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Abstract5

Illegal markets are notoriously difficult to study. Police data offer an increasingly6

exploited source of evidence. However, their secondary nature poses challenges for7

researchers. A key issue is that researchers often have to deal with two sets of8

actors: targeted and non-targeted. This work develops a latent space model for9

interdependent ego-networks purposely created to deal with the targeted nature10

of police evidence. By treating targeted offenders as egos and their contacts as11

alters, the model (a) leverages on the full information available and (b) mirrors the12

specificity of the data collection strategy. The paper then applies this approach to13

analyse a real-world example of illegal markets, namely the smuggling of migrants.14

To this end, we utilise a novel dataset of 21,555 phone conversations wiretapped by15

the police to study interactions among offenders.16

1 Introduction17

Every day a considerable number of interactions take place outside the realm of legal18

frameworks. Individuals across the world produce and trade a variety of illegal products19

and services, ranging from drugs to counterfeit goods, stolen products or illegal border20

crossings (Campana and Varese, 2018). This multitude of interactions constitutes the21

backbone of illegal markets. Studying such interactions is a crucial task if we are to22

understand how illegal activities are organised and how illegal actors operate. Morselli23

(2013), Faust and Tita (2019) and Campana and Varese (2020) offer a review of the ques-24

tions scholars have been interested in: these range from modelling exposure to violence to25

understanding co-offending patterns in illicit networks of various kind as well as exploring26
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the dynamics internal to illegal organisations such as organised crime groups and gangs.27

Yet, studying illegal interactions can be a rather challenging endeavour.28

Scholars have pointed to a number of issues that researchers face when studying hard-29

to-reach and hidden populations (Atkinson and Flint, 2001). Faust and Tita (2019),30

Diviák (2019) and Campana and Varese (2020) offer a comprehensive review of the chal-31

lenges and pitfalls that researchers might encounter when using social network analysis in32

criminological research, including illegal markets and organised crime. One major issue33

is the availability of data – particularly in the context of quantitative network research.34

To overcome this problem, scholars are increasingly relying on law enforcement data (see,35

among others, Natarajan (2000); McGloin (2007); Morselli (2009); Papachristos (2009);36

McGloin and Piquero (2010); Malm and Bichler (2011); Campana (2011, 2016); Grund37

and Densley (2012); Bright et al. (2012); Schaefer (2012); Papachristos et al. (2012);38

Varese (2013); Campana and Varese (2013); Papachristos et al. (2015); Calderoni et al.39

(2017); Bright et al. (2018)).40

However, such data come with limitations. For example, they might be influenced by41

the level of enforcement, policing priorities, recording practices as well as resource con-42

straints (Morselli, 2009; Malm and Bichler, 2011; Campana and Varese, 2012; Calderoni,43

2014; Faust and Tita, 2019; Campana and Varese, 2020). We refer to Faust and Tita44

(2019) and Campana and Varese (2020) for a broader discussion of such limitations. In45

this paper, we focus on the secondary nature of such data. Normally, researchers have46

no input in designing the data collection strategy adopted by law enforcement agencies47

and thus need to work within the boundaries set by the agency. The secondary nature of48

the evidence makes it difficult to control for, alas, errors and missing data (Malm et al.,49

2008). A further implication is that researchers are constrained by the sampling strategy50

adopted by the law enforcement agency in the first place. This is a key issue that has51

far-reaching modelling implications.52

For example, during an investigation, police normally target a sub-set of individuals53

and then collect information about additional individuals connected to the targeted ones.54

This creates two sets of actors: the targeted individuals and the non-targeted individuals.55

Police investigations can be seen as a specific type of link-tracing design in which referrals56

are unwittingly provided by the ‘respondents’ (Heckathorn and Cameron, 2017). During57

an investigation, new targeted individuals may be added, but those will inevitably bring58

in a new set of non-targeted individuals. It is almost inevitable, due to the nature59

of police investigations, that we end up with two sets of actors: those who have been60

directly targeted and those who have entered the dataset by virtue of being connected to61

the targeted one. In theory, one could envisage a situation in which (a) all the previously62

non-targeted individuals are targeted before the end of the investigation and (b) all their63

contacts are already included in the dataset: this situation, however, never occurs in64
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reality. (Incidentally, the fact that investigators make decisions on whom to target is a65

different issue, which is treated in Campana and Varese (2020)). The targeted nature of66

police investigations is universal across jurisdictions.67

Researchers who wish to work with police records face a similar problem if the data68

were extracted using a targeted extraction strategy (Campana and Varese, 2020). This69

strategy normally consists in selecting a set of actors based on certain characteristics, e.g.70

being part of an organised crime group or a gang, and then extract all the alters connected71

to the initial set of actors. If the ‘alter-alter’ relations are not directly extracted, then we72

are in a situation in which part of the actors are directly targeted and part are not (this73

was the case, for example, of the dataset used in Ouellet et al. (2019) or in Campana and74

Varese (2020)). Whether it is due to investigative practices or to the type of extraction75

strategy adopted, the targeted nature of police evidence has an impact on the structure76

of the data made available to researchers. The latter are then confronted with a difficult77

issue related to the treatment of such data as the likelihood of appearing in the network is78

not the same for the targeted and the non-targeted individuals (see Campana and Varese79

(2013), Bright et al. (2018), Diviák (2019), Campana and Varese (2020); this is similar80

to the ‘spotlight effect’ discussed by Smith and Papachristos (2016)). If researchers focus81

on the targeted individuals only, they will disregard a very large amount of potentially82

valuable information. How can we then consider the evidence on both targeted and non-83

targeted individuals in a way that takes into account the specificity of the data collection84

strategy and minimises the amount of information that we disregard?85

Varese (2013), Smith and Papachristos (2016) and Campana (2018) have adopted an86

indirect strategy by sub-setting the initial dataset and then running robustness checks.87

Combining years of experience in our respective fields, in this paper we offer a novel88

solution that directly models the specificity of targeted evidence. This modelling strategy89

is based on a latent space framework (Hoff et al., 2002; Handcock et al., 2007; Gollini and90

Murphy, 2015; Rastelli et al., 2016) for interdependent ego-networks. We suggest treating91

all targeted individuals as egos and all non-targeted individuals as alters. Our approach92

consists in assuming that the latent positions of the egos will be jointly determined by93

the ego-ego and ego-alter connectivity structure so that the closer the positions of two94

egos in the latent space the higher the probability that the two egos have a link between95

them and share common alters.96

In criminology, latent space models have been applied only recently to study the heroin97

drug flows among countries (Berlusconi et al., 2017). We advance this line of work by98

offering the first application of latent space models to actor-level patterns of interactions;99

further, we present a tailored model to capture interdependent egos. We suggest that100

this approach can be fruitfully applied to answer a number of research questions related101

to illegal markets and offenders’ behaviour. While the formulation of such questions nec-102
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essarily depends on the specific content of the evidence that a researcher can rely upon,103

potential examples relate to the study of the structure of illegal markets and the interac-104

tions underpinning those. A researcher can answer questions related to the identification105

of clusters of dense interactions – what we could call ”criminal proximity” – as well as106

the opposite notion of ”criminal distance” (in a latent space approach, relative distances107

between actors are meaningful). One can compare distance-based clusters with, for in-108

stance, attribute-based clusters (e.g. organised crime or gang membership). Further, one109

can identify actors with a high degree of equivalence from a criminal market perspective,110

thus flagging a potential for a quick replacement if one of the pair is arrested. Crucially,111

close association (clustering) and criminal distances are calculated taking into account112

not only direct interactions among (targeted) offenders but also their alters’ profile. If113

the evidence allows, this approach can be applied to jointly explore the supply-side and114

the demand-side of an illegal market, for instance in situations in which sellers have been115

targeted and customers can be identified among the non-targeted population. Drug deal-116

ing comes to mind: for instance, we can model association and criminal distance between117

dealers also taking into consideration their customers’ profile.118

In this paper, we present an application of our approach to study a topical issue in119

contemporary societies: the smuggling of migrants. We will do so by relying on a novel120

data set of real-world wiretapped phone conversations among human smugglers that we121

obtained from the Italian police.122

The paper proceeds as follows: the next Section discusses the latent space model123

for interdependent ego-networks. Section 3 introduces the data for this study and their124

structure. Section 4 presents the results of the models and Section 5 offers a further125

analysis of the estimated link probabilities. Section 6 concludes.126

2 Interdependent ego-networks127

The evidence collected during police investigations usually generates a data structure128

akin to a collection of interdependent ego-networks. Some individuals are normally placed129

under surveillance, for instance they have their phone lines wiretapped. Other individuals,130

on the other hand, are included in the evidence by virtue of having been connected to131

someone under direct surveillance, for instance through a phone call they have made or132

received. A targeted extraction from police records generates a similar data structure. We133

interpret the first set of actors–the targeted ones–as egos. The second set of actors–the134

non-targeted ones–are the alters.135

More formally, let N be the number of observed egos and Y be the N ×N adjacency136

matrix containing the relational information between them, with entries yij = 1 if there137

is a tie between ego i and ego j and yij = 0 otherwise. Let M be the number of observed138
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alters and X be the N ×M incidence matrix encoding presence or absence of an edge139

between egos and alters, with entries xik = 1 if there is a tie between ego i and alter140

k and xik = 0 otherwise. Egos can be connected to the same alter l if xil = xjl = 1.141

See Figure 1 for a graphical representation of the relational structure of interdependent142

ego-networks.143

i j

k l

yi j

xik
xi l xj l

Figure 1: Example of two interdependent ego networks: two egos i and j can be connected

through yij and they can also share a common alter (l).

2.1 Latent space model144

The latent space modelling approach described provides an interpretable model-based145

visual representation of the network connectivity structure as it takes into account several146

relational properties. The latent space model proposed by Hoff et al. (2002) assumes147

the existence of a D-dimensional latent space where nodes are positioned according to148

their probability of being connected. The nodes’ positions are determined by a logistic149

regression model that assumes that the shorter the latent distance between two nodes,150

the higher the probability that those two nodes are connected.151

Several distance metrics have been proposed in the literature according to the various152

types of link relations (see, for example, Hoff (2005, 2009)). Gollini and Murphy (2015)153

proposed to use the squared Euclidean distance for undirected networks instead of the154

commonly used Euclidean distance (Hoff et al., 2002) for two main reasons: firstly, it155
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allows one to visualise more clearly the presence of nodal clusters by giving a higher156

probability of a link between two close nodes in the latent space and lower probabili-157

ties to two nodes lying far away from each other. Secondly, it makes the model need158

fewer approximation steps for the variational estimation procedure which provides a very159

fast estimation method for large networks (see Section 2.3 for more details). This is160

particularly helpful when dealing with large-scale police evidence.161

The relational structure of the ego-ego network Y can be captured by a latent space162

model with squared Euclidean distance:163

p(Y | Z, α) =
N∏
i 6=j

p(yij|zi, zj, α) =
N∏
i 6=j

exp(α− |zi − zj|2)yij
1 + exp(α− |zi − zj|2)

, (1)

where the density parameter and the latent positions are respectively α ∼ N (ξα, ψ
2
α), and164

zi ∼ N (0, σ2ID) and ξα, ψ
2
α, σ

2 are fixed parameters.165

2.2 Latent space model for interdependent ego-networks166

The main aim of the latent space model for interdependent ego networks is to visualise167

the position of egos (and alters) based on both the ego-alter and ego-ego connectivity168

structure in a unique interpretable way. To do so we assume the existence of a D-169

dimensional latent space on which both egos and alters lie. To take into account the170

dependence structure within the ego networks we first define the probability that an ego171

i and an alter k are connected as172

p(xik | zi,wk, β) =
exp(β − |zi −wk|2)xik

1 + exp(β − |zi −wk|2)
,

where zi and wk are the latent positions of ego i and alter k respectively. Assuming condi-173

tional dyadic independence given the latent positions we have that the overall probability174

of observing the incidence matrix X can be written as175

p(X | Z,W, β) =
N∏
i=1

M∏
k=1

p(xik | zi,wk, β),

where β ∼ N (ξβ, ψ
2
β) is a baseline density parameter, (Z,W)

iid∼ N (0, σ2ID) represent176

respectively the latent positions of egos and alters in the latent space, and ξβ, ψ
2
β, σ

2 are177

fixed parameters.178

The dependence structure between the ego networks is then captured by the latent179

space model defined by p(Y | Z, α) in Equation 1. Therefore the likelihood of the latent180

space model for interdependent ego-networks can be written as181

p(Y,X | Z,W, β, α) = p(Y | Z, α) p(X | Z,W, β) (2)
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Figure 2: Graphical representation of the latent space model for interdependent ego-

networks.

and its graphical representation is displayed in Figure 2.182

It is important to notice that, according to the model defined in Equation 2, the183

latent positions of each ego depend on both the latent positions of the other egos and the184

positions of the alters. In fact, conditional on the ego-ego relations, the latent positions185

of alters influences the positions of the egos by shortening or lengthen their distance in186

the latent space. It may happen that two unconnected egos tend to be conditionally close187

to each other in the latent space because they share a large number of common alters188

and, vice versa, two connected egos tend to be conditionally far from each other because189

they either do not share or share only a few common alters.190

2.3 Variational inference191

Several methods have been proposed to estimate model parameters and nodal latent192

positions. These methods include Monte Carlo algorithms from stationary distributions193

corresponding to the posterior distributions (Hoff et al., 2002; Handcock et al., 2007;194

Krivitsky et al., 2009; Raftery et al., 2012). Variational methods (Jordan et al., 1999)195

offer a fast approximate alternative inferential methodology for large data sets (Salter-196

Townshend and Murphy, 2013; Gollini and Murphy, 2015).197

Due to the large size of the data we analyse in this paper, variational methods repre-198

sent a pragmatic and effective choice. The target posterior distribution corresponding to199

the model defined in Equation 2 can be written as200

p(Z,W, α, β | X,Y) ∝ p(Y,X | Z,W, β, α) ×
p(Z) p(W) p(β) p(α),
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where the distributions of p(Z), p(W), p(β), and p(α) are defined in Section 2.1 and 2.2.201

We propose the following variational approximation to the target distribution:202

q(Z,W, α, β | Y,X) = q(α) q(β)
N∏
i=1

q(zi)
M∏
k=1

q(wk),

where q(α) = N (ξ̃α, ψ̃
2
α), q(β) = N (ξ̃β, ψ̃

2
β), q(zi) = N (z̃i, Σ̃z) and q(wk) = N (w̃k, Σ̃w).203

204

An expectation-maximisation (EM) algorithm used to carry out parameter inference205

at each (t+ 1) iteration consists of the following steps:206

• E-Step:207

– Estimate z̃
(t+1)
i and Σ̃

(t+1)

z by evaluating:208

Q(Θα,Θβ; Θ(t)
α ,Θ

(t)
β ) = KL[q(Z, α,W, β | Y,X) || p(Z, α,W, β | Y,X)],

where KL(·) is the Kullback–Leibler divergence measure and Θα = (ξ̃α, ψ̃
2
α),209

Θβ = (ξ̃β, ψ̃
2
β).210

– Estimate w̃
(t+1)
k and Σ̃

(t+1)

w by evaluating:211

Q(Θβ; Θ
(t)
β ) = KL[q(Z, α,W, β|Y,X) || p(Z, α,W, β|Y,X)].

• M-Step:212

– Estimate ξ̃α and ψ̃2
α by evaluating:213

Θ(t+1)
α = argmax Q(Θα; Θ(t)

α ),

– Estimate ξ̃β and ψ̃2
β by evaluating:214

Θ
(t+1)
β = argmax Q(Θβ; Θ

(t)
β ).

To minimise the risk of estimating local maxima, the algorithm needs to be run several215

times from different starting points. The solutions with the lowest expected log-likelihood216

is selected. Further mathematical details of the variational procedure are provided in the217

Appendix. Next, we apply our model to a dataset of wiretapped phone conversations218

exchanged among human smugglers.219
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3 Data collection and structure220

On the 3rd of October 2013, a boat carrying 518 migrants capsized within sight of the221

island of Lampedusa, the southernmost Italian territory, claiming the life of 366 people on222

board (Nelson, 2014). The Italian authorities responded by launching an extensive police223

investigation. For the first time, the ‘elite’ Anti-mafia Prosecutor’s Office in Palermo224

was tasked with investigating smuggling operations. Quickly, the experienced team of225

police officers was able to identify and then wiretap the phone lines of various individuals226

involved in the fatal journey. As it turned out, the individuals under surveillance were227

active in smuggling migrants across the Mediterranean sea along the so-called ‘Central228

Mediterranean Route’ (i.e., from Libya into Italy and, to a much lesser extent, Malta).229

This is one of the main smuggling routes into Europe with 693,731 illegal border crossings230

registered between 2013 and 2018, consistently accounting for half or more of all illegal231

entries into Europe (Frontex, 2019).232

For this paper, we have acquired and analysed the complete set of phone records233

wiretapped among 28 smugglers active in the smuggling of migrants along the Central234

Mediterranean route. All the wiretapped smugglers were based in Italy at the time of the235

investigation. The phone records span from December 2013 to October 2014. This is a236

unique dataset that has never been used before and includes meta-data on 21,555 phone237

conversations wiretapped. During this period, the 28 smugglers under surveillance have238

been in contact with 15,791 individuals not under surveillance. To filter out the noise239

related to occasional contacts, we have restricted our analysis to alters (individuals not240

under surveillance) with degree greater than one. This will leave us with 28 egos and241

2,687 alters.242

We use this evidence to get a glimpse into the structure of interactions underpinning243

the market for human smuggling. Who are the central players in the market? Are there244

emerging clusters based on close interactions among egos /emphand shared alters? Who245

are the actors that display greater mutual criminal distance in their operations? And246

are there actors that possess a structurally equivalent profile? Granted, our 28 market247

players are just a slice of a much larger market; however, our evidence does offer some248

insights into the real-world behaviour of smugglers using a high-frequency data source249

(i.e., phone conversations wiretapped: on the use of this source in studying organised250

crime, see Campana and Varese (2013) and Campana and Varese (2020)). Our approach251

can be applied to much larger datasets, if available, to study a larger slice of this market252

and/or other illegal markets.253

Formally, we treat the 28 smugglers as interdependent ego-networks. It should be254

noted here that all egos are smugglers (offenders) while alters can be anyone who has255

been in contact with them - both offenders and migrants (clients). Our evidence does256

not allow us to differentiate between offenders and migrants among the alters; however,257
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Figure 3: Adjacency Matrix Y and the ego degree for each ego.

it does allow us to model the full behaviour of the egos based on their interactions with258

both fellow offenders and migrants, i.e. both the supply-side and the demand-side of the259

market.260

Figure 3 shows the adjacency matrix Y of the data set and the ego degree for each261

ego. Figure 4 shows the incidence matrix X and the alter degree for each ego. Figure 5262

shows degree distribution for the alters.263

4 Uncovering offenders’ latent positions264

We now move to explore the underlying structure of interactions in the market for human265

smuggling. We use our set of 28 smugglers (egos) to identify clusters of close interac-266

tions as well as what we can term ‘criminal distancing’. We use the latent space as a267

representation of a criminal market, in this case the market for human smuggling. Before268

we do so, we remind the reader that interactions are based on phone conversations ex-269

changed. An edge between any two actors is present if an interaction between them has270

been recorded. In this paper, we do not consider the direction of the call and the number271

of calls exchanged, hence we work with an undirected and unweighted graph. However,272

our modelling framework can be adapted for directed and weighted graphs.273
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Figure 4: Incidence Matrix X and the alter degree for each ego.

Figure 5: Degree distribution for the alters.
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Figure 6: Estimate of latent positions and 95% credible intervals in grey on ego-ego

network Y.

4.1 Latent structure of the ego-ego network274

We first analyse the 2-dimensional latent structure of the adjacency matrix Y of the ego-275

ego network without using the information about the incidence matrix X of the ego-alter276

relations (Equation 1). The code used to implement the methodology proposed in this277

paper is available in the lvm4net package (Gollini, 2020) for R (R Core Team, 2019). For278

the initialisation of the variational algorithm we used 10 random starting positions. We279

set the following fixed parameter values: σ = 1, ξα = 0, and ψ2
α = 2.280

The estimated latent positions of the egos z̃i are displayed in Figure 6 where the281

grey ellipses indicate the associated 95% credible intervals. The estimated posterior282

distribution of the density parameter α is a N (ξ̃α = 1.930, ψ̃α
2

= 0.003).283

Figure 7 shows the graphical goodness of fit diagnostics for the estimated model.284

The procedure consists in comparing the distributions of network data simulated from285

the estimated variational posterior distributions to the observed data in terms of high-286

level network characteristics (Hunter et al., 2008). The plots suggest that the model is287

a reasonable fit to Y as the solid lines representing the observed network statistics lie288

within the 95% predictive network statistics intervals.289

Figure 6 offers a first representation of the interactions underpinning the smuggling290
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Figure 7: Graphical goodness of fit diagnostics for the latent space model on Y. The

solid lines represent the distribution of the observed network statistic distributions; the

boxplots represent the simulated network statistic distributions.

market taking into considerations only the direct interactions among the 28 smugglers291

directly targeted. It neatly points to the centrality of E1 and a cluster of smugglers292

closely associated to him (all the smugglers in the dataset are male). It also shows the293

peripheral position of a number of other smugglers (e.g., E15, E25, E28, E21) as well294

as the presence of smugglers who cover the middle ground between the centre and the295

periphery, e.g. E12, E24, E8.296

4.2 Latent structure of the interdependent ego-networks297

We now include in our model the information about the interactions between egos (tar-298

geted smugglers) and alters (non-targeted individuals) to gain a complete picture of the299

behaviour of the 28 targeted smugglers. To do so, we estimate the model for interde-300

pendent ego-networks by including the relational information of the incidence matrix301

X.302

As for the previous section, we adopt a 2-dimensional latent space and the same303

initialisation specifications. We set the fixed parameters as following: σ = 1, ξα = 0,304

ψ2
α = 1, ξβ = 0, and ψ2

β = 2.305
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Figure 8: Estimate of latent positions and 95% credible intervals in grey on the interde-

pendent ego network (Y,X).

The estimated latent positions of the egos z̃i are displayed in Figure 8 where the306

grey ellipses indicate the associated 95% credible intervals. The estimated posterior307

distribution of the parameter α is N (ξ̃α = 1.754, ψ̃2
α = 0.003). The estimated posterior308

distribution of the parameter β is N (ξ̃β = −5.1974, ψ̃2
β = 0.0001).309

Figure 8 offers the complete representation of the illicit market based on the full310

information on the behaviour of their (targeted) participants. We remind the reader that311

we use phone conversations wiretapped as a proxy for interactions. The analysis points312

to a number of findings. Firstly, the centrality of E1 and the presence of a dense cluster313

around him; these individuals may be his closest associates. Secondly, the presence of a314

second cluster far removed from the cluster around E1: this second cluster includes E9,315

E19, E2 and E16. There is a large ‘criminal distance’ between the two clusters, which may316

call for further investigation: are these two clusters in competition? Or are they fulfilling317

different tasks? The evidence we possess does not allow us to answer those questions.318

Further, there is a number of very peripheral actors, for instance E25, E15, E26 and E28.319

Finally, there is a number of players whose position is almost overlapping, e.g., E7/E3320

and E4/E20. This suggests a high degree of equivalence from a market perspective, and321

thus the possibility that one could quickly replace the other if one of them is arrested322

(although this should be further investigated using qualitative evidence).323
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Figure 9: Graphical goodness of fit diagnostics for the latent space model on (Y,X).

When comparing Figure 8 to Figure 6, we can notice that most of the structure324

has remained unchanged. This means that the ego-alter relational structure is broadly325

reflecting the ego-ego relational structure. However, some changes did appear when using326

the full information available. Notably the position of E28, who was previously close to327

E15, is now showing a much higher criminal distance with E15 (and a full switch from328

the right-hand side to the left-hand side of the picture).329

Figure 9 shows the graphical goodness of fit diagnostics for the estimated model330

for (Y,X). In this case the simulated network distributions are calculated on networks331

sampled from the estimated variational posterior distributions of the density parameters332

α, β and the ego and alters latent positions. The results confirm the good fit of the model333

to the ego-ego network data.334

5 Estimating link probabilities335

An interesting outcome of the model consists in inferring the link probabilities between336

any two egos i and j by using the expected posterior positions z̃i and z̃j, and the expected337

density parameter value ξ̃α (estimated from the latent space model for interconnected338
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ego-networks):339

Pr(yij = 1 | z̃i, z̃j, ξ̃α) =
exp(ξ̃α − |z̃i − z̃j|2)

1 + exp(ξ̃α − |z̃i − z̃j|2)
, (3)

The lower triangle of the matrix displayed in Figure 10 shows the estimated link340

probabilities for all the ego-ego network. The upper triangle represents the estimated341

link probabilities for empty dyads only. This allows us to identify those dyads (dark grey342

entries of the matrix) that, according to the estimated model, have similar connectivity343

patterns but are not connected to each other. These two egos can be seen as structurally344

equivalent with respect to both egos and alters. This is an important insight uncovered345

by the latent space model as it indicates the degree of equivalence of players in an illegal346

market based on their actual behaviour/interactions with both targeted and non-targeted347

market participants. This finding can have important implications for the disruption of348

illegal activities as it pinpoints individuals with a high degree of substitutability. (An349

alternative interpretation of this finding is that the two actors are in reality the same350

person; while we can rule out this possibility in our case given the evidence we possess,351

in other contexts the ’link-probability’ analysis could help identify errors in the data,352

including the mis-identification of individuals.) The estimates of the link probability for353

each dyad in the network can further assist with predicting missing links. This could354

be done by using the mapping of the nodal latent distances together with additional355

information about the uncertainty about the actors’ latent positions to train a classifier356

for predicting missing links.357

6 Conclusions358

Illegal markets are difficult to study; yet, they are part and parcel of our societies. The359

interactions underpinning such markets call for a network approach; however, scholars360

have found it difficult to collect primary data suitable for quantitative analysis, and thus361

have increasingly relied on evidence collected by the police. While this source can be362

very fruitful, it also poses challenges, as researchers have often no input in designing the363

data collection strategy. Therefore, they need to work within the constraints posed by364

the secondary nature of such evidence.365

In this paper, we looked specifically at the effect of the sampling strategy adopted by366

law enforcement agencies on the data structure. We started from the observation that367

the targeted nature of police evidence creates two sets of actors: targeted individuals and368

non-targeted ones. We have then developed a latent space model for interdependent ego-369

networks purposely created to study interactions among offenders that (a) leverages on the370

full information available and (b) mirrors the specificity of the data collection strategy. We371

have suggested that this approach is suitable to model data directly stemming from police372
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Figure 10: Latent space model on (Y,X): the lower triangle shows the estimated link

probabilities for each ego dyad; the upper triangle shows the estimated link probabilities

for empty ego dyads.
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investigations as well as data extracted from police records using a targeted extraction373

approach.374

We have posited that our tailored model can be fruitfully used to study interactions375

among offenders – and, more generally, the structure of illegal markets. By modelling376

a market as a latent space, researchers can identify central actors, clusters of close in-377

teractions (”criminal proximity”) as well as gauging the reverse behaviour, which we378

have termed ”criminal distancing”. The model can also identify individuals who possess379

structurally equivalent market profiles. Our model is general as it can be applied to the380

study of any illegal market or, indeed, any type of interaction among offenders. Specific381

research questions will depend on the content of the evidence available; our approach only382

assumes that there are two sets of individuals: those who have been targeted and those383

who are known only by virtue of being connected to the targeted ones. Furthermore, our384

approach is based on a variational estimation procedure, which makes it very suitable for385

large networks like, for instance, criminal networks.386

In this paper, we have applied our model to explore the underlying structure of in-387

teractions among 28 human smugglers (egos) using evidence from a high-frequency data388

source: phone conversations wiretapped by the police. We leveraged on the information389

about 21,555 phone calls recorded by the police among the 28 egos as well as between such390

egos and 2,686 alters. In the slice of the market for migrant smuggling under scrutiny,391

we have identified a central player and a cluster of individuals closely associated to him;392

we have also identified a second cluster far removed from the former suggesting either393

labour specialisation or competition. The analysis also uncovered the presence of pe-394

ripheral actors, i.e., individuals showing a high criminal distance from any other actor395

in the market, including the two clusters. Further, we relied on the estimated link prob-396

abilities to study the degree of equivalence of actors in an illegal market. Our analysis397

takes into consideration the actual behaviour/interactions of egos with both targeted and398

non-targeted individuals. We believe this analysis can have relevant policy implications399

as it pinpoints individuals with a high degree of substitutability if arrested.400

Future developments might expand the model to include actors’ attributes, such as401

the specific task(s) carried out in the illegal market and their socio-demographic char-402

acteristics. The inclusion of actors’ attributes, for instance in the form of specific tasks403

or the place where an actor is based, can help to better understand the function of the404

clusters identified as well as the reasons why certain actors display a large criminal dis-405

tance or a close criminal proximity. The latent space framework presented in this paper406

can be easily extended to handle both ego and alter nodal/dyadic covariate information407

by specifying exogenous statistics with associated parameters capturing effects such as408

homophily, community structure, and heterogeneity of actors’ characteristics (Krivitsky409

et al., 2009).410
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Appendix519

The ego-ego network latent space model is defined as:520

p(Y|Z, α) =
N∏
i 6=j

p(yij|zi, zj, α) =
N∏
i 6=j

exp(α− |zi − zj|2)yij
1 + exp(α− |zi − zj|2)

,

where for ease of notation
∏N

i 6=j is equivalent to
∏N

i=1

∏N
j=1,j 6=i .521

We assume the following distributions for the model unknowns, where p(α) = N (ξα, ψ
2
α),522

p(zi)
iid
= N (0, σ2ID) and σ2, ξα, ψ

2
α are fixed parameters, and the squared Euclidean dis-523

tance between ego i and ego j is |zi − zj|2 = (zi − zj)
>(zi − zj) =

∑D
d=1(zid − zjd)2.524

The ego-alter network latent space model is defined as:525

p(X|Z,W, β) =
N∏
i=1

M∏
k=1

p(xik|zi,wk, β) =
N∏
i=1

M∏
k=1

exp(β − |zi −wk|2)yij
1 + exp(β − |zi −wk|2)

.

We assume the following distributions for the model unknowns, where p(β) = N (ξβ, ψ
2
β),526

p(wk)
iid
= N (0, σ2ID) and σ2, ξβ, ψ

2
β are fixed parameters, and the squared Euclidean dis-527

tance between ego i and alter k is |zi −wk|2 = (zi −wk)
>(zi −wk) =

∑D
d=1(zid − wkd)2.528

The posterior probability is of the unknown (Z, α) is of the form:529

p(Z,W, α, β|Y,X) ∝ p(Y|Z, α)p(α)
N∏
i=1

p(zi)× p(X|Z,W, β)p(β)
M∏
k=1

p(wk).

We define the variational posterior q(Z,W, α, β|Y,X) introducing the variational530

parameters Θ̃z = (ξ̃α, ψ̃
2
α), z̃i, Σ̃z, Θ̃w = (ξ̃β, ψ̃

2
β), w̃k, Σ̃w:531

q(Z,W, α, β|Y,X) = q(α)q(β)
N∏
i=1

q(zi)
M∏
k=1

q(wk),

where q(α) = N (ξ̃α, ψ̃
2
α), q(zi) = N (z̃i, Σ̃z), q(β) = N (ξ̃β, ψ̃

2
β) and q(wk) = N (w̃k, Σ̃w).532
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6.1 Kullback Leibler divergence533

KL[q(Z,W, α, β|Y,X)||p(Z,W, α, β|Y,X)]

= KL[q(α)||p(α)] + KL[q(β)||p(β)] +
N∑
i=1

KL[q(zi)||p(zi)] +
M∑
k=1

KL[q(wk)||p(wk)]

− Eq(Z,W,α,β|Y,X)[log(p(Y|Z, α))]− Eq(Z,W,α,β|Y,X)[log(p(X|Z,W, β))]

=
1

2

(
ψ̃2
α

ψ2
α

− log
ψ̃2
α

ψ2
α

+
(ξ̃α − ξα)2

ψ2
α

+
ψ̃2
β

ψ2
β

− log
ψ̃2
β

ψ2
β

+
(ξ̃β − ξβ)2

ψ2
β

+ND log(σ2)−N log(det(Σ̃z)) +MD log(σ2)−M log(det(Σ̃w))

)
+

N

2σ2
tr(Σ̃z) +

∑N
i=1 z̃>i z̃i
2σ2

+
M

2σ2
tr(Σ̃w) +

∑M
k=1 w̃>k w̃k

2σ2
− 1 + (N +M)D

2

− Eq(Z,W,α,β|Y,X)[log(p(Y|Z, α))]− Eq(Z,W,α,β|Y,X)[log(p(X|Z,W, β))]

≤ 1

2

(
ψ̃2
α

ψ2
α

− log
ψ̃2
α

ψ2
α

+
(ξ̃α − ξα)2

ψ2
α

+
ψ̃2
β

ψ2
β

− log
ψ̃2
β

ψ2
β

+
(ξ̃β − ξβ)2

ψ2
β

+ND log(σ2)−N log(det(Σ̃z)) +MD log(σ2)−M log(det(Σ̃w))

)
+

N

2σ2
tr(Σ̃z) +

∑N
i=1 z̃>i z̃i
2σ2

+
M

2σ2
tr(Σ̃w) +

∑M
k=1 w̃>k w̃k

2σ2
− 1 + (N +M)D

2

+
N∑
i 6=j

yij(−ξ̃α + 2tr(Σ̃z) + |z̃i − z̃j|2)

+ log

1 +

exp

(
ξ̃α +

1

2
ψ̃2
α

)
det(I + 4Σ̃z)

1
2

exp
(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
)

+
N∑
i=1

M∑
k=1

xik(−ξ̃β + tr(Σ̃z + Σ̃w) + |z̃i − w̃k|2)

+ log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) ,
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where Eq(Z,α|Y)[log(p(Y|Z, α))] is approximated using the Jensen’s inequality:534

Eq[log(p(Y|Z, α))] =
N∑
i 6=j

yijEq(Z,α|Y)[α− |zi − zj|2]− Eq(Z,α|Y)[log(1 + exp(α− |zi − zj|2))]

≤
N∑
i 6=j

yij(Eq(Z,α|Y)[α− |zi − zj|2])− log(1 + Eq(Z,α|Y)[exp(α− |zi − zj|2)])

=
N∑
i 6=j

yij(ξ̃α − 2tr(Σ̃z)− |z̃i − z̃j|2)

− log

1 +

exp

(
ξ̃α +

1

2
ψ̃2
α

)
det(I + 4Σ̃z)

1
2

exp
(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
) .

and Eq(Z,W,α,β|Y,X)[log(p(X|Z,W, β))] is approximated using the Jensen’s inequality:535

Eq[log(p(X|Z,W, β))] =
N∑
i=1

M∑
k=1

xikEq[β − |zi −wk|2]− Eq[log(1 + exp(β − |zi −wk|2))]

≤
N∑
i=1

M∑
k=1

xik(Eq[β − |zi −wk|2])− log(1 + Eq[exp(β − |zi −wk|2)])

=
N∑
i=1

M∑
k=1

xik(ξ̃β − tr(Σ̃z + Σ̃w)− |z̃i − w̃k|2)

− log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

6.2 Estimate z̃i536

KL ≤ Constz̃i + z̃>i z̃i

(
1

2σ2
+
∑
j 6=i

(yji + yij) +
M∑
k=1

xik

)
− 2z̃>i

(∑
i 6=j

(yji + yij)z̃j +
M∑
k=1

xikw̃k

)

+ 2
∑
j 6=i

log

1 +

exp

(
ξ̃α +

1

2
ψ̃2
α

)
det(I + 4Σ̃z)

1
2

exp
(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
)

+
M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .
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Second-order Taylor series expansion approximation of537

f(z̃i) =
∑
j 6=i

log

1 +

exp

(
ξ̃α +

1

2
ψ̃2
α

)
det(I + 4Σ̃z)

1
2

exp
(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
)

+
1

2

M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

Therefore,538

f(z̃i) ≈ f(z̃oi ) + (z̃i − z̃oi )
>G(z̃oi ) +

1

2
(z̃i − z̃oi )

>H(z̃oi )(z̃i − z̃oi ).

Let’s find the gradient G and the Hessian matrix H of f evaluated at z̃i = z̃oi .539

G(z̃oi ) =− 2(I + 4Σ̃z)−1
∑
j 6=i

(z̃oi − z̃j)

×

1 +
det(I + 4Σ̃z)

1
2

exp

(
ξ̃α +

1

2
ψ̃2
α

) exp
(

(z̃oi − z̃j)
>(I + 4Σ̃z)−1(z̃oi − z̃j)

)
−1

− (I + 2(Σ̃z + Σ̃w))−1
M∑
k=1

(z̃oi − w̃k)

×

1 +
det(I + 2(Σ̃z + Σ̃w))

1
2

exp

(
ξ̃β +

1

2
ψ̃2
β

) exp
(

(z̃oi − w̃k)>(I + 2(Σ̃z + Σ̃w))−1(z̃oi − w̃k)
)
−1

.

540
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H(z̃oi ) =− 2(I + 4Σ̃z)−1
∑
j 6=i

1 +
det(I + 4Σ̃z)

1
2

exp

(
ξ̃α +

1

2
ψ̃2
α

) exp
(

(z̃oi − z̃j)
>(I + 4Σ̃z)−1(z̃oi − z̃j)

)
−1

×

I− 2(z̃oi − z̃j)(z̃
o
i − z̃j)

>(I + 4Σ̃z)−1

1 +
exp

(
ξ̃α+

1

2
ψ̃2

α

)
det(I+4Σ̃z)

1
2

exp
(
−(z̃oi − z̃j)>(I + 4Σ̃z)−1(z̃oi − z̃j)

)


− (I + 2(Σ̃z + Σ̃w))−1

×
M∑
k=1

1 +
det(I + 2(Σ̃z + Σ̃w))

1
2

exp

(
ξ̃β +

1

2
ψ̃2
β

) exp
(

(z̃oi − w̃k)>(I + 2(Σ̃z + Σ̃w))−1(z̃oi − w̃k)
)
−1

×

I− 2(z̃oi − w̃k)(z̃oi − w̃k)>(I + 2(Σ̃z + Σ̃w))−1

1 +
exp

(
ξ̃β+

1

2
ψ̃2

β

)
det(I+2(Σ̃z+Σ̃w))

1
2

exp
(
−(z̃oi − w̃k)>(I + 2(Σ̃z + Σ̃w))−1(z̃oi − w̃k)

)

 .
541

Therefore,542

KL ≈ z̃>i

[(
1

2σ2
+
∑
j 6=i

(yji + yij) +
M∑
k=1

xik

)
I +H(z̃oi )

]
z̃i

− 2z̃>i

[∑
j 6=i

(yji + yij)z̃j +
M∑
k=1

xikw̃k −G(z̃oi ) +H(z̃oi )z̃
o
i

]
+ Constz̃i .

Set
∂KL

∂z̃i
= 0 :543

z̃i =

[(
1

2σ2
+
∑
j 6=i

(yji + yij) +
M∑
k=1

xik

)
I +H(z̃oi )

]−1

×

[∑
j 6=i

(yji + yij)z̃j +
M∑
k=1

xikw̃k −G(z̃oi ) +H(z̃oi )z̃
o
i

]
.
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6.3 Estimate Σ̃z544

KL ≤ConstΣ̃z
+ tr(Σ̃z)

(
N

2σ2
+ 2

∑
i 6=j

yij +
N∑
i=1

M∑
k=1

xik

)
− N

2
log(det(Σ̃z))

+
∑
i 6=j

log

1 +

exp

(
ξ̃α +

1

2
ψ̃2
α

)
det(I + 4Σ̃z)

1
2

exp
(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
)

+
N∑
i=1

M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

First-order Taylor series expansion approximation of545

f(Σ̃z) =
∑
i 6=j

log

1 +

exp

(
ξ̃α +

1

2
ψ̃2
α

)
det(I + 4Σ̃

o

z)
1
2

exp
(
−(z̃i − z̃j)

>(I + 4Σ̃
o

z)−1(z̃i − z̃j)
)

+
N∑
i=1

M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

We have546

f(Σ̃z) ≈ f(Σ̃
o

z) + J(Σ̃
o

z)(Σ̃z − Σ̃
o

z),

where J is the Jacobian matrix of f evaluated at Σ̃z = Σ̃
o

z.547

J(Σ̃
o

z) = 4(I + 4Σ̃
o

z)−1
∑
i 6=j

(
(z̃i − z̃j)(z̃i − z̃j)

>(I + 4Σ̃
o

z)−1 − 1

2
I

)
·

·

1 +
det(I + 4Σ̃

o

z)
1
2

exp

(
ξ̃α +

1

2
ψ̃2
α

) exp
(

(z̃i − z̃j)
>(I + 4Σ̃

o

z)−1(z̃i − z̃j)
)
−1

× 2(I + 2(Σ̃
o

z + Σ̃w))−1
N∑
i=1

M∑
k=1

(
(z̃i − w̃k)(z̃i − w̃k)

>(I + 2(Σ̃
o

z + Σ̃w))−1 − 1

2
I

)
·

·

1 +
det(I + 2(Σ̃

o

z + Σ̃w))
1
2

exp

(
ξ̃β +

1

2
ψ̃2
β

) exp
(

(z̃i − w̃k)
>(I + 2(Σ̃

o

z + Σ̃w))−1(z̃i − w̃k)
)
−1

.

Therefore,548

KL ≈ tr(Σ̃z)

(
N

2σ2
+ 2

∑
i 6=j

yij +
N∑
i=1

M∑
k=1

xik

)
− N

2
log(det(Σ̃z)) + J(Σ̃

o

z)Σ̃z + ConstΣ̃z
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Set
∂KL

∂Σ̃z

= 0 :549

Σ̃z =
N

2

[(
N

2σ2
+ 2

∑
i 6=j

yij +
N∑
i=1

M∑
k=1

xik

)
I + J(Σ̃

o

z)

]−1
.

6.4 Estimate ξ̃α550

KL ≤ ξ̃2α
2ψ2

α

− ξ̃α

(
ξα
ψ2
α

+
∑
i 6=j

yij

)
+
∑
i 6=j

log
(

1 + exp(ξ̃α)Aij

)
+ Constξ̃α ,

where Aij = exp

(
1

2
ψ̃2
α

)
det(I + 4Σ̃z)−

1
2 exp

(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
)
.551

552

Second-order Taylor series expansion of553

f(ξ̃oα) =
∑
i 6=j

log
(

1 + exp(ξ̃oα)Aij

)
,

evaluated at ξ̃α = ξ̃oα.554

We have:555

f(ξ̃α) ≈ f(ξ̃oα) + f ′(ξ̃oα)(ξ̃α − ξ̃oα) +
1

2
f ′′(ξ̃oα)(ξ̃α − ξ̃oα)2,

where:556

f ′(ξ̃oα) =
∑
i 6=j

(
1 + exp(−ξ̃oα)A−1ij

)−1
557

f ′′(ξ̃oα) =
∑
i 6=j

(
1 + exp(−ξ̃oα)A−1ij

)−1 (
1 + exp(ξ̃oα)Aij

)−1
.

Therefore,558

KL ≤ 1

2
ξ̃2α

(
1

ψ2
α

+ f ′′(ξ̃oα)

)
− ξ̃α

(
ξα
ψ2
α

+
N∑
i=1

∑
j 6=i

yij − f ′(ξ̃oα) + ξ̃oαf
′′(ξ̃oα)

)
+ Constξ̃α .

Set
∂KL

∂ξ̃α
= 0.559

ξ̃α =
ξα + ψ2

α(
∑

i 6=j yij − f ′(ξ̃oα) + ξ̃oαf
′′(ξ̃oα))

1 + ψ2
αf
′′(ξ̃oα)

.

6.5 Estimate ψ̃2
α560

KL ≤ ψ̃2
α

2ψ2
α

− 1

2
log(ψ̃2

α) +
∑
i 6=j

log

(
1 + exp

(
1

2
ψ̃2
α

)
Ai,j

)
+ Constψ̃2

α
,

where Ai,j = exp(ξ̃α) det(I + 4Σ̃z)−
1
2 exp

(
−(z̃i − z̃j)

>(I + 4Σ̃z)−1(z̃i − z̃j)
)
.561
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First-order Taylor series expansion of562

f(ψ̃2
α) =

∑
i 6=j

log

(
1 + exp

(
1

2
ψ̃2o
α

)
Aij

)
,

evaluated at ψ̃2
α = ψ̃2o

α .563

We have:564

f(ψ̃2
α) ≈ f(ψ̃2o

α ) + f ′(ψ̃2o
α )(ψ̃2

α − ψ̃2o
α ),

where565

f ′(ψ̃2o
α ) =

∑
i 6=j

1

2

(
1 + exp

(
−1

2
ψ̃2o
α

)
A−1ij

)−1
.

Therefore,566

KL ≈ ψ̃2
α

(
1

2ψ2
α

+ f ′(ψ̃2o
α )

)
− 1

2
log(ψ̃2

α) + Constψ̃2
α
.

Set
∂KL

∂ψ̃2
α

= 0 :567

ψ̃2
α =

(
1

ψ2
α

+ 2f ′(ψ̃2o
α )

)−1
.

6.6 Estimate ξ̃β568

KL ≤
ξ̃2β

2ψ2
β

− ξ̃β

(
ξβ
ψ2
β

+
N∑
i=1

M∑
k=1

xik

)
+

N∑
i=1

M∑
k=1

log
(

1 + exp(ξ̃β)Aik

)
+ Constξ̃β

whereAik = exp

(
1

2
ψ̃2
β

)
det(I+2(Σ̃z+Σ̃w))−

1
2 exp

(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
)

.569

570

Second-order Taylor series expansion of571

f(ξ̃oβ) =
N∑
i=1

M∑
k=1

log
(

1 + exp(ξ̃oβ)Aik

)
,

evaluated at ξ̃β = ξ̃oβ.572

f(ξ̃β) ≈ f(ξ̃oβ) + f ′(ξ̃oβ)(ξ̃β − ξ̃oβ) +
1

2
f ′′(ξ̃oβ)(ξ̃β − ξ̃oβ)2

where:573

f ′(ξ̃oβ) =
N∑
i=1

M∑
k=1

(
1 + exp(−ξ̃oβ)A−1ik

)−1
,

574

f ′′(ξ̃oβ) =
N∑
i=1

M∑
k=1

(
1 + exp(−ξ̃oβ)A−1ik

)−1 (
1 + exp(ξ̃oβ)Aik

)−1
.
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Therefore,575

KL ≤ 1

2
ξ̃2β

(
1

ψ2
β

+ f ′′(ξ̃oβ)

)
− ξ̃

(
ξβ
ψ2
β

+
N∑
i=1

M∑
k=1

xik − f ′(ξ̃oβ) + ξ̃oβf
′′(ξ̃oβ)

)
+ Constξ̃β .

Set
∂KL

∂ξ̃β
= 0 :576

ξ̃β =
ξβ + ψ2

β(
∑N

i=1

∑M
k=1 xik − f ′(ξ̃oβ) + ξ̃oβf

′′(ξ̃oβ))

1 + ψ2
βf
′′(ξ̃oβ)

.

6.7 Estimate ψ̃2
β577

KL ≤
ψ̃2
β

2ψ2
β

− 1

2
log(ψ̃2

β) +
N∑
i=1

M∑
k=1

log

(
1 + exp

(
1

2
ψ̃2
β

)
Aik

)
+ Constψ̃2

β
,

whereAik = exp(ξ̃β) det(I+2(Σ̃z+Σ̃w))−
1
2 exp

(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
)

.578

579

First-order Taylor series expansion of:580

f(ψ̃2
β) =

N∑
i=1

M∑
k=1

log

(
1 + exp

(
1

2
ψ̃2o
β

)
Aik

)
,

evaluated at ψ̃2
β = ψ̃2o

β .581

We have:582

f(ψ̃2
β) ≈ f(ψ̃2o

β ) + f ′(ψ̃2o
β )(ψ̃2

β − ψ̃2o
β ).

where583

f ′(ψ̃2o
β ) =

N∑
i=1

M∑
k=1

1

2

(
1 + exp

(
−1

2
ψ̃2o
β

)
A−1ik

)−1
.

Therefore,584

KL ≈ ψ̃2
β

(
1

2ψ2
β

+ f ′(ψ̃2o
β )

)
− 1

2
log(ψ̃2

β) + Constψ̃2
β
.

Set
∂KL

∂ψ̃2
β

= 0.585

ψ̃2
β =

(
1

ψ2
β

+ 2f ′(ψ̃2o
β )

)−1
.
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6.8 Estimate w̃k586

KL ≤ Constw̃k
+ w̃>k w̃k

(
1

2σ2
+

N∑
i=1

xik

)
− 2w̃>k

(
N∑
i=1

xikz̃i

)

+
M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

Second-order Taylor series expansion approximation of587

f(z̃i) =
1

2

M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

Therefore,588

f(w̃k) ≈ f(w̃o
k) + (w̃k − w̃o

k)
>G(w̃o

k) +
1

2
(w̃k − w̃o

k)
>H(w̃o

k)(w̃k − w̃o
k).

Let’s find the gradient G and the Hessian matrix H of f evaluated at w̃k = w̃o
k.589

G(w̃o
k) =− (I + 2(Σ̃z + Σ̃w))−1

M∑
k=1

(z̃i − w̃o
k)

×

1 +
det(I + 2(Σ̃z + Σ̃w))

1
2

exp

(
ξ̃β +

1

2
ψ̃2
β

) exp
(

(z̃i − w̃o
k)>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃o

k)
)
−1

.

590

H(w̃o
k) =− (I + 2(Σ̃z + Σ̃w))−1

M∑
k=1

1 +
det(I + 2(Σ̃z + Σ̃w))

1
2

exp

(
ξ̃β +

1

2
ψ̃2
β

) exp
(

(z̃i − w̃o
k)>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃o

k)
)
−1

×

I− 2(z̃i − w̃o
k)(z̃i − w̃o

k)>(I + 2(Σ̃z + Σ̃w))−1

1 +
exp

(
ξ̃β+

1

2
ψ̃2

β

)
det(I+2(Σ̃z+Σ̃w))

1
2

exp
(
−(z̃i − w̃o

k)>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃o
k)
)

 .
591

Therefore,592

KL ≈ w̃>k

[(
1

2σ2
+

N∑
i=1

xik

)
I +H(w̃o

k)

]
w̃k

− 2w̃>k

[
N∑
i=1

xikz̃i −G(w̃o
k) +H(w̃o

k)w̃
o
k

]
+ Constw̃k

.
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Set
∂KL

∂w̃k

= 0.593

w̃k =

[(
1

2σ2
+

N∑
i=1

xik

)
I +H(w̃o

k)

]−1 [ N∑
i=1

xikz̃i −G(w̃o
k) +H(w̃o

k)w̃
o
k

]
.

6.9 Estimate Σ̃w594

KL ≤ ConstΣ̃w
+ tr(Σ̃w)

(
M

2σ2
+

N∑
i=1

M∑
k=1

xik

)
− M

2
log(det(Σ̃w))

+
N∑
i=1

M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
) .

First-order Taylor series expansion approximation of:595

f(Σ̃w) =
N∑
i=1

M∑
k=1

log

1 +

exp

(
ξ̃β +

1

2
ψ̃2
β

)
det(I + 2(Σ̃z + Σ̃w))

1
2

exp
(
−(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃w))−1(z̃i − w̃k)
)

596

f(Σ̃w) ≈ f(Σ̃
o

w) + J(Σ̃
o

w)(Σ̃w − Σ̃
o

w).

where J is the Jacobian matrix of f evaluated at Σ̃w = Σ̃
o

w.597

J(Σ̃
o

w) = 2(I + 2(Σ̃z + Σ̃
o

w))−1
N∑
i=1

M∑
k=1

(
(z̃i − w̃k)(z̃i − w̃k)

>(I + 2(Σ̃z + Σ̃
o

w))−1 − 1

2
I

)
·

·

1 +
det(I + 2(Σ̃z + Σ̃

o

w))
1
2

exp

(
ξ̃β +

1

2
ψ̃2
β

) exp
(

(z̃i − w̃k)
>(I + 2(Σ̃z + Σ̃

o

w))−1(z̃i − w̃k)
)
−1

.

Therefore,598

KL ≈ tr(Σ̃w)

(
M

2σ2
+

N∑
i=1

M∑
k=1

xik

)
− M

2
log(det(Σ̃w)) + J(Σ̃

o

w)Σ̃w + ConstΣ̃w
.

Set
∂KL

∂Σ̃w

= 0 :599

Σ̃w =
M

2

[(
M

2σ2
+

N∑
i=1

M∑
k=1

xik

)
I + J(Σ̃

o

w)

]−1
.
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