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Summary Consider estimating the slope coefficients of a fixed-effect binary-choice model
from two-period panel data. Two approaches to semiparametric estimation at the regular
parametric rate have been proposed: one is based on a sufficiency requirement, and the other
is based on a conditional-median restriction. We show that, under standard assumptions, both
conditions are equivalent.
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1. INTRODUCTION

A classic problem in panel data analysis is the estimation of the vector of slope coefficients, β,
in fixed-effect linear models from binary response data on n observations.

In seminal work, Rasch (1960) constructed a conditional maximum-likelihood estimator for
the fixed-effect logit model by building on a sufficiency argument. Chamberlain (2010) and
Magnac (2004) have shown that sufficiency is necessary for estimation at the n−1/2 rate to be
possible in general.

Manski (1987) proposed a maximum-score estimator of β. His estimator relies on a
conditional-median restriction and does not require sufficiency. However, it converges at the
slow rate n−1/3. Horowitz (1992) suggested smoothing the maximum-score criterion function and
showed that, by doing so, the convergence rate can be improved, although the n−1/2-rate remains
unattainable. Lee (1999) has given an alternative conditional-median restriction and has derived
an n−1/2-consistent maximum rank-correlation estimator of β. He provided sufficient conditions
for this condition to hold that restrict the distribution of the fixed effects and the covariates. It
can be shown that these restrictions involve the unknown parameter β through index-sufficiency
requirements on the distribution of the covariates, and that these can severely restrict the values
that β is allowed to take.

We reconsider the conditional-median restriction of Lee (1999) under standard assumptions
and look for conditions that imply that it holds for any β. We find that imposing the conditional-
median restriction is equivalent to requiring sufficiency.
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2. MODEL AND ASSUMPTIONS

Suppose that binary outcomes yi = (yi1, yi2) relate to a set of observable covariates xi =
(xi1, xi2) through the threshold-crossing model

yi1 = 1{xi1β + αi ≥ ui1}, yi2 = 1{xi2β + αi ≥ ui2},

where ui = (ui1, ui2) are latent disturbances, αi is an unobserved effect and β is a parameter
vector of conformable dimension, say k.

The challenge is to construct an estimator of β from a random sample {(yi, xi), i = 1, . . . , n}
that converges at the regular n−1/2-rate.

Let �yi = yi2 − yi1 and �xi = xi2 − xi1. The following assumption will be maintained
throughout.

ASSUMPTION 2.1. (IDENTIFICATION AND REGULARITY) (a) ui is independent of (xi, αi);
(b) �xi is not contained in a proper linear subspace of Rk; (c) the first component of �xi

continuously varies over the whole real line R (for almost all values of the other components),
and the first component of β is not equal to zero and normalized to one; (d) αi varies continuously
over the whole real line R (for almost all values of xi); (e) the distribution of ui admits a strictly
positive, continuous and bounded density function with respect to the Lebesgue measure.

Assumptions 2.1(a)–(c) collect sufficient conditions that ensure that β is (semiparametrically)
identified while Assumptions 2.1(d) and (e) are conventional regularity conditions that allow the
use of differential calculus; see Magnac (2004). In the following, we omit the ‘almost surely’
qualifier from all conditional statements.

Assumption 2.1 does not parametrize the distribution of ui nor does it restrict the dependence
between αi and xi . As such, our approach is semiparametric and we treat αi as fixed effects. This
is to be contrasted with a random-effect approach, where the distribution of αi given xi (and
the distribution of ui) is parametrized; see, e.g. Chamberlain (1980). In such a case, standard
inference can be performed through the (marginal) likelihood. A middle ground would be to
impose semiparametric restrictions on the dependence between αi and xi . For example, Honoré
and Lewbel (2002) construct an n−1/2-consistent estimator under the condition that one of the
regressors is conditionally independent of the fixed effects and that this special regressor satisfies
a large-support condition.

3. CONDITIONS FOR REGULAR ESTIMATION

Magnac (2004, Theorem 1) has shown that, under Assumption 2.1, the semiparametric efficiency
bound for β is zero unless yi1 + yi2 is a sufficient statistic for αi . Sufficiency can be stated as
follows.

CONDITION 3.1. (SUFFICIENCY) There exists a real function G, independent of αi , such that

Pr(�yi = 1|xi,�yi �= 0, αi) = Pr(�yi = 1|xi,�yi �= 0) = G(�xiβ)

for all αi ∈ R.

C© 2017 Royal Economic Society.
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Condition 3.1 states that data in first differences follow a single-indexed binary-choice model.
This yields a variety of estimators of β, such as semiparametric maximum likelihood – see Klein
and Spady (1993) – that are n−1/2-consistent under standard assumptions.

Magnac (2004, Theorem 3) derived conditions on the distributions of ui and �ui that imply
that Condition 3.1 holds.

However, Lee (1999) considered estimation of β based on a sign restriction. We write med(x)
for the median of random variable x and let sgn(x) = 1{x ≥ 0} − 1{x < 0}.
CONDITION 3.2. (MEDIAN RESTRICTION) For any two observations i and j ,

med
(�yi − �yj

2

∣∣∣xi, xj ,�yi �= 0,�yj �= 0,�yi �= �yj

)
= sgn(�xiβ − �xjβ)

holds.

Condition 3.2 suggests a rank estimator for β. Conditions for this estimator to be n−1/2-
consistent are stated in Sherman (1993).

Lee (1999, Assumption 1) restricted the joint distribution of αi, xi and xi1β, xi2β to ensure
that Condition 3.2 holds. Aside from these restrictions going against the fixed-effect approach,
they do not hold uniformly in β, in general. Appendix B contains additional discussion and an
example.

4. EQUIVALENCE

The main result of this note is the equivalence of Conditions 3.1 and 3.2 as requirements for
n−1/2-consistent estimation of any β. Appendix A provides a proof.

THEOREM 4.1. (EQUIVALENCE) Let Assumption 2.1 hold. Then Condition 3.2 holds for any β

and any joint distribution of (αi, xi) if and only if Condition 3.1 holds for any β and any joint
distribution of (αi, xi).
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APPENDIX A

We start with two lemmata that are instrumental in showing Theorem 4.1. We routinely make use of the fact
that, for events A, B and C,

Pr(A|C)

Pr(B|C)
= Pr(A)

Pr(B)

if A ⊂ C and B ⊂ C. �

LEMMA A.1. Condition 3.1 is equivalent to the existence of a continuously differentiable, strictly
decreasing function c, independent of αi , such that

Pr(�yi = −1|xi, αi)

Pr(�yi = 1|xi, αi)
= c(�xiβ)

for all αi ∈ R.

Proof: Conditional on �yi �= 0 and on αi, xi , the random variable �yi is Bernoulli with success probability

Pr(�yi = 1|xi, �yi �= 0, αi) = 1

1 + (Pr(�yi = −1|xi, αi)/Pr(�yi = 1|xi, αi))
.

Rearranging this expression and enforcing Condition 3.1 shows that

Pr(�yi = −1|xi, αi)

Pr(�yi = 1|xi, αi)
= 1 − G(�xiβ)

G(�xiβ)
,

which is a function of �xiβ only. Monotonicity and differentiability of this function follow easily, as in
Magnac (2004, Proof of Theorem 2). This completes the proof of Lemma A.1. �

LEMMA A.2. Let

c̃(xi) = Pr(�yi = −1|xi)

Pr(�yi = 1|xi)
.

Condition 3.2 is equivalent to the sign restriction

sgn(c̃(xj ) − c̃(xi)) = sgn(�xiβ − �xjβ)

C© 2017 Royal Economic Society.
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holding for any two observations i and j .

Proof: Conditional on �yi �= 0, �yj �= 0, �yi �= �yj (and the covariates),

�yi − �yj

2
=

{
1 if �yi = 1 and �yj = −1

−1 if �yj = 1 and �yi = −1
.

Therefore, it is Bernoulli with success probability

Pr(�yi = 1, �yj = −1|xi, xj , �yi �= 0,�yj �= 0, �yi �= �yj ) = 1

1 + r(xi, xj )
,

where

r(xi, xj ) = Pr(�yi = −1, �yj = 1|xi, xj , �yi �= 0, �yj �= 0, �yi �= �yj )

Pr(�yi = 1, �yj = −1|xi, xj , �yi �= 0, �yj �= 0, �yi �= �yj )
.

Note that

med

(
�yi − �yj

2

∣∣∣∣xi, xj , �yi �= 0, �yj �= 0, �yi �= �yj

)

= sgn

(
1

1 + r(xi, xj )
− r(xi, xj )

1 + r(xi, xj )

)
.

By the Bernoulli nature of the outcomes in the first step and random sampling of the observations in the
second step, we find that

r(xi, xj ) = Pr(�yi = −1, �yj = 1|xi, xj )

Pr(�yi = 1, �yj = −1|xi, xj )
= Pr(�yi = −1|xi)

Pr(�yi = 1|xi)

Pr(�yj = 1|xj )

Pr(�yj = −1|xj )
= c̃(xi)

c̃(xj )
.

Thus, Condition 3.2 can be written as

sgn(c̃(xj ) − c̃(xi)) = sgn(�xiβ − �xjβ).

This completes the proof of Lemma A.2. �

Proof of Theorem 4.1: We first establish that Condition 3.1 implies Condition 3.2. Armed with Lemmata
A.1 and A.2 this is a simple task. First note that, because the function c is strictly decreasing by Lemma
A.1, Condition 3.1 implies that

sgn(c(�xjβ) − c(�xiβ)) = sgn(�xiβ − �xjβ).

Under Condition 3.1, we also have that

c(�xiβ) = Pr(�yi = −1|xi, αi)

Pr(�yi = 1|xi, αi)
= Pr(�yi = −1|xi)

Pr(�yi = 1|xi)
= c̃(xi).

Therefore,

sgn(c̃(xj ) − c̃(xi)) = sgn(�xiβ − �xjβ).

By Lemma A.2, this is Condition 3.2.
To see that Condition 3.2 implies Condition 3.1, first note that Assumption 2.1(a) gives

Pr(�yi = −1|xi, αi)

Pr(�yi = 1|xi, αi)
= Pr(ui1 ≤ γi − (1/2)�xiβ, ui2 > γi + (1/2)�xiβ)

Pr(ui1 > γi − (1/2)�xiβ, ui2 ≤ γi + (1/2)�xiβ)

where we let γi = αi + (1/2)(xi1 + xi2)β. We can therefore write

Pr(�yi = 1|xi, �yi �= 0, αi) = G̃(�xiβ, γi)

C© 2017 Royal Economic Society.
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for some function G̃. Hence,

Pr(�yi = 1|xi, �yi �= 0) =
∫ +∞

−∞
G̃(�xiβ, γ ) p(γ |xi,�yi �= 0) dγ,

where p(γi |xi,�yi �= 0) denotes the density of γi given xi and �yi �= 0. Next, by Lemma A.2, Condition
3.2 implies that

�xiβ = �xjβ ⇐⇒ c̃(xi) = c̃(xj )

⇐⇒ Pr(�yi = −1|xi)

Pr(�yi = 1|xi)
= Pr(�yj = −1|xj )

Pr(�yj = 1|xj )

⇐⇒ Pr(�yi = −1|xi, �yi �= 0)

Pr(�yi = 1|xi, �yi �= 0)
= Pr(�yj = −1|xj , �yj �= 0)

Pr(�yj = 1|xj , �yj �= 0)

⇐⇒ Pr(�yi = 1|xi, �yi �= 0) = Pr(�yj = 1|xj , �yj �= 0)

⇐⇒
∫ +∞

−∞
G̃(�xiβ, γ ) p(γ |xi, �yi �= 0) dγ

=
∫ +∞

−∞
G̃(�xjβ, γ ) p(γ |xj ,�yj �= 0) dγ,

where the last step follows from the definition of G̃ above. Therefore, when �xiβ = �xjβ = v (say), it
must be that (A.1) holds, i.e. if the dependence between∫ +∞

−∞
G̃(v, γ ) {p(γ |xi, �yi �= 0) − p(γ |xj , �yj �= 0)} dγ = 0

and xi is unrestricted, this equality can only hold if G̃(v, γ ) is (almost surely) constant in γ . Lemma A.3
below, which is Condition 3.1, concludes the proof of the theorem. �

LEMMA A.3. For all v and almost all γi (or αi)

G̃(�xiβ, γi) = Pr(�yi = 1|xi, �yi �= 0, αi) = Pr(�yi = 1|xi, �yi �= 0) = G(�xiβ)

for some function G.

Proof: First, note that Assumption 2.1(a) implies that

Pr(�yi �= 0|xi, αi) = Pr(�yi = 1|xi, αi) + Pr(�yi = −1|xi, αi) = h(�xiβ, γi)

for some function h. This gives the factorization

Pr(�yi = 1|xi, �yi �= 0) =
∫ +∞

−∞G̃(�xiβ, γ ) h(�xiβ, γ ) p(γ |xi) dγ∫ +∞
−∞h(�xiβ, γ ) p(γ |xi) dγ

,

where p(γi |xi) is the density of γi given xi . Now, fix xi and v. Let p0(γ ) = p(γ |xi). By Assumption 2.1(c),
there always exists an xj for which∫ +∞

−∞
G̃(v, γ ) {p(γ |xi, �yi �= 0) − p(γ |xj , �yj �= 0)} dγ = 0. (A.1)

must hold. Let p1(γ ) = p(γ |xj ). Then, (A.1) can be written as∫ +∞
−∞G̃(v, γ ) h(v, γ ) p0(γ ) dγ∫ +∞

−∞h(v, γ ) p0(γ ) dγ
=

∫ +∞
−∞G̃(v, γ ) h(v, γ ) p1(γ ) dγ∫ +∞

−∞h(v, γ ) p1(γ ) dγ
. (A.2)

C© 2017 Royal Economic Society.
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Sufficiency in binary panel models 7

Because p1(γ ) is unrestricted we may set

p1(γ ) =
{

p0(γ ) (1 + ε) if γ ∈ A
p0(γ ) (1 − ε′) if γ /∈ A ,

where

A = {γ ∈ R : G̃(v, γ ) ≥ G(v)}, G(v) =
∫ +∞

−∞G̃(v, γ ) h(v, γ ) p0(γ ) dγ∫ +∞
−∞h(v, γ ) p0(γ ) dγ

,

and (ε, ε′) ∈ [0, 1)2 can be chosen such that ε + ε′ ∈ (0, 1). Note that Pr(γ ∈ A) > 0 because of
Assumption 2.1(d). Furthermore, because

∫ +∞
−∞ p1(γ ) dγ = 1 we have Pr(γ ∈ A) = ε′/(ε + ε′) and Pr(γ /∈

A) = ε/(ε + ε′). Also, as∫ +∞

−∞
h(v, γ ) p1(γ ) dγ = (1 + ε)

∫
γ∈A

h(v, γ ) p0(γ ) dγ + (1 − ε′)
∫

γ /∈A
h(v, γ ) p0(γ ) dγ,

we can write ∫ +∞

−∞
h(v, γ ) p1(γ ) dγ = ((1 + ε) λ + (1 − ε′) (1 − λ))

∫ +∞

−∞
h(v, γ ) p0(γ ) dγ (A.3)

for

λ =
∫

γ∈Ah(v, γ ) p0(γ ) dγ∫ +∞
−∞h(v, γ ) p0(γ ) dγ

∈ [0, 1].

Because h(v, γ ) > 0 and p0(γ ) > 0 for almost all γ and Pr(γ ∈ A) > 0, we find that λ > 0 and that λ = 1
if and only if Pr(γ ∈ A) = 1. Now, rearranging (A.2) and using (A.3) gives

0 =
(

(ε + ε′) (1 − λ)

(1 + ε) λ + (1 − ε′) (1 − λ)

) ∫
γ∈AG̃(v, γ ) h(v, γ ) p0(γ ) dγ∫ +∞

−∞h(v, γ ) p0(γ ) dγ

−
(

(ε + ε′) λ

(1 + ε) λ + (1 − ε′) (1 − λ)

) ∫
γ /∈AG̃(v, γ ) h(v, γ ) p0(γ ) dγ∫ +∞

−∞h(v, γ ) p0(γ ) dγ
, (A.4)

while, by definition of the set A, we have∫
γ∈AG̃(v, γ ) h(v, γ ) p0(γ ) dγ∫ +∞

−∞h(v, γ ) p0(γ ) dγ
≥ λ G(v),

∫
γ /∈AG̃(v, γ ) h(v, γ ) p0(γ ) dγ∫ +∞

−∞h(v, γ ) p0(γ ) dγ
≤ (1 − λ) G(v), (A.5)

with a strict inequality of the second expression if and only if λ < 1. Suppose that λ < 1. Then, combining
(A.4) and (A.5) gives the inequality(

(ε + ε′) (1 − λ) λ

(1 + ε) λ + (1 − ε′) (1 − λ)

)
G(v) <

(
(ε + ε′) (1 − λ) λ

(1 + ε) λ + (1 − ε′) (1 − λ)

)
G(v),

which is a contradiction as ε + ε′ > 0 and Ḡ(v) > 0. Thus, we must have that λ = 1, and so Pr(γ ∈ A) = 1.
Therefore, we have for any v

Pr(G(v, γ ) ≥ G(v)) = 1

and, by symmetry, for any v

Pr(G(v, γ ) ≤ G(v)) = 1.

C© 2017 Royal Economic Society.
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Therefore, for any v, G̃(v, γ ) is constant (almost surely) in γ and �yi �= 0 is sufficient for γi . This completes
the proof of the lemma. �

APPENDIX B

The notation in Lee (1999) decomposes x into its continuously varying single component whose coefficient
is equal to 1 and the remaining variables. We denote by a the first component and by z the remaining
variables, so that x = (a, z). We denote by θ the coefficient of z in xβ so that β = (1, θ ), and we omit the
subscript i throughout.

Conditions (g) and (h) of Lee (1999) can be written as

(g) α ⊥ �z | �a + θ�z,

(h) a1 + θz1 ⊥ �z | �a + θ�z, α,

in which, e.g., �z = z2 − z1.
We first prove that these conditions imply an index-sufficiency requirement on the distribution function

of regressors. Second, we provide an example in which these conditions restrict the parameter of interest to
only two possible values, except in non-generic cases.

Index sufficiency

Denote by f the density with respect to some dominating measure and rewrite (h) as

f (a1 + θz1, �z | �a + θ�z, α) = f (a1 + θz1 | �a + θ�z, α)f (�z | �a + θ�z, α).

As Condition (g) can be written as

f (�z | �a + θ�z, α) = f (�z | �a + θ�z),

we therefore have that

f (a1 + θz1, �z | �a + θ�z, α) = f (a1 + θz1 | �a + θ�z, α)f (�z | �a + θ�z),

which we can multiply by f (α | �a + θ�z) and integrate with respect to α to obtain

f (a1 + θz1, �z | �a + θ�z) = f (a1 + θz1 | �a + θ�z)f (�z | �a + θ�z).

As this expression can be rewritten as

f (�z | �a + θ�z, a1 + z1θ ) = f (�z | �a + θ�z),

Conditions (g) and (h) of Lee (1999) demand that

f (�z | a1 + z1θ, a2 + z2θ ) = f (�z | �a + θ�z, a1 + z1θ ) = f (�z | �a + θ�z),

or in terms of the original variables, that

f (�z | x1β, x2β) = f (�z | �xβ).

This is an index-sufficiency requirement on the data-generating process of the regressors x that is driven by
the parameter of interest, β.

C© 2017 Royal Economic Society.
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Example

To illustrate, suppose that z is a single dimensional regressor and that regressors are jointly normal with a
restricted covariance matrix allowing for contemporaneous correlation only. Moreover,

⎛
⎜⎜⎜⎝

a1

a2

z1

z2

⎞
⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

μa1

μa2

μz1

μz2

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

σ 2
a1

0 σa1z1 0

0 σ 2
a2

0 σa2z2

σa1z1 0 σ 2
z1

0

0 σa2z2 0 σ 2
z2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠.

Then

⎛
⎜⎝

�z

x1β

x2β

⎞
⎟⎠ ∼ N

⎛
⎜⎝

⎛
⎜⎝

μ1

μ2

μ3

⎞
⎟⎠,

⎛
⎜⎝


11 
12 
13


12 
22 
23


13 
23 
33

⎞
⎟⎠

⎞
⎟⎠

for

μ1 = μz2 − μz1

μ2 = μa1 + μz1θ

μ3 = μa2 + μz2θ

and


11 = var(�z) = var(z1) + var(z2)


12 = cov(�z, x1β) = −cov(z1, a1 + z1θ )

= −cov(a1, z1) − θ var(z1)

= −σa1z1 − θσ 2
z1


13 = cov(�z, x2β) = cov(z2, a2 + z2θ )

= cov(a2, z2) + θ var(z2)

= σa2z2 + θσ 2
z2


22 = var(x1β) = var(a1 + z1θ )

= var(a1) + θ2 var(z1) + θ 2cov(a1, z1)

= σ 2
a1

+ 2θσa1z1 + θ2σ 2
z1


33 = var(x2β) = var(a2 + z2θ )

= var(a2) + θ2 var(z2) + θ 2cov(a2, z2)

= σ 2
a2

+ 2θσa2z2 + θ2σ 2
z2


23 = cov(x1β, x2β) = 0.

From standard results on the multivariate normal distribution, we have that

�z|x1β, x2β

C© 2017 Royal Economic Society.
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is normal with constant variance and conditional mean function

m(x1β, x2β) = μ1 + (
13
22 − 
12
23)(x2β − μ3) − (
13
23 − 
12
33)(x1β − μ2)


22
33 − 
2
23

.

To satisfy the condition of index sufficiency, we need

(
13
22 − 
12
23) = (
13
23 − 
12
33).

Plugging-in the expressions from above, this becomes

(σa2z2 + θσ 2
z2

)(σ 2
a1

+ 2θσa1z1 + θ2σ 2
z1

) = (σa1z1 + θσ 2
z1

)(σ 2
a2

+ 2θσa2z2 + θ2σ 2
z2

).

We can write this condition as the third-order polynomial equation (in θ )

C + Bθ + Aθ2 + Dθ3 = 0

with coefficients

C = σ 2
a1

σa2z2 − σ 2
a2

σa1z1

B = σ 2
a1

σ 2
z2

+ 2σa2z2σa1z1 − σ 2
a2

σ 2
z1

− 2σa2z2σa1z1

= σ 2
a1

σ 2
z2

− σ 2
a2

σ 2
z1

A = σa1z1σ
2
z2

− σa2z2σ
2
z1

D = 0.

For t = 1, 2, let

ρt = σat zt

σat
σzt

, rt = σat

σzt

.

Then

C

σa1σa2σz1σz2

= ρ2r1 − ρ1r2

B

σa1σa2σz1σz2

= r1

r2
− r2

r1

A

σa1σa2σz1σz2

= ρ1

r2
− ρ2

r1
.

Therefore, the polynomial condition is

(ρ2r1 − ρ1r2) +
(

r1

r2
− r2

r1

)
θ +

(
ρ1

r2
− ρ2

r1

)
θ 2 = 0.

Note that the leading polynomial coefficient is equal to zero if and only if ρ1r1 = ρ2r2. This leads to three
mutually-exclusive cases, as follows.

(a) The data are stationary, that is, ρ1 = ρ2 and r1 = r2. Then, all polynomial coefficients are zero so
that all values of θ satisfy Lee’s restriction.

(b) We have ρ1r1 = ρ2r2 but r1 �= r2. Then, the resulting linear equation admits one and only one solution
in θ .
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(c) The leading polynomial coefficient is non-zero, so, ρ1r1 �= ρ2r2. In this case, the discriminant of the
second-order polynomial equals

� =
(

r1

r2
− r2

r1

)2

− 4

(
ρ1

r2
− ρ2

r1

)
(ρ2r1 − ρ1r2)

=
(

r1

r2

)2

+
(

r2

r1

)2

− 2 − 4

(
ρ1ρ2

(
r1

r2
+ r2

r1

)
− (ρ2

1 + ρ2
2 )

)
.

Set x = (r1/r2) ≥ 0 and write

�(x) = x2 + 1

x2
− 2 − 4(ρ1ρ2

(
x + 1

x

)
− (ρ2

1 + ρ2
2 )),

which is smooth for x > 0. The derivative of � with respect to x equals

�′(x) = 2x − 2

x3
− 4

(
ρ1ρ2

(
1 − 1

x2

))

= 2

x3
(x4 − 1) − 4ρ1ρ2

1

x2
(x2 − 1)

= 2

x3
(x2 − 1)(x2 + 1 − 2ρ1ρ2x).

Note that the Cauchy–Schwarz inequality implies that x2 + 1 − 2ρ1ρ2x ≥ 0 so that, for x ≥ 0,

sgn(�′(x)) = sgn(x − 1).

Further, �(1) = 4(ρ1 − ρ2)2. Therefore, �(x) is always non-negative. Hence, in this case, the polynomial
condition generically has two solutions in θ .

Conclusion

Conditions (g) and (h) of Lee (1999) imply an index-sufficiency condition for the distribution function of
regressors. In generic cases in a standard example, this condition is restrictive and is not verified by every
possible value of the parameter of interest, θ , but only two.

C© 2017 Royal Economic Society.




