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Abstract 

Since the discovery of chromosome territories, it has been clear that DNA within the nucleus 

is spatially organized. During the last decade, a tremendous body of work has described 

architectural features of chromatin at different spatial scales, such as A/B compartments, 

Topologically Associated Domains (TADs), and chromatin loops. These features correlate 

with domains of chromatin marking and gene expression, supporting their relevance for gene 

regulation. Recent work has highlighted the dynamic nature of spatial folding and 

investigated mechanisms of their formation. Here we discuss current understanding and 

highlight key open questions in chromosome organization in animals. 
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Introduction

The current view of nuclear organization has come predominantly from applying variations 

of two major types of method, (i) microscopic observations or (ii) assessment of chromatin 

interactions using Chromosome Conformation Capture (3C) techniques (see [1] for a concise 

review of these methods). Using microscopy to visualise fluorescent probes targeted to 

specific loci can reveal the spatial location of whole chromosomes and the relative positions 

of loci with respect to each other or to landmarks such as the nuclear envelope or nucleoli. 

On the other hand, 3C methods detect interactions between two regions of chromatin [2]. In 

these methods, the physical proximity of two regions of DNA within the nucleus is inferred 

from the frequency of ligation events generated between them following nuclear fixation and 

digestion. Although captured ligation events are referred to as “chromatin interactions,” in 

reality they represent regions of DNA that were close enough to be ligated together, which 

could be because of a direct interaction between these regions or because the regions 

occupied the same general vicinity. Applying the 3C technique genome-wide (Hi-C), 

chromatin interactions can be mapped across the genome [3], with resolution related to the 

depth of sequencing [3,4]. Importantly, 3C methods and microscopy are highly 

complementary. 3C methods identify putative chromatin interactions usually from cell 

populations and cannot assess the frequency of occurrence of the identified interactions 

across the population. On the other hand, microscopy can be used to validate interactions and 

their frequency, by visualising large numbers of individual nuclei. Live imaging is also 

powerful to investigate the stability of interactions and the dynamics of the association of 

proteins with chromatin. 

Applying these methods has led to the definition of different types of chromatin 

organization, such as chromosome territories, compartments, TADs, insulated domains, 

contact domains, and loops. Here we discuss their properties and potential relationships.
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Large-scale organization: chromosome territories and 

compartments 

The initial visualization of the spatial positioning of chromosomes by microscopy 

demonstrated that their organization is actively regulated within the nucleus. Individual 

chromosomes are spatially organized in interphase nuclei, occupying distinct chromosome 

territories (CTs), and adopting relatively reproducible positions in different cells with limited 

intermingling (Figure 1A). Additionally, inactive regions of chromatin are often found in 

proximity to the nuclear envelope whereas active chromatin generally has a more internal 

position within the nucleus [5].

More recently, 3C-based procedures have been instrumental in assessing 3D structure 

of individual chromosomes at increasingly higher resolution. Using Hi-C to derive average 

chromosome conformations from capturing pair-wise interactions in populations of cells 

revealed that chromosomes have two major types of structural domains, termed A and B 

compartments [3]. The A compartment contains active chromatin (denoted by transcriptional 

activity, higher chromatin accessibility and H3K36me3 deposition) while the B compartment, 

more compacted, is associated with inactive chromatin (denoted by low transcriptional 

activity, association with the nuclear lamina and H3K27me3 deposition) [3,4]. 

Importantly, the plaid pattern obtained by plotting pair-wise correlation scores of interaction 

landscapes, when observed across entire chromosomes (Figure 1B), reveals that chromatin 

interactions are more frequent between regions of the same compartment type (A with A, and 

B with B) [3]. A recent Hi-C study conducted on single mammalian cells provided striking 

views of the spatial arrangements of A and B compartments [6]. In modelling the 

arrangement of all chromosomes within the nucleus, it was shown that DNA from the A 

compartment is organized in an inner ring-shaped structure, while DNA from the B 
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compartment preferentially associates with the lamina and the edges of nucleoli (Figure 1A). 

These results are consistent with previous studies that used microscopy to map the locations 

of active and inactive chromatin within nuclei [5,7]. 

A single-cell Hi-C study also highlighted the stochastic positions of A and B 

compartments in interphase cells [6]. Although a locus on a given chromosome occupies the 

same compartment in different nuclei, the spatial folding of the chromosome varies between 

nuclei (Figure 1A). This is in agreement with the finding that positions of lamina-associated 

chromatin (largely corresponding to the B compartment) are not heritable. Instead, these 

regions are randomly redirected to the nuclear lamina or near nucleoli after mitosis, with 

some of them switching from a nuclear lamina position to a nucleolar associated location [8]. 

These studies show that chromosomes have different conformations in different cells and that 

A compartment active chromatin and B compartment inactive chromatin are spatially 

segregated both within chromosomes and globally within nuclei.

Importantly, A/B compartment organization is only observed in interphase. During 

mitosis, chromatin structure is radically rearranged (Figure 1C) [5,9,10]. Hi-C studies 

performed on synchronised cells showed that minutes after entering prophase, chromosomes 

lose A/B compartment organization and progressively generate and compact arrays of loops 

arranged around helical scaffolds of condensin I and II complexes (REF). This raises the 

question of how compartment structure is reformed.

Although a relationship between transcriptional activity and compartments is clear, 

the mechanism of compartment formation and function are not yet understood. A striking 

feature of A and B compartments is their different chromatin composition, including histone 

modifications associated with gene activity or inactivity, respectively. Chromatin state 

domains, which are defined by differently marked chromatin, have been noted to subdivide 

the genomes of animals, and their position in the genome is relatively constant during 



6

development [11]. Interestingly, super-resolution imaging has shown that different chromatin 

state domains (e.g., active, inactive, Polycomb marked) have distinct types of 3D 

organization, with Polycomb-marked chromatin having the densest packing [12,13]. 

Furthermore, altering local chromatin composition through targeting histone modifiers can 

drive repositioning to different compartments [14]. Whereas histone modifications can be 

inherited through cell division, most compartment interactions are lost during mitosis but 

regained after division [9,15] (Figure 1C). These data suggest a model where the formation 

and structure of chromosome compartments relies on chromatin domains [16–18]. In such a 

model, chromatin reorganization that occurs during mitosis would prevent A/B compartment 

interactions, while retention of chromatin domain marking would provide a framework for 

regenerating compartments in daughter cells (Figure 1C).

What might cause the segregation of chromatin into two types of spatial 

compartment? A growing body of work has shown that liquid-liquid phase separation can 

drive the formation of non-membrane bound compartments in the nucleus and cytoplasm 

[19]. For instance, the nucleolus is a phase separated compartment containing several 

different immiscible liquid-like sub-compartments, and HP1 containing heterochromatin has 

liquid-like properties and appears to form by phase separation [20–23]. The formation of 

these membrane-less compartments is thought to be driven by the local condensation of 

proteins containing unstructured regions. It is plausible that domains of particular chromatin 

modifications and/or proteins could drive phase-separated compartments that organize 

chromosome structure. 

Intermediate scale organization: Topologically Associated 

Domains

At a more local scale, chromatin interaction studies mostly in Drosophila and mammalian 
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cells have described the segmentation of the genome into small physical domains of tens of 

kilobases up to a few megabases, and generally containing a small number (e.g., 1-10) of 

genes [4,24–28]. These self-interacting domains are variously termed “Topologically 

Associated Domains” (TADs) [24–26], sub-TADs [27], “contact domains” [4] and “insulated 

neighbourhoods” [28]. They are defined based on observing frequent chromatin interactions 

within a region and relatively fewer interactions with neighbouring chromatin. Because these 

differently named domains are defined in a similar way, and it is unknown whether they are 

functionally different, we will refer to this class of chromosome segmentation domain as 

“topologically associated domains” (TADs) without distinction. The properties of TADs 

support the view that they represent functional domains. For example, histone modification 

and replication timing are often similar across individual TADs [4,29]. Additionally, TADs 

appear to constrain the regulatory activity of enhancers [30]. 

TAD boundaries

The positions of TAD boundaries defined from studies on populations of cells appear 

relatively conserved in different cell types and across evolution  [27,28,31–34]. In mammals, 

TAD boundaries interact more frequently with each other than with any other locus within 

the TAD and usually show binding of the CCCTC binding factor CTCF and the cohesin 

complex [4,24,25]. CTCF was initially identified as a protein with insulator activity, and its 

binding motifs at interacting boundaries are almost always oppositely oriented [4,34,35]. 

These observations have led to the notion that a chromosome domain is constrained within an 

insulating loop anchored by oppositely oriented CTCF proteins at the two boundaries of the 

domain (Figure 2). This model is supported by the analyses of mutants with deletions or 

inversions of CTCF sites at TAD boundaries, which led to predicted fusions or alterations of 

TADs [36,37].
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The importance of TAD domain organization is also supported by gene expression 

and phenotypic alterations that are associated with TAD perturbations. In late embryonic 

development in the mouse, deleting a boundary between TADs that separate Hox genes alters 

gene expression and leads to skeletal defects [38]. In human and mouse, the inversion, 

deletion or duplication of TADs or TAD boundaries was shown to alter expression of genes 

located in the affected TADs, resulting in heart or limb pathologies [39,40], Cook syndrome 

[41] or cancer susceptibility [42]. 

Mechanism and dynamics of domain formation

The cohesin complex forms a ring structure that entraps DNA for sister chromatid cohesion 

in meiosis and mitosis [43]. The enrichment of cohesin at TAD boundaries in interphase 

cells, together with its ability to entrap DNA, has led to a “loop extrusion” model to describe 

the formation of insulating loops [44,45] (Figure 3). In this model, a loop of DNA is 

dynamically extruded by a loop extrusion factor (LEF) that contains cohesin (Figure 3b-f). 

Encountering a “boundary factor” (BF) such as CTCF would stabilize the complex (Figure 3e 

- i). This model would explain the enrichment of cohesin and CTCF at TAD boundaries and 

the strong interaction signal observed between these regions. Of note, consistent with these 

roles, cohesin binding is located on the inner edge of the TAD relative to CTCF (Figure 3e) 

[46]. 

Increasing experimental and modelling studies have given strong support to the 

involvement of cohesin and loop extrusion in regulating chromosome organization (see [47] 

for a recent review). However, their mechanisms are still unclear. For example, the factors or 

processes providing the force for loop extrusion are not yet known. Transcriptional activity is 

correlated with TADs, and a recent computational model suggests that the negative 

supercoiling generated by transcription could provide energy for loop extrusion by ‘pushing’ 
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cohesin handcuffs [22,45,48] . However, TADs may not rely on transcription, as they start 

forming in Drosophila embryogenesis before the onset of the majority of zygotic 

transcription, and still form even after chemical inhibition of RNA polymerase [49,50].

The dynamics of cohesin and CTCF binding to chromatin argue that loops are not 

static structures but instead are constantly forming and collapsing (Figure 3d-f). Cohesin has 

a residence time of ~22 minutes, and CTCF, potentially playing the role of an insulating loop 

anchor, has a residence time of ~1 minute [51]. This implies that cohesin/CTCF loops are 

present only transiently even when ends are at TAD boundaries (Figure 3). The binding 

dynamics also explains how an extruding loop could bypass a TAD boundary to form a larger 

loop. Finally, dynamic binding suggests that nested extrusion would be expected to form 

within existing loops. A dynamic nature of chromosome domains is also supported by single-

cell Hi-C studies [6,52,53]. Although averaged TAD boundary positions converge to those 

defined using a large number of cells, individual cells differ in TAD positions, and TADs can 

transgress conserved TAD boundaries. These studies support the view of dynamic loop 

formation and collapse and indicate that TADs are not stable structures (Figure 3).

Factors involved in the formation of domains and boundaries

A series of recent studies directly investigated the roles of cohesin and CTCF in interphase 

chromosome organization by removing them in mammalian cells [16,54]. Loss of CTCF, the 

Rad21 component of cohesin, or the cohesin loading factor Nipbl, led to the loss of TADs 

and loops [16,54,55], underlining the important structural role of both CTCF and cohesin in 

forming loops and insulated domains. In line with these results, the cohesin release factor 

WAPL was shown to restrict loop extension, as evidenced by the increase in loop size upon 

its depletion [56]. However, although loops and TAD structure were lost upon CTCF or 

cohesin removal, A/B compartment structure remained intact, indicating that TADs and 
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compartments are two independent types of structure [16,54,55]. CTCF or cohesin loss did 

not cause widespread transcriptional changes but only affected the expression of a limited set 

of genes, suggesting that much of normal gene expression is not dependent on TAD structure. 

It may be that compartments, which are retained, are important in this context.

The regulation of nucleosome dynamics at TAD boundaries also has the potential to 

control boundary “strength” (i.e. the level of segregation of interactions on each side of the 

boundary). TAD boundaries are sensitive to DNAse I digestion which indicates a lower 

nucleosome density [57,58]. Moreover, loss of the nucleosome remodelling protein BRG1 

increases nucleosome occupancy at TAD boundaries and reduces boundary strength and 

CTCF binding [59]. In addition to affecting the binding of boundary factors, nucleosome 

dynamics has the potential to affect boundary function through changing local chromatin 

flexibility (see [60] for further discussion). 

Importantly, factors involved in domain formation appear to differ in different 

animals. Mammals show strong CTCF/cohesin loop anchors at TAD boundaries [4,27] 

whereas in Drosophila, CTCF sites are at a small proportion of TAD boundaries and are not 

usually in inverted orientation [18]. Instead, Drosophila TAD boundaries are enriched for a 

number of other architectural proteins, such as CP190 and BEAF [57,58]. Furthermore, 

recent studies indicate that the prevalent strong loop anchors observed in mammals do not 

exist in Drosophila and that many TAD “boundaries” are instead domains of active genes 

[18,57,61].

Domains in other organisms

The widespread TAD structure described in mammals and Drosophila has not been observed 

in other organisms such as C. elegans [62] and A. thaliana [63]. However, this difference 

may be due to technical and/or biological limitations, such as Hi-C map resolution and gene 
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spacing. Notably, TAD-like structures are visible in gene-depleted regions of these otherwise 

compact genomes [18]. Although TADs are not apparent in C. elegans, a larger domain 

structure required for dosage compensation has been observed on the X chromosome [62]. 

Additionally, C. elegans autosomes are demarcated by alternating chromatin domains of 

H3K27me3 and H3K36me3 which contain genes with different modes of regulation [11,15]. 

Although the relationship between this chromatin domain pattern and spatial organization is 

not yet known, a similar chromatin domain organization of high versus low levels of 

H3K27me3 occurs in Drosophila sperm, and this pattern aligns well with TADs and TAD 

boundaries, respectively [17,61]. The alignment of histone modification domains with TADs 

together with the finding that compartments and histone modification patterns are not 

generally affected by loss of cohesin or CTCF in mammals suggests that chromatin domains 

may provide a primary level of 1D chromatin organization and regulation upon which higher-

level organizational mechanisms act.

Small-scale chromatin interactions

Variant 3C methods such as 4C, 5C, ChIA-PET or promoter capture, focusing on selected 

regions of the genomes, have uncovered extensive contacts between regulatory elements (i.e. 

promoters and enhancers), especially within TADs, which are not generally visible using 

genome wide methods such as Hi-C [64–67]. Enhancers usually contact multiple promoters 

and vice versa (Figure 2), and interacting regions show correlated activity, suggesting that 

contacts have functions in transcriptional control. Some genomic regions, such as Frequently 

Interacting REgions (FIREs) show particularly dense local interactions [31,68] and are 

associated with networks of co-expressed tissue-specific genes clustered within the same 

domain [68]. Their function is not yet known, but they might serve as a platform for 

transcription regulation in a domain. The anchors of enhancer/promoter interactions are less 
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enriched for the combination of CTCF and cohesin compared to loop anchors at insulating 

TAD boundaries suggesting alternative mechanisms for their formation [4,27,31,40]. This 

observation could explain the relatively weak effect of CTCF and cohesin depletion on gene 

regulation [16,54].

There is evidence that both pre-established loops and de novo loop formation play 

roles in regulating transcriptional output. In Drosophila and mammals, interactions between 

enhancers and promoters are detected before gene activation and are associated with paused 

RNA polymerase, suggesting that such contacts prime later expression [31,64,69]. Similarly, 

during early neural lineage commitment, enrichment of transcription factor YY1 at a set of 

pre-established regulatory loops is associated with transcription activation [33]. During 

macrophage development, transcription activation is associated with both the formation of 

new regulatory loops and increased acetylation of H3K27 at pre-existing loop anchors [31]. 

Finally, directly inducing contact between an enhancer and a promoter can drive 

transcription, supporting the functionality of interactions [70,71].

In summary, the current data support roles for chromatin interactions in regulating 

gene expression and controlling chromosome organization. Yet the mechanisms that govern 

patterns of regulatory element interactions are still poorly understood. 

Conclusion

In this review, we have highlighted the diverse and versatile mechanisms implemented within 

the nucleus to build spatially organized and regulated chromatin. Although recent work has 

provided a remarkable improvement in our understanding of genome organization, many 

outstanding questions remain, such as 1) How are higher-order structures such as A/B 

compartments formed? Do liquid-liquid phase transitions play a role? 2) How are TADs 

formed? What provides the force for loop extrusion? 3) How are contacts between regulatory 
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elements made and what are their functions? What are the roles of transcription factors? 4) 

How many different types of loop exist, and what are their functions? 

The increasing use of perturbation analyses, studies of protein and regulatory 

dynamics, and investigations at higher resolution will help to address these and other 

fundamental questions. The field is at an exciting stage where new studies and technologies 

should lead to breakthroughs in our understanding of genome regulation and organization.
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Figure 1: Large-scale chromosome organization

A: Computational model of the 3D structure of a haploid mouse ES genome using data from 

a single-cell Hi-C experiment. Left: Modelled arrangement of the chromosomes within a 

single nucleus. Each chromosome is coloured differently. Center: Cross-section of the 

modelled nucleus, with A compartment in blue and B compartment in red. The B 

compartment is enriched at the nuclear lamina and in a central ring that surrounds the 

nucleolus. Right: Different structural organization of chromosome 9 modelled from two 

different single-cell Hi-C datasets. Figures extracted from [6].

B: Pearson correlation map of chromatin interactions on Chromosome 17 at a resolution of 

500 kb. The Eigenvector obtained by Principal Component Analysis (PCA) reveals 

segregation of the chromosome in two compartments, A (positive values) and B (negative 

values). Data visualised using Juicebox and obtained from [4]. 

C: A/B compartments are present in interphase, lost in mitosis and re-established after cell 

division.  A/B compartment re-establishment could potentially rely on retained chromatin 

domains defined by histone modifications. The Pearson correlation maps of interactions are 

coloured as in B. Data obtained from [9] and visualised using Juicebox [4].

Figure 2: Topologically Associated Domain (TAD) organization in mammals

Three theoretical TADs (green, red and blue) are depicted. 4C tracks from [39] are used to 

illustrate the “insulating” properties of TAD boundaries (4C experiments assess the 

interactions between one specific locus and the rest of the genome; the assessed locus in each 

4C experiment is indicated by an arrowhead). Insulating loops between TAD boundaries are 

represented by dashed lines while contacts between regulatory elements are represented by 
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solid yellow lines. 

Figure 3: Model of dynamic loop extrusion

A loop extrusion factor (LEF) binds to a segment of chromatin between two boundary factors 

(BF) located on TAD boundaries and initiates loop extrusion (a). While this loop is growing, 

a new LEF could bind within the loop (b), leading to the extrusion of a secondary nested loop 

(c). If BFs are present when the loop ends reach a TAD boundary, the loop is temporarily 

stabilized (d) then disrupts when a LEF or LEF/BF complex dissociates (e). Alternatively, if 

a BF is not present, the loop could bypass the TAD boundary (f). Loops could potentially 

also dissociate during any phase of extrusion. Model based on references [44,45].
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