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Abstract

Internal gravity waves are complex oscillations widely found in fluids exhibiting density stratification, such as

the ocean. Such waves may be produced by tidal currents flowing over rough seafloors; they are then called

internal tides. As they travel away from the seafloor, internal tides tend to attain high amplitudes and break into

turbulent eddies. Their ability to carry and dissipate part of energy make them of utmost importance in physical

oceanography. Their intensive study in the past decades revealed that the breaking of internal tides may provide

a large part of the power needed to mix the deep ocean and sustain the deep part of the meridional overturning

circulation. The fraction of energy that those waves locally dissipate and the resulting vertical mixing distribution

are crucial data for the parametrization of oceanic models, yet they remain poorly quantified.

In this work, we provide the first estimate of the worldwide three-dimensional distribution of internal tide

dissipation by means of large-scale numerical simulations. We couple linear wave theory with a simple nonlin-

ear breaking scheme and use global topography, stratification and tidal current data to reproduce the generation,

upward propagation and energy dissipation of internal tides. We show that exceptionally high dissipation is com-

monly attained at a few hotspots, confined above mid-ocean spreading ridges in the Southern Hemisphere. As

expected by earlier studies, we find that a large part of the resulting mixing follows an exponential decay with

height, with strong bottom intensities. We however show that substantial mixing over smoother flanks follows a

so far unreported non-monotonic vertical profile with significant mid-depth maxima.

Based on the literature studying the impact of internal-tide-driven mixing, we try to connect our findings to

potential implications for the global oceanic circulation, which are still to be confirmed. In this spirit, we also

provide a simple analytical tool to estimate the most relevant parameters of our three-dimensional map based on

the expected wave amplitudes at the bottom. We find that predicting the whole nonlinear dissipation profile from

a single local measure of bottom instability is indeed possible. Thereby linked to seafloor properties, stratification

and tidal forcing, the map should allow for time-evolving parametrizations in long-term climate simulations.
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Chapter 1

Introduction and objectives

Among the rich variety of topics that the field of geophysical fluid dynamics encompasses, the interaction of

moving fluids of varying density with fixed obstacles has been and remains the subject of intense investigation.

Such systems are known to exhibit so-called internal gravity waves, which are generated where the flow is devi-

ated, and propagate with unfamiliar properties into the bulk of the fluid. On Earth, this phenomenon is ubiquitous

and may be observed in the atmosphere (winds over mountains) or oceans (currents over undulating seafloors).

In the deep ocean, of great interest is the radiation of internal waves as a consequence of tidal currents os-

cillating over rough hills. During their propagation from the seafloor to the ocean surface, these waves called

internal tides often experience turbulence, initiated by wave-wave or wave-flow interactions. A significant frac-

tion of the energy that they extract from the tide may be lost in small-scale eddies above the seafloor, which

efficiently mixes waters of different densities. This diapycnal mixing (mixing across density surfaces) has im-

portant consequences on the energy budget of the ocean and hence on its stratification and dynamics, impacting

the global climate due to the intimate ocean-atmosphere coupling. In this context, this work aims at understand-

ing and quantifying the distribution and intensity of this mixing by the study of internal tide dissipation. The

phenomena we are concerned with occur at scales which defy the current capabilities of global climate models,

hence their effect has to be parametrized. We therefore aim at providing worldwide predictions of the spatial and

vertical distribution of the internal-tide-driven mixing.

Observations estimate that as much as 1 TW (1 TW = 1012 W) of tidal energy could be dissipated in the deep

ocean [1], but where and how this energy dissipates is unclear. In situ measurements report enhanced diapycnal

diffusivities of several orders of magnitude, from O(10−5) to O(10−2) m2 s−1 above rough seafloors [2]. Strong

evidence suggests that it is mainly sustained by the turbulent dissipation of internal tides generated by abyssal

hills, which are small-scale topographic features produced by volcanic activity at oceanic spreading ridges. The

generation and propagation of these waves received much scrutiny but less is known about their instability and

breaking. In this work, we adopt a nonlinear saturation model which predicts wave breaking and the resulting

energy dissipation profile with height. Our numerical model is applied to recent worldwide tidal and stratification

data, and a precise statistical description of the seafloor. We introduce the main theoretical concepts in Chapter

2 and our methodology in Chapter 3. Our results are then presented and discussed in Chapter 4.
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Chapter 2

Background: theoretical toolbox

The first Sections 2.1-2.4 review the linear theory of internal tide generation and propagation in the ocean, under

the approximation of slowly varying stratification. Section 2.5 describes our model for nonlinear wave breaking

and associated energy dissipation. Finally, Section 2.6 describes the statistical representation of the small-scale

topography relevant for tidal dissipation.

2.1 Primitive equations

We start by recalling the equations of geophysical fluid dynamics under relevant approximations. In the next

Section 2.2, we introduce the Boussinesq model and focus on the propagation of small perturbations. This brings

us to the characterization of internal gravity waves.

We consider the inviscid flow of a fluid of velocity u(x, t) with components (u,v,w), total pressure p(x, t),

density ρ(x, t) in the field of gravity g. We describe this flow in a framework rotating at angular speed Ω, well

suited for flows at the surface of the Earth (see Fig. 2.1). The continuity and momentum equations governing the

fluid motion are respectively

Dρ

Dt
+ρ∇ ·u = 0, (2.1a)

Du
Dt

+2Ω×u = − 1
ρ

∇p−∇Φ, (2.1b)

where D/Dt = ∂/∂ t +u ·∇ denotes the material derivative and the geopotential Φ simply reduces to −∇Φ = g

neglecting centrifugal forces. We next introduce a widely used set of two consistent assumptions:

• the shallow fluid approximation, decomposing the radius of the position vector rer in r = a+ z, where a is

the radius of the Earth and z� a, and

• the traditional approximation neglecting Coriolis terms involving w in the horizontal momentum equations

and metric terms in uw/r and vw/r.

To ensure energy conservation, and since we refuse to make the common hydrostatic approximation here, the

Coriolis and metric terms in the vertical momentum balance must be cancelled as well [3]. Eq. (2.1b) then

2



FIG. 2.1: Spherical coordinate system (r,λ ,θ) and rotating frame of reference for geophysical flows inducing Coriolis forces.

Note the tangent plane with local Cartesian coordinates (x,y,z). Reproduced from [3].

becomes

Du
Dt
−
(

2Ω+
u

(a+ �z)cosθ

)
(vsinθ −����wcosθ) = − 1

ρ(a+ �z)cosθ

∂ p
∂λ

, (2.2a)

Dv
Dt

+
�
��

vw
a+ z

+
(

2Ω+
u

(a+ �z)cosθ

)
usinθ = − 1

ρ(a+ �z)
∂ p
∂θ

, (2.2b)

Dw
Dt
−
���������u2 + v2

a+ z
−2Ωucosθ = − 1

ρ

∂ p
∂ (�a+ z)

−g. (2.2c)

with the convective derivative

D
Dt

=
∂

∂ t
+

u
(a+ �z)cosθ

∂

∂λ
+

v
a+ �z

∂

∂θ
+w

∂

∂ (�a+ z)
. (2.2d)

The following relations for our spherical coordinate system were used (see Fig. 2.1):

Du
Dt

=
D
Dt


u

v

w

+


−v/r

u/r

u tanθ/r


︸ ︷︷ ︸

Ωflow

×


u

v

w

 ,
D
Dt

=
∂

∂ t
+

u
r cosθ

∂

∂λ
+

v
r

∂

∂θ
+w

∂

∂ r
, and Ω =


0

Ωcosθ

Ωsinθ

 .

(2.3)

The horizontal momentum equations can take a simpler form if we slightly modify the material derivative of the

unit vectors i, j as follows:

from
Di
Dt

= Ωflow× i to
D̃i
D̃t

= Ω̃flow× i =


0

0

u tanθ/r

× i =
u tanθ

a
j, (2.4a)
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and similarly
D̃j
D̃t

= Ω̃flow× j =−u tanθ

a
i, (2.4b)

where Ω̃flow is the vertical component of Ωflow. As a result, the accelerations uv tanθ/a in Eq. (2.2a) and

u2 tanθ/a in in Eq. (2.2b) disappear and the primitive equations Eqs. (2.2) finally reduce to the compact vec-

tor equation
D̃u
D̃t

+ f×u =− 1
ρ

∇p+g, (2.5)

where ∇ = [(acosθ)−1∂/∂λ ,a−1∂/∂θ ,∂/∂ z] and f = 2Ωsinθ k. This equation describes a system in which

the rotation vector is aligned with the local vertical. In the following, we shall drop the ˜.

For the study phenomena at scales where the sphericity of the Earth is not important (but the rotation is),

we can further simplify these equations by performing a local Cartesian approximation. We define an ad hoc

Cartesian tangent plane at longitude λ0 and latitude θ0 in which (x,y,z) = (acosθ0(λ − λ0),a(θ − θ0),z), so

(dx,dy,dz) = (acosθ0dλ ,adθ ,dz). In this approach, (u,v,w) approximate the velocity in the tangent plane

(respectively the East-West, North-South and vertical velocity), and Eq. (2.2) transforms to

Du
Dt
− f v = − 1

ρ

∂ p
∂x

, (2.6a)

Dv
Dt

+ f u = − 1
ρ

∂ p
∂y

, (2.6b)

Dw
Dt

= − 1
ρ

∂ p
∂ z
−g. (2.6c)

with D/Dt = ∂/∂ t + u∂/∂x+ v∂/∂y+w∂/∂ z and f = 2Ωsinθ0 is the Coriolis parameter [Ω = 2π/(3600×
24) ≈ 7.3× 10−5 s−1]. In the following, we shall use this so-called f -plane approximation. To complete our

set of governing equations for the five variables u,v,w,ρ, p, we shall discuss the continuity equation and add an

equation enforcing the conservation of energy.

2.2 Internal gravity waves

The next important approximation relies on the relatively small variations in density observed in most geophysical

fluids, and especially in the ocean, where the combined effects of pressure compressibility, thermal and saline

contraction remain very small [3]. We shall therefore adopt the Boussinesq approximation, which decomposes the

density field into ρ(x, t) = ρ0 + ρ̄(z)+ρ ′(x, t), where ρ̄,ρ ′� ρ0, and ρ̄ balances the gravitational acceleration

[similarly, p(x, t) = p̄(z)+ p′(x, t)]. The idea of this approximation is to retain the effect of variable density only

in the vertical acceleration term (ρ ≈ ρ0 is assumed in the horizontal momentum equations). The buoyancy force

in the vertical momentum equation then takes the form

b =−gρ ′

ρ0
. (2.7)

Since density variations are often caused by temperature or salinity, which are quantities that diffuse, it is often

appropriate to require
Dρ

Dt
= κ∇

2
ρ, (2.8)
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where κ represents some ad hoc diffusivity. In light of our continuity equation, Eq. (2.1a) implies

∇ ·u =−κ

ρ
∇

2
ρ. (2.9)

Since κ is typically very low, taking it into account is often irrelevant. The compressibility effects required in

the Boussinesq approximation through κ to form a energetically consistent system are of little importance in

most problems and shall therefore be neglected [4]. Although it is energetically inconsistent with the Boussinesq

approximation, the continuity equation will safely be assumed to be

∇ ·u = 0. (2.10)

From Eqs. (2.8), (2.9), (2.10), we eventually add the following consistent thermodynamic equation:

Dρ

Dt
= 0. (2.11)

Considering small perturbations of the velocity, buoyancy and pressure u,v,w,b, p′ = O(ε) (|ε|� 1), we

linearize the continuity, momentum and energy equations Eqs. (2.10), (2.6), (2.11) and arrive to the following

linear Boussinesq model:

∂u
∂ t
− f v = − 1

ρ0

∂ p′

∂x
(2.12a)

∂v
∂ t

+ f u = − 1
ρ0

∂ p′

∂y
(2.12b)

∂w
∂ t

= − 1
ρ0

∂ p′

∂ z
+b (2.12c)

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (2.12d)

∂b
∂ t

+N2w = 0 (2.12e)

where the Brunt-Väisälä (or stratification) frequency N is defined by

N2 =− g
ρ0

∂ ρ̄

∂ z
. (2.12f)

This measure of the stratification represents the natural oscillating frequency of a small parcel of fluid whose

vertical position is slightly perturbed around its equilibrium (∂ ρ̄/∂ z < 0).

Assuming an infinite domain in all directions, solutions of these linear system with constant coefficients

(assuming N = const.) may be sought in the form of plane waves q(x, t) = q̃(k)exp[i(k · x−ωt)]+ c.c. This

assumption is justified if we investigate systems in which the vertical scale of stratification is much larger than

the wavelenghts of interest. Eqs. (2.12) then take the matrix form

−iω − f 0 ik
ρ0

0

f −iω 0 il
ρ0

0

0 0 −iω im
ρ0

−1

ik il im 0 0

0 0 N2 0 −iω


·



ũ

ṽ

w̃

p̃

b̃


=



0

0

0

0

0


, (2.13)
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where k = (k, l,m). Non-zero solutions are classically obtained by requiring that the determinant of the matrix is

zero, giving the following dispersion relation:

ω
2 = N2 k2 + l2

|k|2
+ f 2 m2

|k|2
. (2.14)

Using this relation, we can easily show that f < |ω| < N for N > f , while N < |ω| < f for N < f , which

constitutes the first property of internal waves. A second strong property can readily be highlighted in the limit

where stratification dominates over rotation (N > f ), as is typically the case in the ocean at mid-latitudes (we

recall f = 2Ωsinθ0). In this case, the wave frequency does not depend on |k|: taking θ as the angle of k with

respect to the (k, l) plane yields ω = ±N cosθ . Let us now for simplicity rotate the x and y axis so that k is

contained in the (x,z) vertical plane (with l = 0, ∂/∂y = 0 for all fields). The next important feature of internal

waves concerns the group velocity cg at which their energy propagates. We have

cg = ∇kω =

 ∂ω

∂k
∂ω

∂m

=

cφ tanθ sinθ

−cφ sinθ

 , (2.15)

with the phase velocity cφ = ωk/|k|2, which yields cg · cφ = 0. This demonstrates that energy always travels

perpendicularly to phase, or parallel to wavefronts, and that the energy of waves with positive vertical wavenum-

bers is radiated downwards (cgz < 0) and vice-versa. Thus it follows from Eq. (2.15) that phase and energy

always propagate in the same horizontal direction, but opposite vertical direction. Examination of the continuity

and momentum equation reveals that u ‖ cg and that velocity and pressure oscillate in quadrature with buoyancy

(crests and throughs of buoyancy are associated with zero velocity); internal waves are thus transverse waves.

To conclude on the basic properties of internal waves, let us investigate two extreme cases. First, horizontal

waves (θ ≈ 0) oscillate at high frequency ω ≈ ±N, but they do not involve horizontal nor pressure oscillations

(u, p ≈ 0); the motion is purely vertical and the waves do not radiate energy (cg ≈ 0). By contrast, the case in

which θ ≈ π/2 is characterized by a zero phase speed (i.e. no wave motion): each horizontal sheet moves in a

purely horizontal fashion at their own speed. This phenomenon may be thought of as the stratified analogue of

Taylor’s columns in rotating fluids [5].

2.3 Generation of internal tides

In this section, we explain how the interaction of tidal flows with the seafloor topography (hereafter called

bathymetry) generates internal tides. We next focus on how those waves propagate and the vertical energy flux

that they generate. These notions will set the framework in which we shall then study wave breaking responsible

for energy dissipation and mixing.

The generation of internal tides has first been solved by Bell [6], who considered the ideal case of a 2D

harmonic flow U(t) =U0 cos(ω0t) along x of a non-rotating, stably stratified fluid ( f = 0, N = const.) of semi-

infinite vertical extent. An obstacle z = h(x) of characteristic length L and height h0 perturbs the flow (see

6



FIG. 2.2: (a) Definition sketch of tidal flow of a stratified fluid over an obstacle. (b) Schematic representation of the maximum

excursion of the obstacle and induced wave fields. Energy propagates along long arrows (cg), phase along short arrows (cp).

Reproduced from [6].

Fig. 2.2a). The corresponding set of linearized equations for the perturbations (u,w, p′,b) is

∂u
∂ t

+U
∂u
∂x

= − 1
ρ0

∂ p′

∂x
, (2.16a)

∂w
∂ t

+U
∂w
∂x

= − 1
ρ0

∂ p′

∂ z
+b, (2.16b)

∂u
∂x

+
∂w
∂ z

= 0, (2.16c)

∂b
∂ t

+U
∂b
∂x

+N2w = 0. (2.16d)

Eq. (2.16) may be reduced to a single relation for the vertical velocity

D2
∇

2w+N2 ∂ 2w
∂x2 = 0, with D(t) =

∂

∂ t
+U(t)

∂

∂x
, (2.17)

and ∇2 = ∂ 2/∂x2 +∂ 2/∂ z2. The solution is assumed to be periodic in both x and t and the boundary condition

in z is taken as

w(x,z = 0, t) =U(t)
dh
dx

(x). (2.18)

This condition constraints the flow to be tangential to the undulating bathymetry. Prescribing the value of w at the

bottom z = 0 is only valid provided that the slope of the emitted wave rays is much greater than the characteristic

obstacle slope (h0/L� 1). In the following, we shall restrict our attention to such subcritical bathymetries. The

impact of finite subcritical slopes (h0/L < 1) is thought to remain not too large, as summarized in [7]. Applying

a Fourier transform in x to Eq. (2.17) yields

D̂2 ∂ 2ŵ
∂ z2 − k2(N2 + D̂2)ŵ = 0, with D̂(t) =

∂

∂ t
+ ikU(t). (2.19)

Following Bell [6], we switch to the frame moving with the tide by introducing the variable ξ = x−
∫ t

0 U(τ) dτ .

We further write ŵ= w̃exp[−ik
∫ t

0 U(τ) dτ] such that (1/2π)
∫ +∞

−∞
w̃(k,z, t)exp(ikξ ) dk =w(x,z, t). The boundary

condition Eq. (2.18) can then be expressed as

w̃(k,0, t) = ĥ
∂

∂ t
exp
(
+ ik

∫ t

0
U(τ) dτ

)
= ĥ

∂

∂ t
exp
(

i
kU0

ω0
sin(ω0t)

)
= ĥ

∂

∂ t

+∞

∑
−∞

Jn

(kU0

ω0

)
exp(inω0t)

= ĥ
+∞

∑
−∞

(inω0)Jn

(kU0

ω0

)
exp(inω0t) (2.20)

7



The solution is sought as follows:

w̃(k,z, t) = ĥ(k)
+∞

∑
−∞

W̃n(k,z)Jn

(kU0

ω0

)
exp(inω0t), (2.21)

where, due to the new reference frame, the W̃n now satisfy the simple autonomous differential equation

d2W̃n

dz2 + k2
( N2

n2ω2
0
−1
)

W̃n = 0, W̃n(k,0) = inω0. (2.22)

This is trivially solved by

W̃n = inω0 exp(ikµnz), with µ
2
n =

N2

n2ω2
0
−1. (2.23)

Due to the nonlinear wave-flow interactions represented by the convective terms U∂u/∂x and U∂w/∂x, the

solution is not only composed of waves at the fundamental frequency ω0, but also of higher-order harmonics

nω0. Oscillatory motions (as opposed to evanescent waves) are observed under the cut-off condition n < N/ω0

(n . 5 in the ocean for the semi-diurnal tide). We shall denote by n0 = bN/ω0c the largest integer respecting the

cut-off condition. Fig. 2.2b sketches sets of emitted rays of two different frequencies (e.g. ω0 and 2ω0). The

slope of the characteristics along which energy radiates is given by µ−1
n . The notion of causality imposes that the

energy of the internal tides generated at the bottom can only propagate upwards. We therefore impose a radiation

condition which should render the sign of the vertical component of the group velocity determinate, and namely

positive. This is equivalent to imposing the sign of µn, which can be shown to yield

sgn µn = sgn n. (2.24)

Eventually, the general solution found by Bell [6] is

w(x,z, t) =−
n0

∑
n=1

nω0

π
Im

[∫ +∞

−∞

ĥ(k)Jn

(kU0

ω0

)
exp
(

i(kξ +µnkz+nω0t)
)]

. (2.25)

The other wave fields u, p′,b may be deduced by simple manipulations of the Fourier transformed Eqs. (2.16).

The time-averaged upward energy flux E represents the conversion rate of the tidal power into internal tide. It is

commonly expressed in W m−2, and is defined as

E(z = 0) =
〈∫ +∞

−∞

p′(x,0, t)w(x,0, t) dx
〉
=

〈
1

2π

∫ +∞

−∞

p̂(k,0, t)ŵ∗(k,0, t) dk
〉
. (2.26)

with 〈·〉 denoting the time average over one period. The second equality comes from Parseval’s theorem.

Bühler & Muller [8] extended Bell’s model to three dimensions and rotating fluids ( f 6= 0). For 2D seafloors,

we represent the tidal forcing by a tidal ellipse of equation U(t) = [U0 cos(ω0t),V0 sin(ω0t),0]. U0 is the velocity

along the major axis, while V0 is the velocity along the minor axis. This ellipse is completely characterized by a

third parameter, the angle α that the major axis makes with the x axis, see Fig. 2.3. In the rotated frame of the

tidal ellipse the wave vector reads (K,L) = (k cosα − l sinα,k sinα + l cosα). Neglecting the convective term

in Eq. (2.16) requires the excursion parameter ζ =U0/(ω0L) to be much smaller than 1. In this small excursion

approximation, only waves at the fundamental frequency ω0 are generated and J1(U0k/ω0) ≈U0k/(2ω0). As

the excursion parameter is not typically that small in our case, we cannot afford this approximation. However, it

has been argued [9] that the linear solution for arbitrary excursion may still neglect higher-order harmonics nω0,
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FIG. 2.3: Tidal ellipse example. U0 and V0 are the semi-major and semi-minor axis velocity respectively. α is the angle

describing the ellipse orientation, here counterclockwise to East.

because solutions at the fundamental frequency ω0 actually dominate the wave field. We shall therefore do so, but

we take care to retain the full Bessel function in the amplitude instead of its asymptotic approximation. To study

wave instabilities, it is useful to consider stratification surfaces of constant total buoyancy Θ = N2z+ b (later

referred to as isopycnals). Without waves, b = 0 and ∂Θ/∂ z = N2. If we denote by η the vertical perturbation

displacement of such a surface, we have
∂η

∂ t
= w =− 1

N2
∂b
∂ t

(2.27)

using Eq. (2.16d) in the small excursion limit. This yields,

∂Θ

∂ z
= N2

(
1+

1
N2

∂b
∂ z

)
= N2

(
1− ∂η

∂ z

)
. (2.28)

We introduce the nondimensional spatial wave field A = ∂η/∂ z such that

∂Θ

∂ z
= N2

(
1−Re[A(x,z)e−iω0t ]

)
, (2.29)

where now x = (x,y). As explained above, we only account for oscillations at the fundamental frequency ω0.

The solution of Muller & Bühler [9] is expressed in terms of Â(k,z = 0) [with k = (k, l)] and reads

Â(k,0) = 2iκµ ĥ(k)J1

(√
U2

0 K2 +V 2
0 L2

ω0

)(
U0K + iV0L√
U2

0 K2 +V 2
0 L2

)
eiV0L/ω0 , (2.30)

where κ = |k|=
√

k2 + l2 and we recall that

µ =

√
N2−ω2

0

ω2
0 − f 2 . (2.31)

Any wave field can then be computed from Â by the following so called polarization relations:

Û =
ω0k+ i f l

κ2 Â, V̂ =
ω0l− i f k

κ2 Â, Ŵ =
ω0

µκ
Â, P̂ =

ρ0(ω
2
0 − f 2)

κ2 Â, B̂ =−i
N2

µκ
Â. (2.32)
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In light of Eqs. (2.26), (2.30), (2.32), we can write E(z = 0) as:

E(z = 0) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

1
2

Re(P̂Ŵ ∗) dk dl

=
ρ0ω0(ω

2
0 − f 2)

2µ(2π)2

∫ +∞

−∞

∫ +∞

−∞

|Â|2

κ3 dk dl (2.33)

which can be expanded as

E(z = 0) =
ρ0ω0(N2−ω2

0 )
1/2(ω2

0 − f 2)1/2

2π2

∫ +∞

−∞

∫ +∞

−∞

J2
1

(√
U2

0 K2 +V 2
0 L2/ω0

)
|ĥ(k)|2

κ
dk dl. (2.34)

Derived using a linear theory for the generation of internal tide, Eqs. (2.29), (2.30), (2.33) will form the basis of

our future work.

2.4 Wave propagation in the inhomogeneous ocean interior

The oceans are not uniformly stratified. In addition to longitude and latitude, N indeed strongly depends on

depth. It is usually minimum at the bottom of order O(10−4−10−3) s−1 and increases relatively modestly with

height (typically one order of magnitude or less) up to a few hundred meters below the surface. Then, a strong

upwards temperature gradient in the layers situated at O(100) m below the surface (the so-called thermocline) is

responsible for an abrupt increase of N to O(10−2) s−1. In general, the strong wind-induced mixing occurring in

the few meters below the surface makes N decrease again. The propagation of internal waves depends very sen-

sitively on the stratification of the supporting medium. In our work, we shall deal with global three dimensional

stratification data. This section thus describes the Wentzel-Kramers-Brillouin (WKB) theory used to describe

wave propagation in an inhomogeneous medium where N = N(z).

We come back to the wave equation Eq. (2.22) which now has nonconstant coefficients. In the 3D, rotating

case, for the first harmonic, it reads

W̃ ′′(z)+m2(z)W̃ (z) = 0, with m2(z) =−k2
(N2(z)−ω2

0

ω2
0 − f 2

)
. (2.35)

The WKB approximation consists in postulating for W̃ a slowly varying complex phase of the following form:

W̃ (z)∼ exp

[
i
(

φ0(z)
ε

+φ1(z)+O(ε)
)]

and m2(z) =
m2

0(z)
ε2 . (2.36)

where ε � 1 and φ0, φ1 ∈ C. Differentiating twice, we have

W̃ ′′(z)∼
(
−

(φ ′0)
2

ε2 + i
φ ′′0
ε
−2

φ ′0φ ′1
ε

+ iφ ′′1 − (φ ′1)
2
)

exp

[
i
(

φ0(z)
ε

+φ1(z)+O(ε)
)]

. (2.37)

Eq. (2.36) can be rewritten order by order and yields the following:

O
( 1

ε2

)
: −(φ ′0)2 =−m2

0 =⇒ φ0(z) =
∫ z

0
m0(z) dz, (2.38a)

O
(1

ε

)
: iφ ′′0 = 2φ

′
0φ
′
1 =⇒ φ

′
1 =

i
2

m′0
m0

=⇒ φ1(z) = i ln

√∣∣∣m0(z)
m0(0)

∣∣∣. (2.38b)
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We conclude

W̃ (z) ∼ exp

[
i
(∫ z

0

m0(z)
ε

dz+ i ln

√∣∣∣m0(z)
m0(0)

∣∣∣)]

∼

√∣∣∣m(0)
m(z)

∣∣∣exp

[
i
(∫ z

0
|m(z)| dz

)]
(2.39)

In terms of the amplitude A, in the small excursion approximation we have Â ≈ Ã, and using the polarization

equation Eq. (2.32) (still valid at first order) we find

Â(k,z) = Â(k,0)

√∣∣∣m(z)
m(0)

∣∣∣exp

[
i
(∫ z

0
|m(z)| dz

)]
. (2.40)

The WKB approximation relies on the fact that the amplitude of the wave field varies one order more slowly

than its phase. Note that this condition is not obvious from the expression Eq. (2.36) where imaginary phases must

be seen as amplitudes (which is a powerful mathematical trick offering little physical understanding). Broadly

speaking, the approximation is justified provided the scale over which the ambient N changes is larger than the

vertical wavelength 1/m. While this will be assumed to be the case in the deep ocean, it is not generally the

case near the thermocline, where N′/N is much larger. However, as is often the case with asymptotic theory, the

method provides a powerful approximation even outside its region of formal validity.

2.5 Instability, nonlinear wave breaking and mixing

Now that we can describe from linear theory the generation and propagation of internal tides, how can we predict

the formation of instabilities dissipating a part of the power generated at z = 0? We shall discuss our next tool:

how to use the linear theory to predict its own breakdown.

We recall Eq. (2.29), which expresses the vertical gradient of total buoyancy Θ in terms of a nondimensional

amplitude A. Overturning of the surfaces of constant density (isopycnals) occurs when ∂Θ/∂ z < 0, which is

possible whenever |A(x, t)|> 1. This simple, yet highly physical criterion flags a so called static instability. This

situation where a heavier fluid layer comes on top of a lighter one is known to be unstable and to lead to turbulent

breaking. The choice of |A|= 1 as the critical value may be argued. Indeed, a wave can dynamically avoid break-

ing if a slight overturning A & 1 occurs during a fraction of the wave period. We should therefore reformulate

the static instability flag as |A|= Asat, with typically Asat ≈ 1−1.2.

Bühler & Muller [8] showed that due to geometric focusing, high values of A may be reached locally far

above the seafloor. In an effort to quantify the resulting wave instabilities and mixing, Muller & Bühler [9]

derived a model for nonlinear wave breaking that our work will adopt. The idea is to iteratively propagate the

wave field upwards using the linear theory under the constraint |A|≤ Asat. We impose this condition at each level

assuming that the field is then stable and can be propagated further. This so-called saturation scheme is given by

the following algorithm: (i) start at z = 0, (ii) saturate A at z, i.e. enforce |A(x,z)|≤ Asat for all x, (iii) propagate

the saturated amplitude at level z+dz. The question that arise is: how do we impose the stability constraint once
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the instability criterion is exceeded? In other words: how is wave breaking parametrized?

The straightforward, yet unfortunately naive way to implement (ii) would be to saturate the amplitude by

As = A×Asat/|A| if |A|> Asat, where the subscript denotes the saturated amplitude. This method however violates

the zero (x,y)-mean property of the wavefield and disregards the global dependence of the other wave variables

on A yielding nonphysical phenomena. For example, as we deal with incompressible flows, a local change on A

can produce a global change on the pressure field. The authors instead proposed a localized saturation [9]:

As = A

[
1+
(Asat

|A|
−1
)

χ|A|>Asat ∗g

]
with ĝ(k, l) =

κ2

κ2 +L−2
sat

. (2.41)

This convolution with g(x) = δ (x)−e−|x|/Lsat/2Lsat (in 1D) does nothing more than subtracting a weighted local

average, but the saturation length Lsat is an ad-hoc parameter to which we must give a value. Invoking physical

arguments, it has been suggested to set Lsat to the value minimizing the bottom energy flux E(z = 0) (the authors

found Lsat = 5 km), but this might be amended as we shall see. This saturation has the merit of being both ad-

vantageously simple and physical and of having been confirmed by numerical work and observations[10], which

is why we shall use it in this work.

Since the saturation of A is nonlinear, it is not certain that the effect Eq. (2.41) is to decrease the total energy

flux. Indeed, as we can see in Eq. (2.33), the flux Es is proportional to the integral over the spectral space of

Âs/κ3. The saturation does tend to make Âs less energetic, but its effect, rather in the real space, is highly nonlo-

cal in the spectral space (uncertainty principle). Redistribution of a part of the energy of the spectrum Â at lower

wavenumbers κ may actually increase Es, at least in theory. In the implementation of the scheme, we however

observed that such cases were not common at all, and that such effects are always canceled by averaging over

different wavefields in a statistical framework, which is the topic of the next section.

One of the main goal of this work is to produce a global map of the vertical energy dissipation rate (in W

kg−1 or m2 s−3) given by

ε =− 1
ρ

∂Es

∂ z
, (2.42)

where Es is the saturated energy flux, computed remplacing Â(k, l,z) in Eq. (2.33) by Âs(k, l,z), the actual satu-

rated amplitude at each altitude. Since mixing is a transfer of kinetic energy into potential energy, it is easy to

conceive that less stratified fluids (with smaller N) mix more effectively under the action of a given ε . This is

why the diapycnal diffusivity Kρ , which directly expresses the vertical mixing intensity, is often considered in the

literature. Osborn & Cox [12] proposed the following model:

Kρ = Γ
ε

N2 , (2.43)

where Γ is a nondimensional turbulent mixing efficiency that they set to Γ = 0.2.

To summarize what we have seen up to now, Fig. 2.4 gives a first overview of the internal tide wave field

generated by a given bathymetry, its vertical propagation and dissipation. For two different N(z) profiles (constant

in Fig. 2.4a, and real in Fig. 2.4b) a few isopycnals (isosurfaces of Θ) are depicted. The wave field that would
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FIG. 2.4: Two-dimensional slices of isopycnals before (Θ) and after (Θs) saturation, their difference and the resulting energy

flux with height. The bathymetry used for these calculations is shown in dark bold lines. Two stratifications are shown for

comparison: (a) Unrealistic N(z) = const. (b) Typical oceanic N(z) profile.

exist without parametrizing wave breaking (i.e. Asat =∞) is compared with the ”physical” field Θs that underwent

multiple saturation steps (with Asat = 1) from the bottom (z = 0 km) to the top of water column (z = 4 km). To

see this effect, the difference is plotted. Finally, the energy flux shows how saturation reduces the upward energy

flux by dissipating it into local turbulence. We see that the bottom field is heavily saturated, resulting in a large

energy loss (from E(0) ≈ 16 mW m−2, see the red dot, to Es(0) ≈ 12 mW m−2 the start of the blue curve).

The maximum isopycnal displacement ηs of the stable field being equal to 94 m in both cases, it is very likely

attained at the bottom (since above the bottom, both fields start to differ). The next obvious observation is that the

stable field displays much less overturning than the initial one, especially in case b (where max η is almost three

times as large as in case a). Locations where the saturation induces the largest differences are visible in the form

of rays on the Θ−Θs plot. They originate from points where the bathymetry has high gradients |∇h|(x,y) and

propagate along characteristics of slope µ−1 in case a, according to the linear theory. In case b, the WKB theory

takes into account the decreasing slope µ−1 ∝ 1/N and the characteristics are curved, while the vertical spatial

scales visibly decrease with the altitude. When characteristics cross, focusing occurs, generally increasing the

local wave amplitude and resulting in greater dissipation. By reducing the ray slope, the increase of N above the

bottom in case b enhances this crossing of characteristics and the concomitant dissipation. Indeed, while Es(4

km) ≈ 8 mW m−2 in case a, almost all the energy is lost in case b when the field reaches the sea surface level

[Es(4 km)≈ 0 mW m−2].
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2.6 Statistical modelling of small-scale bathymetry

In the previous sections, we have seen that the vertical structure and energy flux of the waves above a given

seafloor topography (bathymetry) h(x) [here x = (x,y)] could be deduced by successive steps of upward prop-

agation and saturation of the solution generated linearly at the seafloor. We need global bathymetric data, but

we are aware of the large range of potential lengthscales (the seafloor has a fractal structure) and the technical

difficulty to obtain accurate measurements at such abyssal depths. We must therefore answer the question: which

bathymetric lengthscale participates the most to unstable internal tides and how to represent such data?

The two most relevant features of the seafloor for us are canyons, typically of horizontal length O(10−100)

km, and abyssal hills, with smaller scales about O(0.1−10) km. Abyssal hills are generally found around regions

separating tectonic plates. The height of this gentle fabric is typically between O(10−100) m and rarely exceeds

a few hundred meters. Intense volcanic activity generates new crustal material at spreading ridges, where plates

diverge at a rate of O(1) cm year−1. This accretion generates rough seafloors, over which sediments are gradually

deposited with time. Due to this increasing sediment cover, roughness generally decreases away from the ridge

and even vanishes in vast parts of the deep ocean (see Fig. 2.5).

FIG. 2.5: (a) Schematic side view of a deep ocean basin and a continental margin. A spreading ridge at the center, active for

millions of year, is at the origin of rough abyssal hills surrounding it. (b) Top view of the northern part of the Mid-Atlantic

Ridge, separating Africa and Europe from America. A vast region of hills can be seen away from the rift. Adapted from [14].

Scales shorter than 100 m in length have little impact on wave radiation. Indeed, from Eq. (2.34) we

know that E0 ∝
∫ ∫

J2
1 (Uκ/ω0)|ĥ(k)|/κ dk dl: smaller scales do not contribute much to the flux (for excur-

sions 2πζ = Uκ/ω0 � 3/4, the integrand behaves as ∝ |ĥ(k)|/κ2, favoring large scales). On the other hand,

scales larger than O(50) km are simply not radiated [13]. To understand why, we must relax the assumption of a

semi-infinite ocean, which was initially used to study internal wave generation. After reflection of the wave by

the sea surface, a regime of standing waves is established, and the longest wavelength that can be supported is 2H

(H is the depth), corresponding to the first vertical mode. A wave with horizontal scale of 50 km has a vertical

wavelength of 50 km /µ , where typically µ ≈ 5. Such a wave is therefore only present in depths greater than 5

km. Further studies [11, 9] and suggested that features of scales O(1) km were more prone to focusing leading

to turbulent mixing than O(50) km features. It therefore emerges that our model should focus on the description

of abyssal hills, sustaining the largest part of energy dissipation, and include features of length scales O(100)
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m − O(50) km. Unlike canyons which are well-described isolated features, abyssal hills are ubiquitous around

spreading ridges and below the current resolution of satellite bathymetry. We must thus give up the illusory idea

of a deterministic description of the bathymetry and use a statistical approach instead.

The common statistical model proposed by Goff and Jordan [15] models the abyssal hills as a Gaussian

random field. The stochastic signal h(x) is defined to have zero mean [E(h(x)) = 0, where E denotes the expected

value operator] and to be stationary, which makes it fully determined by its two-point covariance function

Chh(x) = E
[
h(ξ )h(ξ +x)

]
. (2.44)

The total bathymetric variance is H2 = Chh(0) and it is assumed that far from characterizing all the seafloor

features, second-order statistics already capture some salient features. Goff and Jordan adapted a von Kármán

spectral model anisotropic in form characterized by five parameters, including H. To be specific, the power

spectrum of Chh, hereafter noted Ph = |Ĉhh|2 is given by:

Ph(k) = 4πνH2|Q|−1/2[u2(k)+1]−(ν+1). (2.45)

where ν is the Hurst number, characterizing the power-law decay at high wavenumbers (fractal dimension is

D = 3−ν) [15]. The symmetric and positive definite matrix Q and u are defined as:

Q = k2
neneT

n + k2
s eseT

s , u(k) = [kT Qk]1/2 =

√(
κ

kn

)2
cos2(θ −θs)+

(
κ

ks

)2
sin2(θ −θs). (2.46)

Here k2
n, k2

s , en, es, are respectively the eigenvalues (kn > ks), normalized (orthogonal) eigenvectors of Q and

θs denotes the single angle characterizing the azimuth of es (direction of largest undulation) [16]. The power

spectrum is flat at low wavenumbers and suddenly decays with exponent ν above the roll-off values kn, ln. The

global maps that we shall use are reproduced in Fig. 2.6.

As described in the following chapter, our approach will be statistical and consist in (i) calculating Ph at a

given location, (ii) generating random synthetic bathymetries constrained by this spectrum, (iii) determining the

corresponding vertical mixing profile at this location, (iv) averaging over several bathymetry samples.
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FIG. 2.6: Worldwide maps (1/4◦ ×1/4◦ resolution) of the spectrum parameters H (in m), kn, ks (in km−1) and θs (clockwise

from North) respectively (see text for description). The last parameter ν is omitted, its value being almost uniform ν ≈ 0.9

except in very localized areas. White indicates regions of no abyssal hills roughness (smooth sediment cover).
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Chapter 3

Methods: numerical model and data

Now that we have discussed the theory underlying our model, we explain how to perform its numerical imple-

mentation. MATLAB was chosen for several reasons: (i) large portions of the code were already written in

that language, (ii) it offers convenient built-in functions minimizing development time, and (iii) many graphical

options and a friendly interface enable to interactively test the code and analyze results. In this chapter, we deal

with some important issues that our problem involves, namely the generation of synthetic random bathymetries

(Section 3.1) as well as spatial resolution, discretization and the choice of the free saturation length parameter

Lsat (Section 3.2). We present the worldwide data for the tidal flows and 3D stratification used in this study in

Section 3.3 and detail the full algorithm in Section 3.4.

3.1 Generation of synthetic random bathymetries

This section deals with the generation of abyssal hills bathymetry h(x) from the power spectrum Ph(k) given by

Eqs. (2.45), (2.46) and Fig. 2.6 of their statistical covariance function Eq. (2.44).

At each grid point location (1/4◦ × 1/4◦ resolution in longitude and latitude ), our approach consists in

generating a number of synthetic bathymetric samples, whose properties are constrained by the local covariance

(recall: the mean value of abyssal hill height is 0). Since we intend to average the mixing rates induced by the

waves generated over many samples, it is highly desirable for the statistical properties of our results to generate

bathymetries that are independent from each other. To do so, an efficient way is to consider the stationary

complex Gaussian field h = h1 + ih2 with covariance 2C(x,y). By definition, h1 and h2 are independent, real-

valued Gaussian fields with covariance C(x,y) [18]. We compute ĥ as follows:

ĥ(k, l) = L
√

Ph(k, l)
(

A(k, l)+ iB(k, l)
)

(3.1)

where L is the linear size in the physical domain (for a square box L×L) and A,B are two independent Gaussian

random fields ∼N (0,1) [17]. For the cost of a single inverse Fourier transform of ĥ, we eventually obtain by

taking the real and imaginary part of h two independent bathymetry samples h1 and h2. Fig. 3.1 illustrates a

typical real space synthetic bathymetry h(x,y) obtained by the numerical implementation of this technique. Note

the anisotropy of the roughness: while elongated features with long oscillations are found along the x axis (the
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so-called ”strike axis”), we observe much smaller scale features along the y axis. Spectrally, this is explained

by a higher roll-off wavenumber in the normal direction kn than in the strike direction ks. Finally, to show

the success of the generation of random topographies, we computed the empirical power spectrum from fifty

synthetic samples h. As shown in Fig. 3.2, the empirical spectrum agrees very well with the exact one (though

convergence is faster in the strike direction) and this is why we conclude that our synthetic topographies indeed

have the desired covariance properties.

FIG. 3.1: Synthetic bathymetry obtained for H = 0.11, ks = 2π/26.6 km−1, kn = 2π/6.28 km−1, ν = 0.9. Domain length

is 50 km (not up to scale in z) and grid size ≈ 0.1 km (29 = 512 discretization points). (a) 2D view. (b) Arbitrary x and y

cross-section. Note that the z scale is stretched for clarity (in the real scale, the bathymetry is mostly subcritical).

The linear theory for wave generation relies on the assumption that the bathymetry is subcritical: δ (x,y) =

|∇h(x,y)|/µ−1 < 1. This guarantees that the emitted wave ray has a larger slope than the local bathymetry and

that it is free to radiate upwards. In our framework, the expected supercritical parameter δ 2, is given in Fourier
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FIG. 3.2: Original (exact) power spectrum used in Fig. 3.1 and empirical average computed from 50 samples. Two cross-

sections in the plane l = 0 (left) and k = 0 (right) are shown. We conclude that synthetic topographies approximately have

the desired properties.

space by

δ
2 = µ

2 E(|∇h|2) = µ2

4π2 H2
κ

2. (3.2)

To get rid of supercritical slopes, we choose to correct the power spectrum Ph if somewhere δ 2(k, l) > 1, by

applying the following supercritical correction:

Ph(k, l)←−
Ph(k, l)
δ 2(k, l)

where δ
2(k, l)> 1. (3.3)

This guarantees that the expected value of the slope of the bathymetric samples will be everywhere subcritical

(though it may still locally be slightly supercritical).

We end this section with a short discussion about the length L that we will give to our square domain and

the spatial resolution dx at which it is discretized. The first requirement is that the domain length be larger

than the largest spatial scales contained in the spectrum, whose order of magnitude is given by the smallest roll-

off wavenumber (in the strike direction) 2π/ks. Second, the smallest spatial scale that we are able to resolve

(2dx according to the Nyquist-Shannon condition) ought to be smaller than the smallest features described by

Ph, hence dx� 2π/kn. To provide a first rule of thumb for the value of these parameters, we carried out a

sensitivity analysis on a good number of typical bathymetries. For each bathymetry, we separately increased L

and decreased dx until convergence of the vertical profiles Es(z) was obtained. For the sake of brevity, the results

are not reported here, but it emerged that values such as L & 1× (2π/ks) and dx . (1/40)× (2π/kn) constitute

good rules of thumb. More accurate values will be given in the chapter devoted to our results, and a thorough

sensitivity analysis to these parameters is conducted in Appendix A.

3.2 Optimal saturation length parameter

The next point that we shall discuss is the value of the free parameter Lsat (see Section 2.5), denoting the satu-

ration length used in Eq. (2.41). In their article, Muller & Bühler [9] proposed to choose Lsat as the value that
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minimizes the saturated bottom energy flux Es(0), in consistency with the expectation that optimal saturation

should yield the maximum decrease of energy. From their analysis with a specific bathymetry emerged the value

Lsat = 5 km.

In our work, we will introduce a slightly different approach which has the merit of assigning an ”optimal”

Lsat to each bathymetry realization at very limited computational cost. The idea is to look directly at the bottom

value of the wave field A(x,y,0), and more specifically find its most energetic spatial scale. We first find (kA, lA)

such that Â(k, l,z = 0) is maximum and deduce

LA =

√(2π

kA

)2
+
(2π

lA

)2
(3.4)

This dominant length scale LA (in the sense of maximum spectrum energy) will be used to determine Lsat. Im-

posing saturation at the most energetic length scale is indeed thought to maximize the dissipation at the bottom

as well as for z > 0, which seems physically relevant. However, it is not completely clear how we should deduce

Lsat from LA. Allowing for Lsat to simply be a multiple of LA: Lsat = γLA, we decided to investigate the sensibility

of the value of γ for a single bathymetry, in order to find the optimal value of this parameter, with the objective to

generalize to every bathymetry. Fig. 3.3 shows how the saturation of the bottom energy flux depends on γ . The

FIG. 3.3: Determination of the optimal γ parameter for the saturation length from saturated bottom energy flux. Minimum

mean (−) and standard deviation (−−) of E(z = 0) indicate optimal γ . Values of E(0) (mean −·− and deviation · · ·) are just

given for comparison. Results are reported for various topographic roughness kn to show robustness.

results are shown for typical bathymetry spectra with increasing kn values and have been averaged over several
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random samples for reliability (plotted as mean value ± standard deviation among the sample). For relatively

smooth seafloors, γ has little influence (at least for the values 2 < γ < 10) simply because no dissipation occurs.

However, when nonlinear breaking increases as a result of smaller scale features (higher kn), it becomes very

clear that there exists an optimal γ value associated with minimum Es(0) values. In this case, we read γ ≈ 3,

which is the value will shall use in our work. Interestingly, this value does not depend on the different spectra,

provided they contain sufficiently small scales (here kn & 0.6 km−1), giving relative generality and robustness to

this result. Also, this optimal γ value seems to correspond to minimum standard deviation, meaning that using

this saturation length yields more repeatable results, or saturated values that have less variability when computed

with different bathymetry samples from the same covariance spectrum. This feature represents another great ad-

vantage of this method. What is more, our method is computationally much more efficient than the one proposed

in [9], which required to test several values and the computation of Es(0) for each of them. By contrast, we will

simply determine for each bathymetry sample the length LA (at no cost, since Â is readily known at this stage),

from which we directly deduce the optimal parameter

Lsat = γLA = 3LA. (3.5)

In practice, we find that Lsat = O(1) km.

3.3 Tidal and stratification data

The worldwide computation of internal tides obviously requires the knowledge of the tidal currents wherever

abyssal hills are present (see Fig. 2.6 for the cover). Barotropic tides (i.e. depth-independent tides) originate from

the gravitational attraction of water masses by celestial bodies. The Moon and the Sun are responsible for most of

the tides in the oceans, which are at each point, a superposition of motions of different amplitude, phase and fre-

quency. At most locations however, the dominant tidal constituent turns out to be the principal lunar semi-diurnal

tide (abbreviated M2). It period is half a lunar day, that is TM2 = 12 hr 25.2 min. In our work, we will restrict

our attention to the waves generated by this tidal harmonic, of single frequency ω0 = 2π/TM2 = 1.454×10−4 s−1.

As explained in Chap. 2, the most convenient way to represent tides in our wave theory is to use a tidal ellipse

of parametric equation U(t) = [U0 cos(ω0t),V0 sin(ω0t),0] and orientation α . The determination of U0, V0 and

α has been made using the recent global model TPXO 7.2 developed by Egbert and Erofeeva [20]. This model

has the same resolution as our bathymetry data (1/4 degree) and predicts most tidal constituents by assimilation

of very accurate sea level data provided by the TOPEX/Poseidon satellite radar altimetry (see Fig. 3.4). This

extremely successful satellite mission was the first to produce global coverage of the ocean surface bathymetry

with a record precision of a few centimeters [19]. The inverse tide model TPXO 7.2, coupled with the Tide

Model Driver (TMD) toolbox [20] enabled us to produce global maps of the M2 ellipse parameters, as shown in

Fig. 3.5.

The next step is to determine the global three-dimensional profiles of the stratification frequency N(x,y,z).

This has recently become possible with the data provided by the World Ocean Circulation Experiment (WOCE)

[21]. Assimilating data from satellites and a wide network of buoys taking in situ measurements down to abyssal

depths, this program provided us with 3D, year-averaged salinity and temperature data. This data enabled us to
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FIG. 3.4: (a) View of the TOPEX/Poseidon satellite orbiting 1,330 km above the Earth. (b) Schematic view of the measure-

ment system, whose main component is the radar altimeter. Reproduced from [19].

compute the density, and by differentiation, the stratification frequency. The careful computation of N(x,y,z)

has been carried out using the Gibbs Seawater MATLAB Toolbox [22]. The map of the bottom frequency

N(x,y,z = 0) is given in Fig. 3.6.

3.4 Complete algorithm

We now introduce in more details the procedure we use to compute the vertical energy flux profiles Es(z) in the

whole water column [dissipation rate is deduced by differentiation as shown in Eq. (2.42)]. Propagation of the

waves is normally carried out until the ocean surface, but if somewhere in the ocean interior the stratification

becomes too weak N(z)≤ ω0, the wave is reflected downwards [23]. The propagation must then be stopped and

the remaining energy is considered to radiate away without further dissipation. The algorithm is designed to loop

over all available locations (not in white in the previous maps) and read topographic and physical data. At each

location, the bathymetric spectrum is read, corrected if supercritical slopes are expected, and a number of samples

Nsample (judged sufficient to yield reliable statistical estimates) are randomly generated. To prevent our results

from being flawed by unrealistic values, we must impose a maximum value to the bottom amplitude. Indeed,

as can be seen in Fig. 3.5, shallow regions may have exceptionally high tidal amplitudes which are unreliable

(especially near Iceland). In the literature, this problem is solved by imposing a capping value on the bottom flux

E(0)≤ Ecap
0 [28]. If the bottom flux exceeds the capping value, we impose E(0) = Ecap

0 by

Â(k, l,0)←− Â(k, l,0)×
( Ecap

0
E(0)

)2
(3.6)

The capping value and its influence will be discussed in the next chapter. The upward propagation of the wave

field is carried out at discrete vertical intervals dz and each propagation step is followed by a saturation step. The

calculation of Es(z) from Âs(z) is done as in Eq. (2.33) (where Â must be replaced by Âs. Obviously, the integral

with infinite bounds is symbolic; the numerical integration requires a discrete summation over a finite spectral

domain determined at the beginning of the algorithm. Now that we introduced all the necessary ingredients, the

algorithm reads:
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FIG. 3.5: Maps of the M2 tide parameters U0, V0 and α .

FIG. 3.6: Map of the bottom stratification frequency N(0).
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At each location:

• read the Ph parameters H,ks,kn,θs,ν , and apply supercritical correction if needed with Eq. (3.3)

• compute corresponding spatial domain length L and resolution dx, and deduce the spectral space (k, l)

• read bottom stratification frequency N(0), Coriolis frequency f , and tidal ellipse ω,U0,V0,α

• for each bathymetry sample 1, 2, ..., Nsample

– generate a random and independent sample bathymetry by Eq. (3.1).

– compute bottom wave amplitude Â(k, l,0) and energy flux E(0) by linear generation theory using

respectively Eq. (2.30) and Eq. (2.34). Apply capping on Â if needed with Eq. (3.6).

– determine the most energetic length scale LA present in Â(0) by Eq. (3.4), and deduce the saturation

length for this sample Lsat with Eq. (3.5)

– at each altitude z = 0, dz, 2dz, ... until surface or reflection level N(z) = ω0

∗ saturate Â(k, l,z) as follows

· Fourier inverse Â to switch to the real space wave field A(x,y,z)

· compute where and how much saturation is needed Aχ = A(1− 1/|A|)χ|A|>1 in real space

and Fourier transform it Âχ

· deduce saturated amplitude Âs(z) = Â(z)− Âχ × [κ2/(κ2 +L−2
sat )].

∗ compute Es(z) by the modified version of Eq. (2.33)

∗ propagate the (now stable) amplitude Âs(z) upwards by WKB theory Eq. (2.40) and get Â(z+dz)

(not saturated yet at this altitude)

• compute mean value for E(0) and Es(z) over all samples.

24



Chapter 4

Results: the worldwide, three-dimensional

structure of tidal dissipation

4.1 Quantities of interest and simulation parameters

The impact of internal-tide-driven mixing is currently parametrized in most climate models by an ad hoc formula

for the dissipation rate

ε =
qE0(x,y)

ρ
F(z) (4.1)

where (x,y) denotes the horizontal longitude-latitude coordinates, z height above bottom and E0(x,y) the bottom

(z = 0) upward energy flux converted by the waves [denoted E(0) in the previous chapter]. q is the fraction

of bottom energy E0 energy dissipated locally in the whole water column. The dissipation follows the vertical

distribution F , which is normalized so that
∫ H

0 F(z) dz = 1 [H is the local ocean depth, or the maximum height

above the floor such that N(z) > ω0]. Recalling the definition of ε Eq. (2.42), the local energy dissipation is

simply

qE0 = E0−Es(H) = ρ

∫ H

0
ε dz, (4.2)

Currently, most climate models use the uniform value q = 30 %, based on very few regional estimates. However,

the spatial distribution of diapycnal mixing (and hence of q) has been shown to play an important role in the ocean

circulation, including the strength of the Antarctic Circumpolar Current [24]. The vertical profile F(z) [divided

by N2(z)] is modeled as a exponential decaying with height F/N2 ∝ exp(−z/z0), with a fixed and uniform decay

scale z0 (typically 300−500 m) [25]. Power law decay (with power 2) has also been proposed [26]. Comparing

exponential and power law distributions, Melet et al. [27] demonstrated that the long-time ocean state was not

only sensitive to the strength of diapycnal mixing, but also to F(z). Our goal is to provide worldwide estimates

of the local energy dissipation q(x,y) and its vertical distribution F(x,y,z) to better understand and parametrize

where tidal energy is dissipated.

In the following sections, results are averaged over Nsample = 10 bathymetry samples. The domain size

spatial resolution of each sample is deduced from the two lengthscales provided by the local Goff & Arbic power

spectrum Ph (k−1
n and k−1

s ). As our code makes intensive use of Fourier transforms, a domain size N×N = 2n×2n
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dz Asat Lsat Ecap
0

50 m 1.0 3LA 0.1 W m−2

TAB. 4.1: Simulation parameters used in our reference computations [see Eq. (3.4) for LA]. Number of random samples,

domain size and resolution are dealt with in the text.

is desirable. Recalling the preliminary remarks in Chapter 3, and in particular that our results are more sensitive

to the value of dx, we first assign

dx =
1

60
× 2π

kn
, (4.3)

and require at the same time

L > 1× 2π

ks
. (4.4)

We deduce the smallest power n satisfying these conditions and the corresponding L = (2n − 1) dx. In our

computation about half of the locations require N = 256 and half N = 512, and in average, we find that L ∼
1.5× (2π/ks). Typical orders of magnitudes are L = O(25−50) km and dz = O(0.1−0.2) km. The remaining

simulation parameters are found in Tab. 4.1. The sensitivity of our results with respect to all of the mentioned

parameters is investigated in Appendix A.

With our 1/4◦ ×1/4◦ longitude-latitude grid resolution, the bottom generation was carried out at≈ 253,000

locations. To accelerate computations, the vertical propagation and dissipation was only carried out for non-

negligible energies E0 > 10−5 W m−2, representing ≈ 176,000 points. With these parameters, each global

computation required about a week on a 16 core workstation. In Appendix A we summarize the results of 12

such computations.

4.2 Bottom energy conversion

Our first result is the local bottom energy flux E0, converted by the waves from the M2 tide, see Fig. 4.1. Regions

of high barotropic energy conversion are found to concentrate around mid-ocean ridges, where the hills are tallest

and roughest. The conversion integrates to 104.6 GW globally (standard deviation among 10 samples is < 0.1

GW). These results are consistent with an earlier estimate of 0.1 TW, obtained in spectral space [28]. It is indeed

possible to estimate the expected energy flux directly from the power spectrum, replacing |h|2(k, l) in Eq. (2.34)

by E[|h|2(k, l)] = Ph(k, l). Doing so, we can check that our empirical mean flux E0 (computed with 10 bathymet-

ric samples) indeed approximates very well the expected theoretical value E theory
0 , see Fig. 4.2. We see that very

little deviation occurs, which is confirmed by the expected integral value E theory
0 = 104.1 GW. Slightly lighter

regions may however be noticed, corresponding to closer approximation. These regions are found to coincide

exactly with regions where the domain of samples is larger (N = 512 versus N = 256). This is not surprising,

as integrating the over larger domains (say L = 50 km instead of 25 km) artificially corresponds to averaging

results over more samples (say 40 instead of 10, since distant locations in space are practically independent from

a statistical point of view (decay of the power spectrum implies finite correlation lengths).
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FIG. 4.1: Bottom energy conversion E0 into internal tides. White regions have no abyssal hills. Grey regions have E0 < 10−5

W m−2 and are thus not taken into account in the subsequent computations. Note that the maximum value on the log scale is

our capping Ecap
0 . All data is at 1/4◦ × 1/4◦ resolution.
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FIG. 4.2: Relative estimation error of the bottom conversion. We compare the empirical flux with the expected value and see

excellent agreement.

To conclude this section, we briefly mention the influence of the supercritical correction described in the

previous. As shown in Fig. 4.3, the correction has little influence on the energy flux (< 5 % in most regions).

This is expected as the supercritical contributions in the power spectrum that are removed would generate small-

scale wave, which do not contribute much to E0. However, they may impact the dissipation above the floor, which

is why we remove them. Globally, E theory sup
0 integrates to 107.5 GW (versus 104.1 GW), that is a difference of

3 %.
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FIG. 4.3: Relative difference between expected supercritical E theory sup
0 and the expected value E theory

0 after correction. Since

the correction removes a part of the spectrum Ph [see Eq.(3.3)], only positive values are possible.

4.3 Local dissipation fraction

This section is concerned with the truly novel results of the local fraction of tidal dissipation q, shown in Fig. 4.4a.

Interestingly, its spatial distribution is far from homogeneous. A few regions exhibit very high values of q, be-

tween 60 % and 90 %. Mostly located in the Southern Hemisphere, they include the Mid-Atlantic Ridge, Central

Indian Ridge, East Pacific Rise and are surrounded by regions where q decays to 30−60 %. The dissipation in

most of the rest of the deep ocean is found to be below 10 %. The global energy dissipation amounts to 64.1

GW, that is 61 % of the barotropic conversion and about 75 % (≈ 45 GW ) is dissipated at hotspots where q > 60

% (see Fig. 4.5 for the full distribution). Given the central role of the Southern Ocean in ventilating deep water

masses [29, 30], the southern location and energetic importance of these hotspots could have important implica-

tions for the global oceanic circulation [31].

This estimate only includes waves generated by abyssal hills. To compare our results with in situ obser-

vations, we shall include large-scale waves, generated by larger features O(50−1000) km such as canyons and

ridges, whose bathymetry is known deterministically by satellite altimetry. The flux associated to these waves has

been computed worldwide recently by Melet et al. [28] and integrates to 875 GW using our capping Ecap
0 = 0.1

W m−1. For simplicity, since we only compute energy dissipation associated to small-scale abyssal hills, we

must assume that these large-scale waves do not dissipate energy. This assumption is however supported by

recent observations [11] indicating that tidal dissipation is essentially done by the small-scale waves we consider

in detail. Motivated by this finding, we investigate and estimate the total fraction including the large-scale energy

flux as

qtotal =
dissipation by small scales

energy of small + large scales
=

qE0

E0 +E large scale
0

. (4.5)

The results are shown in Fig. 4.4b. The same hotspots emerge, albeit with lower magnitudes (20− 60 %) and

more patchiness, reflecting the patchiness of the large-scale energy flux (see Fig. 8a in [28]). The spatial inhomo-

28



60S

30S

0

30N

60N

180W 120W 60W 0 60E 120E 180E

a q (%)
0 10 20 30 40 50 60 70 80 90 100

60S

30S

0

30N

60N

180W 120W 60W 0 60E 120E 180E

b qtotal (%)

60S

30S

0

30N

60N

180W 120W 60W 0 60E 120E 180E

c qapprox(%)

FIG. 4.4: Local dissipation fraction (a) q due to abyssal hills only [see Eq. (4.1)] (b) qtotal including conversion E large scale
0

by large-scale bathymetry [see Eq. (4.5)] and (c) qapprox approximated by bottom rms amplitude Arms
0 fitting the data [see

Eq. (4.7)]. All data is at 1/4◦ × 1/4◦ resolution.
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geneity and values of qtotal are consistent with regional observations [11, 34, 35]. Since abyssal hills contribute

to about 10 % to the global conversion [105≈ 10%× (105+875) ], the global average fraction drops to 6 %, or

17 % restricting the computation to the regions having some small-scale dissipation (not in grey or white).

As expected, we find that q is not only sensitive to the bathymetry, but also to tidal amplitudes and stratifica-

tion. We find that this dependence may be reasonably well understood by a simple empirical formula qapprox based

on an instability measure of the waves generated at the bottom. This measure is simply the standard deviation of

the bottom amplitude (taken as a random variable)
√

E[|A(z = 0)|2] [its mean is of course E[A(z = 0)] = 0]. In

the following, we call this value the rms amplitude Arms
0 . Using our linear theory, it may directly be obtained in

spectral space from the local bathymetry Goff & Arbic spectrum and forcing conditions

Arms
0 =

√√√√
4

N2(0)−ω2

ω2− f 2
1

(2π)2

∫ ∫
Ph(k, l)J2

1

(√U2
0 K2 +V 2

0 L2

ω

)
(k2 + l2) dk dl (4.6)

We emphasize that this formula simply makes use of the linear theory and of the abyssal hill and forcing data

at the bottom. We show that it may be used to predict with surprisingly good accuracy the dissipation fraction q

in the whole water column, although this value is conditioned by strongly nonlinear processes. We propose the

following expression:

qapprox =


87
[

1− exp
(
−4(Arms

0 −0.1)
)]

if Arms
0 > 0.1

0 otherwise.
(4.7)

As demonstrated by Fig. 4.4c, this expression captures the spatial distribution of q. We also check that it repro-

duces well the total dissipation (65.1 GW instead of 64.1 GW). However, this is not the way the approximation

Eq. (4.7) is inferred, as we explain next. We start by considering the distribution of q with respect to Arms
0 in

terms of median curve and two extreme percentiles (10 % and 90 %), see Fig. 4.5a. The approximation is shown

to reproduce the median with excellent accuracy. In the meantime, we consider the density of the dissipated

energy qE0 with respect to q (analogue of a probability density function, PDF), see Fig. 4.5b. Integrating this

PDF between q1 and q2 yields the dissipation by regions with q1 < q < q2 (integral between 0 and 100 % yields

64.1 GW). Our expression qapprox is designed to agree very well with this density, which means that it reproduces

very faithfully the energetic contribution of each type of region. Note that the peak near q = 87 % is an artifact

due to the exponential in our expression. Eventually, Fig. 4.5c shows the primitive of this function (cumula-

tive distribution function, or CDF). As a direct consequence of the previous requirement, excellent agreement is

found, confirming the energetic relevance of our approximation.

4.4 Existence of two generic vertical dissipation profiles

We now turn to the vertical structure of tidal dissipation F . As previously explained, we computed vertical

profiles at about 176,000 locations (the criterion being E0 ≥ 10−5 W m−2). To focus on the truly relevant

profiles, we only carry out the following analysis on those satisfying qE0 ≥ 10−5 W m−2, that is ≈ 93,000

locations. Acknowledging the amount of information that it represents, we shall try to get generic profiles. For

this purpose, we want to remove the influence of the varying stratification frequency N(z) by stretching the
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FIG. 4.5: Determination and validity of qapprox. (a) Distribution of the empirical and approximated q with respect to Arms
0 .

(b) Probability density function (PDF) and (c) Cumulative distribution function (CDF) of the dissipation qE0 with respect to

q. Total dissipation amounts to 64.1 GW.

vertical coordinate z using WKB theory [32]

z∗ =

∫ z
0

√
N2(z′)−ω2

ω2− f 2 dz′

1
H
∫ H

0

√
N2(z′)−ω2

ω2− f 2 dz′
. (4.8)

As this stretching was not sufficient to collapse F(z∗) profiles, we rescale F by a power of N. The scaling F/N2

proves to be the best to collapse profiles, thus to ease comparison with the literature, we present results for the

diapycnal diffusivity Kρ , which we presented earlier. Note that global models do not typically use this (intuitive)

diffusivity directly to parametrize mixing. We choose to detail our results not in terms of F/N2 but in terms of

Kρ = Γε/N2 = (ΓqE0/ρ)× (F/N2) for the sake of comparison with values found in the literature. However, F

profiles may readily be computed back from our Kρ , q and E0 data.

To characterize the profiles obtained, we carry a linear regression of log(Kρ) in the z∗ and log(z∗) spaces.

Though both exponential and power law decay have been suggested for Kρ (as explained at the beginning of this

chapter), we find that the fit is better in the exponential case. However, not all the points obey this exponen-

tial decay. Fitting a profile Kρ(z∗) = Kρ(0)e−z∗/z∗0 , we consider that z∗0 > 0 and a coefficient of determination

R2 > 0.6 convincingly fit an exponentially decaying profile while the remaining locations correspond to a dif-

ferent profile. According to this criterion, exponentially decaying profiles are found in 25 % of the area covered

by dissipation and are responsible for 68 % of the dissipated energy. The remaining profiles, covering the re-

maining 75 % and dissipating 32 % of the energy, have in common to be non-monotonic and many possess a

mid-level ’hump’, hence the subsequent name hump profile. We shall now describe four typical example profiles.

Fig. 4.6a is a profile typical of regions of high E0 and q (here, near the Central Indian Ridge, 49◦E 38◦S). The

bottom diffusivity is large O(10−3 m2 s−1) and the exponential fit is excellent (R2 = 0.94). Note the exponential
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FIG. 4.6: Three typical exponentially decaying profiles, with (a) excellent, (b) good and (c) correct fit. (d) Hump profile, with

poor exponential fit R2 = 0.25 < 0.6. Note the difference between Kρ (z) and Kρ (z∗).

behavior in both coordinate systems z and z∗. By contrast, Fig. 4.6b shows that in regions of weaker E0 [and

hence weaker Kρ(0), here O(10−4) m2 s−1] only Kρ(z∗) is reasonably exponential. The fit is still very good in

average, with R2 = 0.88. Figure Fig. 4.6c portrays an even weaker profile, still decaying with height and expo-

nential in average but resembling more and more a hump profile. The decay scale is larger and the fit of lesser

quality (R2 = 0.74). This profile is typically found over the smoother ridge flanks (here by the Mid-Atlantic

Ridge). As explained, we consider that the profile is a hump profile if R2 < 0.6,. This profile type transition

is illustrated in Fig. 4.6d (R2 = 0.25), which is located very close to the previous point (46◦W 14.5◦S versus

45◦W 14◦S). Note the difference between the altitude of the maximum Kρ (hump) in the two coordinate systems.

Though we do not provide evidence for the sake of brevity, we find that using the z∗ coordinate the only way to

efficiently collapse most hump profiles, as we shall discuss later.

The bottom-heavy diffusivity of exponential profiles is due to high bottom wave amplitudes, more likely to

be unstable close to their generation site. Hump profiles by contrast exhibit stronger diffusivity higher up in

the water column due to increased ambient stratification, yielding smaller-scale waves of larger amplitudes. We

therefore expect exponential profiles to dominate when the bottom amplitudes are large and vice versa. This is

confirmed by Fig. 4.7a, showing the distribution of the dissipated energy with respect to the rms amplitude Arms
0 .

The two profiles may indeed be diagnosed a priori according to the bathymetry and forcing conditions at the

bottom: if Arms(0)> 0.4, the diffusivity decays exponentially and vice versa.

4.5 Exponentially decaying diffusivity profiles

The analysis of a few percentiles of the whole distribution of ≈ 24,000 exponential profiles is shown in figure

Fig. 4.7c. The most energetic profiles indeed follow almost perfect exponential decay, and we shall later show
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FIG. 4.7: Existence of two vertical profiles of dissipation. (a) Density of the dissipated energy with respect to the linear

bottom amplitude Arms
0 and contribution of each profile. Integral yields 64.1 GW. Exponential and hump profiles are clearly

separated by the value Arms
0 (0) = 0.4. (b) Percentiles of the≈ 69,000 hump profiles of Kρ . Note the transition from mid-level

maxima (most energetic percentiles) to profiles with no bottom mixing and constant upper-level mixing. (c) Percentile of the

≈ 24,000 exponential profiles of Kρ [same percentile values as in (b)].

that indeed half of the energy is dissipated by exponential profiles having R2 > 0.9. At these locations, Kρ typi-

cally reaches 10−4−10−3 m2 s−1, in consistentcy with in situ observations above rough bathymetry [2, 33, 34].

Lower percentiles, though still exponential in average, continuously deform and end up akin to a hump profile.

The map of the exponential decay scale z∗0 is reported in Fig. 4.8a. Exponential profiles (brown to blue)

clearly coincide with regions of high dissipation (hotspots of q). This is expected since exponential decay cor-

responds to large bottom amplitudes (Arms
0 > 0.4, see Fig. 4.7a, and hence, from Eq. (4.7), to large values of q

(q > 87[1− e−4(0.4−0.1)] ∼ 60 %). The decay scale is typically smaller than 1000 m (80 % of the dissipation),

with regions atop the ridges exhibiting the fastest decays (250− 750 m). (Anticipating our figures, the full dis-

tribution may be seen in Fig. 4.9.) Regions near Iceland feature z∗0 < 250 m, though very large amplitudes due
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to poor tidal data gives us little confidence in these results. The map giving the corresponding R2 value is shown

in Fig. 4.8c. As anticipated from the analysis of percentiles, the most energetic regions feature very high values

R2 > 0.9, while lower values 0.6 < R2 < 0.8 are extremely rare. Note that the decay scale z∗0 is an e-folding value

in the WKB-scaled vertical height z∗, not in z. Profiles in the z coordinate are found to correlate more weakly

with exponential decay (lower R2 values).

As was the case for q, the spatial distribution z∗0(x,y) can also be reasonably well understood from the ampli-

tude Arms
0 (x,y). Physically, larger bottom amplitudes yield faster decay, and we indeed find that (1/z∗0)

2 scales

quasi-linearly with Arms
0 . We propose the approximation

z∗ approx
0 =

440√
Arms

0 −0.3
, valid for Arms

0 ≥ 0.3. (4.9)

Fig. 4.8b shows that this expression recovers most of the salient features observed in Fig. 4.8a. However, as we

explained for qapprox, spatial agreement was not looked after when inferring Eq. (4.9). We inferred it according to

the method detailed previously. Fig. 4.9a shows that our approximation reproduces well the median distribution

of decay scales 500 m < z∗0 < 1000 m. We note that the expression z∗ approx
0 breaks down for Arms

0 ≤ 0.3, but

such values are not representative of the exponential mode anyway as we have seen. Fig. 4.9c confirms that this

agreement is excellent in terms of cumulated energy, while the full density is not as well captured (Fig. 4.9b). This

is due in part to shallow regions, especially around Iceland, where extreme tidal amplitudes cause z∗ approx
0 < 250

m (see arrow). Our opinion is that such values are unreliable and our model is not designed to predict them. A

capping of Ecap
0 = 1 W m−2 (instead of Ecap

0 = 0.1 W m−2 here) would evidently amplify this peak.
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4.6 Hump diffusivity profiles

The analysis of the percentiles of ≈ 69,000 hump profiles in Fig. 4.7b reveals that the most energetic ones

80−95 exhibit a prominent mid-depth diffusivity maximum at z∗max/H ∼ 0.3−0.5, which can be larger than the

oceanic background value 10−5 m2 s−1. It comes from a dramatic increase in dissipation ε due to larger ambient

stratification, not compensated by the WKB and 1/N2 scalings. Although the stratification at these locations

is not stronger than elsewhere, the gradual increase of N(z) in the abyssal ocean suffices to make these waves,

stable at the bottom, break well above the seafloor. Observations do suggest the possibility of non-monotonic

diffusivity profiles in certain regions [2, 33]. Our results indicate that those profiles, not accounted for in current

mixing parameterizations, cover large regions and are responsible for a significant fraction of the tidal dissipa-

tion. Understanding and predicting their characteristics could benefit parametrizations and yield a different ocean

circulation than that obtained with classical mixing schemes.

For this purpose, and by analogy of our previous analysis, the height and strength of the mid-depth maximum

can be related to Arms
0 , see Fig. 4.10. We start by determining the maximum diffusivity Kρ(z∗max) values as

follows. We lists all points that are local maxima in the 300 m neighbourhood above them. We then reject

the artificial ones occuring in a 300 m neighbourhood of the global maximum of N (thermocline) and select

the one having the greatest Kρ value. As shown in the percentile distribution, only the most energetic profiles

were found to possess such a maximum, and Fig. 4.10 only concerns those profiles. Fig. 4.10a shows that the

maximum diffusivity Kρ(z∗max) increases with the bottom amplitude, and its median value exceeds 10−5 m2 s−1

for Arms
0 > 0.35. Fig. 4.10b shows that the relative height z∗max/H at which the maximum occurs is found to

decrease with Arms
0 , in consistency with the idea that statistically less stable bottom waves break at lower heights,

being more sensitive to the increase of N(z). To refine this analysis further, we look at the would-be amplitude

at the height where the maximum occurs Arms(z∗max) . According to WKB theory, we write

Arms(z∗max) = Arms
0 ×

(
N2(z∗max)−ω2

0

N2(0)−ω2
0

)1/4

. (4.10)

Note that this formula (obtained by linear theory) totally ignores the nonlinear saturation that A undergoes be-

tween z∗ = 0 and z∗ = z∗max. Nevertheless, Fig. 4.10c demonstrates that the density of energy, not very localized

with respect to Arms
0 , concentrates around Arms(z∗max) = 0.5. The width of the distribution at half maximum indeed

drops by a factor of 2.5. We conclude that Arms(z∗max) = 0.5 may serve as a reasonable criterion to determine a

priori the height of the diffusivity maximum.
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Conclusions and directions for future

work

In this work, we considered the vertical energy dissipation of internal tides. These internal waves generated

by tidal currents are currently believed to provide a large part of the mixing observed in the deep ocean. Our

motivation is twofold. On one hand, we aim at a better understanding of where and how a significant part of

the available tidal power is dissipated. On the other hand, global climate models need accurate small-scale pre-

dictions to parametrize dissipation and simulate accurately the ocean state and its large-scale circulation. We

focused on internal tides produced by small-scale abyssal hills, known for their propensity to instability during

upward propagation in the bulk of the ocean. Using worldwide numerical computations based on global data

for the seawater properties and seafloor topography, we obtained three-dimensional maps of the vertical energy

dissipation.

In Chapter 2 we introduced the common approximations of geophysical fluid dynamics, deduced the exis-

tence of internal waves by linearizing the Boussinesq model and underlay their most important characteristics.

We presented the linear theory for the generation and upward propagation of internal tides in a realistic ocean

with inhomogeneous vertical stratification. We then turned to the more puzzling problem of wave instability

and turbulent dissipation, and motivated our choice of a simple nonlinear saturation scheme to parametrize wave

breaking. After clarifying the physical scales of relevance in our problem, we addressed the challenge of using

global data for the ocean seafloor and introduced the statistical description of abyssal hills.

Chapter 3 was devoted to the detailed presentation of our numerical model, and of the points deserving par-

ticular attention in its implementation. We have seen how independent random bathymetry samples could be

generated from local geological properties, tackled the issue of domain size and grid resolution to ensure its

accurate representation and derived an efficient way to interactively set an important saturation parameter. We

also explained how we obtained global data for tidal currents and ocean stratification frequency N before writing

down our complete algorithm.

In Chapter 4, we saw how current climate models parametrize the turbulent dissipation rate ε , explaining our

subsequent focus on the local (depth-integrated) fraction of tidal energy dissipated q(x,y) ∝
∫ H

0 ε dz as well as

its vertical profile in z. Our computations yielded the bottom energy E0, converted from the tides by the waves

at the seafloor, and we found that it integrates to 105 GW globally. Our first important result was that 61 % of
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this energy is dissipated, mainly at localized hotspots of very high dissipation 60% < q < 90% near spreading

ridges, where the hills are tallest and roughest. Mainly located in the Southern Hemisphere, these hotspots could

impact deep water masses in formation in the Southern Ocean. Including the energy of internal tides generated

by larger-scale canyons and ridges, the global fraction dropped to 6 %, yet the same hotspots of q emerged

with significant magnitude 20% < q < 60%. We showed that such values compared favorably with available in

situ observations. As far as the vertical distribution of ε is concerned, about 70 % of the dissipation followed

exponentially decaying profiles for the vertical diffusivity Kρ ∝ ε/N2, as suggested in the literature. More im-

portantly however, we revealed that the remaining dissipation gave rise to non-monotonic diffusivity (or mixing)

profiles, possessing a mid-level maximum. These ”hump profiles”, which we rationalized by variations in ocean

stratification with height, are currently not accounted for in parametrizations and could impact the global oceanic

circulation. Our third major finding was that the main properties of our three-dimensional map of tidal dissipa-

tion may all be surprisingly well understood and predicted by the linear theory. Using a single scalar measure

of wave instability at the seafloor, we proposed empirical formulas to approximate q, predict the profile type,

approximate the decay scale of exponential profiles and the location of the maximum of hump profiles. Solely

depending on seafloor properties, tidal and stratification forcing, our expressions could potentially be used for

time-evolving parametrizations in long-term climate models.

Further efforts to complement this work should first concentrate on assessing the respective role of the dif-

ferent types of instabilities that internal tides likely experience. Our nonlinear breaking scheme indeed only

implements dissipation due to a static instability, occurring when dense waters are brought on top of lighter

ones by large enough wave amplitudes. Yet it is known that internal waves can break and dissipate their energy

through other mechanisms, such as shear or subharmonic parametric instabilities [36, 37]. Though understanding

and including them in a simple numerical model constitutes a challenge, it may unveil interesting phenomena

and amend our conclusions. We also want to emphasize that we solely considered the dissipation of small-scale

internal waves generated by abyssal hills. Future work should try to model numerically both small-scale (stochas-

tic) and large-scale (deterministic) waves and investigate their joint behavior and dissipation. This would enable

to confirm or infirm the lingering assumption that scale separation prevents the small-scale (unstable) waves to

impact the large-scale (stable) waves. As the latter carry close to ten times as much energy as the former, our

results indicate that a modest breach in this backbone hypothesis could have serious implications.
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Appendix A

Sensitivity analysis and robustness

We start by reporting the sensitivity of our world-integrated results E0, q and qtotal to the value of dx in Tab. A.1.

The previous condition dx = (1/60)× (2π/kn) [see Eq. (4.3)] is first relaxed to dx = (1/30)× (2π/kn), thus ef-

fectively dividing all domain sizes N by 2, without changing L. The influence of L may be seen with the next case

dx = (1/40)× (2π/kn), changing both dx and L. We see that E0 is almost unchanged while q seems to converge

from ≈ 50% to ≈ 60% as the resolution is increased. This behavior is not surprising: E0 in primarily influenced

by large-scales but small-scale waves generated by small bathymetric features are more prone to breaking, hence

resolving them better enhances dissipation.

The influence of the vertical resolution dz is reported in Tab. A.2. Propagating the waves and saturating

their amplitude with smaller increments dz logically increases dissipation. However, to keep computation time

reasonable, and not to overestimate dissipation, the value dz = 50 m is chosen as reference.

We turn to the influence of slightly more permissive values of saturation threshold Asat in Tab. A.3 and of

different saturation lengths Lsat in Tab. A.4. For the highest value Asat = 1.2, q is reduced from 61 % to 54 %.

Our results also show that the sensitivity to Lsat disappears for 3 LA ≤ Lsat ≤ 5 LA, and dissipation is maximized.

Hence, the value chosen in Eq. (3.5) (Lsat = 3 LA) for our reference case seems to yield a robust and physically

consistent saturation scheme.

Eventually, as the most (reliable) energetic regions rarely exceed E0 = 0.5× 10−1 W m−2, we decided to

set Ecap
0 = 10−1 W m−2. However, calculations with Ecap

0 = 1 W m−2 (as in Melet et al. [28]) are reported in

Tab. A.5. They obviously result in a larger global E0 and in more dissipation (q = 67 % versus 61 %). This is

due to the fact that very high amplitude waves tend to be highly unstable and dissipate most of their energy.

To conclude, our results are robust with respect to the numerical parameters used, provided that reasonable

and physical values are used. The tidal energy conversion by abyssal hills integrates to ≈ 100 GW and its

dissipation amounts to q≈ 55−65 %. Including large scales, but assuming that they do not dissipate energy, we

have qtotal ≈ 6−7 %.
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Requirement on dx 1
60×

2π

kn
1
30 ×

2π

kn
1
40 ×

2π

kn

Deduced N 512 (55 %), 256 (45 %) 256 (55%), 128 (45 %) 256 (70%), 128 (30 %)

E0 (GW) 104.6 105.1 105.2

q (%) 61.3 49.6 55.8

qtotal (%) 6.55 5.32 5.99

TAB. A.1: Sensitivity of the bottom energy flux E0, global dissipation fraction q and qtotal (including the large-scale energy

flux EF large scale
0 = 845 GW) to domain length L and resolution dx. Reference results presented in Chapter 4 are in bold.

dz (m) 100 50 30

q (%) 56.7 61.3 63.6

qtotal (%) 6.06 6.55 6.80

TAB. A.2: Sensitivity of q and qtotal to the vertical step size dz. Reference in bold.

Asat 1.0 1.1 1.2

q (%) 61.3 57.6 53.9

qtotal (%) 6.53 6.16 5.76

TAB. A.3: Sensitivity of q and qtotal to the saturation threshold Asat. Reference in bold.

Lsat LA 2 LA 3 LA 4 LA 5 LA

q (%) 52.2 59.5 61.3 61.5 61.2

qtotal (%) 5.57 6.36 6.55 6.58 6.54

TAB. A.4: Sensitivity of q and qtotal to the saturation length Lsat [LA defined in Eq. (3.4)]. Reference in bold.

Ecap
0 (W m−2) 0.1 1

E0 (GW) 104.6 136.2

E large scale
0 (GW) 875 1020

q (%) 61.3 66.9

qtotal (%) 6.55 7.88

TAB. A.5: Sensitivity of E0, q and qtotal to Ecap
0 . Calculation of E large scale

0 is made in [28]. Reference in bold.
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