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Abstract

The sequencing of the human genome provides the parts list for under-

standing cellular processes. However, as 70% of eukaryotic genes work

through multi-protein systems, it is only through detailed study of the

interactions of these components, that a more complete, systems-level

understanding can be gained. This thesis is centred on the establish-

ment of PICCOLO - a comprehensive database of structurally char-

acterized protein interactions. In generating the resource, issues of in-

terface definition, quaternary structure, data redundancy, structural

environment and interaction type are addressed. The resource enables

a variety of analyses to be performed concerning interface properties

including residue propensity, hydropathy, polarity, interface size, se-

quence entropy and residue contact preference.

PICCOLO has been applied to probing the patterns of substitutions

that are accepted in protein interfaces across evolution, and whether

these patterns are distinguishable from those seen in other struc-

tural environments. The derivation of a high-quality set of multiple

structural alignments in the form of the database TOCCATA, a pre-

requisite for such analysis, is described, as well as procedures to derive

environment-specific substitution tables.

The Blundell group has contributed a series of methods to predict

the likely effect of non-synonymous Single Nucleotide Polymorphisms

(nsSNPs) on protein stability, function and interactions in order to

triage the large volumes of data created from high-throughput genetic

screening studies, enabling prioritization of those nsSNPs most likely

to be phenotypically detrimental. PICCOLO’s contribution to these

predictions is described.



Historically there has been little focus on protein-protein interactions

as drug targets for small-molecule therapeutics. However, alanine-

scanning mutagenesis studies have revealed that only a subset of

residues contribute the greater part of free energy to binding - so-

called “hot-spots”. Molecular characterization of hot-spots performed

using PICCOLO, probes the molecular basis underlying this impor-

tant phenomenon leading to the possibility of predictive methods to

identify hot-spots in silico.
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with resolution <2Å. The correlation is 0.60 and the standard error

is 1.36kcal/mol. Removal of the outlying data point increases the

correlation to 0.66. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Venn diagram indicating the overlap of the results of three in-house

methods for predicting the impact of nsSNPs. . . . . . . . . . . . 169

5.4 Examples of disease-associated mutations in protein structures that

are predicted to be deleterious by our methods and not predicted to

be deleterious by any of the public domain methods. For each case,

wild-type side-chains are shown in mauve. Atoms are coloured by

type. The secondary structure of the protein chain containing the

nsSNP is shown in red (helix), yellow (strand) and green (coil).

The secondary structure of interacting protein chains are shown

in blue (helix), purple (strand) and pink (coil). Hydrogen bonds

of wild-type residues are shown in black. See text for detailed de-

scription. Figure taken from Worth et al. (Worth et al. (2007a))

and produced using PyMOL (Delano (2002)). . . . . . . . . . . . 171

5.5 Three nsSNPs can be mapped to the interface between β2-microglobulin

and the MHC CLass II molecule. . . . . . . . . . . . . . . . . . . 175

5.6 Three nsSNPs can be mapped to the interface between α and β

haemoglobin molecule. . . . . . . . . . . . . . . . . . . . . . . . . 175

xxi



LIST OF FIGURES

6.1 Two views of the complex of human growth hormone (spacefill)

and one half of its dimeric receptor (transparent grey cartoons)

(PDB entry 1bp3). In the first panel the residues of the ligand

are coloured by their PICCOLO interfacial environment (Interface

core in orange, interface periphery in dark red, exposed surface in

light blue, buried in dark blue (see Figure 2.9 on page 63 for defi-

nitions)). In the second panel, taken from an identical viewpoint,

residues are coloured by their ASEDB status (hot-spot residue with

∆∆G≥2 kcal/mol are shown in red, other ASEDB residues with

∆∆G <2kcal/mol in black). Light blue residues are not considered

by ASEDB. These figures were generated automatically by writing

Python functions from Pymol to extract residue annotations from

the MySQL database. . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.2 Distribution of ∆∆G values for the 764 mutations in the ASEDB-

PICCOLO set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.3 Enrichment of each residue type in hot-spots. Hot-spot data is

shown in Table 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4 Scatter plot of mean ∆∆G of all hot-spots in ASEDB-PICCOLO

against mean substitution score taken from interface-specific sub-

stitution tables for each residue type. . . . . . . . . . . . . . . . . 195

6.5 Structurally conserved interactions. The first panel depicts the

interaction of Fibroblast Growth Factor (FGF) 2 bound to FGF

Receptor 2 (FGFR2) (PDB entry 1ev2). The second panel depicts

FGF1 bound to the same receptor FGFR2 (PDB entry 1djs). The

receptor residues are shown as transparent sticks, the interaction

types in the same format as described in Chapter 2. Experimen-

tally identified hot-spot residues from FGF2 are shown in the first

panel in red, as are their structurally equivalent conserved partners

in FGF1 in the second panel. . . . . . . . . . . . . . . . . . . . . 199

6.6 The thermodynamic cycle for for the bound and unbound state for

the wild-type and mutant protein structures. . . . . . . . . . . . . 201

A.1 van der Waals radius for atoms from the 20 canonical residues. . . 212

xxii



A.2 Covalent radius for atoms from the 20 canonical residues. . . . . . 213

A.3 Hydrogen bond donors from the 20 canonical residues. . . . . . . 214

A.4 Hydrogen bond acceptors from the 20 canonical residues. . . . . . 215

A.5 Ionizable atoms from the 20 canonical residues. . . . . . . . . . . 216

A.6 Hydrophobic atoms from the 20 canonical residues. . . . . . . . . 217

A.7 Aromatic atoms from the 20 canonical residues. . . . . . . . . . . 218

xxiii



Nomenclature

Acronyms

3D Three Dimensional

API Application Programming Interface

ASA Accessible Surface Area

ASU Asymmetric Unit

AUC Analytical Ultracentrifugation

BLAST Basic Local Alignment Search Tool

CAPRI Critical Assessment of Protein Interactions

CASP Critical Assessment of Structure Prediction

CPU Central Processing Unit

CSD Cambridge Structural Database

DMC Double Mutant Cycle

DNA Deoxyribonucleic Acid

EBI European Bioinformatics Institute

EGOR Environment-Specific Substitution Table GeneratOR

EM Electron Microscopy

xxiv



LIST OF FIGURES

ESST Environment-Specific Substitution Table

ET Evolutionary Trace

FCCS Fluorescence Cross-Correlation Spectroscopy

FGF Fibroblast Growth Factor

FRET Fluorescence Resonance Energy Transfer

GO Gene Ontology

HOMSTRAD Homologous Structure Alignment Database

ITC Isothermal Titration Calorimetry

MAF Minor Allele Frequency

mmCIF macromolecular Crystallographic Information File

MDS Multi Dimensional Scaling

MS Mass Spectrometry

MSA Multiple Sequence Alignment

NCBI National Center for Biotechnology Information

NMR Nuclear Magnetic Resonance

NPC Nuclear Pore Complex

nsSNP non-synonymous Single Nucleotide Polymorphisms

ORF Open Reading Frame

PDB Protein Data Bank

PID Percent Identity

PiQSI Protein Quaternary Structure Investigation

PISA Protein Interfaces, Surfaces and Assemblies

xxv



LIST OF FIGURES

PQS Protein Quaternary Structure

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RCSB Research Collaboratory for Structural Bioinformatics

RDBMS Relational Database Management System

RMSD Root Mean Square Deviation

SCOP Structural Classification of Proteins

SDM Site Directed Mutator

SIFTS Structure integration with function, taxonomy and sequence

SMARTS SMiles ARbitrary Target Specification

SPR Surface Plasmon Resonance

SQL Structured Query Language

SVM Support Vector Machine

TAP Tandem Affinity Purification

TEV Tobacco Etch Virus

TLB Tom Leon Blundell

URL Uniform Resource Locator

wwPDB Worldwide Protein Data Bank

XML Extensible Markup Language

Y 2H Yeast Two-Hybrid System

xxvi



Chapter 1

Introduction

1



1.1 Fundamental importance of protein interactions

1.1 Fundamental importance of protein interac-

tions

The sequencing of the human genome provides the parts list for understanding

cellular processes (Lander et al. (2001); Venter (2001)). However, as 70% of

eukaryotic genes work through multi-protein systems, it is only through studying

the interactions of these components that a more complete understanding can

be gained. The fundamental importance of protein-protein interactions cannot

be understated; the cellular processes they mediate include cell communication,

proliferation and differentiation, DNA repair and immunity. Importantly, it is

often not through pairwise interactions, but rather through weak but synergistic

interactions among many components that specific and sensitive regulation is

achieved, thus ensuring high fidelity in signal transduction.

As we endeavour to gain a systems level understanding of cellular processes, it

is clear that we will require a greater understanding of protein interactions, both

at the detailed level of individual interactions as well as broad principles, which

might be of general application. A range of experimental and computational

techniques has been used to study interactions, each of which provides information

of a different nature, resolution and quality.

1.2 Experimental methods for studying interac-

tions

Three-dimensional (3D) structural information of protein complexes deposited

in the Protein Data Bank (PDB)(Berman et al. (2007)) provides the most com-

plete and highest quality information regarding protein-protein interactions; ul-

timately it is the fine atomic details of an interaction that determine the affin-

ity and specificity of binding. Despite several technical advances in structural

genomics and some excellent recent examples, experimental determination of

protein complexes remains difficult. This is reflected in the fact that until re-

cently, less than 1% of all structures solved by the structural genomics consortia
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1.2 Experimental methods for studying interactions

are of protein-protein complexes (Todd et al. (2005)). For X-ray crystallogra-

phy, crystallization remains a bottleneck, particularly for transient complexes.

With NMR (Nuclear Magnetic Resonance) techniques there is an upper size limit

of around 100kDa (although most are less than 20kDa) for atomic resolution

models (although NMR can provide valuable information regarding interacting

residues from chemical shift analysis). More encouragingly, cryo-Electron Mi-

croscopy (EM) offers much potential in providing lower-resolution structures for

large complexes using relatively small amounts of material. Experimental meth-

ods to identify interactions include co-immunoprecipitation, chemical crosslink-

ing, protein microarrays, synthetic lethality screens, synexpression, phage dis-

play, yeast two-hybrid and tandem affinity purification. Methods to character-

ize a known interaction include Surface Plasmon Resonance (SPR), Isothermal

Titration Calorimetry (ITC), analytical ultracentrifugation (AUC), fluorescence

resonance energy transfer (FRET), Fluorescence Cross-Correlation spectroscopy

(FCCS) and alanine scanning mutagenesis. Each of these methods will be briefly

reviewed here.

Co-immunoprecipitation is considered to be the gold standard assay for

protein-protein interactions. The protein of interest is first isolated using a spe-

cific antibody and any binding proteins subsequently identified by western blot-

ting. Although the assay is considered highly reliable, throughput is low so the

approach is unsuitable when screening for interaction partners. Pull-down as-

says are a common variant of co-immunoprecipitation, except that a bait protein

is used instead of an antibody, but the higher throughput makes the technique

more amenable for screening for interacting partners. Chemical crosslinking

involves covalently “fixing” interacting proteins in the bound form before trying

to isolate and identify the constituents, thereby enabling the determination of

near-neighbour relationships and providing some information regarding the dis-

tance between interacting molecules. Protein microarrays are analogous to

DNA microarrays; they use immobilized proteins on a solid glass or membranous

surface and use specific antibodies to detect physical binding to provide quan-

titative information. Synthetic lethality screens involve identifying pairs of

mutations where each single mutation is individually tolerated but the combina-

tion of both mutations renders the cell inviable. Synthetic lethal phenotypes can
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be diagnostic of an interaction between the products of the two mutant genes in

the cell, but alternatively can be simply an indication of a non-physical, func-

tional interaction. Synexpression is the phenomenon by which genes have their

expression simultaneously coordinated because their gene products are required

in stoichiometric amounts to form subunits of a protein complex. Such patterns

can be identified from microarray experiments. However, again, the proteins from

genes in a synexpression group are not necessarily physically interacting. Phage

display uses recombinant methods to create a library of bacteriophages contain-

ing peptides embedded in the surface of their protein coats. The target protein

of interest is immobilized and phage displaying peptides on their surface that

bind to the target can be isolated and easily identified as they carry the gene se-

quence of the binding peptide. The most widely used methods remain the yeast

two-hybrid system (Y2H) and Tandem Affinity Purification (TAP). The

Y2H method is a rapid, high-throughput in vivo screen that identifies the inter-

action between artificial fusion proteins. The yeast GAL4 transcription factor

comprises a DNA binding domain and a transactivation domain. A chimaeric

fusion of the “bait” protein with the DNA binding domain is constructed, as is

a cDNA library expressing each cloned cDNA in a second chimaeric fusion with

the activation domain. If the bait protein interacts with a protein in the library,

the interaction of two domains of the GAL4 transcription factor is reconstituted,

enabling transcriptional activation of a reporter gene from a GAL4 promoter.

However, disadvantages of the method include the fact that it is difficult to apply

to extracellular proteins or proteins that initiate transcription, and that construc-

tion of the chimaeric fusion protein may alter the protein’s structure. Moreover,

Y2H has a notorious high false-positive rate which makes confirmatory studies

through other methods vital. The accuracy of the high-throughput TAP method,

in contrast, approaches that of small-scale experiments (Collins et al. (2007)).

The TAP method involves generating a chimaeric fusion of the protein of

interest with a TAP tag at the C-terminus. The TAP tag aids protein purifica-

tion and consists of a recombinant fusion tag formed of two sequentially ordered

moieties. The immunoglobulin G (IgG)-binding portion of Staphylococcus aureus

protein A comprises the distal tag and the calmodulin-binding peptide the prox-

imal tag. The two tags are separated by a tobacco etch virus (TEV) protease
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cleavage site. This construct binds to beads coated with IgG, the TAP tag is

then broken apart by TEV protease, before the calmodulin-binding peptide part

of the TAP tag binds reversibly to calmodulin-coated beads. The protein of inter-

est is then washed through two affinity columns and binding partners identified

by either SDS-PAGE or Mass Spectrometry (MS). In MS the proteins are frag-

mented, typically through electrospray ionization, producing peptide ions in the

gas phase, that can then be detected and recorded by means of the mass-to-charge

ratios of the peptide ions being assigned to different peaks of the spectrum. The

resulting mass fingerprint can be used to search a protein sequence database to

identify the protein constituents. However, the TAP tag method requires suc-

cessive protein purification steps and can therefore be unsuitable for some weak

transient interactions. TAP experiments have been performed at genome scale

in yeast (Gavin et al. (2006); Ho et al. (2002); Krogan et al. (2006); Uetz et al.

(2000)). Benchmarking these techniques is difficult as there is no “gold stan-

dard” of known interactions and more importantly there is no negative set of

proteins known not to interact. Nevertheless, with imperfect benchmark sets,

estimates of 30-60% false positives and 40-60% false negatives have been assigned

to high-throughput two-hybrid and affinity-purification techniques respectively

(von Mering et al. (2002)).

Surface Plasmon Resonance (SPR) is a powerful technique that can be

used to measure protein-protein interactions in real-time without the use of la-

bels. While one of the interactants is immobilized to the sensor surface, the other

is free in solution and passed over the surface. SPR experiments can reveal infor-

mation regarding the kinetics and dynamics of physical interactions. Isothermal

titration calorimetry (ITC) is a quantitative biophysical technique that can be

used to determine the thermodynamic parameters of protein-protein interactions.

It is growing in popularity as it enables the direct measurement of the binding

affinity (Ka), changes in enthalpy (∆H), and binding stoichiometry of the inter-

action in solution, from which the Gibbs free energy changes (∆G) and entropy

changes (∆S) can be derived. Analytical ultracentrifugation (AUC) is a

versatile tool for the study of protein interactions. Monitoring the sedimentation

of macromolecular complexes in the centrifugal field allows the characterization

of their hydrodynamic and thermodynamic properties in solution. Sedimentation
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velocity and sedimentation equilibrium experiments help identify subunit stoi-

chiometry of complexes as well as predicting their equilibrium constants. Fluo-

rescence resonance energy transfer (FRET) is a commonly applied in vivo

assay that exploits the process of energy transfer between two fluorophores, from

which the distance between two molecules can be determined. Similarly, Fluo-

rescence Cross-Correlation spectroscopy (FCCS) detects the synchronous

movement of proteins with two different fluorescent labels. Alanine scanning

involves systematically mutating each residue in an interaction site and using one

of a variety of biophysical methods to establish the contribution of that residue to

the energetics of binding. Further details of this method are described in Chap-

ter 6. An extension to this method, Double Mutant Cycle (DMC) analysis,

where pairs of residues across the interface are systematically mutated, will be

described further in Chapter 2.

1.3 Computational methods for studying inter-

actions

An equally broad range of computational methods has been applied to the study

of protein-protein interaction (Shoemaker & Panchenko (2007); Valencia & Pazos

(2002)). These can be divided into sequence and structure-based methods for

identifying interaction partners and those predicting interaction surfaces (starting

with the unbound structure).

Phylogenetic profiling uses comparative genomics to identify those pairs

of protein domain families whose profile of presence or absence from the genome

appears synchronized (Marcotte et al. (1999); Pellegrini et al. (1999)). The Gene

Neighbourhood approach uses the fact that interacting prokaryotic proteins are

often transcribed from Open Reading Frames (ORFS) on the same operon, such

that the likelihood of interaction can be shown to correlate with intergenic dis-

tance (Galperin & Koonin (2000)). The domain fusion approach, also known as

the Rosetta Stone method, relies on finding a precedence for two domain families

to be found in a single contiguous gene product, so that in homologous proteins,

where the domains are found on separate genes, they can be predicted to interact
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(Korbel et al. (2004)). Although these approaches benefit from requiring only

relatively simple comparative genomic analyses, they predict only a functional

association, not necessarily a physical one, such that proteins may simply be part

of the same biological process. The domain interaction propensity method

involves analysis of experimentally determined interaction networks to reveal the

likelihood that any two protein domains might interact. The knowledge of these

propensities is then used to predict new protein interactions, with the added ad-

vantage of directly identifying the putative domain involved in the interaction.

Another disadvantage is that these methods are not as effective for eukaryotic

species, as fewer genomes are available for comparative studies.

Interacting proteins often co-evolve such that substitutions in one protein

may lead to compensatory substitutions in a binding partner. Pairs of residues

exhibiting such co-variation can be identified through systematic analysis of mul-

tiple sequence alignments (MSAs) of putatively interacting pairs of protein fami-

lies, identifying pairs of correlated mutations (Pazos & Valencia (2002)). This

method has the advantage of identifying the precise region involved in interac-

tions. Halperin et al. (Halperin et al. (2006)) benchmarked the performance

of various co-evolution measures in prediction of contacts and found most to

hold weak predictive power. Co-evolution can also be reflected through similarity

between the phylogenetic trees derived from multiple sequence alignments of non-

homologous protein families known to interact. So called “mirror tree” methods

use this principle by quantifying this similarity by calculating the correlation co-

efficient between the two distance matrices underpinning the phylogenetic trees,

thereby estimating the degree of co-evolution (Goh & Cohen (2002); Pazos &

Valencia (2001)). Both the correlated mutations and mirror tree methods require

large, high quality alignments of equivalent orthologues, and both assume that the

evolution will primarily be driven by correlated changes in the binding epitope,

which in general is not the case (Drummond (2005)). Other interaction partner

prediction methods include domain signature analysis, identifying statistical

over-representation of certain domains in interacting proteins (Sprinzak & Mar-

galit (2001)) and linear motif detection (Neduva et al. (2005)).
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1.4 Interaction site prediction

1.4 Interaction site prediction

In the absence of a structure of the bound complex, a broad range of in silico

methods has been developed in order to identify patches on the surface of the

protein that may mediate interactions.

Jones and Thornton (Jones & Thornton (1997)) used contributions of six de-

scriptive parameters characterizing surface patches (hydrophobicity, protrusion,

planarity, residue interface propensity, solvation potential and solvation accessi-

ble surface area) to generate a single combined score which was used to identify

putative interaction surface patches. The algorithm has recently been deployed

as an interactive web server called SHARP2 (Murakami & Jones (2006)). Op-

timal Docking Area (ODA) identifies continuous surface patches with des-

olvation energy based on atomic solvation parameters (Fernandez-Recio et al.

(2005)). PPI-PRED (Bradford & Westhead (2005)) distinguishes interacting

from non-interacting surface patches by using interface properties (surface shape,

hydrophobicity, conservation, electrostatic potential, residue interface propensity

and solvent accessible surface area) as input to a support vector machine (SVM).

Hoskins (Hoskins et al. (2006)) used terms reflecting solvent accessibility, residue

propensity, hydrophobicity and secondary structure data as prediction parame-

ters identifying abnormally exposed amino acid residues in protein interaction

sites.

Protein IntErface Recognition (PIER) predicts interfaces from a single pro-

tein structure using local statistical properties of the molecular surface at the

level of atomic groups (Kufareva et al. (2007)). InterProSurf predicts interact-

ing residues in proteins that are most likely to interact with other proteins based

on solvent accessible surface area, a propensity scale for interface residues and

a clustering algorithm to identify regions with residues of high interface propen-

sities (Negi et al. (2007)). cons-PPISP is a consensus neural network method

that uses position-specific sequence profiles and solvent accessibility information

for each residue and its adjacent neighbours (Tjong et al. (2007)). SPPIDER

is another neural-network prediction method that uses enhanced relative solvent

accessibility prediction terms as its input (Porollo & Meller (2007)) Promate

locates protein-protein binding sites, by using a composite probability derived
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1.4 Interaction site prediction

from 13 different interface properties (Neuvirth et al. (2004)). PINUP uses an

empirical scoring function combining terms for side-chain energy (a composite

function that includes terms to describe atom-contact surface area, overlap vol-

ume, hydrogen bonding energy, electrostatic interaction energy, buried hydropho-

bic solvent accessible surface, buried hydrophilic solvent accessible surface be-

tween side-chain rotamers and the fraction of the buried surface of non-hydrogen-

bonded hydrophilic atoms), interface propensity and residue conservation (Liang

et al. (2006)). In a progression analogous to that of CASP (Critical Assessment

of Structure Prediction (Kryshtafovych et al. (2005))), the diverse range of ap-

proaches has inspired the development of various meta-servers pooling the results

of other servers e.g. meta-PPISP (Qin & Zhou (2007)) (combines cons-PPISP,

PINUP, and Promate) and metappi (Huang & Schroeder (2008)) (combines

PPI-Pred, cons-PPISP, PINUP, Promate and SPPIDER). Zhou and Qin (Zhou

& Qin (2007)) attempted to benchmark several of these methods against a set of

35 enzyme structures. Overall, at a coverage of 50%, the ranking and accuracies

of six web servers was PPI-Pred (27%) <SPPIDER (33%) <cons-PPISP (36%)

<Promate (38%) <PINUP (48%) <meta-PPISP (50%).

The rationale of using evolutionary information is that structural and func-

tional constraints impose selective pressures, such that those regions of the protein

surface that are engaged in interactions often evolve at a slower pace than else-

where. Prediction methods based on evolutionary conservation carry the advan-

tage that they are of completely general application. The Rate4Site algorithm

estimates the rate of evolution of amino acid sites through maximum likelihood

(Pupko et al. (2002)). Phylogenetic trees are derived from multiple sequence

alignments to reflect evolutionary relationships amongst homologous proteins to

identify functional interfaces. The ConSurf web server projects the conservation

scores from Rate4Site onto the molecular surface to reveal patches of highly con-

served residues (Landau et al. (2005)). Similarly the Evolutionary trace (ET)

method involves the phylogenetic partitioning of specificity-determining residues

across an MSA and clustering the results onto the surface of the solved struc-

ture (Yao et al. (2003)). ET differs from Rate4Site in that the focus is on the

identification of class-specific residues. PatchFinder works by assigning conser-

vation scores to each residue position on the protein surface and then generating a
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1.5 Prediction of protein complexes

score for each putative non-overlapping patch (Nimrod et al. (2005)). WHISCY

uses an multiple sequence alignment to establish the sequence distance between

the structure and its homologues to give the expected degree of mutation. Any

residues whose observed mutation is less than the expected is given a positive

WHISCY score. These scores are then combined with residue propensities and

any resulting neighbouring residue predictions are smoothed to give the final

surface patch predictions (de Vries et al. (2006)).

The TLB group has developed the application of environment-specific substi-

tution tables (ESSTs) (Overington et al. (1992)) in the prediction of interaction

sites. The ESSTs are based on the rates of observed substitutions in a library of

64 different structural environments and are described in greater detail in Chapter

4. The structural environments are defined on the basis of secondary structure,

solvent accessibility and hydrogen bonding and are derived from a set of high

quality structural alignments (Stebbings (2004)). The program Crescendo uses

this information to identify evolutionary restraints on protein sequence and struc-

ture (Chelliah et al. (2004)). This is achieved by comparing, for each amino acid

position, the sequence conservation observed across a multiple sequence align-

ment of the homologous family of proteins with the degree of conservation ex-

pected on the basis of amino acid type and local structural environment. This

identifies those residues that have a higher degree of conservation than expected

for a given environment and are therefore likely to be involved in interactions.

The resulting residue scores are mapped onto the surface of the protein structure

and contoured to identify clusters of residues contributing to a functional site.

Importantly this method differs from other published techniques by successfully

distinguishing those restraints that arise from maintaining structure from those

that mediate intermolecular interactions.

1.5 Prediction of protein complexes

The obvious importance of protein-protein interactions coupled with the short-

fall of available structural data means that fast, reliable, in silico methods for

prediction of the structure of protein complexes are highly desirable. Such meth-

ods begin with some structural representation of each of the constituent proteins
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1.5 Prediction of protein complexes

(either experimentally solved structures or comparative models) and attempt to

produce an accurate 3D model of the complete complex. Comparative modelling

of individual proteins is used to extend the coverage of structural representation

of protein sequences. Analogously, comparative modelling of protein interactions

can be used to extend coverage of structural representation of interactions. Indeed

where available such information can be invaluable in predicting the structure of

the complex (Korkin et al. (2006)). However, care must be taken in such an

approach. Only a subset of homologues of an interacting pair will themselves

interact i.e. form “interologs” (Yu et al. (2004)), for reasons of opportunity (dif-

fering sub-cellular localization, expression profile) and capacity (interface regions

have incorporated such residue substitutions as to render them incompatible).

In practical terms, there are therefore two key stages to this problem. Firstly,

identification of a suitable homologous complex and secondly, given such a homol-

ogous complex, assessment of whether the mode of interaction is preserved. If the

mode of interaction is preserved, the problem then becomes one of comparative

modeling with suitable restraints (Sali & Blundell (1993)). Equally, if there is no

homologous complex, or there is one but the mode of interaction appears not to

be preserved, and nonetheless the proteins are known to interact, then protein-

protein docking approaches, described below, are appropriate. Such a scheme is

described in Figure 1.1.

Russell and Aloy (Aloy et al. (2003)) have suggested that when sequence

similarity is above 25-30% proteins are highly likely to interact in the same way.

However, Park et al. (Park et al. (2004)) highlighted the interesting exception

of the interaction between the P2 domain from histidine kinase CheA and its

phosphorylation target CheY from Thermotoga maritima and the equivalent pair

of proteins from Escherichia coli, where, despite the binding sites comprizing the

same residues, the orientation of the CheA P2 domains differs by a ∼90◦ rotation

(Figure 1.2). All of these approaches assumes a priori that the components are

known to interact. Such homology-based approaches can be extended to identify

novel interactions or those proteins in a candidate set that are most likely to

interact compatibly.
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Figure 1.1: Alternative approaches to predicting protein complexes.

1.6 Comparative modelling of interfaces

The same comparative modeling approaches used to model monomeric proteins

(Sali & Blundell (1993)) can be applied to interactions (Fukuhara & Kawabata

(2008)). However, in a landmark paper Alber et al. (Alber et al. (2007)) ex-

tended the approach to produce a detailed architectural map of a large multi-

protein assembly, the nuclear pore complex (NPC). They translated the results

of a combination of experimental methods, including ultracentrifugation, affinity

purification and electron microscopy, into spatial restraints which were then opti-

mized to generate an ensemble of structures consistent with the data. A number

of approaches related to comparative modelling have also been developed. IN-

TERPRETS (INTeraction PREdiction by Tertiary Structures)(Aloy & Russell

(2003)) uses empirical pair potentials derived from a molar-fraction random state

model based on the observed tendency of residues to interact across interfaces, to

assess how well a homologous pair of sequences fit into a complex structure. The

method was validated on the fibroblast growth factor receptor (FGFR) system

and on yeast two-hybrid data. MULTIPROSPECTOR (Lu et al. (2002)) in-

volves a multimeric threading approach. The algorithm first performs traditional
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1.7 Protein-protein docking

Figure 1.2: Interaction between the P2 domain from histidine kinase CheA and

its phosphorylation target CheY from Thermotoga maritima in dark blue (PDB

entry 1u0s) and the equivalent pair of proteins from Escherichia coli in light blue

(PDB entry 1ffg).

monomeric threading to generate a set of potential structures for each partner

query sequence. An empirical protein-protein interfacial energy score, derived

from a non-redundant, high-quality dimer database (Lu et al. (2003a)), is used in

combination with the threading Z-score to identify true multimers. This has also

been applied at large scale to the genome of Saccharomyces cerevisiae (Lu et al.

(2003b)). The PRISM algorithm (Protein Interactions by Structural Matching)

predicts novel protein-protein interactions by combining structure similarity and

evolutionary conservation in interfaces. Surface regions of target proteins are

structurally aligned to a set of template interfaces and any matches of sufficient

similarity are predicted to interact through these equivalent regions.

1.7 Protein-protein docking

Protein-protein docking involves the prediction of the 3D structure of a protein

complex from the individual structures of its components, which are known a

priori to interact. In essence this is much like solving a 3D jigsaw puzzle, though
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1.7 Protein-protein docking

the problem is made more difficult as each piece of the jigsaw can often rearrange

itself on binding. These rearrangements can be small changes in residue side-

chain conformations, local backbone movements or large conformational changes

involving entire secondary structure units or even complete domains. Such mo-

bility represents one of the largest hurdles in protein-protein docking.

The field is now well established with more than 20 algorithms published

(Andrusier et al. (2008); Halperin et al. (2002); Vajda & Camacho (2004); Vakser

& Kundrotas (2008)). Despite the large number of published algorithms, many of

them follow the same overall two-stage scheme. A brute force rigid-body search

of a mobile ligand around a fixed receptor generates a large set of configurations,

which, ideally, includes at least one nearly correct pose. This is followed by a

scoring phase, where each of the vast number of generated poses are scored and

ranked, preferably distinguishing the correct configurations from the others. The

brute force search involves sampling six dimensions (three rotational and three

translational), the combinatorics of which can potentially generate billions of

poses, the actual number depending on the granularity of sampling. This vast

search space is computationally expensive, so many of the algorithms first reduce

the receptor and ligand molecules from all-atom models to pseudo-atoms or more

commonly a simplified cubic lattice model. A major breakthrough came with

the use of Fast Fourier Transform techniques (Eisenstein & Katchalski-Katzir

(2004); Katchalski-Katzir et al. (1992)), which have provided a 107 improvement

in performance. Acting on the cubic lattice model, for the subset of scoring

functions that are discrete convolutions, configurations related to each other by

translation of one protein by an exact lattice vector can all be scored almost

simultaneously by applying convolution theorem.

An ideal scoring scheme would reliably distinguish nearly native configura-

tions from the rest. Most scoring schemes are based on molecular mechanics type

functions, variously including terms for van der Waals contacts (often with ex-

plicit complementarity terms), electrostatics, hydrogen-bonding and desolvation

(Camacho et al. (1999); Gabb et al. (1997); Halperin et al. (2002)). The impor-

tance of, and weighting given to, each of these components varies significantly

depending on the system under investigation. Other groups have attempted this

using more esoteric parameters (Gottschalk et al. (2004); Murphy et al. (2003);
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1.7 Protein-protein docking

Tress et al. (2005)). Typically the poses generated from complex generation do

include the native conformation, though current scoring functions cannot neces-

sarily distinguish it from the others. As such, scoring functions remain an area

of intense study.

When substantial conformational change occurs at the time of complex forma-

tion, rigid-body docking is inadequate. A variety of approaches has been used to

try to deal with this flexibility. In so-called “soft” docking the van der Waals term

is modified to permit some local plasticity (Fernandez-Recio et al. (2002); Palma

et al. (2000)). In flexible docking, bond angles, bond lengths and torsion angles

of the components are modified during complex generation. However, scoring

all possible conformational changes is prohibitively computationally expensive.

Flexible docking procedures must therefore intelligently select a small subset of

possible conformational changes for consideration. This can be achieved either by

using precedence-based rotameric libraries or molecular dynamics approaches, ei-

ther at the stage of complex generation or scoring (Fernandez-Recio et al. (2003);

Schueler-Furman et al. (2005); Smith et al. (2005)).

1.7.1 Guided docking

Recently some notable success has been achieved by including information from

external sources in so-called data-driven or guided docking (de Vries (2006); van

Dijk et al. (2005a,b)). Examples of the kinds of information that can be used

are shown in Table 1.1. They vary in both quality and the level of resolution

they provide. The information they provide can be used either in the complex

generation phase or the scoring phase, or indeed both, either in the form of

constraints or restraints.

In the TLB group the results of running Crescendo to predict interaction

sites are used as a restraint in the guided docking program PyDock (Chelliah

et al. (2006)). This is achieved through the PyDockRST module of PyDock.

Essentially an interaction restraint by a given residue is satisfied if any of its

atoms is less than 6Åfrom any atom of the partner molecule. For each docking

solution, the method computes the percentage of satisfied restraints with respect
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1.7 Protein-protein docking

Technique Resolution Issues

Mutagenesis with binding

assay

Residue Loss of structure

Cross-linking with Mass

Spectrometry (MS)

Distance information Attachment & detection

NMR H/D exchange Residue Indirect effects

NMR chemical shift

perturbation

Atomic Indirect effects

Cryo EM Orientation Low resolution

Small angle X-ray

scattering

Shape Low resolution

In silico conservation

methods

Residue Conservation from other

determinants

Table 1.1: Experimental sources of restraints used in data-driven protein-protein

docking.

to the total number of possible restraints, and this number is converted to energy

by the equation:

restraint energy = −1.0 kcal/mol ×% satisfied restraints (1.1)

1.7.2 The CAPRI experiment

Progress in protein-protein docking is assessed objectively in the form of the

CAPRI experiment (Janin (2005)). CAPRI (Critical Assessment of Protein In-

teractions) is similar in spirit to the CASP (Critical Assessment of Structure

Prediction (Kryshtafovych et al. (2005))) in that it is a blind assessment; the

coordinates of solved complexes are held privately by the assessors, with the co-

operation of the structural biologists who determined them. As such, it provides

a uniform benchmark set for objective comparison of the performance of the

different prediction algorithms. Three quality measures are used to evaluate suc-

cess. The first is the fraction of native contacts, defined as the number of correct

residue-residue contacts in the predicted complex divided by the number of con-
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1.8 Different properties of protein interactions

tacts in the target complex. A pair of residues on different sides of the interface

is considered to be in contact if any of their atoms are within 10Å. The second

measure is the ligand backbone root-mean-square deviation (RMSD) of atomic

positions after superimposition of the receptor. The final measure is the binding

site RMSD, defined as the ligand RMSD calculated only for those ligand residues

in contact with the receptor (Vajda & Camacho (2004)). The CAPRI experiment

attracts a high level of participation (37 groups participated worldwide in round

seven) and provides a valuable way of monitoring progress and stimulating dis-

course. However, the results are of little statistical significance as the number of

targets in each round is small. Furthermore, the range of targets has historically

been somewhat non-representative, with antibody-antigen and enzyme-inhibitor

systems dominating. It can be argued these examples are somewhat atypical from

an evolutionary point of view: antibodies have evolved to recognized antigens;

enzymes have evolved to recognize or bind substrates, albeit in a transition state.

1.8 Different properties of protein interactions

The composition and anatomy of protein-protein interfaces has been intensively

studied through several statistical analyses of the properties of protein-protein

interfaces (Ansari & Helms (2005); Caffrey et al. (2004); Gruber et al. (2006);

Janin & Chothia (1990); Jones & Thornton (1996); Lo Conte et al. (1999); Ofran

& Rost (2003); Reš & Lichtarge (2005); Yan et al. (2008)). Some of the proper-

ties investigated include interface size, shape, planarity, complementarity, residue

propensity, segmentation, evolutionary conservation, residue pairing preferences,

polarity, hydrophobicity, gap volume, secondary structure preferences and many

different bonding types. The conclusions from these studies can be contradictory,

typically due to the use of different data sets and assumptions, but some com-

mon themes have emerged. The area buried per subunit generally ranges from

∼350Å2 to ∼4500Å2. Interactions typically occur between segmented, discon-

tinuous patches either between the same or different secondary structure types.

The interface region is generally more hydrophobic than the remainder of the

protein surface but less hydrophobic than the protein core. This is related to the
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1.9 Different types of protein interactions

observed enrichment of hydrophobic residues in the interface, though arginine,

histidine and tyrosine have also been observed to be over-represented.

1.9 Different types of protein interactions

Protein interactions are highly heterogeneous and their properties reflect this.

Many studies have been performed partitioning structurally observed interfaces

by a variety of criteria (Ansari & Helms (2005); De et al. (2005); Jones &

Thornton (1996); Mintseris & Weng (2005); Nooren & Thornton (2003); Reš

& Lichtarge (2005)). Protein-protein interactions between identical chains are

termed homo-oligomers; those between non-identical chains hetero-oligomers. A

further distinction can be made between homologous hetero-oligomers, where the

constituent chains share a common evolutionary origin (e.g. α2 β2 haemoglobin),

and unrelated hetero-oligomers (e.g. fibroblast growth factor and its receptor).

Each monomer constituting a homo-oligomer (or indeed a homologous hetero-

oligomers) related by a two-fold structural symmetry axis contributing equivalent

surfaces are described as interacting in an isologous manner (e.g. nerve growth

factor and its receptor). In heterologous interactions the constituents contribute

distinct interaction surfaces, such that, in the absence of cyclic symmetry, they

can aggregate indefinitely (e.g. Tobacco Mosaic Virus coat protein).

A further significant partitioning of interfaces is between obligate interactions,

where the constituent proteins are unstable in the unbound form and are not

observed independently in vivo, and non-obligate interactions. Similarly interac-

tions can be further partitioned with respect to the lifetime of the complex. While

obligate interactions are almost invariably permanent, non-obligate interactions

exhibit a wide range of longevities: from weak transient interactions equilibrating

dynamically in solution with dissociation constants in the mM to µM range (e.g

electron transport); through interactions in the intermediate range with dissoci-

ation constants in the µM to nM range (e.g signal transduction); to strong or

even permanent interactions with dissociation constants in the nM or even fM

range (e.g protease-inhibitor systems) which may require an external effector to

trigger dissociation (affinity ranges taken from Nooren and Thornton (Nooren &

Thornton (2003))). In reality a continuum exists between all of these differing
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1.10 (Non-structural) protein interaction databases

interaction types and the stability of all complexes very much depends on the

subcellular location, concentration and local physico-chemical environment.

1.10 (Non-structural) protein interaction databases

There have been a number of efforts to organize the results of published high-

throughput protein interaction studies (Rohl et al. (2006)). These will be briefly

reviewed here (data resources with a focus on 3D structure of interactions are dis-

cussed in Chapter 2). The Database of Interacting Proteins (DIP) contains

high quality, manually-verified data regarding experimentally determined protein-

protein interactions. Interaction data are initially obtained from a number of

sources; PDB complexes, literature; high-throughput methods Y2H protein mi-

croarrays screens; TAP-MS analysis of protein complexes; and organism-specific

and pathway databases. As of August 2008, the relational database holds 19,935

proteins from 204 organisms totalling 56,638 interactions (Salwinski (2004)). The

popular Biomolecular Interaction Network Database (BIND) is no longer

publicly available due to lack of funding (Bader et al. (2003)). IntAct is a freely-

available open source molecular interaction database and software suite from the

EBI (http://www.ebi.ac.uk/intact). The data come entirely from published

literature and are manually annotated by expert biologists to include details

of experimental methods, conditions and interacting domains. As of August

2008, IntAct contains 63,824 proteins and 111,834 interactions and complexes.

The Molecular Interaction Database (MINT) focuses primarily on protein-

protein interactions from mammalian genomes that have been experimentally

verified. Interactions are initially derived from the scientific literature using text

mining software and then reviewed by expert curators and includes both direct

physical interactions and indirect functional relationships. MINT contains 28,817

proteins and 105,899 interactions (Chatr-Aryamontri et al. (2007)). STRING

is a database of known and predicted direct physical and indirect functional

protein-protein interactions derived from literature, genomic context information,

high-throughput experiments and conserved co-expression for a large number of

organisms, and transfers information between these organisms wherever applica-

ble. The database currently contains 1,513,782 proteins from 373 species (von
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Mering et al. (2007)). MPI-LIT is a literature-curated dataset focusing on mi-

crobial binary protein-protein interactions with associated experimental evidence

manually curated from 813 papers, comprizing 746 non-redundant interactions

of which 88% are not reported in public databases (Rajagopala et al. (2008)).

DIP, BIND, IntAct, MINT and MPI-LIT are all members of the IMEx consor-

tium (Orchard et al. (2007)), an international group of data resources to facilitate

exchange of data and avoidance of duplication.

1.11 Aims of this thesis

Chapter 2 of this thesis deals with the process of establishing PICCOLO - a com-

prehensive database of structurally characterized protein interactions. The name

PICCOLO, while following the TLB group’s tradition of musical names for soft-

ware and tools, is also an approximate acronym of Protein Interaction Collection.

Issues of interface definition, quaternary structure, data redundancy, local struc-

tural environment and different interaction types are addressed. Chapter 3 goes

on to describe a variety of pursuant analyses of the properties of protein-protein

interfaces enabled by the data stored in PICCOLO, including residue propen-

sity, hydropathy, polarity, interface size, sequence entropy and residue contact

preference.

Chapter 4 addresses the question of what patterns of substitutions are ac-

cepted in protein interfaces across evolution, and whether these patterns are dis-

tinguishable from those seen in other structural environments. A pre-requisite for

answering such questions is a high-quality set of multiple structural alignments.

The derivation of such a set, in the form of the database TOCCATA is discussed,

along with ancillary applications of this information, before procedures to derive

environment-specific substitution tables are described.

The TLB group has been working for some years on methods to predict the

likely effect of non-synonymous Single Nucleotide Polymorphisms (nsSNPs) on

protein stability, function and interactions. The rationale behind this is to triage

the large volumes of data created from high-throughput genetic screening studies,

enabling clinicians to prioritize those nsSNPs that are most likely deleterious to
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a protein and thereby be phenotypically detrimental. One aspect of this work in-

volves running the program Crescendo (Chelliah et al. (2004)) in order to predict

protein interaction sites. However, the method offers the advantage of being gen-

erally applicable and so provides high coverage. PICCOLO offers an opportunity

to supplement these predictions with the comprehensive set of observed protein

interaction sites. This has the advantage of providing a higher quality data set,

though coverage will be lower as the data only reflects that which is available in

the PDB. These ideas will be explored further in Chapter 5 which includes the

results of a recently published benchmark study where PICCOLO has been used

to assess the impact of nsSNPs on protein interactions.

From a therapeutic viewpoint, historically there has been little focus on

protein-protein interactions as small-molecule drug targets; they are perceived as

being planar and hydrophobic in nature (Wells & Mcclendon (2007)), properties

that would tend to make them somewhat intractable. Traditionally, the pharma-

ceutical industry has been led by functional assays, and target-based approaches

have been focused on receptors, channels and enzymes. However, the discovery

from alanine-scanning mutagenesis studies of so-called “hot-spots” - small sub-

set of residues that contribute the greater part of the free energy of binding -

offers more opportunity for small molecule therapeutics (Bogan & Thorn (1998);

DeLano (2002); Keskin et al. (2005a)). There is a small but growing number

of protein interaction-based drug discovery programmes in progress. Examples

include: interleukin-2 (IL-2) and the α-chain of its receptor (IL-2Rα); B7 and

CD28; B-cell lymphoma-2 (BCL-2) and BAK (Bcl-2-antagonist/killer); Lympho-

cyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-

1 (ICAM-1); inducible Nitric Oxide Synthase (iNOS) dimerization and Nerve

Growth Factor (NGF) and its receptor; cytokine tumour-necrosis factor (TNF)

its receptors, TNFR1 and TNFR2; FtsZ and ZipA; Human papilloma virus (HPV)

E1 and E2; and human protein double minute 2 (HDM2) and p53; (Arkin & Wells

(2004); Wells & Mcclendon (2007)). Molecular characterization of the properties

of hot-spots can be derived from the data in PICCOLO. This can not only lead

to deeper understanding of the molecular mechanisms underlying this important

phenomenon but could also lead to novel predictive methods to identify hot-spots
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in silico. Success in this area could assist in druggability assessment for target pri-

oritization as well as contributing to lead compound identification and selection.

These ideas are discussed in Chapter 6.

22



Chapter 2

Building PICCOLO
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2.1 Introduction

2.1 Introduction

In order to gain a full understanding of the principles that underlie protein-

protein interactions it is vital to have access to high quality data on the molecular

details of these interactions. Access to comprehensive data enables both detailed

analyses of individual systems and broad systematic comparative analyses. Such

data enable the pursuit of a number of fundamental questions surrounding the

nature of molecular interactions: What properties distinguish interfaces from the

rest of the protein surface? What properties differ between the various types of

interfaces? What properties vary between the various sub-regions comprising the

anatomy of an interface? What evolutionary constraints apply to interfaces? Can

we harness these properties in a predictive manner - to identify interaction sites,

to predict novel interactions or to predict the structure of a complex? What are

the features of interfaces that can be useful in identifying the cases that are most

likely to be amenable to modulation by drug-like small molecule ligands? I show

that PICCOLO can contribute towards answering each of these questions.

Recent years have seen a surge of interest in protein-protein interactions and

a number of databases characterizing the 3D structures of interactions have been

published. These are reviewed in Table 2.1.
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0Å
2

P
o
la

r
a
n

d
n

o
n

-p
o
la

r
su

rf
a
ce

a
re

a
ca

lc
u

la
te

d
.

d
o
m

a
in

1
0
5,

0
6
1

S
C

O
P

d
om

a
in

s
1
5
8
,9

1
5

S
C

O
P

d
o
m

a
in

p
ai

rs

L
a
st

u
p

d
a
te

2
0
0
5
.

W
eb

in
te

rf
a
ce

a
n

d

d
a
ta

b
a
se

d
ow

n
lo

a
d

.

P
ro

te
in

3
D

&

P
R

IN
T

(K
es

k
in

et
a
l.

(2
00

4)
;

O
gm

en
et

a
l.

(2
00

5)
)

P
D

B
A

S
U

d
(a

i,
a
j
)
≤

v
d
w

(a
i)

+
v
d
w

(a
i)

+
0
.5

Å
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Å

≥
10

in
te

ra
ct

in
g

re
si

d
u

e

p
ai

rs
b

et
w

ee
n

d
o
m

a
in

s

In
cl

u
d

es
P

fa
m

,
S

W
IS

-

S
P

R
O

T
,

In
te

rP
ro

,
G

O

te
rm

s,
se

co
n

d
a
ry

st
ru

ct
u

re
s

a
n

d
m

u
lt

ip
le

a
li

g
n

m
en

ts
.

D
o
m

a
in

-d
o
m

a
in

p
a
ir

s

cl
u

st
er

ed
b
y

fa
m

il
y

a
n

d

su
p

er
fa

m
il

y
p

a
ir

s.

d
o
m

a
in

U
p

d
a
te

d
ev

er
y

6

m
o
n
th

s.
D

a
ta

b
a
se

d
ow

n
lo

a
d

a
n

d

q
u

er
y

A
P

I.

T
ab

le
2.

1:
d
(a
i,
a
j
)

is
th

e
d
is

ta
n
ce

b
et

w
ee

n
at

om
s
a
i

an
d
a
j

on
op

p
os

in
g

in
te

rf
ac

e
su

rf
ac

es
.
v
d
w

(a
i)

is
th

e
va

n
d
er

W
aa

ls
ra

d
iu

s
an

d
E

(a
i)

is
th

e
el

em
en

t
ty

p
e

of
at

om
a
i.

27

http://www.scoppi.org
http://www.scowlp.org
http://www.compbio.dundee.ac.uk/SNAPPI/ 


2.1 Introduction

At the time of writing several previously-published resources appeared to be

no longer available - iPFAM(Finn et al. (2005)), BID (Fischer et al. (2003)),

Binding Motif Pairs (Li & Li (2005)), PINT (Kumar (2006)) and SPIN-PP .

2.1.1 Docking benchmarks

In order to benchmark docking algorithms objectively, it is necessary to have

structures of the constituent proteins in the bound and the unbound forms, so

that the result of the docking algorithm can be compared to that of the known

complex. Beyond the resources listed above, other resources have been developed

whose focus is primarily on generating test sets for protein docking. The popular

Protein Docking Benchmark (Chen et al. (2003); Hwang et al. (2008); Mintseris

et al. (2005)), now on version 3.0, began as a hand-picked set of complexes,

but now is generated through a semi-automated process. Docking test cases

are grouped as Enzyme/Inhibitor, Antibody/Antigen and Others and are further

classified as rigid-body (88 cases), medium (19 cases) or difficult (17 cases). Au-

tomatic Generated Test-Sets Database for Protein-Protein Docking (AGT-SDP)

(Zollner et al. (2005)) and Unbound-Unbound Protein-Protein Docking Dataset

(UUPPDD) are two fully automated methods for identifying docking test sets.

2.1.2 Web servers

Aside from these databases, several interactive web servers are available to calcu-

late properties of protein-protein interfaces (Laskowski (2009); Saha et al. (2006);

Tina et al. (2007)). However, there is a fundamental and important distinction to

be made between tools that provide the capacity to analyse a particular interface

and those that systematically perform such analyses on the complete set of avail-

able structures and make the results available. The Protein-Protein Interaction

Server (Jones & Thornton (1996)) has now been updated as Protorp which char-

acterizes interfaces in terms of size, shape, secondary structure, hydrogen bonds,

salt bridges and gap volume (Reynolds et al. (2008)).
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2.1 Introduction

2.1.3 PICCOLO criteria

The first stage in the development of PICCOLO was to identify a set of criteria

that any new resource should fulfill in order to maximize functionality. Previ-

ously published databases were then reviewed in light of these criteria. Four

criteria were identified. First, despite the rapid growth of the PDB there is a

paucity of coverage of protein-protein complexes (Russell et al. (2004)). There-

fore to maximize the potential of what information is available any such resource

should be fully comprehensive, and have the capacity to be updated periodically

to reflect future PDB depositions. Second, the interface definition would have

to be robust and accurate. In order to investigate the evolutionary plasticity

of interfaces, quantitative information on accepted residue substitutions would

be required. As such the level of resolution required would be at least that

of individual residues. However, work in the TLB group has established that

residue substitutions depend on the details of molecular interactions in which the

residue partakes (Overington et al. (1992)). Therefore it would be necessary to

capture data at the highest possible resolution for interactions - therefore the

third criterion would be to have interaction data stored at atomic resolution.

The PDB is inherently redundant, with the same protein sequence often solved

multiple times under different experimental conditions, with different ligands, in

different conformations and so forth, and the same is true of protein-protein com-

plexes. Over-representation of particular subsets can skew subsequent analyses.

Therefore the fourth criterion would be for the resource to have the capacity to

appropriately define a non-redundant set.

The various resources differ significantly with respect to their definitions,

scope, coverage, resolution, quality, clarity, availability and frequency of updates.

No published resource fitted the requirements exactly. For this reason, as well as

for more pragmatic considerations such as control of data quality and updates, the

decision was taken to develop PICCOLO locally - as a comprehensive database

of the molecular details of structurally characterized protein-protein interactions.

Subsequent to the initial development of PICCOLO, parallel sister databases

dealing with protein interactions with other classes of molecule were devised.
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Semin Lee has developed BIPA, concerning the interactions of proteins with nu-

cleic acids and Adrian Schreyer has developed CREDO, concerning the interac-

tions of proteins with small-molecule heteratomic ligands. TIMBAL, developed

by Alicia Higueruelo, is a hand-curated database comprising small molecule lig-

ands known to disrupt protein-protein interactions published in the literature.

TIMBAL comprises 105 small molecules, from 21 protein-protein interaction sys-

tems, 13 of which have some structural representation and can be cross-referenced

to PICCOLO enabling insights into the type of molecular interactions favoured

by inhibitors of protein-protein interactions. Close collaboration has ensured

that these databases are compatible with one another: they were designed using

largely the same interaction definitions and they share the same PDB residue

identifiers, thereby enabling useful comparative cross-queries.

2.1.4 A menagerie of interactions

Protein folding, assembly and interactions are largely governed by the non-covalent

interactions between residue side chains. In order to capture computationally the

molecular details of such interactions, for the purposes of precise interface defini-

tion, it is first necessary to understand their physico-chemical origins. These will

be reviewed briefly here for a series of such non-covalent interactions, broadly in

order of their significance to protein-protein interactions.

2.1.4.1 van der Waals

Van der Waals interactions are a consequence of quantum dynamics inducing fluc-

tuating polarizations in the electron cloud of nearby particles. They are composed

of a short-range repulsive component, due to steric hindrance when neighbouring

atoms have overlapping electron clouds, and a longer-range attractive term, due

to the coupling of dipoles in the electron cloud of neighbouring atoms, known

as London dispersion forces. The two components are usually combined and,

although many different functional forms have been suggested, they are most

commonly described by the so-called Lennard-Jones potential shown in Equation

2.1 and Figure 2.1:
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Figure 2.1: Lennard Jones potential for an Argon dimer. Short range repulsions

are mediated by the r−12 component whereas London dispersion-attraction forces

are accounted for by the r−6 term.

V (r) = 4ε[(σ/r)12 − (σ/r)6] (2.1)

where r is the interatomic distance, ε is the depth of the potential well and σ

is the distance at which the potential between the atoms is zero.

Figure 2.1 indicates a weak attraction at large distances and strong repulsion

at very close distance. Van der Waals interactions are typically around 2.8Å

to 4.0Å in length. The difference between sum of the van der Waals radii of

the two atoms and the point of lowest energy is of the order of 0.3Å to 0.5Å .

Relative to other forces governing conformation, the binding energies of van der
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Waals interactions are individually very low (typically < 1 kcal/mol), but the

large number of such interactions makes them significant for protein folding and

binding.

2.1.4.2 Hydrogen bonds

A hydrogen bond is an attractive interaction between two electronegative atoms

competing for the same hydrogen atom. A hydrogen atom is formally covalently

bound to the donor and aligned between the donor and acceptor atoms. The

strength of the hydrogen bond varies broadly depending on various factors in-

cluding the linearity of the interaction, but typically ranges from 2-10 kcal/mol.

2.1.4.3 Hydrophobic interactions

The increase in entropy gained by removing surfaces of hydrophobic side chains

from ordered solvent is amongst the most significant factors for protein folding.

A convenient handle for characterizing this phenomenon is to consider the effect

in terms of favourable interactions between hydrophobic side chains. However,

it should be borne in mind that it is not the interactions between these side

chains that is the source of the favourable interactions, rather the entropic gain

from exclusion of solvent. As such, hydrophobic residues tend to cluster in the

protein core and hydrophilic residues on the surface (Tsai et al. (1997)). Based

on experimental data Kyte and Doolittle (Kyte & Doolittle (1982)) derived a

hydropathy scale to describe the differing hydrophobic capacity of each residue

type.

2.1.4.4 Ionic interactions

In electrostatic interactions charges on nuclei and electrons interact according to

the Coulomb equation:

V =
qiqj

4πε0εrrij
(2.2)

where qi and qj are the magnitude of the charges, rij is their separation, ε0 the

permittivity of free space and εr the relative dielectric constant of the medium.
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Estimates of the free energy of formation of a solvent exposed salt bridge on the

protein’s surface vary but values of the order of -1.0 kcal/mol have been suggested

(Schulz & Schirmer (1996)).

2.1.4.5 Aromatic interactions

In the side chains of aromatic amino acids π-electron orbital systems are delocal-

ized on both sides of a planar ring, generating a small partial negative charge on

each face, and a small partial positive charge on the peripheral hydrogens. 60% of

aromatic side chains in protein domains are involved in aromatic pairings (Burley

& Petsko (1985)). It is commonly perceived that aromatic groups stack on top of

one another in a face-to-face manner. In fact, detailed analysis of protein struc-

tures (Hunter et al. (1991)) backed up the results of previous molecular modelling

studies (Hunter & Sanders (1990)) suggesting that such a stacking arrangement is

disfavoured due to π-electron repulsion. Instead, offset stacked interactions and

edge-to-face interactions are marginally favoured. Analysis of thermodynamic cy-

cles (Horovitz (1996)) indicates that the contribution to protein stability by the

interaction energy between two aromatic groups is 1.3 kcal/mol, only marginally

higher than the stabilization expected from the hydrophobic contribution from

burying the surface area between them.

2.1.4.6 π-cation

The π-cation interaction is increasingly recognized as an important non-covalent

binding interaction. The effect arises from the electrostatic interaction of a cation

with the negative face of an aromatic π-system. A survey of high resolution struc-

tures (Gallivan & Dougherty (1999)) indicated that one out of every 77 residues

is involved in an energetically meaningful π-cation interaction. Of the cationic

residues, arginine participates in almost twice as many π-cation interactions as

lysine; of the aromatics, tryptophan participates more commonly than pheny-

lalanine or tyrosine. Interestingly 26% of tryptophans were involved in π-cation

interactions, with the preferred geometry being the cation positioned over the

6-atom ring. The free energy contribution of π-cation interactions across protein-
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protein interfaces has been estimated as around 3 kcal/mol on average (Crowley

& Golovin (2005)).

2.1.4.7 Disulphide

Disulphide bonds are formed by the oxidation of two cysteine residues to form a

covalent sulphur-sulphur bond coupling the two thiol groups. Calculations suggest

that a disulphide bond should give rise to 2.5 - 3.5 kcal/mol of stabilization but

experimental values vary greatly (Thornton (1981)).

2.1.4.8 Aromatic sulphur interactions

Interactions between the non-polar aromatic and sulphur-containing amino acids

occur most frequently in the interior of proteins. About half of all side-chain

sulphur atoms are in contact with aromatic groups (Zauhar et al. (2000)). The

geometry of such interactions suggests that sulphur atoms, unlike carbon and

nitrogen, predominantly approach the edge of aromatic rings rather than inter-

acting in a planar stacking fashion (Pal & Chakrabarti (2001); Reid et al. (1985)).

Aromatic-sulphur interactions have been predicted to provide between -0.7 and

-2.6 kcal/mol of free energy, depending on local geometry (Ringer et al. (2007)).

2.1.5 Methods for identifying contacts

The three most commonly used methods for defining a protein interface in the

structure are (i) changes in the solvent accessible surface area upon complex

formation, (ii) radial cutoff and (iii) Voronoi polyhedra.

The solvent accessible surface area (ASA) of a protein molecule, measured in

Å2, can be calculated from the atomic coordinates by the program NACCESS

(Hubbard (1993)) implementing the method first described by Lee and Richards

(Lee & Richards (1971)). This algorithm involves rolling a probe sphere around

the van der Waals surface of the molecule. In this study the default probe radius

of 1.4Å was used, approximating the radius of a water molecule. The ASA is

generated by combining the individual atomic surfaces to give the non-overlapping

consensus surface, effectively defining the distance of closest approach for a water

molecule to the protein.
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To calculate the surface area that becomes buried when two molecules asso-

ciate three separate calculations are performed. First the ASA of chain A and

chain B are calculated separately, followed by the ASA of the A-B complex. The

size of the protein-protein interface (∆ASA) is then given by:

∆ASA = ASAA + ASAB − ASAAB (2.3)

Relative accessibilities can also be calculated by expressing the accessible sur-

face of each residue X relative to that observed in an Alanine-X-Alanine tripep-

tide.

ASA can easily be used to define the interface, in that those residues that ex-

hibit a change in ASA between the bound and unbound forms are considered to

be involved in the interaction. The ASA method has the drawback that the sur-

face area of an interface can be overestimated, and the standard implementation

identifies atoms or residues involved in the interface - not pairwise contacts.

Another straightforward method to identify pairwise interactions is to apply

a simple radial cutoff, the premise being that a radius can approximate an atom’s

sphere of influence. Implementations of this method vary in the radius used and

their choice of radii centres (heavy atoms (Ofran & Rost (2003)), Cα atoms, Cβ

atoms (Glaser et al. (2001)), residue side-chain centroids (Caffrey et al. (2004)).

Choice of radial cutoff threshold involves a trade-off between sensitivity and speci-

ficity. Various thresholds have been applied (see Table 2.1) however, no single

value can adequately account for variations in atom sizes and irregular packing

(Tsai & Gerstein (2002); Tsai et al. (1999)). Furthermore the radial cutoff is a

binary description of interactions; two atoms equidistant from a third atom may

have different contact areas or interaction free energies. For purposes of com-

parison, an example of the difference between defining the interface of the same

system using a radial cutoff versus solvent accessibility can be seen in Figure 2.2.

Voronoi tessellation involves decomposition of Euclidean space, described as a

set of points (typically describing atoms or pseudo-atoms), by assigning each point

to a convex, polyhedral region (Gore et al. (2005); Richards (1974)). Voronoi

methods have been applied to identifying protein interfaces (Bernauer et al.

(2008); Cazals et al. (2006)) and assessing atomic packing (Lo Conte et al. (1999)).
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Figure 2.2: Different approaches to defining the protein interface using the exam-

ple of the human growth hormone-prolactin receptor complex (PDB entry 1bp3).

In the upper panel the interface was defined using solvent accessibility (Hub-

bard (1993)). In the lower panel the interface residues were identified using the

augmented radial-cutoff approach implemented by PICCOLO.
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Voronoi tessellation does give robust neighbourhood definition between interac-

tion sites, however calculating polyhedra is computationally intensive, and special

criteria need to be applied at the molecular surface.

2.1.5.1 Benchmark of methods for prediction of interactions

Benchmarking these methods, in order to establish which is superior, is trouble-

some, as computationally it is difficult to assign residues that are definitively inter-

acting with one another and those that definitively are not. Fischer et al.(Fischer

et al. (2006)) turned to experimental methods, namely site-directed mutagenesis,

to resolve this issue. Site-directed mutagenesis is a widely-used approach to as-

sess the contribution of a particular residue to binding (see Chapter 6 for more

details). However, many residues typically interact with more than one residue

across the interface, and single-residue mutagenesis reveals little about the pair-

wise contribution of an interaction between two residues across an interface. The

Double-Mutant Cycle (DMC) (Schreiber & Fersht (1995)) is a valuable thermo-

dynamic tool in the study of protein interactions that can circumvent this issue

and isolate individual weak non-covalent interactions from the noisy background.

The procedure involves mutating, both singly and doubly, pairs of residues (X

and Y). This gives a coupling energy ∆∆Gint, defined as:

∆∆Gint = ∆∆GX−A,Y−B −∆∆GX−A −∆∆GY−B (2.4)

where ∆∆GX−A is the change in free energy of mutating a single residue X to

A, and ∆∆GY−B a second residue Y to B and ∆∆GX−A,Y−B the change in free

energy on the simultaneous mutation of X to A and Y to B. ∆∆Gint measures

the degree co-operativity of interaction between the two mutated residues - if the

effects of the mutations are non-co-operative the difference in free energy for the

double mutant is the sum of those for the two single mutations. If the mutated

residues are coupled, then the change in free energy for the double mutant will

be different from the sum of the two single mutants. A significant pitfall of the

DMC approach is that strong coupling energies may reflect indirect interactions,

whereas weak coupling energies may arise from local structural rearrangements.
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The study by Fischer et al. used the results of five DMC experiments where

the crystal structure of the complex was also available. The complexes are 1dqj

(HyHEL-63 antibody complexed with hen egg white lysozyme (Li et al. (2003))),

1brs (complex of barnase and barstar (Schreiber & Fersht (1995))), 1a4y (com-

plex of ribonuclease inhibitor and angiogenin (Chen & Shapiro (1999))), 1vfb

(IgG1-kappa D1.3 fv (Dall’Acqua et al. (1998))) and 3hfm (HyHEL-10 antibody

complexed with hen egg white lysozyme (Pons et al. (1999))). For this study the

data were augmented by including data from 1lfd (GTPase HRas and Ral gua-

nine nucleotide dissociation stimulator) and 1gua (Ras-related protein Rap-1A

and RAF proto-oncogene serine/threonine-protein kinase (Kiel et al. (2004))),

increasing the size of the data set by ∼80%. These data are shown in Appendix

B.1.

2.1.6 Quaternary structures

Quaternary structure concerns the interactions of distinct polypeptide chains to

form a protein oligomer. Its consideration is vital to a proper understanding of a

protein’s biological function.

The atomic coordinates deposited in PDB files reflect the contents of the

asymmetric unit (ASU). The ASU is a set of atoms which, when operated on by

the crystallographic symmetry operations defined by the spacegroup, generates

the complete crystal. The space group symmetry operations are restricted to

rotations and translations in biological systems. As such, although the ASU can

represent the biologically functional assembly of the protein, often it comprises

multiple biological molecules or even a portion of a biological molecule. Proteins

crystallize in a highly non-physiological environment, at low temperatures, arti-

ficially high protein concentrations and in the presence of organic solvents and

crystallization buffers, which can lead to the formation of extensive non-specific

crystal packing interfaces. This has important implications for PICCOLO gen-

erated using ASU data. The presence of non-specific crystal contacts introduces

false positive data to PICCOLO. Conversely, where the ASU comprises a sub-

set of the biologically functional oligomer, the absence of genuine interactions
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implicitly introduces false negatives. Figure 2.3 has examples of each of these

cases.

Figure 2.3: Three examples of the difference between the PDB ASU and PISA-

predicted assemblies. In panel a), the dimer of murine mitochondrial carbonic

anhydrase V observed in PDB entry 1dmx is predicted by PISA to be dissociated.

In panel b), the dimer of rat NAD(P)H:quinone reductase observed in the ASU of

PDB entry 1qrd, is predicted by PISA to adopt an alternative dimeric conforma-

tion. In panel c), the monomeric form of Gal6/bleomycin hydrolase oberserved

in the ASU of PDB entry 3gcb is predicted by PISA to form a homohexamer.

2.1.6.1 Biological units

The Worldwide Protein Data Bank (wwPDB) provide information on the biolog-

ically functional assembly for each deposition. Since 1999 this information has
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been provided by depositors. Prior to that, in cases where no information was pro-

vided by depositors, supporting information from UniProt (Uniprot-Consortium

(2009)) or PQS (Henrick & Thornton (1998)) (described below) was used. The

problem of reliably distinguishing biologically significant assemblies from crystal

contacts is non-trivial and several approaches have been proposed (Bernauer et al.

(2008); Carugo & Argos (1997); Dasgupta et al. (1997); Janin & Rodier (1995);

Mintseris & Weng (2003); Rodier et al. (2005)). Ponstingl et al. derived a pair-

frequency scoring function to discriminate between homodimeric and monomeric

proteins in the crystalline state (Ponstingl et al. (2000)). Valdar and Thornton

(Valdar & Thornton (2001)) assessed the utility of combining interface size and

sequence conservation to discriminate between biological and non-biological con-

tacts, concluding that interface size alone is such a powerful discriminant that the

additional predictive power contributed by conservation information is marginal

at best. Bahadur et al. (Bahadur et al. (2004)) used combined terms describing

amino acid propensity, hydrophobic interaction and atomic packing to distinguish

the different types of interfaces. By combining the non-polar interface area with

the fraction of buried interface atoms and residue propensity score, they were

able to assign the quaternary structure correctly for 93-95% of their data set.

2.1.6.2 PInS

The Protein Interface Server (PIns) was introduced during the course of this

work (Bordner & Gorin (2008)). The PInS procedure involves generating all

neighbouring symmetry-related molecules and then calculating the probability

that each interface is a specific biological interface using a Random Forest ma-

chine learning algorithm trained using information on residue pair counts, residue

propensities, evolutionary conservation, interface area, number of intermolecular

bonds, packing density, interface type and symmetry information.

2.1.6.3 PQS

Protein Quaternary Structure (PQS) server (http://www.ebi.ac.uk/msd-srv/

pqs/) is a resource from the European Bioinformatics Institute (EBI) that pro-

vides coordinates for likely quaternary states for crystallographic structures in

40

http://www.ebi.ac.uk/msd-srv/pqs/
http://www.ebi.ac.uk/msd-srv/pqs/


2.1 Introduction

the PDB (Henrick & Thornton (1998)). The procedure involves generating pu-

tative quaternary assemblies by recursively adding monomeric chains and then

discriminating biological interfaces from crystal contacts using a weighted score

based on interface properties including the solvent accessible area, number of in-

teracting residues, solvation energy, salt bridges and disulphide bonds. The PQS

complexes are then screened by expert annotators helping to reduce errors and

inconsistencies that may result from a fully automated procedure. Even with this

manual screening step their own internal benchmark on 218 structures suggests

a 78% accuracy for PQS (Ponstingl et al. (2003)).

2.1.6.4 PISA

More recently the EBI has released PISA (Protein Interactions, Surfaces and As-

semblies) (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) (Krissinel

& Henrick (2007)). Jones and Thornton (Jones & Thornton (1996)) have pointed

out that no single parameter has been identified for robustly discriminating bi-

ologically relevant protein interfaces. Assembly of an oligomeric complex is a

cooperative process, typically involving multiple interfaces. Whereas PQS evalu-

ates the properties of individual interfaces, PISA includes contributions from all

interfaces constituting the complete oligomeric assembly. The PISA procedure

involves representing the crystal as a periodic graph, with monomeric chains as

vertices and interfaces as edges, and then enumerating all possible assemblies.

Each possible assembly is then evaluated for stability using an empirical estimate

of the contribution of enthalpy and entropy to the free energy of binding, leaving

only sets of potentially stable assemblies ranked by their predicted stability. The

assembly is stable if the predicted free energy of dissociation ∆Gdiss is positive:

∆Gdiss = −∆Gint − T∆S (2.5)

where ∆Gint is an enthalpic term describing protein affinity including terms

for solvation energy, hydrogen bonds and salt bridges; ∆S is an empirical esti-

mate of entropy and T is the temperature. Small molecule ligands and nucleic

acids are included in the free energy calculation. Using the same benchmark

set of 218 structures used to evaluate the performance of PQS (Ponstingl et al.
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(2003)), the performance of PISA was estimated at over 90%, a considerable im-

provement on PQS. However, anecdotal observations suggest that in particular,

binary complexes with small interaction surfaces (e.g. enzyme-inhibitor systems)

are often predicted to be uncomplexed.

However, the problem is fundamentally problematic as, even in cases where

experimental evidence is available, it can be contradictory, possibly because a

protein’s oligomeric state itself is not fixed and can vary depending on various

factors including subcellular location (Brewer et al. (1994)) and ligand binding

(Latif et al. (2002)). Jefferson et al. quantified the increased coverage of inter-

actions by including PQS definitions of quaternary structures (Jefferson et al.

(2007)) (see also SNAPPI-DB Table 2.1). They found that by considering PQS

assemblies, the number of unique SCOP (Structural Classification of Proteins)

(Hubbard et al. (1999)) family pair interactions was increased by 13.3%. This

proportion increases to 34.5% when the relative orientation of the domains was

also considered. The vast majority of these additional interactions are homo-

oligomeric.

2.1.6.5 ProtBud

The ProtBud database (Xu et al. (2006))(also see Table 2.1) aims to facilitate

comparison of the ASU, PDB Biological unit and PQS contents of related struc-

tures. Their analysis reveals that the ASU differs from PDB Biological Unit or

PQS complexes for 52% of crystal structures, and that PQS and PDB Biological

Units disagree on 18% of entries.

2.1.6.6 3DCOMPLEX

3DCOMPLEX (http://www.3dcomplex.org/) (Levy et al. (2006)) is a struc-

tural classification of protein complexes, essentially an attempt to provide a clas-

sification of quaternary structures in an analogous manner to that of the SCOP

classification of tertiary structures (Hubbard et al. (1999)). 3DCOMPLEX is

likely to be a valuable contribution to studies of the evolution of quaternary

structures. A hierarchical classification of complexes is constructed by first rep-

resenting each PDB Biological Unit complex as a graph, where each chain is
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a node and each interface an edge. An interface is here defined as ten or more

residues having contacts (any pair of atoms within the sum of their van der Waals

radii plus 0.5Å). Graphs are then compared to generate the hierarchy. The levels

of the hierarchy are defined using graph topology, SCOP domain architecture,

sequence similarity and finally symmetry of the complex.

2.1.6.7 PiQSi

The PiQsi resource (Levy (2007)) for Protein Quaternary Structure Investigation

assists the investigation of the quaternary structure of protein complexes in the

PDB. More than 10,000 PDB Biological Units have been manually annotated us-

ing experimental information from the literature and, crucially, quaternary struc-

ture information of protein’s evolutionary relatives. This allows an assessment of

any errors in the Biological Units in the form of false positive or false negative

interface predictions, deriving either from the automated PQS predictions or au-

thor misannotations. According to this analysis approximately 14% of biological

units are thought to be in error. Corrected atomic coordinates are not supplied.

The data from PiQsi make an ideal benchmark for methods that predict protein

quaternary structure.

2.2 Materials and Methods

2.2.1 Relational databases

Relational databases consist of a collection of interconnected sets of data stored

in efficiently-indexed tables. The fundamental concepts that underly them derive

from relational algebra, as first described in 1970 by E. F. Codd (Codd (1983)).

Interaction with the database is mediated by a relational database management

systems (RDBMS) through SQL (Structured Query Language) - a standardized

language for the addition, modification and retrieval of data, the creation and

alteration of schema, and the management of database access. MySQL (Widenius

et al. (2002)) (http://www.mysql.com) was chosen as our RDBMS because it is

open source (and therefore free of charge); it is broadly considered to provide

good performance and reliability; and its wide popularity means that it is still
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under active development. The software runs as a server providing multi-user

access to several databases. To support this work a dedicated MySQL server was

established with 8 Intel R© Xeon R© CPU E5320 processors giving 16Gb of RAM

and for storage a 6 disk RAID (Redundant Array of Inexpensive Disks) array

totalling 3Tb.

2.2.2 Upstream preparation

PICCOLO, CREDO and BIPA all require comprehensive, up-to-date reference

information regarding all structures, their chains and residues currently available

in the PDB. This information is housed centrally in a shared hierarchical PDB

schema (Figure 2.4) with automatic updates synchronized with updates to the

PDB mirror.

Figure 2.4: Database schema for shared PDB database.

The PDB uses macromolecular Crystallographic Information File (mmCIF)

data dictionaries to describe the information content of each structure deposi-

tion. The RCSB (Research Collaboratory for Structural Bioinformatics) provides

a helper tool called Db Loader to convert mirrored mmCIF data into a form that
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is directly loadable into a MySQL relational database. A scheduled process en-

sures that the MMCIF tables are emptied and repopulated biweekly. From this

primary data a series of tables are subsequently derived, containing core data

regarding information on PDB Structures (PDBDat), chains (PDBChain) and

residues (PDBRes), the details of which are outlined below. Semin Lee, in the

TLB group, manages the initial mmCIF loading process.

2.2.3 Core PDB data

The PDBDat table contains information regarding the PDB deposition includ-

ing: experimental method (X-ray crystallography, NMR, fibre diffraction etc);

deposition and release dates; crystallographic information (resolution, R-factor

and free R-factor) for X-ray structures; the number of waters found in the struc-

ture; a flag indicating the presence of any ligand groups; and a flag indicating

that the structure contains Cα only chains (see below).

Information on polymeric chains is stored in the PDBChain table. As well as

the chain identifier this table stores flags indicating whether the chain is polypep-

tide or polynucleotide and whether the chain is Cα only. In poorly diffracting

crystal structures there may be only sufficient electron density to resolve the Cα

atoms (or occasionally the backbone atoms) and side-chains may not be reliably

resolved. Cα only chains are defined here as those chains where the ratio of Cβ

atoms to non-glycine Cα atoms is <0.8. Without sidechains, information regard-

ing secondary structure, solvent accessibility and hydrogen bonding cannot be

determined. Such structures provide very limited information and are therefore

not considered further. This is the case for more than 300 structures (or 0.6% of

the PDB).

Great lengths have been taken to provide a consistent inventory of each in-

dividual residue in the PDB, providing globally unique identifiers which act as a

common currency which is shared between the various databases, greatly facili-

tating comparative analyses. This information is housed in the PDBRes table.

Importantly, each individual residue in the PDB repository can be uniquely iden-

tified through its parent PDB code, chain identifier, PDB residue number and

insertion code. The PDB residue number is the numeric label of the residue
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taken from the PDB file (N.B. the first residue in each chain does not necessarily

have PDB residue number 1). The insertion code is sometimes used to preserve

a certain desirable residue numbering scheme. For example, PDB entry 4est, a

serine protease, has residue identifiers as follows: PHE 65, ARG 65A, VAL 66.

In this way the residue numbering scheme stays in tune with that of homologous

structures to keep the numbering of the catalytic triad consistent. Currently

2,267 structures (or 4.3% of the PDB) employ insertion codes. Further fields

hold: the amino-acid residue type; a flag indicating whether the residue is ob-

served in the electron density map; for those residues that are observed, a validity

flag indicating whether they are one of the 20 canonical residue types; finally for

those residues that are both observed and valid, a serial counter whereby the first

residue in each chain is always numbered 1. This last field is invaluable when

mapping the output of external structural analysis programs into the database,

obviating the need for elaborate alignment procedures.

2.2.4 Mapping structure to sequence

UniProt (Uniprot-Consortium (2009)) is a comprehensive central repository of

protein sequence data with manual annotations. The capacity to map accurately,

at the resolution of individual residues, between a protein’s sequence - as ob-

served in a PDB structure - to its cognate UniProt record, is both important

and, somewhat unexpectedly, non-trivial. There are many benefits of such a

mapping. Firstly, UniProt residue annotations can trivially be transferred to

PDB structures. Further, multiple subtly different structures of the same protein

can be grouped and aligned, providing a simple but robust method to cluster

similar proteins to help remove redundancy. Such a scheme has been used to

provide a non-redundant set of interfaces in PICCOLO. Most significant though

is the application of this mapping to the TLB group’s efforts on predicting the ef-

fects of mutations on protein structure, function and interactions. As described in

Chapter 5, genome-level annotations from Ensembl (Birney (2006)), in particular

information on non-synonymous Single Nucleotide Polymorphisms (nsSNPs) has

been mapped to cognate UniProt sequences. The sequence-structure mapping
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therefore facilitates simple navigation from mutations to sequences to structures

and from there details of protein function.

One of the main difficulties in determining this sequence-structure residue

mapping is that many structures in the PDB have regions of unobserved residues

within polypeptide chains due to poorly defined regions of structure, such as

flexible loops. Such gaps in the sequence are not taken into account by tradi-

tional sequence alignment algorithms, leading to incorrect alignments for regions

flanking the unobserved regions. Other features that can introduce differences

between the sequences of subsequent structures of the “same” protein include

the presence of artefactual constructs to aid cloning (e.g. starting methionine),

protein purification (e.g. hexa-HIS tag), or crystallization (e.g. trimmed domain

boundaries), as well as isoforms, natural and engineered mutants and modified

residues (e.g. selenomethionine).

The Structure Integration with Function, Taxonomy and Sequence (SIFTS)

resource (Velankar et al. (2005)) from the EBI accurately maps the sequences

from PDB entries on to corresponding UniProt entries. To circumvent this prob-

lem they modified the standard alignment protocol by using sequences of the

observed regions of the protein structure and producing separate alignments for

these segments with the complete sequence of the protein that was used in the

experiment (from the SEQRES record in the HEADER of the PDB entry). These

separate alignments were then merged together to assemble a complete consen-

sus sequence that does not have gaps reflecting unobserved residues. A similar

procedure was carried out to obtain alignments between this consensus sequence

and the corresponding UniProt entry. These two composite alignments are then

merged to give the complete residue-level mapping between the sequence of the

complete polypeptide from the experiment and its UniProt counterpart. This

procedure copes with the more complex situation in chimaeric structures, where

sequences from two or more UniProt entries are involved, in which case the correct

boundaries are confirmed manually.

Although the SIFTs records were of high-quality a frustrating lack of cover-

age and the sporadic nature of data updates meant that, somewhat reluctantly,

a similar procedure had to be devised and implemented locally to provide com-
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prehensive coverage of sequence-structure mapping. Sungsam Gong in the TLB

group developed and manages such a procedure.

2.2.5 Structure quality

The PDB is highly redundant at various levels. The structures of many proteins

have often been solved several times under different experimental conditions, in

different conformations, with different ligands, and with different modifications.

To prevent this redundancy biasing any analysis it is necessary to perform some

form of clustering to provide a non-redundant set. The question then arises,

which of a set of “equivalent” structures within a cluster should be selected as a

representative? Rather than selecting an arbitrary cluster member, each structure

is assigned a quality score, or QScore, based on the structure’s resolution, R-factor

and the number of absent internal residues, with the resolution dominating:

QScore = ((
1

resolution
) + (0.1−Rfactor))× (1− proportion missing residues)

(2.6)

This is analogous to the SPACI score (Summary PDB ASTRAL Check In-

dex) used by Brenner et al. (Chandonia et al. (2004)) in deriving the ASTRAL

compendium. This has the effect that non-X-ray structures are deprioritized. Of

all members of a cluster, the member with the best QScore is chosen. Fig 2.5

shows the frequency distribution of Resolution, R-factors, proportion of missing

residues and QScore across the whole of the PDB in PDBDat. Fig 2.5 illustrates

the contribution of the R-factor and missing residue terms to modulating the

resolution to generate the QScore. The QScore data have been applied both in

clustering protein interfaces in PICCOLO and SCOP domains in TOCCATA.

2.2.6 Inconsistencies in the PDB

Although the data found in PDB files are clearly invaluable, high-throughput pro-

cessing of every structure in the repository can be hampered by the inherently

heterogeneous and inconsistent nature of certain aspects of the data. A small

minority of troublesome structures often require an incommensurate amount of
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Figure 2.5: Components of structural quality score (QScore). Upper panel shows

distributions of Resolution, R-factor, % missing residues and Qscore. The scatter

plot in the lower panel shows the relationship of QScore to Resolution and the

impact of including terms to describe R-factor and % missing residues.
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attention to negotiate them successfully. Many of the problems stem from the fact

that the PDB is not a relational database (Schierz et al. (2007)). The situation

has been improved somewhat by the efforts of the recent PDB remediation project

(Henrick et al. (2007)), however many problems remain. Many of the issues can

be attributed to the limitations of the particular experimental methods used to

solve the structure whereas some are due to differing assumptions made by the

many thousands of different depositors over the years. Some of the issues a robust

software system must handle include: crystal structures with multiple-occupancy

atoms; multiple models from NMR ensembles; residue numbers with alphabetic

insertion codes; inconsistent presence of water molecules; inconsistent presence

of hydrogen atoms; absent residues in crystal structures owing to missing elec-

tron density; low-resolution structures consisting solely of Cα backbone atoms;

structures containing no peptide or nucleic acid polymer residues; >300 different

non-standard amino acid residue types (naturally-occurring or engineered modifi-

cations forming part of the polypeptide backbone); low resolution structures with

unassigned residue types; lower-case and numeric chain identifiers. Unfortunately

many of the standard software tools in common use today do not handle these

relatively common circumstances consistently.

2.2.7 Sanitizing PDB data

In order to isolate and avert such issues, an automated system to “sanitize”

all structures on the data mirror has been devised. Such pre-processing of the

raw PDB data addresses the inconsistencies upstream of other processes, thereby

greatly simplifying all downstream procedures and reducing the requirement for

each component to perform elaborate error checking.

This sanitizing process involves using the PDB module from BioPython (Hamel-

ryck & Manderick (2003)) to read each structure in turn, optionally perform

a series of cleaning steps before re-writing a consistently formatted PDB file.

This process ensures that only those residues that are already captured in the

database are included in the outputted PDB files, ensuring that every residue is

validated and uniquely identifiable as part of a bona fide polypeptide or nucleic

acid chain, thereby guaranteeing self-consistency between the PDB flat files and
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the database. The optional cleaning processes that can be performed include:

selection of highest-occupancy atoms only; stripping of hydrogen atoms; removal

of all but the first model in multi-model structures; removal of ligands; stripping

of waters; and repair of the most common modified residues to their “parent”

residues. Even though more than 300 different non-standard polypeptide residues

can be found in the PDB, more than 90% of the total are selenomethionine (MSE),

methyllysine (MLY) or hydroxyproline (HYP). Heavy selenomethionine residues

are routinely synthetically engineered into proteins to help crystallographers solve

the phase problem, whereas the others are more likely to be naturally occurring.

The modification to their parent amino acid residue means that any such affected

structures can now be appropriately handled by downstream legacy software that

would otherwise fail, but it does carry a small risk of incurring artefactual results

(most likely false negative contact identification).

2.2.8 PDB flavours

This cleaning procedure also has the benefit of permitting the creation of a se-

ries of different “flavours” of the PDB data mirror - each with slightly different

contents reflecting different states of the protein. For example, to generate the

TOCCATA database of family structural alignments, PDB formatted files for

each SCOP domain are generated. In order to create the protein-ligand database

CREDO, a flavour of the PDB containing only those structures containing het-

eroatom ligands is generated. Similarly for BIPA, a flavour containing only those

structures that contain both polypeptide and nucleic acid chains is created. Fur-

thermore, this creates the opportunity to centralize the execution of a series of

structure analysis programs on each of the flavours. In an automated, weekly

process managed by Semin Lee in TLB group, NACCESS (Hubbard (1993)) is

performed to calculate solvent accessibility, HBPLUS (McDonald & Thornton

(1994)) to identify hydrogen bonds and JOY (Mizuguchi et al. (1998a)) to pro-

vide secondary structure and other structural annotation. An example of the

benefits of this system is illustrated in PICCOLO, wherein in order to calculate

the solvent accessible surface area involved in macromolecular interactions, it is

necessary to assess the solvent accessibility of all unbound protein chains as well
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as their bound counterparts for each pair of interacting PICCOLO chains. By

having the appropriate forms of both PDB files ready-generated, automatically

updated each week, with pre-calculated NACCESS accessibility data, subsequent

analyses are greatly eased.

2.2.9 Generating contact data

All chains in the PDBChain table are classified as either valid or invalid. Invalid

chains are those that are non-polypeptide (i.e. nucleic acid or carbohydrate), Cα

only, obsolete, blacklisted (a small number of manually-identified troublesome

PDB entries), 100% unobserved or comprising only non-standard residues. To

generate PICCOLO all PDB entries containing more than one valid chain are

first identified. For each of these entries every unique pair of non-identical chains

was examined. Therefore for n chains n(n−1)/2 comparisons were performed e.g.

for a PDB entry with four chains A,B,C and D, six comparisons are performed:

AB, AC, AD, BC, BD and CD. Note that the chain pairs are always ordered

alphanumerically. This scheme does prevent needless duplication of the measure-

ment and storage of pairwise contacts, as distance calculations are commutative,

but this also has important implications for the database schema and subsequent

queries.

When examining each pair, for each atom in the first chain all atoms within

a fixed search radius are identified. If any of these atoms belong to the second

chain the pair is flagged as a potential inter-chain contact, the details of the

two atoms are logged and the inter-atomic Euclidean distance is measured in

Ångstroms (Figure 2.6). Euclidean distance between two atoms i and j with

three-dimensional co-ordinates x, y, z is defined in Equation 2.7:

d =
√

(ix − jx)2 + (iy − jy)2 + (iz − jz)2 (2.7)

By default a fixed search radius of 6.05Å is used. This value was chosen as the

maximum length of a water-mediated hydrogen bond (Robert & Janin (1998)).

Neighbour search algorithms such as this can be computationally expensive. How-

ever, the PDB module of BioPython implements a NeighbourSearch method using

the kd-tree algorithm (de Berg et al. (1997)). The kd-tree family of algorithms use

52



2.2 Materials and Methods

Figure 2.6: Illustration of the radial-cutoff method. The interface of human α and

β haemoglobin is used as an example (PDB entry 1y4v). All atoms on the β chain

of haemoglobin within 6.05Å of the NE2 atom of the side-chain of histidine 103

on the α chain are considered proximal, highlighted in yellow and are considered

for further annotation.

efficient hierarchical space-partitioning data structures for recursively organizing

points in a k-dimensional space. This gain in efficiency means that PICCOLO

can be run over the entire PDB overnight on a Linux workstation with Intel R©
Core 2 CPU 6600 with 2Gb of RAM.

Defining contacts based on inter-atomic distance is a commonly used approach

(see Table 2.1). However, it is clear that although it is possible for atoms 6.05Å

from one another to be engaged in an interaction, the vast majority of atoms

this far from one another are likely to be false positives. In other words, this

method is sensitive but not specific. Although reducing the default threshold is
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likely to increase specificity it would come at the cost of sacrificing sensitivity by

increasing false negatives. To resolve this issue, based upon the chemical nature

of the two atoms involved in the putative interaction and the distance between

them, each of the potential inter-atomic contacts are classified into a series of

specific interaction types. These interaction types can be seen in Table 2.2.

In order to achieve this, each atom of the 20 canonical residues is assigned

van der Waals (non-covalent) and atomic (covalent) radii as well as being as-

signed a series of property flags indicating the types of interactions in which they

have the capacity to participate. These are described below and summarized

in Table A.1 and figures in Appendix I. The values for the van der Waals and

atomic radii come from intermolecular distance calculations on >30,000 high-

resolution crystal structures of small organic compounds from the Cambridge

Structural Database (CSD) (Allen (2002)) that contain the same atomic groups

as those found in proteins, so that the radius for an atom of a given element is

residue-specific (Tsai et al. (1999)) (http://bioinfo.mbb.yale.edu/geometry/

geom-mbg/data/README.htm). This set of radii has previously been used to cal-

culate protein volumes (Tsai & Gerstein (2002)). Flags indicating those atoms

that are considered hydrophobic, aromatic, cationic or anionic are set by ap-

plying SMARTs queries (SMiles ARbitrary Target Specification) (http://www.

daylight.com/dayhtml/doc/theory/theory.smarts.html) to structures of the

20 canonical residues, followed by manual inspection. Each of the 20 canonical

residue types also has an extra negatively ionizable OXT atom defined, to include

the acidic carboxyl group when the residue is chain-terminating.

Van der Waals contacts, the most common type of interaction, are assigned

as those pairs of atoms whose interatomic distance is less than the sum of the

van der Waals radii plus 0.5Å (Jefferson et al. (2007); Keskin et al. (2004)).

No restriction is placed on atom type. This contact definition alone is more

sophisticated than many of the fixed cutoff values described in Table 2.1. Van

der Waals clashes are those contacts where the interatomic distance is less

than the sum of the van der Waals radii. Similarly covalent contacts are those

where the interatomic distance is less than the sum of the atomic radii. The vast

majority of covalent contacts are disulphides. By definition, covalent interactions
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are a subset of van der Waals clashes, which themselves are a subset of van der

Waals contacts.

Unlike all other interaction types hydrogen bonds and water-mediated

hydrogen bonds are located by running an external program, HBPLUS (Mc-

Donald & Thornton (1994)). The algorithm, developed by McDonald and Thorn-

ton, involves first positioning the hydrogen atoms, followed by calculation of the

hydrogen bonds. An interaction is considered to be a hydrogen bond if one

atom of the pair is listed as a donor and the other as an acceptor (Table A.1 in

Appendix I), and the angles and distances formed by the relevant atoms meet

the appropriate criteria (Table 2.2). Studies have suggested that the π-electron

shells of aromatic rings may also act as weak hydrogen bond acceptors (Mitchell

(1994)). In order to implement this the -R option on HBPLUS has been set to

allow atoms in the aromatic rings of tyrosine, tryptophan and phenylalanine to

accept these amino-aromatic hydrogen bonds.

Only in a minority of very high resolution (<1.0Å) crystal structures can hy-

drogen atoms be accurately resolved and little or no difference can typically be

determined between carbon, nitrogen and oxygen atoms. For structures solved at

resolutions above 1.0Å, atoms in the majority of side-chains can be uniquely iden-

tified from the electron density map, but for asparagine, glutamine and histidine,

whose side-chains appear symmetrical in the electron density, certain atoms can

only be identified on the basis of their local structural context and in particular

their hydrogen bonds. To resolve this issue HBPLUS implements an option (-x)

to explore potential hydrogen bonds that would be formed if the CD2 of histidine

was actually ND1, CE1 was NE2 and the nitrogens and oxygens of the asparagine

and glutamine amide groups were exchanged. Note that some atoms are capable

of acting as either hydrogen-bond donors or acceptors depending on the details

of their local structural context (SER OG, THR OG1, HIS ND1, CYS SG1, TRP

NE1, TYR OH).

Water molecules are present in 80% of PDB structures (data from PDBDat).

Although relatively rare in intra-molecular interactions, water-mediated hydrogen

bonds make a significant contribution to inter-molecular interactions. Water can

mediate between two hydrogen bond donors, two acceptors or from a donor to

an acceptor. One difficulty in identifying water-mediated contacts is that in
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many lower-resolution crystal structures water molecules may be inappropriately

modelled into patches of electron density or added during refinement to improve

the calculated structure factors. In this work “genuine” structured waters were

distinguished by considering only those water molecules that engage in more than

one hydrogen bond. Conveniently, any water molecule suggested by HBPLUS to

be hydrogen bonded to two residues on different chains, by definition already

meets this definition. Hydrogen bonds and water-mediated hydrogen bonds are

further sub-classified as being between either two main-chain atoms, two side-

chain atoms or between main-chain and side-chain.

Hydrophobic interactions are those where both atoms are labelled as hy-

drophobic and the inter-atomic distance is less than 5Å (Tina et al. (2007)). In

defining ionic interactions, the strictly correct way to calculate the electrostatic

interaction for two point charges would be to use quantum chemical methods to

solve the Coulomb equation separately for each nucleus, but this is somewhat

impractical for large biological systems. A simpler approach is to consider only

the formal charges on the protein (whether an electron has been lost or gained).

Carboxyl groups are deprotonated and carry a negative charge delocalized over

the two oxygen atoms, while amino groups are protonated and carry a positive

charge delocalized over the three hydrogen atoms. The protonation state of amino

acid residues in free solution at pH7 can be determined from model pKa values

defined for each residue. However, the protonation state of ionizable residues

in the folded protein depends also on the local structure environment, including

exposure to solvent, proximity to other titratable groups or permanent charges in

the protein. Methods that take these factors into account (Davies et al. (2006);

Dolinsky et al. (2007); Li et al. (2005)) are again not practical to run at large

scale, so the solution pKa values are used for ionizable residues and pH7 is as-

sumed. The distance threshold was taken from Barlow and Thornton (Barlow &

Thornton (1983)).

Aromatic interactions are defined when two criteria are met. When a pair

of aromatic atoms is within the appropriate distance threshold then the centroids

of the two parent planar ring systems are calculated. If the centroids are also

within the distance threshold, then the contact is considered aromatic. As part of

his work on CREDO, the protein-ligand interaction database, Adrian Schreyer in
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the TLB group developed a procedure to sub-classify aromatic contacts as being

either “face-to-face”, “edge-to-face” or “displaced edge to face”. To achieve this,

for each pair of atoms involved in an aromatic contact, the normals of the two

parent planar ring systems are calculated using Newell’s method (Kirk (1994)).

The dihedral angle between the two planes is defined as the angle between the

normals. The displacement angle is defined as the angle between the normal

of the first ring and the vector between the two ring centroids. The aromatic

interaction is classified as “edge to face” where the dihedral angle is greater than

30◦. Dihedral angles less than or equal to 30◦ are classified as “face to face” where

the displacement angle is less than or equal to 20◦ and “displaced face to face”

otherwise.

π-cation interactions are defined when a cationic atom and an aromatic atom

approach within 6Å threshold of one another (Gallivan & Dougherty (1999)).

Disulphide bonds are those where two sulphur atoms from cysteine residues

approach within 2.08Å (Thornton (1981)). Aromatic-sulphur interactions

are those where an aromatic atom approaches within 5.3Å of a sulphur atom

(Zauhar et al. (2000)).

Even though these interaction definitions are not rigorous, they are each prece-

dented, robust and rapid to calculate. Note that an exclusive classification of

inter-atomic interactions would require artificial prioritization of one interaction

type above another. In this work, interactions are classified equivocally so each

atom pair can simultaneously exhibit the character of more than one interaction

type. Each atom-pair can therefore be thought of as being represented as a binary

bit-string vector - an ordered sequence of qualitative indicators that provides co-

ordinates in an arbitrary space that can be used to locate interactions relative to

one another. This results in overlaps between for example, van der Waals con-

tacts and shorter hydrogen bonds, hydrogen bonds and shorter ionic interactions

and hydrophobic and aromatic interactions. This deliberate ambiguity arguably

reflects the somewhat amorphous nature of molecular interactions.

All atom pairs within the original 6.05Å distance threshold of one another

are only considered as being in contact with one another if one of the above

criteria are met (i.e. the logical “OR” of all interaction types). Atom pairs not
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meeting any of these criteria are still stored in PICCOLO as being proximal to

one another, but are in general not considered in any further analyses.

2.2.10 Benchmark of methods to identify interactions

A short benchmark study was performed to quantify the benefit, if any, of adapt-

ing the radial cutoff method with the various detailed interaction type definitions

to specify a more refined interaction definition. The Double Mutant Cycle data

used in this study are taken from the literature and are shown in Appendix B.1.

Figure 2.7 shows a histogram of the free energy differences for the systems used

in this benchmark in kcal/mol. Only mutations to alanine were considered.

Figure 2.7: Histogram of ∆∆G values in kcal/mol for the Double Mutant Cycle

data in Table B.1 on page 222. The region marked in pale blue (between -0.5 and

0.5 kcal/mol) constitute the true-negative set used in the benchmark study, and

the remainder the true-positive set.

The following performance measures were used:-

Sensitivity = 100× TP

(TP + FN)
(2.8)

59



2.2 Materials and Methods

Specificity = 100× TN

(FP + TN)
(2.9)

Accuracy = 100× (TP + TN)

(TP + FP + TN + FN)
(2.10)

where TP , FP , TN and FN are the numbers of true positives, false positives,

true negatives and false negatives respectively. When evaluating the performance

of any predictive method it is important to focus on both the sensitivity and

specificity. In practical terms high sensitivity means little if specificity is poor.

However, evaluation of specificity requires data regarding true negatives which is

often unpublished. Here ∆∆G values less than -0.5 kcal/mol or greater than 0.5

kcal/mol are considered significant.

2.2.11 Solvent accessibility

Absolute solvent accessibility data as calculated by NACCESS are stored in PIC-

COLO for the apo and bound forms, as well as the difference between the two,

to give the area contributed to the interface at the level of individual amino acid

residues and complete polypeptide chains. Relative accessibilities are stored at

the level of individual residues. Accessibility data are stored for all residues from

structures engaged in interactions - not just those residues mediating interactions.

2.2.12 PICCOLO schema

The result of running PICCOLO is, for each PDB file and for each pair of chains,

a series of six tab-delimited output files, corresponding to atom pairs, residue

pairs, chain pairs, atom-level summaries, residue-level summaries and chain-level

summaries. Although the output files are amenable to direct analysis themselves,

each file corresponds to a particular table in the PICCOLO MySQL database

schema into which they can be loaded without further processing. The schema

for PICCOLO is shown in Figure 2.8.

2.2.13 Structural environments

Several key properties of protein residues depend acutely on the local structural

environment in which they are found. All residues in PICCOLO are classified
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Figure 2.8: Database schema for PICCOLO.
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depending on whether or not they are engaged in interactions and their expo-

sure to solvent. Residues in the interface engaged in interactions are classified

as “Interface Core” if they are buried in the bound form and “Interface Periph-

ery” otherwise. Residues not engaged in interactions are similarly classified as

“Core” if they are buried and “Exposed” otherwise. The definition used to assign

a residue as buried is that it must have a relative accessibility of less than 7%

(Mizuguchi et al. (1998a)). This is analogous to the definitions used by Guharoy

and Chakrabarti (Guharoy & Chakrabarti (2005)) although they use 100% burial

as a criterion for core. Solvent accessibility is always calculated with respect to a

single pair of chains. This means for that for complexes of more than two chains,

a particular residue may be found in different environments, depending on which

chains are being examined. To circumvent such troubling ambiguous classifica-

tions, the classes are prioritized such that residues are preferentially classified as

Interface Core > Interface Periphery > Core > Exposed.

2.2.14 PyMOL integration

With large and complex data sets of this nature visualization tools to aid analysis

are paramount. PyMOL (Delano (2002)) is an open-source molecular visualiza-

tion system that extends, and is extensible by the Python programming language

(Van Rossum (2003)). This enables Python functions to be written that con-

nect to the MySQL database and extract annotations from PICCOLO describing

which atoms and residues are involved in interactions, and for these annotations

to be displayed in the PyMOL window. Using this approach useful visualizations

of the four residue classifications can be generated for any complex. Examples of

this are shown in Figure 2.9.

This methodology can be extended to visualize atomic interactions by using

different colour and dash parameters to indicate different interaction types. Fig-

ures 2.10, 2.11 and 2.12 (on pages 63 and 64) show examples of three different

protein interfaces indicating the jungle of molecular interactions.
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Figure 2.9: Two examples of automatically generated images of the four interface

residue environment classifications. Residues in the interface core are shown in

orange, interface periphery in dark red, non-interface exposed surface in light

blue and buried protein core in dark blue. Human interleukin-4 is shown on the

left (PDB entry 1iar) and D-alanine aminotransferase on the right (PDB entry

1daa).

Figure 2.10: Complex of human somatotropin and the prolactin receptor (PDB

entry 1bp3). Interaction types are coloured as follows: hydrogen bonds in dark

blue; water mediated hydrogen bonds in light blue; π-cation interactions in green;

ionic interactions in pink; hydrophobic contacts in yellow; and van der Waals in

red. The same colouring scheme is used in Figures 2.11 and 2.12.
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Figure 2.11: Complex of human plasmin with Streptococcal Streptokinase C

(PDB entry 1bml).

Figure 2.12: Complex of human ribonuclease inhibitor with angiogenin (PDB

entry 1a4y).
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2.2.15 Generating assemblies

To generate assemblies prior to building PICCOLO, three sources of quaternary

structures were used: PDB Biological Units, PQS and PISA.

2.2.15.1 Biological units

Although wwPDB provides Cartesian coordinates for PDB Biological Unit as-

semblies in PDB format, water molecules, which are required in order to identify

water-mediated hydrogen bonds, unfortunately are not transformed. Therefore

the biological units must be regenerated locally. To achieve this, biological unit

information is parsed from the HEADER records of the PDB format ASU files

and the resulting data loaded into a database table. REMARK 300 provides a

description of the biological unit in free text and REMARK 350 presents the crys-

tallographic and non-crystallographic transformations as rotation-transformation

matrices to operate on the atomic coordinates to generate the biological unit. In

the example shown in Figure 2.13, four distinct transformations are applied to

transform a monomeric chain in the ASU into a homotetramer. Each transfor-

mation is described by a 3× 3 rotation matrix and a 3× 1 transformation matrix

in Å.

REMARK 350 BIOMOLECULE: 1

REMARK 350 APPLY THE FOLLOWING TO CHAINS: P

REMARK 350 BIOMT1 1 1.000000 0.000000 0.000000 0.00000

REMARK 350 BIOMT2 1 0.000000 1.000000 0.000000 0.00000

REMARK 350 BIOMT3 1 0.000000 0.000000 1.000000 0.00000

REMARK 350 BIOMT1 2 0.000000 -1.000000 0.000000 46.85000

REMARK 350 BIOMT2 2 1.000000 0.000000 0.000000 46.85000

REMARK 350 BIOMT3 2 0.000000 0.000000 1.000000 0.00000

REMARK 350 BIOMT1 3 0.000000 1.000000 0.000000 -46.85000

REMARK 350 BIOMT2 3 -1.000000 0.000000 0.000000 46.85000

REMARK 350 BIOMT3 3 0.000000 0.000000 1.000000 0.00000

REMARK 350 BIOMT1 4 -1.000000 0.000000 0.000000 0.00000

REMARK 350 BIOMT2 4 0.000000 -1.000000 0.000000 93.70000

REMARK 350 BIOMT3 4 0.000000 0.000000 1.000000 0.00000
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2.2.15.2 PQS

Transformation matrices required to generate PQS assemblies are parsed from

the HEADER records of PQS records in a similar manner to the Biological Unit

records above. The only difference being that in PQS records the translation

matrix is stored in fractional coordinates. Before they can be used the frac-

tional coordinates need to be scaled by the dimensions of the unit cell, which are

captured from the CRYST record in the PDB header.

2.2.15.3 PISA

Unfortunately PISA does not provide Cartesian coordinates of the predicted as-

semblies. However, Eugene Krissinel, the PISA developer, kindly provided a

URL from where XML files containing all data pertinent to the predicted assem-

blies could be downloaded. These XML files were parsed and loaded into the

database. NMR structures naturally have no information on crystal symmetry so

they are implicitly absent from PISA. As of May 2008 (using PISA software ver-

sion 1.14) PISA comprised 103,779 assemblies in 92,953 assembly sets. Assembly

sets may include more than one assembly in cases where multiple biological units

are found in the ASU e.g. PDB 1c3h consists of two distinct homotrimers. The

PISA procedure can identify multiple assembly sets for each PDB entry. Only the

top-ranked assembly set i.e. the most stable, for each PDB entry was considered

further, leaving 31,697 assemblies in 27,281 assembly sets (30.5% of the original

assemblies). Often assemblies in the top-ranked set are not confidently predicted

to be stable. 26,923 assemblies are labelled as “stable in solution” and it is this

set that will be considered further - the remaining assemblies of lower levels of

predicted stability are discarded.

Given that rotation-translation matrices for Biological Units, PQS and PISA

assemblies are all stored in identical relational format, the same method can be

used for generating assemblies for all three resources. A Python script uses the

BioPython library to read in the coordinates of the ASU of each structure and

apply the relevant transformations stored in the database. Prior to transforma-

tion any water molecules within 5Å of each polypeptide chain have their chain

identifier set to that chain. An example is shown in Figure 2.13. Importantly
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a mapping is maintained between the PDB chain identifiers in the original ASU

PDB files and these newly-generated assemblies. There can be more than one

biomolecule for each PDB entry.

2.2.15.4 Overlaps of Biological units vs PQS vs PISA

A requirement for a further analysis of the properties of protein interfaces is a

non-redundant set of reliable quaternary structure predictions for high-quality

crystal structures. For the reasons explained previously quaternary structure

data are considered superior to those found in the PDB ASUs. Originally it was

intended to build a non-redundant set from the union of the assemblies captured

from the PDB Biological Units, PQS and PISA. The manually curated data from

PiQSi allowed a brief benchmark study to be performed. PiQSi assesses the

correctness of PDB Biological Units only. Therefore a quality assessment can be

performed on the set of Biological Units common to either PISA or PQS or both.

Commonality here was defined as those assemblies comprising precisely the same

set of transformations.

This analysis revealed that the frequency of the Biological Unit being anno-

tated as incorrect was 7.01% (568 out of 8101 assemblies) for those Biological

Units that are found within the PISA set and 46.7% (858 out of 1838 assemblies)

for those Biological Units that are not found within the PISA set. This significant

discrepancy between the PISA and non-PISA derived assemblies clarified the se-

lection of only PISA-derived assemblies for further analysis and derivation of a

non-redundant set. The PQS and PDB Biological Unit data were not considered

further.

2.2.16 PICCOLO flavours

The name PICCOLO refers to both the software program, written in Python,

and the MySQL database where the results of running the program systemat-

ically are stored. The database itself comes in three flavours, with essentially

identical schemas. The first is based on PDB files provided by the wwPDB i.e.

representing the ASU of the crystal structure. The second is based on predicted
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Figure 2.13: Generation of a PISA-predicted assembly. PDB entry 1dzx contains

one monomer of L-fuculose-1-phosphate aldolase from Escherichia coli in the

ASU shown in the upper panel. Application of the 4 transformations shown

in the PDB excerpt on page 65 generates the homotetramer in the lower panel.

Water molecules are shown coloured by their “adoptive” parent PDB polypeptide

chain (see text).
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PDB ASU PISA

Quaternary

Structures

Multidomain

Chains

PDBs

(Assemblies)

24,944 23,718

(28,691)

5,809

Chains 88,098 99,440 21,463

Chain pairs 99,588 130,337 12,736

Residues 5,627,364 8,012,212 783,869

Residue pairs 9,165,464 13,168,061 1,332,076

Atoms 30,682,029 44,033,147 4,400,865

Atom pairs 116,563,917 167,835,728 17,538,172

Table 2.3: Overall PICCOLO summary statistics.

quaternary structures from PISA, which are believed to be more likely to repre-

sent the physiological oligomeric state of the protein. Finally PICCOLO has also

been calculated on intra-chain domain-domain interactions from 5,809 polypep-

tide chains found in SCOP that comprise more than one structural domain - the

corresponding inter -chain domain-domain interactions can be found in the exist-

ing ASU and PISA sets. However, much of the focus of the research into protein

interactions is around the physiological interaction of non-covalently bound pro-

teins (e.g. protein docking, comparative modelling and drug discovery). As such,

it is the results of running PICCOLO on the PISA-predicted quaternary struc-

tures that is of greatest interest and that will be the main focus of the subsequent

analyses.

2.3 PICCOLO results

2.3.1 Database summary statistics

A summary of the number of data points in each of the three flavours of PICCOLO

is shown in Table 2.3.
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Energetically

Significant

PICCOLO

predicted

Result class PICCOLO

radial

cutoff

PICCOLO

molecular

interac-

tions

YES YES True Positives 51 46

YES NO False Negatives 10 15

NO YES False Positives 29 35

NO NO True Negatives 24 18

Specificity 54.7 66.0

Sensitivity 83.6 75.4

Accuracy 70.2 71.1

Table 2.4: Results of benchmark of interaction detection methods.

2.3.2 Benchmark of prediction methods

The results of the benchmark of interface definition methods are shown in Ta-

ble 2.4. The results suggest that the enhanced molecular interaction definitions

provide a significant increase in specificity, albeit at the expense of sensitivity,

which together gives a marginal increase in overall accuracy. It can be argued

that data quality is more important for many applications than data coverage.

Inspection of the 15 False Negatives in the set of specified molecular interactions

indicates that these residues are often >10Å from one another. Therefore they

must presumably either be engaged in extended indirect interactions or else be

the result of some synergistic rearrangements. Similarly many of the False Posi-

tive set appear to engage in valid short-range hydrogen or ionic bonds, together

suggesting that the results of this benchmark data may represent the lower bound

of genuine interaction prediction performance. The overall effect of these defi-

nitions across the entire database is that 21.3% atom pairs exhibit one or more

of these interaction types. This greater specificity means that only this set was

considered for subsequent analyses.
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2.3.3 Contribution of input sources

A simple quantitative assessment of the contribution of quaternary structures to

annotations of interacting residues can be performed using the mapping of PDB

residues to UniProt residues in ResMap. Figure 2.14 shows the comparison of

the relative contributions of PDB ASU and PISA quaternary structure data with

respect to unique UniProt residues. The 102,245 residues that are unique to

PDB ASU contacts are likely to be dominated by non-specific crystal contacts.

Conversely the 125,834 residues that are unique to the PISA-predicted quaternary

structures represent a 33% increase in the number of residue annotations that

would not otherwise be considered.

Figure 2.14: Overlap of unique UniProt residues from PICCOLO built from PDB

ASU data versus PISA generated assemblies.

2.3.4 PICCOLO applications

The establishment of PICCOLO enables a series of analyses to be performed

with the overarching goal of increasing understanding of the fundamentals of

protein-protein interactions, the results of which will be reported in Chapter 3.

Chapter 4 goes on to describe the properties of interfaces from an evolutionary

perspective through assessment of observed substitution patterns. Aside from

these systematic analyses, PICCOLO also has a number of more immediate prac-

tical applications in several areas of interest to researchers in the TLB group. In
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Chapter 5 I show that PICCOLO can be used to assist in the prediction of the

effects nsSNPs. PICCOLO can also be applied to unravel the principles behind

“hot-spots” in protein interfaces, as described in Chapter 6.

Further applications of PICCOLO, not addressed at length in this thesis, have

arisen in the areas of structural modelling of interfaces, interface site prediction

and protein-protein docking. The fact that PICCOLO is non-redundant and com-

prehensive means that it would provide the ideal source database for identifying

template structures for comparative modelling of protein-protein interactions. A

wide range of predictive methods for the identification of interaction sites on the

surface of proteins were highlighted in Chapter 1. PICCOLO provides an ideal

benchmark set for the objective assessment of the performance of these methods.

In the field of protein-protein docking, principles derived from PICCOLO

have been used to derive novel docking scoring functions. Jawon Song in the

TLB group is assessing the performance of PICCOLO-derived terms describing

residue contact preferences and interaction type density profiles in discriminating

genuine interaction poses from docking decoys. Potential also exists in describing

residues interacting across an interface as a graph, with residues as nodes and

interactions as edges (see Figure 2.15 for an example) and using graph properties

to derive a new scoring function.

Furthermore, in order to assess any progress in docking studies, availability of

reliable benchmark sets is critical. Any such benchmark should consist of good

quality structures of the complex under scrutiny and importantly both proteins

solved independently in their uncomplexed form. PICCOLO is ideally suited to

identify such a comprehensive benchmark set.
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Figure 2.15: Automatically generated graph of the interface of ribonuclease in-

hibitor (blue) and angiogenin (red) (PDB entry 1a4y). Nodes correspond to

residues, edges to contacts identified by PICCOLO. Nodes are labelled with chain

identifier and residue number. The location of residue nodes does not reflect their

physical location in the protein structure, rather it is determined automatically

by the layout algorithm in GraphViz (Jünger (2003)) that attempts to minimize

edge crossings. Representation of protein-protein interfaces as graphs makes them

amenable to assessment using graph theory methods and enables such visualiza-

tions.
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Chapter 3

PICCOLO analysis

3.1 Introduction

The establishment of PICCOLO as a comprehensive resource of structurally char-

acterized protein-protein interfaces was described in Chapter 2. This Chapter

describes a series of studies enabled by PICCOLO, investigating interface prop-

erties including residue propensity, hydropathy, polarity, interface size, sequence

entropy and residue contact preference. The raw data from PICCOLO derive

from the PDB and as such are inherently highly redundant. Before any analysis

is performed it is vital to derive a non-redundant set of interfaces to avoid any

74



3.2 Methods

potential skewing of subsequent analyses. Protein-protein interfaces are highly

heterogeneous. Chapter 1 described previous work that had discriminated dif-

ferent interface types and found significant distinctions in the properties of the

various classes. Amongst the most important distinctions to be made are those

that distinguish homo-oligomers from hetero-oligomers and obligate from tran-

sient systems. Deriving overall interface properties from PICCOLO without pay-

ing attention to the different sub-classes of interfaces risks obscuring significant

underlying trends. Procedures to deal with these issues of data redundancy and

heterogeneity are described. Subsequent derivation of the various interface prop-

erties are then discussed.

3.2 Methods

3.2.1 Filtering and clustering

Some of the inherent redundancies in the PDB were introduced in Chapter 2.

Any analysis of interface properties not taking such biases into account is likely

to be skewed by over-represented systems. Therefore before interface properties

are analysed the data sets were filtered and clustered to provide a reliable non-

redundant set.

The procedure of applying PISA-derived rotation-translation matrices to gen-

erate biological assemblies removes artefactual non-specific crystal packing in-

terfaces. Despite this a small number of insignificant interfaces remain in the

PISA-derived assemblies. These typically comprise only a handful of residues,

and manual examination reveals they are almost exclusively due to peripheral

contacts of non-neighbouring chains in high order multiprotein systems.

No chain length filtering criteria were applied prior to generation of PIC-

COLO. This was a deliberate choice; interactions of proteins with small peptides

are of interest when considering the effects of mutations on protein function.

However for the purposes of systematically deriving properties of protein inter-

faces, it is the interaction surfaces of globular proteins that are of most interest.

Interactions of small peptidic polypeptide chains of less than 15 valid amino acid

residues were therefore removed.
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Figure 3.1 shows the number of residues contributed by each side of the in-

terface (Ri and Rj). For clarity the pairs of interfaces have been ordered by size,

with the chain contributing the most residues shown on the x-axis. The inset in-

dicates a close-up of the smallest interfaces. Although a threshold of a minimum

of 5 contact residues per protein (Ri ≥ 5 and Rj ≥ 5) was initially considered (red

dashed line) this would exclude a small number of genuine interfaces. Instead the

criterion that the product of the number of residues from each interface is greater

than or equal to 25 was used (Ri × Rj ≥ 25) (solid red line). Collectively these

filters remove 28,152 interfaces (21.6% of the original 130,336).

It would be anticipated that each side of a protein-protein interface would

contribute approximately the same number of residues and this is borne out

by Figure 3.1. The largest single interface, in terms of the number of residues

involved, is that of homodimeric pyruvate-ferredoxin oxidoreductase (PDB entry

1kek) with more than 300 residues contributed from each partner in an extended,

interdigitated surface as shown in Figure 3.2.

Typical procedures to deal with redundant data involve performing cluster

analysis whereby the objects are partitioned into subsets such that the data

in each agglomerated subset are co-proximal, as defined by a particular dis-

tance measure. Selection of one representative from each subset provides a non-

redundant set. An example of such a procedure for clustering homologous protein

sequences is described in Chapter 4. However, identifying a non-redundant set

from a pairwise set of proteins, such as that in PICCOLO is not so straightfor-

ward. Any upstream sequence-based clustering of PDB polypeptides cannot be

performed, as two protein structures with identical sequences may exist in dif-

ferent states: one may be complexed and the other bound; and even if both are

bound, they may be bound to different partners; and even if both bind the same

partner there is no guarantee the interaction surface or mode of interaction will

be maintained.

For this reason the following clustering procedure was devised. All pairwise

interfaces were first grouped by the unique ordered combination of UniProt iden-

tifiers of both component proteins. Then within these UniProt pair clusters, each

cluster member pair was compared to all other cluster member pairs and the

overlap of unique UniProt residue numberings (pre-calculated and stored in the
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Figure 3.1: Scatter plot of the number of residues contributed by the larger

side of each PICCOLO interface (Ri on y-axis) against the number of residues

contributed by the smaller side (Rj on x-axis). Colour indicates the total number

of interfaces at each point, reflecting the fact that many interfaces share the same

number of contributing residues. The red dashed line indicates a threshold of a

minimum of 5 contact residues per interface (Ri ≥ 5 and Rj ≥ 5) that was

initially considered. The solid red line indicates a threshold where the product

of the number of residues from each interface is greater than or equal to 25

(Ri×Ri ≥ 25) that was used. The inset shows a close-up of the lower left corner

of the larger plot, highlighting the smallest interfaces.
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Figure 3.2: Cartoon representation of the homodimeric interface of pyruvate-

ferredoxin oxidoreductase (PDB entry 1kek) with more than 300 residues con-

tributed by each surface is the single largest interface in PICCOLO. Chain A

is shown in blue and chain B in red. Figure generated using PyMOL (Delano

(2002)).
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ResMap table) for both constituents was assessed reciprocally. If both sides of

the interface share more than 75% of unique residue positions in common with

another pairwise interaction then the interfaces were co-clustered. 75% was cho-

sen as a sparsely populated region that gave good separation of some manually

selected test cases.

In order to choose representatives to form the non-redundant set, rather than

simply choose an arbitrary member of each cluster, the representative complex

for each cluster was chosen as that complex whose mean QScore of the two con-

stituent chains was highest (QScore is a property of each polypeptide chain as it

depends partly on the number of missing residues). Note that this process results

in a non-redundant set of interfaces, not oligomeric assemblies.

3.2.2 Partitioning interface types

Classification of interactions as being either homo- or hetero-oligomers was rela-

tively straightforward, given the information stored in the PDBRes table concern-

ing UniProt sequence identifiers with respective assignment of relevant sequence

boundaries. Partitioning interfaces as being either transient or permanent was

less straightforward. Manually curated sets are available from the literature but

they suffer from the drawback that they are inherently small in size and may not

be representative.

An alternative approach was to use NOXclass, a published, automated protein-

protein interaction classification algorithm (Zhu et al. (2006)). The algorithm

involves a support vector machine (SVM) algorithm to partition interfaces as

either biological obligate, biological non-obligate or non-specific crystal packing.

The discrimination is based on the following interface properties: interface area

(calculated by NACCESS (Hubbard (1993))), interface area ratio, area-based

residue composition, correlation between area-based residue compositions of in-

terface and non-interface surface, gap volume index and conservation score. The

developers assessed various approaches and parameter sets, concluding the most

accurate method was a multi-stage classifier that separates data progressively

(firstly biological interaction versus crystal packing contact, followed by obligate

versus non-obligate) using three parameters describing interface area, interface
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area ratio, and area-based residue composition interfaces. The authors claim

an accuracy of 91% for the classification of three types of interactions using a

leave-one-out cross-validation procedure. The NOXClass program was run on

the set of non-redundant representative PICCOLO interfaces that resulted from

the clustering procedure (14,658 interfaces). The results suggested that 36% of

the interfaces were non-specific crystal contacts. Given that most non-specific

crystal contacts were already removed through use of PISA biological assembly

data and interface filtering, coupled with some manual inspection of the predic-

tions, it was concluded that this result was unlikely to be genuine. Furthermore,

when applied to the published data used to train the NOXClass algorithm, 87%

of obligate interfaces and 68% of transient interfaces were correctly predicted. As

this was the training set, these values are likely to represent the upper bound of

performance. Unfortunately therefore, the results of NOXClass do not appear to

be sufficiently reliable to be considered further.

The alternative option of using literature-derived data sets was therefore

used. Two published sets were downloaded and a consensus set of the two

produced. Zhu et al. (Zhu et al. (2006)) derived their training data of 75

obligate and 62 non-obligate interfaces used in generating NOXClass (http://

noxclass.bioinf.mpi-sb.mpg.de/trainingdata_bncpcs.htm) from Bradford

and Westhead (Bradford & Westhead (2005)) and Neuvirth (Neuvirth et al.

(2004)). Mintseris and Weng (Mintseris & Weng (2005)) provide a set of 115 obli-

gate (http://zlab.bu.edu/julianm/obligate.txt) and 212 transient (http:

//zlab.bu.edu/julianm/transient.txt). Consolidating these sets, and incor-

porating UniProt information from PDBRes to flag them as homo- or hetero-

oligomers, results in the data shown in Table 3.1. The transient Homo-oligomer

set was too small to be considered further.

3.2.3 Physico-chemical properties

Interfaces were characterized by various physico-chemical properties including

hydropathy, polarity and number of interactions. Values for interface hydropathy

were estimated by applying the experimentally observed values from the Kyte

and Doolittle hydropathy index (Kyte & Doolittle (1982)). Interface polarity
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Hetero or Homo Obligate or

Transient

Number of Interfaces

Hetero-oligomer Obligate 122

Hetero-oligomer Transient 171

Homo-oligomer Obligate 60

Homo-oligomer Transient 2

Table 3.1: Number of each interface type in the literature-derived consolidated

set.

was estimated by considering the number of nitrogen, oxygen and sulphur atoms

that engage in molecular interactions. Frequency counts of interaction types can

also provide information that can be used for discriminating different interaction

types. As polarity and interaction type counts are to some extent dependent

on the size of the interface concerned, they were each normalized by the size of

the interface, as calculated by NACCESS, in order to enable valid comparison of

interfaces of different sizes.

3.2.4 Residue propensity

Previous studies on residue propensities in protein-protein interfaces have drawn

somewhat contradictory conclusions (Ansari & Helms (2005); Jones & Thornton

(1996); Ofran & Rost (2003); Ponstingl et al. (2005); Yan et al. (2008)). However

much of these differences can be attributed to differences in data sets, interface

definition, source of background frequency data and differing approaches to parti-

tioning of interaction types. Importantly many studies do not distinguish between

different anatomical regions of the interface region. In this study the interface

core and periphery are distinguished based on solvent accessibility, as described

in Chapter 2. Here, background residue frequency (Bi) is defined, independently

of structural environment, as follows for each residue type i:

Bi =
Fi∑
Fi

(3.1)

where Fi is the count of each residues type calculated using all residues found

in PICCOLO structures, not just interface residues. The environment-dependent
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residue frequency (Ei) is defined for each combination of structural environments

e and residue types i:

Ei =
Fie∑
Fie

(3.2)

The normalized environment-dependent propensity (Rie) is then the ratio of

the environment-dependent frequency (Ei) to the background frequency (Bi):

Rie =
Eie
Bi

(3.3)

3.2.5 Sequence entropy

Interfaces can also be characterized from an evolutionary point of view. Identifi-

cation of residues that are conserved across a multiple alignment of evolutionarily

related protein sequences is a widely used approach to probe protein function,

as highly conserved residues tend to correlate with those that carry structural or

functional importance. Chapter 4 describes procedures to generate a library of

structural alignments of homologous protein domains, in the form of the relational

database TOCCATA. Combination of the structural data on protein interfaces

from PICCOLO with evolutionary data from TOCCATA allows the evolutionary

properties of interfaces to be probed. TOCCATA alignment sets are generated

at a range of redundancy levels (fully redundant, 95%, 90%, 70%, 50% and 30%

- see Chapter 4 for more details). Choice of which alignment set to use involves

a trade-off between maximizing data coverage and minimizing data redundancy.

The 95% redundancy set was chosen, in which no two sequences have greater than

95% identity. Note that the clustering procedure used to generate the different

redundancy levels is entirely sequence-based with the result that cluster represen-

tatives may be unbound structures absent from PICCOLO. Therefore in order to

link the two databases, all residues from structures found in PICCOLO are first

mapped to their identical counterparts in the fully redundant alignments. These

are then mapped to their 95% representatives through the redundant alignments

which are then themselves extracted from the 95% alignment set. The upshot of

this procedure is that the TOCCATA structural domains used for the evolution-

ary analysis may not themselves be engaged in interactions, but they are identical
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(or almost identical) to another structural domain that is. Alignments comprising

fewer than five structures are not considered and neither are alignment column

positions where more than 50% of elements are gaps.

Although many different measures of residue conservation have been proposed

(Valdar (2002)), Shannon’s entropy is amongst the most widely-used measures.

The entropy score for each aligned column in a multiple sequence alignments can

be expressed as:

Sentropy = −
∑

pi log2 pi (3.4)

where pi represents the observed frequency of residue type i in the aligned

column.

However, although widely used, Wang and Samudrala (Wang & Samudrala

(2006)) pointed out that Shannon entropy does not incorporate background amino

acid frequencies, and as such is sub-optimal for assessing conservation. They

proposed a modified entropy term incorporating background frequencies of each

residue type:

Srelative−entropy = −
∑

pi log2(
pi
pib

) (3.5)

where pib represents the background amino acid frequency found in naturally

occurring proteins.

Wang and Samudrala found that including such background frequency in-

formation significantly improved the performance of functional site prediction.

Intuitively, an invariant tryptophan (∼1.1% natural abundance) is more likely

to be significant than an invariant leucine (∼9.6% natural abundance) (http:

//expasy.org/tools/pscale/A.A.Swiss-Prot.html). The Shannon entropy

score would be the same for these two circumstances, whereas the relative en-

tropy measure assigns a higher score to the invariant tryptophan.

Both entropy measures will be used in this study. The background frequen-

cies chosen for the Srelative−entropy measure were derived from the entire 95%

redundancy set. Frequencies derived from solved structures are likely to dif-

fer from overall proteomic background frequencies as trans-membrane segments,
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low-complexity sequences and natively disordered peptides are likely to be under-

represented in crystal structures.

3.2.6 Contact pairing preferences

The frequency of pairwise residue interactions (Pij) can be derived for the PIC-

COLO derived non-redundant set:

Pij =
Cij∑
Cij

(3.6)

where Cij represents the number of times residue type i is observed engaging

in contacts across the interface with residue type j.

The individual frequencies (Wi) reflecting the amino acid composition of each

residue type i can be defined as:

Wi =
Fi∑
Fi

(3.7)

where Fi represents the number of residues engaged in contacts.

If interfacial amino acid residues exhibit no preference as to which residues

they contact across the interface, the expected frequency of any particular residue-

pair interaction would be simply the product of the two individual residue fre-

quencies (Wi ×Wj).

Any such interaction preference can be quantified by calculating the log odds

ratio of the observed interaction frequency to the expected interaction frequency:

L(i, j) = log2(
Pij
WiWj

) (3.8)

This measure is commonly used (Moont et al. (1999)) but it does not take

into account differing residue sizes (intuitively larger residues have greater surface

area and therefore greater opportunity to interact with one another). Glaser et

al. (Glaser et al. (2001)) used residue volume data to normalize the expected

frequencies only. In this study we normalize both the expected and observed

frequencies using ASA data for each residue from NACCESS (Hubbard (1993)).

Thus, the propensity of residue-residue contacts, L(i, j), is defined as in Equation

3.8, but with Pij and Wi replaced as follows:
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Pij =
Cij × ASAi × ASAj∑
Cij × ASAi × ASAj

(3.9)

Wi =
Fi × ASAi∑
Fi × ASAi

(3.10)

L(i, j) = log2(
Pij
WiWj

) (3.11)

3.3 Results

3.3.1 Number of subunits per assembly

Figure 3.3 shows the number of subunits per assembly for both the PDB ASU

data in red, and the PISA predicted quaternary structures in blue. The PISA

predicted assemblies are marginally larger (mean 3.61 subunits) than PDB ASU

assemblies (mean 3.53 subunits) but they do have a greater density of interactions:

on average each PISA subunit interacts with 3.05 other subunits, whereas PDB

ASU subunits interact with 2.26 others.

3.3.2 Interface clustering

Figure 3.4 shows the data used to perform the interface clustering. Interfaces

sharing the same ordered pair of UniProt identifiers are grouped, and within

each group interfaces are compared all against all with respect to their set of

UniProt residue mappings. The axes in Figure 3.4 represent the percentage over-

lap of each side of the interface. Data in the upper right corner, where both sides

of the interfaces overlap by more than 75% are co-clustered. If either side of the

interface overlaps by less than this threshold the interfaces are not co-clustered.

Through this procedure each unique pair of UniProt proteins can have multi-

ple interface-regional clusters that are identified by their interface cluster serial

identifier. This is best illustrated by the example of α2β2 haemoglobin in Figure

3.5. The clustering procedure successfully discriminates between the two regional

interfaces between α and β haemoglobin (shown in orange and purple) while at
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Figure 3.3: Histogram of the number of subunits in assemblies from PDB ASU

(red) versus PISA predicted quaternary structures (blue). Inset numbers reflect

the frequencies of those assemblies comprising more than 30 subunits.
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the same time successfully groups the two symmetry-related versions of the two

regional interfaces.

The clustering procedure began with 91,651 interfaces - the result of the initial

interface size filtering. If interfaces were clustered only by the criterion of unique

UniProt pair there would be 9,060 clusters. However the combined UniProt pair

and interface regional clustering results in a non-redundant set of 14,658 cluster

representatives, of which 12,227 are homodimers and 2,381 are heterodimers.

Figure 3.6 shows the distribution of cluster sizes. The 20 largest clusters are

shown in Table 3.2. The set of non-redundant representatives is used for all

subsequent analyses.

3.3.3 Contribution of each structural environment

The pie chart in Figure 3.7 shows the numbers of residues found in each of the

structural environments in the non-redundant set of 14,658 interfaces from 9,142

structures.

3.3.4 Interface solvent accessibility

Figure 3.8 shows the distribution of interface sizes. The top panel shows the dis-

tribution of the complete non-redundant set of interfaces. The remaining panels

show the distributions for obligate homodimers, obligate heterodimers and tran-

sient heterodimers respectively. Obligate homodimers have the largest interfaces

followed by obligate heterodimers and then transient heterodimers. These results

suggest somewhat larger average interface sizes than previously published results

(Janin & Chothia (1990); Jones & Thornton (1996)). Chothia and Janin sug-

gest a standard size of 1600 ± 400Å2. The likely explanation is that as protein

biochemistry and crystallographic techniques improve, the structures of larger

complexes become increasingly solvable. Note that in some studies the interface

area is defined as half of the difference between the sum of the accessible surface

area of the complex and the unbound constituents (Jones & Thornton (1996)).

Residue level information on solvent accessibility is also stored in PICCOLO.

The question of whether different amino acid residues exhibit distinguishable pat-

terns of exposure can be probed by comparing, for each residue type, the ratio of
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Figure 3.4: Scatter plot describing the interface clustering procedure. Every pair

of PDB chains that share the same pair of parent UniProt identifiers is compared.

Each point reflects the percentage overlap of each side of the interface with respect

to common UniProt residues. The size and colour of each point reflects the

number of interface pairs sharing that location. The red dashed line indicates the

75% interface overlap threshold - interface pairs passing this threshold on both

sides of the interface are clustered. The vast majority of interface comparisons

result in either zero overlap on either side (lower left hand corner) or complete

overlap on both sides (upper right hand corner).
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Figure 3.5: An example of how a single pair of UniProt proteins can have multi-

ple interface-regional clusters identified by their interface cluster serial identifier.

The clustering procedure successfully discriminates the two regional interfaces

between α and β haemoglobin, shown in orange and purple, while at the same

time successfully groups the two symmetry-related versions of the two regional

interfaces (PDB entry 1y4v).
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Complex Cluster Index Cluster Size

Complex of haemoglobin α and β subunits

(P69905 and P68871)

4 329

6,7-dimethyl-8-ribityllumazine synthase ho-

modimer (O66529)

3 280

Complex of haemoglobin α and β subunits

(P69905 and P68871)

2 275

Insulin homodimer (P01308) 1 264

Streptavidin homodimer (P22629) 6 263

Aspartate carbamoyltransferase catalytic

chain homodimer (P0A786)

3 255

Complex of protocatechuate 3,4-dioxygenase

α and β chains (P00436 and P00437)

3 252

3-dehydroquinate dehydratase homodimer

(P15474)

1 252

Streptavidin homodimer (P22629) 3 251

6,7-dimethyl-8-ribityllumazine synthase ho-

modimer (O66529)

1 250

Complex of aspartate carbamoyltransferase

catalytic and regulatory chains (P0A786 and

P0A7F3)

1 242

Ferritin light chain homodimer (P02791) 1 240

Ferritin light chain homodimer (P02791) 2 240

Coat protein homodimer (Q9EB06) 1 240

Prothrombin homodimer (P00734) 12 228

Dihydrolipoyllysine-residue acetyltrans-

ferase homodimer (P10802)

2 216

Coat protein homodimer (Q9EB06) 3 193

Ferritin heavy chain homodimer (P02794) 2 192

Table 3.2: 20 largest interface clusters. Heterodimers are shown in pale grey.

Cluster index reflects cases where interacting partners share multiple interfaces

(index numbering is arbitrary).
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Figure 3.6: Distribution of cluster sizes resulting from the pairwise redundancy

filtering.
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Figure 3.7: Relative contribution of the four structural environment classifications

for 5,786,031 residues in the non-redundant set.

area buried on complex formation to area exposed in the unbound form. Figure

3.9 shows the average values for each residue type in the interface core and inter-

face periphery. In the interface core there is a strong dependence of average area

buried on the residue size, with the smaller residues having a greater proportion

of their exposed surface buried in the interface. In the interface periphery this

is not evident, instead the charged residues seem to bury the least proportion

of their superficial surface, suggesting that they may be found at the extreme

periphery of the interface region where they can interact with solvent.

3.3.5 Interface hydropathy

Table 3.3 shows the hydropathy of each structural environment for each of the

different interface classes as calculated by summing values from the Kyte and

Doolittle hydropathy index.

These data suggest that across all interface types the protein core is consis-

tently the most hydrophobic environment, followed by the interface core. The in-
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Figure 3.8: Interface size distribution for different interface types. The red dashed

line indicates the mean of each distribution, the blue region one standard devia-

tion either side of the mean and the pale blue the range of the distribution.
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Figure 3.9: Mean proportion of the solvent exposed surface of each residue that

is buried on binding, for each residue in the Interface Core (orange) versus the

periphery (dark red).
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Residues
Hydropathy

Mean S.D.

Overall

Core 1,578,895 1.62 2.64

Exposed 3,020,585 -1.08 2.86

Interface Periphery 754,667 -1.10 2.98

Interface Core 431,884 0.83 2.93

Obligate Homodimers

Core 10,589 1.49 2.70

Exposed 18,110 -1.13 2.83

Interface Periphery 3,487 -1.10 2.92

Interface Core 2,812 0.72 2.95

Obligate Heterodimers

Core 18,377 1.35 2.72

Exposed 31,385 -0.92 2.89

Interface Periphery 10,272 -1.03 2.95

Interface Core 6,474 0.33 2.94

Transient Heterodimers

Core 17,667 1.69 2.61

Exposed 37,078 -1.08 2.80

Interface Periphery 8,031 -1.28 2.89

Interface Core 4,431 0.52 2.93

Table 3.3: Hydropathy of anatomical regions of different interface types.
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terface peripheries are the least hydrophobic regions in the heterodimers whereas

in obligate homodimers the hydrophobicity of the interface periphery is compa-

rable to that of the remainder of the surface. Of the interface cores those in

obligate homodimers are more hydrophobic than transient heterodimers and ob-

ligate heterodimers. However the fact that the mean hydrophobicity of all of the

hand-selected sets is less than the overall average suggests that these sets may

not be fully representative of the larger non-redundant sets. The large standard

deviations mean that all of these results should be treated with caution.

3.3.6 Interface polarity

Interface polarity can be measured in terms of the number of polar atoms engag-

ing in interactions for each 100Å2 of interface surface. However, when comparing

the polarity of different structural environments it is important to take into ac-

count the differing densities of all interacting atoms in the different structural

environments. Table 3.4 shows the number of polar atoms per 100Å2 and for

comparison the total number of interacting atoms per 100Å2.

The numbers of polar atoms per unit area are higher in the interface core

than the periphery for all interface types. However, this is a result of the dif-

fering atomic densities in the structural environments. For all interface types

there is significantly higher interacting atom density in the interface core than

the periphery - an inevitable result given the definitions used and the fact that

atoms in the interface core have more opportunities to engage in interactions.

The ratio of polar atoms per unit area to total atoms per unit area is perhaps

more revealing. For each interface type the interface core is less polar than the

interface periphery. Obligate homodimers have the highest atomic density and

lowest polarity, followed by the hetero-transient interfaces then homo-transient

interfaces. However, given the large standard deviations, the results must be

treated cautiously.

The results of the interface polarity analysis are congruent with the parallel

hydropathy analysis; the two phenomena are really two sides of the same coin.

In general much of the free energy of binding comes from non-polar, hydrophobic
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Mean

num-

ber

polar

atoms/

100Å2

(S.D.)

Mean

num-

ber all

atoms/

100Å2

(S.D.)

Mean

pro-

portion

polar

atoms

Overall
Interface Periphery 0.72

(0.45)

2.15

(1.27)

0.34

(0.09)

Interface Core 1.43

(3.03)

5.24

(5.79)

0.29

(0.16)

Obligate Homodimers
Interface Periphery 1.22

(0.31)

3.56

(0.69)

0.34

(0.06)

Interface Core 2.01

(0.79)

7.85

(1.78)

0.25

(0.08)

Obligate Heterodimers
Interface Periphery 0.71

(0.44)

2.11

(1.25)

0.34

(0.08)

Interface Core 1.42

(1.09)

5.00

(3.25)

0.29

(0.11)

Transient Heterodimers
Interface Periphery 0.88

(0.49)

2.53

(1.31)

0.36

(0.08)

Interface Core 1.93

(1.48)

6.74

(4.29)

0.29

(0.13)

Table 3.4: Polarity of anatomical regions of different interface types.
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interactions. The gain in free energy from polar hydrogen and ionic interac-

tions across an interface typically only compensates for the free energy lost from

favourable interactions from solvent. Instead, such interactions often provide the

required specificity through complementary polar contacts. This subjects tran-

sient protein assemblies to opposing evolutionary selective pressures with respect

to their hydrophobicity. Whilst they require sufficient hydrophobicity to gen-

erate binding affinity, an excess of solvent exposed hydrophobic residues risks

non-specific protein association and its potentially fatal consequences (Calloni

et al. (2005)). Obligate assemblies are not typically exposed to solvent during

their lifetime and are therefore not subject to such constraints to the same degree.

3.3.7 Interactions per unit area

The numbers of each of the major interaction types, normalized by area, are

shown in Figures 3.10, 3.11, 3.12 and 3.13. The data are derived by dividing the

sum of interaction counts for each chain pair by the interface size as calculated

by NACCESS. Figure 3.10 shows the overall data for the non-redundant set of

PISA-predicted interfaces. Figures 3.11, 3.12 and 3.13 show the same informa-

tion for obligate homodimers, obligate heterodimers and transient heterodimers

respectively. Red dashed lines indicate the mean of the distribution. The cen-

tral shaded region indicates one standard deviation either side of the mean. The

pale shaded region is the range of the distribution. The numbers in brackets

are the percentage of interfaces having non-zero values for this interaction type.

Only 79% of PDB structures contain co-ordinates of water molecules. When only

structures that contain water are considered, the number of water-mediated hy-

drogen bonds rises to 0.305 (81.6% of interfaces have 1 or more water-mediated

hydrogen bond). These data must be interpreted carefully, as a pair of residues

engaging, for example, in an ionic or aromatic interaction, may have several atoms

multiply interacting in a combinatorial fashion which can result in a significant

proportional increase in the interaction counts. Conversely, hydrogen-bonds and

water-mediated hydrogen bonds, for example, are calculated as an interaction

between specific donor and acceptor atoms so do not contribute combinatorially

in this manner.
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Figure 3.10: Figures 3.10, 3.11,3.12 and 3.13 show frequency distributions of the

numbers of each of the major interaction types per unit area. The red dashed lines

indicate the mean of the distribution. The central shaded region indicates one

standard deviation either side of the mean. The pale shaded region is the range of

the distribution. The numbers in brackets are the percentage of interfaces having

non-zero values for this interaction type. Interaction types per unit area for the

overall non-redundant set.
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Figure 3.11: Interaction types per unit area for obligate homodimers.
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Figure 3.12: Interaction types per unit area for obligate heterodimers.
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Figure 3.13: Interaction types per unit area for transient heterodimers.
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A potential application of these terms would be to establish whether col-

lectively their profile can act as a fingerprint to distinguish non-specific crystal

contacts from genuine biological contacts, or randomly oriented docking decoys

from poses close to the native complex.

3.3.8 Residue propensity

Figure 3.14 shows the residue propensities of each of the twenty standard residues

for each of the four structural environments. One overall trend is that the hy-

drophobic residues (Ile, Val, Leu, Phe, Met and Ala) are enriched in the protein

core and interface core and conversely are depleted in the exposed surface and

the interface periphery. While most of these residues are relatively more enriched

in the protein core, phenylalanine is as prevalent in the interface core and not

significantly depleted in the interface periphery. The polar and ionizable residues

(Asp, Gln, Asn, Glu, Lys and Arg) exhibit reciprocal behaviour: they are sig-

nificantly enriched on the surface and the interface periphery. Lysine is highly

disfavoured in the protein core and interface core.

For the majority of residues the interface core and periphery are intermedi-

ate between the protein core and exposed surface, with the interface periphery

most similar to the exposed protein surface and the interface core most similar to

protein core. The exceptions to this scheme are methionine, glycine, alanine, his-

tidine, tryptophan, tyrosine and arginine. Of these, alanine and glycine, the two

smallest residues, are disfavoured at the interface periphery. Histidine and argi-

nine, two positively charged residues, are favoured at the periphery - in fact this is

the structural environment in which these residues are most enriched. Arginine is

capable of multiple types of favorable interactions: it can simultaneously form up

to five hydrogen bonds and an ionic salt-bridge with the positive charge carried

on its guanidinium motif. Tryptophan, tyrosine and methionine, three large, hy-

drophobic residues that can engage in a range of interactions, are all favoured at

the interface core, corresponding with the observations of Ofran and Rost (Ofran

& Rost (2003)). The enrichment of aromatic tyrosine may be explained by its

contribution to the hydrophobic effect without a large entropic penalty due the

side chain having few rotatable bonds as well the hydrogen bonding capacity of
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Figure 3.14: Residue propensity for the overall non-redundant set.

Figure 3.15: Residue propensity for the obligate homodimers.

104



3.3 Results

Figure 3.16: Residue propensity for the obligate heterodimers.

Figure 3.17: Residue propensity for the transient heterodimers.
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its 4-hydroxyl group. Tryptophan has a very large aromatic side chain that can

mediate aromatic π-interactions, act as a hydrogen bond donor, as well as form

extensive hydrophobic contacts.

Figures 3.15, 3.16 and 3.17 show residue propensity data for obligate homod-

imers, obligate heterodimers and transient heterodimers respectively. Compari-

son of the interface regions of obligate homodimers and transient heterodimers

suggests that the obligate homodimers have a greater proportion of hydrophobic

residues and a lesser proportion of polar residues. This corresponds with the ob-

servations of Jones and Thornton (Jones & Thornton (1996)). There is likely to

be strong selection against large hydrophobic patches in transiently-interacting

proteins in order to avoid potentially harmful aberrant aggregation. This differ-

ence is less obvious when comparing the homo-obligate and hetero-obligate set

but in most other respects these two sets appear to exhibit similar propensities.

Some other differences of interest are apparent between the obligate sets and the

transient heterodimers. Alanine residues would appear to be less favoured in

the hetero-transient set whereas cysteines are more favoured. Tryptophan and

methionine residues both exhibit comparable overall frequencies with respect to

their transient and obligate sets but both are enriched in the interface core re-

gion of the transient set. The charged and polar residues would appear to be

more abundant in their hetero-transient set than they are in the obligate systems

(though as a whole they are still disfavoured here). Overall, while there are unam-

biguous differences in the residue propensities of the different anatomical regions

of a protein structure, the results presented here suggest that differences between

different interface types are less clear cut. Larger sample sizes are required to

assess the significance of the observations.

3.3.9 Sequence entropy

Sequence variability for the different structural environments for the non-redundant

set of interfaces is shown in Figure 3.18 and 3.19, plotting Shannon entropy and

Relative entropy respectively. The red dashed lines indicate the mean of the dis-

tribution and the central shaded region indicates one standard deviation either

side of the mean. Note that for Shannon entropy lower values indicate greater
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conservation, whereas for Relative entropy the opposite is true (Relative entropy

actually reflects the difference between two distributions). By both measures the

protein interior is the least variant, followed by the interface core. The mean val-

ues for the protein exterior and interface periphery are almost indistinguishable.

Figure 3.18: Frequency distribution of Shannon entropy values for each of the

four structural environments. The red dashed lines indicate the mean of the

distribution and the central shaded region indicates one standard deviation either

side of the mean. For Shannon entropy lower values indicate greater conservation.

The peak at zero Shannon entropy corresponds to invariant alignment columns.

To test the significance of the difference between the entropy scores for the

protein core and interface core Welch’s t-test was used (Welch (1947)). The results

of this test suggest that at 99% confidence the two distributions are independent

107



3.3 Results

Figure 3.19: Relative entropy values for each of the four structural environments.

For Relative entropy higher values indicate greater conservation.
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(t-statistic of 47.1).

An alternative way to probe such trends is to assess the number of interfaces

where the average entropy of the core is greater than that of the periphery. Using

the Shannon entropy measure, in 69.6% of interfaces (7,123 of 10,227) the inter-

face core is more conserved than the periphery. The equivalent figure for Relative

entropy is 80.1% (8,188 of 10,227).

These results confirm that the interface tends to be more conserved than the

rest of the exposed surface, validating the results of previously published stud-

ies, but using a data set two orders of magnitude larger (Caffrey et al. (2004);

Mintseris & Weng (2005); Valdar & Thornton (2001)). Guharoy and Chakrabarti

(Guharoy & Chakrabarti (2005)) found, using a smaller data set and the Shannon

entropy measure, that 73.6% of homodimers (89/121) and 68.1% of heterocom-

plexes (47/69) had an interface core more conserved than a solvent-exposed rim.

Nooren and Thornton (Nooren & Thornton (2003)) analysed a small set of 39

transient heterodimers and also found (using a different measure of conserva-

tion and interface definition) that the interface core was more conserved than

periphery.

Figures 3.20 and 3.21 are box plots showing Shannon and Relative Entropy re-

sults as calculated previously but partitioned first by structural environment and

then by amino acid residue. Inspection of these figures indicates which residues,

if any, exhibit greater or lesser variability in each structural environment. By ei-

ther measure the results suggest that the protein core and interface core are more

conserved than the exposed surface and the interface periphery. The difference is

most pronounced in the polar and charged residues, and least in the hydrophobic

and aromatic residues. Cysteine does not obey this trend and appears to be more

conserved in all environments, presumably due to its important role in disulphide

bridges.

Figures 3.22 and 3.23 are derived from precisely the same data but this time

arranged first by amino acid residue and then by structural environment. This ar-

rangement indicates in which structural environment each residue exhibits greater

or lesser variability. By Shannon entropy cysteine, glycine and proline are the

most conserved in all environments. Each of these can perform unique structural
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Figure 3.20: Shannon entropy values for each residue in each of the four structural

environments.

Figure 3.21: Relative entropy values for each residue in each of the four structural

environments.
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roles - cysteine in disulphide bonds, glycine in positive φ torsion angle environ-

ments and proline as a helix kink and in solvent exposed turns.

By Relative entropy cysteine and tryptophan appear to be the most con-

served in all environments (although this may be an artefact of their extremely

low abundance in the Relative entropy calculation). Relative entropy generally

appears to provide the greater discrimination. In each of Figures 3.20, 3.21, 3.22,

3.23 the standard deviations are large so results must be interpreted cautiously.

One general trend is that in the protein core and interface core, the polar and

charged residues are consistently more conserved than the hydrophobic residues,

although the effect is less pronounced with the Shannon entropy measure. This

result corresponds with the finding of Worth and Blundell (Worth & Blundell

(2009)) that buried polar side chains are amongst the most conserved residues of

all.

3.3.10 Contact preferences

Figures 3.24, 3.25, 3.26 and 3.27 (pages 113 and 116) show a series of matrices

used in the derivation of a contact preference matrix. The progression is shown

to enable assessment of the contribution of the different terms to the final con-

tact preference matrix. Figure 3.24 shows the raw observed contact matrix. Here

leucine-leucine contacts dominate, however this is largely due to the high occur-

rence of leucine in interfaces. To assess the impact of residue abundance, com-

parison should be made with the expected contact matrix in 3.25. As described

previously, both the observed and expected contact matrix are normalized by the

ASA of each residue. The pairwise ASA data (independent of interface contacts

and residue frequencies) are shown in Figure 3.26. Finally, Figure 3.27 shows the

final contact preference matrix - essentially the log ratio of the ASA-normalized

observed to ASA-normalized expected contacts.

The final preference matrix reveals some interesting patterns consistent with

previously published studies (Ansari & Helms (2005); Moont et al. (1999); Ofran

& Rost (2003); Yan et al. (2008)), summarizing much of what is already es-

tablished regarding macromolecular interactions - hydrophobic interactions, salt

bridges and disulphide bonds are all important in protein-protein interactions.
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Figure 3.22: Shannon entropy values for each structural environment for each

residue type.

Figure 3.23: Relative entropy values for each structural environment for each

residue type.
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Figure 3.24: Observed contact matrix. Colours correspond to the proportion

of each residue pair observed in the non-redundant set in PICCOLO (Pij as

described in Equation 3.6)
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Figure 3.25: Expected contact matrix. Colours represent the expected frequency

of residue pairs based solely on the occurrence of each residue in interface regions,

independent of contacts actually observed in PICCOLO (Wi ×Wj as described

in Equation 3.7).

114



3.3 Results

Figure 3.26: Pairwise ASA matrix. Colours represent the proportion of com-

bined ASA of the pair of residues, independent of contacts actually observed in

PICCOLO.

115



3.3 Results

Figure 3.27: Contact preference matrix. Colours represent the log ratio of the

ASA-normalized observed and expected residue frequencies L(i, j) as described

in Equation 3.8.
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Hydrophobic residues favour other hydrophobic residues and disfavour the charged

and polar residues, as would be expected from desolvation behind the hydrophobic

effect. Aromatic residues favour one another, as do hydrophobics and aromatics.

Proline shows a preference for aromatic residues - indeed it has been suggested

that the interaction between a proline ring and an aromatic ring resembles the

interaction between two aromatic rings (Glaser et al. (2001); Yan et al. (2008)).

Residues of opposing charge favour one another (arginine, lysine and histidine

versus glutamate and aspartate) enabling electrostatic complementarity to be es-

tablished. Like charge interactions are predictably disfavoured for the glutamate

and aspartate residues carrying a negative charge. The pattern for residues car-

rying positive charge is less clear cut. Lysine-lysine interactions are disfavoured,

whereas histidine-histidine, arginine-arginine and arginine-histidine are favoured.

Examination of the atomic interaction details stored in the atom pairs table

revealed that a range of interactions types contribute to the histidine-histidine

result, including aromatic, van der Waals, π-cation and hydrogen bonding in-

teractions. The arginine-arginine preference is due in part to some hydrophobic

interactions between the Cβ and Cγ atoms as well as some hydrogen bonding

between main chain and side chain atoms. The arginine-histidine result can be

largely attributed to π-cation interactions with some side chain to side chain

hydrogen bonding.

The diagonal of the matrix is generally favoured (except for lysine pairs

and aspartate and glutamate pairs), likely due to the preponderance of self-

interacting residues from homodimers with a 2-fold symmetry axis. The most

preferred contact pairs are cysteine-cysteine followed by tryptophan-tryptophan

and methionine-methionine - the three least abundant residues (see Figure 3.14).

The disulphide capacity unique to cysteines plays a critical role in stabilization

of small secreted proteins. Methionine-methionine pairs are dominated by hy-

drophobic interactions. The tryptophan-tryptophan pairwise interactions have

contributions from van der Waals and hydrophobic contacts but are dominated

by edge to face type aromatic interactions. Figure 3.28 shows as a typical exam-

ple the homodimeric complex of isopentenyl-diphosphate delta-isomerase (PDB

entry 1ow2) with two pairs of symmetry related tryptophans.
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Figure 3.28: Cartoon representation of a typical example of tryptophan-

tryptophan contacts from the homodimeric complex of isopentenyl-diphosphate

delta-isomerase (PDB entry 1ow2). Chain A is shown in blue and Chain B

in orange. Two pairs of symmetry-related tryptophan residues are represented

as sticks in red, with aromatic-aromatic contacts stored in PICCOLO as green

dashes.
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These results indicate some differences to those presented by Glaser et al.

(Glaser et al. (2001)), who found arginine-tryptophan to be the most favoured

pair, which is only marginally favoured here. However that study used a different

interface definition and, as indicated in the Methods, they use residue volumes

to normalize the expected interactions only.

3.3.11 PICCOLO analysis conclusions

Although it is difficult to draw broad conclusions across the different properties

investigated (residue propensity, hydropathy, residue contact preference, sequence

entropy) an underlying theme does emerge. This is that the different anatomical

regions of protein interfaces exhibit different qualities, and these differences can

be more striking than the differences observed between different interface types.

Overall the core of the interface is most similar to the core of the protein domain,

whereas the periphery of the interface is, in most respects, similar to remaining

solvent exposed surfaces of the protein. The next chapter investigates whether

these patterns hold true when examining the nature of substitutions that are

accepted in protein interfaces across evolutionary time.
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Chapter 4

TOCCATA

4.1 Introduction

Structural domains are independently folding units that typically form the fun-

damental modular units of protein evolution. Protein domains with similar se-

quences have similar folds and always share a common evolutionary origin. How-

ever, this property is non-commutative; domains with similar folds do not nec-

essarily have detectably similar sequences. Protein domains with similar folds

generally share a common evolutionary origin (genuine convergent evolution is
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rare) (Lesk et al. (1989)). An understanding of this relationship between pro-

tein sequence and structure is crucial to understanding evolution and aiding in

the analysis of the results of the various genome projects. This is manifested in

the principle that sequence alignment can unambiguously identify proteins who

share similar structures; for proteins of reasonable length, when the pairwise se-

quence identity is above 30% the proteins can confidently be assigned as sharing a

common evolutionary origin. Between 20-30% sequence identity this relationship

becomes ambiguous, hence this window is described as the “twilight zone” (Rost

(1999)). Pairwise identities below 15-20% mean that although the proteins may

still share a common evolutionary origin, other evidence would be required to

gain confidence. This principle, that structure is more conserved than sequence,

can be harnessed to improve the quality of an alignment of sets of homologous

proteins. Wherever available, structural information should be used: features in-

cluding secondary structure, solvent accessibility, hydrogen bonding, disulphide

bonding and positive φ torsion angles can assist accurate alignment of residues

where the sequences have diverged such that no obvious similarity remains.

Sequence-structure homology recognition is a crucial step in genome anno-

tation and is also the first step in comparative modelling as it is the means by

which putative template structures are identified. The TLB group has been con-

tributing to the area of comparative modelling for several years and is currently

working towards applying these approaches at genome-scale (Burke et al. (2007);

Worth et al. (2007a)), as discussed in Chapter 5. A pre-requisite for such work

is well-organized structural information in the form of a comprehensive set of

multiple structural alignments. Multiple alignments offer improved performance

in homology recognition searches over pairwise alignments, as they permit profile

methods to be used. Such methods have been shown to offer greater sensitivity

than pairwise search methods (Altschul et al. (1997); Durbin et al. (1999)). Ide-

ally such an alignment set should cover all available structures from the Protein

Data Bank (PDB) in order to maximize the likelihood of finding a structural

match. Maintaining such coverage with incremental PDB updates represents a

considerable challenge.

Aside from the purpose of comparative modelling, such alignment data are

also required when exploring how the properties of protein interfaces extend to
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homologues. A further application of such a resource is the potential for the

derivation of new amino acid residue substitution tables.

4.1.1 Structural alignments

The TLB group has previously developed HOMSTRAD (HOMologous STRuc-

ture Alignment Database) (Johnson et al. (1993); Mizuguchi et al. (1998b)) a

web-accessible resource of structural alignments of homologous protein families.

The family definitions in HOMSTRAD came from various databases including

SCOP (Hubbard et al. (1999)), Pfam (Finn et al. (2008)), PROSITE (Bairoch

(1991)) and SMART (Schultz et al. (1998)) as well as the results of sequence sim-

ilarity searches using PSI-BLAST (Position Specific Iterative Basic Local Align-

ment Search Tool) (Altschul et al. (1997)) and Fugue (Shi et al. (2001)) and a

small number of manually defined families. Most of the HOMSTRAD alignments

have been generated using the programs Comparer (Sali & Blundell (1990)) and

MNYFIT, although a small number were generated by hand. A key feature of

HOMSTRAD is that the alignments are provided annotated using the program

JoY (Mizuguchi et al. (1998a)) to highlight a number of important structural

features including secondary structure, relative sidechain accessibility, hydrogen

bonding to the main chain amide, main chain carbonyl or other sidechains, disul-

phide bonds and positive φ torsion angle. This annotation is critical to under-

standing how these various structural features contribute to the determinants

of conservation across the family. HOMSTRAD is commonly used as a search

database for the sequence-structure homology recognition program Fugue to iden-

tify homologous proteins of known structure that potentially act as templates for

comparative modelling.

HOMSTRAD requires substantial manual curation, both to seed new families

and to classify weekly PDB updates, and this is simultaneously one of its strengths

and one of its main drawbacks. As dozens of new structures are published each

week, unless continual effort is made to curate and update classifications (a task

for which resources are unavailable) HOMSTRAD’s coverage undergoes attri-

tion. A further drawback of HOMSTRAD is that it has no consistent underlying
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domain-family definition either in terms of regional delineation of domains or evo-

lutionary breadth (for those cases where several related families share common

structural fold). For these reasons the decision was taken to derive an alternative

library of structural alignments in the form of the relational database TOCCATA,

with a focus on trying to achieve and maintain greater structural coverage by us-

ing automated procedures for generating multiple alignments. Although fully

automated methods are unlikely to achieve the same alignment quality as man-

ual approaches, the increasing volumes of structural data published in light of

structural genomics projects (Chandonia & Brenner (2006)) means that methods

that require manual curation are increasingly unrealistic.

4.1.2 Environment Specific Substitution Tables

Intuitively it would be predicted that the likelihood that an amino acid substitu-

tion will be accepted through evolution depends strongly on the local environment

of the amino acid sidechain. This is illustrated by the fact that residues buried

within the core of a protein tend to be more conserved than those on the surface

on account of buried residues having a role in maintaining the structure of a pro-

tein, with buried polar residues being the most conserved of all (Worth & Blundell

(2009)). This notion of context-dependent substitution likelihood has been es-

tablished qualitatively and quantitatively through careful observation of amino

acid substitutions in divergent evolution compiled from HOMSTRAD. Overing-

ton et al. (Overington et al. (1992)) used HOMSTRAD to derive a library of

environment-specific substitution tables (ESSTs).

ESSTs have been successfully applied to a series of key problems in struc-

tural bioinformatics: secondary structure prediction (Wako & Blundell (1994a));

sequence-structure homology recognition as Fugue (Shi et al. (2001)); structural

model validation as Harmony (Pugalenthi et al. (2006)); prediction of stability

changes upon mutation as SDM (Site Directed Mutator) (Topham et al. (1997));

and functional site prediction as Crescendo (Chelliah et al. (2004)). Crescendo

works by comparing the observed substitution patterns from an alignment of the

protein of interest with its orthologues, which are under both functional and struc-

tural constraints, with those that are expected on the basis of structure taken
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from the library of pre-calculated ESSTs. Recently Gong and Blundell (Gong

& Blundell (2008)) found that the performance of Crescendo could be markedly

improved by more extensive masking of functionally annotated residues during

ESST generation.

In much of the preceding work on ESSTs, the local structural environment

has typically been defined based on (1) main-chain conformation and secondary

structure, (2) solvent accessibility, and (3) hydrogen bonding. By combining four

classes of secondary structure (α-helix, β-strand, coil and residue with positive

φ main-chain torsion angle), two classes of solvent accessibility (accessible and

inaccessible), two classes of main-chain carbonyl hydrogen bonding (bonded and

unbonded), two classes of main-chain amide hydrogen bonding (bonded and un-

bonded), and finally two classes of sidechain hydrogen bonding (bonded and un-

bonded), a total of 64 ESSTs can be combinatorially derived (4×2×2×2×2=64).

Thus these combined structural features define the local structural context and

permit quantitative exploration of the different restraints placed by the environ-

ment on the probability of substitutions being tolerated.

The overall procedure for generating a substitution table involves first us-

ing the raw counts of observed substitutions across an alignment or series of

alignments to give an Accepted Replacement Matrix (ARM). The ARM can be

readily converted to an Observed Frequency Matrix (OFM) by converting the

raw replacement counts to respective frequencies.

OFM : P (b|a,E) =
AEab∑
c

AEac
(4.1)

where P (b|a,E) is the probability that amino acid a in environment E is substi-

tuted by amino acid b.

An Expected Frequency Matrix (EFM) can be derived based on the observed

background occurrence of each target residue, independent of substitutions.

EFM : qb =

∑
a,E

AEab∑
a,b,E

AEab
(4.2)
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where qb is the background probability of observing amino acid b. Subsequently

a Substitution Frequency Matrix (SFM) can be derived as the simple division

product of the OFM over the EFM. The SFM is then converted to a log-odds

matrix (LOM) by taking the logarithm of the SFM probabilities and applying a

scaling factor:

LOM : s(a,E → b) =
3

log 2
× log(

P (b|a,E)

qb
) (4.3)

One of the key challenges in the derivation of ESSTs is that of data sparsity.

The availability of observed substitution data is limited and when partitioned

over many structural environments data coverage can be meagre, particularly for

those less abundant environments with severe physico-chemical constraints. This

generates a tension between the desire to reflect accurately each residue’s local

environment with a large number of structural descriptors and the necessity for

each environment to comprise sufficient observations to attain statistical signif-

icance. One obvious way to overcome this challenge is to increase the number

of observations by increasing the number and size of the multiple alignments.

TOCCATA attempts to maximize the available structural information by includ-

ing all SCOP families, although coverage of the PDB is not complete owing to

the infrequency of SCOP updates.

An important distinction lies between ESSTs that are conformationally re-

strained and those that are unrestrained. Conformationally constrained substi-

tutions are those where, despite the residue substitution, the local structural

environment remains unaltered. Such a constraint can be crucial for example for

the purpose of using ESSTs to predict the effect of mutations on protein stabil-

ity (Topham et al. (1997)). In contrast ESSTs used for the purpose of assessing

sequence-structure alignments are unrestrained and include all substitutions re-

gardless of any change in local environment (Shi et al. (2001)). However the

use of conformational restraints has the added affect of reducing the number of

substitution counts that can be included, thereby exacerbating sparsity issues.

In generating ESSTs for use in prediction of the effects of mutations on pro-

tein stability, Topham et al. originally defined 216 environments (9 secondary

structure terms, 3 solvent accessibility terms and 8 hydrogen bonding terms)
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(Topham et al. (1993)). However data sparsity issues led them to reduce this to

54 environments by collapsing the 8 hydrogen bonding terms to 2.

4.1.2.1 Smoothing

Entropy-based smoothing procedures, originally devised by Sippl (Sippl (1990)),

were implemented by Topham et al. (Topham et al. (1993)) (in the form of

the Fortran program maksub for use in predicting the effects of mutations on

stability) and Sali and Blundell (Sali & Blundell (1993)) to help resolve data

sparsity issues. Shi et al. (Shi et al. (2001)) updated the ESST generation pro-

cedure in the form of the Fortran program subst (written by Kenji Mizuguchi)

for use in the sequence-structure homology recognition program Fugue. As well

as updating the smoothing procedure to compensate for data sparsity they also

included a clustering scheme to correct for sampling bias and filtering proce-

dures to reduce interference from non-structural restraints by masking functional

residues (defined as those interacting with small-molecule ligands or other struc-

tural domains). The smoothing procedures attempt to obtain better estimates of

substitution probabilities by replacing Equation 4.1 for the OFM with:

P (b|a,E) = ωa,E1 A(b|a,E) + ωa,E2 W (b|a,E) (4.4)

where W (b|a,E) is the OFM as defined in Equation 4.1 (with P (b|a,E) replaced

with W (b|a,E)) and A(b|a,E) is an a priori probability distribution (Sali &

Blundell (1993)) and the weights ωa,E1 , ωa,E2 are given by:

ωa,E1 =
1

(1 + Na,E

σn
)

(4.5)

ωa,E2 = 1− ωa,E1 (4.6)

where Na,E is the total number of observed substitutions of amino acid a in en-

vironment E, n is the number of bins for the probability distribution (20 in this

case) and the constant parameter σ determines the relative contributions of the

a priori distribution and the observed distribution. When the average number

of counts per bin (Na,E/n) is less than σ, the a priori distribution dominates

and when greater than σ the observed probability distribution dominates. In this
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work, the recommended empirically-derived σ value of 5 has been used through-

out. The a priori distribution A(b|a,E) for each environment is determined by

iteratively generating subset combinations of all features contributing to the en-

vironment (Sali & Blundell (1993)).

4.2 Methods

4.2.1 SCOP

A key decision in developing TOCCATA was to identify a suitable fundamental

structural unit for alignment. Harnessing an external domain definition resource

would provide a consistent domain family definition for each structural align-

ment while removing the requirement for continual manual curation. The two

most popular resources for classifying structural domains are CATH and SCOP.

Whilst they share some similarities there are important distinctions. CATH is an

acronym for Class, Architecture, Topology and Homology (http://www.cathdb.

inf/) (Greene et al. (2007)) - the four main levels in the classification: Class

represents the overall secondary-structure content of the domain; Architecture is

a broad association of similar topologies which share particular structural fea-

tures; Topology captures significant similarity in structure but no clear evidence

of sequence homology; and Homologous superfamily indicates a clear evolutionary

relationship.

The Structural Classification of Proteins (SCOP) resource (http://scop.

mrc-lmb.cam.ac.uk/scop/) (Andreeva et al. (2008)) from the MRC, aims to

provide a full description of the structure-evolution relationships between pro-

teins of known structure from the PDB. Chains from the PDB structures are

first delineated into structural domains, and these domains are classified into a

multi-level hierarchy. The principal levels of the hierarchy are family, superfamily

and fold. Proteins in the same SCOP family show clear evolutionarily related-

ness. In practice this typically means that pairwise identity between members of

the family is above the twilight zone. Proteins in the same SCOP superfamily

are believed to share a common evolutionary origin despite having low or un-

detectable sequence similarity. The evidence suggesting a common evolutionary
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origin would typically include particular structural motifs or functional residues.

Proteins in the same SCOP fold share the same relative arrangement of major

secondary structures with the same topology. They may differ in the length and

conformation of loops and the presence of peripheral secondary structure embel-

lishments. Although proteins in the same fold from different superfamilies may

share a common evolutionary origin, such relationships typically cannot be dis-

tinguished from rare cases of convergent evolution. Importantly for the quality

of classifications, SCOP is manually generated by visual inspection and structure

comparison and it is for this reason that SCOP is chosen as the basis for this

work.

The family level was selected as the most appropriate level in the SCOP hierar-

chy to generate alignments. Although the higher superfamily level would provide

greater evolutionary diversity, this would also make the alignment generation

more challenging, possibly reducing alignment quality. The SCOP classes “low-

resolution protein structures” and “Designed proteins” containing non-natural

sequences were excluded, as were Cα only PDB structures, leaving 94,387 SCOP

domains classified into one of 3,967 SCOP families. 753 of these families com-

prised a single domain; these were included in TOCCATA but naturally no align-

ment stage was required. Figure 4.1 shows the distribution of the number of

domains comprising each SCOP family. PDB format files corresponding to each

SCOP domain definition were pre-generated as part of the sanitization process

described in Chapter 2.

SCOP data is provided in the form of a series of formatted text files, describ-

ing domain delineation (in terms of PDB chain identifiers and residue numbers

forming the domain boundaries) and their classification in the SCOP hierarchy.

SCOP data is typically released approximately every 1-2 years. The current re-

lease, version 1.73 released November 2007, contains 97,178 domains from 34,495

PDB entries. One drawback of SCOP is this slow update cycle; the increasing

rate of publication of new structures in the PDB means that the gap between

published structures and classified structures is ever widening. As of August 2008

there are 50,754 PDB entries containing protein, meaning SCOP coverage is cur-

rently around 68%. More recently the SCOP curators have provided pre-SCOP
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Figure 4.1: Distribution of the number of domains per family in SCOP depicted in

red in the form of a bar chart (left hand y-axis) and the same data as a log-linear

plot in blue (right-hand y-axis).
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as an incremental update of provisional classifications. These data have been in-

corporated but currently only contributes an additional 554 structures, or about

1% additional coverage.

The SCOP text data are parsed and loaded into a locally-generated rela-

tional database version of SCOP. The schema comprises three core tables shown

in Figure 4.2, which have been designed to be tolerant of some of the atypical

situations found in SCOP. The domains and fragments tables hold data corre-

sponding to each structural domain. Although 96% of domains comprise a sin-

gle fragment, domains can comprise multiple fragments, either as discontinuous

fragments within the same polypeptide chain (e.g. catalytic domain of matrix

metalloprotease gelatinase A in PDB entry 1ck7) or as a combination of distinct

polypeptide chains (e.g. human thrombin in PDB entry 1h8d). The chain iden-

tifier is stored as a property of the fragment. The hierarchies table stores data

concerning the multi-level hierarchical classification of each domain (class, fold,

superfamily, family, protein, species and domain). A PDB polypeptide chain may

comprise a single domain. In such cases SCOP does not provide domain bound-

aries. However these values are required for generating TOCCATA alignments,

and so are retrieved using the information stored in PDBRes. Finally a linking

table to join the SCOP domain definitions to the residue-level data in PDBRes (as

described in Chapter 2) is generated in order to provide residue level annotations

of all residues falling within SCOP classified domains.

4.2.2 Sequence clustering

Each SCOP family contains many redundant structural domains. For many pur-

poses, not least for the generation of TOCCATA, it is useful to derive non-

redundant sets at higher resolution than the SCOP family. In order to achieve

this, the BlastClust sequence clustering program was used, which uses scores

from the BLAST (Basic Local Alignment Search Tool) sequence similarity search

tool (Altschul et al. (1997)) to perform single-linkage clustering. For each SCOP

family, unaligned protein sequences are first generated, delineated to correspond

to the domain boundaries specified by SCOP. This ensures that each domain

sequence in the family should be of similar length. The input parameters were
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Figure 4.2: Schema of the SCOP database.
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selected such that, if the coverage of the aligned region, as a proportion of the

length of the sequence, was above 90% (in both directions) and the percent iden-

tity (PID) was above the specified threshold, the two sequences are considered

to be neighbouring (neighbour relationships are therefore symmetrical ). Single-

linkage clustering adds a sequence to a cluster if the sequence is a neighbor to at

least one sequence in the cluster. Once the clusters have been generated a rep-

resentative structural domain is chosen as that member having the best QScore.

The clustering was repeated at five PID thresholds (95%, 90%, 70%, 50% and

30%) to provide some flexibility in choice of resolution, and the results loaded

into the blast cluster map table in the SCOP relational database.

4.2.3 BATON

The in-house structural alignment program BATON was used to generate the

TOCCATA alignments. BATON has been developed over several years in the

TLB group, initially in the form of COMPARER (Sali & Blundell (1990)) and

more recently rewritten and updated by David Burke. As well as sequence simi-

larity terms BATON uses a number of structural descriptors including secondary

structure, hydrogen-bonding, solvent accessibility, disulphides, dihedral angles

and sidechain orientation. When aligning two proteins of length i and j, BATON

first generates an i× j matrix with each element populated with the sum of the

difference scores of the different structural descriptors. The contribution S of

each of structural descriptor D for each matrix element would be:

S = Dw ×
(Di −Dj)

100
(4.7)

where Dw is the relative weight assigned to the feature. As such, where structural

features for the two residues are the same, the contribution to the total for that

matrix element would be zero. Once all of the matrix elements have been popu-

lated, the standard Smith-Waterman dynamic programming algorithm is applied

(Smith & Waterman (1981)) to identify the optimal lowest scoring diagonally-

traversing path (Zhu et al. (1992)). Subsequent proteins can be iteratively aligned

in a similar fashion by aligning the new sequence to existing alignment.
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BATON uses as input the results of running the structural annotation program

JoY (Mizuguchi et al. (1998a)) on each of the domains to be aligned. These

residue-level annotations themselves comprise a valuable resource and as such are

captured, reformatted and loaded into TOCCATA in relational form, providing

pre-calculated structural attributes for every residue in every SCOP domain for

use in later analyses.

The main output of BATON is the multiple alignment stored as text in “ali”

format. These are reformatted and loaded into the TOCCATA database, the

schema of which is shown in Figure 4.3. Importantly, the precise details of

residue equivalences are stored in relational form. This is achieved by storing

all alignment information with respect to the alignment column position, such

that, for each alignment column, for each sequence, either an amino acid residue

(with appropriate residue identifier) or a gap is stored. This scheme of storing the

precise details of residue equivalences in high granularity offers the benefit of al-

lowing several valuable analyses to be performed through simple SQL (Structured

Query Language) database queries. For example, sequence entropies, relative se-

quence entropies (as described in Chapter 2), pairwise percent identity matrices

and amino acid substitution tables can all be generated using only SQL. Fur-

ther, the original alignments can be reconstituted into their original form but can

also easily be sorted and filtered with respect to constituent proteins and residue

range.

4.2.4 ESST generation

PICCOLO and TOCCATA were developed with distinct applications in mind.

However, the fact that they share the same amino acid residue identifiers enables

the resources to be combined to pursue several interesting avenues of enquiry -

in particular investigation of the evolutionary properties of protein-protein inter-

faces. The first example of this is that of calculation of sequence entropies for

the four structural environments described in Chapter 3 (interface core, interface

periphery, core and exposed).

Combination of these structural environment residue annotations with the

TOCCATA alignments permits exploration of the evolutionary plasticity of each
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Figure 4.3: Schema of the TOCCATA database.
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environment in the form of ESSTs. This is achieved by identifying those align-

ments from TOCCATA that include domains corresponding to structures from

the PICCOLO PISA-derived quaternary structure complexes (see Chapter 2).

Note that the fundamental unit of PICCOLO is that of the polypeptide chain,

whereas that of TOCCATA is the structural domain, and as such the mapping be-

tween the two resources was performed at residue level. The resulting TOCCATA-

PICCOLO residue mappings yielded 1,249 alignments of two or more domains.

In this work two series of ESSTs were generated. The first series is inde-

pendent of protein interface definitions and was derived from a previously pub-

lished series of 177 HOMSTRAD alignments (http://www-cryst.bioc.cam.ac.

uk/~kenji/subst/) and was generated to validate the approach and to provide

an overview of the prevailing structural determinants of substitutions observed

in proteins, without reference to their oligomeric state. The 64 structural envi-

ronments used correspond to the canonical environments used in earlier studies

(i.e. combining terms describing secondary structure, solvent accessibility and

hydrogen-bonding).

The second series extends this notion to include the impact of protein-protein

interaction sites on the observed substitution patterns. The obvious route of

simply extending the first series of 64 environments with additional interface

terms was not viable, as the large number of environments results in data sparsity

issues. Instead a series of 48 ESSTs were generated using a combination of:

• 4 categories of interface accessibility environments (interface core(i), inter-

face periphery(I), core(a) and exposed(A))

• 4 categories of mainchain conformation and secondary structure (helix (H),

strand(E), coil(C), and positive φ torsion angle(P))

• 2 categories of PICCOLO-derived intermolecular hydrogen-bonding (bonded(B)

and unbonded (b))

• 2 categories of intramolecular hydrogen-bonding (bonded(W) and unbonded

(w)) taken from the JoY annotations.
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The set of combinations of these structural descriptors is enumerated in Figure

4.4. This series derives from the comprehensive set of TOCCATA-PICCOLO

mapped alignments.

Unfortunately the data sets reflecting the different interface classes used in

Chapter 3 (obligate homodimers, obligate heterodimers and transient heterodimers)

were too small to permit derivation of class-specific ESSTs. Prototypic ESSTs

were originally generated using native SQL by directly querying the relational

database forms of TOCCATA and PICCOLO. Although this proved a rapid and

effective way of generating conformationally-constrained ESSTs, the more so-

phisticated features such as smoothing and clustering are more straightforward

to implement in a procedural context. Fortunately during the course of this

work, Semin Lee, as part of his parallel work on protein-nucleic acid interactions,

developed Ulla (http://github.com/semin/ulla). Ulla is a Ruby implementa-

tion of the legacy Fortran subst program and importantly includes functionality

to use BLOSUM-like weighting procedure as well as the entropy-based smooth-

ing procedures. Version 0.05 of Ulla was used in this work with BLOSUM-like

weighting used at 60% identity (the default). For the interface-independent 64

ESST series partial smoothing was enabled and no conformational constraints

were used. For the interface-dependent 48 ESSTs series substitution counts were

conformationally constrained such that only those substitutions where the inter-

face accessibility environment and secondary structure remained unaltered, were

included. Note that the two series are not directly comparable as they derive

from different alignment series with different structural descriptors and different

input parameters.

4.2.5 Multidimensional scaling

Multidimensional scaling (MDS) is a useful tool for visualization of high dimen-

sional data. The procedure aims to detect meaningful underlying dimensions that

allow the observer to explain observed similarities or dissimilarities between the

objects under investigation. For a matrix of n objects, theoretically n− 1 dimen-

sions would be required to visualize the data accurately. However, in cases where

data inherently clusters (which is often the case with biological objects due to
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Figure 4.4: The set of combinations of structural descriptors used to generate the

series of 48 interface-dependent ESSTs. Terms on the left hand side denote sec-

ondary structure (H=helix, E=extended, C=Coil, P=Positive phi). Terms across

the top denote interface-dependent solvent accessibility environment (A=non-

interface accessible, a=non-interface buried, I=Interface accessible, i=Interface

buried). Terms on the right hand side denote intra-molecular hydrogen bond-

ing (W=engaged in one or more intramolecular hydrogen bonds, w=engaged

in no intramolecular hydrogen bonds). Terms along the bottom denote inter-

molecular hydrogen bonding (B=engaged one or more intermolecular hydrogen

bonds, b=engaged in no intermolecular hydrogen bonds). Note that by defini-

tion non-interface environments (a and A) cannot have inter-molecular hydrogen-

bonds(B)(scratched environments).
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the constraints of evolution), MDS can enable meaningful representation of the

contents of the matrix in a lower number of visualizable dimensions (i.e. 2 or 3).

Starting with a symmetrical n × n distance matrix of n objects, MDS attempts

to position points in space so as to reproduce the observed distances optimally.

To achieve this points are initially assigned to arbitrary spatial coordinates. In

classical MDS the Euclidean distance amongst these points is calculated, to gen-

erate a new pairwise matrix. This matrix is compared with the input matrix by

evaluating a stress function, such that the smaller the value, the greater the cor-

respondence between the two. The coordinates of each point are then adjusted in

the direction to optimally minimize the stress function and the procedure iterated

to convergence. Two outputs are generated - the 3D co-ordinates and the Eigen

values for each dimension. The absolute co-ordinates for each data point are

oriented arbitrarily, but the relative proximity of the points to one another indi-

cates their similarity. The Eigen values represent the information content of each

dimension. The dimensions are ordered by their information content such that a

scree plot of the Eigen values indicates what proportion of the total information

in the matrix is being represented in a two- or three-dimensional visualization,

allowing an objective assessment of the validity, or otherwise, of the analysis.

Johnson et al. used a similar approach in the analysis of the determinants of

various substitution tables (Johnson et al. (1993)).

4.3 Results and Discussion

The key features that distinguish TOCCATA from HOMSTRAD are the fact

that the data are stored in relational database form, the consistent domain-family

definitions (courtesy of SCOP) and the automated nature of the data generation.

The current release of TOCCATA, based on SCOP version 1.73 plus pre-scop

update from February 2008 comprises 89,964 SCOP domains in 3,965 alignments.

BATON, described above, was developed to align up to a few dozen struc-

tures at a time. Manual inspection of the results of the first attempts at broad

scale alignment of several thousand SCOP families (some of which each contain

several hundred constituent domains) revealed that although the vast majority

of inspected alignments met with expectations, a significant minority exhibited
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some problems. The main problem was that for some families, output align-

ments included unaligned (i.e. non-overlapping) sequences, even where the cor-

rect alignment appeared obvious, such that the subsequent sequences were simply

concatenated at the C-terminal end of the alignment.

A separate issue was that some of the larger families failed to generate any

alignment output. Through iterative interaction with David Burke, the BATON

developer, these issues were largely resolved through a combination of bug-fixes

and re-parameterization through exploration of new weighting schemes for the

structural descriptors. A crude but useful metric for quantifying the effect of

the “concatenation” problem was to compare, for each alignment, the ratio of

alignment length to mean constituent sequence length. Figure 4.5 indicates the

scope of the improvement achieved through this iterative parameter optimization

process. The pronounced shift to the right-hand end indicated that the current

alignments are more compact with significantly fewer gaps.

Figure 4.5: Distribution of ratios of alignment length to mean constituent se-

quence length for the original BATON parameter sets (grey) and the latest pa-

rameter set (blue).
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The alignments generated by BATON are generally of high quality but despite

these improvements they remain imperfect. Anecdotal observation suggests that

the alignment of core secondary structure units appears robust, whereas long

flexible loops and the N- and C-terminal region in particular, have more alignment

gaps inserted than would a comparable hand-curated alignment. However, this

could be attributed to BATON using particularly strict definition of structural

equivalence. It is hoped that with continued development BATON can be further

improved to provide routinely robust and accurate alignments of even the largest

and most diverse families.

4.3.1 TOCCATA web interface

A simple web interface has been established to permit visualization of the TOC-

CATA alignments, primarily for the purposes of performing some quality control.

JoY residue annotations are valuable for interpreting the determinants for evo-

lutionary conservation across a family. It is also useful to have the capacity to

examine subsets of the alignment at different levels of redundancy. This presents

a problem in that under normal circumstances if any alterations or selections

are made to the underlying alignment, JoY has to be re-run to re-annotate the

alignment, requiring the presence of the appropriate domain-delineated PDB files,

resulting in some difficult technical issues in dynamically presenting the format-

ted alignment through the web. A specially designed Cascading Style Sheet

(CSS) was devised that included 64 distinct styles - one for each of the observed

structural environments. Thereby, instead of running JoY “on the fly”, the pre-

calculated residue annotations stored in TOCCATA are combined to generate

dynamically a style for each residue, resulting in a JoY-style rendering of the

alignment annotations. This decoupling of the data from the software has the

additional advantage that the database can be distributed with its interface with-

out the dependency of having to install JoY and its ancillary programs.

http://www-cryst.bioc.cam.ac.uk/toccata/toccata.php

An example page is shown in Figure 4.6, a screenshot of a typical TOCCATA

alignment, that of the interleukin 8-like chemokine family.
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Figure 4.6: Screenshot of a typcial example of a TOCCATA alignment, that of

the interleukin 8-like chemokine family. Residues are highlighted with JoY-style

annotations. Solvent accessiblie residues are shown in lower case, buried residues

in upper case. Residues with positive φ torsion angles are shown in italics. α-

helices are shown in red, β-strands in blue, 310 helices in maroon and coil in

grey. Residues with hydrogen bonds to maichain amide are shown in bold, to

mainchain carbonyl underlined. 141
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The web page is written in PHP, a widely-used scripting language for gen-

erating dynamic web pages. The layout includes: a drop-down menu listing all

available SCOP families (including the family identifier and the number of con-

stituent domains in brackets), sortable by family size (the default), SCOP family

identifier or family description; an option box where the level of redundancy to be

retrieved can be selected; a graphical view of the size of the family at the various

levels of redundancy; and finally the alignment itself displayed with JoY-style

annotations. The sequences are ordered by the complete set of each their respec-

tive sequence cluster representatives, themselves ordered by increasing specificity

(that is 30% identity cluster representative followed by 50%, 70%, 90% and then

95%) to give an approximation of a tree-based proximity ordering.

During the development process the issue arose as to whether residue equiva-

lences in a structure-based alignment depend on their context; that is, if a subset

of proteins is extracted from a multiple alignment, is the resulting alignment

meaningfully distinguishable from the a priori alignment of the subset? In order

to establish the extent of this issue a second flavour of TOCCATA was gener-

ated. In the original version of TOCCATA a single redundant alignment was

generated for all domains in each SCOP family. In order to view each alignment,

rows corresponding to each sequence cluster representative are extracted from the

parent redundant alignment with no further re-alignment taking place (although

alignment columns comprising only gaps are excluded). In the second flavour of

TOCCATA, entitled TOCCATANR, the non-redundant sets are used as input to

BATON, that is 6 alignments are performed for each family, corresponding to the

5 levels of sequence clustering plus the full redundant set. TOCCATANR results

can be viewed through the following URL:

http://www-cryst.bioc.cam.ac.uk/toccata/toccatanr.php

The two URLs permit comparative visualization of the two data sets. Al-

though the majority of alignments are almost indistinguishable, anecdotal evi-

dence suggests that the TOCCATANR alignments are marginally more compact.
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4.3.2 ESST distance matrix

The result of running Ulla is a library of ESSTs. Figure 4.7 displays the 64

ESSTs comprising the interface-independent series of substitution tables. Figure

4.8 displays the equivalent visualization of the 48 ESSTs comprising the interface-

dependent substitution tables.

Whereas each of these substitution tables can be examined independently,

comparative analyses can be difficult to interpret. A crude but informative

overview of the whole library can be produced by calculating the Euclidean

distance between each pair of matrices to generate a summary 64x64 distance

matrix. This distance matrix is then amenable to analysis through MDS to pro-

vide a two dimensional projection of the data. Figure 4.9 shows the results of

performing MDS on the distance matrix derived from 64 ESSTs comprising the

interface-independent series.

Although the results initially appear unclear there are some strong underlying

patterns. The projection suggests that the single strongest determinant appears

to be made by the solvent accessibility terms - the buried and exposed envi-

ronments are distinct from one another. With respect to the hydrogen-bonding

terms, at this low resolution, no significant discrimination is exhibited between en-

vironments corresponding to mainchain amide, mainchain carbonyl and sidechain

to sidechain hydrogen bonding. However there is a clear axis (from top to bot-

tom) with respect to the number of occupied hydrogen bonding terms. Those

towards the top of the projection have no hydrogen bonds (and exhibit the great-

est diversity from one another). Below this a band can be found corresponding

to environments having one occupied hydrogen bond term (either mainchain car-

bonyl, mainchain amide or sidechain), followed by a band where two hydrogen

bonding environments are occupied. Finally towards the bottom of the projection

environments corresponding to residues that have at least three hydrogen bonds

(one to mainchain carbonyl, one to mainchain amide and one to other sidechain)

can be found.

However, it should be borne in mind that these methods will always reflect the

relative importance of the environmental descriptors chosen in the analysis. Many
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Figure 4.7: Library of ESSTs for each of the 64 interface-independent struc-

tural environments. Each 20 × 20 matrix reflects the likelihood of substitut-

ing one residue with another in a particular structural environment. Colours

represent residue substitution scores calculated as the log-odds of the Substitu-

tion Frequency Matrix as described in Equation 4.3. Environment labels de-

scribe secondary structure, solvent accessibility and hydrogen bonding status

as described in Figure 4.9. A larger version of this image can be found at

http://www-cryst.bioc.cam.ac.uk/~richard/64ESSTs.png.
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Figure 4.8: Library of ESSTs for each of the 48 interface-dependent structural

environments. Colours represent substitution scores as described in Equation

4.3. Environment labels describe secondary structure, interface-dependent sol-

vent accessibility and hydrogen bonding status as described in Figure 4.4. A

larger version of this image can be found at http://www-cryst.bioc.cam.ac.

uk/~richard/48ESSTs.png. 145
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Figure 4.9: MDS projection of the 64 ESSTs of the interface-independent series.

In such projections the absolute coordinates are meaningless; relative proximity of

points indicates similarity. Small squares represent buried environments and large

circles exposed. Colour indicates secondary structure (helices in red, strands in

blue, coil in grey and positive φ torsion angle residues in green). Point labels use

a 5 character shorthand for each structural environment where the first character

describes one of the 4 secondary structure environments (H=helix, E=extended,

C=Coil, P=Positive φ), the second character represents the solvent accessibil-

ity (A=accessible, a=buried), the third character represents hydrogen bonding

status to a sidechain or heterogen (S=True, s=False), the fourth character repre-

sents hydrogen bonding status to a mainchain carbonyl (O=True, o=False), and

the fifth character the hydrogen bonding status to a mainchain amide (N=True,

F=False). The inset shows a histogram of the cumulative Eigen values for the

first 5 dimensions, suggesting that 95.7% of the total information in the matrix

can be visualized in the first two dimensions.
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other determinants, structural and otherwise, are likely to be making contribu-

tions. The recent work of Worth and Blundell (Worth & Blundell (2009)) suggests

that saturation of the hydrogen-bonding capacity of buried, polar residues can

be a key indicator of a residue’s importance in stabilizing structural domains, as

reflected by their observed high levels of conservation. Such hydrogen-bonding

saturation was not explicitly captured in this study (although it may be reflected

in the highly-bonded terms) but will be captured unambiguously in future work.

Within each of these groups the subsequent determinant would appear to be

the secondary structure. Environments corresponding to helices, strands and

coils can be discriminated within each accessibility/hydrogen-bonding occupancy

combination.

The smoothing procedures are valuable for correcting for partially missing

data. However, ESSTs derived from environments that are particularly sparse

will be composed largely of information derived from adjacent environments. As

such, the smoothing procedures will have the effect of dampening the observed

difference between environments. However, the fact that coherent discrimination

is evident, corresponding plausibly with prior knowledge of structural determi-

nants, suggests that sufficient signal remains. One way to appraise such issues

quantitatively is to assess the occupancy of each environment prior to smoothing,

that is, examine the proportion of each of the 400 possible residue combinations

that is populated by one or more observed substitutions. These data are shown

for the 64 environments from the interface-independent set in Figure 4.10. The

data suggest that in this series only a small proportion of environments approach

full occupancy. Environments corresponding to positive φ torsion angles have

particularly low occupancy; these environments are dominated by glycine (the

absence of a sidechain gives it particular flexibility conformational). Further-

more, occupancy is a qualitative measure, in that an element is either occupied

or unoccupied - many environment specific residue-substitutions may be occupied

but have only a small number of observations giving marginal statistical signif-

icance and as such occupancy represents the upper bound for estimating ESST

information quality. Together these aspects indicate that the results ought to be

interpreted cautiously.
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Figure 4.10: % occupancy of the 64 ESSTs from the interface-independent series.
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Figure 4.11: MDS projection of the 48 ESSTs of the interface-dependent series.

Interface core environments (i) are shown as orange circles, interface periphery(I)

as red circles, non-interface exposed environments(A) as light blue squares and

non-interface buried environments(a) as dark blue squares. Increasing size cor-

responds to increasing number of hydrogen bonds: No hydrogen bonds (wb) <

Intra-molecular hydrogen bonds only (Wb) < Inter-molecular hydrogen bonds

only (wB) < Inter- and Intra- molecular hydrogen bonds (WB). The Eigen value

analysis (inset) suggest that 94.8% of the total information in the matrix can be

visualized in the first two dimensions.
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Figure 4.11 shows the results of performing MDS on the distance matrix

derived from 48 ESSTs comprising the interface-dependent series. Here the

strongest determinant is the interfacial accessibility environment (I/i/A/a). The

interface environments are intermediate between the exposed surface and buried

core. Further the interface core is more similar to the buried protein core and the

interface periphery is more similar to the exposed surface. The next strongest

determinant would appear to be secondary structure (H/E/P/C), with environ-

ments corresponding to positive φ torsion angles being the most differentiated.

Of the non-positive φ torsion angle terms, the non-interface environments are

less congregated than those participating in interfaces. At this resolution hydro-

gen bonding (either inter- or intra- molecular) would appear to be a weak de-

terminant, particularly for the interfacial environments, although non-hydrogen

bonded conditions (wb) tend to be outliers of their respective groups.

Figure 4.12 shows the % occupancy of the 48 ESSTs from interface-dependent

series. This series has significantly higher occupancy than the interface-independent

series (Figure 4.10) which adds to the confidence in the analysis. Once more the

environments corresponding to the positive φ torsion angle have the lowest occu-

pancy. The higher occupancy in this series is due largely to the increased number

of alignments used in this series although the conformational constraints reduce

the number of possible observations.

Overall this evolutionary analysis largely corroborates the results of the physico-

chemical analysis of interface properties in Chapter 3 in that the properties of

the core and periphery of the protein interface are distinguishable from one an-

other with the core most resembling the buried protein core and the periphery

the remaining exposed surface.

4.3.3 Future developments

Using family definitions from SCOP carries the advantage of providing a consis-

tent underlying framework for alignment delineation and evolutionary breadth,

and obviates the bulk of the manual curation. However, the drawback of this

dependency is that the alignments are only as up to date as the latest SCOP

release. Ideally SCOP would provide more frequent updates but the workaround
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Figure 4.12: % occupancy of the 48 ESSTs from the interface-dependent series.

solution to this problem would be to generate Fugue profiles for each of the ex-

istent SCOP families. These could then be used as a search database to query

against for all PDB polypeptide chains that are not classified by SCOP. Fugue

could be used to delineate domains based on the best non-overlapping matches

and classify the putative domains into the SCOP hierarchy as appropriate.

Use of TOCCATA for comparative modelling results in models of each struc-

tural domain being generated independently. This is the case for multidomain

proteins even where suitable multidomain template structures exist, resulting in

a loss of useful information with respect to the relative orientation of the do-

mains. This is particularly pertinent to the genome-scale comparative modelling

described in Chapter 5. To ameliorate this situation a second parallel set of

BATON multiple structural alignments ought to be derived corresponding to

clustered sets multidomain polypeptide chains. Preliminary analysis reveals that

the number of unique, order-dependent combinations of domain families, of size

greater than one, observed in the PDB is 1,106.

151



4.3 Results and Discussion

Aside from their utility in characterizing existing interactions the substitution

tables could also have potential in the area of predicting novel protein-protein in-

teractions through homology. Interologs are defined as homologous pairs of inter-

acting proteins. That is, if proteins A and B bind to one another and a homologue

of A (A’) binds to a homologue B (B’) then A’ and B’ are interologs of A and

B. However not all homologous pairs of proteins are genuine interologs. Trivially,

homologous pairs whose spatio-temporal expression patterns are distinct have no

opportunity to interact. However, more interestingly, the effect of evolutionary di-

vergence can be assessed using appropriate substitution tables. Naively, it might

be expected that the likelihood of a homologous pair of proteins being genuine

interologs is a simple function of the combined sequence similiarity of the two pro-

tein pairs. However, a more likely discriminator would be the level of similarity

of the interface region, which may or may not correspond to the overall similarity.

As such, examples can be found (e.g. Figure 1.2) of instances where relatively

close homologues have interface regions that have diverged considerably, and con-

versely, of distant homologues with conserved interface regions. Interface-specific

substitution tables, such as those described here, would be ideally suited to assess

such interface similarity by specifically identifying those homologous pairs whose

interface regions retain sufficient similarity to enable the mode of interaction to

be maintained. This procedure would assess whether each constituent partner

has retained some interface-like capacity through evolution, but says nothing re-

garding the possible compatibility of the putative interolog surfaces. One avenue

to address this issue would be to extend the methodologies used to derive 20×20

amino acid substitution tables to investigate the patterns of substitutions of pairs

of residues across homologous interfaces. The resultant 400×400 pairwise substi-

tution matrix could be used in combination with PICCOLO and the two pairwise

alignments to establish whether the putative interolog interaction residue pairs

are likely to be compatible. However data sparsity is likely to be an even more

significant issue than it is with the standard 20×20 substitution tables. A further

significant obstacle to any such interaction-prediction methods is the lack of high

quality true-negative data in order to accurately benchmark the method.
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Chapter 5

Mutations

5.1 Introduction

Prediction of the effects of non-synonymous single nucleotide polymorphisms

(nsSNPs) on molecular function depends critically on exploiting all information

available on the three-dimensional structures of proteins. A series of software

and database methods have been developed for the analysis of nsSNPs that allow

navigation from SNP to sequence to structure to function.
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In both structure prediction and in the analysis of the effects of nsSNPs,

information about protein evolution is exploited, in particular that derived from

investigation of the relation of sequence to structure gained from the study of

amino acid substitutions in divergent evolution. The techniques developed in

the group allow fast and automated sequence-structure homology recognition to

aid identification of templates in order to perform comparative modelling, as

well as simple, robust and generally applicable algorithms to assess the likely

impact of amino acid substitutions on structure and interactions. A strategy

for approaching the relationship between SNPs and disease is described along

with the results of benchmarking the approach on a set of human proteins of

known structure and recognized mutation. The work described in this Chapter

was originally published in 2007 (Worth et al. (2007a)) and is presented here with

some of the results updated where indicated.

A major goal of current research on the human genome is to associate genetic

variation with disease. In order to address this issue, many genome-wide associa-

tion studies are being carried out to identify those genetic variants associated with

disease phenotypes. Customarily, single nucleotide polymorphisms (SNPs) are

the subset of single-base variants with a Minor Allele Frequency (MAF) greater

than 1%, in a given population. A proportion of SNPs identified in these studies

will alter protein sequences, termed non-synonymous SNPs. A nsSNP may af-

fect the structure and/or the function of the encoded protein and where protein

function is modified this may lead to disease. Disease can also be caused by gain

in function which may result from either irregular/tighter binding with ligands

or binding a wider range of ligands i.e. loss of specificity. However, modulation

or disruption of protein structure or function may be necessary but not sufficient

conditions for disease given the multiple redundancies of cellular pathways. Fur-

ther, it should be remembered that non-synonymous mutations may also have

any of the pre-translational effects normally associated with a synonymous SNP,

for example by having an impact on transcriptional regulation, mRNA stability,

splicing or translation rates (Kimchi-Sarfaty et al. (2007)).

nsSNPs can affect the function of a protein in many ways, four of which are of

interest here. Firstly, nsSNPs may affect the functional residues of a protein i.e.

the active site or a protein-protein interaction site, resulting in either loss or gain
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of protein function and hence affecting the molecular pathway within which the

protein operates (Dai et al. (2001)). Secondly, nsSNPs may affect the stability

of a protein by either destabilizing it (increasing the ratio of unfolded protein to

folded protein) or stabilizing it (decreasing the ratio of unfolded protein to folded

protein) (Pakula & Sauer (1989)), this is also likely to affect function. A third ef-

fect of nsSNPs, related to protein stability, is that of causing protein aggregation

(Palsdottir et al. (1988)). Lastly, nsSNPs may alter post-translational modifi-

cations, for example by inserting/deleting protease cleavage sites, glycosylation

sites etc. Knowledge of the three-dimensional structure of a protein is useful for

analyzing sequence variations by helping to identify the role that an amino acid

may have in each of these four aspects.

Given the large and accelerating volume of human mutation data (Abecasis

et al. (2007); Rocha et al. (2006)) being generated by high-throughput array-

based genotyping methods (Gunderson et al. (2006)) and imminently by ultra-

high-throughput sequencing techniques (Bennett et al. (2005); Sundquist et al.

(2007)), robust, high-performance in silico tools are required that can enable

prioritization of mutations; genome-wide association studies commonly identify

large sets of candidate SNPs (Wang et al. (2005)) and often it is unclear which

are causative. Automated methods of identifying those mutations most likely to

confer susceptibility to or protection from complex diseases will enable a more

rational approach to experimental verification of disease associations. Relational

database tools are a pre-requisite to the storage, integration and analysis of such

large and dynamic data sets.

5.1.1 Public domain methods

A variety of different approaches have been established for predicting the severity

of non-synonymous mutation on proteins. Methods utilizing sequence information

have the advantage of greater coverage than those that rely on protein structure

data. The SIFT (Sorting Intolerant From Tolerant) program predicts whether

a nsSNP will affect protein function by calculating a scaled probability for the

substitution (Ng & Henikoff (2001)). The probability score is derived from the
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observed frequencies of amino acids at the nsSNP position in a homologous se-

quence alignment of the protein of interest. The method was applied to 3,084

nsSNPs from the National Center for Biotechnology Information’s (NCBI) db-

SNP database (Sherry et al. (2001)) and predicted that 25% would affect protein

function (Ng & Henikoff (2002)). Clifford et al. (Clifford et al. (2004)) also uti-

lized position-specific scoring matrices to predict deleterious nsSNPs. However,

their method used the HMMER2 (Eddy (1998)) software suite to predict whether

a substitution will affect the fit of a protein sequence to its relevant PFAM (Finn

et al. (2008)) motif model. They observed that the magnitude of the change

in HMMER E-value caused by amino acid substitutions in HIV-1 protease and

HIV-1 reverse transcriptase is a good predictor of whether it is deleterious. A

different approach to predicting deleterious nsSNPs using sequence alone is used

by the program MAPP (Multivariate Analysis of Protein Polymorphism) (Stone

& Sidow (2005)). MAPP uses alignments of orthologous sequences to quantify

the physiochemical characteristics of each position of the protein of interest and

provides a continuous classification of nsSNPs. The method was shown to make

slight improvements on the predictions made by SIFT.

A disadvantage of sequence-based methods is that they are unable to distin-

guish the evolutionary restraints that contribute to the conservation of a residue

i.e. the functional and structural restraints. Sunyaev et al. (Sunyaev et al.

(2001)) developed a set of rules to predict deleterious nsSNPs based on physical

features (e.g. properties derived from crystal structures such as active sites, disul-

phide bonds etc) and comparative considerations (multiple sequence alignment

profile scores). The method has been implemented as a web server, PolyPhen,

for automated functional annotation of nsSNPs and has been used to annotate

all SNPs deposited in the HGVbase database (Fredman et al. (2002)). Analysis

of the structural characteristics of disease mutations indicated that various ef-

fects on protein stability are responsible for accumulation of deleterious nsSNPs

in human genes (Ramensky et al. (2002)).

It has been estimated that up to 80% of disease-associated nsSNPs are caused

by protein stabilization effects (Wang & Moult (2001)). Therefore, methods

that predict the effect that nsSNPs will have on protein stability are useful for

identifying possible disease-associations. This has previously been approached
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by predicting the structural effects of mutations using: (1) molecular mechanics

approaches (Bash et al. (1987); Funahashi et al. (2003); Kollman et al. (2000);

Park & Lee (2005)); (2) empirical energy functions which are fitted to experi-

mental data using weighted terms incorporating physical and statistical factors

with structural knowledge (Bordner & Abagyan (2004); Guerois et al. (2002)); (3)

machine learning methods, such as Support Vector Machines (SVMs) and neu-

ral networks (Capriotti et al. (2004, 2005a); Cheng et al. (2006); Frenz (2005))

and statistical potential energy functions which are derived using statistical anal-

ysis of information from protein databases (Gilis & Rooman (1997); Saraboji

et al. (2006); Topham et al. (1997)). The SVM method I-Mutant2.0 published

by Capriotti et al. (Capriotti et al. (2005b)), which incorporates information

about thermodynamic experimental conditions, the wild-type and mutant amino

acid types and the spatial environment of the residue, gave a high accuracy of

predicting the sign of stability change and a high correlation between experi-

mental and calculated thermodynamic data. A similar method was employed in

developing MUpro, which implements three SVMs to predict stability changes for

SNPs using just sequence, just structure and sequence with structure, combined

with information of the wild-type and mutant residues (Cheng et al. (2006)). All

three SVMs performed similarly in the task of predicting the sign of stability

change and showed the highest correlation coefficients between predictions and

experimental data. However, all three performed badly in the task of predicting

stabilizing mutations, predicting more than 70% of stabilizing mutations as being

destabilizing.

5.2 Methods

The approach developed involves applying in-house software to predict the ef-

fects that mutations have on protein structure and function and in-house rela-

tional databases to store (1) the results of running the in-house software (2) a

comprehensive inventory of functional sites observed in solved structures and (3)

accurate mapping of mutations to protein sequences and structures. The prob-

lem is explicitly broken into two different parts. First the effects of nsSNPs on

known three-dimensional structures of individual proteins or complexes must be
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predicted. The second challenge is to identify parts of the defined protein that

might be involved in functional interactions. The software tools used to achieve

this have been previously published (Burke et al. (2007); Chelliah et al. (2004);

Worth et al. (2007b)); here their systematic application at the required genome

scale is described. Together, the software and databases enable simple navigation

from SNP to sequence to structure to function.

The approach taken to predicting the impact of nsSNPs depends critically

on exploiting all information available on the 3D structure of proteins and com-

bining it with information derived from observations of protein evolution. These

observations are themselves derived from the careful study of amino acid substi-

tutions in divergent evolution. As described in Chapter 4, these observations were

originally compiled as a database of high-quality structural alignments of protein

families in the form of the HOMSTRAD resource (Mizuguchi et al. (1998b)).

A key observation is that the likelihood that an amino acid substitution will

be accepted through evolution depends strongly on the local environment of the

amino acid sidechain (Overington et al. (1990, 1992)).This is illustrated by the

fact that residues buried within the core of a protein tend to be more conserved

than those on the surface on account of buried residues having a role in main-

taining the structure of a protein (Overington et al. (1992); Shakhnovich et al.

(1996); Zhou & Zhou (2004)). Functional residues, such as those in protein inter-

action and active sites, are also highly conserved, as they are required to make

specific interactions on formation of a functional complex and although they are

typically found on the surface of proteins, they are also likely to be buried upon

complex formation. The idea that patterns of amino acid substitution are highly

dependent on local structural environment has been used to derive a library of en-

vironment specific substitution tables (ESSTs) (Overington et al. (1990, 1992)),

with local structural environments being defined on the basis of secondary struc-

ture, hydrogen bonding and solvent accessibility. These tables provide quantita-

tive information about the existence of an amino acid in a particular structural

environment and the probability of it being substituted by any other amino acid

in that environment (Overington et al. (1992)). These principles have been ap-

plied to the areas of sequence-structure homology recognition (Shi et al. (2001)),

structure prediction (Wako & Blundell (1994a,b)) as well as in the analysis of the

158



5.2 Methods

effects of nsSNPs. Our overall approach is comparable to previously published

approaches at genome scale modelling and SNP analysis (Karchin et al. (2005)),

although our approach is distinguished by our explicit use of evolutionary infor-

mation throughout the modelling and nsSNP analysis as well as the robust and

rapid performance of our nsSNP impact algorithms.

In order to maximize structural representation, experimentally determined

protein structures are used where they are available and comparative models are

built where they are not. Thus the first stage is an inventory of experimen-

tal structures available for proteins encoded in the human genome, followed by

genome-wide automated sequence-structure homology recognition and compara-

tive modelling of each of those proteins whose structure has not been experimen-

tally determined.

5.2.1 Protein modelling pipeline

Experimentally determined structural information is restricted to 2,422 human

genes in Ensembl release 45 (Hubbard et al. (2007)), or approximately 10% of

the human genome (figure derived from PDB SIFTS (Velankar et al. (2005)) as

described in Chapter 2). In order to extend our predictions to a wider set of

genes, we employ a range of in-house programs to build comparative models of

proteins (Figure 5.1).

The sequence structure-homology recognition program Fugue (Shi et al. (2001)),

exploits ESSTs to identify distant homologues of a query sequence. A range of

programs have been developed to build protein structural models using exper-

imental and knowledge-based approaches. Composer (Sutcliffe et al. (1987)),

Modeller (Sali & Blundell (1993)) and Choral (Montalvao et al. (2005)) build

comparative models using restraint-based or fragment-based approaches. Har-

mony (Shi (2001)) validates models by comparing observed sequence amino acid

substitution patterns with those predicted from ESSTs. More recent develop-

ments focus on RAPPER (de Bakker et al. (2006)) and Rapper-tk (Gore et al.

(2007)), discrete conformational sampling tools that build ensembles of conform-

ers under experimental and knowledge based restraints. Models of all mutant

sequences are constructed using Andante (Smith et al. (2007)) which predicts
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Figure 5.1: Modelling pipeline software and databases. (A) Automated tools for

genome scale comparative modelling and analysis of impact of nsSNPs. (B) The

platform comprises a federation of inter-connected databases integrating compre-

hensive structural annotations with the results of the automated modelling and

nsSNP analysis.
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side-chain conformations by use of environment-specific substitution probabili-

ties and a high-quality rotamer library.

5.2.2 Software for predicting the effects of nsSNPs on pro-

tein structure

An example of a mutation that impacts protein stability is the L106R mutation

in the enzyme aldehyde dehydrogenase 10 (FALDH10) that destabilizes the fold

by introducing a positive charge into the hydrophobic core of the protein and

is implicated in Sjogren-Larsson syndrome (Wang & Moult (2001)). Structural

effects of nsSNPs can be estimated using Site Directed Mutator (SDM ) (Topham

et al. (1997); Worth et al. (2007b)), which incorporates a statistical potential

energy function that predicts the effect that nsSNPs may have on the stability of

proteins. SDM, originally developed by Chris Topham and extended by Cather-

ine Worth, uses environment-specific amino acid substitution frequencies within

homologous protein families to calculate a stability score, which is analogous to

the free energy difference between a wild-type and mutant protein (Figure 5.2).

The method performs comparably or better than other published methods in the

task of classifying mutations as stabilizing or destabilizing (Worth et al. (2007b)).

Additionally, SDM has much improved sensitivity in predicting stabilizing muta-

tions compared to other published methods (five of the seven methods incorrectly

classify >68% of the stabilizing mutations).

5.2.3 Software for predicting the effects of nsSNPs on pro-

tein interactions

Although many nsSNPs that are associated with disease are predicted to af-

fect protein stability, there may also be a significant number that cause disease

through affecting molecular function (Wang & Moult (2001)). One example of

this is that of the G75D mutation that introduces a negative charge into a hy-

drophobic cavity in the centre of the beta barrel of retinol binding protein (RBP),

thereby interfering with retinol binding both electrostatically and sterically, re-

sulting in a night blindness phenotype. Methods that identify functional sites
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Figure 5.2: Experimentally measured energy changes versus predicted energy

changes using our method, SDM, on a set of monomeric proteins with resolution

<2Å. The correlation is 0.60 and the standard error is 1.36kcal/mol. Removal of

the outlying data point increases the correlation to 0.66.

of proteins, such as enzyme active sites, receptor binding sites, specificity de-

termining regions, co-factor binding residues and so forth, are therefore useful

for estimating the effects of nsSNPs on protein function. Traditionally, sequence

motif databases, such as PROSITE (Rocha et al. (2006)), have been used to iden-

tify specific residues likely to be involved in function. However, many functional

regions are discontinuous in protein sequence. Attempts to predict functional

interaction sites computationally have included identification of steric strain or

other types of high-energy conformations that often occur at active sites (Heringa

& Argos (1999); Rocha et al. (2006)) and identification of clefts that can accom-
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modate ligands (Laskowski et al. (1996)). In Crescendo (Chelliah et al. (2004)),

a technique has been developed for predicting interaction sites in proteins, which

exploits an understanding of divergent evolution. A similar philosophy is ex-

ploited in evolutionary trace (Lichtarge & Sowa (2002)), in which conserved

residues are phylogenetically partitioned and highlighted on the structure. In

contrast, Crescendo exploits the fact that the conservation of amino acid residues

is strongly dependent on the local structural environment in which they occur

in the folded protein. By comparing expected amino acid substitutions from a

library of ESSTs to those observed within alignments of homologous protein se-

quences, it is possible to identify those residues that are conserved more than

would be expected for a given structural environment. These residues are there-

fore likely to be under some evolutionary restraint and have a functional role in

the protein. Mapping the scores from this method onto the three-dimensional

structure of the protein identifies clusters of residues potentially forming interac-

tion sites. Where the nsSNP is found to fall within any such identified sites the

impact of the mutation can be scored using an appropriate substitution table.

5.2.4 Protein databases

The results of applying all of these tools at genome scale are integrated into a suite

of inter-connected relational databases (Figure 5.1), the components of which will

be described here. Structural data from the Protein Data Bank (PDB) (Berman

et al. (2000)) and sequence data from UniProt (Uniprot-Consortium (2009)) and

Ensembl are integrated using the accurate residue-level mappings provided by

MSD SIFTS (Velankar et al. (2005)) as described in Chapter 2. These sequence-

structure mappings form the backbone of the inter-related databases and are

supplemented by structural annotations (including secondary structure, solvent

accessibility and hydrogen-bonding) generated by JoY (Mizuguchi et al. (1998a)),

all of which are also stored in relational form.

TOCCATA was introduced in Chapter 4 as a relational database of structure-

based alignments of homologous protein families, incorporating the principles of

HOMSTRAD but extending the ideas further. An important feature is that the

details of residue equivalences of the structural alignments are stored in relational
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form. In this context the TOCCATA structural alignments are used to derive a

library of sequence profiles. This library provides a query database against which

the sequence-structure homology recognition program Fugue can be run for each

Ensembl transcript, in order to identify putative templates for comparative mod-

elling. Three further databases (PICCOLO, BIPA and CREDO) comprise an

inventory of observed functional residues found in all experimentally determined

protein structures in the PDB. They complement the generally-applicable pre-

dictive method Crescendo with a high confidence, low coverage set of charac-

terized functional residue annotations. However, the annotations they provide

can, in some circumstances, be extended through homology. Identifying the pre-

cise residues involved is straightforward given the sequence-structure alignments

pre-calculated and stored in TOCCATA. Methods are being developed to iden-

tify cases where such homology-based annotation transfer is valid by applying

appropriately derived substitution tables.

PICCOLO makes a useful contribution in this context as it comprises a com-

prehensive set of structurally characterized protein-protein interactions. The

version of PICCOLO used in this work had 65,959 pairs of interacting chains,

6,371,711 pairs of interacting residues and 80,519,209 pairs of interacting atoms.

When a nsSNP is found to correspond to a residue within a protein-protein in-

teraction site it can be scored using substitution tables in a similar manner to

Crescendo. CREDO (Schreyer & Blundell (2009)) is the equivalent database for

interactions between proteins and small ligands from all experimentally deter-

mined structures in the PDB. The small molecules include metabolites, hormones,

co-factors, drugs and inhibitors, both covalently and non-covalently bound, but

with certain low-interest ligands, including crystallization buffers and certain

modified residues, deliberately excluded. The latest version comprises contact

information from 6,689 unique small molecules from 27,754 protein structures.

BIPA is the equivalent database for protein-nucleic acid interactions. Protein-

nucleic acid interfaces are identified from the PDB and clustered by their struc-

tural similarity in a manner analagous to that in PICCOLO. Atomic interactions

have been identified from 1,193 protein-nucleic acid complexes and classified by

their bonding type.
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REQUIEM houses the large scale analysis of nsSNPs, including comparative

models and estimates of the effects of nsSNPs on binding interactions and sta-

bility, from both the predictive methods (SDM, Crescendo) and the residue ob-

servations (PICCOLO, BIPA, CREDO) using the sequence-structure alignments

pre-calculated and stored in TOCCATA. It links human genes from Ensembl to

nsSNPs from the dbSNP database and disease-association data from other re-

search groups. The information in REQUIEM can be used to derive useful sum-

mary information: Ensembl release 45 contains 43,570 human peptides, totaling

22,086,536 residues (many peptides overlap due to there being multiple transcripts

per gene); of which 2,969 peptides (643,730 unique residues) are represented at

least once in the PDB; of which 1,710 peptides (68,010 unique residues) can be

found in PICCOLO, 1,335 peptides (30,410 unique residues) in CREDO and 186

peptides (5,599 unique residues) in BIPA.

5.2.5 Design of benchmark study

In order to assess objectively the performance of the various approaches in a

quantitative manner, five locally developed tools (SDM, Crescendo, PICCOLO,

CREDO and BIPA) and four published methods (SIFT, MUpro, MAPP and I-

Mutant2.0) were assessed. The complementary nature of the locally developed

software and databases means that although their performance can be assessed

individually they are intended to be used in combination and so should be assessed

as such. The combined result will therefore be evaluated as the union of each of

the individual methods i.e. a positive result is recorded if at least one method

predicts that mutation to be deleterious.

The benchmark set was chosen as all residues in human proteins of known 3D

structure that occur in at least one of three classes of mutation data - Disease,

Polymorphism and dbSNP. The Disease and Polymorphism sets, containing 3,966

and 1,366 individual mutations respectively, are provided by UniProt (http:

//www.expasy.org/cgi-bin/lists?humsavar.txt) as mappings of mutations

to UniProt residues. The Disease set consists predominantly of Mendelian-type

mutations from OMIM (Hamosh et al. (2005)) and as such are likely to be highly

disruptive to protein structure and function. This set forms a positive control.
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The Polymorphism set comprises sequence variants with no known association

with disease. The dbSNP set, containing 4,982 unique mutations, is derived

from residue-level mappings, provided by Ensembl-Variation database, of dbSNP

mutations to Human Ensembl sequences. Identifying an appropriate negative

control is notoriously difficult (Care et al. (2007)) - definitively classifying any

mutation as not being involved in any disease is not possible as each mutation’s

phenotype is strongly dependent on its genotypic and environmental context.

The Polymorphism and dbSNP sets were combined to provide a negative control,

although in reality they are likely to be a mixture of neutral and deleterious

mutations, dominated by neutral mutations. The two data sets overlap to a

small degree. Mutations in the overlap are partitioned into the Disease set ahead

of the combined Polymorphism-dbSNP set. Overall the benchmark set consists

of 9,143 mutations (3,966 mutations with disease-association and 5,177 without),

corresponding to 8,139 unique sequence positions from 1,477 Ensembl peptides.

Mappings of mutations to protein sequences and protein sequences to all of

their respective solved structures are stored in the database. The same pro-

tein structure has often been solved several times under different conditions and

frequently by different methods and as such the same residue can be observed

several times. To run SDM, Crescendo and the published methods, a represen-

tative structure was selected for each mutation, prioritizing structures with high

sequence coverage, lower resolution and X-ray over NMR structures. Importantly

for PICCOLO, CREDO and BIPA no such prioritization takes place - all solutions

of the protein are included thereby maximizing the opportunity that a particular

residue may be annotated as being functional. SDM results were considered for

buried residues only (percentage solvent accessibility less than 7% as calculated

by JoY). Mutations in Crescendo and PICCOLO predicted sites were considered

deleterious when their BLOSUM62 (Eddy (2004)) score was less than -1.

To run MAPP, an alignment of the sequence of interest with its orthologues is

required. Such alignments were obtained using the Ensembl-Compara API (Ap-

plication Programming Interface). Semphy (Friedman et al. (2002)) was used to

reconstruct a phylogenetic tree for each alignment. SIFT version 2.1.1 was run on

multiple sequence alignments created using the in-built PSI-BLAST functionality

querying against the UniProt sequence database. A median conservation score of
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2.75 was used. MUpro version 1.1 was run with the optional tertiary structure

information included. I-Mutant2.0 was run in PDB mode, requiring the output of

the secondary structure program DSSP (Kabsch & Sander (1983)), with a pH of

7.4 and temperature of 35◦C. It has been shown that mutations that decrease the

stability of a single domain by >2 kcal/mol result in severe disease phenotypes

(Lindberg et al. (2005); Randles et al. (2006)). Therefore for each of the stability

prediction methods we have used a 2 kcal/mol cutoff for classifying mutations as

disease-associated.

Each method was evaluated using the following measures:

Sensitivity = 100× TP

(TP + FN)
(5.1)

Specificity = 100× TN

(FP + TN)
(5.2)

Accuracy = 100× (TP + TN)

(TP + FP + TN + FN)
(5.3)

where TP=True Positives, FP=False Positives, TN=True Negatives. All numbers

refer to the number of unique mutations (there may be multiple mutants per

sequence position).

5.3 Results

5.3.1 Benchmark study

Each of our methods has relatively low sensitivity in isolation, however when

run in combination, as intended, the sensitivity is significantly increased while

still maintaining good specificity (Table 5.1). The complementary nature of the

methods is reflected in the relatively small overlap of our predictions (Figure 5.3).

A benefit of our combined approach is that it enables us to differentiate be-

tween structural and functional effects of nsSNPs thereby potentially aiding the

identification of the causative mechanism underlying the disease. Figure 5.4 (page

171) describes the following examples of typical true positive predictions. In panel

(A) SDM predicts that the nsSNP, P69S, in phosphomannomutase 2 (PMM2,
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TP FP TN FN Sum Sens Spec Acc

SDM 535 274 4594 3025 8428 15.03 94.37 60.86

Crescendo 186 126 4482 3695 8489 4.79 97.27 54.99

PICCOLO 220 257 4920 3746 9143 5.55 95.04 56.22

CREDO 380 413 4764 3586 9143 9.58 92.02 56.26

BIPA 80 20 5157 3886 9143 2.02 99.61 57.28

COMBINED 1252 984 4193 2714 9143 31.57 80.99 59.55

SIFT 2709 2071 3011 1092 8883 71.27 59.25 64.39

MAPP 2659 1642 2395 1065 7761 71.40 59.33 65.12

I-Mutant2.0 1485 1677 2189 1061 6412 58.33 56.62 57.30

MUpro 175 146 5031 3791 9143 4.41 97.18 56.94

Table 5.1: TP=True Positives, FP=False Positives, TN=True Negatives.

TP/FP/TN/FN are numbers of unique mutations. The Sum column shows the

number of times the method succeeded and an observation was possible and there-

fore reflects the robustness of the method. Sens = Sensitivity, Spec = Specificity

and Acc = Accuracy are defined in text.

PDB entry 2amy) will be damaging to protein structure. This mutation is asso-

ciated with congenital disorder of glycosylation type 1A (Le Bizec et al. (2005);

Matthijs et al. (2000)). In panel (B) Crescendo and PICCOLO identify Asp84

in Cyclin-dependent kinase inhibitor 2A (p16) as a protein-protein interaction

site. The aspartate residue forms a side-chain hydrogen bond with an arginine

residue in CDK6 (PDB entry 1bi7). Mutating the aspartate to tyrosine has been

shown to reduce binding to CDK4 by 87% (Kubo et al. (1999)) and has been ob-

served in cutaneous malignant melanoma 2 (CMM2) (Ruiz et al. (1999)). In panel

(C) the mutation Asp201Tyr in hypoxanthine-guanine phosphoribosyltransferase

(HGPRTASE, PDB entry 1bzy) is associated with Lesch-Nyhan syndrome (LNS)

(Sculley et al. (1992)). PICCOLO identifies that the wild-type aspartate residue

is within a protein-protein interface. The aspartate forms a side-chain hydrogen

bond to a main-chain atom of the interacting chain, loss of which may disrupt the

protein interface. In panel (D) the wild-type residue of the mutation, Met749Ile,

in androgen receptor (AR) is identified by CREDO as forming a contact with the

ligand, dihydrotestosterone (PDB entry 1xj7). The mutation has been detected
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Figure 5.3: Venn diagram indicating the overlap of the results of three in-house

methods for predicting the impact of nsSNPs.

in androgen-independent prostate cancer (Takahashi et al. (1995)). In panel (E)

threonine 284 in cellular tumor antigen p53 is identified by BIPA as interacting

with DNA (PDB entry 2ac0). UniProt annotates the nsSNP, Thr284Pro, as hav-

ing been detected in lung tumor. This mutation may affect binding of DNA to

p53.

Comparison of our combined method to each of the public domain meth-

ods indicates that our combined method has an overall accuracy superior to

that of I-Mutant2.0 and MUpro and inferior to that of SIFT and MAPP (Table

5.1). The greater accuracy of SIFT and MAPP is largely due to their having

a higher sensitivity score. However, comparison of the specificity scores reveals

that our combined method performs significantly better than SIFT, MAPP and

I-Mutant2.0 in this respect. Although SIFT and MAPP predict the majority of

disease-associated nsSNPs correctly (as indicated by their high sensitivity scores),

they predict 40% of the non-disease set as being disease-associated, limiting their

utility in many real-world applications. The specificity of MUpro is higher than
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our combined approach, however the sensitivity is so low as to limit its utility.

Our combined approach has a comparable accuracy to the other methods tested

but has the benefit of a much lower false-positive rate and therefore provides a

high-quality set of predictions.

This benchmark was performed on a set of solved set of protein structures.

When applying these methods at genome scale, solved structures will be a mi-

nority compared to the far larger number of comparative models. Given the

unavoidable inaccuracy of even the best comparative models when compared to

a correctly solved experimental structure, any method to assess the likely im-

pact of nsSNPs that relies on structure will inevitably perform better on solved

structures than on comparative models.

5.3.2 Benchmark study update

This study was initially published in summer 2007 and used an early version of

PICCOLO. Since then a number of important improvements have been made to

the database. These include the addition of interaction type definitions to give

greater specificity than the original radial cutoff method and the use of PISA

predicted quaternary structures as opposed to the original PDB ASU data. One

further area for improvement would be in the area of predicting the impact of nsS-

NPs on functional sites. In the original methodology any nsSNP corresponding

to these sites is assessed using a simple BLOSUM scoring matrix. This approach

is somewhat naive as the actual impact is likely to depend on the likelihood of the

substitution in that local structural environment, as well as its relative position in

the functional site. A more accurate reflection of the likely severity of the substi-

tution could be estimated using an appropriate set of ESSTs specifically derived

for interface environments as described in Chapter 4. The benchmark study was

repeated on the original data set with the addition of these new features. The

performance of the updated PICCOLO is shown in Table 5.2.

Remarkably the accuracy of the updated PICCOLO results is precisely the

same as that in the published benchmark. The sensitivity has increased by 2.01%

(a proportional increase of 36%) whereas the specificity has dropped by 1.54% (a

proportional decrease of 1.62%). Maintaining such high specificity is important as
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Figure 5.4: Examples of disease-associated mutations in protein structures that

are predicted to be deleterious by our methods and not predicted to be deleterious

by any of the public domain methods. For each case, wild-type side-chains are

shown in mauve. Atoms are coloured by type. The secondary structure of the

protein chain containing the nsSNP is shown in red (helix), yellow (strand) and

green (coil). The secondary structure of interacting protein chains are shown

in blue (helix), purple (strand) and pink (coil). Hydrogen bonds of wild-type

residues are shown in black. See text for detailed description. Figure taken from

Worth et al. (Worth et al. (2007a)) and produced using PyMOL (Delano (2002)).
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TP FP TN FN Sum Sens Spec Acc

Published 220 257 4920 3746 9143 5.55 95.04 56.22

Latest 300 337 4840 3666 9143 7.56 93.49 56.22

Table 5.2: Results of benchmark update. Column headers are the same as in

Table 5.1.

it can be argued that in most real-world applications a small set of high-confidence

predictions is of more use than a larger set of low-confidence predictions. The

low overall sensitivity of PICCOLO is largely due to the nature of the bench-

mark - only a subset of disease-associated nsSNPs will impact phenotype through

modulation of protein-protein interactions. Due to the multiple redundancies in

cellular signaling and metabolic networks many mutations that disrupt a partic-

ular protein-protein interaction may not have an observable phenotype, adding

to the false positive rate. Furthermore, even if a disease-associated mutation cor-

responds to a protein interaction site it is possible that the mutation manifests

its affect on phenotype through an independent mechanism (e.g. impacting the

rate of transcription or translation).

5.3.3 nsSNP combinations

1,779 individual nsSNP positions from 617 different genes can be mapped to

residues partaking in protein-protein interactions using the latest version of PIC-

COLO. However, of particular interest when assessing the likely impact of nsS-

NPs, is the possibility of identifying cases where pairs, or higher order combina-

tions, of nsSNPs occur in the same interface, either within the same gene or in

different genes. When such nsSNPs are structurally co-proximal it is possible they

could have synergistic or compensatory effects, thereby providing a molecular ba-

sis for polygenetic disease. This principle can be used to prioritize particular pairs

of associated nsSNPs for further analysis in association studies where genotyping

of individuals could reveal whether any of these nSSNP combinations co-occur.

Table 5.3 gives examples of homodimeric proteins where nsSNPs can be found

on each side of the interface. A subset of the nsSNPs are self-interacting as they

occur near an axis of cyclic symmetry.
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Homodimer Interacting

nsSNPs

Self-

interacting

nsSNPs

Insulin

(INS HUMAN)

1-1 1

Prorelaxin H2

(REL2 HUMAN)

1-1 1

HLA class II histocompatibility

antigen DR-1 β chain

(HB2B HUMAN)

5-5 1

Macrophage migration inhibitory

factor

(MIF HUMAN)

2-2 0

Transthyretin

(TTHY HUMAN)

1-1 0

Ferritin light chain

(FRIL HUMAN)

2-2 1

Aquaporin-1

(AQP1 HUMAN)

1-1 1

Ubiquitin

(UBIQ HUMAN)

1-1 1

Tyrosine-protein phosphatase

non-receptor type substrate 1

(SHPS1 HUMAN)

1-1 1

Epidermal growth factor receptor

(EGFR HUMAN)

1-1 1

Haemoglobin subunit β

(HBB HUMAN)

13-10 0

Haemoglobin subunit γ-1

(HBG1 HUMAN)

4-2 1

Haemoglobin subunit α

(HBA HUMAN)

14-9 1

Table 5.3: Homodimeric assemblies with the number residues interacting across

the interface that correspond to nsSNPs.
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Figures 5.5 and 5.6 give examples of heteromeric proteins exhibiting this phe-

nomenon.

5.3.4 von Hippel-Lindau disease

In a separate study, Julia Forman (ex-TLB group) applied PICCOLO to help

rationalize the molecular mechanism of how mutations in the von Hippel-Lindau

disease gene (VHL) lead to a clinically heterogeneous, dominantly inherited fa-

milial cancer syndrome characterized by an increased risk of multifocal tumor

development in multiple organs, particularly retinal angioma, central nervous

system hemangioblastoma, renal cell carcinoma, and pheochromocytoma (For-

man et al. (2009)). Missense mutations and phenotype data from Hes et al. (Hes

et al. (2007)) and Ong et al. (Ong et al. (2007)), were analysed in detail to

probe patterns of tumor development associated with individual missense mu-

tations. PICCOLO was used to characterize known interaction sites, Crescendo

to predict other functionally important residues and SDM to assess the effect

on thermodynamic stability. Two crystal structures of pVHL in complex with

elongin B, elongin C, and a HIF peptide were used (PDB entries 1lm8 and 1lqb).

Known and predicted interaction sites and predictions of thermodynamic sta-

bility change upon mutation, were used to generate new hypotheses regarding

the molecular aetiology of renal cell carcinoma (RCC) and pheochromocytoma.

RCC was found to be caused by disruption of HIF binding or by mutations in the

elongin B binding region, which act directly or through destabilizing the bind-

ing domain whereas Pheochromocytoma was shown to be triggered by mutations

which disrupt interactions between pVHL and elongin C or a competing partner

which binds at the same site.

5.4 Discussion and future directions

By harnessing structural and evolutionary information, a series of completely gen-

eral methods for nsSNP impact assessment have been developed that are robust

and of sufficiently rapid performance to be applied at genome-scale. Coupling the

results of running these methods with the complete set of structurally-observed
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Figure 5.5: Three nsSNPs can be mapped to the interface between β2-

microglobulin and the MHC CLass II molecule.

Figure 5.6: Three nsSNPs can be mapped to the interface between α and β

haemoglobin molecule.
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functional sites improves the likelihood of an accurate prediction being made. A

key challenge for maintaining such a resource comes in ensuring it is responsive

to the dynamic nature of the underlying data. As well as the novel SNPs be-

ing identified, novel transcripts continue to be added to the sequence databases

and hundreds of new structures are deposited in the PDB each month, a number

which will only increase as structural genomics projects continue, each of which

carry valuable annotations.

One possible improvement to methods for predicting the effects of nsSNPs on

mutations would be to take into account the relative position of the residue in

the functional site by assessing the relative solvent accessibility of the residue in

the apo- versus holo-complex, or alternatively by deriving connectivity graphs of

all residues comprising the functional site and using graph properties to classify

the residue as central or peripheral to the functional site.

Linking of these databases to those recording functional genomics information,

such as the pathway databases REACTOME (Vastrik et al. (2007)) and KEGG

(Ogata et al. (1999)), as well as experimental gene expression data, would enable

components of the protein interaction network to be reconstructed, thereby aiding

the identification of potentially linked nsSNPs that may confer susceptibility or

resistance to polygenetic disease.

To date, the impact of previously observed nsSNPs has been examined. As

all of the methodologies discussed are rapid and robust, in principle we could

model and assess the impact of each of the 19 possible mutations of each residue

of every human protein amenable to comparative modelling, resulting in pre-

calculated data for every residue for every mutation, forgoing the requirement for

an interactive web-server.

The group is collaborating with several researchers involved in human genetics

that have identified nsSNPs implicated in disease. The software and databases are

currently being applied as part of these collaborations to aid prioritization of their

data. These collaborations include research teams studying type 1 diabetes (John

Todd’s group at the Juvenile Diabetes Research Foundation/Wellcome Trust Di-

abetes and Inflammation Laboratory), breast cancer (Carlos Caldas’ group at

Cancer Research UK Cambridge Research Institute), lung cancer (Richard Houl-

ston’s group at the Institute of Cancer Research) and kidney cancer (Tim Eisen at
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the Cancer Research UK Cambridge Research Institute). A further collaboration

is ongoing with Mike Stratton and Andy Futreal on the Human Cancer Genome

Project where our methods are being applied to somatic mutations identified in

cancer cell lines.
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Chapter 6

Hot-spots

6.1 Introduction

Historically protein-protein interactions have attracted little interest as therapeu-

tic targets for small-molecule drugs. Indeed of the 248 distinct molecular targets

for the 1,204 unique, marketed small-molecule drugs, none are bona fide protein-

protein interactions (Overington et al. (2006)). This is despite a potentially huge
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opportunity space - a recent estimate of the size of the human interactome sug-

gested a value of ∼650,000 interactions (Stumpf et al. (2008)). Instead much of

the focus of the pharmaceutical industry’s efforts has been on the precedented

target families - G-protein coupled receptors, ion channels, nuclear receptors,

kinases and metabolic enzymes.

Unlike each of these target classes protein-protein interfaces lack endogenous

small-molecule partner ligands that often provide a natural starting point for

research and as such also typically lack the grooves and pockets that make the

precedented target families so tractable. Whereas the contact surfaces of protein-

small molecule interfaces tend to be in the range of ∼300-1,000Å2, protein-protein

interfaces tend to be much larger, in the range of ∼1500-3000Å2 and more hy-

drophobic, properties that do not lend themselves to efficacious binding by small,

drug-like chemical matter. However, mutational studies, described below, have re-

vealed that only a subset of interface residues contribute most of the free energy of

binding. This finding has led to a renewed interest in protein-protein interactions

as therapeutic targets and a series of drug-discovery projects have been launched.

Notable successes include the targeting of interleukin-2 (IL-2) and the α-chain of

its receptor (IL-2Rα) (Thanos et al. (2003)); B7 and CD28 (Green et al. (2003));

B-cell lymphoma-2 (BCL-2) and BAK (Bcl-2-antagonist/killer) (Bruncko et al.

(2007)); Lymphocyte function-associated antigen-1 (LFA-1) and intercellular ad-

hesion molecule-1 (ICAM-1) (Sanfilippo et al. (1995)); inducible Nitric Oxide

Synthase (iNOS) dimerization (McMillan et al. (2000)); Nerve Growth Factor

(NGF) and its receptor (Niederhauser et al. (2000)); cytokine tumour-necrosis

factor (TNF) and its receptors, TNFR1 and TNFR2 (He et al. (2005)); FtsZ and

ZipA (Tsao et al. (2006)); human papilloma virus (HPV) E1 and E2 (Yoakim

et al. (2003)); and human protein double minute 2 (HDM2) and p53 (Koblish

et al. (2006))(Arkin & Wells (2004); Wells & Mcclendon (2007)). Furthermore,

TIMBAL, a recently compiled hand-curated series of small molecule inhibitors of

protein-protein interactions found in the literature, identified 105 small molecules

from 40 publications targeting 21 multi-protein complexes (Higueruelo & Blundell

(2009) in preparation).

The excellent recent review of Wells and McClendon (Wells & Mcclendon

(2007)) suggested grounds for cautious optimism in prosecuting such targets.

179



6.1 Introduction

Firstly, in many cases the interface exhibits sufficient adaptability for small-

molecule inhibitors to bind in flexible grooves and pockets not observed in the

static structure of either the free or the bound form. Screening procedures can

be improved by enriching diverse chemotypes tailored for binding protein interac-

tions or by screening with fragments of 150-250Da that may achieve higher ligand

efficiency (the free energy of binding per non-hydrogen atom) (Hopkins (2004))

and more productive sampling of chemical space. Contrary to common percep-

tion, chemical matter can usually be found with binding affinities in the mid- to

low-nanomolar range - comparable to that of the native protein binding partner

with which the small molecule can compete. Protein interaction inhibitors tend

to be in the range of 500-800Da - somewhat larger than the upper size threshold of

500Da suggested for good oral absorption and bioavailability by the widely-used

“Rule-of-5” (Lipinski et al. (2001)) - but sufficiently close that properties may

be optimized through medicinal chemistry. Furthermore the ligand efficiency of

these inhibitors is comparable to that of kinase and protease inhibitors.

6.1.1 Alanine-Scanning mutagenesis

Alanine-scanning mutagenesis is the most commonly used experimental method

for mapping functional epitopes on protein surfaces. Substitution of an amino

acid residue with alanine removes the side-chain atoms beyond the β-carbon

without adding further conformational flexibility. Substitution to glycine, which

lacks a side-chain, would risk adding unwanted conformational variability. The

procedure enables assessment of the energetic contribution of the side-chain of

the substituted residue to protein binding through biophysical examination. Such

experiments have revealed that individual residues exhibit a highly uneven dis-

tribution of energetic contributions across each interface.

The pioneering alanine-scanning experiments of Clackson and Wells on the

interaction between the human growth hormone and its receptor (Clackson &

Wells (1995); Wells (1996)) indicated that only a small subset of cooperatively-

acting contact residues exhibit a significant drop in the binding free energy upon

mutation to alanine. These residues have been termed “hot-spots”. Bogan and

Thorn compiled the results of several alanine-scanning experiments on protein
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interfaces from the literature in the form of the Alanine Scanning Energetics

Database (ASEDB) (Thorn & Bogan (2001)). From analysis of ASEDB the

authors defined hot-spots as those residues that yield a change in the binding free

energy of at least 2.0 kcal/mol upon mutation to alanine (Bogan & Thorn (1998))

- a threshold chosen empirically to give enough data for statistical analysis. The

same value will be used in this work although other studies have used different

thresholds (Kortemme & Baker (2002); Li et al. (2006, 2004); Ofran & Rost

(2007b)).

The observation that protection from bulk solvent is a necessary, but not

sufficient, criterion for a residue to have a significant effect on binding affinity,

led Bogan and Thorn to the insightful postulation of the “O-ring” water-exclusion

model, whereby hydrophobic residues surround the hot-spot. The hydrophobic

residues themselves only provide weak contributions to the free energy of binding,

but their main role is in occluding solvent, thereby increasing the strength of polar

interactions between complementary hot-spot residues across the interface (Bogan

& Thorn (1998)). The tight packing of these interaction hot-spots facilitates the

exclusion of water molecules upon binding (Keskin et al. (2005a)). Keskin et

al. (Keskin et al. (2005a,b)) analyzed the organization of 568 computationally

predicted hot-spot residues from 44 interface clusters and found that 79% of

the hot-spot residues were found to cluster into densely-packed “hot regions”.

The “coupling” hypothesis (Halperin et al. (2004)) suggests that experimentally

predicted hot-spot residues on either side of the interface preferentially interact

with one another. These observations have been used to refine the O-ring model

with a “double water exclusion” model whereby the coupled hot-spots closely

interact to give solvent-free hot-spots (Li & Liu (2009)). Analysis of ASEDB has

revealed that hot-spots exhibit a non-random residue composition. Moreira et

al. have suggested residue composition values of 21% for tryptophan, 13.3% for

arginine, and 12.3% for tyrosine (Moreira et al. (2007c)). ASEDB has enabled

several systematic studies into the nature and organization of hot-spots as well

as their computational prediction.
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6.1.2 Computational prediction of hot-spots

Experimental hot-spot identification requires a significant experimental effort

making robust in silico methods of hot-spot prediction highly desirable. Ko-

rtemme et al. (Kortemme (2004)) describe an approach called computational

alanine scanning which involves a simple free energy potential that includes

a Lennard-Jones term, an implicit solvation model, an orientation-dependent

hydrogen-bonding potential, probabilities of the backbone-dependent amino acid-

type and rotamer, as well as an estimate of unfolded reference state energies. In

their benchmark of 233 mutations from 19 protein complexes, 79% of hot-spots

and 68% of neutral residues were correctly predicted. The approach of Moreira

et al. (Moreira et al. (2007a)) involves a molecular dynamics simulation proto-

col performed in a continuum medium using the generalized Born solvent model

with three different internal dielectric constants. Darnell et al. (Darnell et al.

(2007, 2008)) used a machine learning approach called KFC which takes shape

specificity features and biochemical contact features. Tong et al. (Tong et al.

(2004)) predicted hot-spots by using side-chain modelling, energy minimization

and binding free energy calculation. Landon et al. (Landon et al. (2007)) ap-

plied a computational solvent mapping algorithm (CS-Map) that involves moving

small organic functional groups around the protein surface and determining the

most energetically favorable binding positions. Grosdidier and Recio (Grosdi-

dier & Fernández-Recio (2008)) predicted hot-spots by applying docking-derived

normalized interface propensity (NIP) scores along with electrostatics and desol-

vation terms with which they obtain a positive predictive value of up to 80%. Li

et al. (Li et al. (2006)) used solvent accessibility and residue contacts to identify

hot-spot residues. ISIS, the method of Ofran and Rost (Ofran & Rost (2007a,b))

predicts hot-spots in protein sequences using a neural network trained on all

interface residues found in structurally-characterized complexes using features

including a conservation score, sequence environment and predicted solvent ac-

cessibility and secondary structure of each residue and its immediate neighbours.

By representing proteins as small-world networks Del Sol and O’meara (del Sol

& O’Meara (2005)) predict that residues that are highly central, conserved and

buried in the protein complex, correspond to hot-spots or are in direct contact
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with them. The HotSprint database (Guney et al. (2007)) systematically predicts

hot-spots in protein interfaces from the PDB using an evolutionary conservation

score and solvent accessibility terms.

6.1.3 Issues with alanine scanning

Site-directed mutagenesis is one of the most widely used approaches for probing

the molecular determinants of macromolecular binding. However, it is not with-

out its issues. In particular, the thermodynamic data are often interpreted with

the inherent assumption that the only perturbations are with respect to specific

interactions across the binding interface. By considering both the bound and un-

bound forms as conformational ensembles, DeLano (DeLano (2002)) enumerated

a variety of molecular scenarios whereby the observed difference in free energy

of binding could occur. Aside from those mechanisms that are dependent on

the details of the intermolecular interaction in the bound ensemble, a mutation

may perturb the unbound ensemble by inducing: local conformational rearrange-

ments; local unfolding at the interface; global unfolding of the structural domain;

increased entropy of unbound ensemble or aberrant aggregation of multiple pro-

tein molecules. Each of these effects could generate the observed thermodynamic

phenomena, risking the possibility of false-positive assessment of the contribution

of individual residues to the free energy of binding. In reality, mutations are un-

likely to impact either the bound or unbound ensemble discretely and are more

likely to have experimentally-indistinguishable effects on both ensembles.

As well as the risk of false positive predictions of a particular residue’s contri-

bution to binding, alanine scanning can give false negative results. Replacement

of a residue’s side-chain with alanine’s methyl group may be compensated by lo-

cal re-arrangements of neighbouring side-chains or solvent (Janin (1999)) giving

misleadingly small values of ∆∆G for the wild type residue. Indeed, it has been

suggested that the influential O-ring model may be a trivial result of the fact that

side-chain atoms on the periphery of the interface surface have a greater capacity

for non-disruptive replacement by solvent than atoms found towards the centre

(DeLano (2002)). However, molecular mechanics simulation of the complex of ly-

zozyme (HEL) and antibody (FVD1.3) suggested that the hot-spot residues are
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indeed kept sheltered from bulk solvent, supporting the O-ring model (Moreira

et al. (2007b)). Multiple simultaneous alanine mutations can be used to detect

co-operativity between interacting residues (Horovitz (1996)). Non-additivity

between the free energy change from simultaneous mutations to that of the in-

dividual mutations is indicative of energetic coupling between the residues and

in this way the energetics of co-operativity can be quantified. Such methods are

known as Double Mutant Cycles (DMC) or alanine shaving and were discussed

briefly in Chapter 2.

The example in Figure 6.1 indicates the difference between the PICCOLO

definitions of interface core and periphery, and the phenomenon of a hot region

with an O-ring. Solvent inaccessibility is taken as being a necessary but insuffi-

cient criterion for a hot-spot and although this is true of many hot-spot residues,

examples of partially accessible residues can also be found.

The structural basis of the hot-spot phenomenon can be explored by combin-

ing the thermodynamic data from ASEDB with the detailed residue and atomic

level information stored in PICCOLO. Dissection of the molecular properties of

hot-spots, by harnessing some of the same analytical methods presented in Chap-

ter 4 to describe the anatomy of interfaces, enables critical features that distin-

guish hot-spots from other residues to be identified, which, in the future, could

provide the parametric basis for machine-learning methods for in silico hot-spot

identification.

6.2 Methods

6.2.1 ASEDB cleanup

The ASEDB data is made available in the form of a MySQL dump comprising

a simple schema of three tables (reference, mutation and system). The database

comprises 3,010 mutations from 101 systems extracted from 74 references, al-

though it has not been updated for some time (the most recent entry is from

2001). A system is defined here as an interface that has at least one residue that

has been mutagenized to alanine (if both sides of an interface are subjected to

alanine scanning this would be considered as two systems).
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Figure 6.1: Two views of the complex of human growth hormone (spacefill) and

one half of its dimeric receptor (transparent grey cartoons) (PDB entry 1bp3).

In the first panel the residues of the ligand are coloured by their PICCOLO in-

terfacial environment (Interface core in orange, interface periphery in dark red,

exposed surface in light blue, buried in dark blue (see Figure 2.9 on page 63 for

definitions)). In the second panel, taken from an identical viewpoint, residues

are coloured by their ASEDB status (hot-spot residue with ∆∆G≥2 kcal/mol

are shown in red, other ASEDB residues with ∆∆G <2kcal/mol in black). Light

blue residues are not considered by ASEDB. These figures were generated auto-

matically by writing Python functions from Pymol to extract residue annotations

from the MySQL database.

185



6.2 Methods

The data had several inherent issues and several steps of manual cleanup were

required before they could be further analysed. Of the 101 available mutated in-

terfaces, 91 concerned protein-protein interactions, and of these only 26 had been

associated with a published structure of the co-complex from the PDB. However,

since the last release of ASEDB, structures have been solved of some of the sys-

tems that had not been associated with PDB structures. Identifying whether a

complex of two proteins has been solved experimentally is a non-trivial task as

keyword searches are inherently unreliable. As an aside, PICCOLO proved par-

ticularly beneficial in this exercise - simply by performing a BLAST search with

each of the two components of the complex against PICCOLO protein chains, and

identifying the overlap of the two sets it was possible to identify all possible com-

plexes of close homologues of the two proteins. This approach identified a further

11 systems that had both structural and alanine-scanning data. Of those that

had been associated with a PDB structure, in several cases the chain identifiers

were either incorrect or missing and had to be manually corrected. Furthermore

the residue numbers and amino acid types provided often did not correspond to

those observed in the associated structure. However, through careful curation, it

was possible to use the relative spacing between residue types from incorrectly

numbered residues from the same interface to match to the correct numberings

observed in the PDB structure. A subset of the thermodynamic data was found

to be duplicated and one instance was removed.

A further issue was that there was some redundancy inherent in the raw

data. In particular 32 of the systems, corresponding to 1,799 mutations (or

59.7% of the data), correspond to 224 residues from human growth hormone

bound to a series of monoclonal antibodies. This introduced considerable bias

to ASEDB as individual residues were represented up to 20 times, a feature

which may have skewed the published analysis (Thorn & Bogan (2001)). Most

of the redundancy was confined to the human growth hormone system but in all

cases, where multiple values of ∆∆G were provided, the value closest to zero was

selected. After this cleanup process the data found in ASEDB were augmented

with three further systems identified from the literature from published alanine-

scanning mutation data series (the thrombin-thrombomodulin complex (PDB

entry 1dx5)) (Pineda et al. (2002)) and both interfaces surfaces from the complex
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between voltage-gated calcium channel β2α subunit and the α1c subunit (PDB

entry 1t0j)(Van Petegem et al. (2008)).

Hot-spot residue propensity and sequence entropy were calculated using the

same methods as described previously in Chapter 4.

6.3 Results

The results of mapping the ASEDB data to the structurally characterized com-

plexes in PICCOLO will be referred to as ASEDB-PICCOLO and in total com-

prises 764 mutated residues from 41 systems in 26 crystal structures. Of the

764 residues, 90 (11.8%) had a ∆∆G ≥2.0Kcal/mol and were considered as hot-

spots. Figure 6.2 shows the distribution of ∆∆G values for the mutations in the

ASEDB-PICCOLO set. Note that 280 of the residues (36.6%) map to regions

of the structure external to a PICCOLO identified interface - largely due to sys-

tematic alanine scanning experiments, which left 484 residues (63.4%) that were

in PICCOLO interfaces. Importantly, however, none of the residues outside a

PICCOLO-identified interface had a ∆∆G ≥2.0Kcal/mol. Note also that not all

of these complexes were predicted by PISA as being stable in solution. Nonethe-

less, given biophysical binding data it is reasonable to assume that in these cases

the complex observed in the ASU is physiological and the ASU complex was used

in these cases.

6.3.1 Hot-spots are densely connected

Table 6.1 describes the counts of the number of interactions of various major

interaction types for both hot-spot and non hot-spot residues from ASEDB-

PICCOLO. For each interaction type hot-spots consistently have a higher mean

number of interactions. On average a hot-spot residue mediates twice as any

atomic contacts as a non-hot-spot residue.

6.3.2 Hot-spots are conserved

Two measures of sequence entropy were described in Chapter 4 (entropy and

relative entropy). By either measure hot-spots are more conserved than none
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Figure 6.2: Distribution of ∆∆G values for the 764 mutations in the ASEDB-

PICCOLO set.
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Hot-spots 19.64

(17.11)

7.63

(7.55)

0.75

(1.04)

0.52

(1.23)

2.34

(5.87)

6.23

(7.76)

2.82

(7.97)

82.10

(68.23)

Non hot-spots 9.26

(12.36)

3.91

(4.57)

0.34

(0.66)

0.21

(0.61)

1.34

(3.84)

2.70

(5.48)

1.38

(5.9)

45.26

(42.41)

Table 6.1: Mean number of interactions per residue of the major interaction types

described in Chapter 2. Standard deviations are provided in brackets.
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Number of

residues

Average

entropy (s.d.)

Average

relative

entropy (s.d.)

Hot-spot residues 90 1.866 (1.187) 1.783 (1.442)

Non hot-spot residues 670 2.231 (0.974) 1.262 (1.049)

Table 6.2: Mean entropy and relative entropy for hot-spot and non hot-spot

residues in ASEDB. The two measures have opposite directionality. Standard

deviations are provided in brackets.

hot-spot residues, as shown in Table 6.2.

6.3.3 Hot spots show distinct propensities

Table 6.3 and Figure 6.3 show the relative enrichment of each amino acid type in

hot-spots and ASEDB-PICCOLO. The residue propensity data for each structural

environment from Figure 3.14 (page 104) in Chapter 3 is replicated in Figure 6.3

for context. This analysis was hampered by the limited availability of suitable

data - only 90 data points were available where the mutation was characterized

both thermodynamically and structurally. Such small samples are unlikely to be

statistically significant (particularly when further partitioned by residue type),

making assessment of the generality of pursuant observations difficult.

For the majority of residues, the overall distribution of ASEDB-PICCOLO

residues corresponds to that of exposed surface residues. Glycine and proline are

under-represented (glycine is seldom mutated in alanine-scanning experiments)

whereas tryptophan, tyrosine and arginine are over-represented. With respect

to the composition of hot-spots, rather than comparing hot-spot residues to

ASEDB-PICCOLO residues a more meaningful analysis can be achieved through

comparison of the distribution of residues in the interface core with residues in

hot-spots. This analysis reveals that hydrophobic and small residues are signif-

icantly depleted in hot-spots, whereas the larger polar and charged residues are

over-represented. Tyrosine, tryptophan, histdine, asparagine, glutamate, lysine

and arginine are all enriched. Tryptophan’s large size, aromatic nature and ex-

tensive hydrophobic surface mean that it can partake in aromatic π-interactions,
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Residue Entries

in

ASEDB

% of

entries

ASEDB

Hot-

spots in

ASEDB

% of

hot-spots

in

ASEDB

Hot-spot

enrich-

ment

I 30 3.93 7 7.78 1.98

V 32 4.19 2 2.22 0.53

L 38 4.97 4 4.44 0.89

F 28 3.66 1 1.11 0.30

C 4 0.52 0 0 -

M 7 0.92 1 1.11 1.21

G 9 1.18 2 2.22 1.88

T 54 7.07 2 2.22 0.31

S 58 7.59 1 1.11 0.15

W 23 3.01 5 5.56 1.85

Y 50 6.54 18 20 3.06

P 14 1.83 0 0 -

H 24 3.14 4 4.44 1.41

Q 51 6.68 2 2.22 0.33

N 47 6.15 3 3.33 0.54

D 55 7.2 10 11.11 1.54

E 1 10.6 7 7.78 0.73

K 74 9.69 9 10.00 1.03

R 85 11.13 12 13.33 1.20

Table 6.3: Enrichment of each residue type in hot-spots.
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6.3 Results

Figure 6.3: Enrichment of each residue type in hot-spots. Hot-spot data is shown

in Table 6.3.

donate hydrogen bonds and protect its hydrogen bonds from water. Similarly,

tyrosine’s hydrophobic surface, capacity for both aromatic π-interactions and

hydrogen bonding ability through its 4-hydroxyl group means it too can simul-

taneously mediate a diverse range of interactions. Arginine is also capable of

engaging in multiple interactions with capacity for up to five hydrogen bonds as

well as a salt bridge via its guanidinium motif. Comparison with the earlier anal-

ysis of Bogan and Thorn (Bogan & Thorn (1998)) suggests that arginine is not as

significantly enriched in hot-spots as previously suggested (arginine was found to

be two-fold enriched when compared to ASEDB). One explanation for this might

be that the earlier study failed to adequately deal with the redundancies in the

available experimental data. Overall, these propensities appear to support the

O-ring model inasmuch as, in a solvent occluded environment, residues that are

both hydrophobic and able to engage in hydrogen bonding ought to be favoured

in hot-spots.
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6.3.4 Hot-spots explored through substitution scores

The propensity analysis suggests that large residues are favoured at hot-spots.

However, size alone cannot be the sole, phenylalanine is highly disfavoured, possi-

bly due to its inability to mediate hydrogen bonds through its side-chain. Despite

this, an appealing explanation for the hot-spot phenomenon resulting from the

observed enrichment of the larger residues, is that upon mutation of these larger

residues to alanine a large cavity is generated due to the significant difference

in size. This would significantly destabilize the unbound conformational ensem-

ble of the mutated protein leading to local, or global, structural re-arrangement

reducing the capacity for binding in a manner analogous to that suggested by

DeLano (DeLano (2002)). One way to explore such a possibility in a quantita-

tive manner would be to harness the information provided in interface-specific

substitution tables, whose generation was described in Chapter 5. Substitution

scores can be obtained from the 48 ESSTs from the interface-dependent series

by first identifying the appropriate substitution table, by matching terms for

the secondary structure, interface solvent accessibility, intra-molecular hydrogen

bonding and inter-molecular hydrogen bonding, and then looking up the log-

odds score of substituting the interacting hot-spot residue with alanine. Table

6.4 and Figure 6.4 show the results of comparing the mean ∆∆G of all hot-spots

in ASEDB-PICCOLO with the mean substitution score.

The thermodynamic and evolutionary descriptors show a reasonably strong in-

verse correlation (correlation coefficient = -0.67, R2 = 0.45). For comparison, the

substitution scores from the equivalent non-interacting environments were exam-

ined. Here the appropriate environment is identified by matching the appropriate

secondary structure and intra-molecular terms and fixing the solvent accessibility

environment to be exposed (i.e. non-interface), and implicitly no inter-molecular

hydrogen bonding (e.g. exchange HiWB with HAWb). With these non-interface

environment definitions no significant correlation is found (correlation coefficient

= -0.098, R2 = 0.0095, data not shown). This result suggests that the impact

of substitution of a hot-spot residue with alanine destabilizes the interface to a

degree above and beyond that of the effect of any local structural rearrangement

on the exposed surface.
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Residue Number of

residues

Mean hot-spot

∆∆G

(kcal/mol)

(s.d.)

Mean

substitution

score (s.d.)

ARG 12 3.48 (1.16) -2.33 (0.47)

LYS 9 4.34 (2.57) -2.11 (0.31)

GLU 7 3.34 (0.72) -1.57 (0.50)

GLN 2 2.70 (0.20) -1.00 (0.00)

ASP 10 4.13 (1.54) -3.10 (0.30)

ASN 3 2.57 (0.40) -2.00 (0.00)

HIS 4 3.68 (1.35) -1.75 (0.43)

TYR 18 3.72 (1.01) -1.00 (0.00)

TRP 5 4.26 (1.19) -2.00 (0.00)

SER 1 2.19 (0.00) 2.00 (0.00)

THR 2 2.15 (0.15) 0.00 (0.00)

GLY 2 2.12 (0.00) 2.00 (0.00)

MET 1 3.16 (0.00) 0.00 (0.00)

PHE 1 2.60 (0.00) -1.00 (0.00)

LEU 4 2.80 (0.68) -1.00 (0.00)

VAL 2 2.34 (0.24) -1.00 (0.00)

ILE 7 2.55 (0.69) -1.86 (0.35)

Table 6.4: Mean ∆∆G of all hot-spots in ASEDB-PICCOLO and mean sub-

stitution score taken from interface-specific substitution tables for each residue

type.
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Figure 6.4: Scatter plot of mean ∆∆G of all hot-spots in ASEDB-PICCOLO

against mean substitution score taken from interface-specific substitution tables

for each residue type.
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6.3.5 Hot-spot Ligand Efficiency

The concept of ligand efficiency (Hopkins (2004)) has gained considerable traction

in the arena of drug discovery in recent years. In principle it is the ratio of potency

to size and is defined as

LE = ∆G/Nnon−hydrogenatoms (6.1)

where ∆G is the free energy of binding and Nnon−hydrogenatoms is the number of

“heavy” (i.e. non-hydrogen) atoms. It provides a valuable indicator in medici-

nal chemistry decision making as smaller ligands are believed to have preferable

bioavailability properties to their larger counterparts with similar binding affin-

ity. Wells and Mcclendon (Wells & Mcclendon (2007)) investigated the ligand

efficiency of whole protein complexes by using published values for the binding

affinity for several systems with known small-molecule inhibitors and counting

the number of interface contact atoms as the denominator. Here a comparable

analysis was performed at the higher resolution of individual residues using the

thermodynamic and residue contact data from ASEDB-PICCOLO. The mean

ligand-efficiency for hot-spots is shown for each residue type in Table 6.5.

Small molecule ligands naturally exhibit a wide range of ligand efficiencies,

but values in the range -0.2 to -0.5 kcal/mol per non-hydrogen atom would be

typical. The first observation from Table 6.5 would be that the ligand efficiency

values for hot-spots are somewhat higher than this range. Factors contributing to

this include the small sample size and the use of contact atoms only in the denom-

inator. However, many of these residues are deeply buried in the interface where

most of the side-chain atoms engage in some form of interaction. Furthermore, as

hot-spots by definition contribute the greater part of the free energy of binding

it would be expected that these values would be somewhat higher than those re-

ported by Wells et al. for the whole interface. Interestingly, the maximal values

reported here approach the figure of -1.5kcal/mol, a figure suggested by Kuntz et

al. (Kuntz et al. (1999)) as the maximal possible affinity per non-hydrogen atom,

suggesting that in some instances, residues are exquisitely evolved to bind their

partners to their maximal potential. What remains most intriguing however, is

that those residues that are most enriched in hot-spots (tyrosine, tryptophan,
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Residue Mean Ligand Efficiency (s.d.)

ARG 0.82 (0.58)

LYS 0.79 (0.52)

ASP 1.09 (0.48)

GLU 1.44 (1.09)

ASN 1.03 (0.37)

GLN 0.60 (0.24)

HIS 0.59 (0.17)

TYR 0.53 (0.43)

TRP 0.45 (0.20)

SER 1.10 (0.00)

THR 1.48 (0.82)

GLY 0.62 (0.09)

MET 0.45 (0.00)

PHE 0.87 (0.00)

LEU 0.74 (0.29)

VAL 0.67 (0.03)

ILE 1.09 (0.66)

Table 6.5: Mean ligand efficiency for hot-spots of each residue type.
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histidine, asparagine, glutamate, lysine and arginine) are almost all (with the

exception of glutamate) amongst the least ligand-efficient residues. One explana-

tion might be that efficiency itself is not a key determinant for hot-spot residues,

and that absolute affinity is more crucial, along with physico-chemical properties

and the capacity engage in polar interactions in a solvent-excluded surface patch.

Alternatively, it could be argued that the relative inefficiency of enriched residues

is due to the ligand efficiency metric over-simplifying the complex surface-area to

volume effects that dictate many residue properties. Whatever the explanation

a clear theme is that the quantity of accessible experimental data is too small to

generalize confidently.

6.4 Future directions

The capacity to identify hot-spot residues routinely and robustly in silico would

be of tremendous value to burgeoning efforts at targeting protein-protein inter-

faces with small-molecule drugs. The analyses presented here provide the foun-

dation for further development of such a method. Machine learning methods

(including Support Vector Machines, Neural Networks and Random Forest Clas-

sifiers) have become standard tools in bioinformatics for classification problems

involving supervised learning, where typically a small “true-positive” sample is

available (which in this case would be provided by ASEDB-PICCOLO). The de-

scriptors discussed here (sequence entropy, solvent exposure, residue propensity,

substitution score as well as the number and type of interactions) would appear

to have potential in discriminating between hot-spot and non hot-spot residues.

A second avenue for in silico hot-spot identification may stem from direct in-

tegration of PICCOLO interaction data with alignment information from TOC-

CATA. It has been proposed that interface modularity is an evolutionary con-

served property (Rahat et al. (2008)). However, preservation of pairwise residue

contacts across interfaces through evolutionarily conserved protein interactions

has not yet been used to predict hot-spots. An example of the phenomenon

of structurally conserved interactions is shown in Figure 6.5 where Fibroblast

Growth Factors (FGFs) are shown bound to FGF Receptor 2 (FGFR2).
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Figure 6.5: Structurally conserved interactions. The first panel depicts the inter-

action of Fibroblast Growth Factor (FGF) 2 bound to FGF Receptor 2 (FGFR2)

(PDB entry 1ev2). The second panel depicts FGF1 bound to the same receptor

FGFR2 (PDB entry 1djs). The receptor residues are shown as transparent sticks,

the interaction types in the same format as described in Chapter 2. Experimen-

tally identified hot-spot residues from FGF2 are shown in the first panel in red, as

are their structurally equivalent conserved partners in FGF1 in the second panel.
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Careful inspection reveals that some pairwise interactions are preserved be-

tween the two complexes. Furthermore, the experimentally-identified hot-spots

of the residues mediating those structurally conserved pairwise interactions are

a subset of the residues where the interactions are conserved. A broader study

would be required to assess the sensitivity and specificity of using conserved in-

teractions in hot-spot prediction. Such observations would be relatively straight-

forward to encode computationally given the available structured interaction and

evolutionary information.

Another potential avenue for computational prediction of hot-spots would be

to extend the analysis described above to use interface-specific ESSTs to predict

computationally the difference in the free energy of binding upon mutation of

an interface residue to alanine, in a manner directly analogous to that used by

SDM to predict protein stability changes (Topham et al. (1997); Worth et al.

(2007b)). By exploiting the thermodynamic cycle we can predict the difference

in free energy of binding (∆∆G) as:

∆∆G = ∆GU−B
j −∆GU−B

k = ∆GU
jk −∆GB

jk (6.2)

Figure 6.6 depicts the thermodynamic cycle that could by used to predict

the difference in the stability scores for the bound and unbound state for the

wild-type and mutant protein structures (i.e. alanine-substituted).

Note that this would be an entirely general method that could also be applied

to the problem of predicting the effect of nsSNPs in protein-interfaces described

in Chapter 5.
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Figure 6.6: The thermodynamic cycle for for the bound and unbound state for

the wild-type and mutant protein structures.
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Chapter 7

Conclusion

7.1 Overview

The salient outcome of this work is the establishment of PICCOLO as a compre-

hensive database of structurally characterized protein interactions. To achieve

this, issues of interface definition, interaction specificity, quaternary structure,
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interface redundancy, interaction type and structural environment have been ad-

dressed. Development of the platform has enabled exploration of various physico-

chemical and evolutionary properties of protein interface to be explored, with

respect to different classes of interface as well as different anatomical regions of

interface surfaces. These properties include residue propensity, hydropathy, po-

larity, interface size, sequence entropy, residue contact preference and substitution

profiles.

An emerging theme has been that while clear differences exist between differ-

ent interface classes, the differences between anatomical regions of the interface,

more specifically the core and periphery of the interface surface, are more striking.

A further unfolding motif is that with respect to physico-chemical characteriza-

tion, sequence-entropy and observed evolutionary patterns of substitutions, the

interacting residues of the interface can be seen to be intermediate between the

buried core of the protein domain and solvent exposed surface. Moreover, the

interface periphery most resembles the exposed surface in most aspects, whilst

the solvent inaccessible interface core most resembles the buried protein interior.

This outcome reflects the dual lifestyle of (non-obligate) protein complexes; they

must exist stably in solution without engaging in aberrant aggregations but also

mediate short-lived, specific molecular recognition events.

TOCCATA, a relational database of almost 4,000 family-based structural

alignments, was established with the initial aim of aiding the exploration of evo-

lutionary aspects of protein-protein interaction surfaces, most notably sequence

entropy and the identification of distinguishing patterns of substitutions accepted

through evolution in the form of interface-specific substitution tables. The group

is developing a platform of structure-based software and databases tools to facil-

itate the high-throughput analysis of nsSNPs to aid prioritization of those that

are most likely to be deleterious to protein structure, function and interactions.

A pre-requisite for this work is a procedure to maximize structural coverage of

the genome. Fortuitously, the development of TOCCATA was also able to aid in

this process, as it provides the necessary systematic collection and alignment of

suitable template structures for comparative modelling procedures. PICCOLO

was also able to make its own useful contribution to these efforts by identifying
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mutations that could impair protein function by disrupting protein interaction

sites.

7.2 Interaction druggability

Historically there has been little focus on protein-protein interactions as targets

for small-molecule therapeutics. However, alanine-scanning mutagenesis stud-

ies have revealed that only a subset of residues contribute the greater part of

free energy to binding - so-called “hot-spots”. Molecular characterization of hot-

spots, performed using PICCOLO and TOCCATA, probed the molecular basis

underlying this important phenomenon with respect to their residue propensity,

sequence entropy, number and type of interactions, evolutionary conserved in-

teractions, ligand efficiency and their relationship to residue substitution scores.

Such characterization provides the basis for the next phase of this work, which will

be to apply machine-learning methods to the problem of in silico identification

of hot-spot residues.

Should such work prove successful, this would raise the intriguing longer-term

prospect of pathway-centric structure-based druggability assessment. Drugga-

bility assessment is increasingly being applied to prioritize putative targets and

focus valuable resources on those targets most likely to be chemically tractable

to drug-like small molecules (Agüero et al. (2008); Hopkins & Groom (2002,

2003)). To date such approaches have been applied to individual proteins - not

their complexes. Given a cellular pathway whose activity we wish to modulate

(through some a priori knowledge of disease association), druggability assessment

could be achieved through three stages. First structural coverage of the individ-

ual cellular components would have to be maximized. Efforts in genome-scale

modelling could be applied to those components whose structure has not been

solved experimentally. Docking methods, combined with advances in the com-

parative modelling of complexes, could then be applied to gain some structural

representation of the details of the interfaces between each of the components.

Integration of any available experimental data would be invaluable at this stage.

Finally, the hot-spot prediction approaches, in combination with other established

druggability assessment methods (precedence-based, site-tractability assessment,
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chemogenomic analysis (Agüero et al. (2008)) would identify those points in the

pathway most likely to be a chemically tractable point of intervention. There are

prominent issues with the current reliability of some of the individual procedures

in this scheme, however as these computational methods mature, complemented

by further experimental data, such schemes become increasingly realistic, and

indeed necessary to focus valuable resources.

7.3 Interaction dynamics

Specific and sensitive signal transduction cannot be sustained solely through

weak, transient binary interactions. Tightly bound, enduring pairwise complexes

would forego the opportunity for sensitive regulation. Moreover, it appears fi-

delity is ensured through co-operative assembly of multi-protein complexes; each

binary interaction is weak but collectively they are strong. Nonetheless, in or-

der to gain a thorough understanding of the structural determinants of such

higher-order complexes, the nature of the constituent pairwise interfaces must

be examined. There is growing evidence that specific pairwise association of

interaction partners is preceded by non-specific association of in the so-called

“encounter-complex”, providing an opportunity for them to rapidly reorient to

a discrete complementary arrangement due to the reduced degrees of confor-

mational freedom (Blundell & Fernandez-Recio (2006)). Once assembled, further

regulation can be achieved through adjustment of subcellular localization through

post-translational modification and cytoskeletal transport.

7.4 Protein Flexibility

One fundamental aspect of protein-protein interactions that has conspicuously

not been addressed here is that of flexibility. Proteins are not rocks. A variety of

rearrangements are seen to occur upon association, ranging from side-chain con-

formation alterations, local backbone movements or large conformational changes

involving entire secondary structure units or even complete domains (Goh et al.

(2004)). An important distinction can be made between mobile but ordered re-

gions versus intrinsically unstructured regions (Radivojac et al. (2004)). X-ray
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crystallographic structures capture a consensus snapshot of a frozen ensemble,

gathering little information on mobility, whereas NMR structures reflect protein

flexibility to some degree. Aside from simple comparisons of the bound and un-

bound forms of members of a complex, flexibility of interactions can be assessed

through a variety of methods (whose accuracy broadly corresponds to compu-

tational cost) including B-factors (Radivojac et al. (2004)), conformational vari-

ability across evolutionary families (Velazquez-Muriel & Carazo (2009)), normal

modes (Demirel & Keskin (2005)), resolving structures to generate conforma-

tional ensembles (Furnham et al. (2006)) and molecular dynamics (Smith et al.

(2005)). PICCOLO is well placed to undertake a systematic review of the types of

alterations that occur upon binding. The interaction data are organized and clus-

tered by equivalence and secondary structure, local environment and interaction

annotations are pre-calculated.

7.5 PICCOLO Availability

A simple web interface to display the contents of PICCOLO has been made

available through the following URL:

http://www-cryst.bioc.cam.ac.uk/piccolo/piccolo.php

It provides a simple query form where a PDB entry can be entered and inter-

face summaries are provided at the level of chain pairs, residue pairs and atom

pairs. At the time of writing work is ongoing to add functionality to the web

interface, in particular to address the issue of visualization, possibly with im-

ages such as those in Figure 2.15. Future developments being considered include

making the data available in other forms, possibly as a webservice (Papazoglou

(2007)) or in the form of a PyMOL plug-in (Delano (2002)). Alicia Higueruelo

has kindly agreed to take a role in helping to maintain and update the PICCOLO

database. However, at the current time the long term future of PICCOLO re-

mains uncertain. Efforts are being made to further automate data generation.
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7.6 Outlook

7.6 Outlook

The dawn of the genomics era has yielded rapid progress in experimental deter-

mination of protein structures. Concomitantly, new experimental and computa-

tional techniques have begun to generate comprehensive protein-protein interac-

tion maps. The combination of these factors creates the opportunity for new ef-

forts in genome-wide structural modeling of protein-protein interactions. For such

endeavors to become practical, significant efforts at organizing underlying data

applied are required, along with new advances in high-throughput approaches

to docking and modelling of interactions. Neither the recent efforts at achiev-

ing a systems level understanding of cellular processes, nor the component-by-

component reductionist approach, can offer complete insight into the phenomena

of cellular processes in isolation. Rather, the mutually-informing synthesis of the

complementary “top-down” and “bottom-up” approaches offers the best hope of

providing true insight.
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Amino acid atom properties
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Table A.1: Atomic properties for each residue used in generation of PICCOLO

interaction fingerprints.
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(Å
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ALA N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
ARG N + 1.64 0.70

CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
CD 1.88 0.77
NE + + 1.64 0.70
CZ + 1.61 0.77

NH1 + + 1.64 0.70
NH2 + + 1.64 0.70

ASN N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG 1.61 0.77
OD1 + 1.42 0.66
ND2 + 1.64 0.70

ASP N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.61 0.77
OD1 + + 1.42 0.66
OD2 + + 1.42 0.66

CYS N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
SG + + 1.77 1.04

GLN N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
CD 1.61 0.77
OE1 + 1.42 0.66
NE2 + 1.64 0.70

GLU N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
CD + 1.61 0.77
OE1 + + 1.42 0.66
OE2 + + 1.42 0.66

GLY N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

HIS N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + + 1.61 0.77
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interaction fingerprints.
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ND1 + + + + 1.64 0.70
CD2 + + 1.76 0.77
CE1 + + 1.76 0.77
NE2 + + + 1.64 0.70

ILE N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG1 + 1.88 0.77
CG2 + 1.88 0.77
CD1 + 1.88 0.77

LEU N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
CD1 + 1.88 0.70
CD2 + 1.88 0.77

LYS N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
CD + 1.88 0.77
CE 1.88 0.77
NZ + + 1.64 0.70

MET N + 1.64 0.7
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
SD + 1.77 1.04
CE + 1.88 0.77

PHE N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + + + 1.61 0.77
CD1 + + + 1.76 0.77
CD2 + + + 1.76 0.77
CE1 + + + 1.76 0.77
CE2 + + + 1.76 0.77
CZ + + + 1.76 0.77

PRO N 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + 1.88 0.77
CD 1.88 0.77

SER N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB 1.88 0.77
OG + + 1.46 0.66

THR N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB 1.88 0.77
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interaction fingerprints.
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OG1 + + 1.46 0.66
CG2 + 1.88 0.77

TRP N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CD1 + + 1.76 0.77
CD2 + + + 1.61 0.77
NE1 + + + 1.64 0.70
CE2 + + + 1.61 0.77
CE3 + + + 1.76 0.77
CG + + + 1.61 0.77
CZ2 + + + 1.76 0.77
CZ3 + + + 1.76 0.77
CH2 + + + 1.76 0.77

TYR N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG + + + 1.61 0.77
CD1 + + + 1.76 0.77
CD2 + + + 1.76 0.77
CE1 + + + 1.76 0.77
CE2 + + + 1.76 0.77
CZ + + + 1.61 0.77
OH + + 1.46 0.66

VAL N + 1.64 0.70
CA 1.88 0.77
C 1.61 0.77
O + 1.42 0.66

CB + 1.88 0.77
CG1 + 1.88 0.77
CG2 + 1.88 0.77
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Figure A.1: van der Waals radius for atoms from the 20 canonical residues.
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Figure A.2: Covalent radius for atoms from the 20 canonical residues.
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Figure A.3: Hydrogen bond donors from the 20 canonical residues.
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Figure A.4: Hydrogen bond acceptors from the 20 canonical residues.
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Figure A.5: Ionizable atoms from the 20 canonical residues.
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Figure A.6: Hydrophobic atoms from the 20 canonical residues.
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Figure A.7: Aromatic atoms from the 20 canonical residues.
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Appendix B

Double Mutant Cycle.
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Table B.1: Double mutant cycle data used in interaction identification bench-

mark.

PDB entry P
1

ch
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n
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ti
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er

P
1
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si

d
u

e
n
u

m
b

er

P
1

re
si

d
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p
e

P
2

ch
ai
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id
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fi
er

P
2

re
si

d
u

e
n
u

m
b

er

P
2

re
si

d
u

e
ty

p
e

∆∆G (kcal/mol)
1dqj A 32 N C 96 K 4.4
1dqj A 91 S C 21 R -0.5
1dqj A 91 S C 20 Y 1.1
1dqj A 96 Y C 21 R -1.1
1dqj A 96 Y C 100 S 1
1dqj B 32 D C 97 K 3
1dqj B 53 Y C 62 W 0.7
1dqj B 53 Y C 63 W 0.3
1dqj B 53 Y C 75 L 1.5
1dqj B 53 Y C 101 D -0.2
1dqj B 98 W C 100 S 0.4
1dqj B 98 W C 97 K 1.8
1dqj B 98 W C 20 Y 3.1
1brs C 27 K F 42 T 1.5
1brs C 27 K F 39 D 4.8
1brs C 27 K F 35 D 0.4
1brs C 27 K F 76 E 0.1
1brs C 27 K F 29 Y 0.2
1brs C 27 K F 80 E 0.4
1brs C 59 R F 42 T 0.2
1brs C 59 R F 35 D 3.4
1brs C 59 R F 76 E 1.7
1brs C 59 R F 29 Y 0.6
1brs C 59 R F 80 E 0.6
1brs C 83 R F 76 E 0.1
1brs C 87 R F 38 W 0.2
1brs C 87 R F 39 D 6.1
1brs C 87 R F 29 Y 1
1brs C 87 R F 42 T 0.4
1brs C 87 R F 76 E 0.1
1brs C 87 R F 80 E 0
1brs C 102 H F 39 D 4.9
1brs C 102 H F 42 T -0.1
1brs C 102 H F 76 E 0
1brs C 102 H F 80 E 0.1
1brs C 102 H F 29 Y 3.3
1brs C 73 E F 39 D 2.9
1a4y A 434 Y B 5 R 1.4
1a4y A 435 D B 5 R 0.9
1vfb A 32 Y C 121 Q 2
1vfb A 50 Y C 18 D -0.4
1vfb A 50 Y C 119 D 0.3
1vfb A 92 W C 121 Q 2.7
1vfb A 32 Y C 124 I 0
1vfb A 92 W C 124 I 0.7
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Table B.1: Double mutant cycle data used in interaction identification bench-

mark.

PDB entry P
1

ch
ai

n
id

en
ti

fi
er

P
1

re
si

d
u

e
n
u

m
b

er

P
1

re
si

d
u

e
ty

p
e

P
2
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er

P
2

re
si

d
u

e
n
u

m
b

er

P
2

re
si

d
u

e
ty

p
e

∆∆G (kcal/mol)
1vfb A 92 W C 125 R 1.7
1vfb A 92 W C 129 L 0.2
1vfb B 32 Y C 116 K 0.2
1vfb B 52 W C 119 D -0.3
1vfb B 54 D C 118 T 0.6
1vfb B 100 D C 24 S 0.3
3hfm L 31 N Y 96 K 4.7
3hfm L 50 Y Y 96 K 3.8
3hfm L 96 Y Y 21 R -1.9
3hfm L 50 Y Y 21 R -0.7
3hfm L 50 Y Y 97 K 3.5
3hfm H 50 Y Y 21 R 0.5
3hfm H 98 W Y 96 K 4.8
3hfm H 32 D Y 97 K 3.5
3hfm H 33 Y Y 97 K 5
1lfd A 29 N B 225 Q 0.9
1lfd A 32 K B 225 Q 0.2
1lfd A 53 H B 229 V -0.8
1lfd A 51 D B 231 E -1.3
1lfd A 53 H B 231 E -0.4
1lfd A 51 D B 233 D 0.6
1lfd A 53 H B 233 D -0.1
1lfd A 20 R B 237 E 0.6
1lfd A 27 N B 237 E 0.1
1lfd A 31 Y B 237 E 1.2
1lfd A 33 S B 237 E 0.8
1lfd A 31 Y B 238 D 2.7
1lfd A 33 S B 238 D 1.7
1lfd A 52 K B 238 D 1.4
1lfd A 29 N B 239 S -0.3
1lfd A 31 Y B 239 S -1.3
1lfd A 48 K B 239 S -0.2
1lfd A 53 H B 239 S -0.1
1lfd A 27 N B 241 R 0.3
1lfd A 29 N B 241 R -0.2
1lfd A 48 K B 263 E 0.4
1lfd A 32 K B 238 D 0.7
1lfd A 33 S B 238 D 0.9
1lfd A 51 D B 238 D 0
1lfd A 52 K B 238 D 3.1
1gua A 21 V B 68 T 0.1
1gua A 21 V B 69 V 0.3
1gua A 21 V B 88 V 0.7
1gua A 27 I B 88 V -0.4
1gua A 31 E B 59 R 0
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Table B.1: Double mutant cycle data used in interaction identification bench-

mark.

PDB entry P
1

ch
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id
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P
1
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si
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u
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P
1
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P
2

ch
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er

P
2

re
si

d
u

e
n
u

m
b

er

P
2

re
si

d
u

e
ty

p
e

∆∆G (kcal/mol)
1gua A 31 E B 68 T 0.4
1gua A 31 E B 84 K 0.7
1gua A 33 D B 59 R 0.3
1gua A 33 D B 84 K 0.6
1gua A 36 I B 59 R -0.9
1gua A 36 I B 68 T 0.2
1gua A 36 I B 69 V 0.1
1gua A 37 E B 59 R 1.2
1gua A 37 E B 68 T 0.4
1gua A 37 E B 69 V 0.1
1gua A 37 E B 84 K 0.5
1gua A 38 D B 59 R 0.5
1gua A 38 D B 68 T 1.6
1gua A 39 S B 66 Q -0.1
1gua A 39 S B 67 R 0.1
1gua A 39 S B 68 T -0.2
1gua A 41 R B 64 N 0.1
1gua A 41 R B 66 Q -0.2
1gua A 46 V B 64 N -0.5
1gua A 46 V B 66 Q -0.1
1gua A 46 V B 67 R -0.1
1gua A 46 V B 68 T 0.1
1gua A 37 E B 59 R 1
1gua A 37 E B 69 V -0.3
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