earley 

bridge. The northern span was selected as the primary one for the tests and 15 

positions were chosen along each wheel path. Tests were also carried out on both 

of the other two spans as shown in figure 3.19. Additional hammer tests were 

conducted along both wheel tracks on the southbound lane of the bridge. 

3.6 Vehicle Test Procedures 

The second phase of the experiments involved measuring the bridge dynamic 

response to the passage of a single instrumented vehicle. It was possible, on both 

occasions, to perform all of the vehicle tests in one day. The Drift Road bridge 

was tested on 24 November 1988, and the Lower Earley bridge was tested on 5 

October 1989. Photographs of the test vehicles are presented in figures 3.22 and 

3.23. The test vehicle for the Drift Road bridge was a four-axle articulated vehicle 

with a semi-trailer. The tractor had a leaf spring suspension while the trailer had 

an independent air suspension. For the Lower Earley tests, the vehicle was similar 

except the air suspension was on the tractor and the leaf springs on the trailer. 

Each vehicle was loaded with concrete blocks to a static weight of approximately 32 

tonnes. Table 3.3 shows the axle weights and spacings for the two test vehicles. 

The bridge instrumentation was set up in the modal testing configuration except 

that triggering signals wel:e needed to synchronize the bridge response with the 

dynamic wheel loads (see figure 3.10). At each end of the bridge, a reflector and 

light beam set was erected. When the vehicle passed the light beam, a reflector on 

the vehicle caused a pulse to be sent to the roadside data logger. At the same time, 

a light beam on the vehicle hit the roadside reflector sending a signal to the vehicle 

instrumentation. 

The test vehicle was driven over the bridge in both directions at vehicle speeds 
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of 15, 30, 50, and 55km/h. Extra runs at 65km/h were conducted on the Lower 

Earley bridge. Two runs were made at each speed in each direction. 

The next chapter describes the analysis of the data recorded during the tests 

and presents some of the experimental results. 
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Table 3.1: Specification of equipment used for bridge testing 

Transducers 

I type I sensitivity I application 

B&K 8318 316 /lA/ms -:l bridge vibration 
(high sensitivity 
accelerometer) 
DJB 302 A/03/W 0.88 pC/ms -2 impulse hammer 
(accelerometer) 
Kistler 971A 3.96 pC/N impulse hammer 
(force transducer) 

Amplifiers 

I type I gain I application 

B&K 2813 1 mV //lA line drive supply for 
(line drive supply) B&K 8318 accelerometers 
B&K 2511 1-10,000 m V/pC charge amplifier for 
(vibration meter) hammer accelerometer 
Force transducer 0.01 mY/pC charge amplifier for 
charge amplifier force transducer 
Hammer accelerometer 1.0 mV /pC charge amplifier for 
charge amplifier hammer accelerometer 
8 channel voltage 1, 3, 10, 30, 100 amplification of vibration 
amplifier signals 

Filters 

I type I gain I corner frequency I application 

Kemo VBF/3 1,3, 10 0.125Hz (high pass) anti-aliasing 
(n=4 Butterworth) O.lHz - 10kHz filter and 

(low pass) signal amplifier 
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Table 3.2: Accelerometer Positions 

Position Number Location 

1 midspan, centre-line 
2 1/3 point of span, centre-line 
3 1/4 point of span, centre-line 
4 midspan, offset 

Table 3.3: Vehicle axle weights and spacings 

Bridge Axle Axle position (m) Static axle 
weight (tonnes) 

Drift Steer 0.00 6.48 
Road Drive 3.50 9.05 

Front Trailer 11.22 7.94 
Rear Trailer 13.06 8.78 

Total: 32.25 

Lower Steer 0.00 6.40 
Earley Drive 3.28 9.32 

Front Trailer 10.18 8.31 
Rear Trailer 12.20 7.65 

Total: 31.68 
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Figure 3.6: Drift Road bridge showing the test span 

Figure 3.7: Lower Earley bridge - detail at pier 
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Figure 3.8: Accelerometer for measuring bridge vibration, 
and external line drive supply 

Figure 3.9: General set-up for impulse tests 
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Figure 3.11: Original hammer head with accelerometer 

Figure 3.12: Modified hammer head with force transducer 
and accelerometer 
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Figure 3.22: Test vehicle for Drift Road bridge 

Figure 3.23: Test vehicle for Lower Earley bridge 
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DATA ANALYSIS 

This chapter is concerned with analysis of the data collected by the procedures 

of chapter 3. Data from both the vehicle tests and the impulse tests i§ presented. 

The dynamic wheel loads and the resulting bridge responses are examined in 

both the time and frequency domains. In addition, some statistics of the measured 

dynamic wheel loads are presented. 

The analysis procedures for determining the bridge modal parameters from the 

impulse tests are also discussed. 

4.1 Vehicle Tests 

Vehicle tests were conducted to measure the vibrational response of the test 

bridges to a single pass of an instrumented heavy goods vehicle. In order to compare 

the measured bridge responses with those predicted from the convolution calculation 

procedure presented in chapter 2, the wheel loads were also measured. In this 

section, analysis of the vehicle test data is presented and comments are made about 

important characteristics of both the vehicle wheel loads and the vehicle-induced 

dynamic bridge response. 
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4.1.1 Analysis of the Dynamic Wheel Load Data 

The dynamic wheel loads were determined for each vehicle test run. For the 

purposes of illustration, one vehicle run per bridge has been selected for presentation 

in this dissertation. 

Figure 4.1 contains wheels loads for a south-east to north-west run at 50km/h on 

the Drift Road bridge. At time zero the front axle of the vehicle encounters the first 

span of the bridge while the trailing axle leaves the bridge 6.1 seconds later. The 

large dynamic tyre forces at both ends of the bridge are caused by discontinuities 

in the surface profile at the expansion joints. The expansion joints are located just 

before the run-on slab (see figure 3.18) and this explains why the vehicle is bouncing 

before it enters the first span. Expansion joints and other large irregularities in the 

bridge road surface are the main cause of high dynamic wheel loads on bridges [14, 

76]. Figure 4.1(a & b) illustrates that the loads can be almost double the static 

values. For this vehicle, the largest variations in the tyre forces occur on the front 

two axles which have steel leaf-spring suspensions. The trailer axles are connected 

to an independent air suspension and this results in lower dynamic wheel loads, 

although figure 4.1(c & d) shows that relatively more high frequency (wheel-hop) 

motion is present than for the leaf-spring suspensions. This behaviour is typical of 

air suspensions [65]. 

A set of wheel loads for a south to north run over the Lower Earley bridge is 

presented in figure 4.2. The vehicle speed is 65km/h and the front axle enters the 

bridge at time zero. The trailing axle leaves the bridge 5.6 seconds later. This 

vehicle has air-springs on the tractor axles and leaf-springs on the trailer. The front 

two axles generate lower dynamic wheel loads, but at higher frequencies. In general, 

the wheel loads are smaller for the Lower Earley tests and the expansion joint at 

the bridge entrance does not excite the vehicle to same degree as on the Drift Road 

bridge. This indicates a smoother riding surface on the bridge as well as better 

quality expansion joints. Unfortunately, no surface profile data was measured, so a 

quantitative assessment of the bridge roughness is not possible. 

As a further study, the wheel load data was formulated in terms of dynamic load 
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increments (defined in section 3.1.2). This study is interested in determining not 

only the maximum dynamic load increments, but also the standard deviation of the 

increments. Other authors have referred to this standard deviation as the dynamic 

load coefficient [65, 88]. Figures 4.3 to 4.6 contain the dynamic load increments 

calculated from both bridge tests plotted against speed. In general, dynamic load 

increments increase with speed. 

The maximum values for the Drift Road bridge are plotted in figure 4.3 while 

the standard deviations are in figure 4.4. For the steel suspensions (steer and drive 

axles), the increase with speed seems to be almost linear, but the air suspensions do 

not follow any obvious type of behaviour. The maximum dynamic load increment 

for the steel suspension is approximately 1.0 which corresponds to doubling the 

static wheel load. The standard deviations vary between 10 and 20% for the air 

suspensions and up to 40% for the steel suspensions. 

Figures 4.5 and 4.6 show maximum values and standard deviations of dynamic 

increment for the Lower Earley bridge. In this case the maximum increments are 

only about 0.5 which indicates smaller dynamic loads than were applied to the Drift 

Road bridge. The maximum load increments are almost independent of speed, and 

especially so for the two steel suspensions (trailer axles). Nevertheless, the standard 

deviation of the load increments increases slightly with speed. 

The frequency content of the wheel loads was analysed by calculating the Fourier 

spectrum [5] of the various wheel load traces. As described in section 3.3.4, the 

Fourier spectrum is a more appropriate measure than spectral density for transient 

signals. Figures 4.7 and 4.8 illustrate the frequency content of the wheel loads 

measured on the Drift Road and Lower Earley bridges respectively. As is evident 

from these figures, most of the energy in the wheel loads is concentrated in the 

I-4Hz range although wheel-hop causes a second peak between 10 and 15Hz. This is 

typical of heavy goods vehicles as has been shown by other authors [17, 19, 26, 65]. 
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4.1.2 Bridge Response from Vehicle Tests 

Measured bridge responses from typical vehicle tests on both bridges are shown 

in figures 4.9 and 4.10. The displacement time histories were obtained by integrat­

ing the acceleration signals twice. As mentioned in section 3.3.1, the quasi-static 

responses were not measured accurately by the accelerometers, and so a high-pass 

filter with a cut-off frequency of 1.0Hz was applied to the signals to avoid drifting 

during the integration. For both bridges the dominant frequencies are below 10Hz. 

In order to determine the frequency content of the measured bridge responses, 

Fourier spectra were computed for the various vehicle tests. Typical spectra for 

both bridges are shown in figures 4.11 and 4.12. Most of the energy is concentrated 

in the region below 15Hz. This is expected because the dynamic wheel loads only 

have significant amplitude below 15Hz. 

4.2 Impulse Tests 

The main reason for the impulse tests was to determine the mode shapes and 

damping values of the bridge. The modal parameter extraction was done primarily 

in the frequency domain, but some preliminary analysis was conducted in the time 

domain and is discussed in this section. 

4.2.1 Impulse Tests at Drift Road: Time Domain 

Typical impulses and the resulting bridge responses, measured at four different 

positions, are shown in figures 4.13 and 4.14. Results from the first set of tests are 

presented in figure 4.13, while the second test results are in figure 4.14 . In both 

cases the hammer was located at the middle of the measurement span. 

One point to note about the hammer impulse in figure 4.13 is that there are 

two distinct impacts. The second impulse (at approximately 0.3 seconds) induces 

additional response from the bridge, but this does not adversely affect the analysis 

of the data. A detailed discussion of the effect of the double impulse is included in 
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Appendix C. In the second set of tests the hammer was allowed to drop only once. 

Two effects that are immediately visible in the responses of figure 4.13 are the 

dominance of frequencies between 50 and 60Hz, and the beating in the response. 

The beating indicates that there are at least two closely spaced frequencies while 

the predominance of the higher frequencies occurs because some bridge modes in 

the 50-60Hz region are easily excited by the impulse. A qualitative comparison of 

these impulse responses with the vehicle induced responses of figure 4.9 shows that 

these higher frequencies are not significant for vehicle-induced bridge vibration. 

For the second set of tests at Drift Road , changes were made to reduce the 

presence of these higher frequencies in the impulse responses. Since the important 

frequencies were known to be below 20Hz, the acceleration signals were filtered 

at 25Hz in order to reduce the effect of the responses at higher frequencies. In 

addition, the hammer was dropped on soft foam to concentrate the energy in the 

lower frequencies (see section 3.3.4) . Finally, the sample length was extended to 8 

seconds. By comparing figures 4.13 and 4.14, the effects of these changes are evident. 

The responses from the later tests are dominated by frequencies below 20Hz. 

4.2.2 Impulse Tests at Lower Earley: Time Domain 

A typical impulse and the resulting responses are shown in figure 4.15. For the 

Lower Earley tests the hammer was not allowed to drop a second time. 

The responses in this case are noticeably different from those measured at Drift 

Road. The prominent frequencies are below 20Hz and the modal density is greater 

than at Drift Road. Most of the response dies away after only a few seconds, and 

so the record length (8 seconds) is more than adequate. 

4.2.3 Transfer functions 

The first stage in the extraction of the modal parameters from the impulse tests 

was the calculation of transfer functions (or frequency response functions). The 

tests at each hammer position produced four averaged transfer functions; one for 
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each accelerometer position. The procedure for calculating transfer functions was 

standardized and is summarized as follows: 

(i) remove any de offset from both the impulse and the response, 

(ii) determine the position of the maximum value of the impulse and adjust 

the time scale so that the maximum value of the impulse occurs at time 0 

(see figures 4.13, 4.14, and 4.15), 

(iii) apply an exponential window to the time series to reduce noise at the 

end of the responses and to avoid truncation errors: 

1 t < 0 

w(t) (4 .1) 

e-J(t t ~ 0, J( ~ 0 

J( was taken as 1.0 for the Drift Road bridge and 0.5 for the Lower 

Earley bridge, 

(iv) extend the record length by adding zeros, 

(v) calculate the D FT of both the impulse and the response, 

(vi) compute the transfer function by dividing the response transform by the 

impulse transform, 

(vii) repeat the procedure outlined in (i) to (vi) for five different hammer drops 

at the same position and then average the resulting transfer functions. 

Averaged transfer functions for the Drift Road bridge are shown in figure 4.16. 

Four plots are shown; one corresponding to each accelerometer position. For all four 

transfer functions the hammer was located at the quarter point of the instrumented 

span. The transfer function is only shown for frequencies up to 25Hz, because the 

vehicle-induced bridge response is concentrated at frequencies below 20Hz. The solid 

lines on the plots are the measured transfer functions. 
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In the region below 20Hz, three flexural modes and two torsional modes are 

evident. The first peak, at 6.8Hz, corresponds to the fundamental flexural frequency 

of the bridge while the peak at 8.7Hz is the second flexural mode. The third mode 

(19.3Hz) is only evident on the transfer functions corresponding to accelerometers 

number 2 (1/3 point) and 3(1/4 point). 

The transfer function for the offset accelerometer shows two small peaks at 

11.2Hz and 12.3Hz that are not present on the other two transfer functions. These 

peaks correspond to torsional modes. 

The three flexural peaks are narrow and quite sharp which indicate that the 

modes are lightly damped. 

Figure 4.17 shows transfer functions calculated from impulses applied at the 

middle of the instrumented span of the Lower Earley bridge. These transfer functions 

are markedly different from those measured at the Drift Road site; more modes are 

present, and the response is not dominated by anyone mode nor pair of modes. In 

the region below 20Hz, there are 4 obvious peaks at 5.7, 9.7, 11.3, and 18.0Hz. An 

examination of the transfer function corresponding to the off-centre accelerometer 

indicates modes not evident in the other accelerometer traces. The extra peaks 

occur at 6.9, 7.4, and 13.3Hz. 

4.3 Modal Analysis 

After the transfer functions were calculated, it was possible to identify the natural 

frequencies of the bridges and to make qualitative judgements about damping levels. 

In order to quantify these estimates, some form of numerical modal analysis is 

necessary. Modal analysis also provides a measurement of the modal constant which 

contains information about the relative magnitudes and phases of vibration in each 

individual mode. 

Modal analysis is essentially a curve-fitting procedure to relate a measured fre­

quency response function with a theoretical model. The theoretical models are usu-
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ally based on the assumption of a single degree of freedom system, but some methods 

have been developed that are suitable for general multiple degree of freedom anal­

ysis [30]. The single degree of freedom system assumption is usually justified by 

noting that near resonance the frequency response function is dominated by only 

one mode. Methods assuming a single degree of freedom system therefore work best 

when the natural frequencies are well separated [30]. 

The second major assumption of the modal analysis procedure concerns the 

type of damping. Either structural or viscous damping is usually assumed. As was 

mentioned in chapter 2, the viscous damping assumption was used in this analysis . 

For viscous damping, the mobility (or velocity) transfer function, calculated with 

an exponential window (equation 4.1) applied to the impulse responses, is 

= . A(~ zw 'k 
y. (w) - I: J 

Jk - n=l w(n)2 - w 2 + 2i(((n)w(n) + K)w 
(4.2) 

where Yjk(w) is the mobility transfer function measured at position k from an input 

at position j, and AJ~) is the nth modal constant. 

The modal analysis procedure outlined in this chapter consists of attempting to 

estimate values of w(n), ((n), and A;~). 

4.3.1 Modal Parameter Extraction: Theory 

Several methods are available [30, 77], and are described in detail by Ewins [30]. 

The circle fit method was chosen. 

In order to perform the circle fit, the real and imaginary parts of the transfer 

function are plotted against each other in the Argand plane. According to theory the 

data will trace a circular arc near resonance, so a circle is fit to points near resonance 

(figure 4.18) and a measure of the error is obtained. The location of the natural 

frequency is determined by finding the position at which the sweep of the circle is 

at a maximum (figure 4.18). Damping estimates are then obtained by considering 

points on either side of the resonant frequency. Let Wa and Wb represent positions 

on the modal circle above and below the natural frequency, respectively, and Oa and 

Ob the corresponding subtended angles as shown in figure 4.18. The damping ratio 
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is given by [30] 

( 4.3) 

Using this formula for the damping ratio, each point above the natural frequency is 

combined with each point below to give several damping estimates. The mean and 

variance of the estimates are calculated. This yields an average damping ratio with 

a bound on the estimation error. 

Finally the magnitude and phase of the modal constant are calculated from the 

size of the circle and the orientation of the natural frequency on the circle. The 

modal constant, A)~), is given by [30] 

A (n) -IA(n) I iB(~) 
jk - jk e ) ( 4.4) 

with 

D(n) 

I (n)l_ jk 

Ajk - 2( ((n)w(n) + J() (4.5) 

where D)~) is the circle diameter and ())~) is the angle of inclination of the modal 

circle as shown on figure 4.18. If this angle is zero for all positions on the structure, 

then the modes are real. 

Since single degree of freedom analyses are not always appropriate, several curve 

fitting techniques have been developed to deal with multiple degree of freedom sys­

tems [30]. One of the simpler methods is an extension of the single degree of freedom 

circle fit method. The first stage in the extended analysis is to perform the single 

degree of freedom circle fit to obtain reasonable estimates of the modal parameters. 

These estimated parameters are then used to adjust the measured mobility near 

resonance to account for the presence of the other modes. The adjusted values then 

conform more closely to those of a single degree of freedom system and the circle fit 

procedure can be more effective. This modified circle fit method was employed in 

this study when the modes were closely spaced. Details of other multiple degree of 

freedom modal analysis procedures are readily available elsewhere [30, 31J. 
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The circle fit method was chosen for application to the data presented in this 

dissertation because of the method's versatility and ease of extension to include 

multiple degree of freedom systems. 

4.3.2 Transfer Function Regeneration: Theory 

After extracting the modal parameters, a theoretical transfer function can be 

regenerated and compared with the corresponding measurement. Since it is almost 

impossible to measure all of the modes that contribute to response in any given 

region, initial 'attempts at regeneration often have disappointing results [30]. The 

correlation between measurement and regeneration can be improved, however, by 

the inclusion of two additional terms to account for frequencies above and below 

the analysed frequency range. If all of the modes between ml and m2 have been 

measured then 

m2 . A(n) 
( ) ZW jk 

yr (w) - '" 
jk - n~l w(n)2 - w 2 + 2i(((n)w(n) + K)w 

(4.6) 

where Y)~)(w) is the regenerated mobility curve. The theoretical curve is given by 

equation 4.2 and so the regeneration error, EJ~) (w), is 

Yjk(w) - Y)~)(w) 
ml iwA (n) L Jk 
n=l w(n)2 - w 2 + 2i(((n)w(n) + K)w 

(4.7) 

00 • A(n) 
'" zw jk +L...,. 2 • 

n=m2+1 W(n) - W2 + 2i( ((n)W(n) + K)w 

Since the regenerated model is valid only in the analysed frequency range, ap-

proximations can be made to estimate the error term within the analysed frequency 

range. The first error term of equation 4.7 can be approximated as mass dominated 

and the second term as stiffness dominated. The error term then has the following 

approximate form [30] 

E (r) 
jk :::::: 

1 
. ~1(r) 
ZW11 jk 
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where MJ~) is the mass residual and J()~) is the stiffness residual. 

Following procedures described by Ewins [30], stiffness residuals were calculated 

by considering points on the transfer function outside the analysed frequency range. 

The mass residuals were not computed because all the low frequency modes were 

measured. The inclusion of the stiffness residuals in the theoretical regeneration 

of the transfer function did not significantly improve the correlation between the 

regenerated and measured transfer functions. Therefore, stiffness residuals were not 

included in the regeneration plots presented in this dissertation. 

4.3.3 Mode Shape Determination: Theory 

The procedures outlined in the preceding two sections illustrate methods for 

obtaining modal constants from transfer functions . The measured modal constants 

have the following form: 

( 4.9) 

where Xj and Xk define the positions of the input and response, respectively. 

In order to explain the procedure for extracting the values of cP(n) from the modal 

constants, consider Nh transfer functions relating Nh different hammer positions to 

the response measured at one position, Xk . Applying the circle fit procedure to the 

transfer functions results in the following set of modal constants 

A
(n) A(n) A(n) A(n) 
lk' 2k' 3k,···, Nhk' ( 4.10) 

If we also have a point measurement (response and input at the same position), 

then enough information exists to scale the mode shape properly. For a point mea­

surement, equation 4.9 reduces to 

(4.11 ) 

where xp defines the position of the point measurement and A~;) is the modal 

constant obtained from the point mobility. Once the magnitude from the point 
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measurement is determined, the other mode shape values can be scaled by using 

equation 4.9. 

In practice, each modal constant is based on a slightly different estimate of the 

natural frequency and the corresponding damping ratio. Therefore, before the mode 

shape calculation is performed, average values of the natural frequency and damping 

ratio must be computed. 

(4.12) 

(4.13) 

where Nin is the number of instrument positions and - indicates averaged values. 

The revision of the estimates for natural frequency and damping ratio means that 

the modal constants must be adjusted accordingly. It was stated that the modal 

constant calculated using the circle fit procedure is given by 

( 4.14) 

If the adjusted values w(n), ((n) are now used then 

(4.15 ) 

The adjusted values of the modal constants, A)~), can be used to calculate the 

mode shape values. 

4.3.4 Modal Analysis: Drift Road 

The circle fitting procedure outlined in section 4.3.1 was applied to the transfer 

functions calculated at the various hammer positions. Three flexural modes and 

two torsional modes were studied and figure 4.19 shows example circle fits for each 

mode calculated when the hammer was at the quarter point of the instrumented 

span. The fitting procedure gave good results. Notice the calculated position of the 
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natural frequency on the modal circle. The deviation of the radial line corresponding 

to the natural frequency position from the horizontal axis indicates the phase of the 

modal constant as described in section 4.3.1. In these examples, the phase angles are 

approximately zero. This was the case for all of the modes and positions analysed 

and therefore all modes were considered to have real parts only. 

Each modal circle produced a number of estimates of the damping ratio, but the 

scatter was reasonably small (less than 5%) and usually dependent on the quality 

of fit of the modal circle. 

After the modes in the 0-20Hz range were estimated, the transfer functions were 

regenerated based on the measured modal parameters. A comparison of measured 

transfer functions with the regenerated ones is shown in figure 4.16. The agreement 

is good and so the modal parameters have been measured accurately. The fits are 

especially good in the region below 15Hz which is where most of the vehicle energy is 

concentrated. The effect of the mass and stiffness residuals have not been included 

in figure 4.16 because the fits are sufficiently accurate without them. 

Modal parameters for all of the measured transfer functions were estimated, and 

average damping ratios and natural frequencies were calculated. The average values 

are as shown in table 4.1. 

These averaged values were used to modify the modal constants as described in 

section 4.3.3. The modified constants were then substituted into equations 4.9 to 

4.11 to determine the mode shapes. Figure 4.20 shows the measurements for the 

first three flexural mode shapes. Only half the bridge is shown and the vertical lines 

indicate the positions of the columns. Hammer positions along both wheel tracks 

are represented by points on the diagram and it is evident that the modal shape 

values do not vary between the tracks. This indicates that these modes are purely 

flexural. 

On the other hand, figure 4.21 shows the mode shapes corresponding to the other 

two natural frequencies. The measurements from the two wheel tracks give different 

mode shape values which indicates that the modes exhibit torsional behaviour. 

A comparison of the measured mode shapes with curves from a theoretical anal-
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ysis is presented in section 5.1. 

4.3.5 Modal Analysis: Lower Earley 

A total of eight modes was identified for modal analysis; six of them were present 

on all of the transfer functions but two were only identified on the transfer functions 

corresponding to the off-centre accelerometer. All of the modal circles described in 

the following were from measurements made with the hammer at the middle of the 

instrumented span. 

Figure 4.22 illustrates the circle fitting procedure on all eight modes. The natural 

frequencies corresponding to the modal circles are indicated on the diagrams. In 

this example, most of the modes conform well to the circle fit, but mode number 

five displays larger errors than the others. An inspection of the transfer function 

(figure 4.17) reveals that mode five (11.3Hz) is quite close to mode four (9.7Hz) 

which has a much larger magnitude. Therefore, this mode is strongly affected by 

its neighbouring mode. Similar problems were encountered with other modes at 

different positions, but it was generally possible to obtain some good measurements 

for all the modes. 

Finally, mode number four deserves closer inspection. The circle fit is satisfac­

tory, but the bottom of the circle formed by the data points has a slight indentation. 

This effect is caused by the presence of another mode extremely close to the main 

mode that was not resolved by the modal analysis. This did not present a serious 

problem for measurements on the instrumented span, because the larger mode dom­

inated and the two modes were accurately represented as one mode. Nevertheless, 

on the other two spans the smaller mode was not dominated to the same degree 

and it was difficult to obtain estimates of the modal parameters. This difficulty 

was taken into account when curves were fit to the mode shape values for response 

prediction purposes and appropriate approximations were made (see section 5.1.3). 

On all of the modal circles the position of the natural frequency is indicated, and 

it is evident that the lines from the natural frequency position to the circle centres do 
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not deviate significantly from the horizontal. Modes one, two, three, and five show 

the largest deviations, but errors in the estimation of the natural frequency could 

be responsible. In all four cases, changing the natural frequency estimate by one 

frequency increment would result in the natural frequency radial line being parallel 

to the horizontal axis. Since the horizontal orientation of this radial line indicates a 

real mode, it was assumed that all of the modes were real. 

The best fit modal circles were used to produce average values of the natural 

frequencies and damping ratios (see table 4.2). 

Figure 4.17 illustrates the regeneration of the transfer function from the modal 

parameters measured at midspan. Below 20 Hz, the fit is very good except for the 

region between 12 and 17Hz. The errors are slightly larger in this region, but should 

not be significant for predicting vehicle-induced bridge response because most of the 

bridge response is below 10Hz. 

Following the procedure outlined in section 4.3.3, the mode shapes corresponding 

to each measured natural frequency were calculated and are shown in figure 4.23. 

Measurements from both wheel tracks are included. Vertical lines on the plots 

separate the three spans. Most of the modes indicate significant differences between 

measurements in the two wheel tracks, so the modes cannot be assumed to be purely 

flexural. The measurements were most accurate on the instrumented span (left side 

of the plots) . When the hammer was on the other two spans, the symmetric and 

anti-symmetric modes cancel each other and reduce the amplitude of the measured 

vibration. This decreases the signal to noise ratio and makes accurate measurements 

more difficult. 

A comparison of these mode shapes with theory and finite element approxima­

tions is presented in the next chapter. 
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Table 4.1: Natural frequencies and damping ratios 
Drift Road bridge 

Mode Natural Frequency Damping ratio 
(fm in Hz) 

1 6.8 0.019 
2 8.6 0.021 
3 11.2 0.033 
4 12.3 0.019 
5 18.0 0.034 

Table 4.2: Natural frequencies and damping ratios 
Lower Earley bridge 

Mode Natural Frequency Damping ratio 
(fm in Hz) 

1 5.7 0.045 
2 6.9 0.088 
3 7.4 0.086 
4 9.7 0.026 
5 11.3 0.014 
6 13.3 0.026 
7 18.0 0.038 
8 24.4 0.019 
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VALIDATION OF THEORY 

The final stage of the experimental validation is comparison of the measured 

results with theoretical predictions. This chapter will conduct that comparison to 

validate the convolution method presented in chapter 2. 

Mode shapes predicted by analytical and finite element models of the two test 

bridges are compared with the measured mode shapes. The validation of the vehicle­

induced bridge response calculation method is presented in section 5.2. 

5.1 Prediction and Comparison of Modal Parameters 

Two different theoretical models were used to predict the vibrational behaviour 

of the test bridges. They were modelled as beams on rigid supports, and more 

accurately using finite elements to include flexible supports and plate action. 

The mass and stiffness properties were obtained from the construction drawings, 

supplied by the Berkshire County Council. Because both bridges were constructed 

of prestressed concrete, it was assumed that the concrete was always in compression. 

Therefore the calculated stiffness properties relate to the gross section instead of an 

equivalent cracked section. The Young's modulus of concrete was estimated from 
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values suggested in British Standard 5400 [10J. 

Table 5.1 contains the estimates of the mass, stiffness, and strength parameters 

for both bridges. Small variations of cross-sectional properties along the length of 

the bridges were not deemed important as it has been shown that these variations 

do not significantly affect the vibrational characteristics of bridges [28J. 

5.1.1 Beam Model 

The differential equation for transverse vibrations of an undamped Euler-Bernoulli 

beam of uniform cross-section is 

82
1/ 84 

rnatt(x, t) + EI~(x, t) = 0 

where m is the mass per unit length, 

E is the Young's modulus, 

and I is the second moment of area of the cross-section. 

(5.1 ) 

Following the method outlined in chapter 2, the solution to equation 5.1 can be 

written in terms of the mode shapes, <p(n)(x), 

00 

y(x, t) = L <p(n)(X)qn(t) (5.2) 
n=l 

where n is the mode number, 

and qn(t) are the normal coordinates. 

Substituting equation 5.2 into equation 5.1 and separating variables results in 

the following modal differential equation 

(5.3) 

which has solutions of the form 

<p(n) (x) = cin) cos( knx) + cJn) cosh( knx) + c~n) sin( knx) + c~n) sinh( knx) 

(5.4) 
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where cJn) , c~n), c~n), cin) , and kn are constants dependent upon the boundary 

conditions . Once these constants are determined, the natural frequencies can be 

calculated from 

(5.5) 

5.1.2 Drift Road Bridge 

Figure 5.1 illustrates a beam idealization of the Drift Road bridge. The ends of 

the bridge were restrained by the run-up slab (see figure 3.18) and this was modelled 

by assuming fixed ends. The bridge is symmetric about the centre support and can 

be analysed by considering half of the bridge with two different centre support 

conditions: one simply supported (to model the asymmetric modes), and the other 

fully restrained (to model the symmetric modes). At all of the supports, bridge 

displacement was assumed to be zero. For fixed ends the additional constraint was 

zero slope while for the simple support the bending moment was assumed to be zero. 

At the intermediate support, the slopes and bending moments are assumed to be 

continuous. 

The first three natural frequencies were computed and compared with the ex­

perimental measurements (table 5.2). Reasonable agreement was achieved, but the 

beam theory predicted the first two natural frequencies to be farther apart than the 

measured values. This was not surprising since the beam analysis took no account 

of the effects of the centre column which was constructed as an integral part of the 

bridge superstructure. 

Figure 5.2 shows the first three flexural modes. The experimental data is plotted 

for comparison. All of the modes were mass normalized by applying the orthogo­

nality relationships of section 2.2.1 for consistency. The mode shapes correlate well 

with experiment, especially the measurements on the longer span. These results 

are more accurate because the largest amplitude vibrations are expected to occur 

on the longer span. Therefore, the impulse responses measured on the longer span 

have a higher signal to noise ratio, and should be more accurate. There are larger 
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discrepancies evident on the shorter span and particularly so with the third mode. 

These errors occur because of the difficulty in obtaining accurate measurements on 

the shorter span. 

A simple estimation for the torsional vibrations was obtained by considering the 

bridge as a bar with two perpendicular axes of symmetry. For torsional response, 

'ljJ(x, t), is defined as the angle of rotation about the centroidal axis of the bridge. 

The relevant differential equation is : 

where G 

p 

Jp 

and J 

f) 2'!b 
pJpfjf(x, t) 

is the shear modulus of elasticity, 

is the mass density, 

~ GJ f)x 2 (x, t) 

is polar moment of area of the cross section, 

is the torsional constant of the cross section. 

(5.6) 

A modal expansion (equation 5.2) was assumed, resulting in the following modal 

differential equation 

(5.7) 

with the torsional modes given by 

(5.8) 

Because of symmetry, only half of the bridge was analysed. It was assumed 

that there was no rotation at the supports because the bridge was constructed with 

torsional stiffeners at each support and the columns themselves restrict rotation . 

With no rotation at the supports, the spans act independently and so only the 

longer span was considered because it has the lowest frequencies. Applying these 

assumptions to equation 5.8 results in Cl becoming zero and the first two modes 

having the following form 

(5.9) 
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where L is the length of the longer span. One mode is symmetric while the other 

is anti-symmetric but otherwise they are identical. All other torsional natural fre­

quencies were found to be outside the frequency range of interest. 

In figure 5.3 the torsional mode shapes are compared with the measured data by 

plotting the angle of torsional rotation. The comparison is reasonable although the 

predicted modes are slightly larger in amplitude than the measured values. 

In order to improve on the accuracy of the beam analysis, a finite element model 

was developed. The bridge was divided into seven components: four spans and three 

columns. Each component was then discretized into twenty beam elements. The 

beam elements had torsional stiffness which allowed approximations of the torsional 

natural frequencies. 

The natural frequencies computed by the finite element analysis are presented 

in table 5.2. There is some improvement in the accuracy which results from the 

inclusion of the columns in the finite element solution. In particular, the first and 

second flexural modes are slightly closer together. Errors in the estimation of the 

natural frequencies were caused by inadequate modelling of the support conditions 

at the abutments and errors in estimating the stiffness properties of the bridge. The 

finite element predictions of the flexural modes are contained in figure 5.2 while the 

torsional modes are compared with experiment in figure 5.3. The torsional modes 

are illustrated by plotting the angle of torsional rotation. The mode shapes obtained 

from the two different models are quite similar, although in the second flexural mode 

and the first torsional mode there is some movement at the centre support that is 

not modelled by the beam solutions. The finite element solution predicts that the 

symmetric torsional mode has the lower natural frequency. 

5.1.3 Lower Earley Bridge 

The Lower Earley bridge was initially modelled as a three span continuous beam 

on simple supports (figure 5.4). Because of symmetry, it was analysed by dividing the 

bridge at the middle of the centre span. The anti-symmetric modes were obtained 
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by considering a simple support at the free end of the beam, while a vertical roller 

support at the free end simulated the symmetric modes. 

The four lowest natural frequencies were computed from the beam idealization 

and the results were compared with measurements (table 5.3). Figure 5.5 compares 

the results of the mode shape predictions with measurements. The agreement is 

good for the four predicted modes. 

Since the beam theory did not predict all the measured modes and there was 

doubt as to whether or not the supports at the piers acted as simple supports, a finite 

element calculation was attempted. Figure 5.6a illustrates the support arrangements 

at the piers. The precast beams are supported on two sets of bearing pads and 

connected with a reinforced concrete diaphragm. In order to model these bearing 

pads, the first finite element model consisted of beam elements supported by two 

springs (figure 5.6b) with stiffness kb (table 5.1) . The resultant mode shapes were 

identical to those obtained from simple beam theory. The natural frequencies are 

shown in table 5.3, but no significant improvement over the beam estimates was 

noticed. 

A two-dimensional model was necessary to predict the other modes. The bridge 

was modelled as an orthotropic plate on flexible supports at the piers using four­

noded quadrilateral plate elements. Figure 5.6b defines the direction of the x-axis 

to be parallel to the bridge centre-line. For the two-dimensional bridge model, the 

z-axis is perpendicular to the plane of the paper. Referring to figure 3.5 and noting 

that there is significant clearance between the bases of the inverted T-beams, it 

is apparent that the bridge had quite different bending stiffnesses in the x and z 

directions. In the orthotropic plate model, the bending stiffness in the x-direction 

was determined by considering both the slab and the beams, whereas the stiffness 

in the z-direction was determined from the slab alone. The x-y shear modulus and 

hence the torsional rigidity of the plate elements was corrected to account for the 

shape of the cross-section [102]. Each bridge span was divided into a 10x5 mesh with 

10 elements in x-axis direction. Typical results from the plate analysis are presented 

in table 5.3 and figure 5.7 shows the first three predicted modes of vibration. From 
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an examination ofthese plate solutions (figure 5.7), it was evident that along any line 

in the x-axis direction the mode shapes had forms similar to those predicted by the 

beam model. On the basis of this finite element analysis, it was thought reasonable 

to assume that all of the first eight modes of the bridge had, longitudinally, one of the 
• 

four simple beam mode shapes (figure 5.8). For each measured mode, it was fairly 

easy to choose a beam mode shape; the relative magnitudes along the centre-line and 

curbside tracks were calculated by least-squares fits with the measured magnitudes 

along these tracks. For measured mode number 4, it was not clear which beam mode 

best fit the data. As was mentioned in the data analysis chapter (section 4.3.5), 

there were two modes extremely close together that were not resolved by the modal 

analysis. For hammer tests on the instrumented span, the responses of the lower 

frequency mode dominated and so a smooth sinusoidal curve was fitted through 

these points to approximate the two modes by a single mode. The measurements on 

the other two spans were unreliable because the two modes were not always in phase 

and a single mode approximation was not deemed to be appropriate. Therefore, the 

measurements on the other two spans were neglected. The fit to mode number 4 does 

not correctly model the mode shape, but it will be shown to be a good engineering 

approximation for predicting the response of the bridge to heavy vehicle loads. 

5.2 Comparison of Predicted and Measured Bridge Responses 

In order to validate the bridge response calculation method, the measured modal 

parameters were combined with the dynamic wheel loads in the convolution integral 

of section 2.2.1. Using the frequency domain method of section 2.2.2 to evaluate the 

convolution integral, bridge responses for each passage of the test vehicle were pre­

dicted. These predicted responses were then compared with the measured responses 

to verify the calculation method. 

The mode shapes used in the convolution procedure were those presented in 

figures 5.2, 5.3 and 5.8. 

One difficulty in the comparison of measurement and theory was that it was 

difficult to measure the bridge response at low frequencies (see section 3.3.1). This 

meant that the quasi-static displacement of the bridge was not measured. Since 
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the predicted response includes the quasi-static bridge response, it was necessary 

to remove this effect before an effective comparison could be made. This was ac­

complished with the application of a high pass digital filter with a cut off frequency 

of l.OHz. The filter had attenuation properties similar to those of a eighth order 

Butterworth filter [39], and was designed in accordance with the recommendations 

of Stockham [85J. 

5.2.1 Drift Road Bridge 

Typical validation results for the Drift Road bridge are presented in figures 5.9 

to 5.11. The time scales on all the figures are adjusted so that the front axle of the 

vehicle enters the bridge at time zero. 

For figure 5.9, the vehicle speed is 50km/ h and the direction of travel is towards 

the north-west. The responses measured by accelerometers 1, 3, and 4 (see sec­

tion 3.5.1) are shown. The response at position 3 (1 / 4 span) includes the effects of 

mode 5 while the two torsional modes are only present in the response at position 

4 (midspan, offset). Because all three responses are similar, we deduce that the 

displacement response is dominated by the first two modes. There is favourable 

comparison, both in amplitude and form, between measurements and predictions. 

The traces are generally in phase with each other, but the predicted responses are 

consistently larger than the measured responses. The amplitude difference is partic­

ularly evident in the section of the record before 2.6 seconds. Between 2.6 seconds 

and 5.2 seconds the test vehicle was directly over the instrumented span and so it is 

not surprising that the best agreement occurs in this time interval. The amplitude 

differences are unlikely to be caused by inaccurate mode shapes because of the good 

agreement between measured and predicted mode shapes for the first two modes. 

A better explanation is that the out of phase modal responses do not cancel each 

other to the same degree in the predictions as in the measurements. These phasing 

errors could be caused by incorrect synchronising of the vehicle position with the 

bridge response due to slight speed variations or errors in the triggering signals. 
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Figure 5.10 illustrates the predicted and measured midspan displacement re­

sponses for a test run at 50km/h with the vehicle travelling in the opposite direction. 

Once again, the agreement is reasonable but the predicted response is still larger 

than the measurement. There are also some peaks in the early stages of the pre­

dicted response that are not present in the measured response. These peaks occur 

because the mode shape values were inaccurate on the first span of the bridge (figure 

5.2). 

Figure 5.11 illustrates the comparison between prediction and measurement in 

the frequency domain by plotting the Fourier spectrum of the responses . The agree­

ment is satisfactory and the main differences are in amplitude. Most of the important 

frequencies are correctly predicted except for the first mode of the bridge at 6.8Hz. 

There is a single distinct peak on the measured response, but this is not reflected 

by the pred1ction. 

Neither response is dominated by individual modes and there is no low frequency 

peak corresponding to the bounce frequency of the vehicle. Most of the bridge 

response is in the frequency region between 5 and 10Hz. A re-examination of the 

Fourier spectrum of the wheel loads (see figure 4.7) shows the vehicle wheel loads 

have little energy in this region. The magnitude of the dynamic response is therefore 

critically dependent on the accuracy of the dynamic wheel loads in a frequency region 

where they are difficult to measure precisely. 

One important factor to bear in mind when interpreting the results for this bridge 

is that the original acceleration measurements were contaminated by noise. Aero­

dynamic excitation caused by heavy vehicles passing underneath the bridge resulted 

in significant ambient vibration of the bridge. Although most of this vibration was 

at relatively high frequencies, some of it was evident at frequencies below 20 Hz. 

This noise problem almost certainly contributes to the discrepancies between the 

predicted and measured responses. 

Finally, some of the errors may be attributed to insufficient data from the modal 

analysis. In section 4.3.4, it was shown that the regenerated transfer functions 

differed from the measured ones in the frequency region above 10Hz. These errors 
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were caused by inaccurate measurement of the torsional modes and the third flexural 

mode, as well as the absence of high frequency modes. The modal analysis errors 

were relatively small, but their effects may be magnified by errors from phasing, 

wheel load estimation, and noise. 

5.2.2 Lower Earley Bridge 

The validation procedure was significantly more successful on the Lower Earley 

bridge. Typical results are presented in figures 5.12 to 5.14. 

For figure 5.12, the vehicle is travelling north at 50km/h and the bridge response 

is shown for accelerometer positions 1, 3, and 4 (see figure 3.19). The agreement 

between prediction and experiment is excellent. The curves do not match well in the 

first two seconds, but during this time interval the vehicle is on the first span and 

has not reached the instrumented span. After the first two seconds, the predicted 

response exceeds the measured response at a few points, but otherwise the curves 

are very close for all three measurement positions. The largest discrepancies occur 

on the offset accelerometer (4), but most of the errors are in the initial two seconds. 

This indicates the modes exhibiting torsional behaviour do not cancel each other the 

way they should. More mode shapes are necessary to correctly model the response 

at this measurement position, but this would require additional field tests with more 

off-centre accelerometers. 

Figure 5.13 presents a typical result with the vehicle travelling in the other 

direction (north to south). The speed is 65km/h and the response is shown at the 

midspan of the instrumented span. The agreement is excellent. 

Fourier spectra of the predictions and measurements of figure 5.12 are shown in 

figure 5.14. As expected, the agreement between the two curves is excellent and all 

of the important features of the measured curves are represented in the predicted 

curves. 

On the measured response there are two closely spaced peaks near 10Hz, but 

only one peak is predicted. This difference is the result of the approximation of the 
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two modes by one as mentioned in section 5.1.3. The two modes were represented 

by the approximation of figure 5.8. Since the predicted and measured curves match 

closely except for the fine detail of the double peak, the approximation is acceptable 

for predicting the bridge response to heavy vehicle loads. 

In contrast to the Drift Road bridge (figure 5.11), figure 5.14 shows the Lower 

Earley bridge response to be dominated by a few distinct frequencies. The body 

bounce modes of the vehicle induce a large response at about 1.5Hz, while the bridge 

modes at 5.7Hz and near 10Hz are important. Examining the Fourier spectra of the 

vehicle wheel loads (see figure 4.8) reveals that the wheel loads have considerable 

energy near each of these peaks. The low frequency peak is evident for all axles, 

while the steer axle and rear trailer axles contribute significant amounts of energy 

near 10Hz and 4Hz respectively. The bridge responses are dominant in frequency 

regions where the wheel loads should be more accurate, and therefore we expect the 

predictions for this bridge to be better than those for the Drift Road bridge. 

5.3 C onclusions 

'The results of the validation procedure were very good and indicate that the 

frequency domain convolution method is accurate for predicting the response of 

highway bridges to heavy vehicle loads. 

Simple beam and plate models gave reasonable predictions of bridge vibration 

modes, however, it was not as easy to predict natural frequencies. No attempt was 

made to estimate damping values. The modes of vibration were best predicted on 

the Drift Road bridge because its box girder construction meant that it behaved 

like a beam. The composite slab and girder construction of the Lower Earley bridge 

presented more problems in modelling, but in the end, mode shapes similar to those 

from an equivalent beam approximation were shown to accurately represent the 

measured bridge response to a heavy vehicle. 

The predicted and measured bridge responses from the passage of a heavy vehicle 
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compared well on both bridges. The agreement was better on the Lower Earley 

bridge than on the Drift Road bridge, but noise and other measurement problems 

on the latter account for most of the errors. 

The convolution method presented in chapter two has been validated both by 

experiments and by comparisons with other theories for simple cases. 

In the next chapter, the validated bridge response calculation method will be 

extended to include vehicle models and the importance of bridge-vehicle interaction 

will be investigated. 
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Table 5.1: Bridge model properties 

I Drift Road I Lower Earley I 
E (GPa) 32.2 34.0 
I (m4

) 0.78 1.82 
m (tonne/m) 10.9 20.4 

G (GPa) 13.4 14.2 
J (m4

) 2.2 0.05 
Ip (m4

) 38.62 -
kb (N/m) - 25.0 x 109 

p (tonne/m3
) 2.4 2.4 

Table 5.2: Drift Road bridge - Natural frequencies (Hz) 

I Mode I Type I Measured I Beam theory I Finite element I 
1 Flexural 6.8 6.5 6.9 
2 Flexural 8.6 9.4 9.3 
3 Torsional 11.2 12.8 11.5 
4 Torsional 12.3 12.8 12.8 
5 Flexural 19.3 20.8 21.2 

Table 5.3: Lower Earley bridge - Natural frequencies (Hz) 

Mode Measured Beam theory Finite element 
Beam Plate 

1 5.7 5.5 6.0 5.8 
2 6.9 7.1 7.2 7.1 
3 7.4 - - 7.3 
4 9.7 - - 9.2 
5 11.3 10.3 10.3 10.0 
6 13.3 - - 12.2 
7 18.0 - - 17.4 
8 24.4 22.1 22.4 22.3 
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Case 1 

Case 2 

Figure 5.1 : Drift Road bridge - Beam approximations 
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Figure 5.4: Lower Earley bridge - Beam approximations 
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Figure 5.7: Lower Earley bridge - First three modes from two-dimensional finite 
element bridge model 
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BRIDGE-VEHICLE INTERACTION 

In chapter 2, a method was presented for calculating the dynamic response of 

bridges to moving loads. This method was validated experimentally by tests on two 

bridges, but the formulation did not include any specific reference to the interaction 

between vehicles and bridges. This chapter details the procedure used to combine 

vehicle models with the convolution method. A parametric study for analysing the 

importance of bridge-vehicle interaction will be presented, but first some background 

information about vehicle dynamics and bridge-vehicle interaction will be discussed. 

6.1 Background 

6.1.1 Vehicle Dynamics 

One of the most important aspects in the study of bridge-vehicle systems is 

modelling the applied loads. This is a difficult task because realistic vehicle models 

are required. 

The simplest model is a constant force traversing a bridge at a constant speed [52, 

92, 93J. This is not representative of a vehicle, but closed-form bridge response solu-
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tions can be determined analytically and used to check more realistic bridge-vehicle 

models. Some improvement can be made by considering an unsprung mass mov­

ing across the bridge [52, 100], but some sort of sprung mass system is necessary to 

model vehicle suspension systems. The simplest of these is a single degree of freedom 

system with mass, damping and stiffness [6, 38, 45, 56, 57, 66, 100]. Some authors 

have included an extra degree of freedom to model the higher frequency wheel-hop 

suspension modes [94]. Finally, multiple axle vehicles with linear suspensions have 

been considered by some authors [23, 42, 43, 44, 48, 54, 81]. 

In recent years, more realistic vehicle models have been developed for calculating 

heavy vehicle ride and dynamic wheel loads. Many of the models can simulate 

vehicles with any number of axles and non-linear suspension and tyre elements. 

There have been some tentative attempts to apply more realistic vehicle models to 

bridge vibration problems [51, 68, 87], but much more work is needed. 

Cebon [17] developed a computer program to implement one of these models. 

This program has been validated extensively by comparison with two independent 

sets of measurements on instrumented vehicles [17, 27, 26] and will be used in this 

dissertation to generate vehicle wheel loads. 

The combination of a realistic vehicle model with a validated bridge response 

model should enable the effects of different vehicles and suspensions on bridge re­

sponse to be studied more accurately. 

6.1.2 Bridge-Vehicle Interaction 

Most authors have deemed dynamic bridge-vehicle interaction to be important [6, 

25,37,44,52,54,55,56,66,72,87,91,94]' although some have ignored it [45,52,83]. 

There has been little systematic study about when the interaction is important, and 

when the two systems can be considered to be essentially uncoupled. 

Walker and Veletsos [95] considered a simply-supported bridge and calculated 

bridge responses caused by a moving constant force and a moving sprung mass. They 

compared the two responses by computing the maximum dynamic increments for 
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each case, and related the importance of interaction to the frequency ratio, I, 

defined as 

(6.1 ) 

where Wv is the natural frequency of the vehicle and W(l) is the first natural frequency 

of the bridge. Bridge-vehicle interaction was deemed unimportant if I was less than 

0.3 and greater than about 1.0 [95]. This criterion seems quite reasonable, but 

Walker and Veletsos did not quantify the errors incurred by neglecting bridge-vehicle 

interaction. 

Chiu, Smith, and Wormley [24] conducted a parametric study similar to that of 

Walker and Veletsos for an elevated guide-way traversed by a high-speed vehicle. 

They found that interaction was unimportant for mass ratios below ~, or for low 

frequency ratios. Their interaction criteria were based only on maximum guideway 

deflections and vehicle accelerations. They were not concerned with time histories 

of displacements. In addition, most of their results were calculated for speed ratios 

far in excess of those attained on highway bridges. Their criteria are consistent with 

those of Walker and Veletsos, but do not provide enough detail for low speeds. 

Finally, Ting and Genin [90] outlined interaction criteria based on the quantity 

2f.Z where f. is the mass ratio as defined by Walker and Veletsos, and Z is the 

the second time derivative of the vehicle displacement normalized by the maximum 

static deflection of the bridge. They concluded that interaction can be ignored if 

2f.Z ~ 1. Although this may be valid, it is vague and based on vehicle acceleration 

which is unknown for high~ay bridges. This guideline is more applicable to elevated 

guideways where vehicle acceleration can be estimated in the design process. 

The author has not found sufficient detail in interaction criteria proposed by oth­

ers, and has not discovered any published research that quantifies the errors involved 

in neglecting the bridge-vehicle interaction. Therefore, this chapter will present a 

method of solving the bridge-vehicle interaction problem, examine interaction crite­

ria, and present guidelines for estimating errors incurred by ignoring interaction. 
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6.2 Treatment of Dynamic Bridge-Vehicle Interaction 

For the purposes of this study, the bridge-vehicle interaction was incorporated 

iteratively. The procedure was as follows: 

(i) An initial set of vehicle wheel loads was used as the input to the bridge 

calculation program. These initial vehicle loads were usually obtained 

by calculating the vehicle response to a specified bridge surface profile. 

(ii) The displacement response of the bridge was calculated under each tyre 

of the vehicle. 

(iii) The bridge displacement response was added to the surface profile and 

used as the input to the vehicle model. New wheel loads were predicted. 

(iv) The displacement response, y(t), from the loads in (iii) was computed 
, 

by the procedure of (ii) . In order to facilitate convergence, successive 

displacement responses were often averaged 

( ) 
_ y(t) + Yj-l (t) 

Y j t - .:........:...."""'-----2-'--=---------=--=- (6.2) 

where Yj(t) is the ph estimate for the bridge displacement response. 

(v) Steps (iii) and (iv) were repeated until convergence was obtained. Con­

vergence was deemed to have occurred when the following criterion was 

satisfied: 

Iy(t) - Yj-l(t)1 
max(ly(t)l) 

:::; Tolerance for 0 :::; t :::; Tvp. (6.3) 

where Tvp is the time for the vehicle to pass completely over the bridge. 

Similar iterative methods have been used by other authors . In fact, Hawk and 

Ghali [44] outlined an almost identical convergence procedure which they termed the 

'iterative dynamic substructuring method (IDSM).' In addition, they compared their 

method with solutions obtained by Runge-Kutta Nystrom numerical integration and 

found good agreement. 
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This iterative method is essentially a perturbation method because the dynamic 

solution is assumed to oscillate about the quasi-static solution. Since this is the 

case for vehicle-induced vibrations of highway bridges, perturbation methods are 

usually satisfactory. Nev~rtheless, the method is not guaranteed to converge. Con­

vergence was not found to be a problem, except for vehicles with large wheel forces 

at frequencies greater than about 10Hz. Since most vehicles generate dynamic wheel 

loads with energy concentrated in the 1.5-4.5Hz frequency range [19], this limitation 

was not serious. 

The next two subsections describe the implementation of the iterative proce­

dure. In the first subsection, the iterative procedure is applied to simple vehicle 

models while in the latter the importance of the dynamic bridge-vehicle interaction 

is discussed. 

6.2.1 Convergence with Simple Vehicle Models 

Two different vehicle models were selected to test the convergence of the iterative 

procedure. The first was a two degree of freedom, '1/4 car' model as shown III 

figure 6.1. The vehicle parameters for a highly idealized 40 tonne vehicle are: 

where 

mt = 4 tonne ms = 36 tonne (total weight = 392kN) 

kt = 7.2xl07 Nm-1 

w~l) = 20 rad/s 
ks =1.8xl07 Nm-1 

(~l) = 0.07 

Ct = 14.4xl04 kgs- l 

w~2) = 150 rad/s 
Cs = 14.4xl04 kgs-1 

(~2) = 0.24 

wU) 
v 

(~j) 

mt 

kt 

Ct 

ms 

ks 

is the ph natural frequency of the vehicle (j = 1,2), 

is the ph modal damping ratio of the vehicle, 

is the tyre mass, 

is the tyre stiffness, 

is the tyre damping constant, 

is the body sprung mass, 

is the suspension stiffness, 
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and Cs is the suspension damping constant. 

For the second convergence test a two axle vehicle model was used. Figure 6.2 

illustrates the layout of the vehicle. It had four degrees of freedom: two tyre dis-

placements, sprung mass displacement, and sprung mass pitch rotation. The mass, 

stiffness, and damping properties were: 

m~1) = m~2) = 2 tonne 
Iv = 144x103 kgm2 

ms = 36 tonne 
a = 1.0 m 

kP) = k?) = 3.6x107 Nm- 1 

cP) = C~2) = 7.2x104 kgs- 1 

ks = ks = 0.9x107 Nm-1 

Cs = 7.2x104 kgs-1 

resulting in: 

W~l) = 10 rad/s 
W~3) = 150 rad/s 

(~1) = 0.03 w~2) = 20 rad/s 
(~3) = 0.24 W~4) = 150 rad/s 

where Iv is the body pitch inertia, and 'a' is the axle spacing. 

(~2) = 0.07 
(~4) = 0.24 

For the examples in this section, the non-dimensional speed parameter, a, IS 

introduced, and defined as follows: 

(6.4) 

where V is the vehicle speed and L is the length of the bridge. 

The bridge used in the examples in the rest of this chapter was the simply­

supported Ph·ton Lane bridge tested by TRRL [33, 63, 99]. This bridge had a 40m 

span and a first natural frequency of 20rad/s. Other parameters of the bridge were 

given in section 2.2.5. The method was verified at two different speeds, Vi = 25m/s 

and 1;2 = 50m/s, resulting in speed parameters as follows: 

The results of the iterative procedure are shown in figures 6.3 to 6.5. Figure 6.3 

illustrates the convergence of the method by plotting the final three iterations. Two 

curves are shown on each plot of figures 6.4 and 6.5. The first curve is the predicted 

bridge response from equivalent static loads moving over the bridge. The other curve 
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is the result when the bridge and vehicle models are combined at the specified speeds. 

The tolerance on convergence in all cases was 1% and the number of iterations 

required to achieve this tolerance was 

Vehicle Model 
'1/4 car' 
'1/4 car' 
'1/2 car' 
'1/2 car' 

Speed Parameter (a) 
0.1 
0.2 
0.1 
0.2 

Iterations 
5 
4 
5 
4 

It is evident that the iterative method works well and does not require excessive 

computation time. 

6 .3 Importance of Interaction: Parameter Study 

This section will examine the importance of bridge-vehicle interaction, and present 

guidelines for estimating when interaction can be ignored. 

A parametric study was performed. The vehicle model was a single degree of 

freedom oscillator and the bridge was simply-supported with properties as described 

in section 2.2.5. Six non-dimensional parameters were defined as shown in the 

following table. 

Parameter Symbol Definition Parameter Range 

Speed 
7rV 

0.05 - 0.20 a --
w(l)L 

Frequency ratio 
Wv 

0.5 - 2.0 I --
w(l) 

Modal mass ratio 
2mv 

0.16 - 0.64 K, --
mL 

Vehicle damping ratio Cv 
c 

2Jkmv 
0.01 - 0.20 

Bridge damping ratio C 0.01 - 0.05 

Bump height hs 
Hs 

0-10 -
Yst 
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Hs is the height of a step placed at the entry to the bridge, m is the mass per unit 

length of the bridge, and Yst is the maximum static displacement at the midspan of 

the bridge. 

Three different ways of assessing the importance of bridge-vehicle interaction 

were considered. The first method was to compare dynamic wheel forces with static 

values. This was rejected because it does not give a direct estimate of how the 

interaction affects bridge response. Dynamic response increments were considered as 

an alternative, but they only measure maximum dynamic effects. Dynamic response 

increments do not show how interaction affects the overall vibration of the bridge. 

A third method was chosen and implemented as follows: 

(i) An initial set of wheel loads was predicted using the specified bridge 

surface profile as the input to the vehicle model. 

(ii) The initial loads were applied to the bridge to calculate the initial midspan 

displacement, Yin(XO, t), where Xo = L / 2. 

(iii) The iterative calculation of section 6.2 was performed to calculate the 

midspan bridge displacement, y(xo, t). 

(iv) y(xo, t) was compared with Yin(XO, t) by computing the error term 

( ) 
Y(Xo, t) - Yin(XO, t) 

£ t = 
Yst 

(v) The maximum value of £(t) and the standard deviation, 0"[, were recorded. 

The standard deviation was calculated from £(t) for the time the vehicle 

was on the bridge. 

(6.5) 

This method considers the consequences of ignoring interaction on the calculated 

dynamic bridge responses. Figures 6.6 and 6.7 show normalized responses of the 
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bridge to a sprung mass (dotted curve) and to a constant force (solid curve). The 

normalization was performed by dividing the dynamic deflection response by the 

maximum midspan static deflection, Yst. The following parameters were used: 

,= 1.0 
( = 0.02 

K = 0.32 
hs = O. 

(v = 0.05 

In figure 6.6 the speed parameter is 0.10 while in figure 6.7 the speed parameter is 

0.20. Errors were calculated by the formula of equation 6.5 and the values corre­

sponding to the two figures are as follows 

0: Maximum error (%) 0"£(%) 
0.1 11.4 5.3 
0.2 21.7 9.8 

From an inspection of figure 6.6, a 5% standard deviation of error seems to be 

a reasonable threshold for ignoring interaction. Both curves on this figure show 

approximately the same amount of vibration and maximum errors are only about 

10%. 

Several combinations of frequency ratios and speed parameters were computed 

and errors were calculated. Figure 6.8 shows values of maximum error and standard 

deviation of error. The frequency ratio was chosen for the horizontal axes while 

errors are plotted on the vertical axes. Error estimates for each speed parameter 

are connected by solid lines and the errors for the curves of figures 6.6 and 6.7 are 

included. The errors increase with the speed parameter. The maximum errors are 

approximately double the standard deviation values. The curves peak at , = 1.0 

where the natural frequencies are matched except at the slowest speed (et = 0.05) . 

For the slow speed, the quasi-static response dominates and so there~nlY a small tn 

amount of energy at the bridge natural frequency to be fed back into the vehicle. 

This results in a lower level of interaction, regardless of the frequency ratio. Finally, 

when the frequency ratio, " is less than or equal to 0.5, the errors are small and 

the dependence on speed is reduced. An error standard deviation, 0"£, of 5% is 

thought to be a reasonable threshold. Hence, in this case, interaction is important 

if 0: 2: 0.1 and, 2: 0.7. For the Pirton Lane bridge with length 40m and natural 

frequency of 3.2Hz, this threshold would be crossed for vehicles travelling at speeds 
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greater than 25m/s (90km/h) with natural frequencies in excess of 2Hz. Therefore 

interaction would only be significant at motorway speeds . For the Drift road and 

Lower Earley bridges, the main spans are approximately 20m long and the lowest 

natural frequencies are at 6.8 and 5.7Hz, respectively. For these two bridges, the 

speed threshold is once again about 25m/ s, but vehicles with frequencies up to about 

3Hz will cause little interaction. 

Since the curves for maximum error and at: are similar, only the plots for at: will 

be presented for the rest of this study. The effect of vehicle mass on the interaction 

is demonstrated in figure 6.9. Curves for two values of the speed parameter, a, 

are shown. Larger modal mass ratios cause more interaction, and this effect is 

pronounced at the higher speed. At the lower speed (a = 0.05), changes in vehicle 

mass result in only minor alterations in the amount of interaction. 

Damping is varied for the curves in figures 6.10 and 6.11. Increased vehicle 

damping reduces the interaction, especially near a frequency ratio of unity. Bridge 

damping, however, influences the interaction over a larger frequency range, but the 

interaction is not very sensitive to bridge damping when vehicle damping is high 

(figure 6.11b). 

Finally, the influence of bridge abutment roughness on the interaction is pre­

sented in figure 6.12. The vehicle was excited by a step at the entrance to the 

bridge. Initial excitation of the vehicle has an overwhelming influence on the amount 

of bridge-vehicle interaction. Increased vehicle response results in more interaction 

and the average errors incurred by neglecting the interaction can be almost 60%. It 

was noticed, however, that for a frequency ratio of 0.5 the errors averaged less than 

5% for all cases. 

Bridge responses corresponding to K, = 0.32, I = 1.0, and hs = 10 are plotted in 

figure 6.13. The solid curves were obtained by considering the interaction while the 

dotted lines were the responses to the initial wheel loads . The discrepancies between 

the estimates are large, and the vibration is much larger when the interaction is 

ignored. This occurs because the vehicle damping dissipates some of the energy of 

the bridge vibration. The third curve on the graphs was obtained by increasing 
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the modal damping of the bridge to 0.05 and applying the initial vehicle loads (no 

interaction). The approximation errors are reduced. Therefore, it may be possible to 

find a simple system that approximates the vibration absorbing effect of the vehicle 

on the bridge. Adjusting bridge damping may be one way of compensating for the 

absence of the vehicle when interaction is ignored. Figure 6.14 shows new error 

estimates for a revised bridge damping value of 0.05 for the initial bridge responses. 

The average errors are generally reduced, but near a frequency ratio of 1.0 the errors 

are still large. 

This parameter study has revealed some interesting aspects of bridge-vehicle in­

teraction. Within the normal range of parameters on highway bridges, the most im­

portant parameters are speed, frequency, and initial vehicle excitation. Large mass 

ratios result in significant interaction at high speeds. Bridge and vehicle damping 

are important when the frequency ratio is near 1.0. 

For this study, interaction was deemed important if the standard deviation of 

the error, (7£, were greater than 5%. Using this criterion, dynamic interaction can 

be ignored if 

(i) 'Y ~ 0.5, or 

(ii) a::; 0.1 and /'i, ::; 0.3 for smooth bridge profiles. 

These guidelines are valid for the parameter ranges specified in this study: (v 2:: 0.05, 

( 2:: 0.01, and /'i, ::; 0.64. 

Considering the practical application of these guidelines, heavy vehicles generate 

most of their wheel loads in the 1.5 to 4.5Hz frequency range so bridges with natural 

frequencies near 10Hz will have little interaction with most vehicles. 

The second guideline applies for bridges with well maintained approaches, and 

light vehicles travelling at low speeds. For the Pirton Lane bridge, interaction can 

be ignored for vehicles up to 40 tonnes as long as they are travelling below 90km/h. 

This is a fairly high speed for heavy vehicles, and so the bridge-vehicle interaction 

can be ignored in many cases as long as the approaches are smooth. Nevertheless, 

more information is needed on the importance of road roughness in determining the 

140 



amount of bridge-vehicle interaction, and if any doubts exist then interaction should 

be considered. 

The frequency criterion is similar to that suggested by Walker and Veletsos [95] 

although they ignored interaction for I :::; 0.3. This study has verified some of 

their work, but also expanded it by estimating the errors involved in neglecting the 

interaction and by considering the influence of damping and initial vehicle excitation. 

6.4 Conclusions 

The convolution method of chapter 2 was extended to calculate the response of 

a dynamically coupled bridge-vehicle system using any vehicle model. An iterative 

procedure for the bridge-vehicle system was presented and was shown to converge 

for two different vehicle models. 

The iterative method was applied to a parametric study of the importance of 

bridge-vehicle interaction. The errors involved in ignoring interaction were quan­

tified. Criteria to assess whether or not interaction is important were developed. 

Interaction was shown to be unimportant for bridges with first natural frequen­

cies more than double vehicle body bounce frequencies. Furthermore, bridges with 

smooth approaches were shown to have little interaction with light vehicles travelling 

at slow speeds. 

In the next chapter, the iterative method will be applied to the problem of 

assessing the effects of heavy vehicle suspension design on bridge dynamic responses. 
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Figure 6.1: Two degree of freedom ('1/4 car') vehicle model 

a ·1 

(1) 
et 

Figure 6.2: Two axle (4 degree of freedom, '1/2 car') vehicle model 
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EFFECTS OF 

VEHICLE SUSPENSION DESIGN 

ON BRIDGE DYNAMICS 

This chapter considers the effects of leaf-spring and air-spring vehicle suspensions 

on bridge dynamic response. 

7.1 General Parameters 

7.1.1 Vehicle Models 

Over the last few years, Cebon [17] and Cole [26] have developed a vehicle model 

which is representative of a typical, four axle, 32.5 tonne articulated vehicle in the 

U.K. Their model has 11 degrees of freedom as shown in figure 7.1. Non-linear 

suspension elements model the action of the leaf-springs and a schematic plot of 

the leaf-spring behaviour is shown on the figure. The model was validated [26, 

27] by an extensive programme of field tests on the Transport and Road Research 

Laboratory test track, and the calculated dynamic wheel forces were found to agree 

very accurately with experimental measurements. This vehicle model was used, in 

this study, to investigate the effects of typical leaf-sprung vehicles on bridges. 

In order to compare the effects of vehicle suspension design on bridge vibrations, 
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the model was modified to represent a vehicle with an air suspension. The leaf-spring 

elements on the drive axle and the two trailer axles were replaced with models of 

air springs. The suspension on the steer axle was the same for both vehicle models. 

The levelling beam on the trailer axles was discarded for the second vehicle model 
• 

because air-springs in tandem suspensions are usually dynamically independent. 

The air suspension was of the popular trailing-arm type and the air-springs were 

modelled with the following equation [18] 

[ A] -'Yh 
Fair = F stat 1 _ ~x 

w here Fair is the air-spring force, 

F stat is the static force , 

Ax is the cross-sectional area (0.045m2 ), 

Vo is the static volume (0.020m3
), 

x is the air-spring deflection, 

and /h is the specified heat ratio (1.38). 

The trailing arm lever ratio was 0.4. 

(7.1 ) 

Each vehicle model was two-dimensional, and represented only half of a typical 

vehicle. Cole [26, 27] showed that this is a reasonable approximation for predicting 

wheel loads. Nevertheless, the total mass of the vehicle is important for predict­

ing the dynamic response of bridges. Therefore, the wheel loads from the two­

dimensional vehicle models were doubled to simulate the passage of a fully laden 

vehicle over the bridges. 

7.1.2 Bridge Models 

Three bridges were chosen for the purposes of this parameter study. Two of the 

bridges were based on the validated models of the Drift Road and Lower Earley 

bridges. The third bridge was the simply-supported Pirton Lane bridge tested by 

TRRL [33, 63, 99] and described in section 2.2.5. 

To simplify the calculations, the vehicles were assumed to have zero width and 

to apply dynamic wheels along the centre-line of the bridges. Bridge displacement 

responses were calculated at the midspan and quarter span of each bridge. Therefore, 
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only the flexural modes were included in the computations for the Drift Road bridge 

(see section 5.1.2), and only the mode shapes along the centre-line wheel path were 

included in the Lower Earley bridge model (see section 5.1.3). 

7.1.3 R oad Profiles 

Two different road profiles were considered. For most of the results in this study, 

the surface profile was assumed to be smooth except for a 20mm step up at the 

entrance to each bridge. This step modelled differential settling of the abutments, 

or poorly maintained expansion joints. This author has not found any measurements 

of surface roughness on bridges in the U.K., but Honda and Kobori [47] measured 

the surface profile at expansion joints of approximately 400 bridges in Japan, and 

found three quarters of the bridges had a maximum roughness amplitude between 

10 and 25mm. 

For some trials, a pseudo random surface profile was used. This alternative profile 

was generated by applying the inverse DFT to a roughness spectrum as described by 

Cebon and Newland [17, 20]. Honda, Kajikawa, and Kobori [46, 47] measured the 

roughness on several hundred bridges in Japan and calculated roughness spectra. 

They found most bridges had medium to good surface profiles and could be classified 

by the same standards as used for roads in general. 

The roughness spectrum used to calculate the pseudo random surface profile 

was chosen to be typical of a 'good' road surface in the U.K . according to the two 

index spectral description used by Cebon [17] and proposed by Anon [3]. Figure 7.2 

shows the actual profile used. Position zero on the plot is the entrance to the 

bridge. The maximum roughness amplitude is approximately 10mm which is large in 

compared with dynamic deflections of bridges (usually less than 5mm). However, the 

measurements by Honda and Kobori [47] indicate that short wavelength roughness 

can have deviations from the average profile as large as 60mm. 



7.1.4 Speed 

Six different vehicle speeds were chosen for this study: 10, 15, 20, 25, 30, and 

40m/s. Speeds of 25 and 30m/s are typical of motorways. Although 40m/s is faster 

than the legal maximum in the U.K., it provides information on the dynamic effects 

at higher speeds. 

7.2 Results 

Bridge responses were calculated for most combinations of the parameters out­

lined in the previous section. All three bridges were combined with both vehicles 

at all six speeds for the first road profile (20mm step) while for the pseudo random 

roughness profile only speeds of 15m/s and 40m/s were considered. 

7.2.1 Bridge Responses 

Figures 7.3to 7.8 show bridge responses at three different speeds. The horizontal 

axis on all the plots is the position of the steer axle of the vehicle, with the entrance 

to the bridge defined as position zero. The solid curves were obtained for a speed 

of 1m/s and represent the quasi-static bridge responses. The dotted and dashed 

curves show midspan bridge displacements for speeds of 15 and 40m/s, respectively. 

The top plots of on the six figures illustrate the effects of the leaf-sprung vehicle 

while the responses to the air suspended vehicle are contained in the lower plots. 

Figures 7.3 to 7.5 shows bridge responses using the step road profile while figures 7.6 

to 7.8 contain responses calculated with the pseudo random road profile. 

For the Drift Road and Lower Earley bridges the responses are relatively small, 

but the responses increase with speed. On the other hand, the Pirton Lane bridge 

shows much larger responses which also increase with speed. The Pirton Lane bridge 

has a lower first natural frequency (3.2Hz) than either the Drift Road (6.8Hz) or 

Lower Earley (5.7Hz) bridges. Therefore, larger responses are expected on the Pirton 

Lane bridge because the bridge natural frequency is closer to the natural frequencies 
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of the vehicles. 

In contrast to the plots for the leaf-sprung vehicle, the lower three plots of fig­

ures 7.3 to 7.5 show the dynamic bridge responses obtained for the air-sprung ve­

hicle. The dynamic responses are much smaller and are actually quite close to the 

static bridge responses except for the highest speed on the Pirton Lane bridge. This 

indicates little interaction between these three bridges and the air-sprung vehicle. 

The air-sprung vehicle reduces dynamic response for two reasons. Firstly, the 

air-sprung vehicle has lower natural frequencies than the leaf-sprung vehicle and part 

of the reason it does not excite the Pirton Lane bridge as much is that frequency 

matching does not occur. The responses are reduced on the other two bridges 

because the air-sprung suspension applies smaller dynamic loads. 

Figures 7.6 to 7.8 illustrate midspan bridge responses calculated with the pseudo 

random roughness surface profile. For the leaf-sprung vehicle, the dynamic responses 

of the Lower Earley and Pirton Lane bridges are qualitatively similar to the responses 

to the step. The dynamic responses of the Drift Road bridge (figure 7.6) are much 

larger than fOl; the step profile. This increased response occurs because the Drift 

Road bridge has a short side span leading up to the instrumented span. The mode 

shape values on the shorter span are relatively small (see section 5.1.2) and with 

a step at the bridge entrance, the largest vehicle loads occur on the shorter span. 

Therefore, the dynamic responses are noticeably larger with the rough surface profile 

because it excites the vehicle throughout the passage over the bridge. The other 

two bridges exhibit slightly larger dynamic responses throughout the whole vehicle 

passage time because of continual excitation of the vehicle by the rough surface. 

To compare the two vehicle suspensions, consider the lower three plots of fig­

ures 7.6 to 7.8. The dynamic responses of all three bridges to the air suspended 

vehicle are again considerably less than for the leaf-spring vehicle. The reduction 

in response is most noticeable on the Pirton Lane bridge (figure 7.8) which exhib­

ited the largest responses with the leaf-sprung vehicle. The air-spring suspension 

effectively acts as a dynamic vibration absorber and reduces the bridge vibrations. 

Air-spring vehicle suspensions cause lower dynamic responses on bridges because 
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they have natural frequencies (usually below 2Hz) which are lower than first natural 

frequencies of most highway bridges, and also because they apply smaller dynamic 

loads to the bridges. In addition, they are more heavily damped than leaf-spring 

suspensions and this tends to reduce dynamics. 

7.2.2 Dynamic Response Increments 

In order to quantify the comparison between the two different suspensions, dy­

namic response increments were calculated (see section 3.1.3). 

The pseudo random profile was not included in this quantitative analysis because 

the use of a particular pseudo random profile would bias the results in ways that may 

not be representative of a typical bridge. A quantitative analysis considering such 

roughness would require simulation of the response of the bridges to many such 

profiles to obtain a proper statistical representation. Time constraints prevented 

this. 

The maximum bridge displacement response increment for each parameter com­

bination with the step surface profile was computed and the results are shown in 

figure 7.9. In the examination of these plots, three major features were noticed 

Frequency: The Ph-ton Lane bridge has the largest dynamic increments 

at all speeds for both vehicles. This bridge has a natural frequency 

at 3.2Hz which is close to the dynamic wheel load frequencies gen­

erated by the vehicles. Therefore, matching of the bridge and vehi­

cle frequencies increases the dynamic response of the bridge. This 

agrees with other research [8, 14]. The other two bridges show sim­

ilar increments to each other because they have higher first natural 

frequencies (5.7 and 6.8Hz). 

Suspensions: The simulated responses to the air suspended vehicle are 

significantly less than for the steel suspensions. The maximum dy­

namic response increments for the air suspension are below 10% 
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while those for the steel suspension are as high as 50%. The air 

suspension applies lower dynamic wheel loads to the bridges and 

also has more damping. These two factors combine to reduce the 

bridge dynamic responses to the air suspended vehicle. 

Speed: Peaks at certain speeds are evident on all the dynamic response 

increment plots. These peaks are caused by a combination of factors 

including the vehicle speed, axle spacing, and natural frequencies of 

both the bridge and the vehicle. The largest increments occur when 

these factors combine to produce a maximum of the dynamic bridge 

response in phase with the maximum quasi-static bridge response. 

This effect is evident on the upper plot of figure 7.4. At a speed of 

15m/s the dynamic response is in phase with the quasi-static and 

results in a relatively large dynamic response increment. On the 

other hand, the dynamic response at 40m/s is out of phase with 

the quasi-static response and a much lower dynamic increment is 

the result. 

Although maximum dynamic increments are a conventional measure of bridge 

vibration, are widely quoted in the literature (see section 3.1.3) , and also correspond 

closely with conventional practices for design against bridge dynamics (Appendix A), 

these plots show some of their deficiencies as a measure of dynamic response. Con­

sider the increment plots for the Lower Earley bridge. At a speed of 40m/s, the 

dynamic increment for the steel suspension is almost zero, but approximately 6% 

for the air suspension. From this information, it might be concluded that there is no 

dynamic bridge response with the steel suspension and more with the air suspension. 

An examination of the response plots for this case (figure 7.4), however, reveals the 

opposite. The dynamic response is actually significantly larger with the leaf-sprung 

vehicle than with the air-sprung vehicle, but the bridge response caused by the leaf­

spring suspension has a local minimum at the position of maximum static response. 

This results in the maximum dynamic response being less than the maximum static 
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response. The dynamics may still be important for design against fatigue where 

stress cycles and not maximum levels are important. Therefore, better measures 

of the importance of dynamic response need to be developed. Some possibilities 

include the average (rms) deviation of the dynamic response from the quasi-static 

response, the ratio of the magnitude of the largest dynamic cycle to the maximum 

static deflection, or a more complicated formula based on a fatigue damage calcula­

tion. Even so, the maximum dynamic response increment provides a useful measure 

for estimating maximum responses and designing against overloads. 

7.3 Conclusions 

This study has shown that the air-sprung vehicle produced smaller theoretical 

dynamic responses than the leaf-sprung vehicle on all three bridges. The largest 

dynamic responses were observed for the bridge with a 3.2Hz natural frequency. 

Air-sprung vehicles cause lower dynamic responses on bridges because they have 

lower natural frequencies than most highway bridges, because they apply smaller 

dynamic loads to the bridges, and also because they are more heavily damped than 

leaf-spring suspensions. Based on the theoretical analysis performed here, there 

is tentative evidence to suggest that air-sprung vehicles could be allowed to carry 

larger loads than vehicles with leaf-spring suspensions. 
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CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK 

8.1 Conclusions 

The dynamic response of short-span highway bridges to heavy vehicle loads has 

been described mathematically, and methods for solving the equations of motion 

have been developed and verified experimentally. The validated methods were used 

in two studies: to determine the importance of bridge-vehicle interaction, and to 

assess the effects of vehicle suspension design on bridge dynamics. 

8.1.1 Vehicle-Induced Bridge Dynamics 

A convolution formulation for calculating vehicle-induced bridge response was 

developed and discussed in chapter 2. A new technique for evaluating the convolu­

tion integral in the frequency domain by using the Fourier transform was developed. 

This method has several advantages including 

(i) The frequency domain calculations are much faster than the equivalent 

time domain methods, especially if the wheel loads are known (eg. mea­

sured), 



(ii) The method uses bridge vibration mode shapes which can come from 

many sources (eg. measurements, simple theories, finite element predic­

tions ), 

(iii) The method can be used with any vehicle model. 

8.1.2 Validation of Theory 

The convolution method was verified theoretically by comparison with simple 

theories, and experimentally by tests on two typical highway bridges. 

The Drift Road bridge exhibited modes characteristic of continuous beams on 

several rigid supports. The finite element model of the Drift Road bridge predicted 

the natural frequencies more accurately than the beam theory, but did not predict 

significantly different mode shapes. On the other hand, the Lower Earley bridge 

displayed two-dimensional behaviour. Nevertheless, mode shapes from beam theory 

were found to be good approximations for response predictions. 

For the vehicle-induced responses, good agreement between prediction and mea­

surement was observed on both bridges. The discrepancies could largely be at­

tributed to experimental error. 

8.1.3 Bridge-Vehicle Interaction 

The validated convolution method was extended to include vehicle models through 

an iterative procedure which was shown to converge for two different vehicle models. 

A parametric study was pedormed to assess the importance of dynamic bridge­

vehicle interaction. In general, interaction can be ignored if the vehicle frequency is 

less than half of the first natural frequency of the bridge, or the vehicles are light 

and the speeds are low. Since most vehicle frequencies are in the 1.5 to 4.5Hz range, 

bridges with natural frequencies near 10Hz will have little interaction with most 

vehicles. 

170 



8.1.4 Vehicle Suspensions 

A parametric study was conducted to compare the effects of air and leaf-spring 

vehicle suspensions on bridge dynamic response. 

Air suspensions were found to cause consistently lower dynamic response incre­

ments than steel suspensions because the air-springs acted like dynamic vibration 

absorbers and generated lower dynamic wheel loads. 

8.2 Recommendations for Further Work 

8.2.1 Theory 

The theory for calculating bridge response to prescribed vehicle loads is well 

understood and has been refined in this dissertation. Nevertheless, questions still 

remain about the validity of damping assumptions. More theoretical and experi­

mental research is needed into the mechanisms of damping behaviour in bridges. 

8.2.2 Validation of Theory 

Validated vehicle models were used for the computations of chapter 7, but the 

vehicles corresponding to these models were not available for the bridge tests. In 

addition, the surface profile of the bridges was not measured. In order to verify the 

whole system, the following procedure is recommended: 

(i) Measure the surface profile of the test bridge including the roughness at 

the expansion joints, 

(ii) Conduct tests with a vehicle for which a validated model is available, 

and include constant speed and variable speed tests to assess the validity 

of response calculations. For variable speed tests, the vehicle position 

would have to be monitored continuously. 
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(iii) Measure wheel loads and bridge responses simultaneously. Both dis­

placement and acceleration measurements of the bridge response should 

be made, if possible. 

(iv) Predict bridge responses from measured wheel loads and from bridge­

vehicle interaction calculations and compare the two predictions with 

the measurements. 

In addition to these validation experiments, more information is needed to de­

scribe the surface roughness of bridges in the V.K. to provide a data-base for re­

searchers and possibly bridge designers. 

8.2.3 Bridge-Vehicle Interaction 

The convolution integral should be implemented into the step-by-step integration 

of the vehicle simulation [17, 26] and evaluated in the time domain. This would 

provide a check on the validity of the iterative implementation of the frequency 

domain method, and would also enable an assessment of the relative efficiency of 

the two methods for bridge-vehicle interaction calculations to be made. 

Further study is needed to extend the guidelines for determining the importance 

of bridge-vehicle interaction. The following parameters should be studied: 

(i) The effects of pseudo random bridge surface roughness should be exam­

ined in a systematic manner. 

(ii) The simple vehicle models should be extended to include wheel-hop and 

pitch modes of vibration, 

(iii) The results from the simpler models should be assessed with more real­

istic bridge models. 

~ 
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8.2.4 Vehicle Design 

More work is required to assess the bridge damaging effects of different heavy 

vehicles. In this study, vehicles with air-spring suspensions were shown theoretically 

to cause lower dynamic response increments than vehicles with steel suspensions. 

This work should be extended to other damage criteria for bridges such as fatigue life, 

and punching shear resistance of deck slabs. In addition, local damage to expansion 

joints should be considered because poor expansion joints can cause large dynamic 

loads and thus exacerbate other dynamic effects. 

Some of the parameters that should be investigated more fully are: 

(i) the bridge surface profile, 

(ii) vehicle tyre, suspension, and inertia parameters, 

(iii) bridges known to exhibit large dynamic responses . 

Finally, research should be conducted to understand the speed peaks in the dy­

namic increment plots. These speed peaks are related to several parameters includ­

ing the vehicle speed, bridge and vehicle natural frequencies, vehicle axle spacing, 

and surface profile. The phenomenon should be investigated with simple vehicle 

models to try to isolate the effects of the various parameters. 

8.2.5 Bridge Design 

No attempt was made in this dissertation to evaluate the provisions of current 

bridge design codes, but the tools for such an investigation have been developed. 

Any research into design codes should first question the validity of a dynamic load 

allowance based on static loads . Unfortunately, more rational design procedures 

may not · be as easy to develop or to implement. An assessment of bridge codes 

would involve selecting a design vehicle and calculating dynamic bridge responses 

for different cases. The resulting responses would then be compared against static 

design procedures by comparing dynamic increments, fatigue life, and maximum 
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wheel loads. More rational design procedures could then be developed by observing 

the deficiencies inherent in the existing procedures. 

8.3 Review of objectives 

The main objectives of this study have been achieved. A new method for calcu­

lating vehicle-induced bridge dynamics was developed and validated experimentally. 

The third objective, to identify the importance of bridge-vehicle interaction, has 

been completed for the case of a single degree of freedom vehicle moving over a 

bridge. Guidelines for determining the importance of the interaction were devel­

oped. Finally, the effects of two different vehicle suspensions on bridge responses 

were compared and steel suspensions were found to cause larger bridge dynamic 

responses than air suspensions. 

This dissertation has highlighted the importance of vehicle-induced bridge vi­

brations. Further changes to vehicle or bridge design practices should incorporate 

present knowledge of bridge-vehicle dynamic interaction. 
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Bridge Design Codes: A Review 

This appendix reviews bridge design procedures for accounting for vehicle-induced 

bridge vibration. Three different design codes are compared: British Standard 5400 

(U.K.) [10], AASHT01 (U.S.A.) [2], and the OHBDC2 (Ontario, Canada) [75]. The 

AASHTO code is reviewed because its design process is used in several other coun­

tries and is somewhat of a standard while the OHBDC is important because of its 

progressive attitude towards bridge design. 

A.I Comparison 

All three codes share the same basic philosophy in that they specify (directly 

or indirectly) a 'dynamic load allowance' or 'impact factor' to account for dynamic 

effects. The term 'dynamic load allowance' was introduced by the OHBDC, and is 

preferred over 'impact factor' because impact between vehicles and bridges seldom 

occurs except in the case of collisions! The dynamic load allowance (DLA) is defined 

1 American Association of State Highway and Transportation Officials 

20ntario Highway Bridge Design Code 
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implicitly as follows 

Dynamic design load = (1 + DLA) Static design load. (A.l) 

Therefore the dynamic load allowance is analogous to the dynamic load increment, 

DI/ defined in section 3.1.2. The following table illustrates the way in which this 

dynamic load allowance is applied in the three codes 

I Design code I Dynamic load allowance 

BS 5400 (U.K.) 0.25 for one axle as part of the 
uniformly distributed loading (type HA) 

BD 21/84 (U.K.) [29J 0.80 for the heaviest axle of a single 
(Assessment only) heavy goods vehicle for short-span bridges 

AASHTO (U.S.A.) DLA = 15.24 < 0.30 
L+38 -

where L is the loaded length of 
the bridge in metres 

OHBDC (Ontario) 0.20 :::; DLA :::; 0.40 
and varies with the first natural 
frequency of the bridge as shown in 
figure A.l 

In the U.K., the dynamic load allowance of BS 5400 is not applied by the de­

signer, but is included implicitly in the formulation of the live load specifications. 

Furthermore, the increment of 0.80 (BD 21/84 [29]) is only used for assessment of 

existing bridges and not for design of new ones. This large factor was based on mea­

surements of wheel loads on bridges by Page [76J . He measured maximum dynamic 

loads that were almost double the static values (see section 3.1.2) and the assessment 

code reflects these large measured increments. BS 5400 includes a separate dynamic 

load allowance for fatigue design. Figure A.2 shows that this allowance is applied by 

increasing the influence line for static stress near a discontinuity in the road surface 
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profile. The static influence line is increased by 25% at the discontinuity and then 

decreased to the original level over a distance of 5 metres. 

An important difference between the British code and the two North American 

codes is that the HA loading of BS 5400 is an uniformly distributed lane load while 

the other two codes specify design vehicles in addition to a lane load. The HB loading 

of BS 5400 is a design vehicle, but it is meant to represent exceptionally large loads 

(electrical transformers, generators, military vehicles, etc.), and not heavy goods 

vehicles. In addition, the HB loading does not include any dynamic allowance. 

Nevertheless, design vehicles are considered for fatigue design under BS 5400. 

The design provisions for dynamic wheel loads in Ontario are more detailed. Five 

different criteria are specified for obtaining dynamic load allowances. 

(i) use tests or dynamic analyses to estimate dynamic effects, 

(ii) for a single axle or wheel load use an allowance of 0.4, 

(iii) for two or more axles with bridge lengths greater than 22m then calculate 

allowances based on figure A.1, 

(iv) use an allowance of 0.1 for the uniformly distributed lane load, 

(v) otherwise use an allowance of 0.3 . 

The linking of the dynamic load allowance in the Ontario code to the first nat­

ural frequency of the bridge (see figure A.1) represented a fundamental change in 

design philosophy. For the first time, the dynamic load allowance was based on a 

criterion that has a direct connection with the dynamic nature of the bridge-vehicle 

interaction. The dynamic load allowance is largest in the 2 to 5Hz frequency region 

where heavy vehicles generate most of their dynamic wheel loads . Furthermore, the 

values of the dynamic load allowance were based on dynamic response increment 

measurements (see section 3.1.3) 

This new design philosophy has been recognized by many researchers as a more 

rational method of design and similar design practices have recently been introduced 

in Switzerland [14J. 
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A.2 Summary 

Design of bridges to withstand dynamic wheel loads has long been an empir­

ical procedure. The dynamic load allowances were often based on bridge span 

(eg. AASHTO), or were simply constant factors for all bridges as is the practice 

in the U .K., and did not bear any relation to the dynamics of the bridge-vehicle 

interaction. The dynamic load allowance of the Ontario code was the first to be 

based on bridge natural frequencies. This is thought to be a good way forward for 

design against vehicle-induced bridge vibrations. 
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Self-adjoint operators 

This appendix explains the concept of self-adjoint operators as introduced in 

chapter 2, and illustrates how the assumption that the linear differential opera­

tor, £ {-}, is self-adjoint leads to the fact that the modes satisfy the orthogonality 

conditions of section 2.2.1. 

B.l Theory 

Consider the following differential equation for an undamped bridge model 

a2y m(x) at2 (x, t) + £ {y(x, t)} = O. (B.l) 

where m(x) is the mass per unit surface area, and y(x, t) is the transverse deflection 

of the bridge. A modal solution of this differential equation in the following form is 

sought 

00 

y(x, t) = L <fy(n) (x)qn(t) (B.2) 
n=l 

where the <fy(n)(x) are the mode shapes and the qn(t) are the normal coordinates. 

It will be shown that if £ {.} is self-adjoint then the following two orthogonality 
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conditions hold 

j,n=I,2,3, ... ,oo (B.3) 

j,n = 1,2,3, ... ,00 (B.4) 

where w(n) is the nth natural frequency (rad/s), 

((n) is the nth modal damping ratio, 

R is the surface area of the bridge, 

and Djn is unity if j = n and zero otherwise. 

The first step is to define an inner product for functions of the spatial derivatives 

as 

(u(x), v(x)) = k u(x)v(x) dx (B.5) 

where (u(x), v(x)) denotes the inner product of the function u(x) with v(x). An 

operator, £ {-}, is self-adjoint with respect to the inner product if it satisfies the 

following relationship 

(£ {u(x)} , v(x)) = (u(x), £ {v(x)}) (B.6) 

l.e. 

k £ {u(x)} v(x) dx = k u(x)£ {v(x)} dx. (B.7) 

For the rest of this discussion, the linear differential operator, £ {-}, will be 

assumed to self-adjoint with respect to the inner product of equation B.5. If the 

modal expansion of equation B.2 satisfies the differential equation, then so must any 

single mode solution, Yn(x, t), 

(B.8) 

Substituting this single mode solution into equation B.l and separating variables 

gIves 

d;t~n(t) -1 £{</>(n)(x)} 
qn(t) = m(x) </>(n) (x) = -An (B.9) 

~ 

181 



where An is a constant. 

Now assume that there are two distinct solutions for An, say Ap and Aq, then 

(B.1D) 

and 

(B.l1) 

Taking inner products of these two equations with <fy(q)(x) and <fy(p)(x) respectively 

gIVes 

(B.12) 

and 

(B.13) 

Subtracting equation B.13 from B.12, and noticing that the definition of a self­

adjoint operator means that the left hand sides of these two equations are equal, 

results in 

For the inner product defined as an integral (equation B.5) the following rela­

tionship holds 

(B.15) 

and so 

(B.16) 

Since Ap and Aq are distinct, the conclusion is that 

if p =I- q (B.17) 
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and therefore that the <jJ(n)(x) form an orthogonal set. By suitable scaling, they can 

be made to satisfy 

for all n. (B.18) 

Therefore the <jJ(n)(x) form an orthonormal set of functions which satisfy the first 

orthogonality condition. In order to show that the second orthogonality condition 

holds, the first orthogonality condition is substituted into the inner product of equa­

tion B.12 to obtain 

(B.19) 

All that remains is to show that An is equal to w(n)2. Consider the differential 

equation for the normal coordinations 

(B.20) 

which has solutions of the form 

(B .21) 

where w(n)2 = An and Cl, C2 are constants dependent on the initial or boundary 

conditions. Therefore equation B.19 can be written as 

(B.22) 

and the second orthogonality condition has been shown to follow from the first. 

B.2 Example 

To demonstrate that the assumption of self-adjoint operators is valid for bridge 

vibration problems, consider the differential equation for a simply-supported Euler­

Bernoulli beam 

cPy 84 y 
m 8e (x, t) + El8x4 (x, t) = O. (B.23) 
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with boundary conditions 

y(O, t) = y(L, t) = 0 

82 y 82 y 
8x2 (0, t) = 8x2 (L, t) = 0 

(B.24) 

where L is the length of the beam, m is the mass per unit length, El is the stiffness, 

and the linear differential operator, £ {-}, is the fourth derivative with respect to x . 

Consider the inner product as follows 

(u(x),v(x)) = 1L u(x)v(x)dx (B.25) 

and compute the following 

(£{u(x)} ,v(x)) = 1L ~)(x)v(x)dx. (B.26) 

Integrating by parts twice, and applying the boundary conditions gives 

(B.27) 

(B.28) 

(B.29) 

because all of the boundary terms vanish. The last expression is symmetric in u and 

v and so by applying a similar procedure it can be deduced that 

(B.30) 

Therefore the differential operator for the simply-supported beam vibration prob­

lem is self-adjoint . The integration by parts illustrates that this differential operator 

will not be self-adjoint for all beam problems and depends on the boundary condi­

tions. This fact should be taken into account when attempting modal expansions 

for problems with unusual boundary conditions such as moving supports. For sup­

port conditions typical of vehicle-induced bridge vibration problems, however, the 

differential operator will almost always be self-adjoint. 
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The Effects of Double Impulses with the 

Instrumented Hammer 

This appendix analyses the effects of multiple hammer impulses on the data 

analysis. Special consideration is given to the calculation of transfer functions. 

C.l Frequency domain analysis 

The transfer functions of chapter 4 were calculated by dividing the Fourier trans­

form of the response by the transform of the input as follows 

Y(w) 
H(w) = F(w) 

where H(w) is the transfer function at frequency w, 

Y (w) is the Fourier transform of the response, 

and F(w) is the Fourier transform of the input. 

This procedure is valid as long as the transform of the input is not zero. 

(C.1) 

Consider a force input composed of two distinct impulses, Po and Pb applied to 

the bridge 

f(t) 5(t)Po + 5(t - tdPl 

Po(5(t) + 5(t - t l )7]), 
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where 'f/ is the ratio of the magnitude of the second impulse to the first, and the 

impulses are applied at times zero and tl respectively. 

To illustrate the effect of the double hit in the frequency domain, the Fourier 

transform of f(t) is computed as 

F(w) ~ 100 

f(t)e- iwt dt 
271" -00 

(C.4) 

Po ( .) F(w) = - 1 + 'f/e- twt1 
. 

271" 
(C.5) 

Figure C.1 shows the magnitude of a Fourier transform of a double impulse 

calculated from equation C.5. The mean value of the transform is proportional to the 

magnitude of the first impulse and the amplitude of the superimposed oscillations is 

proportional to the magnitude of the second impulse. The oscillations have a period 

of t~' Therefore, zeros of F( w) can occur only if the two impulses have identical 

magnitudes. This conclusion can also be shown algebraically by setting 

F(w) = 0 = :; (1 + 'f/e- iwt1
) (C.6) 

which has solutions when wtl = j7l" where j = 1,2,3, . .. ,00, and 'f/ = l. 

Therefore, transfer functions can be calculated from equation C.1 as long as 

the impulses are not of similar magnitude. In this study, the magnitude of second 

impulse was less than 20% of the first. Therefore, repeated impacts of the impulse 

hammer did not adversely affect the data analysis. One exception occurs when the 

second impulse effectively cancels the response caused by the first (which requires 

precise magnitude and phase). This cancellation would be immediately evident when 

the responses were measured and was not a problem for the tests in this study. 

-
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