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THE DYNAMIC RESPONSE OF SHORT-SPAN
HIGHWAY BRIDGES TO HEAVY VEHICLE LOADS

Mark Finkle Green

Summary

This dissertation investigates the dynamics of highway bridges subjected to heavy
vehicle loads.

A convolution method based on bridge mode shapes is developed to predict the
dynamic response of a bridge to a given set of wheel loads. The convolution integral
is solved by transformation to the frequency domain.

In order to validate the bridge response calculation method, an experimental
procedure, consisting of impulse tests to determine the bridge modal properties
and vehicle tests, is presented. The measured modal properties of the bridges are
compared against predictions from beam theory and finite element calculations.
Good agreement between theory and measurement is shown. The modal parameters
are combined with measured wheel loads in the convolution calculation to predict
bridge responses. These predicted responses are compared with the measurements
and good agreement is found.

The convolution method is extended by an iterative procedure to include vehicle
models and two parametric studies are performed. In the first, the importance of
the dynamic interaction between vehicles and bridges is investigated, and guidelines
for determining when interaction can be ignored are presented. In the second study,
the effects of vehicle suspension design on bridge dynamic response are considered.

Vehicles with leaf-spring and air-spring suspensions are considered.
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INTRODUCTION

Bridges serve a vital role in our transportation systems. In a typical journey,
a heavy goods vehicle encounters dozens of bridges. During each bridge crossing,
it applies dynamic wheel loads which cause the bridge to vibrate. The repeated
application of these loads can lead to deterioration and a resulting reduction in the
service life of bridges.

In recent years, there has been a tendency towards larger heavy goods vehicles to
increase efficiency as well as an increase in heavy vehicle traffic. There is a pressing
need to understand the implications of these larger loads on bridge vibrations.

At the same time that dynamic loads on bridges are increasing, new materials
and improved design methods have resulted in lighter and more flexible bridges.
Because of these engineering advances, highway bridges are increasingly susceptible
to vibration. Not only are modern bridges more sensitive to dynamic loads, but they
also have natural frequencies in the the same range as those of heavy vehicles. The
first resonant frequency of highway bridges is usually below 10Hz and often as low as
2 or 3Hz [8, 11]. Because most heavy vehicles generate their dynamic wheel loads in
the 1.5 to 4.5Hz frequency range [17, 19, 26], excitation of one system by the other

is significant. To complicate matters further, bridge damping is low (approximately

2 percent of critical in the first bending mode [80, 89]) and does not significantly




reduce the vibrations caused by the bridge-vehicle interaction.

Notwithstanding the importance of vehicle-induced bridge dynamics, major bridge
failures are not normally caused by dynamic wheel loads [16]. They cause more sub-
tle problems and contribute to fatigue, surface wear, and cracking of concrete which
leads to corrosion problems. Thus dynamic loads continually degrade bridges, and
increase the necessity of regular maintenance.

Maintenance costs for highway bridges are extremely high. In the U.K., £20
million [60] are spent each year keeping the network of concrete bridges serviceable.
Even this expenditure is not sufficient to account for the new 38 tonne vehicles and
the Department of Transport has allocated £2000 million for bridge upgrading over
the next 10-15 years. Furthermore, an additional £700 million in strengthening costs
is estimated for the transition to 40 tonne vehicles [1]. It is not known what portion
of bridge damage is caused by heavy vehicle loads because the dynamic response of
bridges to heavy vehicle loads is not adequately understood. Nevertheless, even if
only a small percentage arises from bridge vibrations then these dynamics account for
major expenditure. This connection between dynamic wheel loads and maintenance
costs was highlighted by Husband & Co. [50] in their 1980 report to the Department

of Transport concerning the effects of heavy vehicles on bridges.

“Because of ... variable factors it is not possible to provide an accu-
rate estimation of dynamic effects ... The extent to which heavy vehicles
contribute to dynamic effects is mostly related to the running surface of
the carriageway. Both an increase in the number of heavy axles and an
increase in the weight of heavy axles will increase the rate of wear on
road surfacing making maintenance necessary more frequently. If main-
tenance is not undertaken in time, as the road surface deteriorates the
magnitude of dynamic effects will increase and with metal structures,

the fatigue life will be shortened.”[50]

A better understanding of the dynamics of the bridge-vehicle system is necessary

in order to build bridges to resist vibrations, to design better vehicles to reduce




bridge damage, or to regulate vehicle loads and suspensions.

1.1 Background

The first recorded research into bridge vibration appears to be a report published
in 1849 by Willis [98], which discussed the causes of the collapse of the Chester
Railway Bridge in 1847. This report presented the results of simple laboratory ex-
periments with carriages on light girders, and proposed theoretical equations by
ignoring the inertia of the bridge. These equations were later solved by Stokes [86].
Over the next century, investigations into bridge dynamics were mainly concerned
with developing analytical solutions for special types of moving loads such as con-
stant forces, sinusoidally varying forces, and linearly increasing forces. Most of these
studies were summarized by Inglis [53] in 1934, who also increased the numerical
accuracy of the previous solutions.

Digital computers introduced a new era in bridge vibration research because
the complexities of bridge and vehicle systems could finally be modelled. Several
computational studies have been attempted (see Section 2.1), and extensive test-
ing programmes conducted (see Section 3.1). Even so, a number of fundamental

questions still remain unanswered:

(i) Is it possible to model the bridge-vehicle system with sufficient accuracy

to predict bridge vibrations?
(ii) How important is the dynamic interaction between bridges and vehicles?

(iii) How do the design parameters of modern vehicles affect bridge response

and damage?

(iv) Are current static design methods adequate for the design of bridges for

dynamic vehicle loads?

The first question requires examination before any theoretical investigation is
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Figure 1.1: Schematic diagram of bridge-vehicle interaction

attempted. The complexity of the problem has been noted by several researchers

and was aptly summarized by Wheeler in 1984 [97]:

“Dynamic response of bridges to vehicles is a highly complex interaction

and one that is unlikely to be amenable to theoretical analysis.”

This type of thinking has led some researchers to favour large scale experimental
tests 7, 8, 14]. Experiments by themselves, however, have disadvantages. Valuable
data can be obtained, but it can be difficult to interpret without theoretical models.
In addition, the experimental results cannot always be extrapolated to untested
bridges. Developing theoretical models that can be experimentally validated is the
best compromise.

Regarding the second question, the largest bridge vibrations are known to occur
when the bridge and vehicle natural frequencies are close together [7]. Figure 1.1
shows a schematic diagram of bridge-vehicle interaction. The vehicle is excited
by road roughness as well as dynamic deflection of the bridge. As a result, the
vehicle generates dynamic wheel loads which in turn excite the bridge causing larger
dynamic displacements to be fed into the vehicle. This feedback mechanism of

interaction forces couples the dynamic response of the bridge to that of the vehicle.
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It is not clear, however, under what circumstances large bridge responses are caused
mainly by the vehicle being excited by the road (i.e. little interaction), or being
excited substantially by the bridge. Guidelines are needed for determining when
bridge-vehicle interaction can be ignored.

The importance of vehicle characteristics is the topic of the third question. Ve-
hicles with suspension systems cause lower dynamic bridge responses than unsprung
vehicles [8, 94], but no systematic comparison of the dynamic effects of different ve-
hicle suspensions has been found in the literature. Nevertheless, there has been
some evidence to suggest that some suspension types tend to cause larger dynamic
bridge responses than others [74]. A parametric study concerned with the effects of
different types of vehicle suspensions and bridge dynamics is needed.

The final question refers to bridge design practices. Currently, most bridge de-
sign codes contain no specific provisions for dynamic analysis. Dynamic effects are
considered simply by increasing the static design loads with an empirical dynamic
load allowance (or impact factor) that is usually related to span length [4]. This
method is easy to apply, but it does not reflect the nature of the dynamic sys-
tem. This incompatibility has led the ASCE! Committee on Loads and Forces on
Bridges [4] to raise the following three questions about the AASHTO? dynamic load
allowances:

1. “Should they be made more conservative?”

2. “Should they be made less conservative?”

3. “Should they be replaced or restructured?”

The ASCE Committee [4] also suggested as a long term goal that “rational pro-
cedures for dynamic live load analysis in lieu of the use of specified dynamic al-
lowances” should be identified. This opinion coincides with that of the Ontario
Highway Bridge Design Code (OHBDC) [75] which encourages designers to conduct
tests or dynamic analyses. Further details of the bridge design specifications for dy-

namic wheel loads in the U.K., U.S.A., and Ontario are contained in Appendix A.

! American Society of Civil Engineers

?American Association of State Highway and Transportation Officials
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The role of dynamic loads in bridge fatigue has received little attention in the
past as only stress cycles caused by moving static loads have been considered [2, 10,
75, 82]. Recently, more emphasis has been placed on the contribution of stress cycles
from bridge vibrations [16, 103]. Fatigue is also becoming a concern for concrete
structures [16] so more highway bridges are under scrutiny. In order to calculate the

dynamic fatigue effects, realistic models of vehicles and bridges are needed [16].

1.2 Conclusions

This dissertation investigates some of the problems outlined in the previous sec-

tion. The five basic goals of this research are as follows:

(i) to develop a computational method for predicting the dynamic response

of bridges to heavy vehicle loads,
(ii) to experimentally validate the method of (i),

(iii) to identify and quantify the importance of the dynamic interaction be-

tween vehicles and bridges,

(iv) to study the effects of different vehicle properties on bridge response and

damage.

The main body of the work is divided into six chapters with reviews of the
pertinent literature contained in the appropriate chapters.

The equations of motion describing the dynamic response of bridges are presented
in chapter two along with a new convolution method for solving the equations. The
chapter also contains comparisons of the results of the new method with other
theoretical solutions.

Chapter three outlines the procedures used for collecting the experimental data
necessary to validate the calculation method. The test descriptions are divided into

two parts: impulse tests to determine characteristic bridge responses, and vehicle

6




-

tests in which the dynamic wheel loads and bridge responses were measured simul-
taneously. Specifications of the test bridges and vehicles are presented along with
details of the instrumentation and data processing equipment.

Data analysis procedures are described in chapter four. Vehicle wheel loads and
bridge responses are presented along with the results of the modal analysis. The
presentation of the test results leads logically to the topic of chapter five, namely,
the model validation. In chapter five, the measured modes are compared against
theoretical mode shapes, and the bridge response calculation method is validated
experimentally.

In chapter six, the convolution method is extended to include vehicle models
and a parametric study of the importance of bridge-vehicle interaction is conducted.
Chapter seven presents a parametric study of bridge responses calculated using
the validated model. The effects of different vehicle speeds and suspensions are

considered. The final chapter summarizes the results of the research and makes

recommendations for further research.




MODELLING VEHICLE-INDUCED
BRIDGE DYNAMICS

Predicting vehicle-induced bridge vibrations involves theoretical modelling of two
complicated systems. Models of vehicle dynamics have been validated by various
researchers, but although many authors have studied vehicle-induced bridge vibra-
tions, only a few have attempted to validate their models with experiments.

A convolution method for simulating bridge dynamics is presented in this chap-
ter. The time domain convolution integral is solved by transformation to the fre-
quency domain by the Discrete Fourier Transform. The method is well-suited to
experimental validation as it can incorporate measured bridge properties, and arbi-
trary wheel loads. Other advantages are that it is not dependent on any one vehicle
or bridge model, is faster than time domain calculations, and can accommodate

the dynamic coupling of the bridge and vehicle. Before the convolution method is

presented, other bridge models and solution methods will be discussed.
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2.1 Dynamics of Bridges and Vehicles

2.1.1 Bridge Models

There are two common theoretical approximations for bridges. The most preva-
lent is a one-dimensional Euler-Bernoulli beam [6, 25, 28, 42, 43, 45, 51, 52, 54, 56,
66, 72, 74, 83, 84, 87, 94, 99, 100]. By far the most common way of applying this
beam approximation is through discretization techniques such as the finite element
method (25, 28, 38, 42, 43, 45, 52, 54, 72, 87, 94] but some authors have opted for
continuous models [6, 51, 56, 66, 83, 99, 100].

In general, continuous models are used when the vehicle is modelled as a moving
constant force or unsprung mass, while finite element calculations have been applied
with more complex vehicles. The finite element method allows more complex bridge
geometry and loading cases to be considered.

The beam analysis ignores any two dimensional response properties of bridges
and thus makes calculations simpler. Nevertheless, there have been some attempts to
account for the fact that bridges may exhibit torsional modes of vibration. A simple
way of accounting for this two dimensional behaviour is to add torsional degrees
of freedom to the beam idealization [42, 43|, but the two dimensional problem has
most often been approached by approximating the bridge as a plate [40, 42, 43, 55,
57, 71, 94].

Gupta and Traill-Nash [42, 43] compared three models of bridges: a beam ideal-
ization, a beam with torsional degrees of freedom, and an orthotropic plate. They
concluded that the beam idealization is adequate for preliminary analysis of long,
narrow bridges while the orthotropic plate model is a better approximation for other

bridges. They also stated that the beam model with torsional degrees of freedom

adds complexity to the beam idealization without yielding solutions comparable to
those predicted by orthotropic plate analysis [43].

Kulkarni and Ng [57] proposed an interconnected beam idealization of a two ‘

dimensional plate structure that involved dividing a plate into a series of beams and




then imposing compatibility conditions between the beams. By analysing individual
beams instead of the whole plate, this method reduces the mathematical complexity
of the plate model and at the same time models torsional responses [57].

Two other assumptions are usually made for bridge response computations. The
first is that the effects of rotary inertia and shear deformation are ignored, and the

second that damping is viscous [80]. If the height to span ratio of the bridge is

1

15, then the first assumption is valid [34]. Viscous damping is acceptable

less than
because bridge damping is usually light and the response is relatively insensitive
to the damping model [36, 94]. Some authors have ignored damping completely to
simplify calculations [23, 57, 83, 101].

On the other hand, Eyre and Tilly [33] found that bridge damping varied with
the amplitude of vibration. A schematic representation of the damping behaviour
they measured is provided in figure 2.1. The damping curve has two plateaus, corre-
sponding to what Eyre and Tilly called ‘lower damping’ and ‘upper damping.” They
suggested the lower damping value corresponds to the damping of the superstruc-
ture while the higher value incorporates the effects of joints and abutments. Since
‘lower damping’ usually only occurs with very small oscillations, Eyre and Tilly [33]
suggested that the higher damping values be used in practice. Nevertheless, they
cautioned that the range of validity of this assumption should be investigated.

A calculation procedure utilizing measured bridge characteristics such as mode
shapes would help solve some of the problems associated with completely theoretical
models, providing the measurement procedure used loads of representative ampli-

tude. Such a method would not depend, to the same extent, on assumptions about

damping, material properties, or torsional behaviour.

2.1.2  Solution Methods
For most analyses of bridge dynamics, the response is calculated as a sum of con-
tributions from individual modes. This process of modal expansion is very popular

because of the convenience of uncoupling the modes [9, 23, 35, 48, 57, 71, 92, 99].
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In some cases, sufficient accuracy is obtained by considering only the first mode [9,
57, 59, 92, 99]. Veletsos and Huang [94] suggested that the first three modes make ,
the most significant contributions to the response of simply-supported bridges.

Other authors have used influence functions [34, 90] to define an integro-differential
equation for bridge dynamics. Fryba [34] compared this integral method with modal
expansion and found the former more laborious but faster to converge. In addition
he presented a combined method that has some of the advantages of both meth-
ods. He suggested modal expansions should be used to compute deflections, but the
combined method should be used for obtaining bending moments and shear stresses.

In this study, the bridge response is formulated as a convolution of the vehicle
wheel loads with bridge impulse response functions. The latter are expressed as com-
binations of mode shape values which can be obtained from bridge measurements,
continuous models, or finite element calculations.

Regardless of the formulation of the bridge-vehicle model, several different meth-
ods of solving the resulting equations of motion exist. Step by step numerical in-
tegration techniques are the most widely used and the general procedure, at each

time step, is as follows

(i) assume displacements or accelerations based on the results from the pre-

vious time step,

(ii) integrate the equations of motion for the bridge and the vehicle to predict

the quantities assumed in (i),
(iii) compare the calculations of (ii) with the assumptions of (i),

(iv) repeat (i) to (iii) until the solution converges with the required tolerance.

Different authors have used the Newmark-/ method [25, 48, 52, 101], the Wilson-0
method [45], or the Finite Integral Method [72, 87], but the basic concept is the same.
One alternative to numerical integration is the finite difference method, and it

has been used with some success [37, 90].
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The numerical methods mentioned in this section rely on calculations done com-

pletely in the time domain. Solving the equations in the frequency domain and then
transforming the solution to the time domain can be much more efficient. This is

especially the case if one desires bridge responses to known vehicle loads.

2.2 Calculating Bridge Response to Vehicle Loads

In this work, the bridge and vehicle are modelled separately and then combined
through dynamic contact forces and displacements. This requires an iterative so-
lution, but enables the combination of any vehicle model with any chosen bridge
model. The rest of this chapter presents general equations of motion for the bridge

along with a convolution method for solving them.

2.2.1 Equation of Motion: Bridge

A relatively general formulation of the equation of motion will be considered
here. Assuming viscous damping, linear elasticity, small deflections, and neglecting
the effects of shear deformation and rotary inertia, the equation of motion for a

typical bridge can be written in the following form [70]

o* 0
)P 61) + {0} + £y} = fx,1 (2.1)
where L is a self-adjoint linear differential operator with

respect to the spatial variables (see Appendix B),
X is a two dimensional position vector,
m(x) is the mass per unit surface area,
y(x,t) is the transverse deflection of the bridge,
C is a viscous damping operator with respect to the
spatial variables,

and  f(x,t) is the force exerted by the vehicle on the bridge.

It has been shown [70] that the response of a system governed by equation 2.1,

12




to an input, f(xy,t) is given by the following convolution integral

y(x,1) = /°° h(x,xg,t —7)f(x5,7) dr (2.2)

—c0
where h(x,Xy,t) is the impulse response function at position x for an impulse ap-
plied at position x;. Therefore, equation 2.1 may be solved by determining the
appropriate impulse response function. In order to relate the impulse response func-
tion to mode shapes, the deflection, y(x,1), is expressed in terms of normal mode

functions, ¢(")(x), as follows

y(x,1) = > ¢™(x) gu(t) (2.3)
n=1
where n is the mode number,
and ¢n(t) is the response of the n'* normal coordinate.

This coordinate transformation allows the modal responses to be uncoupled if

the mode shape functions satisfy the following orthogonality relationships [70]

/R m(x)D (x)d™(x) dx = 6im jn=1,23...00 (24)
/RE{¢(J')(X)} s (x)dx = w™’s;, jyn=1,23,...00 (2.5)
/R c{¢(f>(x)}¢(")(x)dx = 2™y, jmn=1,2,3,...0c0 (2.6)

where w(® is the n'* natural frequency (rad/s),
¢™ is the n** modal damping ratio,
R is the surface area of the bridge,

and  §j, is unity if j = n and zero otherwise.

If the mode shape functions satisfy the undamped free vibration equation corre-
sponding to equation 2.1, then the first two orthogonality conditions will be satisfied

(Appendix B). The third orthogonality condition will be satisfied if the damping op-

erator has the following form:

c {%t%(x,t)} = com(x) P(x,1) + oL {%t%(x,t)} (2.7)
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where ¢; and ¢, are arbitrary constants. Viscous damping of this form is known as
Rayleigh damping [79]. Newland [70] states Rayleigh damping is “usually satisfac-
tory for lightly-damped structures.” As mentioned in section 2.1.1, bridge damping
is usually light and the response is insensitive to the damping model [36, 94], and so
the Rayleigh damping assumption is reasonable. Rayleigh damping not only allows
the modes to be uncoupled, but also ensures that the mode shapes for the damped
and undamped cases are identical [70].

Now that the orthogonality relationships are defined, the modal expansion (equa-
tion 2.3) can be substituted into the differential equation (equation 2.1). Multiplying
by #1)(x), integrating over the surface of the bridge, and applying the orthogonality
conditions gives the normal coordinate equation

d*q,
i

dgy
(1) + 2P0 ) 4 g, (0) = Qu) (2.9
where the generalized force, Q,(t), is given by

Qn(t) = [ #7601 (x,) dx. (2.9)

This equation can be used to determine modal impulse response functions, h(n)(t),
by setting @, (t) = 6(¢) where §(¢) is the Dirac delta function. The impulse response,
R (1) = g,(t), can be shown to be

e=¢Mw(Mt sin(w&n)t)

A (1) = 5 (2.10)
Wa
where w((in) is the n** damped natural frequency such that
W) = w1 — (2 (2.11)
and (™ <1,

For the case of a force applied at one position on the bridge (as in equation 2.2),
the generalized force of equation 2.8 is equal to the product of the mode shape

function and the force at that position x;

Qn(t) = 6™ (x5) f(x5,1). (2.12)
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The convolution integral (equation 2.2) can be applied to equation 2.8 to obtain the

normal coordinate solution

au®) = [ WO —7) $"(xy) flxg,7) dr (2.13)

Invoking the modal expansion formula (equation 2.3), gives the bridge response as
o0 00
yx,t) =3 90(x) [ K= 1) " (xy) f(xy,7) dr. (2.14)
n=1 —
Comparing equations 2.2 and 2.14 illustrates that the impulse response function
corresponding to equation 2.1 is obtained by an appropriate combination of the
mode shape functions,

W, 8) = 30 60(x) 6 () A () (215)

n=1

Up to this point it has been assumed that loads are applied to the bridge at
only one position. This is obviously not the case for a moving vehicle, but the ideas
that have been developed can be extended to moving loads. For example, consider
a vehicle with IV; tyres. The vehicle forcing function can be described in terms of

the dynamic wheel loads, Pi(t), -
Nt

f(xp,t) = —25(&—&(0)}’1(1‘) (2.16)
where x; is the position of the [t* force (see figure 2.2). Each wheel force is still
applied at position xy, but x; is now moving with the vehicle. The negative sign is
included because displacements and forces are assumed to be positive upwards for
both the bridge and vehicle systems. Therefore, wheel loads which act upwards on
the vehicle are defined as positive. This means they are negative with respect to the ‘
bridge.

Substituting this forcing function (equation 2.16) into equation 2.14, and replac-

ing x; with x; for [ = 1,2, ..., N; gives \

y(x,t) = — Xt: i QS(")(X) /_o:o h(n)(t —7) g(”’l)(T) dr (2.17)

=1 n=1

g"™(r) = ¢ (a(r))A(r). (2.18)
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With the general equations of motion in this convolution format, the bridge vi-
bration problem (equation 2.1) can be solved by evaluating the convolution integral.
This integral may be evaluated in either the time or frequency domains. For this
study, a frequency domain method was chosen and the solution procedure is outlined

in the next section.

2.2.2 Solution in the Frequency Domain
The Fourier transform of the response is defined as [69, 70]:

Y(x,w) = - /oo y(x,t)e™ ! dt (2.19)

21 Jeo
where Y'(x,w) is the response transform at position x and frequency w, and ¢ = y/—1.
Substituting the convolution (equation 2.17) into the Fourier integral (equa-

tion 2.19) gives

Ngoo

Y(xw) = -3 ¢ (x) % /_ Z /_ Z RO (¢ — r)g®D(r)e= ™ dtdr  (2.20)

=1 n=1
Rearranging variables by letting f =t — 7 results in
Nt o0

Y(x,w) = — Z Z ¢(n)(x) % /_o; /_0:0 h(n)(ﬂ) g(n,l)(T) e~ iw(B+7) dBdr

=1 n=1

Nt - o0 . o0 .

=1 n=1 -

N: o0

Y(x,w) = =33 6™ (x) HW(w) GM)(w) (2.21)

=1 n=1
where H("(w) is the n'* modal frequency response function such that

1

H® -
(«) Zw?) + 2i(Meme

(w(n)Z (2.22)
and G (w) is the Fourier transform of g(™!(t).

Once Y (x,w) is computed in the frequency domain, the inverse Fourier transform
can be used to recover the time domain solution. The inverse Fourier transform is

defined as follows [69, 70]:

y(x,t) = / " Y (x,w)et di. (2.23)




2.2.3 Computer Implementation

To solve these equations by computer, the Discrete Fourier Transform can be
used to approximate the continuous Fourier transform. The first step is to compute
the transform of g(™)(¢). The function is sampled to obtain N equally spaced values,

97(‘"”), where
g™ = gD(rd) r=0,1,2,..,N -1 (2.24)

and A is the time increment. The Discrete Fourier Transform is then applied to the

sample as follows [69, 70]

1 N-1 .
N Z g£n,l)(x) e—z(27rkr/N) (225)

r=0

n,l
P =

where, k = 0,1,2,...,N-1. Discrete versions of Y (x,w) are given by
305 ¢0(x) HO(Aw) G (2.26)
=1 n=1
where Aw is the frequency resolution. Finally, the solution is recovered with the
Inverse Discrete Fourier Transform given by [69, 70]
N-1

yr(x) = 3 Ye(x)e'rer/N) (2.27)

where y,(x) = y(x,7A), r=0,1,2,...,N—1.

2.2.4 Computational Considerations
In order to implement the discrete transforms in the convolution calculation, the
time record must be long enough to obtain the required frequency resolution, Aw,

where [69]

and T is the length of the time record such that T'= NA.
In addition, A must be small enough to avoid aliasing of high frequency com-

ponents into the low frequency range of the transform [69]. Aliasing is prevented
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by ensuring that the maximum frequency present in the signal is smaller than the

Nyquist frequency:

i
Nyquist frequency = 9A Hz. (2.29)

Finally, allowance must be made for the fact that the convolution defined by
the Discrete Fourier Transform is circular. The circularity of the discrete transform
means that all the time records in the convolution are assumed to repeat themselves
with period T' when they are, in fact, not periodic. It has been shown [85] that the
differences between circular and linear convolutions can be eliminated by choosing

T such that

where T}, and T, are the lengths of the non-zero portions of the time records of the
impulse response function and the vehicle force input, respectively.

To satisfy all these criteria, the time record must be significantly longer than the
vehicle crossing time, T),,.

For example, consider a simply supported 40m bridge with a first natural fre-
quency of 3Hz traversed by a 10m long vehicle at 25m/s. If A is chosen to be
0.01 seconds, then the Nyquist frequency is 50Hz (314rad/s). With this Nyquist
frequency, the first three bridge modes can be included because the third natural
frequency is at 27Hz. Vehicle vibration is usually below 20Hz so the 50Hz Nyquist
frequency presents no problems. If the damping ratio of the first bridge mode is
assumed to be 0.02 then

—-0.377t

(1) = sin(18.8t). (2.31)

The impulse response never completely dies away, but for computational purposes
the response can be ignored when the amplitude is below 0.1% of the initial am-
plitude. With this definition, 7}, is equal to 18.3 seconds while T, is 2.0 seconds.
Therefore the time record should be chosen to be greater than 20.3 seconds and with

A = 0.01 seconds, at least 2030 points are required. For efficiency in computing the
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Discrete Fourier Transform, the number of points should be a power of 2 and so
2048 is selected. Finally, the frequency resolution is computed from equation 2.28
as 0.05Hz. This is more than adequate to resolve the frequencies of interest.

To compare the efficiency of frequency and time domain methods, suppose that
for the preceding example a time history of total length 4 seconds (400 points) was
required. To evaluate the convolution integral in the time domain requires 160000
(400?) multiplications. On the other hand, the Fast Fourier Transform algorithm
requires %N log, (V) multiplications [69] to compute each transform. The frequency
domain method includes two transform calculations and one N point multiplica-
tion giving a total of N + N log,(N) multiplications. For 2048 points, only 24576
multiplications are required making the frequency domain method about 7 times
faster! Even further time savings can be achieved when T, is approximately the

same length as T}.

2.2.5 Comparison with Known Solutions

Once the convolution calculation was implemented in a computer program, it
was possible to verify the method by comparing the results with known solutions
for simple cases. A bridge reported in the literature [33, 63, 99] is used as a test
case for the remainder of this chapter.

The bridge is idealized as a simply supported beam. The equation of motion for

free vibrations of a Bernoulli-Euler beam with viscous damping is

0 9 9
mZ 4 (,t) + C{gt“(fc,t)} + BIg4(z,t)=0 (2.32)

where m is the mass per unit length of the beam,
C is the damping operator representing Rayleigh damping,
x 1is the position along the length of the beam,
E is the Young’s modulus of the material,

and I  is the second moment of area of the cross-section.
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As stated in section 2.2.1, the mode shapes for the damped and undamped cases
are the same for Rayleigh damping. The free vibration equation without damping

18

2 4
m%;i(m,t) + Elg—w%(a:,t):o. (2.33)

Using a modal expansion (equation 2.3), and the boundary conditions for a
simply-supported beam, the natural frequencies are given by

2
(m) — E) El
w ( 7 - (2.34)

and the normalized mode shapes are represented by

4™ (z) = ,/% sin <”%> (2.35)

where L is the length of the beam.

The parameters describing the bridge were based on measurements of the Pir-
ton Lane highway bridge in Gloucester by Wills [99], Leonard [63], and Eyre and
Tilly [33]. They reported the bridge length as 40 metres, and the first natural fre-
quency as 3.2Hz with a modal damping ratio of 0.02. The mass per unit length was
estimated from drawings in the papers as 12000kg/m. Three modes were used in
the analysis, and the natural frequencies of the second and third modes were cal-
culated from equation 2.34. The modal damping ratio was assumed to be constant
for the first two modes and the damping ratio for the third was chosen to satisfy

equation 2.7.

Mode Number Natural Frequency (rad/s) Damping Ratio

1 w® =20.0 0.02
92 w® = 80.0 0.02
3 w® = 180.0 0.04

Three different types of moving loads were considered: a constant force, a sinu-
soidally varying force, and a linearly increasing force. On each of figures 2.3 to 2.5,
two curves are drawn. One is the solution obtained by the method described in this
chapter and designated as the ‘calculated’ solution. The second curve is produced

by using theoretical formulas derived by Fryba [34].
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Figure 2.3 shows the effect of speed on the bridge midspan deflection from a
constant force. The theoretical curves are only shown for the time the force is on
the bridge, and are set to zero otherwise. The deflection increases as the speed of
the force increases. Calculated and theoretical curves agree closely.

The beam response to a sinusoidally varying force is presented in figure 2.4, while
figure 2.5 contains the response of the beam to a linearly increasing force. In both
cases, deflection is plotted at midspan and the velocity is 25m/s. Once again, the

calculated solutions compare well with the theoretical solutions.

2.3 Conclusions

A convolution method for calculating the response of a bridge to vehicle loads
was developed. The method was implemented on a computer using Fourier trans-
forms to solve the equations of motion for the bridge in the frequency domain. This
procedure is considerably more efficient than equivalent time domain methods. The-
oretical verification of the method was accomplished by comparing some results with
predictions of analytical solutions.

The next three chapters discuss the experimental validation of the convolution

method presented in this chapter.




e

Upper damping, 0.02 — 0.07

Damping values typical of
multi-span steel or composite
bridges

Logarithmic decrement, §

Lower damping, 0.006 — 0.01
(Material damping is 0.002 - 0.008 for steel and 0.01 — 0.06 for concrete)

Amplitude

Figure 2.1: Schematic representation of damping behaviour

(After Eyre and Tilly [33])

Figure 2.2: Loads moving across a bridge
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EXPERIMENTAL PROCEDURE

A theoretical method for the prediction of vehicle-induced bridge vibration was
developed and compared with other theories in Chapter 2. In order to validate
this method, an experimental procedure, combining bridge modal tests with vehicle
tests, was adopted. The procedure consisted of four main steps. The first step was
the measurement of the bridge transfer functions and mode shapes. Excitation was
provided by an instrumented hammer. Step two consisted of single vehicle tests
in which vehicle wheel forces and bridge responses were measured simultaneously.
In step three, the measured dynamic wheel forces were combined with the bridge
modal responses to predict bridge responses. Finally, these predicted responses
were compared with the measured bridge responses to validate the model. The
experimental procedures for conducting the validation programme are described in

this chapter.




3.1 Background

Dynamic testing provides valuable evidence of bridge behaviour. For this reason,
many researchers have conducted dynamic experiments on bridges. The dynamic
tests have been used to assess bridge deterioration [78, 96], to provide information
about ‘dynamic increments’ [8, 13, 14, 22, 28, 32, 41, 74], to measure modal charac-
teristics [8, 33, 58, 62, 63, 64, 67, 99], to measure dynamic wheel loads [6, 22, 72, 76],
or to validate bridge models [6, 72, 87]. Some of the results of these testing pro-
grammes will be summarized in this section. Details of standard testing techniques
are available in the literature and will not be discussed at great length here. For in-
stance, Prakash Rao, Tamhanker, and Sharma [78] compare different types of static

and dynamic tests, and assess the various methods of instrumenting bridges.

3.1.1 Modal Tests

Almost all bridge dynamic testing programmes have been concerned with mea-
suring natural frequencies and damping, but only a few researchers have attempted
to measure mode shapes. This section will focus on mode shape measurement, but
some damping measurements will also be presented.

During an extensive testing programme in Ontario, Canada, Billing [8] obtained
limited mode shape measurements from vehicle-induced bridge responses, but did
not confirm them with any theoretical predictions.

On the other hand, Maguire and Severn [64] tested bridge beams during demo-
lition of an old bridge and observed simple beam modes. They measured the first
three natural frequencies, but only obtained mode shape values at a limited number
of positions.

Shepherd, Brown, and Wood [84] compared measured mode shapes with more
complicated theoretical models. They tested a three span truss bridge and modelled
it with finite elements. Once again, they measured mode shape values at a limited
number of points, and therefore found it difficult to identify the overall form of the

modes. Their theoretical analyses facilitated this identification and they obtained
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reasonable agreement between their finite element model and the measured mode
shapes.

Kumarasena, Scalan, and Morris [58] recently conducted mode shape measure-
ments on a two span suspension bridge to confirm the predictions of a finite element
model. Once again, only a small number of measurements were made and therefore
the mode shapes were not uniquely determined. Nevertheless, they obtained reason-
able agreement between their measurements and finite element predictions. They
concluded that for response prediction purposes, measured natural frequencies and
damping ratios should be combined with the finite element mode shapes.

Cantieni [15] recently conducted modal tests on a concrete box girder bridge in
Switzerland and compared his results with a finite element model of the bridge. He
found reasonable agreement between the model and his measurements. Even so, he
only measured mode shape values at a few positions over the length of the bridge,
and therefore was not able to discern whether discrepancies between measurement
and theory were caused by errors in measurement or modelling.

The most comprehensive modal testing of bridges in the U.K. was conducted in
the early 1970’s by the Transport and Road Research Laboratory (TRRL) [33, 62,
63, 89, 99]. The main objective of these tests was to determine damping behaviour,
but mode shapes were also measured.

Wills [99] compared the measured modal properties from the TRRL tests with
simple beam and finite element models. Agreement was good for both models, but
understandably better for the finite element predictions. The best agreement was
obtained for the lowest frequency modes. Natural frequency predictions overesti-
mated the measurements for higher modes. Wills suggested including the effects of
rotary inertia and shear deformation to improve the agreement, but did not test his
hypothesis. Because extensive mode shape measurements were made, Wills was able
to compare the forms of predicted and measured mode shapes rather than simply
notice that a few isolated points agreed with theory. He found good agreement in
most cases, but some unexplained discrepancies were noticed.

As mentioned earlier, damping measurements were the prime objective of the
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TRRL tests. Leonard [63] concluded that no significant relationship existed be-
tween damping and temperature while Eyre and Tilly [33] noted a correlation be-
tween damping and vibration amplitude (see section 2.1.1). The TRRL damping
measurements are presented in the following along with some measurements by re-

searchers in other countries:

Author Country Damping ratio ((;)
Eyre and Tilly [33] L1 0.003 - 0.010 (steel)
0.003 - 0.015 (concrete)
Billing [8] Ontario, | 0.004 - 0.007 (steel)
Canada | 0.008 - 0.038 (concrete)
Green [41] Ontario | 0.006 - 0.024
Cantieni [13] Switzerland | 0.003 - 0.057

All these researchers measured similar bridge damping levels which were rarely larger
than 2%.

This review of modal testing indicates that reliable measurement of bridge mode
shapes is possible, but has rarely been attempted. Several measurement positions
distributed evenly throughout the structure give the best results. Comparison of
measurements with beam and finite element predictions provides useful insight into
bridge behaviour. Most authors have found good agreement between theory and

measurement, thus illustrating the reliability of the testing technique.

3.1.2 Dynamic Wheel Loads

Most bridge testing has concentrated on measuring dynamic bridge responses,
but vehicle wheel loads have been measured during a few tests.

Biggs, Suer, and Louw [6] recorded wheel loads during dynamic bridge tests in
order to compare measured forces with predictions from a simple vehicle model.
They assessed the measurements in a qualitative manner, but did not present any
analysis to determine the statistics of the measured loads.

Page [76] conducted a large number of dynamic wheel force measurements on

30 different bridges in the U.K. In order to review his results, the dynamic load
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increment, DI;, will be defined as

P_Pst

Dl = 7,

(3.1)

where Py is the static wheel load and P is the dynamic wheel load. Page measured
peak dynamic load increments ranging from 0.09 to 0.75, but noticed that all the
peak loads occurred near the ends of the bridges. On all but one of the bridges,
90% of the bridge length was subjected to loads with increments below 0.25. The
effect of speed on the dynamic load increment was also measured. No significant
relationship was noticed for bridges with smooth surfaces, but with rougher surfaces
the dynamic load increments increased with speed.

Finally, Cantieni [15] measured wheel loads during bridge tests on the Diebul
bridge in Switzerland, but this author has not found any published results of his

wheel load analysis.

3.1.3 Dynamic Response Increments
The bridge dynamic response increment, DI, is defined analogously to dynamic
load increment as

DI =494 (3.2)
Yst

where y; is the static bridge response and y is the dynamic response. Many investi-
gators have recorded dynamic response increments and some results of their studies
are presented in this section.

Comprehensive research into the dynamics of bridges in Ontario resulted in new
design provisions [75] (see Appendix A). Measurements of maximum dynamic re-
sponse increments were fundamental to this development. Billing [8] reported many
of the test results, and they are reproduced in figure 3.1. The most important point
to notice is the significant increase in the measured dynamic increments in the 2
to 5Hz frequency band. These increased responses occur because heavy vehicles
generate most of their wheel loads in this frequency range. The new Ontario design

provisions are also illustrated on the figure. The design provisions account for the
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increased response between 2 and 5Hz. As part of the Ontario testing programme,
Green [41] analysed the effect of speed on the measured dynamic increments. He
noticed an increase in response for faster speeds, especially with rough approaches.

Cantieni [11, 13, 14] computed dynamic increments for bridges in Switzerland
and obtained results similar to those in Ontario. He noted a relationship between
the dynamic response increment and the bridge fundamental frequency. Some of
his results are reproduced in figure 3.2. Cantieni also conducted tests with several
vehicles and compared different vehicle configurations. Rigid vehicles with 2, 3, or
4 axles produced larger dynamic increments than articulated vehicles. When more
than one vehicle was on the bridge, dynamic increments were reduced. Finally,
Cantieni’s results showed that dynamic response increments were largest with the
roughest bridge surfaces and that this effect was most noticeable at high speeds.
This last conclusion correlates well with the observations of Green [41].

A research project to identify vehicles that cause large dynamic increments is
currently in progress in Queensland, Australia [22, 21, 72, 73, 74]. Dynamic incre-
ments as large as 1.32 with an average of 0.5 were measured on a simply-supported,
single span bridge [22, 74] with a fundamental frequency of 10.8Hz. These reported
dynamic increments are much larger than those measured in Ontario or by Cantieni.
Large increments occurred with both heavy and light vehicles, even though heavy
vehicles caused smaller increments on average. The reasons for the large dynamic

increments are currently being investigated by the researchers.

3.1.4 Bridge Response Validation

This review has found only a few papers concerned with the validation of vehicle-
induced bridge response. Measured modal properties have been compared with the-
ory by several authors (section 3.1.1), but very few authors have compared measured
bridge responses with theoretical predictions.

A study by Biggs et al [6] contained the first validation of the bridge-vehicle

system. The models were simple. Only simply-supported bridges were considered,




and vehicle models were restricted to one degree of freedom. Both laboratory and
field experiments were included in the validation. Comparisons were made between
measured bridge responses and those predicted by the simple models. The labo-
ratory results were better than those conducted in the field, but in both cases the
quasi-static effects dominated the comparison between theory and measurements.
The dynamic components of the predicted and measured responses were often out
of phase with each other, although magnitudes were approximately correct. Im-
provement in the comparison was obtained by using measured wheel loads which
indicated that some errors were caused by improper modelling of the vehicle and of
the bridge surface roughness. The validation was successful, but the simplicity of
the models restricts their applicability to modern vehicles and bridges.

Kulkarni and Ng [57] conducted laboratory experiments to validate their inter-
connected beam idealization for bridges (see section 2.1.1). They obtained reason-
able results, but their errors were relatively large. Theoretical and experimental
response curves were often out of phase with each other.

More recent validations with more complicated models were conducted in Aus-
tralia. Swannel and Miller [87] considered a two axle, four degree of freedom vehicle
including non-linear suspension stiffness. They used a lumped mass model for the
bridge. Viscous damping was assumed throughout. The surface profile of the bridge
was measured, and bridge responses from the passage of a test vehicle were recorded.
The recorded responses were compared with the computer simulations. Although
reasonable agreement was obtained, quasi-static effects dominated the responses.
The comparison between theory and experiment for the superimposed dynamic re-
sponses was not good. No explanation was given for the discrepancies except to note
that the system is a “complex dynamic response environment where minor changes
In parameters (e.g. vehicle vertical motion at bridge entry) can produce important
effects”[87].

Finally, Mulcahy, Pulmano, and Traill-Nash [68] obtained a good validation of

their bridge and vehicle models with field tests. Nevertheless, their results were again

dominated by quasi-static effects and had some sizeable errors at the magnitude of
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the superimposed dynamics. Furthermore, they mentioned that tests other than
those presented indicated deficiencies in their model validation.

This brief summary of vehicle-bridge validations illustrates there is a need for
validated models of bridges and vehicles representative of those currently in use.
Correctly validated models should reproduce accurately the dynamic components of

vehicle-induced bridge response.

3.2 Site Selection

Several highway bridges were inspected for possible testing. The two most suit-

able bridges were chosen according to the following criteria :

(i) convenient location for testing by TRRL vehicles
(ii) easy access for instrumentation

(iii) straightness of the bridge and approaches so that the vehicles could at-

tain a wide range of speeds
(iv) the bridge was not skew

(v) low traffic density.

The first bridge was chosen from amongst four prestressed concrete box girder
bridges crossing the M4 motorway in Berkshire. All the bridges were similar in
design, and on a TRRL bridge testing route. The bridge on Drift Road was chosen
because it was the straightest one and had the lightest traffic.

The location of this bridge is shown in figure 3.3 while the cross-section and
elevation details are in figure 3.4. Figure 3.6 shows a photograph of the north-western
half of the bridge including the instrumented span which was located directly above
the eastbound lanes of the motorway. The bridge superstructure is continuous over
the three supporting columns. Although the four spans are not all equal, the bridge

is symmetric about its middle column.
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In order to provide more data and to avoid some of the measurement problems
experienced with the Drift Road bridge, it was decided to test another bridge. One
problem with the Drift Road bridge was that it was easily excited by the aerodynamic
effects of large vehicles passing underneath the bridge, so it was decided to select
a bridge that did not cross another road. To provide a contrast to the Drift Road
Bridge, an additional requirement was that the second bridge was of a different
construction type. The bridge at Lower Earley over the River Lodden was chosen.

The Lower Earley bridge consists of three spans (see figure 3.5), but the inverted
T-beams are not continuous over the supports. Even so, there is some continuity
because the concrete slab is continuous throughout the length of the bridge and the

T-beams are joined at the piers by reinforced concrete diaphragms (see figure 3.7).

3.3 Instrumentation

3.3.1 Transducers

In order to record bridge vibrations due to different types of excitation, appro-
priate transducers were necessary. The measuring devices had to be easy to install
and readily available. A review of bridge testing literature indicated three classes of
instrumentation: displacement transducers [8, 32, 83, 84], strain gauges [8, 74, 83],
and accelerometers [8, 32, 61, 72].

Strain gauges were rejected for three reasons. Firstly, strain is not a convenient
quantity to measure for modal testing because the modal analysis procedure as-
sumes displacement, velocity, or acceleration measurements. Secondly, strain mea-
surements are dependent on local values of mass and stiffness and thus may not
represent the behaviour of the whole structure [12]. Finally, strain gauges can be
difficult to install in the field [22].

Displacement transducers were considered, but they require an inertial platform

which was impractical for these measurements. A laser method for measuring dis-
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placement was recently developed by Cantieni [12]. His method avoids the necessity
of an inertial platform, but the equipment was not available for these tests.

Piezoelectric accelerometers were seen as a good choice since they are easy to
install and remove, operate over a large range of frequencies, and are readily avail-
able.

Four B&K type 8318 high sensitivity accelerometers with internal charge am-
plifiers were used for the tests. The internal amplification reduces signal loss in
transmission to the recording apparatus. Figure 3.8 shows one of the accelerometers
along with an external line drive supply for powering the charge amplifier.

The accelerometers were mounted on aluminium discs which were glued with
strong adhesive to the bridges. For the Drift Road bridge, the accelerometer discs
were secured inside the bridge on the bottom of the box girder, while for the Lower
Earley bridge the accelerometers were attached upside down on the underside of the
bridge.

Ground loops can be a problem when accelerometers or their charge amplifiers
are not electrically isolated [49]. Since the accelerometers were mounted on dry
parts of the bridge, the concrete was assumed to be an effective electrical isolator
and it was not deemed necessary to build an electrical isolation system into the
mounts. The accelerometer charge amplifiers were battery powered by external line
drive supplies which completed the isolation of the whole system.

Finally, the selection of piezoelectric accelerometers meant it was not possible
to measure extremely low frequency vibrations. The internal charge amplifiers have
a cut-off frequency at 0.1Hz which means measurements at frequencies below 1Hz
are suspect. This did not cause problems with the hammer tests, but the vehicle
passage induces a quasi-static deflection that has a period approximately double the
time for the vehicle to cross each span. With a 20m bridge span and a 15m vehicle
travelling at 5m/s, the passage frequency is 0.14Hz which is at the lower limit of the
measuring capabilities of the accelerometers. Fortunately, this is not too much of
a problem because the passage frequency is essentially a static effect, which is not

vital for this study of the dynamic response of bridges.
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3.3.2 Signal Processing

The acceleration signals were filtered and amplified before being captured by the
data-logger. To prevent aliasing, Kemo VBF/3 filters were used. These are fourth
order Butterworth low pass filters incorporating ac high pass filters (f., = 0.125Hz)
and selectable gains of 1, 3, or 10.

In some cases, additional amplification was required before digitising and storing
the raw data. An eight channel analogue amplifier was developed with variable gains

of 1, 3, 10, 30, and 100.

3.3.3 Data Logging and Storage

The analogue signals had to be digitized and stored before any analysis could
proceed. Because of the large amount of data to be collected, the data was digitized
in the field. With 16 channels, sampling rates up to 133 kHz, and storage for 10°
data points, the available CED 1401 data logger readily met the requirements. The
data logger was driven by an IBM-PC (AT). Figure 3.9 illustrates the general set-up
for the tests ihcluding the van with the signal processing and data logging facilities.

A schematic diagram of the set-up is shown in figure 3.10.

3.3.4 Instrumented Hammer

In order to extract modal information from bridge measurements, it was neces-
sary to obtain a matrix of transfer functions relating excitation at different points on
the bridge to responses at other points [30]. Because of the large number of points
required, either the excitation source or the accelerometers had to be portable. It
was decided to fix the accelerometers in place and develop a portable method of
exciting the bridge.

The bridge testing literature was surveyed to assess excitation methods. The
possibilities include: the release of an imposed deflection [89], a vehicle driven over
a bump [89] (in this case the dynamics of the vehicle confuse the issue), a blow by

an impulse hammer or a falling weight [61, 64, 89], or sinusoidal excitation from a
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shaker [89]. The first two methods were discarded as inappropriate for this study.
Because sinusoidal shakers of suitable size are expensive to acquire and difficult to
move, impulse excitation was chosen.

The impulse was applied with an instrumented hammer that was built for a
study of ground vibration [49]. It consisted of a 20kg mass at the end of a slender
2m, 3kg arm (figure 3.9). An accelerometer was fixed to the back of the hammer
head to measure the acceleration of the head and thus deduce the force applied
(see figure 3.11). Unfortunately, the accelerometer also recorded vibration from the
hammer arm and this caused the measurements to be erroneous in the region of
the natural frequency of the hammer. Figure 3.13 shows a typical impulse and its
Fourier spectrum which is defined as the magnitude of the Fourier transform as de-
scribed by Bendat and Piersol [5]. This Fourier spectrum is more appropriate than
power spectral density for analysis of transient data and will be used throughout this
dissertation. The initial impulse is followed by hammer arm vibration and eventu-
ally a second impulse (about 0.3 seconds after the first impulse). The effects of the
second impulse are discussed in detail in Appendix C where the second impulse is
shown to cause the Fourier spectrum to vary sinusoidally. The spectrum also shows
the hammer arm vibration because the peak near 40Hz corresponds to the natural
frequency of the hammer arm. Since the important bridge frequencies were below
30 Hz, hammer vibration was not deemed to be a critical problem. Nevertheless,
the hammer was redesigned to incorporate a force transducer (figure 3.12) for the
second set of tests. Although this modification virtually eliminated the hammer
resonance problem, an acceleration signal was still required to measure the inertia
force contribution from the mass of the hammer head outboard of the force trans-
ducer. Figure 3.14 shows the contributions of the force transducer output and the
outboard mass correction to the total force applied to the bridge. The hammer arm
vibration is almost completely removed with no noticeable peak in the frequency
domain (figure 3.14b).

For the second set of tests the hammer was dropped on foam rubber to increase

the low frequency content of the hammer impulse [30]. A comparison of figures 3.13b
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and 3.14b illustrates the redistribution of energy to lower frequencies.

Finally, the possibility that the reaction force at the hammer base contributed
to the bridge loading was investigated. Four rubber tubes were used as springs
to support the hammer base, and their stiffness was measured by placing different
weights on the hammer base and recording the resulting deflections. The hammer
was dropped from its full height and the base deflection was measured. By combin-
ing the deflection information with the tube stiffness, an estimate of the reaction
force was obtained. This force estimate is shown in figure 3.15 (peak for ~ 200N),
and when compared with the impulse at the hammer head (peak force ~ 20kN;

figures 3.13 and 3.14) the reaction force is insignificant.

3.3.5 Vehicle Instrumentation

The test vehicles were owned, operated, and instrumented by the Transport
and Road Research Laboratory (TRRL). Two different methods of logging the data
were employed. On the first set of tests the raw analogue signals were recorded on
magnetic tape. After the tests, the analogue information was filtered and digitized.
By the time the second set of tests were conducted, TRRL had acquired a mobile
data-logger and thus the magnetic tape recorder was eliminated.

Each axle of the test vehicles was instrumented with two strain gauges and two
accelerometers as shown in figure 3.16. The total wheel force is a combination of
the static force, the strain gauge force, and two inertia correction terms. The in-
ertia corrections are obtained from the measured accelerations. The procedure for
determining the wheel forces from these measurements has been outlined elsewhere
[17, 26], and will not be discussed in detail. Cole [26] has estimated that the maxi-
mum error in the measured wheel forces is + 6.6%. Average errors should be in the

region of 2 or 3%.




3.4 Equipment Calibration

Table 3.1 contains specifications and calibration factors for the instrumentation

used for the bridge tests. This section describes the procedures for calibrating the

instrumentation.

3.4.1 Accelerometers

Small accelerometers were calibrated by attaching them to a B&K type 4291
accelerometer calibrator. A sinusoidal vibration of 2g peak-peak at 500rad/s is
produced by the calibrator.

Since the accelerometers used on the bridge were too heavy to be mounted on the
B&K calibrator, they were placed on a shaker table alongside a previously calibrated
accelerometer. The calibrated accelerometer was used to determine the calibration

constant for the larger accelerometers.

3.4.2 Force Transducer

A check was made to ensure the factory calibration of the hammer force trans-
ducer was reasonable. The force transducer was attached to a shaker table, and
various masses were securely fastened to the top of the transducer. A calibrated
accelerometer was fixed to the top of the attached mass, and the shaker table was
driven at different amplitudes over a frequency range of 1 to 100Hz. The record-
ings were used to estimate the calibration constant as well as the outboard mass of
the force transducer. Within the accuracy of the method, the measured calibration
constant was found to be equal to the factory calibration, and the outboard mass

was estimated as half the total mass of the force transducer.




3.4.3 Amplifiers

The charge amplifiers were calibrated by passing a voltage signal through a
capacitor connected to the amplifier input. By comparing the input charge with the
output voltage, the calibration constant was obtained.

The procedure for the calibration of the voltage amplifier was similar except the

capacitor was not necessary.

3.5 Impulse Test Procedures

The primary purpose of the impulse tests was to determine the bridge modal
properties. The repeatability and linearity of the measurements were also assessed.
Two sets of tests were performed on the Drift Road bridge, but only one on the Lower
Earley bridge. The first tests at Drift Road were conducted during November 1988,
while the second tests and the Lower Earley tests were done during September and

October 1989.

3.5.1 Data Logging Configuration

The sampling rate was governed by the requirements of the impulse hammer.
Both bridges have first natural frequencies below 10Hz and vehicle excitation is not
expected to exceed 20Hz [17, 26], so measurement of frequencies up to 100Hz was
more than adequate. The impulse hammer, however, applies significant energy at
higher frequencies (see figures 3.13 and 3.14).

A sampling frequency of 500Hz was selected and the filter cut-off frequency was
set to 150Hz. With the Nyquist frequency at 250Hz (equation 2.29), there was no
chance of aliasing because only frequencies above 350Hz would alias into the range
between 0 and 150Hz.

Figure 3.17 shows the effect of the transient response of the filter on the impulse.
The solid curve was filtered at 150Hz while the dotted one was obtained with a
filter cut-off of 1000Hz. With the lower filter cut-off frequency, an overshoot is
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evident immediately after the impact. Nevertheless, the frequency components of
the Discrete Fourier Transform (DFT) below the cut-off frequency are the same
whether or not the overshoot is present. Figure 3.17b presents the Fourier spectra
of both impulses. The solid and dotted curves are almost identical.

For the first set of tests on the Drift Road bridge, the record length was set
at 1024 points. When the responses were analysed in the laboratory it became
evident that the sample length was too short. The low frequency modes had not
died away completely. This was not evident during the tests because the high
frequencies dominated the response and died away before the end of the sample
time. A windowing analysis procedure to account for the truncation of the response
is presented in section 4.2.3. In order to avoid any truncation on the second set of
tests, a 4096 point record of length 8.2 seconds was chosen.

The four accelerometers were mounted on the bridges as shown in figures 3.18
and 3.19. Each accelerometer position was numbered as shown in the two figures

and in table 3.2.

3.5.2 Repeatability and Linearity

Repeatability was measured by dropping the hammer from the same height 5
times. Linearity was determined in a similar manner except that the hammer was
dropped from three different heights. In order to compare the responses from im-
pulses of varying magnitude, normalized impulse response functions were calculated.

The calculation procedure is as follows:

(i) remove any dc offset from both the impulse and the response,
(ii) calculate the DFT of both the impulse and the response,

(iii) compute the transfer function by dividing the response transform by the

impulse transform,

(iv) apply a filter in the frequency domain to remove components of the

transfer function above the anti-aliasing filter cut-off frequency,
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(v) perform the inverse DFT on the transfer function to obtain a normalized

impulse response function.

In figure 3.20, three normalized impulse responses from both bridges are pre-
sented. For each bridge the curves were obtained from measurements made with the
hammer dropped from its full height. The hammer and the accelerometer were both
positioned at the midspan of the instrumented spans. The fact that all three curves
on each figure are nearly coincident illustrates that both bridges exhibit repeatable
behaviour.

Normalized impulse responses from hammer drops of three different magnitudes
were compared to assess the linearity of the system. Figure 3.21 shows the nor-
malized impulse responses for three different hammer heights on both bridges. The
hammer was dropped from three heights: 2.0m, 1.6m, and 1.0m. Both bridges

exhibit linear behaviour over this range.

3.5.3 Modal Tests

In order to determine the mode shapes of the bridges, many impulse tests were
conducted. Two parallel lines, representing the wheel tracks of the test vehicles,
were marked on each bridge. The hammer was dropped at several points along each
track. The matrix of tests for each bridge is shown in figures 3.18 and 3.19. For the
Drift Road bridge, hammer tests were conducted at 25 positions while for the Lower
Earley bridge the hammer was dropped at 56 different positions. At each position
the hammer was dropped 5 times.

Figure 3.18 shows that the tests on the Drift Road bridge concentrated on span 2
which was directly above the London bound traffic of the M4 (see also figure 3.6).
Most of the tests were conducted on the wheel track near the bridge centre-line. Ten
hammer positions on one half of the span and two positions on the other half were
chosen. To estimate mode shapes along both wheel paths, three sets of i-mpulse tests
were conducted on the outside wheel track. Finally, the adjacent span was tested at

10 different positions to determine the continuity of the mode shapes between the
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two spans. The other two spans were not tested because the mode shapes could be
determined from symmetry.

A more comprehensive testing programme was conducted on the Lower Earley
bridge. The northern span was selected as the primary one for the tests and 15
positions were chosen along each wheel path. Tests were also carried out on both
of the other two spans as shown in figure 3.19. Additional hammer tests were

conducted along both wheel tracks on the southbound lane of the bridge.

3.6 Vehicle Test Procedures

The second phase of the experiments involved measuring the bridge dynamic
response to the passage of a single instrumented vehicle. It was possible, on both
occasions, to perform all of the vehicle tests in one day. The Drift Road bridge
was tested on 24 November 1988, and the Lower Earley bridge was tested on 5
October 1989. Photographs of the test vehicles are presented in figures 3.22 and
3.23. The test vehicle for the Drift Road bridge was a four-axle articulated vehicle
with a semi-trailer. The tractor had a leaf spring suspension while the trailer had
an independent air suspension. For the Lower Earley tests, the vehicle was similar
except the air suspension was on the tractor and the leaf springs on the trailer.
Each vehicle was loaded with concrete blocks to a static weight of approximately 32
tonnes. Table 3.3 shows the axle weights and spacings for the two test vehicles.

The bridge instrumentation was set up in the modal testing configuration except
that triggering signals were needed to synchronize the bridge response with the
dynamic wheel loads (see figure 3.10). At each end of the bridge, a reflector and
light beam set was erected. When the vehicle passed the light beam, a reflector on
the vehicle caused a pulse to be sent to the roadside data logger. At the same time,
a light beam on the vehicle hit the roadside reflector sending a signal to the vehicle
instrumentation.

The test vehicle was driven over the bridge in both directions at vehicle speeds
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of 15, 30, 50, and 55km/h. Extra runs at 65km/h were conducted on the Lower
Earley bridge. Two runs were made at each speed in each direction.
The next chapter describes the analysis of the data recorded during the tests

and presents some of the experimental results.
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Table 3.1: Specification of equipment used for bridge testing

Transducers
| type l sensitivity | application |
B&K 8318 316 pA/ms™> | bridge vibration
(high sensitivity
accelerometer)
DJB 302 A/03/W | 0.88 pC/ms~” | impulse hammer
(accelerometer)
Kistler 971A 3.96 pC/N impulse hammer
(force transducer)
Amplifiers
I type | gain I application
B&K 2813 1 mV/pA line drive supply for
(line drive supply) B&K 8318 accelerometers
B&K 2511 1-10,000 mV/pC | charge amplifier for
(vibration meter) hammer accelerometer
Force transducer 0.01 mV/pC charge amplifier for
charge amplifier force transducer
Hammer accelerometer | 1.0 mV/pC charge amplifier for
charge amplifier hammer accelerometer
8 channel voltage 1, 3, 10, 30, 100 | amplification of vibration
amplifier signals
Filters
| type | gain | corner frequency | application | !
Kemo VBF/3 1, 3,10 | 0.125Hz (high pass) | anti-aliasing “
(n=4 Butterworth) 0.1Hz - 10kHz filter and ‘
(low pass) signal amplifier
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Table 3.2: Accelerometer Positions

Position Number

Location

> W N —

midspan, centre-line

1/3 point of span,
1/4 point of span,
midspan, offset

centre-line
centre-line

Table 3.3: Vehicle axle weights and spacings

Bridge Axle Axle position (m) Static axle
weight (tonnes)

Drift Steer 0.00 6.48
Road Drive 3.50 9.05
Front Trailer 11.22 7.94
Rear Trailer 13.06 8.78

Total: 32.25
Lower Steer 0.00 6.40
Earley Drive 3.28 9.32
Front Trailer 10.18 8.31
Rear Trailer 12.20 7.65

Total: 31.68
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Figure 3.8: Accelerometer for measuring bridge vibration,
and external line drive supply

Figure 3.9: General set-up for impulse tests

52




Impulse \
Hammer

‘ @ Accelerometers

. " A A
T.I‘foIC Light van Generator OO = Light Traffic
Lights  Beam & ( Instrumentation ) Bridge Beam &  Lights
Reflector ) Reflector

(a) General set-up

: 14
& L i .
’ o@o " F- Data
7 & u KEMO :
& & 100m S0ohm == B&K Ellter Voltage Leger 1BM
Coaxial Cable 2813 @
e Amp PC AT
= dnfvww L © © -1 ©
Line Drive Supply

BaK LEGEND

=
8318 Kistler Oscilloscope | Analogue signal I
Force i::,rge P - | coaxial cable |
KEMO

I“’“s‘g‘;‘;i 1 q0om Soohm | Lo © | - — - Digital |

¥pE Charge Coaxial Cable communication
Impulse AR i @ l @ Electric generator I
Hammer | power |
I

| ikk  Battery power

(b) Instrumentation Lo o e e o o gl

Figure 3.10: Schematic diagram of equipment for measuring bridge
vibrations during impulse and vehicle tests




Figure 3.11: Original hammer head with accelerometer

Figure 3.12: Modified hammer head with force transducer
and accelerometer
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Figure 3.22: Test vehicle for Drift Road bridge

Figure 3.23: Test vehicle for Lower Earley bridge
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DATA ANALYSIS

This chapter is concerned with analysis of the data collected by the procedures
of chapter 3. Data from both the vehicle tests and the impulse tests is presented.

The dynamic wheel loads and the resulting bridge responses are examined in
both the time and frequency domains. In addition, some statistics of the measured
dynamic wheel loads are presented.

The analysis procedures for determining the bridge modal parameters from the

impulse tests are also discussed.

4.1 Vehicle Tests

Vehicle tests were conducted to measure the vibrational response of the test
bridges to a single pass of an instrumented heavy goods vehicle. In order to compare
the measured bridge responses with those predicted from the convolution calculation
procedure presented in chapter 2, the wheel loads were also measured. In this
section, analysis of the vehicle test data is presented and comments are made about
important characteristics of both the vehicle wheel loads and the vehicle-induced

dynamic bridge response.
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4.1.1 Analysis of the Dynamic Wheel Load Data

The dynamic wheel loads were determined for each vehicle test run. For the
purposes of illustration, one vehicle run per bridge has been selected for presentation
in this dissertation.

Figure 4.1 contains wheels loads for a south-east to north-west run at 50km/h on
the Drift Road bridge. At time zero the front axle of the vehicle encounters the first
span of the bridge while the trailing axle leaves the bridge 6.1 seconds later. The
large dynamic tyre forces at both ends of the bridge are caused by discontinuities
in the surface profile at the expansion joints. The expansion joints are located just
before the run-on slab (see figure 3.18) and this explains why the vehicle is bouncing
before it enters the first span. Expansion joints and other large irregularities in the
bridge road surface are the main cause of high dynamic wheel loads on bridges [14,
76]. Figure 4.1(a & b) illustrates that the loads can be almost double the static
values. For this vehicle, the largest variations in the tyre forces occur on the front
two axles which have steel leaf-spring suspensions. The trailer axles are connected
to an independent air suspension and this results in lower dynamic wheel loads,
although figure 4.1(c & d) shows that relatively more high frequency (wheel-hop)
motion is present than for the leaf-spring suspensions. This behaviour is typical of
air suspensions [65].

A set of wheel loads for a south to north run over the Lower Earley bridge is
presented in figure 4.2. The vehicle speed is 65km/h and the front axle enters the
bridge at time zero. The trailing axle leaves the bridge 5.6 seconds later. This
vehicle has air-springs on the tractor axles and leaf-springs on the trailer. The front
two axles generate lower dynamic wheel loads, but at higher frequencies. In general,
the wheel loads are smaller for the Lower Earley tests and the expansion joint at
the bridge entrance does not excite the vehicle to same degree as on the Drift Road
bridge. This indicates a smoother riding surface on the bridge as well as better
quality expansion joints. Unfortunately, no surface profile data was measured, so a
quantitative assessment of the bridge roughness is not possible.

As a further study, the wheel load data was formulated in terms of dynamic load
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increments (defined in section 3.1.2). This study is interested in determining not
only the maximum dynamic load increments, but also the standard deviation of the
increments. Other authors have referred to this standard deviation as the dynamic
load coefficient [65, 88]. Figures 4.3 to 4.6 contain the dynamic load increments
calculated from both bridge tests plotted against speed. In general, dynamic load
increments increase with speed.

The maximum values for the Drift Road bridge are plotted in figure 4.3 while
the standard deviations are in figure 4.4. For the steel suspensions (steer and drive
axles), the increase with speed seems to be almost linear, but the air suspensions do
not follow any obvious type of behaviour. The maximum dynamic load increment
for the steel suspension is approximately 1.0 which corresponds to doubling the
static wheel load. The standard deviations vary between 10 and 20% for the air
suspensions and up to 40% for the steel suspensions.

Figures 4.5 and 4.6 show maximum values and standard deviations of dynamic
increment for the Lower Earley bridge. In this case the maximum increments are
only about 0.5 which indicates smaller dynamic loads than were applied to the Drift
Road bridge. The maximum load increments are almost independent of speed, and
especially so for the two steel suspensions (trailer axles). Nevertheless, the standard
deviation of the load increments increases slightly with speed.

The frequency content of the wheel loads was analysed by calculating the Fourier
spectrum [5] of the various wheel load traces. As described in section 3.3.4, the
Fourier spectrum is a more appropriate measure than spectral density for transient
signals. Figures 4.7 and 4.8 illustrate the frequency content of the wheel loads
measured on the Drift Road and Lower Earley bridges respectively. As is evident
from these figures, most of the energy in the wheel loads is concentrated in the
1-4Hz range although wheel-hop causes a second peak between 10 and 15Hz. This is
typical of heavy goods vehicles as has been shown by other authors [17, 19, 26, 65].




4.1.2 Bridge Response from Vehicle Tests

Measured bridge responses from typical vehicle tests on both bridges are shown
in figures 4.9 and 4.10. The displacement time histories were obtained by integrat-
ing the acceleration signals twice. As mentioned in section 3.3.1, the quasi-static
responses were not measured accurately by the accelerometers, and so a high-pass
filter with a cut-off frequency of 1.0Hz was applied to the signals to avoid drifting
during the integration. For both bridges the dominant frequencies are below 10Hz.

In order to determine the frequency content of the measured bridge responses,
Fourier spectra were computed for the various vehicle tests. Typical spectra for
both bridges are shown in figures 4.11 and 4.12. Most of the energy is concentrated
in the region below 15Hz. This is expected because the dynamic wheel loads only

have significant amplitude below 15Hz.

4.2 Impulse Tests

The main reason for the impulse tests was to determine the mode shapes and
damping values of the bridge. The modal parameter extraction was done primarily
in the frequency domain, but some preliminary analysis was conducted in the time

domain and is discussed in this section.

4.2.1 Impulse Tests at Drift Road: Time Domain

Typical impulses and th¢ resulting bridge responses, measured at four different
positions, are shown in figures 4.13 and 4.14. Results from the first set of tests are
presented in figure 4.13, while the second test results are in figure 4.14 . In both
cases the hammer was located at the middle of the measurement span.

One point to note about the hammer impulse in figure 4.13 is that there are
two distinct impacts. The second impulse (at approximately 0.3 seconds) induces
additional response from the bridge, but this does not adversely affect the analysis

of the data. A detailed discussion of the effect of the double impulse is included in
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Appendix C. In the second set of tests the hammer was allowed to drop only once.

Two effects that are immediately visible in the responses of figure 4.13 are the
dominance of frequencies between 50 and 60Hz, and the beating in the response.
The beating indicates that there are at least two closely spaced frequencies while
the predominance of the higher frequencies occurs because some bridge modes in
the 50-60Hz region are easily excited by the impulse. A qualitative comparison of
these impulse responses with the vehicle induced responses of figure 4.9 shows that
these higher frequencies are not significant for vehicle-induced bridge vibration.

For the second set of tests at Drift Road, changes were made to reduce the
presence of these higher frequencies in the impulse responses. Since the important
frequencies were known to be below 20Hz, the acceleration signals were filtered
at 25Hz in order to reduce the effect of the responses at higher frequencies. In
addition, the hammer was dropped on soft foam to concentrate the energy in the
lower frequencies (see section 3.3.4). Finally, the sample length was extended to 8
seconds. By comparing figures 4.13 and 4.14, the effects of these changes are evident.

The responses from the later tests are dominated by frequencies below 20Hz.

4.2.2 Impulse Tests at Lower Earley: Time Domain

A typical impulse and the resulting responses are shown in figure 4.15. For the
Lower Earley tests the hammer was not allowed to drop a second time.

The responses in this case are noticeably different from those measured at Drift
Road. The prominent frequencies are below 20Hz and the modal density is greater
than at Drift Road. Most of the response dies away after only a few seconds, and

so the record length (8 seconds) is more than adequate.

4.2.3 Transfer functions
The first stage in the extraction of the modal parameters from the impulse tests
was the calculation of transfer functions (or frequency response functions). The

tests at each hammer position produced four averaged transfer functions; one for
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each accelerometer position. The procedure for calculating transfer functions was

standardized and is summarized as follows:

(i) remove any dc offset from both the impulse and the response,

(ii) determine the position of the maximum value of the impulse and adjust

the time scale so that the maximum value of the impulse occurs at time 0

(see figures 4.13, 4.14, and 4.15),

(iii) apply an exponential window to the time series to reduce noise at the

end of the responses and to avoid truncation errors:

1 t<0
w(t) = (4.1)
e Xt t>0, K>0

K was taken as 1.0 for the Drift Road bridge and 0.5 for the Lower
Earley bridge,

(iv) extend the record length by adding zeros,
(v) calculate the DFT of both the impulse and the response,

(vi) compute the transfer function by dividing the response transform by the

impulse transform,

(vii) repeat the procedure outlined in (i) to (vi) for five different hammer drops

at the same position and then average the resulting transfer functions.

Averaged transfer functions for the Drift Road bridge are shown in figure 4.16.
Four plots are shown; one corresponding to each accelerometer position. For all four
transfer functions the hammer was located at the quarter point of the instrumented
span. The transfer function is only shown for frequencies up to 25Hz, because the
vehicle-induced bridge response is concentrated at frequencies below 20Hz. The solid

lines on the plots are the measured transfer functions.
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In the region below 20Hz, three flexural modes and two torsional modes are
evident. The first peak, at 6.8Hz, corresponds to the fundamental flexural frequency
of the bridge while the peak at 8.7Hz is the second flexural mode. The third mode
(19.3Hz) is only evident on the transfer functions corresponding to accelerometers
number 2 (1/3 point) and 3(1/4 point).

The transfer function for the offset accelerometer shows two small peaks at
11.2Hz and 12.3Hz that are not present on the other two transfer functions. These
peaks correspond to torsional modes.

The three flexural peaks are narrow and quite sharp which indicate that the
modes are lightly damped.

Figure 4.17 shows transfer functions calculated from impulses applied at the
middle of the instrumented span of the Lower Earley bridge. These transfer functions
are markedly different from those measured at the Drift Road site; more modes are
present, and the response is not dominated by any one mode nor pair of modes. In
the region below 20Hz, there are 4 obvious peaks at 5.7, 9.7, 11.3, and 18.0Hz. An
examination of the transfer function corresponding to the off-centre accelerometer
indicates modes not evident in the other accelerometer traces. The extra peaks

occur at 6.9, 7.4, and 13.3Hz.

4.3 Modal Analysis

After the transfer functions were calculated, it was possible to identify the natural
frequencies of the bridges and to make qualitative judgements about damping levels.
In order to quantify these estimates, some form of numerical modal analysis is
necessary. Modal analysis also provides a measurement of the modal constant which
contains information about the relative magnitudes and phases of vibration in each
individual mode.

Modal analysis is essentially a curve-fitting procedure to relate a measured fre-

quency response function with a theoretical model. The theoretical models are usu-
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ally based on the assumption of a single degree of freedom system, but some methods
have been developed that are suitable for general multiple degree of freedom anal-
ysis [30]. The single degree of freedom system assumption is usually justified by
noting that near resonance the frequency response function is dominated by only
one mode. Methods assuming a single degree of freedom system therefore work best
when the natural frequencies are well separated [30].

The second major assumption of the modal analysis procedure concerns the
type of damping. Either structural or viscous damping is usually assumed. As was
mentioned in chapter 2, the viscous damping assumption was used in this analysis.
For viscous damping, the mobility (or velocity) transfer function, calculated with
an exponential window (equation 4.1) applied to the impulse responses, is

o iwA
Tix(w) =3 m? _ 2 4 zij(kc(n)w(n) + K)w

n=1 W

(4.2)

where Y i(w) is the mobility transfer function measured at position k£ from an input
at position j, and Agz) is the n** modal constant.
The modal analysis procedure outlined in this chapter consists of attempting to

estimate values of w(™, ¢ and AJ(-Z) :

4.3.1 Modal Parameter Extraction: Theory

Several methods are available [30, 77], and are described in detail by Ewins [30].
The circle fit method was chosen.

In order to perform the circle fit, the real and imaginary parts of the transfer
function are plotted against each other in the Argand plane. According to theory the
data will trace a circular arc near resonance, so a circle is fit to points near resonance
(figure 4.18) and a measure of the error is obtained. The location of the natural
frequency is determined by finding the position at which the sweep of the circle is
at a maximum (figure 4.18). Damping estimates are then obtained by considering
points on either side of the resonant frequency. Let w, and w, represent positions
on the modal circle above and below the natural frequency, respectively, and 6, and

0y the corresponding subtended angles as shown in figure 4.18. The damping ratio
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is given by [30]

¢ = We = W) g
T 2™ wetan(%) +witan(2)] T W@’

(4.3)

Using this formula for the damping ratio, each point above the natural frequency is
combined with each point below to give several damping estimates. The mean and
variance of the estimates are calculated. This yields an average damping ratio with
a bound on the estimation error.

Finally the magnitude and phase of the modal constant are calculated from the
size of the circle and the orientation of the natural frequency on the circle. The

)

modal constant, Agz , is given by [30]

AL = A 5 (4.4)

with

(4.5)

where D;-Z) is the circle diameter and 0;-2) is the angle of inclination of the modal

circle as shown on figure 4.18. If this angle is zero for all positions on the structure,
then the modes are real.

Since single degree of freedom analyses are not always appropriate, several curve
fitting techniques have been developed to deal with multiple degree of freedom sys-
tems [30]. One of the simpler methods is an extension of the single degree of freedom
circle fit method. The first stage in the extended analysis is to perform the single
degree of freedom circle fit to obtain reasonable estimates of the modal parameters.
These estimated parameters are then used to adjust the measured mobility near
resonance to account for the presence of the other modes. The adjusted values then
conform more closely to those of a single degree of freedom system and the circle fit
procedure can be more effective. This modified circle fit method was employed in
this study when the modes were closely spaced. Details of other multiple degree of

freedom modal analysis procedures are readily available elsewhere [30, 31].
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The circle fit method was chosen for application to the data presented in this
dissertation because of the method’s versatility and ease of extension to include

multiple degree of freedom systems.

4.3.2 Transfer Function Regeneration: Theory
After extracting the modal parameters, a theoretical transfer function can be
regenerated and compared with the corresponding measurement. Since it is almost
impossible to measure all of the modes that contribute to response in any given
region, initial attempts at regeneration often have disappointing results [30]. The
correlation between measurement and regeneration can be improved, however, by
the inclusion of two additional terms to account for frequencies above and below
the analysed frequency range. If all of the modes between m; and m, have been
measured then
ms iwAf

TR (w) =
jk( ) n;m wn? — 2 4 2i(CMw + K)w

(4.6)

where T;Z)(w) is the regenerated mobility curve. The theoretical curve is given by
equation 4.2 and so the regeneration error, E](Z) (w), is
ERw) = M) - TR)
ik w Jk(w 7k w
oy iwAS)

=},

= w™? — 0?4 2(CMw™ + K)w

;S iwAlp
nemadl wm? — 2 4 2(¢(Mw™ + K)w

Since the regenerated model is valid only in the analysed frequency range, ap-
proximations can be made to estimate the error term within the analysed frequency
range. The first error term of equation 4.7 can be approximated as mass dominated

and the second term as stiffness dominated. The error term then has the following

approximate form [30]

1 w
Ef) % —— 4.8
T My T KQ) 48)




where M. J(;) is the mass residual and K J(Z) is the stiffness residual.

Following procedures described by Ewins [30], stiffness residuals were calculated
by considering points on the transfer function outside the analysed frequency range.
The mass residuals were not computed because all the low frequency modes were
measured. The inclusion of the stiffness residuals in the theoretical regeneration
of the transfer function did not significantly improve the correlation between the

regenerated and measured transfer functions. Therefore, stiffness residuals were not

included in the regeneration plots presented in this dissertation.

4.3.3 Mode Shape Determination: Theory
The procedures outlined in the preceding two sections illustrate methods for
obtaining modal constants from transfer functions. The measured modal constants

have the following form:
A§-Z’ = ¢ (x;) 6™ (xx) (4.9)

where x; and x; define the positions of the input and response, respectively.

In order to explain the procedure for extracting the values of ¢(® from the modal
constants, consider NN, transfer functions relating N, different hammer positions to
the response measured at one position, X;. Applying the circle fit procedure to the

transfer functions results in the following set of modal constants

If we also have a point measurement (response and input at the same position),
then enough information exists to scale the mode shape properly. For a point mea-

surement, equation 4.9 reduces to

¢ (x,) = VA (4.11)

where x, defines the position of the point measurement and A},’;) is the modal

constant obtained from the point mobility. Once the magnitude from the point
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measurement is determined, the other mode shape values can be scaled by using
equation 4.9.

In practice, each modal constant is based on a slightly different estimate of the
natural frequency and the corresponding damping ratio. Therefore, before the mode
shape calculation is performed, average values of the natural frequency and damping

ratio must be computed.

1 Nl'n Nh (n)
hiVin p—q j=1
o~ Nsn Nh
in k=1 j= 1

where N;, is the number of instrument positions and ~ indicates averaged values.
The revision of the estimates for natural frequency and damping ratio means that
the modal constants must be adjusted accordingly. It was stated that the modal

constant calculated using the circle fit procedure is given by

D(n)
AW = (4.14)
‘ gk (C(n) (") + I()
If the adjusted values @™, (™ are now used then
(n) M@ + K
|A(”) #— - |A§.’g) %— (4.15)
2(Caon, + K) Culon + K

The adjusted values of the modal constants, /IE—Z), can be used to calculate the

mode shape values.

4.3.4 Modal Analysis: Drift Road

The circle fitting procedure outlined in section 4.3.1 was applied to the transfer
functions calculated at the various hammer positions. Three flexural modes and
two torsional modes were studied and figure 4.19 shows example circle fits for each
mode calculated when the hammer was at the quarter point of the instrumented

span. The fitting procedure gave good results. Notice the calculated position of the
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natural frequency on the modal circle. The deviation of the radial line corresponding
to the natural frequency position from the horizontal axis indicates the phase of the
modal constant as described in section 4.3.1. In these examples, the phase angles are
approximately zero. This was the case for all of the modes and positions analysed
and therefore all modes were considered to have real parts only.

Each modal circle produced a number of estimates of the damping ratio, but the
scatter was reasonably small (less than 5%) and usually dependent on the quality
of fit of the modal circle.

After the modes in the 0-20Hz range were estimated, the transfer functions were
regenerated based on the measured modal parameters. A comparison of measured
transfer functions with the regenerated ones is shown in figure 4.16. The agreement
is good and so the modal parameters have been measured accurately. The fits are
especially good in the region below 15Hz which is where most of the vehicle energy is
concentrated. The effect of the mass and stiffness residuals have not been included
in figure 4.16 because the fits are sufficiently accurate without them.

Modal parameters for all of the measured transfer functions were estimated, and
average damping ratios and natural frequencies were calculated. The average values
are as shown in table 4.1.

These averaged values were used to modify the modal constants as described in
section 4.3.3. The modified constants were then substituted into equations 4.9 to
4.11 to determine the mode shapes. Figure 4.20 shows the measurements for the
first three flexural mode shapes. Only half the bridge is shown and the vertical lines
indicate the positions of the columns. Hammer positions along both wheel tracks
are represented by points on the diagram and it is evident that the modal shape
values do not vary between the tracks. This indicates that these modes are purely
ﬂexﬁral.

On the other hand, figure 4.21 shows the mode shapes corresponding to the other
two natural frequencies. The measurements from the two wheel tracks give different
mode shape values which indicates that the modes exhibit torsional behaviour.

A comparison of the measured mode shapes with curves from a theoretical anal-
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ysis is presented in section 5.1.

4.3.5 Modal Analysis: Lower Earley

A total of eight modes was identified for modal analysis; six of them were present
on all of the transfer functions but two were only identified on the transfer functions
corresponding to the off-centre accelerometer. All of the modal circles described in
the following were from measurements made with the hammer at the middle of the
instrumented span.

Figure 4.22 illustrates the circle fitting procedure on all eight modes. The natural
frequencies corresponding to the modal circles are indicated on the diagrams. In
this example, most of the modes conform well to the circle fit, but mode number
five displays larger errors than the others. An inspection of the transfer function
(figure 4.17) reveals that mode five (11.3Hz) is quite close to mode four (9.7Hz)
which has a much larger magnitude. Therefore, this mode is strongly affected by
its neighbouring mode. Similar problems were encountered with other modes at
different positidns, but it was generally possible to obtain some good measurements
for all the modes.

Finally, mode number four deserves closer inspection. The circle fit is satisfac-
tory, but the bottom of the circle formed by the data points has a slight indentation.
This effect is caused by the presence of another mode extremely close to the main
mode that was not resolved by the modal analysis. This did not present a serious
problem for measurements on the instrumented span, because the larger mode dom-
inated and the two modes were accurately represented as one mode. Nevertheless,
on the other two spans the smaller mode was not dominated to the same degree
and it was difficult to obtain estimates of the modal parameters. This difficulty
was taken into account when curves were fit to the mode shape values for response
prediction purposes and appropriate approximations were made (see section 5.1.3).

On all of the modal circles the position of the natural frequency is indicated, and

it is evident that the lines from the natural frequency position to the circle centres do
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not deviate significantly from the horizontal. Modes one, two, three, and five show
the largest deviations, but errors in the estimation of the natural frequency could
be responsible. In all four cases, changing the natural frequency estimate by one
frequency increment would result in the natural frequency radial line being parallel
to the horizontal axis. Since the horizontal orientation of this radial line indicates a
real mode, it was assumed that all of the modes were real.

The best fit modal circles were used to produce average values of the natural
frequencies and damping ratios (see table 4.2).

Figure 4.17 illustrates the regeneration of the transfer function from the modal
parameters measured at midspan. Below 20 Hz, the fit is very good except for the
region between 12 and 17Hz. The errors are slightly larger in this region, but should
not be significant for predicting vehicle-induced bridge response because most of the
bridge response is below 10Hz.

Following the procedure outlined in section 4.3.3, the mode shapes corresponding
to each measured natural frequency were calculated and are shown in figure 4.23.
Measurements from both wheel tracks are included. Vertical lines on the plots
separate the three spans. Most of the modes indicate significant differences between
measurements in the two wheel tracks, so the modes cannot be assumed to be purely
flexural. The measurements were most accurate on the instrumented span (left side
of the plots). When the hammer was on the other two spans, the symmetric and
anti-symmetric modes cancel each other and reduce the amplitude of the measured
vibration. This decreases the signal to noise ratio and makes accurate measurements
more difficult.

A comparison of these mode shapes with theory and finite element approxima-

tions is presented in the next chapter.
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Table 4.1: Natural frequencies and damping ratios
Drift Road bridge

Mode | Natural Frequency | Damping ratio
(fn in Hz)
1 6.8 0.019
2 8.6 0.021
3 11.2 0.033
4 12.3 0.019
5 18.0 0.034

Table 4.2: Natural frequencies and damping ratios
Lower Earley bridge

Mode | Natural Frequency | Damping ratio
(f, in Hz)
1 5.7 0.045
2 6.9 0.088
3 7.4 0.086
4 9.7 0.026
5 11.3 0.014
6 13.3 0.026
7 18.0 0.038
8 244 0.019
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VALIDATION OF THEORY

The final stage of the experimental validation is comparison of the measured
results with theoretical predictions. This chapter will conduct that comparison to
validate the convolution method presented in chapter 2.

Mode shapes predicted by analytical and finite element models of the two test
bridges are compared with the measured mode shapes. The validation of the vehicle-

induced bridge response calculation method is presented in section 5.2.

5.1 Prediction and Comparison of Modal Parameters

Two different theoretical models were used to predict the vibrational behaviour
of the test bridges. They were modelled as beams on rigid supports, and more
accurately using finite elements to include flexible supports and plate action.

The mass and stiffness properties were obtained from the construction drawings,
supplied by the Berkshire County Council. Because both bridges were constructed
of prestressed concrete, it was assumed that the concrete was always in compression.
Therefore the calculated stiffness properties relate to the gross section instead of an

equivalent cracked section. The Young’s modulus of concrete was estimated from
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values suggested in British Standard 5400 [10].

Table 5.1 contains the estimates of the mass, stiffness, and strength parameters
for both bridges. Small variations of cross-sectional properties along the length of
| the bridges were not deemed important as it has been shown that these variations

do not significantly affect the vibrational characteristics of bridges [28].

1 5.1.1 Beam Model
l The differential equation for transverse vibrations of an undamped Euler-Bernoulli

beam of uniform cross-section is

2 4
| m%g(m,t) + EI%%(m,t):O (5.1)

where m is the mass per unit length,
|
‘\ E is the Young’s modulus,

and I is the second moment of area of the cross-section.

| Following the method outlined in chapter 2, the solution to equation 5.1 can be

written in terms of the mode shapes, ¢ (z),

, y(@:1) = X ¢"(@)an(?) (5.2)
n=1

. where n is the mode number,

| and ¢(t) are the normal coordinates.

l Substituting equation 5.2 into equation 5.1 and separating variables results in
the following modal differential equation

d*¢™
dz?

— kig™ =0 (5.3)
which has solutions of the form

6™ (z) = C™ cos(knz) + CM cosh(knz) + C$Vsin(knz) + C™ sinh(k,)
(5.4)
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where ", (. (™, (™ and k, are constants dependent upon the boundary
conditions. Once these constants are determined, the natural frequencies can be

calculated from

ot = g2 [EL (5.5)

"V om

5.1.2 Drift Road Bridge

Figure 5.1 illustrates a beam idealization of the Drift Road bridge. The ends of
the bridge were restrained by the run-up slab (see figure 3.18) and this was modelled
by assuming fixed ends. The bridge is symmetric about the centre support and can

be analysed by considering half of the bridge with two different centre support

S S SN S ————=S R e

conditions: one simply supported (to model the asymmetric modes), and the other
fully restrained (to model the symmetric modes). At all of the supports, bridge
J displacement was assumed to be zero. For fixed ends the additional constraint was

zero slope while for the simple support the bending moment was assumed to be zero.

At the intermediate support, the slopes and bending moments are assumed to be
continuous.

The first three natural frequencies were computed and compared with the ex-

' perimental measurements (table 5.2). Reasonable agreement was achieved, but the
beam theory predicted the first two natural frequencies to be farther apart than the
measured values. This was not surprising since the beam analysis took no account
of the effects of the centre column which was constructed as an integral part of the
bridge superstructure.

Figure 5.2 shows the first three flexural modes. The experimental data is plotted
for comparison. All of the modes were mass normalized by applying the orthogo-
nality relationships of section 2.2.1 for consistency. The mode shapes correlate well
with experiment, especially the measurements on the longer span. These results
are more accurate because the largest amplitude vibrations are expected to occur
on the longer span. Therefore, the impulse responses measured on the longer span

have a higher signal to noise ratio, and should be more accurate. There are larger
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discrepancies evident on the shorter span and particularly so with the third mode.
These errors occur because of the difficulty in obtaining accurate measurements on
the shorter span.

A simple estimation for the torsional vibrations was obtained by considering the
bridge as a bar with two perpendicular axes of symmetry. For torsional response,
p(z,t), is defined as the angle of rotation about the centroidal axis of the bridge.
The relevant differential equation is :

2 82
o 2R (w,t) = GITH(w,1) (5.6)

where G is the shear modulus of elasticity,
is the mass density,

I, is polar moment of area of the cross section,

and J is the torsional constant of the cross section.

A modal expansion (equation 5.2) was assumed, resulting in the following modal

differential equation

d*¢™

—— + k2™ =0 .
e+ B (5.7
with the torsional modes given by
oM (z) = Cl(n)cos(kn:c) + Cén)sin(kn:v) (5.8)

Because of symmetry, only half of the bridge was analysed. It was assumed
that there was no rotation at the supports because the bridge was constructed with
torsional stiffeners at each support and the columns themselves restrict rotation.
With no rotation at the supports, the spans act independently and so only the
longer span was considered because it has the lowest frequencies. Applying these
assumptions to equation 5.8 results in C; becoming zero and the first two modes

having the following form

¢ () = cgsm(%) (5.9)
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where L is the length of the longer span. One mode is symmetric while the other
is anti-symmetric but otherwise they are identical. All other torsional natural fre-
quencies were found to be outside the frequency range of interest.

In figure 5.3 the torsional mode shapes are compared with the measured data by
plotting the angle of torsional rotation. The comparison is reasonable although the
predicted modes are slightly larger in amplitude than the measured values.

In order to improve on the accuracy of the beam analysis, a finite element model
was developed. The bridge was divided into seven components: four spans and three
columns. Each component was then discretized into twenty beam elements. The
beam elements had torsional stiffness which allowed approximations of the torsional
natural frequencies.

The natural frequencies computed by the finite element analysis are presented
in table 5.2. There is some improvement in the accuracy which results from the
inclusion of the columns in the finite element solution. In particular, the first and
second flexural modes are slightly closer together. Errors in the estimation of the
natural frequencies were caused by inadequate modelling of the support conditions
at the abutments and errors in estimating the stiffness properties of the bridge. The
finite element predictions of the flexural modes are contained in figure 5.2 while the
torsional modes are compared with experiment in figure 5.3. The torsional modes
are illustrated by plotting the angle of torsional rotation. The mode shapes obtained
from the two different models are quite similar, although in the second flexural mode
and the first torsional mode there is some movement at the centre support that is
not modelled by the beam solutions. The finite element solution predicts that the

symmetric torsional mode has the lower natural frequency.

5.1.3 Lower Earley Bridge
The Lower Earley bridge was initially modelled as a three span continuous beam

on simple supports (figure 5.4). Because of symmetry, it was analysed by dividing the

bridge at the middle of the centre span. The anti-symmetric modes were obtained
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by considering a simple support at the free end of the beam, while a vertical roller
support at the free end simulated the symmetric modes.

The four lowest natural frequencies were computed from the beam idealization
and the results were compared with measurements (table 5.3). Figure 5.5 compares
the results of the mode shape predictions with measurements. The agreement is
good for the four predicted modes.

Since the beam theory did not predict all the measured modes and there was
doubt as to whether or not the supports at the piers acted as simple supports, a finite
element calculation was attempted. Figure 5.6a illustrates the support arrangements
at the piers. The precast beams are supported on two sets of bearing pads and
connected with a reinforced concrete diaphragm. In order to model these bearing
pads, the first finite element model consisted of beam elements supported by two
springs (figure 5.6b) with stiffness &, (table 5.1) . The resultant mode shapes were
identical to those obtained from simple beam theory. The natural frequencies are
shown in table 5.3, but no significant improvement over the beam estimates was
noticed.

A two-dimensional model was necessary to predict the other modes. The bridge
was modelled as an orthotropic plate on flexible supports at the piers using four-
noded quadrilateral plate elements. Figure 5.6b defines the direction of the z-axis
to be parallel to the bridge centre-line. For the two-dimensional bridge model, the
z-axis is perpendicular to the plane of the paper. Referring to figure 3.5 and noting
that there is significant clearance between the bases of the inverted T-beams, it
is apparent that the bridge had quite different bending stiffnesses in the z and =z
directions. In the orthotropic plate model, the bending stiffness in the z-direction
was determined by considering both the slab and the beams, whereas the stiffness
in the z-direction was determined from the slab alone. The z-y shear modulus and
hence the torsional rigidity of the plate elements was corrected to account for the
shape of the cross-section [102]. Each bridge span was divided into a 10x5 mesh with
10 elements in z-axis direction. Typical results from the plate analysis are presented

in table 5.3 and figure 5.7 shows the first three predicted modes of vibration. From
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an examination of these plate solutions (figure 5.7), it was evident that along any line
in the z-axis direction the mode shapes had forms similar to those predicted by the
beam model. On the basis of this finite element analysis, it was thought reasonable
to assume that all of the first eight modes of the bridge had, longitudinally, one of the
four simple beam mode silapes (figure 5.8). For each measured mode, it was fairly
easy to choose a beam mode shape; the relative magnitudes along the centre-line and
curbside tracks were calculated by least-squares fits with the measured magnitudes
along these tracks. For measured mode number 4, it was not clear which beam mode
best fit the data. As was mentioned in the data analysis chapter (section 4.3.5),
there were two modes extremely close together that were not resolved by the modal
analysis. For hammer tests on the instrumented span, the responses of the lower
frequency mode dominated and so a smooth sinusoidal curve was fitted through
these points to approximate the two modes by a single mode. The measurements on
the other two spans were unreliable because the two modes were not always in phase
and a single mode approximation was not deemed to be appropriate. Therefore, the
measurements on the other two spans were neglected. The fit to mode number 4 does
not correctly model the mode shape, but it will be shown to be a good engineering

approximation for predicting the response of the bridge to heavy vehicle loads.

5.2 Comparison of Predicted and Measured Bridge Responses

In order to validate the bridge response calculation method, the measured modal
parameters were combined with the dynamic wheel loads in the convolution integral
of section 2.2.1. Using the frequency domain method of section 2.2.2 to evaluate the
convolution integral, bridge responses for each passage of the test vehicle were pre-
dicted. These predicted responses were then compared with the measured responses
to verify the calculation method.

The mode shapes used in the convolution procedure were those presented in
figures 5.2, 5.3 and 5.8.

One difficulty in the comparison of measurement and theory was that it was
difficult to measure the bridge response at low frequencies (see section 3.3.1). This

meant that the quasi-static displacement of the bridge was not measured. Since
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‘ the predicted response includes the quasi-static bridge response, it was necessary

‘ to remove this effect before an effective comparison could be made. This was ac-

\ complished with the application of a high pass digital filter with a cut off frequency .

' of 1.0Hz. The filter had attenuation properties similar to those of a eighth order
Butterworth filter [39], and was designed in accordance with the recommendations

j of Stockham [85].

5.2.1 Drift Road Bridge
Typical validation results for the Drift Road bridge are presented in figures 5.9
to 5.11. The time scales on all the figures are adjusted so that the front axle of the

vehicle enters the bridge at time zero.

For figure 5.9, the vehicle speed is 50km/h and the direction of travel is towards
t the north-west. The responses measured by accelerometers 1, 3, and 4 (see sec-
tion 3.5.1) are shown. The response at position 3 (1/4 span) includes the effects of
mode 5 while the two torsional modes are only present in the response at position

4 (midspan, offset). Because all three responses are similar, we deduce that the

displacement response is dominated by the first two modes. There is favourable
comparison, both in amplitude and form, between measurements and predictions.
The traces are generally in phase with each other, but the predicted responses are
consistently larger than the measured responses. The amplitude difference is partic-

ularly evident in the section of the record before 2.6 seconds. Between 2.6 seconds

and 5.2 seconds the test vehicle was directly over the instrumented span and so it is

not surprising that the best agreement occurs in this time interval. The amplitude
]‘ differences are unlikely to be caused by inaccurate mode shapes because of the good
agreement between measured and predicted mode shapes for the first two modes.
A better explanation is that the out of phase modal responses do not cancel each
other to the same degree in the predictions as in the measurements. These phasing
errors could be caused by incorrect synchronising of the vehicle position with the

bridge response due to slight speed variations or errors in the triggering signals.
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Figure 5.10 illustrates the predicted and measured midspan displacement re-
sponses for a test run at 50km/h with the vehicle travelling in the opposite direction.
Once again, the agreement is reasonable but the predicted response is still larger
than the measurement. There are also some peaks in the early stages of the pre-
dicted response that are not present in the measured response. These peaks occur
because the mode shape values were inaccurate on the first span of the bridge (figure
5.2).

Figure 5.11 illustrates the comparison between prediction and measurement in
the frequency domain by plotting the Fourier spectrum of the responses. The agree-
ment is satisfactory and the main differences are in amplitude. Most of the important
frequencies are correctly predicted except for the first mode of the bridge at 6.8Hz.
There is a single distinct peak on the measured response, but this is not reflected
by the pred}ction.

Neither response is dominated by individual modes and there is no low frequency
peak corresponding to the bounce frequency of the vehicle. Most of the bridge
response is in the frequency region between 5 and 10Hz. A re-examination of the
Fourier spectrum of the wheel loads (see figure 4.7) shows the vehicle wheel loads
have little energy in this region. The magnitude of the dynamic response is therefore
critically dependent on the accuracy of the dynamic wheel loads in a frequency region
where they are difficult to measure precisely.

One important factor to bear in mind when interpreting the results for this bridge
is that the original acceleration measurements were contaminated by noise. Aero-
dynamic excitation caused by heavy vehicles passing underneath the bridge resulted
in significant ambient vibration of the bridge. Although most of this vibration was
at relatively high frequencies, some of it was evident at frequencies below 20 Hz.
This noise problem almost certainly contributes to the discrepancies between the
predicted and measured responses.

Finally, some of the errors may be attributed to insufficient data from the modal
analysis. In section 4.3.4, it was shown that the regenerated transfer functions

differed from the measured ones in the frequency region above 10Hz. These errors
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were caused by inaccurate measurement of the torsional modes and the third flexural
mode, as well as the absence of high frequency modes. The modal analysis errors
were relatively smal}, but their effects may be magnified by errors from phasing,

wheel load estimation, and noise.

5.2.2 Lower Earley Bridge

The validation procedure was significantly more successful on the Lower Earley
bridge. Typical results are presented in figures 5.12 to 5.14.

For figure 5.12, the vehicle is travelling north at 50km/h and the bridge response
is shown for accelerometer positions 1, 3, and 4 (see figure 3.19). The agreement
between prediction and experiment is excellent. The curves do not match well in the
first two seconds, but during this time interval the vehicle is on the first span and
has not reached the instrumented span. After the first two seconds, the predicted
response exceeds the measured response at a few points, but otherwise the curves
are very close for all three measurement positions. The largest discrepancies occur
on the offset accelerometer (4), but most of the errors are in the initial two seconds.
This indicates the modes exhibiting torsion<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>