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Summary 

G-quadruplexes are non-canonical nucleic acid secondary structures of 

increasing biological and medicinal interest due to their proposed 

physiological functions in transcription, replication, translation and telomere 

biology. Aberrant G4 formation and stabilisation have been linked to genome 

instability, cancer and other diseases. However, the specific genes and 

pathways involved are largely unknown, and the work within this thesis aims 

to investigate this. Stabilisation of G4s by small molecules can perturb G4-

mediated processes and initial studies suggest that this approach has 

chemotherapeutic potential. I therefore also aimed to identify cell genotypes 

sensitive to G4-ligand treatment that may offer further therapeutic 

opportunities. To address these aims, I present the first unbiased genome-

wide genetic screen in cells where genes were silenced via short-hairpin 

RNAs (shRNAs) whilst being treated with either PDS or PhenDC3, two 

independent G4-stabilising small molecules. I explored gene deficiencies that 

enhance cell death (sensitisation) or provide a growth advantage (resistance) 

in the presence of these G4-ligands. Additionally, I present a validation 

screen, comprising hits uncovered via genome-wide screening, and also the 

use of this in another cell line of different origin. Sensitivities were enriched in 

DNA replication, cell cycle, DNA damage repair, splicing and ubiquitin-

mediated proteolysis proteins and pathways. Ultimately, I uncovered four 

synthetic lethalities BRCA1, TOP1, DDX42, GAR1, independent of cell line 

and ligand. These were validated with three G4-stabilising ligands (PDS, 

PhenDC3 and CX-5461) using an independent siRNA approach. The latter 

siRNA methodology was used to screen 12 PDS derivatives with improved 
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medicinal chemistry properties and ultimately identified SA-100-128, as a lead 

compound. The mechanism behind synthetic lethality with G4-stabilising 

ligands was explored further for DDX42, which I show has in vitro affinity for 

both RNA- and DNA-G4s and may represent a previously unknown G4-

helicase. Also within this thesis, gene deficiencies that provided a growth 

advantage to PDS and/or PhenDC3 as uncovered by genome-wide and 

focused screening were explored. These showed enrichment in transcription, 

chromatin and lysosome-associated genes. The resistance phenotype of 

three gene deficiencies, TAF1, DDX39A and ZNF217 was further supported 

by additional siRNA experiments. Overall, I satisfied the primary aims and 

established many novel synthetic lethal and resistance interactions that may 

represent new therapeutic possibilities. Additionally, the results expand our 

knowledge of G4-biology by identifying genes, functions and subcellular 

locations previously not known to involve or regulate G4s.  
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Chapter 1  

General Introduction 

Overview 

This thesis describes investigations into a non-canonical four-stranded 

structure called the Guanine-quadruplex (G4), found ubiquitously in RNA and 

DNA. The purpose of these experiments relates to both G4s and to the small 

molecules that bind to and selectively stabilise these structures (referred to as 

G4-stabilising ligands henceforth). In particular, the work focuses on 

identifying genotypes that perturb G4 formation and/or function and thus alter 

G4-ligand sensitivity. Genes and pathways were identified via functional 

genomics and subsequent validation experiments, that when depleted via 

RNA-interference (RNAi), cause either decreased or increased growth rate in 

the presence of G4-stabilising ligands.  

 

At the beginning of my studies and to date, such screening methodologies 

had yet to be explored with G4-stabilising ligands. The genes uncovered by 

such an approach have great potential to explore unknown clinical and basic 

biological areas regarding G4s (expanded in section 1.9). Firstly, the genes 

identified impart knowledge concerning the biological roles and locations of 

G4s, and the methods by which cells respond to and regulate G4-structures. 

From a clinical perspective, these experiments might help to define genotypes 

that are especially sensitive to G4-stabilising ligand treatment and highlight 

new therapeutic opportunities. Further, any identification of non-G4 

associated resistance mechanisms will inform on areas for improving the 
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specificity of G4-ligands. Additionally, the tools and resources outlined within 

this thesis can be used to test and benchmark novel G4-stabilising ligands. 

 

The first chapter of this thesis provides an introduction to G4s, including their 

cancer association and hypothesised endogenous roles, as well as the small 

molecules targeting G4-structures. Also discussed are the available functional 

genomic methods for pooled screening of the response of different cellular 

genotypes to pharmacological treatment. The experimental work is divided 

into four chapters. Initially, Chapter 2 describes the setup and outcome of a 

genome-wide screening approach and subsequent smaller, validation screens 

performed with two independent G4-stabilising ligands, PDS and PhenDC3 

(see section 1.4.2.3). Chapter 2 focuses on gene-deficiencies that cause 

synthetic lethality with these molecules. Secondly in Chapter 3, I outline an 

independent approach to validate the top four sensitivities identified by 

genetic screening with PDS and PhenDC3. I also extend this validation to 

other G4-stabilising ligands. In Chapter 4, one of these key four sensitivities, 

DDX42, was selected for further investigation, and preliminary experiments to 

explore the possible mechanism of G4-ligand synthetic lethality with DDX42-

deficiency are described. Then, I focus on the genetic screening outcome 

from a “resistance” perspective in Chapter 5, i.e. investigating gene 

deficiencies that provide a growth advantage to cells treated with G4-

stabilising ligands. Finally, Chapter 6 provides an overall summary detailing 

how work within this thesis addresses the aims to define cellular genotypes 

that alter G4 formation and/or ligand accessibility from a biological, clinical 

and technical perspective. 
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1.1 G-quadruplex sequence and structures 
Over 60 years ago, James Watson and Francis Crick suggested the first 

double helix model of DNA based on X-ray diffraction data performed by 

Rosalind Franklin and Maurice Wilkins (Watson & Crick, 1953; Franklin & 

Gosling, 1953; Wilkins et al, 1953). Since, it has been shown that DNA 

predominantly forms a B-duplex (Richmond & Davey, 2003). However, 

increasingly more studies have shown that non-canonical structures exist and 

that these configurations may influence a variety of biological processes in 

both RNA and DNA. Such secondary structures can occur, for example, when 

nucleotides interact via alternative hydrogen-bonding patterns to the classic 

Watson-Crick interaction between opposite strands of the DNA or RNA duplex 

(Murat & Balasubramanian, 2014; Wong & Huppert, 2009; Zhao et al, 2010). 

The subject of this thesis is one such non-canonical structure, the guanine-

quadruplex (G4) which is formed when the guanines (Gs) interact by 

Hoogsteen base pairing (Hoogsteen, 1963). The existence of G4s was first 

suggested in 1910 following the observation that concentrated guanylic acid 

solutions formed a hydrogel (Bang, 1910), hypothesised to arise by guanine 

self-association. The existence of G4s were subsequently suggested by 

electrophoretic techniques whereby the formation of G4s from synthetic 

guanine (G)-rich DNA oligonucleotides derived from human (Sen & Gilbert, 

1988) and ciliate Tetrahymena sequences (Williamson et al, 1989) caused 

their aggregation and retardation on the gel.  

 

G4 structures form when four guanine tracts (G-tracts) self-associate via this 

Hoogsteen interface (Figure 1.1B) rather than interacting with cytosine via 
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Watson-Crick base pairing (Figure 1.1A). A consensus sequence for G4-

formation, derived from biophysical structural and computational analysis, is 

shown below (Huppert & Balasubramanian, 2005; Todd et al, 2005) with G-

tracts separated by nucleotide loops (N). More recent biophysical studies 

suggests that loops can be longer than seven nucleotides (Guédin et al, 2010; 

Mukundan & Phan, 2013) and in vitro spectroscopic analysis shows central 

loops of up to 21 nucleotides allow G4 formation (Bourdoncle et al, 2006). 
  

G3-5N1–7G3-5N1–7G3+N1–7G3-5 

 

Four guanines (i.e. one from each tract) associate to form planar 

tetramolecular quartets (G-tetrads, Figure 1.1B). Stacking of these quartets 

via π - π interaction provides stability to the G4-structure (Figure 1.1C). 

Although generally consisting of a minimum of three quartets, two-tetrad 

stable structures have also been seen in DNA (Zhang et al, 2010; Lim et al, 

2009). Monovalent cations through the G-quartet core electrostatically interact 

with electrons from O6 from each guanine (see Figure 1.1B) providing further 

structural stability, with the strength of stabilisation in the order: K+ > Na+ > 

NH4
+ > Li+ (Davis, 2004; Pinnavaia et al, 1978; Sessler et al, 2000; Hud et al, 

1999). More recently, RNA G4s have been biophysically investigated in vitro 

(Zhang et al, 2011). 
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Figure 1.1. G-quadruplexes are diverse non-canonical nucleic acid secondary 
structures 
(A) Watson-Crick hydrogen bonding between guanine and cytosine 
(B) Schematic of a guanine (G)-quartet, in which four guanines interact via 
alternative Hoogstein hydrogen bonding, stabil ised via a central monovalent 
cation interacting with electrons provided by the guanine O6 atoms. 
(C) Schematic of a series of G-quadruplexes formed from three tetrads, differing 
in strand orientation, which can influence loop topology in intramolecular G4-
structures. Loops can also differ in length, and “bulges” can exist if guanines 
within the tract are non-consecutive. 
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1.2 G-quadruplexes are topologically heterogeneous 

Although characterised by a common quartet arrangement, G4-structures as 

a family are diverse and some G4s are highly polymorphic, and both RNA and 

DNA have the propensity to fold into a variety of different G4-structures. One 

source of heterogeneity is the intervening loops (Figure 1.1C) differing in 

length, nucleotide composition and conformation (Neidle, 2010; Burge et al, 

2006). Biophysical analysis of various G4 structures shows that the length 

and sequence of the intervening loops can greatly influence the structure and 

stability of intramolecular complexes (Risitano & Fox, 2004; Bugaut & 

Balasubramanian, 2008; Hazel et al, 2004). This was corroborated by in vivo 

investigations into loop length in yeast (Piazza et al, 2015), where short loops 

provided the most stable structures. 

 

Structural polymorphism also arises from strand polarity: strands can be all 

parallel or have a mixture of parallel and antiparallel strands leading to 

additional diversity in loop topologies of G4 structures (Figure 1.1C). Both 

intra- and intermolecular G4s exist, the latter arising from interaction between 

two or four independent strands (Simonsson, 2001; Keniry; Burge et al, 2006; 

Schaffitzel et al, 2001). This includes hybrid DNA-RNA intermolecular G4s 

(Zhang et al, 2014). Such considerable polymorphism highlights that 

‘quadruplex’ is an umbrella term for a diverse set of non-canonical structures. 
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1.3 Locations of G4s within the genome and the transcriptome 

1.3.1 Bioinformatic analysis 

Computational algorithms have been employed to identify Potential 

Quadruplex-forming Sequences (PQS) within the genome and transcriptome. 

One such algorithm is QuadParser (Huppert & Balasubramanian, 2005), 

which predicts ~376,000 PQS within the human genome adhering to the 

consensus G3-5N1–7G3-5N1–7G3+N1–7G3-5 (Huppert & Balasubramanian, 2005; 

Todd et al, 2005). More recently the algorithm G4-hunter (Bedrat et al, 2016) 

suggests this number is 2-10 fold higher in vitro by additionally considering G-

richness and G-skewness, however this algorithm specifies a very relaxed G4 

definition thus encompasses significant false positives. Further extending the 

PQS definition to include longer loop lengths and bulges suggests over 

716,000 potential genomic sites (Chambers et al, 2015; Schiavone et al, 

2014). This may still be an underestimation of PQS based on the observation 

that repetitive DNA and RNA sequences, such as the repetitive G-rich 

sequences that form G4 structures, are often omitted from available genome 

databases (reviewed in Rhodes & Lipps, 2015). Many PQS, both RNA and 

DNA, are conserved at specific loci across species (König et al, 2010; 

Sahakyan et al, 2017; Capra et al, 2010) indicating a strong selection 

pressure for their retention in the genome and transcriptome. Such positive 

selection for PQS indicates important and evolutionarily constrained roles for 

the structures that they encode. These loci will be described in the remainder 

of section 1.3, and provide some preliminary indications of G4 functions.  
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Application of QuadParser to the human genome revealed that more than 

40% of genes have a predicted PQS within 1 kb of the transcription start site 

(TSS), often overlapping with transcription factor binding sites (Neidle, 2010; 

Huppert & Balasubramanian, 2007, 2005). Promoters showing G4-enrichment 

include those at genes involved in immunoglobulin chain switching (Han & 

Hurley, 2000), cell development, signalling and growth (Eddy & Maizels, 

2006). Of particular interest, PQS are enriched at oncogene promoters 

(Huppert & Balasubramanian, 2007) including MYC, BCL2 and VEGF (Sun et 

al, 2011) but depleted at tumour suppressor promoters (Eddy & Maizels, 

2006). Additionally, genome-wide bioinformatic analysis of human replication 

origins suggest that over 90 % are in PQS proximity, with increased density at 

more frequently used origins (Cayrou et al, 2012; Besnard et al, 2012). That 

being said, replication origins are difficult to define in humans and show 

extensive variability (Leonard & Méchali, 2013), thus the relationship between 

G4s and replication origins are unclear. More concrete evidence beyond 

bioinformatic causation, could be provided by identifying synthetic lethality 

with replication-associated proteins. The other primary site of DNA-G4 

enrichment is at telomeres (see section 1.3.3; Huppert & Balasubramanian, 

2005; Blackburn, 1991; Simonsson, 2001). Additionally, DNA-G4 have been 

identified in the genomic DNA of viruses (Tlučková et al, 2013; Piekna-

Przybylska et al, 2014) and bacteria (Beaume et al, 2013). 

 

These bioinformatic analyses have recently been independently biophysically 

corroborated with two separate G4-mapping techniques, G4-seq and BG4-

ChIPseq (Chambers et al, 2015; Hänsel-Hertsch et al, 2016). The former 



	 9 

mapped G4-structures in DNA isolated from primary human B-lymphocytes, 

combining polymerase stop assay and Next-generation sequencing 

techniques to compare sequencing readouts from conditions that promoted or 

discouraged G4-formation (Chambers et al, 2015). Conversely, BG4 ChIP-

seq, uses the G4-specific antibody BG4 (see section 1.4.1) to perform 

chromatin Immunoprecipitation (ChIP) in the immortalised HaCaT 

keratinocyte cell line, and subsequent sequencing to identify more than 

10,000 G4-peaks, which were preferentially formed in open chromatin 

(Hänsel-Hertsch et al, 2016).  

 

1.3.2 Promoter quadruplexes  

The human MYC gene illustrates the potential transcriptional regulatory role of 

promoter G4s. The MYC promoter contains a 27 bp, PQS-containing, 

nuclease hypersensitive element III (NHE III) (Simonsson et al, 1998). The 

NHE III element binds several transcription factors, controlling up to 90% of 

MYC transcription (González & Hurley, 2010). A synthetic oligonucleotide 

based on this sequence has been biophysically demonstrated to form two 

different G4-structures (Siddiqui-Jain et al, 2002), further corroborated by 

NMR visualisation of these structures in the human Myc sequence (Ambrus et 

al, 2005; Phan et al, 2004). These G4s act as hypothesised transcriptional 

repressor elements and destabilisation of these structures caused by 

NM23H2 binding causes increased MYC expression (Siddiqui-Jain et al, 

2002).  
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1.3.3 Telomeres 

DNA G4s are also enriched at telomeres, the protective nucleoprotein 

structures at chromosome ends. Human telomeres consist of up to 15 

kilobases of TTAGGG tandem repeats (de Lange, 2009). This sequence 

adheres to the predicted G4 consensus sequence (Huppert & 

Balasubramanian, 2005). While predominantly double-stranded, the 

telomeres end in 50-500 basepairs of G-rich single-stranded DNA overhangs 

(de Lange, 2009; Makarov et al, 1997) that have the potential to form a 

polymorphic G4 array (Phan, 2010). Independent NMR spectroscopy and 

crystallographic studies with both Na+ and K+ cations suggest several stable 

telomeric DNA G4-conformations including parallel, antiparallel and 2-tetrad 

arrangements (reviewed in Bryan & Baumann, 2011) illustrating the 

topological heterogeneity of these structures. 

 

1.3.4 Location of RNA quadruplexes 

In RNA, more than 3,000 mRNAs have been bioinformatically and 

biophysically demonstrated to contain G4-structures (Bugaut & 

Balasubramanian, 2012; Kwok et al, 2016; Kwok & Balasubramanian, 2015), 

particularly enriched at 5’- and 3’-untranslated regions (UTRs). The latter was 

achieved via ‘rG4-seq’, an in vitro method that mapped K+-stabilised G4s in 

polyadenylated-enriched HeLa RNA, by coupling the ability of these structures 

to cause reverse transcriptase stalling with next-generation sequencing. 

Additionally viral mRNAs contain RNA G4 structures, such as that found in the 

Epstein-Barr virus encoded nuclear antigen 1 mRNA (Murat et al, 2014). PQS 

are further found in introns and near polyadenylation sites (Eddy & Maizels, 
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2008; Kikin et al, 2008; Chambers et al, 2015). RNA G4s are also predicted to 

form in non-coding (nc) RNA sequences, including precursor miRNAs 

(Mirihana Arachchilage et al, 2015) and long non-coding RNAs (lncRNAs) 

(Jayaraj et al, 2012) with the latter experimentally verified via G4-induced 

reverse transcriptase stalling in multiple lncRNAs (Kwok et al, 2016).  

 

1.4 Tools to investigate G4 structures  

Many hypothesised G4-roles arise from the biochemical inhibition that 

unresolved secondary structures can cause to processive RNA and DNA 

polymerases (Edenberg et al, 2014). This inhibition could provide an 

endogenous regulatory method for processes involving nucleic acids, 

however this has not been systematically evaluated. This may include 

modulation of transcription and replication (DNA G4s) and splicing and 

translation (RNA G4s) (Bochman et al, 2012; Cruz & Westhof, 2009; Murat & 

Balasubramanian, 2014; Balasubramanian & Neidle, 2009).  

 

Several methods exist to explore the roles of G4s in cells (reviewed in Hänsel-

Hertsch, Di Antonio, & Balasubramanian, 2017). One is the use of G4-specific 

antibodies. By experimentally exploiting the specific and high affinity 

interaction of antibodies, endogenous G4-structure forming sequences can be 

identified via ChIP or quantified and visualised within fixed cells, by coupling 

to fluoro- or chromophores. Alternatively, small molecule ligands that 

specifically bind to and stabilise G4-structures following their application to 

live cells, can be used. These two methods answer different interlinked 

questions. As antibodies predominantly bind pre-formed G4-structures, they 
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provide a global snapshot of the number and location of G4s within a cell. 

Further, antibodies are currently not able to image G4s and their dynamics in 

live cells. Conversely, small molecules actively stabilise and increase the 

lifetime of folded G4s in live cells. The phenotype induced by altering G4-

dynamics with these small molecule ligands can inform on the roles that G4-

structures perform and the cellular response to their increased levels and 

persistency. Both methods will be discussed below. 

 

1.4.1 Development of G4-specific antibodies  

The development of G4-specific antibodies has been instrumental in 

validating their in vivo existence. The first imaging of G4s in cells was 

provided by the antibody Sty49, generated via ribosome display and raised 

against telomeric DNA-G4s from the ciliate Stylonychia lemnae (Schaffitzel et 

al, 2001). In situ immunostaining of Stylonichia cells with Sty49 revealed 

telomeric G4 formation in vivo (Schaffitzel et al, 2001), later shown to depend 

on two telomeric binding proteins, TEBPα and TEBPβ (Paeschke et al, 2005). 

S-phase resolution of telomeric G4s required recruitment of the StyRecQL 

helicase as reflected by depletion in Sty49 staining (Postberg et al, 2012) 

indicating even at this early stage of G4 research, that cellular machinery 

exists to regulate these structures and that their resolution is necessary for 

accurate replication.  

 

More recently developed antibodies allowed G4 detection in mammalian cells. 

For example, a single chain phage display (scFV) antibody BG4, was shown 

to recognise several G4-conformations with low nanomolar affinity (Biffi et al, 
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2013). BG4 immunofluorescence (IF) studies demonstrated the existence of 

DNA- (Biffi et al, 2013) and RNA- (Biffi et al, 2014a) G4s in fixed human cell 

lines and was subsequently used to detect G4-enrichment in human stomach 

and liver cancer tissues by immunohistochemistry compared to controls (Biffi 

et al, 2014b). Immunostaining with an independent monoclonal antibody 1H6, 

generated by immunising mice with stable G4-constructs also supports G4-

existence in mammalian cells (Henderson et al, 2014). Furthermore, DNA 

Immunoprecipitation of genomic DNA from a human breast adenocarcinoma 

cell line, with the phage display antibody hf2 generated against a KIT 

promoter G4, showed PQS motif enrichment, suggesting that these 

sequences form G4 structures in genomic DNA (Lam et al, 2013; Fernando et 

al, 2008).  

 

1.4.2 G4-stabilising ligands and therapeutic options 

Many small molecules have been developed that bind to and stabilise G4 

structures and have helped the investigation of G4 biology. G4 ligands are 

generally characterised by planar, aromatic structures allowing π-stacking 

onto the terminal G-quartet (Neidle, 2010). This is reflected in the structure of 

telomestatin, a naturally occurring telomeric G4 stabiliser (Figure 1.2A) 

isolated from Streptomyces anulatus (Shin-ya et al, 2001). This terminal 

quartet-binding model is supported for several G4-stabilising small molecules 

via NMR and crystallographic structural data (reviewed in Haider et al, 2011). 

G4-ligands are diverse but show similarities in their structures and 

hypothesised binding model to G4s. However, the literature reports 

phenotypic differences following their application to cells. To date however, 
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these observations arise from independent studies with different cell lines, 

G4-ligands and setups. To fully appreciate the distinct biological targets and 

efficacy of G4-stabilising ligands, a simultaneous, side-by-side comparison of 

the cellular response they induce is required. The work within this thesis 

makes a preliminary attempt at this goal. Below, the cellular response to G4-

ligands will be generally discussed from three main perspectives: promoter 

G4-targeting, telomere G4-targeting and the role of G4s in replication and the 

DNA damage response (DDR). Next, the cellular phenotypes in response to 

two G4-stabilising ligands, PDS and PhenDC3 will be summarised, as these 

molecules have been extensively used for experiments outlined in this thesis. 

  

Many of the documented G4-ligand treatment responses are hypothesised to 

arise from DNA-G4 stabilisation. Due to their later discovery in cells, RNA-

G4s have been less well investigated as G4-ligand targets. Note that although 

many G4-ligands are biophysically characterised with DNA-G4 forming 

oligonucleotides, they may also bind RNA G4s. That being said, RNA specific 

G4-stabilising ligands have been developed (reviewed in Donlic & Hargrove, 

2018), including carboxyPDS (cPDS; see section 1.4.2.4). 
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Figure 1.2. Examples of G4-stabilising ligands 
(A) The naturally occurring G4-stabil ising l igand telomestatin (Shin-ya et al., 
2001), (B) cationic porphyrin TMPyP4 (Frank Xiaoguang Han et al, 1999), (C) 
pentacyclic acridine RHPS4 (Gowan et al, 2001), (D) Pyridostatin (PDS), (E) 
phase II cl inical compound, quarfloxin derivative CX-5461 (Xu et al, 2017), (F) 
bisquinil ium compound PhenDC3 (De Cian et al, 2007b), (G) carboxylated PDS 
derivative specifically stabil ising RNA-G4, cPDS.(Di Antonio et al, 2012) (H) G4 
ligands are hypothesised to stack onto the terminal G4 quartet via π-π  
interaction between planar aromatic rings . 
	

1.4.2.1 G4-stabilising ligands targeting oncogene promoters 

The bioinformatic and biophysical identification of predicted promoter G4s has 

gained experimental support from independent cell studies with various 

ligands inducing alterations in gene expression levels. This is postulated to 

arise from stabilisation of predicted promoter G4s and include modulation of 

oncogene expression. For example treatment with TMPyP4 (Figure 1.2B), 

actinomycin D and quinolone derivatives (Lagah et al, 2014; Thakur et al, 

2009; Kang & Park, 2009; Ou et al, 2007) reduces MYC expression in several 

cell lines. Indeed telomestatin treatment reduces expression of MYC and 

TERT in medullablastoma and teratoid-rhabdoid cancer cell lines (Shalaby et 
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al, 2010) and KRAS in pancreatic cancer cell lines (Cogoi et al, 2009). 

Acridinium derivatives have also been explored as G4-stabilisers, the most 

effective of this class being RHPS4 (Figure 1.2C) (Gowan et al, 2001) 

showing PQS-associated anti-proliferative effects in multiple glioblastoma cell 

lines (Lagah et al, 2014). As many cancers are driven by deregulated 

overexpression of various oncogenes, the ability to decrease their 

transcription via treatment with G4-stabilising ligands provides an attractive 

therapeutic prospect (Balasubramanian et al, 2011). However, as these 

promoter G4s are also present in normal cells, in isolation this is perhaps 

unlikely to provide adequate selectivity. Thus, there is merit in systematically 

identifying and exploiting genotype synthetic lethality with G4-stabilising 

ligands. 

 

1.4.2.2 G4-stabilising ligands targeting telomeres  

Supporting the existence of a tandem array of polymorphic DNA-G4s at the 

telomere, application of G4-stabilising ligands to cells and in vitro induces a 

plethora of telomere-associated phenotypes. These include telomerase 

inhibition, telomere uncapping and subsequent senescence (Tahara et al, 

2006; Gomez et al, 2006; Zahler et al, 1991; Zaug et al, 2005; Neidle, 2010). 

For example, telomestatin inhibits telomerase by encouraging formation of, 

and selectively binding to, intramolecular, antiparallel telomeric G4s (Kim et 

al, 2002; Rezler et al, 2005). This may suggest that other telomeric G4 

structures, such as parallel G4s, are not targeted by the natural compound, a 

feature not shared by many synthetic G4-stabilising ligands which have been 

shown to bind a range of G4-topologies (De Cian et al, 2007b; Le et al, 2015). 
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Treatment with low telomestatin concentrations, causes telomere attrition and 

apoptosis of several cancer cell lines whereas high doses induce telomere 

uncapping (Gomez et al, 2004b; Kim et al, 2003; Shammas et al, 2004; 

Tahara et al, 2006; Tauchi et al, 2003, 2006). As the majority of cancers 

reactivate telomerase and several have increased telomere lengths (Bailey & 

Murnane, 2006), the targeting of telomeric G4s represents a promising 

chemotherapeutic target (Han & Hurley, 2000; Neidle, 2010). 

 

1.4.2.3 G4-stabilising ligands inducing a DDR 

Beyond telomerase inhibition and transcriptional modulation, small molecule 

stabilisation of G4-structures is problematic during DNA replication and can 

induce DNA damage and activate a DDR, a mechanism hypothesised to arise 

via DNA polymerase inhibition. Such a response is observed following 

application of pyridostatin (PDS; Figure 1.2D, Rodriguez et al., 2008) to cell 

lines (section 1.4.2.3). This has been recently exploited in a synthetic lethality 

approach for treatment of BRCA-deficient tumours with the G4-stabilising 

ligand CX-5461 (Figure 1.2E), currently in Phase II clinical trials (Xu et al, 

2017). Here the reduced ability to repair DNA-damage synergises with the 

induction of DNA damage via G4-stabilising ligand treatment. This will be 

discussed in greater detail in section 1.6. 

 

1.4.2.4 PDS and PhenDC3  

In many ways the G4-affinities of PDS, and the phenotypes attributed to PDS 

treatment of cells, reflect general attributes seen with other G4-ligands 

(sections 1.4.2.1-1.4.2.3). For example, PDS binds to promoter and telomeric 
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DNA-G4s and mRNA RNA-G4s in vitro (Murat & Balasubramanian, 2014; 

Kwok et al, 2016) and increases endogenous G4-formation as judged by BG4 

immunofluorescence studies in fixed cells (Biffi et al., 2013). PDS-induced G4 

stabilisation is accompanied by a strong DDR in transformed fibroblasts and 

colon cancer cell lines (Rodriguez et al, 2012). Subsequently, PDS treatment 

was shown to cause synthetic lethality in BRCA2-deficient cells, a gene 

involved in damage repair (McLuckie et al, 2013). Additionally, PDS-treated 

cells exhibit telomere dysfunction (Müller et al, 2012) and reduced expression 

of genes containing promoter PQS, including but not limited to oncogenes 

(Murat et al, 2013; Lam et al, 2013). As a consequence of the damage and 

telomere dysfunction that PDS induces, treatment causes long-term growth 

arrest and senescence in several human cancer cell lines (Müller et al, 2012). 

 

The bisquinolinium compound PhenDC3 is large, planar, aromatic and is also 

thought to stabilise G4 via stacking onto the terminal quartet (Figure 1.2F) (De 

Cian et al, 2007b). PhenDC3 also modulates gene expression in cell lines; 

and can inhibit telomerase and replication fork progression in vitro (Halder et 

al, 2012; Madireddy et al, 2016; Castillo Bosch et al, 2014; De Cian et al, 

2007b, 2007a). In contrast to PDS, the induction of a DDR following PhenDC3 

treatment and whether this can be exploited in BRCA-deficient backgrounds 

has yet to be investigated.  

 

PDS and PhenDC3 show different in vitro affinities for the 5’- and 3’- tetrads 

(Le et al, 2015). Biophysical G4-affinity differences are also reported for 

TMPyP4 and RHPS4: TMPyP4 has similar affinity for telomeric and promoter 
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G4s (Halder & Chowdhury, 2007; Lemarteleur et al, 2004) whereas RHPS4 

mainly targets the telomere (Oganesian et al, 2006). Whether these in vitro 

differences translate to variation in the cellular phenotypes they induce, has 

yet to be systematically investigated in human cells.  

 

1.4.2.5 carboxylated PDS – a step towards RNA-G4 specific ligands 

Due to the transcriptional link between RNA and DNA, it is difficult to dissect 

RNA-G4 and DNA-G4 phenotypes following treatment of cell lines with pan-

G4 ligands with broad specificity. There is an unmet need for the production of 

DNA and RNA specific G4-ligands, to more accurately segregate RNA and 

DNA effects. As a step towards this a carboxylated version of PDS (cPDS, 

Figure 1.2G) was developed, which selectively stabilised RNA-G4 over DNA-

G4 in vitro (Di Antonio et al, 2012) and in cells (Biffi et al, 2014a). However 

this remains to be used in cellular phenotype experiments. 

 

1.5 Hypothesised protein interactions and cellular roles of 

G4s 

Increasingly, endogenous proteins are implicated in the modulation of cellular 

G4 landscape and play important roles via G4-interactions. Two broad 

classes of G4-binding proteins have been studied: G4-resolving proteins, 

helicases and nucleases, and non-enzymatic “docking” partners that are 

recruited by G4s to mediate various biological processes. 

 



	 20 

1.5.1 DNA G4-helicases and their regulatory roles 

DNA G4s are thought to regulate transcription and replication. The proposed 

presence of dedicated G4-helicase machinery, to unwind these structures 

allows them to act as dynamic and regulatable switches (Patel & Donmez, 

2006; Suhasini & Brosh, 2013). Artificial stabilisation of G4s by ligands 

compromises this switch-like role by antagonising helicase activity and 

encouraging the equilibrium towards the folded state. This may explain the 

transcriptional inhibition phenotypes imparted by multiple G4-ligands following 

their application to cells. The simplest model for this transcriptional inhibition 

is that DNA-G4s are RNA polymerase obstacles. This is supported by the 

observation that human fibroblast treatment with CX-4561 inhibits RNA 

polymerase 1, leading to activation of ATM/ATR DNA damage signalling 

(Quin et al, 2016). DNA replication studies in chicken DT40 cells offer an 

alternative explanation: G4 inhibition of the DNA polymerase results in the 

inheritance of incorrect histone epigenetic modifications and subsequent 

transcriptional silencing (Sarkies et al, 2010, 2012). G4 inhibition of DNA 

polymerase has also been linked to controlling replication, specifying 

replication origins and ensuring faithful and ordered DNA replication (reviewed 

in Rhodes & Lipps 2015). Concordant with this, PDS treatment induces cell 

cycle arrest (Rodriguez et al, 2012). 

  

The clearest link between helicases and DNA G4s in vivo is provided by Pif1, 

a highly conserved DNA replicative helicase found in virtually all eukaryotes 

(Bochman et al, 2010). Both S.cerevisiae and human Pif1 unwind G4s in vitro 

(Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010) and yeast 
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genome-wide ChIP-Seq studies suggest that Pif1 binds to G4 motifs in vivo 

(Paeschke et al, 2011). Furthermore, in Pif1-deficient yeast, introducing 

artificial sequences encoding DNA-G4s induces replication stress and 

reduced cell growth (Paeschke et al, 2011). A functional role of human Pif1 

(hPif1) is less understood. However supporting a role in DNA replication, 

hPif1 is heavily cell cycle regulated by proteosomal degradation, with peak 

abundance in G2-phase (Bochman et al, 2010). Further, siRNA-induced 

depletion of hPif1 slows replication fork progression and increases replication 

arrest in normal cells (Gagou et al, 2014). This is non-lethal to normal cells 

and not associated with double-strand break formation, but in several cancer 

cell lines where the replication stress high, hPif1 depletion induced apoptosis 

and reduced proliferation (Gagou et al, 2014). This highlights that cancer-

associated genetic backgrounds exist that are sensitive to unresolved G4s, in 

this case due to hPif1-deficiency but also perhaps achievable by G4-

stabilising ligand treatment. Exploring the latter, to define genotypes sensitive 

to G4-stabilising ligand treatment, is central to the aims of this thesis. 

 

Another class of helicases with in vitro G4-unwinding activity are members of 

the Iron-Sulphur (Fe-S) cluster domain family (Wu & Brosh, 2012), including 

human FANC-J (Fanconi Anaemia Group J protein) and its C.elegans 

homologue DOG-1 (deletion of G-rich tracts) (London et al, 2008; Wu et al, 

2008). FANC-J mutations cause the bone marrow failure disorder Fanconi’s 

Anaemia (FA) and predisposition to hereditary breast and ovarian cancers 

(Seal et al, 2006; Levitus et al, 2005). FANC-J is proposed to promote DNA 

synthesis by G4 resolution, with deficiencies in FANC-J sensitise cells to G4-
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stabilising ligands (Brosh & Cantor, 2014; Schwab et al, 2013; Bharti et al, 

2013). Accordingly, G4 nuclear staining is increased in FANC-J deficient 

murine and human cells suggesting increased DNA-G4 levels (Henderson et 

al, 2014).  

 

The transcriptional helicases XPB and XPD are also members of the Fe-S 

family (White, 2009); mutations in these proteins cause Xeroderma 

pigmentosum, a syndrome associated with melanoma predisposition (Kamileri 

et al, 2012). XPB and XPD mapping in the chromatin of human fibrosarcoma 

cells by ChIP-seq suggests that 40 % of binding sites overlap with a PQS 

(Gray et al, 2014). Furthermore, the regulator of telomere length (RTEL1), 

another Fe-S helicase (Wu & Brosh, 2012) is suggested to be responsible for 

the resolution of telomere G4s during S-phase, thus RTEL1 deficiencies are 

associated with telomere fragility (Vannier et al, 2012, 2014).  

 

Likewise, the RecQ class of helicases bind and resolve DNA-G4s in vitro 

(Huber et al, 2006; Budhathoki et al, 2014). Members include the StyRecQL 

ciliate G4-helicase (Postberg et al, 2012) and Bloom’s (BLM) (Sun et al, 

1998), Werner (WRN) (Kamath-Loeb et al, 2001) and Rothmund-Thomson 

(RecQ4) (Hickson, 2003) syndrome proteins, mutations in which cause 

increased cancer susceptibility and premature aging (Suhasini & Brosh, 

2013). Consistent with a role for RecQ helicase unwinding of cellular G4s, 

BLM- and WRN-deficient fibroblasts show down-regulation of genes with 

promoter PQS (Nguyen et al, 2014; Johnson et al, 2010) and an increase in 

nuclear G4 structures as judged by BG4 immunofluorescence (Drosopoulos 
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et al, 2015). Telomeric G4 resolution by WRN is reportedly essential to 

prevent replication fork stalling during lagging strand synthesis (Aggarwal et 

al, 2011), with telomere loss and premature senescence observed in WRN-

depleted cells (Crabbe, 2004). In some ways, phenotypes associated with 

helicase deficiencies are similar to that following treatment of cells with G4-

stabilising ligands. For example, fibroblasts derived from Werner and Bloom 

syndrome patients show altered gene expression at PQS sites (Brosh, 2013; 

Mendoza et al, 2016), similar to the transcriptional inhibition profile described 

above for several ligands in section 1.4.2.1. This may reflect a similar 

biological mechanism arising from unresolved G4-structures or may arise due 

to limited techniques to date available to investigate G4-associated 

phenotypes.  

 

Although several G4-resolving helicases have been identified and studied, the 

full repertoire is unknown, thus there remains an unmet need to expand our 

knowledge of endogenous machinery responsible for regulating G4-formation. 

As helicase deficiencies may be expected to increase the numbers of G4s in 

cells, this may exacerbate sensitivity to G4-stabilisng ligands. Thus the 

genetic screening experiments performed within this thesis may uncover 

novel helicase candidates. 

 

1.5.2 Other enzymatic interactors of DNA-G4s 

In addition to helicases, nucleases are also emerging as important G4 

regulators. The yeast endonuclease KEM1 can bind to and cleave at DNA-G4 

sites (Liu & Gilbert, 1994) and XRN1, its murine and human homologue binds 
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both RNA- and DNA-G4s in vitro (Bashkirov et al, 1997). In addition, viral 

mRNA G4 structures inhibit human XRN1 to prevent RNA decay of the viral 

genome (Charley et al, 2018). Other human nucleases DNA2, FEN1 and 

EXO1 cleave DNA G4s in vitro (Vallur & Maizels, 2008), and depletion of 

these genes cause telomere dysfunction (Saharia et al, 2008; León-Ortiz et al, 

2014), suggesting that they may regulate telomeric G4 in vivo. Another 

putative enzymatic G4 interactor, is the translesion polymerase REV1, 

deficiencies in which cause G4-associated replication fork stalling in DT40 

cells (Sarkies et al, 2010). Finally, BG4 staining of human HEK cells showed 

colocalisation of telomerase and a specific subset of telomeric G4, inferring a 

telomerase recruitment role by G4s during meiotic telomere extension (Moye 

et al, 2015). 

 

1.5.3 DNA G4-docking partners 

In addition, experimental evidence is increasingly suggesting that both RNA 

and DNA G4s can recruit protein partners to influence different aspects of 

genome and transcriptome function. Well-characterised examples of G4 

binders are found at the telomere. For example, TLS/FUS can also bind both 

telomeric DNA-G4 and TERRA RNA-G4 (Takahama et al, 2013) and multiple 

shelterin components interact with G4s. G4-binding proteins are an ongoing 

area of investigation and there is an unmet need for its expansion.  

 

1.5.3.1 Telomeric DNA-G4 interactors 

The mammalian telomere is bound by shelterin, a heteromeric complex of six 

proteins: TRF1, TRF2, POT1, TPP1, TIN2 and Rap1 (Palm & de Lange, 
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2008). Shelterin provides a telomere protection role preventing recognition of 

the chromosome end as a double strand break (DSB), which would otherwise 

aberrantly activate the DDR. Replicative senescence occurs when telomeres 

are too short to interact with shelterin (Feuerhahn et al, 2015). The telomere 

G-rich overhang is mainly occupied by POT1 (protection of telomeres), while 

the double-stranded region is bound by TRF1 and TRF2, telomeric repeat 

binding factors 1 and 2, respectively, with other proteins performing bridging 

or stabilisation roles (Palm & de Lange, 2008).  

 

Figure 1.3. Telomere is protected by shelterin and tandem G4-structures 
Schematic of the mammalian telomere. Telomeres consist of repetit ive TTAGGG 
stretches forming up to 15 kb of double stranded structure and a G-rich 
overhang predicted to form a polymorphic array of quadruplexes. The telomere 
is protected by shelterin, a heterohexameric structure which binds to the 
telomere via three DNA binding proteins: TRF1, TRF2 and POT1 
 

 

Consistent with telomeric DNA G4s contributing to telomere protection, TRF2 

has in vitro telomeric DNA- and RNA-G4 (TERRA, see 1.5.4.2) affinity (Biffi et 

al, 2012). The latter interaction is likely to be structure rather than sequence 

specific, as TRF2 also has nanomolar affinity for other RNA-G4s, including 

those found in the 5’-untranslated regions (UTR) of BCL2 and NRAS mRNA 

(Biffi et al, 2012). Further in vitro data suggests TRF2 can promote both intra- 

and intermolecular DNA G4 formation (Pedroso et al, 2009). In keeping with a 

role for TRF2 interaction with G4s, TRF2 depletion in human fibroblasts 
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increases sensitivity to treatment with the G4-stabiliser RHPS4 (Salvati et al, 

2015).  

 

Shelterin also recruits the helicases hypothesised to resolve G4-structures: 

TRF1 recruits BLM (Sfeir et al, 2009) and TRF2 interacts with WRN (Opresko 

et al, 2002) and RTEL1 (Vannier et al, 2012; Sarek et al, 2015). Furthermore, 

FRET analysis shows the POT1-TPP1 complex can destabilise telomeric G4s 

in vitro (Hwang et al, 2012). Other proteins shown to interact with telomeric 

DNA-G4s include hnRNPA1 and hnRNPD (Krüger et al, 2010; Enokizono et 

al, 2003), UP1 (Hudson et al, 2014) and the single stranded binding protein 

RPA (Safa et al, 2014; Qureshi et al, 2012). This interaction with RPA shifts 

telomeric G4 equilibrium towards an unfolded state (Safa et al, 2014). The 

roles of these interactions beyond telomere protection are not fully 

characterised, however the yeast protein Rif-1 binds telomeric G4s and 

prevents replication at locations far from this telomeric binding site (Kanoh et 

al, 2015). The above studies firmly suggest the existence of telomeric G4-

structures in vivo where they are thought to provide a structure specific 

‘docking’ site for multiple proteins. 

 

1.5.3.2 Non-telomeric DNA-G4 interactors 

Several proteins are also hypothesised to bind promoter DNA-G4s. For 

example, the multifunctional phosphoprotein, nucleolin binds the MYC 

promoter G4 in vitro and in HeLa cells and inhibits transcription (González et 

al, 2009). Similarly, ChIP analysis shows that nucleolin also binds the 

oncogene VEGF promoter DNA-G4 (Sun et al, 2011), and may also perform a 
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transcription regulatory role. Likewise, the DNA-damage recognition protein 

PARP1 binds several promoter G4s, including BCL-2, KRAS, MYB, KIT and 

VEGF (Soldatenkov et al, 2008; Cogoi et al, 2010) an interaction proposed to 

promote PARP1 catalytic activity. Secondary to a DDR induction role, the 

docking of PARP with KRAS promoter DNA-G4s activates transcription when 

co-bound with the transcription factor MAZ1 and contributes to xenograft 

tumour growth of pancreatic cell lines injected into mice (Cogoi et al, 2010, 

2013). Additionally a mutant form of p53 that causes a ‘gain-of-function’ 

phenotype in several cancers (Brázda, Hároníková, Liao, & Fojta, 2014) binds 

several promoter G4s in vitro acting as a transcriptional cofactor (Quante et 

al, 2012), providing a novel link between DNA-G4s and cancer via this p53 

role.  

 

Beyond promoter G4 interactions, the Origin Recognition Complex (ORC) is 

shown to bind both RNA and DNA-G4 in vitro via an RNA binding domain in 

ORC1, adjacent to the ATPase domain (Hoshina et al, 2013). This is 

consistent with the enrichment of PQS at replication origins (Besnard et al, 

2012). Further, nucleophosmin (NPM1), required for ribosomal RNA 

maturation and export, and frequently overexpressed in acute myeloid 

leukaemia (Falini et al, 2005) binds ribosomal DNA-G4, in vivo and in vitro 

(Chiarella et al, 2013). Moreover, DNA-G4s interact with several chromatin 

remodellers although the full repertoire is unknown. For example the 

SWI/SNF chromatic remodeller ATRX, binds GC rich sequences at the 

telomere and centrosome encouraging heterochromatin formation (De La 

Fuente et al, 2011), including multiple PQS (Clynes et al, 2013) and has DNA-
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G4 selective affinity in vitro (Law et al, 2010). Synthetic lethality between 

ATRX-deficiencies and telemostatin treatment of cells has been reported 

(Watson et al, 2013), further supporting an endogenous DNA-G4 interaction. 

Such inactivation frequently occurs in glioma and ATRX-deficient 

neuroepithelial progenitor cells exhibit large-scale alterations in chromatin 

accessibility and transcription exclusively at normal ATRX binding sites 

(Danussi et al, 2018). 

 

G4s may also prevent DNA-protein interactions. For instance, bioinformatic 

analysis suggests that DNA-G4s are nucleosome exclusion signals in yeast, 

nematode and mammalian cells (Halder et al, 2009; Wong & Huppert, 2009). 

This is experimentally supported by ChIP-seq data (see section 1.3.1) which 

indicates that G4s preferentially form in nucleosome free regions (Hänsel-

Hertsch et al, 2016). Additionally, the preferential overlap of PQS with 

transcription factor binding sites (Huppert & Balasubramanian, 2005) coupled 

with the inverse correlation between gene expression levels and the number 

of promoter PQS (Balasubramanian et al, 2011), could suggest G4-formation 

prevents transcription factor interaction with the DNA-duplex. However, 

perhaps incompatible with this, BG4 ChIP-seq indicated that more 

transcriptionally active genes had the highest PQS density (Hänsel-Hertsch et 

al, 2016). Further, some transcription factors, such as SP1 bind G4s in vitro 

(Raiber et al, 2012), suggesting potential mechanisms for G4s to also 

promote transcription. 
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Another hypothesised role for DNA G4 is in sister chromatid alignment during 

meiosis (Sen & Gilbert, 1988). Although there is no direct evidence for this in 

mammals, the yeast protein Hop1 was observed to link sister chromatids 

during synapsis via formation of intermolecular G4s (Anuradha & Muniyappa, 

2004) and KEM1-depleted cells (yeast homologue of XRN1) were blocked in 

meiosis (Liu & Gilbert, 1994). Additionally, investigations in gram-negative 

bacteria, suggest a DNA-G4 is necessary at recombination sites for pilin 

antigenic variation (Cahoon & Seifert, 2009; Walia & Chaconas, 2013). Similar 

roles remain to be explored in human cells.  

 

1.5.4 RNA G4 roles 

Although less studied than DNA-G4s, RNA-G4s are emerging as equally 

important regulatory endogenous structures and are reportedly more stable 

and refractory to unfolding than DNA-G4, with direct evidence provided by 

NMR and X-Ray crystallography (reviewed in Cammas & Millevoi, 2016). The 

mostly single stranded nature of RNA may favour G4 formation compared to 

predominantly double-stranded DNA (reviewed in Brázda et al., 2014). The 

ribonucleotide 2’-OH group also contributes to this RNA-G4 rigidity and 

stability (Saccà et al, 2005). 

 

1.5.4.1 Translation and mRNA processing 

Multiple studies report that in vitro G4-stabilisation of RNA G4-structures can 

inhibit translation (Bugaut & Balasubramanian, 2012), first experimentally 

shown with the 5’UTR G4 in NRAS mRNA (Kumari et al, 2007). 

Subsequently, translationally repressive 5’ UTR G4s have been identified in 
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several other mRNAs, including the tumour suppressor BCL2 and the 

shelterin component TRF2 (Arora et al, 2008; Balkwill et al, 2009; Gomez et 

al, 2010; Morris & Basu, 2009; Shahid et al, 2010; Beaudoin & Perreault, 

2010). RNA-G4s can also activate translation by protein recruitment. For 

example, a G4 found in the IRES of the VEGF promotes translation by 

recruiting the ribosome (Morris et al, 2010). Similarly 5’UTR RNA-G4s 

increase eIF4A-dependent oncogene translation (Wolfe et al, 2014) and 

induce translation of the oncogenic inflammatory cytokine TGFβ (Agarwala, 

Pandey, Mapa, & Maiti, 2013). Additionally, RNA G4s can cause translational 

recoding by inducing +1 frameshifts, both in vitro and in HEK cells, and this is 

exacerbated by PhenDC3 treatment (Yu et al, 2014).  

 

RNA G4s may also regulate mRNA processing, with roles ranging from 

splicing, as suggested for IGFII, TP53 and BACE1 (Christiansen et al, 1994; 

Fisette et al, 2012; Marcel et al, 2011) to alternative polyadenylation for 3’ 

UTR G4s in LRP5 and FXR1 pre-mRNAs (Beaudoin & Perreault, 2013). As 

for DNA-G4s, such processes can be subverted by treatment of cell lines with 

G4-stabilising ligands, for example, applying the stabiliser compound 12459 to 

A549 cells prevented correct splicing of the TERT pre-mRNA (Gomez et al, 

2004a). Finally, mRNA G4s also have a proposed role in localising mRNA to 

defined subcellular compartments in neurons including to the synapses, 

surface membrane and cytoskeleton, via interaction with COP-1 vesicle 

components (Todd et al, 2013; Subramanian et al, 2011).  
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1.5.4.2 Non-coding RNA G4 roles 

RNA-G4 structures are also found in non-coding regions. One well 

characterised ncRNA G4 example, is Telomeric Repeat containing RNA 

(TERRA) (Schoeftner & Blasco, 2009; Azzalin & Lingner, 2014), transcribed 

from the C-rich strand of the telomere (Maicher et al, 2014). The resultant 

transcripts contain an average of 400 bp of UUAGGG sequence, though 

transcripts can also be several kilobases in length (Porro et al, 2010). 

Consequently TERRA is thought to form stable intramolecular tandem RNA-

G4s, in vitro and when synthetic TERRA oligonucleotides are transfected in 

cells (Biffi et al, 2012; Xu et al, 2010; Martadinata et al, 2011). TERRA G4 

interacts with the telomere-binding protein TLS/FUS (translocated in 

liposarcoma) in vitro (Takahama et al, 2013). More recently, TLS/FUS has 

been to shown to simultaneously bind the TERRA RNA-G4 and telomeric 

DNA-G4, to form a ternary complex that is thought to be important for 

telomere length regulation (Kondo et al, 2018). Other TERRA functions 

include oncogene transcriptional suppression (Hirashima & Seimiya, 2015) 

and telomere heterochromatin maintenance (Wang et al; Schoeftner & 

Blasco, 2009), possibly mediated by forming DNA-RNA hybrid intermolecular 

G4s with telomeric DNA (Xu et al, 2012). At the telomere TRF2 has also been 

shown to bind DNA-RNA G4 hybrids (Pedroso et al, 2009) and these 

intermolecular structures are also observed in the mitochondria, where they 

are necessary for transcriptional termination (Zheng et al, 2014). Finally, 

ncRNA G4s formed in intron lariats are thought to regulate splicing and 

facilitate immunoglobulin class switching (Zheng et al, 2015).  
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1.5.5 RNA G4 hypothesised enzymatic and non-enzymatic protein 

interactions 

1.5.5.1 RNA helicases 

As for DNA-G4 structures, various helicases also unwind RNA G4s and RNA-

DNA hybrid G4s (reviewed in Cammas & Millevoi, 2016). These include 

DEAH box RNA-helicases DHX36 and DHX9 (Tanner & Linder, 2001). 

DHX36 for example tightly binds and specifically unwinds RNA and DNA-G4 

in vitro (Creacy et al, 2008; Giri et al, 2011; Chen et al, 2015) and in cells 

(Vaughn et al, 2005). This G4-resolving activity is required for gene 

expression regulation, including oncogenes such as YY1 (Huang et al, 2012) 

and the tumour suppressor PITX (Booy et al, 2014). For YY1 for example, this 

was explored via plasmid based luciferase assays in HEK-293T cells, where 

destabilising mutations of the 5’-UTR G4s were sufficient to increase 

luciferase expression, supporting the notion that the presence of RNA-G4s 

can inhibit translation. Similarly, DHX9 unwinds G4-structures in co-

transcriptionally formed R-loops in vitro (Chakraborty & Grosse, 2011). 

Furthermore DHX9 interacts with BRCA1 (Anderson et al, 1998) and the 

DNA-G4 helicase WRN (Friedemann et al, 2005) suggesting a recruitment 

role to D-loop G4 in addition to the RNA G4 related roles, to repair and 

prevent DNA-G4 induced damage, respectively. A more specific RNA G4 

resolving protein provided by the oncogene eukaryote initiation factor 4A 

(eIF4A) has been revealed by ribosomal footprinting to target 5’UTR RNA-

G4s (Wolfe et al, 2014). During translation initiation, the ATP-dependent RNA 

helicase eIF4A enables ribosome translocation by removing mRNA secondary 

structures (Jackson et al, 2010), including but not limited to, G4s. 
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1.5.5.2 RNA binding partners  

Due to the structural similarity between RNA- and DNA-G4, their binding 

partners show significant overlap and include nucleolin, TRF2, FUS/TLS and 

hnRNPA1 (reviewed in Brázda et al., 2014). For example TRF2 and FUS/TLS 

can bind both telomeric DNA- and TERRA RNA-G4 (Biffi et al, 2012; 

Takahama et al, 2013; Kondo et al, 2018). Specific RNA-G4 binders have 

also been identified including FMRP, which binds to multiple mRNAs with G4-

forming potential, including its own mRNA in a feedback mechanism (Darnell 

et al, 2001; Brown et al, 2001; Schaeffer et al, 2001). As FMRP is found within 

polysomes, this interaction is thought to regulate translation (Darnell et al, 

2001). Concordantly, FMRP overexpression increases oncogenic mRNA 

expression in melanoma cell lines (Zalfa et al, 2017). The anti-apoptotic 

protein, Aven also binds mRNA-G4 and activates translation of key leukaemia 

oncogenes MLL1 and MLL4, which can be further advanced by cobinding of 

the helicase DHX36 (Thandapani et al, 2015).  

 

RNA-G4s perform both inhibitory and activatory roles dependent on their 

binding partners. The increasing identification of RNA-G4 interacting partners 

will inform us on the full extent of RNA-G4 biology and regulation. A recent 

analysis used dimethyl sulfate (DMS) treatment coupled with high-throughput 

sequencing to map RNA G4s in yeast and mouse embryonic stem cells (Guo 

& Bartel, 2016). This study showed that G4 structures that formed in vitro did 

not protect the RNA from DMS methylation in vivo, which was interpreted as 

RNA-G4s being globally unfolded in eukaryotic cells. However, RNA G4 

formation is dynamic (Harkness & Mittermaier, 2017) and recent work has 
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attempted to track these dynamics in real time in live cells via use of the G4-

specific fluorescent probe QUMA-1 (Chen et al, 2018). Due to this dynamic 

nature, as soon as RNA-G4s unfold, the sequence is amenable to DMS 

methylation and is therefore ‘trapped’ in the unfolded state. Thus the 

experimental conditions of Bartel et. al may have promoted depletion of RNA-

G4s and as such, the findings do not necessarily conflict with the RNA 

regulatory roles discussed here.  

 

1.6 The link between DNA-quadruplexes and genome 

instability 

1.6.1 Defining genome instability  

Genome instability refers to mechanisms causing recurrent changes in 

genome structure and/or nucleotide composition, and is characteristic of many 

mammalian cancer genomes (Loeb, 1991; Hartwell, 1992; Hanahan & 

Weinberg, 2011). Instability is associated with problems in DNA replication, 

DDR activation and is increased in repetitive DNA and at sequences with the 

potential to form non-B DNA structures (Aguilera & García-Muse, 2013). 

Various types of genome instability exist: chromosomal instability (CIN), 

tandem repeat/microsatellite instability and small nucleotide alterations 

(Aguilera & García-Muse, 2013; Pikor et al, 2013). CIN refers to continuous 

changes in chromosome structure and integrity (Pikor et al, 2013) and is the 

most prevalent form of genomic instability in solid cancers (Lengauer et al, 

1998). Repeat instability, prevalent in colon cancers (Thibodeau et al, 1993) is 

associated with expansion and retraction of 1-8bp microsatellite repeats 
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(Ellegren, 2004) due to DNA polymerase slippage (Pearson et al, 2005; 

McMurray, 2010). Finally, nucleotide instability is defined by increased 

deletions, insertions or substitutions of small nucleotide numbers (Pikor et al, 

2013). This is associated with somatic mutation accumulation in cancers (Al-

Tassan et al., 2002) and may be enhanced by non-canonical structure 

formation, such as G4s which can cause polymerase stalling and replication 

errors (Aguilera & García-Muse, 2013). Although G4-associated genome 

instability has been shown in yeast and C.elegans (see section 1.6.2), in 

humans it is not fully understood beyond BRCA deficiencies causing G4-

ligand sensitivity (McLuckie et al, 2013; Zimmer et al, 2016; Xu et al, 2017).  

 

1.6.2 Genome instability associated with deficiencies in G4-

binding proteins 

Fanconi Anaemia, Werner’s and Bloom syndrome diseases are characterised 

by genetic instability (Bharti et al, 2013) with rearrangements in Werners 

encompassing chromosomal fusions (dicentric chromosomes and 

translocations) and deletions (Salk et al, 1981; Fukuchi et al, 1989; Gebhart et 

al, 1988) (see section 1.5.1). The proteins mutated in these syndromes are 

putative DNA-G4 helicases, suggesting that failure to resolve G4s contributes 

to an instability phenotype. A more direct link between helicases and G4-

induced instability has been shown in Pif1-deficient yeast, in which break-

points occur near both endogenous and experimentally inserted G4-forming 

sequences leading to CIN if unrepaired (Paeschke et al, 2011, 2013; Piazza 

et al, 2012). However, Pif1 is the only thoroughly characterised yeast G4-

resolvase, whereas 31 putative DNA helicases have been identified in 



	 36 

humans (although not all are G4-specific) many of which are redundant 

(Brosh, 2013). This redundancy makes it difficult to draw direct parallels 

between findings in yeast and mammals, necessitating the systematic 

investigation of helicase deficiencies in human cells.  

 

Yeast studies have also revealed that G4-induced instability can be 

exacerbated by non-helicase deficient genotypes such as the depletion of the 

telomere binding protein Cdc13 (Piazza et al, 2012), which performs the 

function of human POT1 (Churikov et al, 2006) and is known to destabilise 

G4-structures in vitro. This telomere instability phenotype could be rescued by 

overexpression of Stm1 (Hayashi & Murakami, 2002) or deletion of Cig21 

(Downey et al, 2006) (both telomere binding proteins) but was antagonised by 

overexpression of the yeast RecQ G4-helicase Sgs1 (Huber et al, 2002; 

Hayashi & Murakami, 2002; Han et al, 2000). Yeast Stm1 mutants were 

resistant to the G4-stabilising compound NMM whereas Cig21-deficiencies 

correlated with increased NMM sensitivity (Hershman et al, 2008; Ren & 

Chaires, 1999; Kreig et al, 2015). This lead to the hypothesis that Stm1 

overexpression and Cig21 deficiencies both stabilise telomeric DNA-G4s and 

inducing NMM sensitivity by increasing the available G4-ligand binding sites 

(reviewed in Johnson et al. 2008). This phenomenon of deficiencies in key 

G4-regulators inducing G4-ligand sensitivity or resistance, successfully 

highlighted here in yeast, is yet to be explored in human cells. In addition to 

being dependent on the yeast genotype the ability of G4-structures to induce 
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genomic instability, was subsequently shown to correlate with G4 thermal 

stability and number (Lopes et al, 2011; Piazza et al, 2010).  

 

Helicase deficiencies in C.elegans also result in G4-associated instability, with 

DOG-1 depletion (homologue of human FANC-J) causing specific loss of G-

rich tracts during replication (Cheung et al, 2002; Kruisselbrink et al, 2008; 

Tarailo-Graovac et al, 2015). More recently yeast G4-associated instability 

has been extended to topoisomerase I (TOP1), deficiencies of which 

promoted gross chromosomal rearrangements at a highly transcribed 

exogenous G4-forming sequence (Yadav et al, 2014). Whether TOP1 plays a 

similarly critical role at highly transcribed endogenous sequences in human 

cells remains to be explored. 

 

1.6.3 Telomere instability and chromosomal fusions 

The telomere forms tandem DNA-G4s and is bound by shelterin (see section 

1.3.3). Shelterin prevents recognition of the telomeric end as a DSB, to 

prevent deleterious chromosomal fusions via aberrant DDR activation (Palm & 

de Lange, 2008; de Lange, 2009; O’Sullivan & Karlseder, 2010). Without 

proper regulation, the repetitive nature and the G4-forming ability render 

telomere sequences “hotspots” for instability. Such telomeric instability (a 

specific subset of CIN) and chromosomal fusions often contribute to cancer 

malignancy, for example, by placing oncogenes under the control of 

constitutively active promoters (Gisselsson et al, 2001; Rudolph et al, 2001; 



	 38 

Chang et al, 2001; Maser & DePinho, 2002). Whether the formation of 

telomeric G4s and their improper regulation can contribute to this telomeric 

instability remains to be systematically investigated in humans. Telomeric G4-

repeats as sources of genome instability are not restricted to telomere fusion 

at chromosome ends. In ALT-positive cancers, telomeric sequences are 

aberrantly incorporated throughout the genome and encourages 

intrachromosomal fusions (Marzec et al, 2015). Non-telomeric G4-motifs are 

also enriched at chromosomal breakpoints in several human cancers and 

paediatric neurological diseases (Bose et al, 2014; De & Michor, 2011; 

Nambiar et al, 2011) suggesting a role for G4 structures in driving 

translocation events.  

 

1.7 Quadruplexes and cancer 

Supporting an association between G4 misregulation and cancer, more G4s 

are found in transformed keratinocytes and human stomach and liver cancer 

compared to controls (Biffi et al, 2014b; Hänsel-Hertsch et al, 2016). Similarly 

the use of naturally fluorescent G4-stabilising small molecules DAOTA-M2 

and BMVC indicated greater G4 numbers in cancer cells versus their normal 

counterparts (Huang et al, 2015; Shivalingam et al, 2015). Concordantly, G4-

ligand treatment causes senescence and/or apoptosis in several cancer cell 

lines (Neidle, 2017). More recent application of such ligands to mouse 

xenograft models can cause tumour shrinkage. For example, treatment with 

the G4-stabilising ligands MM41 (Ohnmacht et al, 2015) and CX-5461 (Xu et 

al, 2017) caused reduced pancreatic and BRCA-deficient breast tumour 

growth respectively. 
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Inferring a transcriptional role between G4s and cancer, bioinformatics, 

biophysical and G4 ChIP-seq data suggest that there is an enrichment of G4s 

in the promoters and 5’ UTRs of cancer associated genes and copy number 

amplifications in human chromatin (Hänsel-Hertsch et al, 2016; Chambers et 

al, 2015; Huppert & Balasubramanian, 2005, 2007), which may allow 

transcriptional modulation of several oncogenes (see section 1.3).  

Additionally diseases deficient in DNA G4-helicases, as discussed for WRN 

and BLM, often show cancer predisposition (Brosh, 2013). Whether this 

cancer association extends to deficiencies in RNA G4 helicases has not yet 

been characterised. 

 

Indirectly suggesting that telomeric G4s may contribute to carcinogenesis, 

shelterin mutations are associated with cancer and haematological 

malignancies. POT1 loss-of-function mutations are associated with a 

predisposition to familial melanoma (Robles-Espinoza et al, 2014; Shi et al, 

2014), germ line glioma (Bainbridge et al, 2015) and chronic lymphocytic 

leukaemia (Ramsay et al, 2013). On the other hand deficiencies in TPP1 

predispose to aplastic anaemia (Guo et al, 2014) and in TRF2 are found in 

melanoma (Aoude et al, 2015) and glioma (Vannier et al, 2014). RNA G4s 

have also been linked to the regulation of many cancer hallmarks outlined by 

Hanahan and Weinberg (Hanahan & Weinberg, 2011), due to their presence 

in the mRNAs of multiple oncogenes including but not limited to hTERT and 

TRF2 (required for immortality); VEGF and FGF2 (angiogenesis); MT3-MMP, 

ADAM10 and MST1R (induction of invasion and metastasis) (reviewed in 

Cammas & Millevoi, 2016).  
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1.8 Exploring synthetic lethality with G4-ligands 

In this chapter I have discussed the multiple hypothetical roles of G4s 

including transcription, translation and replication regulation. Several of these 

roles are cancer related, suggesting that chemotherapeutic strategies with 

G4-stabilising ligands may exist. Exploitation with BRCA-deficient tumours 

has already been explored (section 1.4.2.1). Beyond BRCA-deficiencies,  the 

understanding of the DNA damage proteins involved in repairing G4-induced 

damage is incomplete. Investigating DDR-deficient cancer genotypes 

susceptible to G4-targeting ligands may help identify these DDR proteins. 

Additionally, synthetic lethal strategies other than DNA damage deficiencies 

may exist. In support of this, in yeast, alterations in telomere G4-binding 

proteins resulted in NMM sensitivity (see section 1.6.2) and ATRX-deficient 

mouse embryonic fibroblasts are sensitive to telomestatin. Similar G4-ligand 

sensitive genotypes have yet to be characterised in human cells, and is one of 

the major aims of this thesis. 

 

Methods for exploring such synthetic lethalities in a systematic and unbiased 

manner have been provided by the functional genomics field, where gene 

editing at both the RNA and DNA level has enabled screening of the 

pharmacological response of different cell genotypes.  

 

1.8.1 Genetic screening as a step towards personalised medicine 

approaches 

Extensive heterogeneity exists between individual responses to cancer 

treatment, which is often dependent on the genotype of the patient and/or 
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tumour cells, whether this be germline genetic polymorphisms or somatic 

mutation patterns which are dominant in the tumour (reviewed by Relling & 

Evans, 2015; Daly, 2017). Therefore, there is merit in understanding the 

genetic component dictating treatment efficacy. The sequencing of the human 

genome (Lander et al, 2001), was the first major step towards increasing the 

knowledge of our genetic underpinning and launched the pharmacogenomics 

field, to allow development of therapies that are specific to genetically 

identifiable subgroups within the population (i.e. personalised medicine). This 

‘subgroup’ can either refer to people within a population, or to tumour cells 

within a ‘normal’ organ (i.e. genetic profiling of a specific cancer). As early as 

1999, the genotype of lymphoblastic leukaemia cells was used to reliably 

dictate cancer aggressiveness and treatment intensity (Pui & Evans, 1998). 

As the functional genomics field expands and the genetic tools employed are 

improved, our ability to identify genetic backgrounds that are disease related 

and/or sensitive to certain chemotherapies has increased. This has yet to be 

fully and systematically applied to G4-stabilising ligands, and will be an 

important investigation in extending the knowledge of how these structures 

can be therapeutically exploited in a synthetic lethality approach.  

 

Next, the available tools will be illustrated with specific examples from the 

literature, highlighting some of the key parameters for screening. For brevity, 

only discussed are pooled library techniques, that enable targeting of multiple 

genes within the same experiment on both genome-wide and specific subset 

scales. This is something I set out to achieve with G4-stabilising ligands. It is 

of note that the aim of this thesis differs somewhat from other screening 
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approaches with pharmacological ligands, in that I use synthetic lethality to 

G4-stabilising ligands as a proxy for investigating sensitivities to stabilisation 

of G4s. 

 

1.8.2 Comparing functional genomic tools  

To date, gene editing strategies fall in to two broad categories, either 

disrupting gene expression at the DNA level, or at the RNA level (RNA 

interference/RNAi). RNAi was discovered following the observation that 

injecting dsDNA into C. elegans could cause gene silencing, with the resultant 

phenotype indicating gene function (reverse genetics) (Fire et al, 1998). This 

was subsequently adapted for gene knockdowns in human cells (Elbashir et 

al, 2001). RNAi exploits an endogenous process by which small, genome-

encoded double-stranded/short hairpin RNAs are cleaved via RNase III-like 

enzymes to form 21-23 bp small interfering RNAs (siRNAs) (reviewed in 

Perwitasari, Bakre, Tompkins, & Tripp, 2013). These RNA guides 

translationally silence genes by helping the RNA Induced Silencing Complex 

(RISC), including Argonaute (Ago) to target and cleave/translationally repress 

target mRNAs (Wilson & Doudna, 2013; Carthew & Sontheimer, 2009). By 

introducing synthetic small RNAs into cells, either by transient siRNA 

transfection or virally integrating a genome encoded short hairpin RNA 

(shRNA) (Mohr et al, 2014), this endogenous mechanism can be manipulated.  

 

Alternatively, the identification and exploitation of sequence specific 

nucleases allows genomic DNA editing, initially using zinc-finger nucleases 

(ZFN), followed by transcription activator like effector nucleases (TALENs) 
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(Gaj et al, 2013). The modular structure of these enzymes enables ‘swapping 

in’ of synthetic DNA binding domains to guide the nuclease domain to target 

sequences and create gene knockouts via DSB-induced frameshift mutations 

(Sung et al, 2013). A more recent method adapts the bacterial CRISPR/Cas9 

nuclease “immune” system (Barrangou et al, 2007). Modifying the Cas9 

nuclease allows targeting of endogenous genomic loci, rather than native viral 

DNA substrates (Doudna & Charpentier, 2014). Whereas Cas9 uses a short 

guide RNA (sgRNA) for target site recognition, TALENs use the DNA binding 

domain amino acid sequence (Mali et al, 2013). Being a separate entity, the 

former is more easily modifiable and thus CRISPR/Cas systems have become 

the favoured method of DNA genome editing.  

 

The use of such DNA-targeting nucleases provides a knockout while RNAi, 

where the genome copy of the gene remains intact and mRNA targeting is 

rarely complete, usually represents a gene knockdown. This can give rise to 

hypomorphic phenotypes (reviewed in Boettcher & McManus, 2015). 

Additionally, as RNAi acts on cytoplasm transcripts not genomic DNA, target 

accessibility is not influenced by the chromatin state (Kuscu et al, 2014; Wu et 

al, 2014). However, strictly nuclear RNA transcripts such as long-non coding 

RNAs, are therefore ineffectively silenced by RNAi (Derrien et al, 2012; Fatica 

& Bozzoni, 2014). As such, these approaches ask slightly different biological 

questions and the pros and cons of each will be more systematically 

discussed in chapter 2. 
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1.8.3 Synthetic Lethal Screening 

One extensive use of CRISPR and RNAi is to screen synthetic lethal 

interactions in anticancer drug discovery (reviewed in Gerhards & Rottenberg 

2018). This is particularly useful in the reprofiling of drugs for alternative 

targets, to circumvent the arduous process of novel drug development (Chong 

& Sullivan, 2007; DiMasi et al, 2003, 1995). Synthetic lethality involves 

genetic interactions, where two isolated mutations do not affect cell viability, 

but are lethal in combination (Figure 1.4A) (reviewed in Nijman, 2011). By 

identifying cancer specific mutations and pharmacologically mimicking a 

synergistic mutation, synthetic lethality approaches have been used to 

broaden the chemotherapeutic window of cancer versus normal cells 

(reviewed in Chan & Giaccia, 2011) (Figure 1.4B-C). Genome editing to 

identify drug sensitive backgrounds has been used as early as 1997 as proof-

of-concept (Hartwell, 1992; Hartwell et al, 1997) in which FDA-approved drugs 

were screened against isogenic budding yeast DDR mutant strains, ultimately 

identifying different DDR synthetic lethalities with two cancer 

chemotherapeutics, cisplatin and mitoxantrone. 
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Figure 1.4. Synthetic lethality approaches to identify potential chemotherapeutic 
sensitive genotypes and/or combinatorial drug targets 
(A) Inactivating mutations in gene A and gene B,   
(B) Inactivating mutation in gene A and pharmacological inhibit ion of protein B, 
(C) Pharmacological inhibit ion of gene A and B, are sublethal in isolation but 
lethal in combination 
(D-E) Extension of synthetic lethality methodology to explore gene deficiencies 
to nucleic acid targeting l igands, for example G4-stabil ising l igands: (D) 
Inactivating mutation in gene A or (E) Pharmacological inhibit ion of protein A is 
sublethal in isolation but sensitises cells to G4-stabil ising l igands (depicted as 
an orange triangle). 
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Pooled screening development, where many siRNA/shRNA/sgRNA guides 

against multiple genes are combined and simultaneously evaluated, has 

allowed systematic identification of synthetic lethal interactions in mammalian 

cells. These are referred to as ‘drop out’ screens, as cells with a gene 

knockout (e.g. caused by RNAi or CRISPR) that reduces cell growth and/or 

viability will be negatively selected for compared to cells with phenotypically 

neutral gene deficiencies. Perhaps most famously is the synergistic use of 

several PARP inhibitors (PARPi) to cause selective lethality in BRCA1- and 

BRCA2-deficient cells (Bryant et al, 2005; Farmer et al, 2005) and 

subsequently breast and ovarian cancers (reviewed in Rouleau, Patel, 

Hendzel, Kaufmann, & Poirier, 2010). Combinatorial treatments have also 

been explored, where PARPi plus DNA-damaging drugs are used at doses 

sublethal in isolation but with dual lethality (reviewed in Chan & Giaccia, 

2011)(Figure 1.4C). More recent synthetic lethal interactions have been 

identified between the DNA mismatch repair proteins (MLH1 and MSH2) and 

DNA polymerases (β and γ) (Martin et al, 2010, 2011), the latter being 

mutated in hereditary nonpolyposis colorectal carcinomas (Kinzler & 

Vogelstein, 1996), highlighting possible areas for pharmacological 

exploitation. This was verified by the selective efficacy of pol β inhibitors in 

such cancers (Nickoloff et al, 2017). Genotype sensitivities beyond DDR 

deficiencies include the sensitivity of VHL-deficient renal cancer cells to 

pharmacological inhibition of CDK4, CDK6 and autophagy proteins (Bommi-

Reddy et al, 2008; Turcotte et al, 2008). Both CRISPR and RNAi techniques 

have been extensively used for such systematic cancer lethality 

investigations. Some of these applications will be discussed below, including 
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the parameters that have made them particularly robust techniques, such as 

the experiment duration, threshold for determining significant hits and drug 

concentrations used.  

 

1.8.3.1 Identifying therapeutic synthetic lethalities via siRNA screening 

Loss-of-function siRNA screens have been widely used for pharmacological 

target identification. For example, a focused kinase siRNA screen was 

successfully used to explore kinase deficiencies that sensitised pancreatic 

cancer cells to the nucleoside analogue gemcitabine, to identify potential 

combinatorial drug targets (Azorsa et al, 2009). This experiment was 

performed for 72 h at low 10-30 % growth inhibition concentrations (GI10-30), 

ultimately identifying CHK1-deficiency as a potent gemcitabine sensitiser, 

verified by the increased gemcitabine efficacy in combination with two Chk1 

inhibitors. Similarly, the application of siRNA screening to the HeLa cell line 

(Bartz et al, 2006) allowed identification of gene depletions that increase the 

potency of several established chemotherapeutics: gemicitabine, the DNA 

cross-linker cisplatin and paclitaxel, a mitotic spindle inhibitor. For this, a 

siRNA library targeting 20,000 genes, with 3 unique siRNAs per protein was 

used. Experiment duration was again limited to 72 h and GI10 drug 

concentrations. 

 

Analogous siRNA screening in head and neck cancer identified deficiencies in 

fanconi-anaemia and BRCA DDR pathways as the main sensitisers to 

cisplatin treatment (Martens-de Kemp et al, 2017). Here a genome-wide 

targeting library, with 4 siRNAs per gene was used in combination with 72 h 



	 48 

cell treatment and a GI20 gemcitabine concentration. For this the VU-SCC-120 

tongue squamous cell carcinoma cell line was selected for technical reasons, 

including cisplatin sensitivity, growth rate and amenability to siRNA 

transfection. A gene was designated significantly sensitised to gemcitabine 

treatment if at least 2 separate siRNAs were depleted (FDR ≤ 0.05). A smaller 

siRNA screen against 3,300 genes was used to investigate genes required for 

MYC-driven oncogenesis in human fibroblasts (Toyoshima et al, 2012). This 

ultimately identified 102 synthetic lethal interactions several of which were 

pharmacologically validated. These case studies reveal the success of RNAi 

screening to systematically identify genotypes that increase drug potency. 

 

Beyond screening for genotypes that increase pharmacologically induced 

lethality, siRNA functional genomics have also been used to monitor other 

cellular features, such as genes required for epithelial migration (Simpson et 

al, 2008). For this a siRNA pool targeting 1,081 human genes (four siRNAs 

per gene) was screened for the ability to alter MCF-10A migration in a 24 h 

wound healing assay and identified 42 novel genes. Other siRNA screening 

applications in mammalian cells include identification of genes necessary for 

cell survival i.e. apoptotic resistance (MacKeigan et al, 2005) and the kinases 

required for endocytosis (Pelkmans, 2005). These prior siRNA screening 

studies reveal the importance of multiple siRNAs per genes, stringent 

thresholds for hit determination and the use of low ligand (often GI20-30) doses 

to maximise treatment windows. Additionally, this reveals that many of the 

classical cancer chemotherapeutics are sensitised to check point and DDR 

deficiencies. However, such siRNA experiments are limited to 72 h, as dilution 
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and degradation of the siRNA below the critical value required to maintain 

gene depletion, means that such an approach is not suitable for longer time 

course. 

 

1.8.3.2 Successful application of shRNAs for dropout screens 

To combat this short time frame constraint, other functional genomics 

investigations have used genome encoded shRNA pools, allowing continuous 

shRNA production. For example, a shRNA lentiviral library targeting 1,028 

genes (~5 unique shRNAs per gene) was successfully used to identify 

proliferation genes such as in HT29 colon cancer cells (Moffat et al, 2006). 

Here, a gene knockdown was considered a ‘hit’ if 2 or more shRNA 

knockdowns caused an increase in mitotic indices. A similar retroviral shRNA 

screening approach identified genes that when knocked down allowed bypass 

of p53-dependent cell cycle arrest (Berns et al, 2004): 23,742 shRNAs 

targeting approximately 8,000 human genes (3 independent knockdowns per 

gene). Both of these studies were performed for 96 h. A more recent, 

optimised shRNA screening approach was employed for the discovery of 

cancer proliferation genes over a longer time course (Schlabach et al, 2008). 

This study applied their screening technology of 8,203 shRNAs (2,924 genes; 

~3 hairpins per gene) to four different human cell lines: DLD-1 and HCT116 

colon cancer cells, the HCC1954 breast cancer cell line and normal human 

mammary epithelial cells and cultured the cells for 10 – 16 population 

doublings. 
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As for siRNA, shRNA approaches have also been used in conjunction with 

drug screening. For instance, a recent genome-wide shRNA screen identified 

synthetic lethal interactions with the PARPi olaparib (Bajrami et al, 2014). This 

ultimately uncovered expected deficiencies in DNA damage repair proteins, 

but also novel deficiencies in DNA cohesion and chromatin remodelling, 

including CDK12, a gene commonly mutated in high-grade serous ovarian 

cancer. For this study, they used olaparib resistant, BRCA1/2 wild-type MCF-

7 breast tumour cells and a lentiviral pool containing 57,540 shRNAs (~17,000 

genes; 3-4 hairpins per gene), a GI20 olaparib concentration and a duration of 

10 population doublings. Significance was scored at p < 0.05 and focussed on 

genes that where 2 or greater shRNAs were depleted following olaparib 

treatment. These reflect common themes and parameters for successful 

screening approaches, including p <0.05 to determine significant hits and use 

of multiple hairpins per gene. 

 

1.8.3.3 Identifying therapeutic synthetic lethalities via CRISPR 

screening  

CRISPR dropout screens have also been used to identify viability genes and 

pharmacological synthetic lethal interactions. As an example of the former, a 

30 day lentiviral CRISPR knockout screen was applied to five leukaemia cell 

lines using a library of 90,709 different guide RNAs against 18,010 genes (~5 

guides per gene), to identify a core set of genes that were critical for 

leukaemia viability (Tzelepis et al, 2016). Differences were considered 

significant p < 0.01 and log2FC threshold < -1.5, with KAT6A, identified as a 

potential leukaemia therapeutic target. In a similar approach, a 14 day 
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CRISPR dropout screen was used to identify synthetic lethal drug target pairs 

in K562 chronic myeloid leukaemia cells, using 490,000 double-sgRNA 

against 21,321 pairs of drug targets (Han et al, 2017). This ultimately 

highlighted five strong, new drug target interactions including BCL2L1 and 

MCL1 inhibition as a strong synergistic combination. 

 

These case studies highlight the power of genetic screening to obtain a global 

overview of gene and processes involved in a specific phenotype or in 

response to drug treatment. The advantages and disadvantages of these will 

be discussed in greater detail in chapter 2, where this approach is applied to 

G4-stabilising ligands. The rationale for this will be discussed in section 1.9.  

 

1.9 Aims and rationale for the work described within this 

thesis 

1.9.1 Expanding the biological knowledge of endogenous G4s 

The functions, locations and importance of both RNA- and DNA-G4 structures 

are not fully understood. A major unanswered question within the field is 

whether G4 structures have any functional importance or if they are 

“nuisance” structures that need resolving. Additionally, identification of the 

plethora of proteins interacting with and regulating these structures has not 

been systematically investigated. Thus the first aim of this thesis is to expand 

our biological knowledge of both DNA and RNA G4-structures. The roles and 

interaction partners of RNA-G4s in particular are less understood relative to 

their DNA-G4 counterparts. With the recent suggestion that RNA-G4s are 
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globally unfolded in the cell (Guo & Bartel, 2016), it is also imperative to 

evaluate whether RNA-G4s have functional intracellular roles. If RNA-G4s do 

have pivotal roles, one would expect treatment of cells with G4-stabilising 

ligands to perturb these functions and the RNA-associated pathways in which 

RNA-G4s are involved, thus altering cellular growth rate.  

 

I hypothesise that the identity and range of proteins uncovered from the 

functional genomic and follow-up studies within this thesis will provide insight 

into these outstanding questions. The application of genome-wide functional 

genomics in combination with G4-ligands to human cells should enable the 

identification of a wide-range of both known and novel G4-interacting proteins. 

In support of this, as discussed in section 1.6.2, yeast deficient in the G4-

interacting proteins Sgs1 and Cig21 caused resistance and sensitivity to the 

G4-ligand NMM respectively (Hershman et al, 2008; Ren & Chaires, 1999; 

Kreig et al, 2015). For the majority of these investigations, PDS and PhenDC3 

are employed as representative G4-stabilising ligands with broad in vitro G4-

specifity, as discussed above and outlined further in section 2.1. 

 

1.9.2 Identifying chemotherapeutically exploitable genotypes  

As well as extending our knowledge of G4-biology, this project aimed to 

identify disease-associated, particularly cancer-related, genetic backgrounds 

that may be susceptible to G4-stabilising ligands and also elucidate G4-

mehcanisms in cancer. To date, the latter has only been explored for cells 

deficient in three genes: BRCA1, BRCA2 and ATRX (McLuckie et al, 2013; Xu 

et al, 2017; Watson et al, 2013). For BRCA1- and BRCA2-deficiencies 
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(deficiencies in homologous recombination (HR) repair), this synthetic lethality 

has been clinically exploited for BRCA-deficient tumours (clinical trial, 

NCT02719977), suggesting a key role for these proteins in the repair of G4-

induced damage. It is currently unknown if other DNA damage repair proteins, 

including further members of the HR pathway or alternative repair 

mechanisms (e.g. non homologous end joining) also repair G4-associated 

DNA damage, and are thus similarly exploitable with G4-stabilising ligands. 

As different cancers are characterised by a multitude of distinct DDR-

deficiencies, this will be of potential chemotherapeutic interest. Given the 

wide-ranging processes G4s are thought to contribute to, there is great 

potential for uncovering cancer genotypes beyond DDR-deficiencies with G4-

stabilising ligands sensitivity. 

 

There are two ways in which the gene sensitivities uncovered by genetic 

screening within this thesis, can potentially be chemotherapeutically exploited 

via synthetic lethality approaches. Firstly, for a cancer-associated gene 

deficiency that causes sensitivity to G4-stabilising ligands (Figure 1.4D), such 

ligands may be used as single agent therapies. Secondly, pharmacological 

inhibition of a critical oncogene that mimics the gene deficiencies identified 

here might be potentiated by combinatorial treatment with G4-stabilising 

ligands (Figure 1.4E). I envisage that the work within this thesis will be of 

increasing clinical importance as more disease-associated genotypes are 

discovered and as G4-stabilising ligands are pharmacologically improved 
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1.9.3 Understanding and improving G4-stabilising ligands 

The final aim of this thesis is to gain further knowledge of G4-stabilising 

ligands. One aspect is to increase the clinical potential of G4-stabilising 

ligands, which complements the aim to identify cancer-associated genotypes. 

Identifying susceptible genotypes, in addition to creating more “drug-like” and 

pharmacokinetically tolerated G4-ligands brings us closer to their 

chemotherapeutic use. Within this thesis, I also provide a systematic 

investigation of the gene deficiencies causing resistance to the representative 

G4-stabilising ligands PDS and PhenDC3, providing insights into both G4-

dependent and G4-independent resistance mechanisms. The latter may 

highlight possible areas for improving the endogenous efficacy of these 

molecules. Further, within this thesis, tools are provided to benchmark the 

synthetic lethalities engaged by novel G4-stabilising ligands against PDS and 

PhenDC3. 

 

Secondly, it is unknown how structural differences of G4-ligands and the 

variation in their in vitro affinity for different G4-structures (Le et al, 2015) 

influence their cellular phenotypes. While multiple cellular studies with 

individual G4-ligands exist (see section 1.4.2), there is a lack of a systematic 

comparison of different ligands and their cellular responses. The side-by-side 

exploration of PDS and PhenDC3 within this thesis may provide insight into 

this. In particular, it would help in understanding whether different G4-ligands 

selectively stabilise a subset of G4 structures and subsequently elicit different 

and defined biological effects in cells.  
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To summarise, the genes, themes, tools and resources provided within this 

thesis attempt to answer biological and clinical queries regarding G4-

structures and the G4-stabilising ligands targeting them. This thesis aims to 

solidify links between G4s and the genes and pathways with which they have 

previously been implicated. In addition it highlights new genes and areas of 

research into the regulation of G4-biology and explores the therapeutic 

potential of molecules targeting these structures. 
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Chapter 2 

A genetic screening approach to uncover 

synthetic lethalities with G4-stabilising ligands 

2.1 Background and Objectives 

Given the identification of G-quadruplex (G4) structures in cells, I aimed to 

uncover new biological and potentially therapeutic roles for G4s. Key 

challenges for the G4-field are understanding and identifying: 

1) Normal genes and pathways influenced by G4s, including the 

identification of novel G4-interacting proteins 

2) The cellular response to G4 stabilisation by small molecule ligands, 

including the DNA-damage response involved  

3) Genotypes susceptible to G4-stabilising ligand treatment for future 

chemotherapies in cancer and other disease-related backgrounds. 

 

To investigate these challenges in an unbiased and systematic manner, a 

genome-wide genetic screening approach was selected in which silencing of 

the protein coding genome was performed in conjunction with G4-stabilising 

ligands. In this chapter, first the experimental design and rationale will be 

discussed, including the advantages of this method. Secondly I describe the 

preliminary experiments and pilot screen performed to establish critical 

parameters, including choice of cell line, drug concentration, experiment 

duration and the thresholds used to determine ligand-specific hits. The 

outcome of the genome-wide screen is then discussed. Next, I outline the 
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design and use of a custom focused screen comprising primary hits identified 

from the genome-wide screen, to gain information in two different cell lines. 

Finally, I discuss four key genes that, when depleted, imparted consistent 

synthetic lethality to G4-stabilising ligands. I finish by detailing how these 

results directly inform on the key challenges and additionally explain how the 

tools and resources developed here can be deployed to address unmet 

biological questions concerning G4s and their ligands. 

 

2.2 Designing a shRNA screen to explore genotypes that are 

synthetic lethal with G4-stabilising ligands 

2.2.1 Advantages of stable, retroviral shRNA genetic screening for 

investigating genome-wide G4-ligand sensitivities  

There are several ways to achieve gene knockdowns (see section 1.8 and 

Figure 2.1). One method is CRISPR-Cas9 (Clustered Regularly Interspaced 

Short Palindromic Repeats-Crispr Associated protein 9), a technology based 

on the bacterial viral defense mechanism, in which synthetic sgRNAs (short 

guide RNA sequences) are used to guide the Cas9 nuclease to recognise and 

remove target genes (Doudna & Charpentier, 2014). Alternatively, RNA 

interference can be used, in which RNA guides promote the RNA Induced 

Silencing Complex (RISC) to cleave and/or translatonally repress a target 

mRNA (Mohr et al, 2014; Carthew & Sontheimer, 2009). While CRISPR cause 

knockouts via gene deletion, RNAi causes knockdowns, as not all the mRNAs 

transcribed from the target gene will be silenced. Both have been successfully 

employed as genetic screening tools (section 1.8.2). 
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Figure 2.1. Outline of CRISPR, stable shRNA expression and transient siRNA 
expression for genome editing and functional genomics 

 

The stronger perturbation provided by a gene knock-out is likely to be more 

deleterious to the cell than an RNAi-induced knockdown, particularly seeing 

as gene loss can induce compensatory mechanisms (El-Brolosy & Stainier, 

2017). Therefore it was decided that RNAi will allow exploration of more viable 

phenotypes, potentially allowing detection of more hits. Also, with respect to 

disease related-phenotypes, including combinatorial opportunities with current 

chemotherapeutic drugs, RNAi was reasoned to be more physiologically 

relevant than a CRISPR knockout, as pharmacological inhibition is unlikely to 

remove all protein activity. Further, many cancer mutations are heterozygous 

and tumour supressor pathways are often downregulated rather than deleted, 

something mimicked more via RNAi than CRISPR. Additionally, many 

commonly used cancer cell lines exhibit polyploidy (Paulsson et al, 2013; 

Rondón-Lagos et al, 2014) making complete knockouts more technically 
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difficult. Therefore, RNAi methods may provide distinct advantages to a 

CRISPR approach.  

 

Generally siRNA approaches are restricted to 72-96 h, with a key limitting 

factor being siRNA degradation and dilution during cell division, below the 

critical threshold required for protein knockdown (Chiu & Rana, 2002; Singh et 

al, 2011). Due to this transiency, it is difficult to silence genes encoding long-

lived proteins via siRNA. An additional complication is that non-physiological 

concentrations of commercial siRNAs may potentially trigger and exarcerbate 

off-target phenotypes (reviewed in Perwitasari, Bakre, Tompkins, & Tripp, 

2013). For an unbiased and systematic screen, stable shRNA integration was 

chosen to allow silencing of proteins independent of half-life and over long 

time periods. 

 

The most commonly used shRNA viral vectors are adeno-associated virus 

(AAV), retrovirus and lentivirus (Bukrinsky et al, 1992; Manjunath et al, 2009; 

Sliva & Schnierle, 2010). Lenti/retrovirus vectors result in low (~30 %) 

transduction efficiency, but show a high genome integration rate, stable 

throughout cellular passaging (reviewed in Perwitasari, Bakre, Tompkins, & 

Tripp, 2013). The near 100 % transduction efficiency with AAV infection does 

not normally allow chromosomal integration (Mitani & Kubo, 2002; Grimm et 

al, 2005). Therefore, for stable, long-term knockdown, retroviral/lentiviral 

vectors are advantageous, and several synthetic versions exist with different 

backbones (i.e. the plasmid into which the artificial shRNA is inserted and 

expressed). Several viral constuct variants place the shRNA within pol II 



	 60 

miRNA promoter contexts (shRNAmir vectors) rather than enforcing their pol 

III expression (Chung et al, 2006; Liu et al, 2008; Zeng et al, 2002). This 

prevents oversaturation of the endogenous pathway (Boudreau et al, 2008; 

Castanotto et al, 2007; McBride et al, 2008; Premsrirut et al, 2011).  

 

For the unbiased genome-wide assessment of G4s, an shRNAmir vector was 

chosen using the latest generation shERWOOD-Ultramir shRNA pLMN 

human retroviral library (Transomic technologies). This system is designed by 

machine learning for effective engagement of the endogenous siRNA 

pathway, improved knock-down efficiency and reduced off-target effects 

(Knott et al, 2014; Fellmann et al, 2013, 2011; Auyeung et al, 2013). The 

development, design and advantages are summarised in section 2.2.2.  

 

Figure 2.2 provides an overview of the synthetic lethality strategy. Briefly, 

shRNA knockdown was combined with G4-ligand treatment to stabilise 

genomic and RNA G4 structures. Two possible conceptual interpretations of 

an shRNA-induced phenotype are depicted: i) the gene is not required in a 

G4-associated process so there is no effect on viability (Gene A) or ii) loss of 

the gene results in cell death due to either removal of a protein interacting 

(e.g.binding or unwinding) with G4s or depletion of a G4-associated pathway 

e.g. DNA damage repair (Gene B). The synthetic lethal interactions in the 

‘Gene B’ list will 1) help to inform on disease-associated genotypes amenable 

to G4-ligand targeting (blue box) and 2) identify a spectrum of biological 

pathways that can be perturbed by stabilised G4s (orange box), highlighting 

possible mechanistic features of G4-biology. 
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Figure 2.2. Overview of synthetic lethal strategy to identify G4 sensitiser genes 
Gene A/Protein A is not, and Gene B/Protein B is, involved within a process or 
protein that interacts, either physically or mechanistically with G4 structures. 
Therefore in the presence of G4-ligands, viabil ity unaffected by shRNA-induced 
knockdown of Gene A while Gene B deficiencies result in synthetic lethality. 
 

2.2.2 Development and design of the shERWOOD-Ultramir shRNA 

pLMN human retroviral library  

As the shERWOOD designed library was used for the G4-ligand screen, the 

technological developments that gave rise to the vector used are now 

described. Several considerations exist for effective flow through of the siRNA 

biogenesis pathway including recognition by processing enzymes (e.g. 

Drosha and Dicer) and components of the active RISC complex, such as Ago. 

For endogenous RNAi, cleavage of genome-encoded primary microRNAs by 

Drosha creates a shorter hairpin loop, called the pre-miRNA which is 
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recognised by Dicer (Denli et al, 2004; Lee et al, 2003). Artificial shRNAs, 

consist of synthetic guide and antisense sequences inserted into a ‘backbone’ 

vector (explained in section 2.2.1), which mimics this pre-miRNA substrate 

(Brummelkamp et al, 2002; Paddison et al, 2002). The sequence of the 

artificial shRNA heavily dictates knockdown potency (Chiu & Rana, 2002; 

Khvorova et al, 2003; Schwarz et al, 2003), but systematic exploration of 

optimal sequence and structure, beyond target mRNA complementarity has 

only recently been explored (Ameres & Zamore, 2013). Machine learning 

algorithms, such as BIOPREDSi and DSIR have been successfully 

implemented to discern potent siRNA, but not shRNA, features (Huesken et 

al, 2005; Vert et al, 2006). To address this Fellmann and colleagues used a 

fluorescent reporter assay to monitor the potency of 20,000 shRNAs against 

nine transcripts and train a machine learning algorithm (Fellmann et al, 2011). 

This identified potent shRNAs with rare features often missed by previous 

algorithms. 

 

Despite the success of this 2011 algorithm and sensor assay, features of the 

shRNAmir construct and of the shRNA outside the mRNA targeting sequence 

had yet to be optimised. For example, most synthetic shRNAmir vectors, at 

single-copy expression, produced final siRNA levels much lower than their 

natural counterparts thus limiting their potency (Premsrirut et al, 2011). This 

low expression level arises from synthetic shRNAmir vectors lacking 

conserved backbone elements found in endogenous pri-miRNAs including 

bulges within the stem, alterations of bases flanking the loop and inclusion of 

restriction sites within conserved 3’ regions. To investigate this 11 different 
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synthetic miR backbones were validated via the sensor assay, creating a 

more efficiently processed backbone with 10-30 fold higher mature siRNA 

levels with repositioned restriction sites (Fellmann et al, 2013).  

 

Following optimisation of shRNA and shRNAmir construct criteria, Knott and 

colleagues generated 250,000 shRNAs which they interrogated via the sensor 

assay (Knott et al, 2014). The results were used to train an shRNA potency 

prediction machine-learning algorithm, named shERWOOD, which showed 

180 % and 126 % increase in efficacy over existing siRNA- and shRNA-

predicting algorithms respectively. This algorithm was benchmarked via 

shRNA screening against 2,200 cell growth and survival genes, comparing 

the efficacy of the top 10 shRNAs predicted by shERWOOD or DSIR. 40 % of 

shERWOOD shRNAs achieved significant depletion versus 31 % for DSIR 

constructs, with shERWOOD shRNAs giving greater depletion. The 

shERWOOD predicted shRNAmir backbones were further optimised by 

removing vector restriction sites, incorporating shRNAs via Gibson assembly 

and changing the first nucleotide of the shRNA sequence to U. Both features 

were validated to increase the potency of shERWOOD predicted shRNAs and 

used to generate human shRNA libraries targeting the protein coding 

genome. The library and its scaffold have undergone further iteration and are 

currently in the 7th generation, with 60 % of predicted hairpins causing strong 

depletion. This latest generation shRNAmir library was used for G4-ligand 

investigation. 
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The library consists of 12 randomised pools of ~10,000 hairpins targeting the 

protein coding genome (~20,000 genes), with an average of 6 optimised 

hairpins against each gene. This provides a total of 113,000 shRNAs. The 

vector is outlined below (Figure 2.3). The shRNA sequence (dark blue), 

consists of a 5’ guide strand (targeting the mRNA) and a 3’antisense strand 

and loop (both required for hairpin formation and Drosha binding). A strong 

promoter isolated from Murine Stem Cell Retrovirus (MSCV) controls shRNA 

expression. Therefore, although the shDNA is randomly integrated into the 

genome, the promoter ensures comparable expression between cells. A 

phosphoglycerate kinase (PGK) promoter driven bicistronic construct in the 

vector encoding both neomycin resistance and a fluorescent protein, allows 

antibiotic and fluorescent selection of cells that have integrated the shRNA 

vector. The shRNAs are packaged into retrovirus particles, and introduced 

into the cell by viral infection, to create stable shRNA expressing cell lines. 

 

 

Figure 2.3. The shERWOOD retroviral shRNA construct for stable integration and 
knockdown of the protein coding genome. 
The construct consists of 2 main components 1) shRNA cassette driven by the 
MSCV viral promoter and 2) a bicistronic “selection” cassette to allow 
identif ication of successful transformants via geneticin selection and ZsGreen 
fluorescent detection, driven by the constitutive PGK promoter. 
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2.2.3 PDS and PhenDC3 as representative G-quadruplex 

stabilising ligands 

For this study the structurally distinct PDS and PhenDC3 were used 

(Rodriguez et al, 2012; De Cian et al, 2007b, structures shown in Figure 

1.2D&F). Both ligands show relatively broad specificity for a wide range of 

G4s (see section 1.4.2.4) and are therefore suitable for probing genetic 

vulnerabilities to G4 stabilisation in cells.  

 

To test and refine the experimental design, optimisation and pilot experiments 

were performed, using one pool chosen at random (pool 8) from the genome-

wide set. This pool contains 9,600 individual shRNAs targeting 7,823 different 

protein-coding genes (1.23 hairpins per gene). In the entire library, each gene 

is targeted by an average of 5-6 hairpins per gene, randomised across the 

twelve pools. As such the pilot screen results are indicative rather than 

definitive. The design and outcome of these experiments are discussed 

below. 

 

2.3 Experimental optimisation via pilot screening 

2.3.1 Dose response curves for PDS and PhenDC3 treatment of 

three candidate cell types 

Three cell lines were used for initial ligand sensitivity experiments. For this, 

technical considerations included adherancy, to minimise loss of cells during 

culture, fast doubling time and stable ploidy. The following adherent human 

cell lines were chosen: A375 (malignant melanoma; 20 h population doubling 
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time), HT1080 (malignant fibrosarcoma; 18.2 h doubling time) and MDA-MB-

231 (metastatic breast cancer; 38 h doubling time). These have been used for 

previous functional genomic studies (Silva et al, 2008; Yang & Stockwell, 

2008; Schlabach et al, 2008; Shalem et al, 2014). 

 

First the PDS and PhenDC3 sensitivity of these cell lines was investigated. 

This is an important consideration as synthetic lethality is the readout of the 

screen. For example, too much ligand-induced cell death would reduce the 

available response window, while too little would not engage a strong enough 

ligand response. For this, cells were treated with serial dilutions of both 

ligands for 96 h and post-treatment viability determined by an ATP 

luminescence-based assay, that quantifies the number of metabolically active 

cells (see Methods for details). This was used to generate viability curves for 

three biological replicas (Figure 2.4A-F show example viability curves for one 

biological replica) from which average GI20 and GI50 values were calculated 

(Figure 2.4G). All cell lines were more sensitive to PDS versus PhenDC3, with 

HT1080 showing the greatest sensitivity (GI50 = 1.21 µM) and MDA-MB-231 

the least sensitive, with a 10-fold higher average GI50 value (12.0 µM). For 96 

h treatment, the three cell lines showed PhenDC3 sensitivity within the same 

order of magnitude. 

 

 

 



	 67 

 
Figure 2.4. 96 h cellular viability assay reveals PDS and PhenDC3 sensitivity for the 3 
candidate cell lines 
(A-F) Representative viabil ity curves for one of three biological replicas plotted 
as an average of four technical replicates using a non-linear regression model, 
following 96 h treatment with serial dilutions of (A-C) PDS and (D-F) PhenDC3 
for A375, HT1080 and MDA-MB-231 as indicated. (G) Table summarising 
average GI20 and GI50 values for each cell l ine based on 96 h treatment with 
PDS or PhenDC3 for 3 biological replicas 



	 68 

Next, cell transfection efficiency with the pilot retrovirus pool was tested to 

explore whether sufficient hairpin representation was achievable. For this, 

virus was produced using the Platinum-A (Plat-A) packaging cell line, 

optimised for high viral titre production (see Methods for details). Plat-A cell 

transfection is pH sensitive, thus a range of buffers with pH 5.98-7.20, at 0.2 

increments were tested for their ability to cause calcium phosphate 

precipitation by visual inspection. Buffers at pH 6.98 and 7.00 yielded fine 

precipitates (Figure 2.5A) and both pHs enabled successful hairpin integration 

in Plat-A in small-scale test transfections, as visualised by ZsGreen reporter 

gene expression (Figure 2.5B). Thus these buffers were used for virus 

production in the pilot and subsequent large-scale screens.  

 

Figure 2.5. Optimising buffer pH for transfection of the Platinum-A packaging cell line  
(A) Brightfield microcopy images comparing the calcium phosphate precipitation 
levels for HBS buffers at different pH values 
(B) Phase contrast (left) and fluorescent (right) microscopy images of mock 
PlatA transfections with HBS buffers at pH 7.00 and 6.98 (as indicated). 
ZsGreen expression indicates successful transfection 
 

Following successful virus production using both HBS buffers (pH 6.98 and 

pH 7.00), HT1080, A375 and MDA-MB-231 cells were transfected with 1:7, 

5:14 and 4:7 dilutions of media containing the virus (viral media: normal 
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media) or media-only control. Plasmid integration was monitored by ZsGreen 

expression via flow cytometry, 48 h after transfection (Figure 2.6; see 

Methods for details). Based on these data, HT1080 > A375 >> MDA-MB-231 

with respect to virus transfection efficiency. Confirming that cell 

autofluorescence does not influence fluorescent detection, in the absence of 

virus only 0.4 % of cells were denoted Zs-Green positive. Additionally, the 

data showed that viral titre was similar regardless of the HBS buffer pH used 

to transfect Plat-A cells. 

 

Figure 2.6. Comparing shRNA retroviral transfection and integration efficiency for 
three candidate cell lines. 
 HT1080, A375 and MDA-MB-231 cell l ines were transfected with virus produced 
from Plat-A cell l ines transfected with pool 8 shRNAs using either pH 6.98 or 
7.00 HBS buffers. The following dilutions of virus were used 1:7, 5:14, 4:7 
(virus:media) alongside a media-only control (0). 48 h after transfection, the 
percentage of each cell l ine that had integrated the shRNA construct was 
calculated via FACs detection of ZsGreen fluorescence. 

 
 

This combined with the slower population doubling time, aneuploidy and 

reduced PDS sensitivity, suggested the MDA-MB-231 cell line was 

suboptimal. Therefore the HT1080 and A375 cell lines were selected for pilot 

shRNA screening. 

 

Cell line

 Virus Dilution  HBS buffer pH 6.98 pH 7.00 pH 6.98 pH 7.00 pH 6.98 pH 7.00

0
1:7 20.51 22.97 10.87 9.36 6.50 6.40

5:14 38.98 41.87 23.47 26.69 12.24 12.35
4:7 62.19 62.46 37.03 38.52 22.55 23.91

Percentage ZsGreen positive cells 48 h after infection (%)

HT1080 A375 MDA-MB-231

0.48 0.39 0.41
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2.3.2 A pilot shRNA screen using HT1080 and A375 cells 

Next, a screening methodology designed to investigate synthetic lethality 

associated with G4-stabilising ligands was tested and refined using a pilot 

screen with HT1080 and A375 cells. This is outlined in the schematic below 

(Figure 2.7). Briefly, cells were infected with retrovirus shRNA vectors at a low 

titre to minimise multiple infections per cell. Following complete antibiotic 

selection (7-10 days), a reference sample was harvested (t0) and cells were 

then treated with a DMSO vehicle control or GI20 concentration of PDS and 

PhenDC3, for ‘n’ population doublings before harvesting the final timepoint 

(tF). Cells were split and replated in fresh media and ligand every 72 h. A GI20 

dose was reasoned to be low enough to allow long-term cell culture while 

being sufficiently high to cause ligand-specific phenotypic effects. A low ligand 

concentration also allows detection of only the strongest synthetic lethal 

interactions with G4-stabilising ligands. To circumvent retrovirus cloning and 

infection efficiency limitations, cells were maintained at 1000-fold coverage 

(10 x 106 million cells). Additionally, logarithmic growth conditions were 

maintained by splitting at 70-80 % confluency to minimise shRNA 

representation changes due to localised restriction of cell growth. 
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Figure 2.7. Outline of a pilot screening using shRNA retroviruses to uncover genetic 
vulnerabilities to G4-stabilising ligands 
For the pilot screen pool 8 (~10,000 shRNAs) one of the 12 shRNA pools 
targeting the protein coding genome was used. Plasmids are retrovirally 
packaged and then A375 and HT1080 cells are infected at MOI 0.3 (30 %). 
Following complete antibiotic selection, for each cell l ine the init ial t ime point 
(t0) was harvested and cells cultured for ‘n’ population doublings (7 or 15) in 
DMSO, PDS or PhenDC3 before the final t ime point was harvested (tF). The 
workflow shown above represents one biological replica. Three replicas were 
performed for each cell l ine (consisting of three independent transfections). 
 

To determine differentially expressed shRNAs in tF versus t0, the unique 3’-

antisense sequences were recovered by two rounds of PCR, using primers 

specific to common regions within the shRNAmir construct, and quantified by 

massively paralleled sequencing (Figure 2.8). Here, 10 x 106 reads (1000 x 

sequencing depth) per sample were sequenced to recover all shRNAs within 

each cell. If a gene knockdown compromises cell viability then the shRNA is 

depleted compared to those against genes without effect. Therefore, the 

count in tF is less than t0 and log2(tF/t0) is negative.  
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Figure 2.8. PCR and sequencing pipeline to identify differentially expressed shRNAs  
Genomic DNA (gDNA) was extracted from pellets containing 10 x 106 harvested 
from the pilot screen corresponding to reference timepoints (t0) and final 
t imepoints for each treatment condition (tF). The shRNA insert was recovered 
from surrounding gDNA via PCR (primary). The secondary PCR reaction added 
the P5 and P7 adaptors necessary for sequencing on the NextSeq platform. 
shRNAs were identif ied and quantif ied for each sample via a custom sequencing 
primer that gives a single read of the unique “barcode” 3’ antisense sequence. 
To identify shRNA changes within the cell population after treatment, the log2 
fold change was calculated for each shRNA. 
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The experimental design assumes that GI20 values calculated for 96 h are 

applicable for long-term culture and, that this methodology will detect ligand-

specific synthetic lethal interactions. In addition to testing these assumptions, 

pilot screening allows for optimisation of two further parameters: experiment 

duration and suitable threshold cutoffs, i.e. false discovery rate and fold 

change (FC). 

 

2.3.3 A375 cells more amenable than HT1080 for long-term culture 

with both PDS and PhenDC3  

The pilot screen was performed as outlined in Figure 2.7, using the following 

ligand concentrations: 10 µM PhenDC3 for both cell lines and 0.5 µM and 2.5 

µM PDS for A375 and HT1080 respectively, an approximate GI20 as 

determined by the 96 h viability assay. A375 cells were successfully cultured 

for 15 population doublings (PD) with PDS, PhenDC3 and DMSO (Figure 

2.9A). Both G4-stabilising ligand treatments caused similar growth defects to 

the DMSO control and allowed continuous, linear growth for the experiment 

duration. HT1080 cells were also successfully cultured for 15 PD in PDS and 

DMSO. However, PDS induced growth inhibition was greater than expected 

for a PDS GI20 and reaching 15 PD necessitated culturing for 10 days longer 

than DMSO-treated cells (Figure 2.9B). For the first 120 h of PhenDC3 

treatment, HT1080 growth inhibition was as expected. However, beyond this, 

cells were acutely sensitive to PhenDC3 and growth plateaued after ~ 3 

population doublings. Based on these data, the A375 cell line, with 2.5 µM 

PDS and 10 µM PhenDC3 was chosen as the most suitable for performing 

the genome-wide genetic screen. 
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Figure 2.9. Pilot screen growth curves for A375 and HT1080 cells cultured in GI20 ligand 
concentrations  
Average cumulative population doublings were plotted for DMSO (blue), 
PhenDC3 (green) and PDS (red) treatment for the experiment duration for (A) 
A375 and (B) HT1080. Shown is the average of 3 biological replicates (mean ± 
standard deviation). 
 

2.3.4 Determination of a suitable timepoint to uncover PDS and 

PhenDC3 synthetic lethalities 

For A375 treated cells, two final timepoints were harvested for the pilot 

screen. An ideal end-point represents a balance between minimising 

experiment duration while allowing sufficient time to visualise significant 

phenotypic effects. Based on thresholds used in other screens, significance 

was set at FDR ≤ 0.05 (see introduction, section 1.8). 

 

Cells were harvested after 7 and 15 population doublings (t7 and t15 

respectively; 10 x 106 cell per conditions), and genomic DNA extraction, PCR 

and sequencing performed for t7, t15 and t0 samples. Then, average log2FC 

(tF/t0) counts for each hairpin were plotted for PDS (Figure 2.10A) and 

PhenDC3 (Figure 2.10B) to provide a global overview of hairpin fold changes. 

Non-significant changes in shRNAs are shown in grey, while coloured points 

represent significant shRNAs. Blue indicates shRNAs which show a 
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significant log2FC for DMSO (untreated) while green and red represent ligand 

specific significant changes, for PhenDC3 and PDS respectively. Points below 

y=0 indicate a lower shRNA representation in tF versus t0, and therefore a 

gene knockdown causing sensitisation to the treatment. For t7, 13 and 12 

shRNAs were significantly altered following PDS and PhenDC3 treatment 

respectively. Increasing this threshold (log2FC ≤ -1) to identify the strongest 

synthetic lethalities, revealed that only 6 (PDS) and 11 (PhenDC3) shRNA 

hairpins were altered for t7, suggesting that this is an insufficient time period 

to evaluate G4-ligand sensitivities. By contrast, at t15, more hairpins were 

significantly depleted following PDS and PhenDC3 treatment, 746 and 93 

significant shRNAs respectively, excluding those also significantly changed in 

DMSO. Of these 322 (PDS) and 50 (PhenDC3) showed a log2FC ≤ -1, 

indicating a more appropriate final point. 

 

Having obtained a global appreciation of shRNA representation changes, 

changes in individual hairpins were investigated. For this shRNAs targeting 

the known direct G4 binders XRN1 and hnRNPA2/B1 were explored (Figure 

2.10C). It was hypothesised that synthetic lethality would arise from depletion 

of proteins that regulate processes via G4-interaction, in conjunction with 

disrupting pathway mechanics by ligand-induced G4 stabilisation. At t7, the 

XRN1 shRNA count was not significantly different in any treatment. However, 

at t15 this shRNA was significantly depleted in PDS and PhenDC3 but not 

DMSO treatments. For both ligands (but not DMSO), the log2FC was less 

than -1 (-1.51,PDS; -1.52,PhenDC3; -0.25 DMSO), indicating that both FDR ≤ 

0.05 and log2FC ≤ -1 are critical for exploring G4-ligand synthetic lethality. 
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Similarly for hnRNPA2/B1, at t7 the hairpin did not show a significant fold 

change in any condition and did not pass the logFC threshold of < -1. This 

was also observed at t15 for PDS and DMSO treatment. However, for 

PhenDC3 treatment, despite at a global level having less overall significant 

sensitisers compared to PDS, the hnRNPA2/B1 shRNA exhibitted a log2FC of 

-1.18 at an FDR = 0.02. Perhaps surprisingly, a hairpin targeting BRCA1, a 

protein previously identified as synthetic lethal with G4-stabilising ligands, was 

not identified as significant (data not shown). This may reflect that several 

hairpins (of differing knock down potency) exist per gene and the relevant 

shRNAs targeting BRCA1 are not present within this pool. 
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Figure 2.10. Pilot screening reveals t15 as suitable endpoint for uncovering G4-
ligand specific hits.  
(A-B) A comparison of significant hairpin hits (colours indicate significance at 
FDR ≤  0.05) for two end points: population doubling 7 (left) and 15 (right) 
for  (A) PDS and (B) PhenDC3  
(C) A comparison of FDR and log2FC values for the XRN1 (top) and 
hnRNPA2/B1 (bottom) hairpins following DMSO, PDS or PhenDC3 treatment 
after 7 and 15 population doublings   
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The pilot screen was informative in several respects, foremost in identifying 

the A375 cell line as suitable for the screen, with the 96 h GI20 values for both 

drugs being applicable for the experiment duration. Additionally, it suggests a 

final timepoint after 15 PD; and FDR ≤ 0.05 and log2FC ≤ -1 thresholds as 

suitable parameters for identifying ligand specific synthetic lethalities. On a 

wider level, this pilot experiment suggested that the shRNA screening 

methodology outlined and developed here was capable of detecting synthetic 

lethalities to PDS and PhenDC3, and by proxy, stabilisation of G4-structures.  

 

2.4 Genome-wide screening in A375 cells  

2.4.1 PDS and PhenDC3 caused growth inhibition for all pools 

Based on the success of the pilot screen, the pipeline was extended genome-

wide, using 12 pools encompassing all shRNAs against the protein coding 

genome (Figure 2.11). The cumulative population doublings for each pool 

after treatment was monitored, to ensure linear growth inhibition for ligand-

treated versus DMSO samples (Figure 2.12). Inter-pool differences in the 

degree of growth inhibition were evident. For PhenDC3 treatment, pool 4, 5, 

8, 9, 10, 11 and 12 growth was reduced compared to DMSO for the 

experiment duration. Conversely, differences for pools 2, 3, 1 and 6 became 

apparent after treatment for 6, 12 and 15 days respectively. For PDS 

treatment, visible growth inhibition was seen for pool 8, 9, 11 and 12. For the 

remaining pools, the PDS growth overlapped with DMSO treatment.  
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Figure 2.11. Outline of the genome-wide RNAi screen technology pipeline to uncover 
synthetic lethality with PDS and PhenDC3  
For each pool (1-12), plasmids are retrovirally packaged and A375 cells are 
infected at MOI 0.3 (30 %). Following complete antibiotic selection, the init ial 
t ime point (t0) was harvested and cells cultured for 15 population doublings in 
DMSO, PDS or PhenDC3 before the final t ime point was harvested (tF). 
Genomic DNA was extracted from all pellets and the antisense “barcode” of the 
shRNA extracted and amplif ied by PCR and quantif ied via sequencing on the 
NextSeq Il lumina platform  
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Figure 2.12. Inter-pool differences in growth inhibition following PDS and PhenDC3 
treatment.  
Average cumulative population doublings were plotted for DMSO (blue), 
PhenDC3 (green) and PDS (red) treatment for the experiment duration for the 
12 pools as indicated. Shown is the average of 3 biological replicates (mean ± 
standard deviation). 
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2.4.2 Quality control check and sequencing results 

Next t0 and tF samples were extracted and sequenced to monitor shRNA 

differential expression. As the NextSeq maximum output is 40 x 107 reads, t0 

and tF samples were sequenced in batches of 2 (24 samples on the NextSeq, 

see Methods for details), to ensure sufficient sequencing depth per sample (8-

106 per sample). Inter-pool shRNA contamination is a potential problem 

particularly at the PCR level, therefore following sequencing, reads were 

mapped according to their shRNA ID and reads belonging to another pool 

discarded before differential expression analysis (Figure 2.13). For some 

samples, shRNA contamination from other pools was particularly high. For 

contamination above 40 %, samples were resequenced and reads combined, 

to increase the number of pool specific reads (samples denoted with * and all 

pool 1 and 2 samples). A read count of 8 x 106 was considered sufficient for 

subsequent analysis (800 fold coverage, close to the original aim of 1000). 

Having achieved a minimum of 800-fold coverage for each pool, significantly 

differentially expressed hairpins for each pool were determined using the 

same parameters used for the pilot screen (Figure 2.14A).  
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Figure 2.13. Number of pool-specific reads per sample following sequencing.  
Screen was performed in three experimental batches consisting of four pools 
each for ease-of-handling: 1) pools 1,2,5,10; 2) pools 3,4,6,7; 3) pools 
8,9,11,12. Sequencing was performed in 6 batches, with each run containing the 
samples from 2 pools (3 biological replicas per sample; 24 samples total) as 
indicated to ensure sufficient sequencing depth per sample. For each sample, 
reads were mapped to each pool to identify contamination from other pools. 
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Figure 2.14. Genome-wide RNAi screening reveals ligand specific hairpin alterations.  
(A) Venn diagrams showing the overlap between hairpins that were differentially 
expressed (FDR ≤  0.05) following DMSO, PDS and PhenDC3 treatment, for the 
12 pools. (B-E) comparison between numbers of significant hairpins for each 
pool for (B) total, (C) PDS excluding those also found in DMSO and (D) 
PhenDC3 excluding those also found in DMSO. Median is denoted by black 
dotted l ines (E) Box and whisker plots for data in (B-D). 
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The number of shRNAs in each category and percentage that this represents 

of the total significantly differentially expressed shRNAs is indicated for each 

pool (2.14A). Interpool differences (referred to as batch effects henceforth) in 

the number of total (2.14B) and of ligand-specific hits (PDS 2.14C and 

PhenDC3 2.14D) were observed. This reflects the variation in PDS- and 

PhenDC3-induced growth inhibition (Figure 2.11).  Across all conditions 

(DMSO, PDS and PhenDC3), a median of 1,616 hairpins per pool was 

differentially expressed, ranging from 507 (pool 4) to 5,493 (pool 8) shRNAs 

(Figure 2.14E). Excluding hairpins that were also significantly altered in 

DMSO conditions, following PDS and PhenDC3 treatment (i.e. ligand-

specific), medians of 516 (ranging from 146 to 1,876) and 715 (from 124 to 

2,211) differentially expressed hairpins were observed respectively. Despite 

this variation, the use of stringent thresholds and randomisation of gene 

hairpins between pools, gives confidence regarding drawing conclusions 

about PDS and PhenDC3 synthetic lethal interactions. These observed batch 

effects might arise because of technical factors, including cell status, absolute 

drug concentration differences and variation in DNA isolation and/or 

sequencing. However, they may reflect biological features – a pool may be 

particularly enriched in G4-ligand sensitive shRNAs and/or potent shRNAs 

causing the greatest knockdowns. I have assumed that to alter the drug 

concentrations on a pool-by-pool basis to achieve identical growth inhibition 

etc., would negatively impact the aim to conduct an unbiased screen.  
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2.4.3 The unbiased genome-wide screening methodology 

identifies known synthetic lethal interactions as top sensitisers  

Having analysed each pool individually (section 2.4.2), all differentially 

expressed shRNA counts were combined, revealing 15,021 across all 

conditions (Figure 2.15A). As the aim is to investigate G4-ligand synthetic 

lethality, only shRNAs that were differentially expressed in ligand treatment 

(i.e. not also depleted in DMSO at FDR ≤ 0.05) were considered. This yielded 

9,509 (8 % of total library) differentially expressed, ligand-specific hairpins 

(Figure 2.15B) with 2,561 PDS specific, 5,591 PhenDC3 specific and 1,357 

common to both ligands. 

 

Figure 2.15. 9,509 hairpins show G4-stabilising ligand specific depletion  
(A) Venn diagram showing the overlap between differentially expressed hairpins 
(FDR ≤  0.05) following DMSO, PDS and PhenDC3 treatment, combined for all 
12 pools  
(B) Venn diagram showing l igand specific depleted shRNAs (FDR ≤  0.05, not in 
DMSO, log2FC < 0) 
 
 

Although each gene is targeted by approximately 6 hairpins of varying 

knockdown efficiency (Figure 2.16A) some have many more hairpins (e.g. 

MYC which is targeted by 21 shRNAs). Therefore a gene was considered 
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differentially expressed if 50 % or 3 hairpins were significantly depleted, which 

resulted in 843 differentially expressed genes (Figure 2.16B). This threshold, 

while stringent, allows genes that are targeted by more or fewer hairpins than 

the average of 6 shRNAs per gene, to make the cut-off. To focus on top 

sensitisers an additional threshold of median log2FC≤ -1 was applied, which 

gave 758 genes (Figure 2.16C). These genes were denoted a preliminary list 

of G4-sensitisers, i.e. genes, that when knocked down, are synthetically lethal 

with G4-ligand treatment. This definition is maintained henceforth. 

 

Figure 2.16. Genome-wide RNAi screening approach identifies 758 synthetic lethal 
interactions with PDS and PhenDC3 treatment in A375 cells 
(A) Profi le of the numbers of shRNAs targeting each gene, with the average 
indicated by a red dotted l ine  
(B) Venn diagram showing significantly depleted genes (50 % or 3 hairpins, FDR 
≤  0.05, median log2FC < 0) following DMSO, PDS and PhenDC3 treatment 
(C) Ligand sensitiser genes identif ied after applying a median log2FC ≤-1 cut off 
to PDS and PhenDC3 depleted genes.  

 

G4-ligand synthetic lethality has been previously demonstrated for BRCA-

deficiencies (PDS, CX-5461) and ATRX (telomestatin). BRCA1 and BRCA2 

were independently uncovered as top sensitisers to both PDS and PhenDC3, 

and ATRX to PhenDC3, providing strong validation for the dropout screen 

capability to identify synthetic lethal interactions (Figure 2.17). 
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Figure 2.17. Independent validation if previously identified genes known to be 
synthetic lethal with G4-stabilising ligands  
Table showing the number of depleted hairpins and median log2FC values for 
ATRX, BRCA1 and BRCA2, genes that have been previously been shown to be 
synthetic lethal with G4-stabil ising l igands  

 
 

2.4.4 The preliminary sensitiser list shows depletion in genes 

implicated in G4-biology  

Genes in the 758-sensitiser list fall into three categories: 

1) Genes with a known G4-relationship and previously shown to be 

synthetically lethal with G4-stabilising ligands (e.g. BRCA2) 

2) Genes with a known G4-relationship (e.g. reported in the literature 

to bind and/or unwind G4-structures) but not known to be 

synthetically lethal with G4-stabilising ligands (e.g. DHX36) 

3) Genes with neither prior known G4-relationship nor synthetic lethal 

interactions with G4-stabilising ligands 

 

The first class of known synthetic lethal genes deficiencies have been 

described in section 2.4.3 and acted as positive controls. To investigate the 

second category the UniprotKB, Gene Ontology (GO) and G4 Interacting 

Proteins Database (G4IPDB) (Mishra et al, 2016) databases, were searched 

for genes annotated with G4-related terms that were also uncovered as 

sensitisers (see methods).  This revealed nine sensitisers (ADAR, ATRX, 
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DHX36, DNA2, FUS, MCRS1, RECQL4, SF3B3 and XRN1) with a G4-

relationship (Figure 2.18). Besides ATRX (Watson et al, 2013), this is the first 

report that these deficiencies cause G4-ligand sensitivity and provides strong 

support that these proteins are strongly linked to G4-structures. The 

observation of several G4-interacting proteins causing G4-ligand synthetic 

lethality, suggests that other unknown G4-binders may be present in the G4-

sensitiser list.  

Figure 2.18. Proteins known to directly interact with a G4 structure identified as 
synthetic lethalities  
Table showing the number of depleted hairpins and median log2FC values for 
nine sensitisers annotated with a G4-associated term in the GO, UniprotKB or 
G4IPBD databases  

 

It is notable that several known direct G4-interactors (e.g. binding and 

unwinding proteins) were not identified as causing synthetic lethality. This 

may reflect that these G4-interactions are redundant; less influenced by low 

ligand concentrations (gene C) and/or perform other integral roles, thus are 
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also lost following DMSO treatment (gene D). To evaluate this, for the 18 

genes with a G4-associated UniprotKB/GO term, the significantly depleted 

hairpins and associated log2FC values are summarised in Figure 2.19A. For 

example, despite the known in vitro ability to unwind G4s, PIF1, WRN and 

BLM knockdowns did not cause significant lethality in either DMSO or treated 

controls. This was reflected by all genes within the G4-interactor table, except 

hnRNPA2/B1 (Figure 2.19B; gene type C), which was identified as a 

sensitiser to both DMSO and PDS (3 hairpins, log2FC -1.4 and 2 hairpins, 

log2FC -1.8 respectively). This suggests that hnRNPA2/B1, despite the known 

in vitro G4-association, has an essential role in addition to stabilised G4s 

regulation (Figure 2.19B; gene type D). Using a screen readout of lethality 

and removing DMSO sensitisers, restricts the outcomes to the strongest 

ligand-specific gene knockout responses. This suggests that the nine direct 

interactors identified as sensitisers, are major players in the cellular response 

to stabilised G4-structures. 
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Figure 2.19. Several known direct G4-interactors are not identified as synthetic lethal 
with G4-stabilising ligand treatment  
(A) Table showing the number of depleted hairpins and median log2FC values 
for the 18 genes in the GO and UniprotKB database with a G4 relationship for 
PDS, PhenDC3 and DMSO treatment. 
(B) Schematic explaining the absence of these genes from our sensitiser l ist. 
Either the G4-interaction (physical or mechanistic) is not strong enough in 
isolation to cause cell death following a single shRNA-induced gene knockdown 
(Gene C) or the gene also performs essential non-G4 roles in the cell and thus 
deficiency is also lethal in the DMSO control (Gene D). 
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Next, this G4-relationship was extended further by using G4 search terms and 

PolySearch2 (see methods; Liu et al., 2015) to scan PubMed abstracts 

(Figure 2.20). This identified 12 additional synthetic lethal interactions of G4-

associated genes, covering categories including G4-helicases (RTEL1, 

RECQL4), DDR (CHEK1, RAD17), transcription (POLR1A, CNBP) and 

replication proteins (ORC1, TOP1). This is the first study to show that these 

gene deficiencies impart G4-ligand sensitivity. For those reported to be direct 

G4-binders, this extends the prior list (Figure 2.18 & 2.19). For genes with a 

G4-link unrelated to directly binding these structures, such as DDR (e.g. 

CHEK1) or transcription (POLR1A), their identification indicates that their G4 

associated roles are strong and sufficiently essential, that their deficiency 

causes G4-stabilisation associated synthetic lethality.  
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Figure 2.20. G4-associated proteins identified from the literature within the sensitiser 
list 
Tables showing the number of depleted hairpins and median log2FC values for 
16 sensitisers identif ied as G4-related by text mining, with the associated 
PolySearch2 algorithm score and a brief description of G4 association.  
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2.4.5 Genome-wide sensitisers are enriched in a defined set of 

pathways 

Next explored were genes for which both 1) G4-ligand synthetic lethality and 

2) G4-structure relationship are largely unknown. For this, enriched KEGG 

pathways within the 758 G4-sensitiser gene list (i.e. gene depletions that 

caused sensitivity to PDS and/or PhenDC3) were investigated. This 

uncovered five significantly (p < 0.05) enriched clusters: ‘cell cycle’ (p = 6.9 x 

10-7), ‘ribosome’ (p = 3.1 x 10-6), ‘spliceosome’ (p = 1.5 x 10-6), ‘ubiquitin-

mediated proteolysis’ (p = 1.3 x 10-3) and ‘DNA replication’ (p = 5.7 x 10-3). 

PDS and PhenDC3 targeted common (blue) and unique (black) genes (Figure 

2.20). The enrichment of transcription- and translation-associated genes and 

pathways is perhaps concordant with G4-structures having predicted genomic 

and transcriptomic roles. While predicted G4s are enriched at replication 

origins (Besnard et al, 2012), replication proteins themselves are currently 

unlinked to G4s and their deficiencies unexplored as synthetic lethal 

interactions. The ubiquitin pathway provides a novel link to G4-biology and 

ligand synthetic lethality. 
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Figure 2.21. Genome-wide sensitiser genes enriched in five pathways including 
ubiquitin-mediated proteolysis  
Enriched KEGG pathways for the 758 sensitiser genes (right-sided adjustment 
test based in hyper-geometric distribution, Bonferroni corrected p-value < 0.05). 
Node colour denotes significance and node size reflects the number of genes. 
Blue reflects gene deficiencies causing sensitivity to PDS and PhenDC3. 
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To gain possible functional insights into the G4-sensitisers, enriched GO 

Biological Process (BP) and Molecular Function (MF) terms were then 

determined (Figure 2.21A). The four MF terms and 20 out of 45 BP terms 

were directly related to DNA or RNA, consistent with PDS and PhenDC3 

directly binding nucleic acid G4 targets. A search for enriched protein domains 

(Figure 2.21B) also revealed nucleic acid binding proteins such as helicase C-

terminal; RNA recognition motifs including RRM, RBD and RNP; and DNA-

binding domains including zinc fingers, bZIP motifs and HMG boxes. Also 

enriched were ubiquitin hydrolase and multifunctional ATPase domains, 

highlighting potential areas previously unknown to be affected by G4-

intervention in mammalian cells. Additionally, the former is consistent with the 

observed ubiquitin-mediated proteolysis KEGG cluster (Figure 2.20).  

 

Contributing to enriched helicase domains are several DEAD/DEAH-box 

helicases, including DDX10, DDX42, DHX38 and DHX36 (Figure 2.21C), the 

latter a confirmed RNA G4-helicase (Chen et al, 2015). Other DDX and DHX 

proteins were also uncovered as sensitisers, but not classified as enriched by 

the GO analysis parameters used (Figure 2.21D). With the exception of 

DHX36, putative novel G4-unwinders may also exist among these DDX/DHX 

proteins. The non-emergence of other helicases such as WRN, BLM and PIF1 

as sensitisers (section 2.4.4) suggests that helicases uncovered here may be 

key in the cellular response to stabilised G4-structures. Additionally, given the 

known synthetic lethality approaches with DNA-G4 (i.e. BRCA-deficiencies), it 

would be valuable to learn if RNA-G4 synthetic lethalities also exist, for 

example with RNA-helicase deficiencies.  
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Figure 2.22. GO and protein domain analysis of genome-wide sensitisers reveals an 
enrichment in DNA, RNA and helicase associated genes  
(A) Enriched Gene Ontology terms (GO Biological Processes and Molecular 
Functions) (Bonferroni corrected p-value < 0.05) and (B) Enriched protein 
domains (p ≤  0.05) using GENE3D crystallographic data (black) and PFAM 
sequence information (grey) ordered by -Log10(EASE p-value) for the 758 
sensitiser genes. 
(C-D) Tables showing the number of depleted hairpins and median log2FC 
values for selected genes within the sensitiser l ist:  
(C) Contributing to the “Helicase conserved C-terminal domain” enrichment  
(D) Additional DHX or DDX (DEAH and DEAD-box helicases) genes. Those 
highlighted in blue caused sensitivity to both PDS and PhenDC3 in the screen 
following shRNA induced depletion 
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2.4.6 Cancer associated gene depletions enhance sensitivity to 

G4-ligands 

One aim was to identify disease-related genotypes where G4 ligands may be 

therapeutically exploited in the future. Multiple studies link G4s and cancer, 

including synthetic lethality of G4-stabilising molecules in BRCA-deficient 

tumours (Xu et al, 2017; McLuckie et al, 2013). Given the varied hypothesised 

roles of G4s, G4-stabilising molecules may offer synthetic lethality 

opportunities with other cancer genotypes. To explore this further, the 

COSMIC v83 database (Forbes et al, 2015) which describes genes with 

somatic mutations causally implicated in cancer, was used to investigate 

potential cancer-associated sensitisation within the genome-wide gene list 

(Figure 2.23). 
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Figure 2.23. Sensitivities uncovered from genome-wide screening are enriched in 
cancer-associated gene depletions 
(A-B) STRING analysis for (A) 50 COSMIC proteins that overlapped with 
‘sensitiser genes’ (50 % or 3 hairpins, FDR ≤  0.05, median log2FC ≤  -1) and (B) 
52 COSMIC proteins that overlapped with significantly depleted genes (50 % or 
3 hairpins, FDR ≤  0.05, median log2FC < 0). Shown are confidence interactions 
> 0.4 from co-expression and experimental data. 
(C) Tables of the median log2FC and number of significantly depleted hairpins 
for the 53 depleted genes overlapping the COSMIC database for (left) PDS, 
(right) PhenDC3 and genes common to both drugs (red). 
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Within the 758 sensitisers, there was a 2-fold (p-value = 9.1x10-6) enrichment 

for 50 cancer-associated genes. The enrichment increases to 3-fold (p-value 

= 2.5 x 10-3) when considering 10 cancer-associated sensitisers common to 

both G4 ligands. The 50 sensitisers found in COSMIC were then explored via 

STRING network analysis to investigate functional interactions between them 

(Figure 2.22A). This revealed a cluster of DDR proteins including tumour 

suppressors PALB2 and BAP1 that physically interact with BRCA1 and 

BRCA2. Chromatin modifiers such as SMARCA4, SMARCB1 and SMARCE1 

were also identified as sensitisers. Removing the log2FC ≤ -1 threshold from 

the gene list identified, only adds an additional two proteins overlapping with 

the COSMIC database: NONO and KAT6A (both median log2FC = 0.9). This 

highlights how cancer-associated genes within significantly depleted genes of 

the screen show large fold changes (log2FC -0.9 to -5.5; 46 % to 98 % 

depletion in tF versus t0), and their deletion can cause strong PDS and 

PhenDC3 sensitivity. When incorporated into the STRING analysis, NONO 

interacted with the splicing cluster and KAT6A was linked to the SMARC 

chromatin modifiers (Figure 2.22B). The 52 proteins, alongside their 

associated log2FC for PDS or PhenDC3 treatment are shown in Figure 2.22C.  

 

2.4.7 Establishment of a focused pool of potential G4-ligand 

sensitisers for validating and extending genome-wide findings 

Using a genome-wide approach is necessary for an unbiased, systematic 

study but is labour-intensive. The approach is therefore difficult to scale to 

multiple ligands and cells. Additionally, as the genome-wide experiment is 

split between pools, all shRNAs are not simultaneously exposed to ligand and 
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all PCRs and sequencing runs are not performed concurrently. As revealed 

earlier this can result in batch effects for ligand response and sequencing 

quality/contamination (see section 2.4.2), which could compromise data 

interpretation.  

 

To address these issues, a focused custom “quadruplex” pool was designed, 

derived from ligand-specific synthetic lethal hits uncovered in the A375 

genome-wide screen.  This was limited to 8,018 hairpins (1,363 genes), below 

the number within one pool of genome-wide screen (10,000 shRNAs). 

Therefore all shRNA-expressing cells can be cultured and sequenced 

simultaneously, minimising batch effects and allowing multiple comparisons to 

be simultaneously performed (Figure 2.24). Gene targets within this custom 

pool include 751 genome-wide G4-sensitisers (excluding 7 genes only 

targeted by 1 shRNA). Also targeted were 496 significantly upregulated genes 

(50 % or 3 hairpins significant, log2FC ≥ 1); 116 additional genes identified 

from the literature as potentially G4-associated (439 shRNAs) and shRNAs 

targeting 37 olfactory receptors as non-targeting controls (143 shRNAs). To 

reduce the total hairpin number, the number of shRNAs per gene was capped 

at seven.  

 

A focused screen approach has its own limitations: the derivation from the 

PDS and PhenDC3 genome-wide screen in A375 cells creates an intrinsic 

bias to synthetic lethalities that can be uncovered with other ligands and/or 

cell lines. In light of this, the focused screen adds to but does not supersede 

or undermine the results of the genome-wide screen.  
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Figure 2.24. Development of a focused “quadruplex” pool strategy to circumvent batch 
effects  
Schematic of the shRNAs in the custom pool, containing ~8000 hairpins and 
experimental outl ine for application to the A375 and other cell l ines. Cells were 
infected at an MOI of 0.3 with retroviral particles. The reference time point (t0) 
was harvested following 100 % selection. Cells were cultured for 15 population 
doublings in DMSO, PDS or PhenDC3 and the final t ime point was harvested 
(tF). 
 

2.4.8 Screening the A375 cell line with the focused library  

Having designed the focused library, the A375 cell line was screened using 

the same experimental procedure, ligand concentration and parameters as for 

the genome-wide screen. Primarily, this was a proof-of-principle validation 

that this screening methodology could replicate genome-wide screen 

sensitivities. Secondly, as all shRNAs are simultaneously exposed to PDS 

and PhenDC3, this enables a stringent, comparative analysis of their 

sensitivities. 

 

PDS and PhenDC3 caused continuous growth inhibition for the experiment 

duration (Figure 2.25A). Sequencing t0 confirmed that the maximum number 
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of shRNAs per gene was seven (Figure 2.25B). Depleted hairpins and 

sensitisers were defined as for the genome-wide screen, and recovered 2,236 

depleted shRNAs (370 genes) across both ligands compared to only 221 

shRNAs (10 genes) significantly depleted in DMSO (Figure 2.25C-D). 342 of 

the 360 ligand-specific depleted genes (95.0 %) were classed as sensitisers 

(Figure 2.25E), which represent 40.6 % of genes identified in the genome-

wide screen (Figure 2.25F). The low number of differentially expressed genes 

in DMSO and high proportion of shRNA/genes depleted after G4 ligand-

treatment provides confidence in the focused screen as a reliable, albeit more 

refined tool for investigating G4-sensitivities. 
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Figure 2.25. Focused screening in A375 reproduces 40 % of the genome-wide 
sensitisers 
(A) Graph comparing cumulative population doublings for the experiment 
duration for the three conditions (DMSO, PDS and PhenDC3) 
(B) Number of shRNAs targeting each gene, with the maximum capped at 7 per 
gene 
(C-E) Venn diagrams showing (C) significantly depleted shRNAs in t15 v t0 
(FDR ≤  0.05) for DMSO, PDS and PhenDC3 treatment, (D) significantly depleted 
genes (minimum 50 % or 3 significant shRNAs), (E) Venn diagram of significant 
sensitiser genes from the A375 focused screen (50 % or 3 significantly depleted 
with a median log2FC ≤  -1). 
(F) Venn diagram showing the overlap between combined PDS and PhenDC3 
sensitisers from the genome-wide and A375 focused screen. 
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Next, individual sensitivities to each molecule in the focused screen were 

determined using overlap with the genome-wide screen as a test of 

reproducibility (Figure 2.26A). This revealed 89 and 161 unique sensitivities 

for PDS and PhenDC3 respectively, and 40 genes common to both ligands 

(290 combined total). KEGG analysis revealed that although enriched 

pathways and contributing genes differ between PDS and PhenDC3 (Figure 

2.26B-C), they can be broadly split into four categories: DNA-related 

(replication, HR and cell cycle); RNA-related (ribosome and spliceosome); 

mitochondrial oxidation pathway (TCA cycle and Huntington’s disease) and 

ubiquitin-mediated proteolysis. Analysis of the GO Molecular Function and 

Biological Process terms (Figure 2.26D-E), revealed an enrichment in nucleic 

acid terms similar to those found for the genome-wide sensitisers, ranging 

from mRNA and RNA processing to DNA metabolism and replication, 

consistent with G4 targeting. Notably, 16 of 19 PhenDC3 terms were related 

to RNA and mRNA whereas PDS exhibited a DNA and chromatin bias (21 of 

31 terms).  
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Figure 2.26. Focused screening in A375 cells reveals differences in PDS and PhenDC3 
sensitivities alongside a core set of common sensitisers 
(A) Venn diagrams overlapping genome-wide and A375 focused screens l igand-
specific sensitisers: PDS – red (129 genes); PhenDC3 – green (201 genes), (B-
C) Enriched KEGG pathways for (B) PhenDC3 and (C) PDS sensitisers in 
common between the genome-wide and focused screen (Bonferroni corrected p-
value < 0.05). Node colour denotes significance as indicated and node size 
reflects the number of genes associated with the KEGG term, (E-F) Enriched 
Gene Ontology terms (GO Biological Processes and Molecular Functions) for 
(D) PhenDC3 and (E) PDS. 
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The 40 sensitiser genes common to PDS and PhenDC3 were designated as 

high-confidence as they arise from two independent ligands hitting the same 

target. These genes were designated into nucleic acid-related and ‘other 

roles’ (Figure 2.27A) using several databases (see Methods for details). Most 

of these genes were associated with DNA or RNA binding processes, such as 

transcription, replication and translation, consistent with direct targeting of G4-

structures by the ligands. Many of the uncovered sensitisers revealed 

processes not previously recognised as 1) G4-ligand targets or 2) having G4 

involvement, for example, the ubiquitin pathway (PSMC4, RNF20).  

Figure 2.27. Focused A375 screening reveals 40 high confidence G4-ligand synthetic 
lethalities 
(A) DAVID, STRING (experimental data, co-expression, medium confidence (≥  
0.4)) interaction and UniprotKB data were used to categorize the 40 common 
hits between PDS and PhenDC3. Genes in red are found in the Drug Genome 
Interaction database (DGIdb 2.0). *genes in multiple categories. 
(B-C) Venn diagrams of sensitisers common to the A375 genome-wide and 
focused screens overlapping the DGIdb for (B) 290 PDS or PhenDC3 hits; and 
(C) 40 sensitisers common to both drugs and both screens. Druggable genome 
denotes genes with known or predicted drug interactions. Clinically actionable 
denotes genes actively used in targeted clinical sequencing panels for precision 
medicine in cancer. The genes found in the DGIdb are denoted as a percentage 
of the total. 
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2.4.9 Exploring therapeutic options within focused screen 

sensitisers 

While the genome-wide screen provides a global appreciation of gene 

deficiencies sensitive to G4-ligand treatment, the overlap between this and 

the focused screen provides a set of reproducible hits to investigate 

therapeutic options (for discussion of therapeutic options for genome-wide 

sensitisers, section 2.5). For this, the druggable genome interaction database 

(DGIdb) (Griffith et al, 2013) was used to explore the potential for 

combinatorial pharmacological inhibition with G4-ligands. Two classifications 

were used: ‘Druggable Genome’ (genes with known or predicted drug 

interactions) and ‘Clinically Actionable’ (genes used in clinical cancer trials). 

Within the 290 genes that overlapped the A375 genome-wide and focused 

screen, 74 were identified as pharmacological targets, 13 of which were both 

druggable and clinically actionable (Figure 2.26B). This includes KEAP1, an 

E3 ubiquitin ligase adapter protein, bridging the therapeutic gap between 

ubiquitin-mediated proteolysis and G4-ligand synthetic lethality. For the 40 

common hits between PDS and PhenDC3, 12 overlapped with DGIdb (Figure 

2.27C), including five in both druggable and clinically actionable classifications 

(BRCA1, CHEK1, CDK12, TOP1, PDKP1). 

 

2.4.10 Applying the focused screen approach to an independent 

cell line 

Next the focused screen was applied to a second cell line to explore 

sensitivities common to distinct cell types. The HT1080 fibrosarcoma cell line 

was chosen for reasons discussed earlier (see section 2.3.1-2.3.2) and 
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additionally as it is derived from a distinct lineage (mesenchymal lineage) from 

the A375 melanoma cell line (neural crest lineage). However, the earlier pilot 

screen (section 2.3.3) suggested that 96 h drug treatment viability assays did 

not accurately predict a GI20 PhenDC3 concentration for the shRNA screen 

experiment duration (15 population doublings). To surmount this, several 

concentrations were trialled in a 15 day rather than 96 h experiment (data not 

shown), to determine a PhenDC3 concentration that gave the most similar 

growth inhibition to the 0.5 µM PDS treatment observed in the pilot screen. 1 

µM PhenDC3 was therefore chosen and the focused shRNA library was 

applied to the HT1080 cell line. The growth inhibition for both PDS and 

PhenDC3 was seen to be linear for the experiment duration (Figure 2.28A) 

and the hairpin representation matched that of both the screen composition, 

and that of the A375 t0 (Figure 2.28B). Overall, the HT1080 screen revealed 

121 ligand-specific depleted genes (838 hairpins, Figure 2.28C-D), all of 

which exhibited log2FC ≤ -1, and thus were considered sensitisers (Figure 

2.28E). 
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Figure 2.28. Successful application of the focused screen approach to the HT1080 cell 
line 
(A) Graph comparing cumulative population doublings for the duration of the 
HT1080 experiment for the three conditions (DMSO, PDS and PhenDC3) 
(B) Comparison between the numbers of shRNAs targeting each gene, with the 
maximum capped at 7 per gene 
(C-E) Venn diagrams from the HT1080 focused screen showing (C) significantly 
depleted shRNAs in t15 v t0 (FDR ≤  0.05) for DMSO, PDS and PhenDC3 
treatment, (D) significantly depleted genes (minimum 50 % or 3 significant 
shRNAs; FDR ≤  0.05) (E) sensitiser genes (significantly depleted in PDS or 
PhenDC3 but not DMSO and median log2FC ≤  -1 
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2.4.11 G4-ligand synthetic lethalities common to two cell lines of 

different origins 

In setting out to compare synthetic lethality between two different cell lines, it 

should be borne in mind that an inherent bias exists in the focused screen as 

it is primarily derived from A375 genome-wide hits. Thus some sensitivities in 

HT1080 may be missed. Sensitisers from the A375 genome-wide parental 

screen were compared to HT1080 sensitivities (Figure 2.29A). This revealed 

an overlap of 73 sensitisers, found reproducibly across PDS and PhenDC3 

treatments in both cell lines which were enriched in spliceosome, HR and 

ubiquitin-mediated proteolysis processes (p < 0.0005) (Figure 2.29B). These 

data thus reveal a core set of G4-associated genes/pathways and synthetic 

lethalities common to the two cell lines. In particular this highlighted a central 

cluster of DNA damage proteins, including BRCA1 and BRCA2, extending 

PDS BRCA-deficient sensitivity to another two cell lines beyond HCT-116 and 

MEF cells (McLuckie et al, 2013; Zimmer et al, 2016) and revealing that 

PhenDC3 also has scope to be used in BRCA-deficiencies as for PDS and 

CX-5461. Additional DDR proteins were also highlighted in this comparison 

and notably several are deficient in cancers, including BAP1 (uveal 

melanoma) and PALB2 (breast and ovarian cancer), suggesting these 

malignancies may be similarly susceptible to G4-ligand treatment.  
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Figure 2.29. Successful application of the focused screening approach to the HT1080 
cell line 
(A) Venn diagram overlapping l igand-specific sensitisers between genome-wide 
A375 and HT1080 focused screens (50 % or 3 significantly depleted with a 
median log2FC ≤  -1):  PDS – red (46 genes); PhenDC3 – green (31 genes) 
(B) Enriched KEGG and GO pathways of the 73 combined sensitisers (PDS or 
PhenDC3). 
 

Next gene sensitivities, common across all three screens (i.e. A375 genome-

wide, focused screens in A375 and HT1080 cells) were defined separately for 

PDS (29 genes, Figure 2.30A) and for PhenDC3 (22 genes, Figure 2.30B). 

These were categorised according to nucleic-acid related and “other” roles 

(Figure 2.30C-D). Lastly, BRCA1, TOP1, DDX42 and GAR1 were identified as 

key sensitisers common to both cell types and for both G4-ligands (Figure 

2.29E; also highlighted in blue in Figure 2.29C-D). With the exception of these 

four genes PDS and PhenDC3 showed different consistent hits, however 

many performed similar roles, including transcription, splicing and ubiquitin 

mediated proteolysis. This lack of overlap of the strongest sensitivities could 

suggest that PDS and PhenDC3 target different genes within similar 

pathways.  
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Figure 2.30. PDS and PhenDC3 sensitivities common across all screens 
(A) Venn diagram overlapping l igand-specific sensitisers between genome-wide 
A375 and HT1080 focused screens (50 % or 3 significantly depleted with a 
median log2FC ≤  -1):  PDS – red (46 genes); PhenDC3 – green (31 genes) 
(B) Enriched KEGG and GO pathways of the 73 combined sensitisers (PDS or 
PhenDC3). 
(C-D) Venn diagram of hits consistently identif ied as sensitisers across the 
three screens for C) PDS and D) PhenDC3 
(E-F) DAVID, STRING (experimental data, co-expression, medium confidence (≥  
0.4) interaction) and UniProtKB data was used to categorize consistent PDS and 
PhenDC3 hits. *genes in multiple categories. Sensitisers common to both drugs 
in blue. 
(G) Venn diagram and tables showing the number of depleted hairpins and 
median log2FC values for four hits consistently sensitised to PDS&PhenDC3 
across the three screens. 
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2.5 Discussion 

2.5.1 Overall outcomes and observations  

The overall aim of this chapter was to reveal new insights into G4-biology and 

identify new vulnerabilities for possible exploitation in a cancer context. G4 

structures are emerging as promising clinical synthetic lethal targets in BRCA-

deficient tumours (Xu et al, 2017; McLuckie et al, 2013). However, I reasoned 

that some cancer-associated genotypes that are synergistic with G4-ligand 

treatment were probably not yet defined. Below I will summarise the synthetic 

lethal findings uncovered here, including specific illustrative examples.  

 

Genetic screening of the protein coding genome revealed over 700 genes 

that, when depleted, are synthetically lethal with the G4-ligands, PDS and/or 

PhenDC3. The majority of genes identified have no documented G4-biology 

link. Among these, 21 G4-associated proteins were identified via database 

searching and text mining, including direct G4-binders (ADAR, ATRX, DHX36, 

DNA2, FUS, MCRS1, RECQL4, SF3B3 and XRN1). For ATRX, telomestatin 

sensitivity was recently reported for ATRX-null murine neuroprogenitor cells 

(Watson et al, 2013). This supports the PhenDC3 sensitivity seen here with 

ATRX-deficient A375 cells and establishes ATRX-deficiency as a key 

synthetic lethality for G4-stabilisation. Of the other 20 genes with prior links to 

G4-biology, this is the first time that synthetic lethality has been demonstrated 

with G4-stabilising ligands.  

 

The genome-wide screen was key to providing a global overview of G4-ligand 

associated synthetic lethalities. However, interpool batch effects were 
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observed (section 2.4.1-2.4.2). To overcome this, a “quadruplex” shRNA pool 

of hits was developed that allowed simultaneous testing of component 

shRNAs. This was successfully applied to A375 cells, validating 290 genome-

wide hits and revealing 40 high-confidence hits, common to both PDS and 

PhenDC3. Application to the HT1080 cell line identified 73 genes common 

across to both cell types. This could reflect that a core set of common G4s 

exists in both cell lines, despite HT1080 deriving from a different lineage to 

the A375 cell line (mesenchymal versus neural crest lineage). It remains to be 

tested if these synthetic lethalities are also common to other cell lines.  

 

Ultimately, four gene deficiencies were designated as ‘key’ synthetic lethalities 

(BRCA1, TOP1, DDX42, and GAR1). These genes reflect a range of 

hypothesised G4-related processes that comprise DDR (BRCA1) (McLuckie 

et al, 2013); relieving transcription and replication torsional stress (TOP1) 

(Wang, 2002); RNA unwinding (DDX42), (Uhlmann-Schiffler et al, 2006); and 

rRNA processing and telomeric maintenance (GAR1) (Girard et al, 1992). 

These are investigated and discussed further in chapter 3. 

   

2.5.2 Different synthetic lethalities for PDS and PhenDC3 

Focused screening of the A375 cell line allowed investigation of recurring 

PDS and PhenDC3 sensitivities, and revealed that a large number of 

differences existed. Although largely considered as pan G4 stabilisers in vitro 

and capable of deregulating both RNA- and DNA-related roles in cells (see 

introduction section 1.4.2.3), there was a bias of RNA related terms for 

synthetic lethal interactions with PhenDC3-treated cells, while PDS 
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sensitivities were more often DNA-related. This may reflect an inherent 

variation in affinity for DNA over RNA-G4s or differences in ligand subcellular 

location when added to cells. For example, PDS may more easily enter the 

nucleus than PhenDC3, and thus more readily stabilise DNA-G4s. These 

biological response differences highlight the importance of cellular 

investigations to complement in vitro biophysical characterisation when 

designing and developing G4-stabilising ligands. Overall, beyond the RNA 

and DNA related term variations, PDS and PhenDC3 sensitivities were 

generally mediated by different proteins in similar pathways. These pathways 

are discussed below. 

 

2.5.3 Sensitisers belong to several interlinked categories  

Overall, the G4-sensitiser genes uncovered by genome-wide and focused 

screening uncovered several cellular pathways and proteins including DNA 

damage, helicases, transcription/chromatin interactors, spliceosome, cell 

cycle and ubiquitin-mediated proteolysis. These are individually discussed 

below in terms of possible mechanisms and cancer associations.  

 

Within DNA damage-associated sensitivities, several homologous 

recombination (HR) proteins were identified as novel G4-sensitisers, including 

PALB2 (a BRCA2 localiser), BAP1 (BRCA1-binding partner and 

deubiquitinase for Histone 2A and tumour suppressor HCFC-1) and the 

deubiquitinase USP1 required for FANCD2, FANCI and PCNA localisation to 

sites of DNA damage (reviewed in Harrigan et al., 2017). These findings 

extend our existing knowledge of the G4-associated DDR beyond BRCA1/2, 
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and highlights HR repair mechanisms as key cellular responses to unresolved 

G4s. Furthermore, PALB2 inactivation causes predisposition to myeloid 

leukaemia, Wilm’s tumour and Fanconi anaemia and BAP1 deficiencies are 

found in uveal melanomas and mesotheliomas (reviewed in Carbone et al., 

2013; Nepomuceno et al., 2017). This suggests new synthetic lethality 

opportunities for therapeutic G4-ligand intervention, beyond BRCA-

deficiencies. One prospect would be using G4-ligands in situations of 

acquired resistance to conventional therapies that exploit DDR-deficiencies, 

such as cisplatin (general) and olaparib (specific for PARP inhibition). 

Supporting this, HR-defective olaparib-resistant cells remain PDS sensitive 

(Zimmer et al, 2016), suggesting that the engagement of independent 

pathways/genes underlies such synthetic lethality.  

  

The enrichment of many helicases as sensitisers supports their mechanistic 

involvement with G4-structures. Helicase deficiencies are likely to reduce G4-

structure resolution and shift the equilibrium from unfolded towards the G4-

folded state. I propose that this increase is synergistic with G4-stabilising 

ligand treatment causing lethality. Sensitisers included both helicases 

previously implicated in G4 biology and those without prior G4 links. For the 

former, RECQL4 (Rothmund-Thomsun syndrome) and RTEL1 (Hoyeraal-

Hreidarsson Syndrome), whose deficiencies impart increased risk of cancer, 

autoimmunity and premature aging (reviewed in Suhasini and Brosh, 2013) 

were uncovered and provides proof-of-principle of new synthetic lethality 

targets in these cancers. Knockdown of several known G4-helicases such as 

BLM, WRN, PIF1 and FANCJ (reviewed in Wu and Brosh, 2010) actually did 
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not cause G4-ligand sensitivity, and were also not lost in the DMSO control, 

suggesting non-essential roles. There could be several explanations, 

including redundancy (Spillare et al, 2006) and the use of low ligand 

concentrations . Several RNA helicases not previously associated with G4s or 

synthetic lethality with G4-ligands were also identified, including XRN2 and 

DHX38, DDX10 and DDX42. Notably, XRN2 is closely related to the 

5’exoribonuclease XRN1, known to unwind RNA and DNA G4s (Zhang et al, 

2002). As both were identified as sensitisers, this could suggest XRN1 also 

binds G4 structures, and that disruption of their mRNA decay roles are acutely 

sensitive to G4-stabilising ligand treatment. Furthermore, DHX38 inactivation 

causes splicing defects and retinitis pigmentosa (Ajmal et al, 2014). Although 

this does not directly offer therapeutic opportunities for retinitis pigmentosa 

treatment with G4-ligands, it does highlight possible G4 links to pathologies 

beyond cancer, and it would be interesting to explore the involvement of G4s 

in the progression of this disease. 

  

Congruent with G4s as normal structural features of chromatin (Hänsel-

Hertsch et al, 2016), numerous chromatin remodellers/transcriptional 

regulators were identified, most previously unassociated with G4 biology or 

G4 ligand synthetic lethality. These include the transcription factor ANKRD11 

a putative tumour suppressor in breast cancer (Noll et al, 2012; Lim et al, 

2012; Neilsen et al, 2008); the cell cycle transcriptional coregulator HCF-1 

(Wysocka et al, 2001; Reilly et al, 2002; Tyagi et al, 2007); MLL4,  a lysine 

methyl transferase frequently inactivated in cancer (Rao & Dou, 2015; 

Froimchuk et al, 2017; Kandoth et al, 2013) and WHSC1, a histone 
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methyltransferase overexpressed in cancers including prostate and multiple 

myeloma (Bennett et al, 2017). Other notable G4-sensitisers, also without 

prior links to G4-biology, are the SWI/SNF proteins SMARCA4/B1/E1. These 

proteins are mutated in 20% of cancers (Shain & Pollack, 2013; Kadoch et al, 

2013) and suggests an innovative synthetic lethal possibility whereby certain 

chromatin remodeller disease-associated genotypes may be G4-ligand 

sensitive.  For example, loss of SMARCB1, SMARCA4, or KEAP1 is linked to 

malignancy of triple-negative breast cancer (Wijdeven et al, 2015), and 

deficiencies in these three genes were identified as sensitive to G4-ligand 

treatment.  

 

The emergence of the ubiquitin-proteosome pathway, including ubiquitin-like 

modifications such as neddylation, represents a largely uninvestigated area 

with respect to G4s. Currently, the only other reported ubiquitin-G4 

relationship is the yeast ubiquitin protein MMS1, recently identified as a 

possible G4 binding protein, although this interaction seems to be 

independent of a ubiquitin ligase role (Wanzek et al, 2017). Ubiquitin-G4-

relationships identified within the genome-wide screen extend the full breadth 

of the proteosomal degradation pathway, including E1-ligases (UBA3, UBA2, 

SAE1), E2-ligases (UBE2H), E3-ligases (NEDD4L, RBX1, CUL1, RNF20), 

deubiquitinating enzymes (USP1 and USP37) and proteasome components 

(PSMC2). Their roles include DDR, cell cycle progression and proliferation. 

For example the E3-ligase RNF20, is involved in chromatin remodelling and 

the DDR (Moyal et al, 2011; Shema et al, 2008). As the screen also identified 

these processes, this links ubiquitination to DDR/chromatin remodeling via an 
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interaction with G4s. The ubiquitin-associated proteins identified in the screen, 

are generally deregulated in cancer (Senft et al, 2018; Harrigan et al, 2017; 

Liu et al, 2015a; Wei & Lin, 2012). For instance, the deubiquitiase USP37 is 

upregulated in lung cancer (Pan et al, 2015) whilst reduced expression of the 

E3-ubiquitin ligase NEDD4L predicts poor prognoses in hepatocellular (Zhao 

et al, 2018) and gastric carcinoma (Gao et al, 2012).  

 

Persistent G4s are known to be inhibitory to DNA replication (reviewed in 

Valton and Prioleau 2016) and the replication-associated gene deficiencies 

identified here strengthen this association. Furthermore, as DNA replication is 

tightly coordinated with the cell cycle, unsurprisingly a set of cell cycle G4-

dependencies were also revealed. These include WEE1, PCNA, CHEK1, 

CCND1, CDC7, RFC2 and RFC4. While such proteins are often up-regulated 

in cancer (Matheson et al, 2016), certain cancer sub-types show depletions. 

The opportunities to exploit and extend the use of both ubiquitin and cell cycle 

proteins as therapeutic targets with G4-ligands will be discussed in section 

2.5.4  

 

These results also reveal that unresolved G4s are problematic for splicing and 

that this is exarcerbated by splicing component deficiencies. For example, 

both SRRM1, an essential splicing factor (Meissner et al, 2003) and it’s co-

factor FUS, a known G4-interactor (Takahama et al, 2013) and liposarcoma 

oncogene (Crozat et al, 1993) were uncovered as G4-sensitisers. Several 

other cancer associated splicing factors were identified as G4 sensitisers, 

including SRSF10 and HNRNPM overexpressed in colon and breast cancers 
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respectively (Dvinge et al, 2016; Takahama et al, 2013; Crozat et al, 1993). 

 

2.5.4 Exploring synthetic lethal targets for therapeutic application  

Many of the sensitisers identified are deregulated in cancer. There are two 

approaches to exploit these genes therapeutically. Firstly, disease-associated 

backgrounds deficient in genes within the sensitiser list could be sensitive to 

G4-ligands in a clinical setting. Secondly, for cancers/diseases dependent on 

and/or driven by sensitiser genes, G4-ligand treatment may sensitise cells to 

pharmacological inhibition of these targets. For the latter, combinatorial 

treatment is often more efficacious than single treatments as cells are unlikely 

to simultaneously develop resistance against two drugs (reviewed in Chan & 

Giaccia, 2011). Further, as lower doses of each drug can be used, this 

increases the therapeutic window compared to normal cells, minimising 

adverse side effects. Such scenarios are discussed below, with particular 

focus on sensitisers within ubiquitin and spliceosome pathways, as these 

represent areas of increasing biological interest in cancer (Liu et al, 2015a; 

Lee & Abdel-Wahab, 2016) and are largely unexplored for G4 involvement. 

More generally, such lethal interactions described in this chapter may have 

future value when more cancer-associated genotypes are uncovered, and 

when new pharmacological inhibitors are developed for key oncogenic 

targets.  

 

2.5.4.1 Synthetic lethal targets within the COSMIC database 

Several proteins within the genome-wide sensitiser list were found within the 

COSMIC database of cancer-associated genes. Several are current direct or 
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indirect pharmacological targets, perhaps providing combinatorial 

opportunities with G4-ligands. For example, the CDK12 inhibitor dinaciclib 

(SCH77965) (Parry et al, 2010) was developed to treat high-grade serous 

ovarian cancer, which often exhibits a gain-of-function oncogenic CDK12 

mutation (Bajrami et al, 2014). Similarly, AZD1775 inhibits WEE1 kinase 

(Richer et al, 2017), a crucial G2/M transition regulator overexpressed in 

several cancers (Matheson et al, 2016). Of note, some colon and non-small 

cell lung cancers (NSCLC) are WEE1-deficient (Backert et al, 1999; Yoshida 

et al, 2004). For this tumour subset, WEE-1 deficiency encourages early 

mitotic entry resulting in aneuploidy and DNA damage, due to incomplete 

DNA replication. This may synergise, and thus be exploitable with G4-

associated DNA damage.   

 

For KEAP1, an oxidative stress response protein, inactivating mutations 

prevent a degradatory interaction with Nrf2, which is consequently highly 

expressed in several cancers (Abed et al, 2015). Simllarly, CPUY192018 

disrupts the KEAP1-Nrf2 interaction and peforms a cytoprotective role in 

NCM460 colonic cells (Lu et al, 2016), supporting that inactivating KEAP1 

both genetically and pharmacologically can promote cancer cell survival. 

Recent analysis of common mutations within ‘The Cancer Genome Atlas’ 

database, also revealed prevalent KEAP1 deletions in several cancers 

including thoracic and endometrial (Sanchez-Vega et al, 2018). It would be 

interesting to explore the sensitivity of such cancer genotypes to G4-

stabilising ligands. Conversely, several studies suggest an anti-tumorigenic 

role for Nrf2, with the KEAP1 inhibitor CDDO-Me, used to treat leukaemias 
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and solid tumours, in addition to chronic kidney diseases and diabetes 

mellitus (Wang et al, 2014).  

 

SMAD4, is inactivated 50 % of pancreatic adenocarcinoma (PDAC) (Schutte 

et al, 1996; Hahn et al, 1996) and correlates with disease agressiveness 

(Tascilar et al, 2001). SMAD4 stability is negatively regulated by 

phosphorylation by glycogen synthase kinase (GSK), thus several GSK 

inhibitors (GSKi) have entered clinical trial (Demagny & De Robertis, 2016) 

including NCT01632306 (metastatic pancreatic cancer); NCT01214603 (acute 

leukaemia) and NCT01287520 (McCubrey et al, 2014). An alternative 

method, particularly in SMAD-deficient tumours could be G4-ligand treatment, 

either as the first-in-line treatment, or in GSKi resistant cancers. Similarly, 

CCDC6 a cell cycle regulator involved in apoptosis and DDR, is inactivated in 

thyroid (Puxeddu et al, 2005) and lung cancers (Morra et al, 2015). CCDC6-

deficient lung cancers are cisplatin-resistant but are olaparib sensitive (Morra 

et al, 2015); the data presented here suggests G4-ligand treatment as an 

alternative to olaparib. 

 

A less explored therapeutic target is oncogene DEK, overexpressed in 

colorectal cancer (Lin et al, 2014) and melanoma (Khodadoust et al, 2009) 

and may be interesting to explore with respect to G4-ligand sensitivity. This 

protein has multiple tumour facilitating roles including inflammation induction 

(Kavanaugh et al, 2011), a function additionally exarcerbated in inflammatory 

arthritis. For the latter, the use of SELEX-generated DNA aptamers to ‘mop-

up’ excess DEK is under investigation (Mor-Vaknin et al, 2017) but has yet to 
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be explored from a cancer perspective, where combinatorial treatment with 

G4-ligands could benefit both DEK-driven diseases. Additionally, DEK binds 

cruciform secondary structures, another non-canonical DNA structure 

(Kavanaugh et al, 2011). Whether this affinity for non-canonical structures 

extends to G4s and whether this underlies the G4-ligand synthetic lethality 

associated with DEK-deficiency, should also be explored. 

 

Similarly, XRN2 has been investigated as a chemotherapeutic target due to its 

upregulation in many cancers including prostate, brain, myeloma and lung (Lu 

et al, 2010) promoting EMT and metastasis in the latter (Zhang et al, 2017). 

XRN2 shRNA-induced depletion reduced migation and mesenchymal marker 

expression in multiple lung cancer cell lines (Fong et al, 2015) and within the 

screen, caused G4-ligand susceptibility. Together these experiments suggest 

a promising prospect for combinatorial XRN2 pharmacological inhibition and 

G4-ligand intervention. WHSC1, overexpressed in prostate cancer, multiple 

myeloma (Bennett et al, 2017), and mantle cell lymphoma (Beà et al, 2013), is 

an early experimental cancer target. Some success has been achieved with 

the antiparasitic, pan-methyltransferase inhibitor suramin (McGeary et al, 

2008). More recently, the crystal structure of WHSC1 helped identify N-

alkylsinefungin derivatives as more specific inhibitors (Tisi et al, 2016) and 

screening of 12,251 bioactive molecules, identified five further potent 

candidate inhibitors (Coussens et al, 2017). As the pharmacological 

exploration of these proteins become more advanced, the opportunities for 

combinatorial use of G4-stabilising ligands may be considered. 
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2.5.4.2 Therapeutic opportunities with ubiquitin proteins 

Ubiquitin proteins were consistently enriched within the G4-sensitisers and, as 

they are often deregulated in cancers they are emerging as chemotherapetic 

targets (Huang & Dixit, 2016). For example, proteosome inhibitors have 

shown clinical success with multiple myeloma treatment including bortezomib 

(Chen et al, 2011a; Mattern et al, 2012), CEP187710 (Phase I), and 

carfizomib (Phase III against relapsed mutliple myeloma) (reviewed in 

Edelmann, Nicholson, & Kessler, 2011). Based on the ubiquitin-mediated 

proteolysis enrichment within the sensitisers, this proteosome inhibition could 

be potentiated by combinatorial G4-ligand treatment.  

 

However, ubiquitin is not solely a degradative mark and can additionally alter 

protein localisation and/or function (Chen & Sun, 2009), necessitating the 

development of drugs targeting specific ubiquitin components, several of 

which are identified as sensitisers. One example is USP1, a DDR regulator in 

Fanconi’s anaemia (Nijman et al, 2005) and translesion synthesis (Huang et 

al, 2006) pathways. USP1 mRNA overexpression is observed in melanoma, 

gastric, cervical and non-small cell lung (NSCLC) cancers while other 

malignancies show underexpression, including leukaemia and lymphoma 

(reviewed in García-Santisteban, Peters, Giovannetti, & Rodríguez, 2013). A 

high-throughput screen identified pimozide and GW7947 as potent USP1-

targeting drugs (Chen et al, 2011b). Similarly, MLN4924 (Phase I clinical 

trials) targets UBA3, which is upregulated in AML and multiple solid cancers 

(Soucy et al, 2009), a protein identified as a G4-ligand sensitiser. As more 

ubiquitin components are linked to cancer and identified as candidate 



	 125 

chemotherapeutic targets, more therapeutic possibilities for G4-ligands may 

become increasingly evident, both as single agents for deficient cancers and 

combinatorial treatments in malignancies where they are overexpressed. 

 

2.5.4.3 Therapeutic opportunities with splicing proteins 

As reported here for PDS and PhenDC3, previous genetic screens with anti-

cancer agents such as gemicitabine and cisplatin suggest that their efficacy 

can also be enhanced by deficiencies in HR, ubiquitin and replication 

pathways (Martens-de Kemp et al, 2017; Azorsa et al, 2009). Conversely, 

perhaps providing a novel and specific niche for G4-ligand based therapies, 

several cancer-associated splicing components were found in the G4-

sensitisers, a pathway not enriched in these earlier genetic screens. One 

possible therapeutic avenue is via SRSF10, overexpressed in colon cancers 

(Zhou et al, 2014). Additionally, SRSF10 inhibition impairs HIV-1 replication, 

leading to the development of an inhibitor, 1C8, for HIV treatment (Shkreta et 

al, 2017; Cheung et al, 2016). While it remains unexplored whether 1C8 has 

similar efficacy in cancers, use of G4-ligands could sensitise cells to SRSF10 

inhibition in both HIV and cancer settings. Rather than targeting specific 

splicing components, the anti-tumour drug E7107, a general splicing inhibitor 

which prevents spliceosome assembly (Kotake et al, 2007) may provide more 

viable combinatorial opportunities. As more dysregulated splicing genotypes 

are identified in a cancer context, such combinatorial opportunites will become 

more apparent. 
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2.5.5 Concluding remarks 

In conclusion, I have addressed the aim of identifying genes and pathways 

involved with G4 structures and have provided insights into potential disease-

related synthetic lethalities for G4-ligands, particularly focusing on cancer. 

These findings establish a unique and comprehensive resource that will give 

important insights for future experiments in G4 biology and therapeutic 

possibilities. Furthermore, the use of low ligand concentrations and lethality as 

a readout likely favours deficiencies in genes most sensitive to G4-ligand 

intervention. Such sensitivity suggests that these proteins are key players in 

synthetic lethality and G4 regulation, and will thus be of both clinical and basic 

biological significance, both within and beyond the G4-field. Finally, a focused 

“quadruplex” pool and pipeline was developed and tested in two cell lines, 

providing a tool to investigate the synthetic lethalities of other G4-stabilising 

ligands. 
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Chapter 3  

An siRNA approach to validate and extend four 

key G4-stabilising ligand sensitivities 

uncovered by functional genetics 

 

3.1 Objectives 

In chapter 2, four key, reoccurring synthetic lethal interactions with the G4-

stabilising ligands PDS and PhenDC3 (BRCA1, TOP1, GAR1 and DDX42) 

were identified. These four genes are likely to have important roles in G4-

biology and/or the response to stabilised G4-structures. Consequently, it was 

imperative to validate their PDS and PhenDC3 sensitivity via an independent 

methodology, and confirm that this phenotype correlated with protein 

knockdown. For this a siRNA approach was chosen, an alternative RNAi 

method (see section 2.2.1). Two possible scenarios for a validated 

sensitisation response are depicted (Figure 3.1). Briefly, protein depletion in 

the absence of G4-ligands (i.e. DMSO treatment) either does not alter cell 

growth (scenario 1) or causes slight growth inhibition (scenario 2) compared 

to cells transfected with a non-targeting control siRNA (blue and red solid 

lines respectively). Hence, for scenario 1, greater growth inhibition following 

G4-stabilising ligand treatment for the targeting siRNA than for the non-

targeting control (blue and red dotted line respectively) indicates sensitisation. 

Conversely for scenario 2, protein depletion results in G4-ligand sensitivity if 
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growth inhibition compared to the non-targeting control, is greater than seen 

following DMSO treatment. 

 

Figure 3.1. Schematic of the expected results for a validated sensitiser 
Scenario (1) Depleting the protein of interest does not cause a growth defect 
compared to the non-targeting siRNA control upon DMSO treatment but does 
following G4-ligand treatment. Scenario (2) Protein depletion causes a growth 
defect compared to non-targeting siRNA control in the DMSO condition, but this 
growth defect is greater for G4-ligand treatment. Solid l ines = DMSO treatment; 
Dotted l ines = G4-ligand treatment; Red = non-targeting siRNA; Blue = 
Targeting siRNA. 
 

Also within this chapter, to evaluate whether these four genes may represent 

global synthetic lethalities to G4 stabilisation, also explored was the sensitivity 

of the siRNA knockdowns to CX-5461 (see section 1.4.2.2; structure shown in 

Figure 3.8A), a G4-ligand in Phase II clinical trials 

(https://clinicaltrials.gov/ct2/show/NCT02719977; Xu et al., 2017). This 

molecule was independently designed and is unrelated to PDS and PhenDC3. 
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Synthetic lethality was further probed with a carboxylated PDS derivative 

(cPDS). Unlike PDS, cPDS selectively binds RNA G4 in vitro (Di Antonio et 

al., 2012) and in cells, increasing cytoplasmic but not nuclear BG4 for the 

latter (Biffi et al, 2014a) (Figure 3.2B-C). This is the first time that the 

sensitivity of cells to cPDS, and in particular those of a certain genotype, has 

been investigated, and may go someway to evaluate whether observed 

phenotypes arise from either RNA-G4 or DNA-G4 stabilisation. 

Figure 3.2. carboxy-PDS binds specifically to RNA G-quadruplexes in the cell 
(A) Schematic of carboxyPDS (cPDS), derived from PDS; in red is the side 
chain that is altered between these two molecules, which contributes to 
specificity of the small molecule to RNA G4. (B-C) adapted Biff i et al., 2014 
quantifying indirect immunofluorescence microscopy shows increased 
stabil isation of RNA but not DNA-G4 structures with cPDS in SV40-transformed 
MRC5 fibroblasts as revealed by BG4 staining (24 h treatment 2 µM cPDS). (B) 
Quantif ication of nuclear (DNA) foci and (C) quantif ication of cytoplasmic (RNA) 
foci.  
 

The siRNA approach was then was used to screen the sensitivities of 12 G4-

targeting PDS derivatives (synthesised by Dr. Santosh Adhikari and Mr. 

James Patterson, University of Cambridge). These derivatives were chosen 

as part of a development programme to explore whether ligands with 

improved clinically appropriate features, showed overlapping synthetic 

lethalities with PDS and PhenDC3. Good clinical properties are necessary to 

allow therapeutic exploitation of G4-stabilising ligands in specific cancer-
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associated backgrounds (as discussed in the introduction and chapter 2). 

Unfortunately, PDS and PhenDC3 have multiple undesirable pharmacokinetic 

properties according to Lipinski’s rule of five (Lipinski et al, 2001) used to 

estimate ligand solubility and cell permeability. The 12 molecules used within 

these investigations show improved drug-like properties (data not shown). 

Based on the resultant siRNA-induced sensitivities, one molecule was taken 

forward in a “quadruplex” focused shRNA screen (developed in chapter 2). 

The experiment performed to identify this derivative and subsequent screen 

outcome are also discussed. 

 
	
Throughout this chapter, I aimed to establish these siRNA experiments as a 

rapid approach to 1) validate shRNA screen sensitivities, 2) extend and 

explore sensitivities with other established G4-ligands and 3) screen and help 

to refine novel G4-stabilising ligand candidates. For the latter, this siRNA 

approach enables synthetic lethality with these four genes as a pre-screen for 

novel G4-stabilising molecules before committing to a more detailed 

examination of sensitive genotypes. 

 

3.2 Results 

3.2.1. Short-term siRNA treatment validates sensitivity to PDS and 

PhenDC3 in BRCA1, TOP1, DDX42 and GAR1 deficient cells 

To validate the shRNA screen results in an independent approach, a siRNA 

experiment was designed to explore the reproducibility of the PDS and 

PhenDC3 induced growth inhibition for cells deficient in four key sensitisers, 
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BRCA1, TOP1, GAR1 and DDX42. During the same experiment, protein-

deficient cells were also treated with CX-5461 (discussed in section 3.2.2). 

Exploring synthetic lethalities to the three molecules within the same 

experiment, allows more meaningful comparisons between sensitivities. This 

siRNA experiment used a shorter timeframe than the shRNA screen (6 days 

versus ~28 days) and two concentrations per ligand (PDS: 0.25 µM and 0.5 

µM HT1080, 5 µM and 10 µM A375; PhenDC3: 20 µM and 40 µM both cell 

lines). Both A375 and HT1080 cells were transfected with siRNAs targeting 

BRCA1, TOP1, DDX42 or GAR1 alongside non-targeting siRNA and non-

transfected controls. Following 24 h, cells were treated with PDS, PhenDC3 or 

vehicle control for 144 h and cumulative cell growth monitored.  

 

To confirm protein depletion following siRNA transfection, cell lysates were 

immunoblotted (see Methods) with the appropriate antibodies after 48 hours 

(Figure 3.3A). For both HT1080 and A375, protein depletion was evident for 

all targeting siRNAs (average 76-92 % knockdown HT1080; 41-69 % 

knockdown A375) (Figure 3.3B).  
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Figure 3.3. siRNA induced knockdown evident following 48 h post-transfection 
(A) Representative western blot showing lysates immunoblotted for BRCA1, 
TOP1, DDX42, GAR1 and beta-actin loading control for non-transfected cells 
(U) and cells transfected with targeting (T) and non-targeting control (NT) 
siRNA, 48 h and 144 h after transfection as indicated for A375 (left) and 
HT1080 (right). (B) For both cell l ines, BRCA1, TOP1, DDX42 and GAR1 
proteins levels in targeting lysates were normalized to internally to the actin 
loading control and expressed as a percentage of the non-targeting control for 
three independent blots (mean ± standard deviation) 

 

Cell confluency throughout the experiment was determined via Incucyte live 

cell scanning (see Methods for details) and growth curves plotted for cells 

transfected with siRNAs targeting the four proteins alongside the non-

transfected (NT) and non-targeting controls (U) for both A375 and HT1080 

(Figure 3.4 and 3.5). For HT1080 cells, non-targeting siRNA transfection 

caused slight growth inhibition compared to non-transfected controls (Figure 

3.4) but gave comparable growth curves for A375 cells (Figure 3.5). For both 

cell lines, the non-targeting (NT) growth curve was used as a reference, 

allowing differentiation between siRNA sequence-specific growth phenotypes 

and non-specific effects from artificial siRNA transfection. 
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Figure 3.4. Short-term siRNA knockdowns in HT1080 of four key G4-sensitisers show 
dose dependent growth inhibition with G4-ligands 
HT1080 cells were transfected with targeting siRNAs (orange) against BRCA1, 
TOP1, DDX42 or GAR1 for 24 h before treatment with PDS (0.25 µM and 0.5 
µM), PhenDC3 (20 µM and 40 µM) or vehicle control (DMSO). For each 
knockdown, confluency over 144 h was monitored and plotted against 
confluency of non-transfected cells (blue) and cells transfected with a non-
targeting control siRNA (green). Experiments were performed in triplicate and 
average confluency accumulation shown (mean ± standard deviation). 
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Figure 3.5. Short-term siRNA knockdowns in A375 of four key G4-sensitisers show 
dose dependent growth inhibition with G4-ligands 
A375 cells were transfected with targeting siRNAs (orange) against BRCA1, 
TOP1, DDX42 or GAR1 for 24 h before treatment with PDS (5 µM and 10 µM), 
PhenDC3 (20 µM and 40 µM) or vehicle control (DMSO). For each knockdown, 
confluency over 144 h was monitored and plotted against confluency of non-
transfected cells (blue) and cells transfected with a non-targeting control siRNA 
(green). Experiments were performed in triplicate and average confluency 
accumulation shown (mean ± standard deviation). 
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To investigate ligand-specific phenotypes, growth inhibition was compared for 

ligand and DMSO treated samples. For this, confluency differences for cells 

transfected with target siRNAs compared to non-targeting controls were 

plotted for each treatment (Figures 3.6A-D and Figures 3.7A-D) and 

differences at 72 h, 96 h and 120 h calculated (Figure 3.6E-H and 3.7E-H).  

 

For HT1080 cells, all four siRNA knockdowns increased sensitivity to PDS 

and PhenDC3 versus DMSO, and this was greater and more statistically 

significant for later timepoints (Figure 3.6). The smallest and least significant 

phenotype was seen for DDX42 deficiencies (Figure 3.6C), however this may 

reflect the lower knockdown compared to the other proteins (~70 %; Figure 

3.3). For DDX42, following 120 h treatment (Figure 3.6G), the median 

difference compared to DMSO for PDS was -28.9 % (0.25 µM, p < 1 x 10-4) 

and -32.4 % (0.5 µM, p = 5 x 10-3) and for PhenDC3, -15.5 % (20 µM, p = 

0.0271) and -23.5 % (40 µM, p = 0.0073).  For BRCA1 and TOP1 (Figure 

3.6A-B and E-F) a lower PDS dose resulted in greater sensitisation. For 

example after 120 h, -69.3 % and -75.2 % respectively (p < 1 x 10-4) 

difference compared to DMSO was observed for 0.25 µM PDS versus -47.6 

% and -56.7 % (p < 1 x 10-4), for 0.5 µM PDS treatment. Conversely for 

PhenDC3, growth inhibition compared to DMSO was similar between 20 µM 

and 40 µM concentrations: -15.0 % (p = 0.0017) and -20.4 % (p = 0.0067) 

respectively for BRCA1-deficient cells and -47.7 % and -45.4 % (p < 1 x 10-4) 

for TOP1 depletion. Overall, BRCA1- and TOP1-deficient HT1080 cells were 

more sensitive to PDS compared to PhenDC3. On the other hand, GAR1- 

deficient cells, as for DDX42 knockdowns, showed equivalent sensitisation to 
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both ligands (Figure 3.6 D and H), particularly evident at the 120 h timepoint, 

where PDS caused -51.6 % (0.25 µM, p < 1 x 10-4) and -44.2 % (0.5 µM, p = 

6 x 10-4) and PhenDC3 induced -62.9 % (20 µM, p < 1 x 10-4) and -53.4 % (40 

µM, p < 1 x 10-4) growth inhibition compared to DMSO treatment. 

 

Figure 3.6. Short-term siRNA knockdowns validate ‘top’ G4-sensitisers identified by 
shRNA screening in HT1080 
HT1080 cells were transfected with the targeting siRNAs for 24 h before PDS, 
PhenDC3 or DMSO treatment. Differences in percentage confluency for cells 
transfected with targeting siRNA to NT controls  (mean ± standard deviation) 
were plotted across three replicates for A) BRCA1, B) TOP1, C) DDX42, D) 
GAR1. Confluency differences at 72, 96 and 120 h were plotted for comparison 
for E) BRCA1, F) TOP1, G) DDX42, H) GAR1. Significant confluency differences 
for G4-ligand versus DMSO treatment were determined using an unpaired 
parametric t-test, assuming equal standard deviation. 
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Generally, the magnitude and significance of the ligand sensitivities for A375 

were less than for HT1080 cells (Figure 3.7) possibly reflecting that the 

siRNA-induced knockdowns were lower for each protein (Figure 3.3). 

Nonetheless, the sensitisation phenotypes show similar trends to that seen for 

HT1080 cells. BRCA1- and TOP1-deficiencies showed significant PDS 

sensitivity, with greater comparative growth inhibition at the lower dose 

(Figure 3.7C-H). Following 120 h treatment, for BRCA1 this growth difference 

was -20.0 % (p < 1 x 10-4) and -7.74 % (p = 0.0019) for 5 µM and 10 µM PDS 

respectively, whereas TOP1-deficient cells showed -21.6 % (p = 0.0052) and -

12.8 % (p = 0.0035) differences. BRCA1 and TOP1 knockdowns were also 

more sensitive to PDS than PhenDC3, whereby BRCA1-deficiency was only 

sensitive to 40 µM PhenDC3 (120 h; -3.34 % difference to DMSO treatment, p 

= 0.0307) and TOP1-deficiency was PhenDC3 insensitive. As for HT1080, 

GAR1 depletion caused sensitivity to both PDS and PhenDC3 in A375 cells 

(Figure 3.8F).  For example, following 96 h treatment, GAR1-deficient cell 

growth was 10.6 % (p = 0.0212) and 18.0 % (p = 0.0017) less than for DMSO-

treated, following 5 µM PDS and 40 µM PhenDC3 respectively. DDX42-

deficient A375 cells did not replicate the ligand sensitivities of the shRNA 

screen (Figure 3.7E&I), perhaps arising from lower knockdown efficiency 

compared to the other three proteins (~40 %). Collectively, this independent 

siRNA assay largely substantiates that the four genes BRCA1, TOP1, DDX42 

and GAR1 replicate the shRNA screen results. 
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Figure 3.7. Short-term siRNA knockdowns reflect some of the growth inhibition of the 
‘top’ G4-sensitisers identified by shRNA screening in A375 
A375 cells were transfected with the targeting siRNAs for 24 h before PDS, 
PhenDC3 or DMSO treatment. Differences in percentage confluency for cells 
transfected with targeting siRNA to NT controls  (mean ± standard deviation) 
were plotted across three replicates (mean ± standard deviation) for A) BRCA1, 
B) TOP1, C) DDX42, D) GAR1. Confluency differences at 72, 96 and 120 h were 
plotted for comparison for E) BRCA1, F) TOP1, G) DDX42, H) GAR1. Significant 
confluency differences for G4-ligand versus DMSO treatment were determined 
using an unpaired parametric t-test, assuming equal standard deviation. 
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3.2.2. The clinical G4-stabilising ligand CX-5461 is synthetically 

lethal with the four top sensitisers 

The siRNA experimental design was also applied to CX-4561, a G4-ligand 

undergoing clinical testing for breast cancer treatment (Figure 3.8A). If the 

sensitivity is shared by CX-5461, this suggests that these four genes may 

represent universal synthetic lethalities to G4-stabilising ligands. Secondly, 

this provides a proof-of-principle experiment that the siRNA approach can 

identify the same PDS and PhenDC3 synthetic lethalities with other G4-

ligands. 

 

 

Figure 3.8. Investigating sensitivity of BRCA1, TOP1, DDX42 and GAR1-deficient 
HT1080 and A375 cells to CX-5461 treatment 
(A) Structure of the G4-stabil ising l igand CX-5461 currently in clinical tr ials.  
Both HT1080 (B-D) and A375 (E-G) siRNA induced BRCA1, TOP1, GAR1, 
DDX42 deficient cells were treated with 1 nM, 10 nM, 50 nM or 100 nM CX-5461 
as indicated. Confluency over 144 h was then monitored and plotted against 
confluency of non-transfected cells (blue) and cells transfected with a non-
targeting control siRNA (green). Shown are the average confluency 
accumulation for the two biological replicas (mean ± standard deviation). 
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The CX-5461 experiment was performed and analysed in A375 and HT1080 

cells as for PDS and PhenDC3 siRNA experiments, thus the protein 

knockdowns are the same as in Figure 3.3. The absolute growth curves 

(Figure 3.8B) were used to investigate growth differences to the non-targeting 

control for the experiment duration (Figure 3.9A-D and Figure 3.9A-D) and 

individual timepoints (Figure 3.9E-H and Figure3.10E-H). BRCA1-deficiency 

induced CX-5461 sensitivity in both HT1080 (Figure 3.9A-B) and A375 cells 

(Figure 3.10A-B), with higher concentrations and later timepoints showing 

greater differences compared to DMSO treatment. This is exemplified by the 

120 h timepoint, where treatment with 10 nM and 50 nM CX-5461 caused a 

median growth rate decrease of 44.0 % (p = 5 x 10-4) and 61.7 % (p < 1 x 10-

4) compared to DMSO curves. TOP1-deficient HT1080 cells showed a similar 

profile to that seen for BRCA1 knockdown (Figure 3.9C-D) with increased 

sensitivity for CX-5461 concentrations above 10 nM. For example at 120 h, 50 

nM CX-5461 treatment caused a -68.0 % (p < 1 x 10-4) difference in growth 

rate for TOP1-deficient cells compared to DMSO controls. For both DDX42 

and GAR1-deficient cells (Figure 3.9E-H), sensitivity was most noticeable at 

50 nM CX-5461 (-45.7 % and -43.0 % difference respectively following 120 h 

treatment; p < 1 x 10-4), with DDX42 deficiency insensitive to lower 

concentrations. Similarly, all knockdowns in A375 cells caused CX-5461 

sensitivity compared to the DMSO control (Figure 3.10). Thus, these results 

confirm the BRCA1 G4-sensitivity to CX-5461 and suggests that TOP1, GAR1 

and DDX42 deficiencies are also sensitive to this more clinically relevant 

ligand. 
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Figure 3.9. HT1080 cell deficient in BRCA1, TOP1, DDX42 and GAR1 are also sensitive 
to CX-5461.  
HT1080 cells were transfected with the targeting siRNAs for 24 h before 
treatment with 1 nM, 10 nM or 50 nM CX-5461 or DMSO (vehicle control) and 
differences in confluency, compared to a non-targeting siRNA control were 
plotted for A) BRCA1, C) TOP1, E) DDX42, G) GAR1. Drug treatment was 
performed in duplicate, and average confluency differences (± standard 
deviation) are shown. The confluency differences at 72, 96 and 120 h for each 
of the drug conditions were plotted for comparison for B) BRCA1, D) TOP1, F) 
DDX42, H) GAR1. Significantly increased growth inhibit ion for G4-ligand versus 
DMSO treatment was determined using an unpaired parametric t -test, assuming 
equal standard deviation. 



	 142 

Figure 3.10. BRCA1, TOP1, DDX42 and GAR1 deficient A375 cells are sensitive to CX-
5461 
A375 cells were transfected with the targeting siRNAs for 24 h before treatment 
with 10 nM, 50 nM or 100 nM CX-5461, alongside a DMSO vehicle control and 
differences in confluency, compared to a non-targeting siRNA control were 
plotted for (A) BRCA1, (C) TOP1, (E) DDX42, (G) GAR1. Drug treatment was 
performed in duplicate, and average confluency differences (± standard 
deviation) are shown. The confluency differences at 72, 96 and 120 h for each 
of the drug conditions were plotted for comparison for (B) BRCA1, (D) TOP1, (F) 
DDX42, (H) GAR1. Significantly increased growth inhibit ion for G4-ligand versus 
DMSO treatment was determined using an unpaired parametric t-test, assuming 
equal standard deviation. 
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3.2.3 Deficiencies in the four key sensitisers show differences in 

cPDS sensitivity  

The siRNA protocol was next applied to an RNA G4-selective PDS derivative, 

cPDS. For this the HT1080 cell line was used, as the siRNA-induced protein 

knockdowns and growth inhibition phenotypes were stronger compared to 

A375 (as discussed above). Cells were treated for five days with 5 µM and 10 

µM cPDS alongside DMSO and 0.5 µM PDS (vehicle and positive controls, 

respectively). As this is independent data from the PDS, PhenDC3 and CX-

5461 experiments, protein knockdown was first confirmed by immunoblotting 

(BRCA1 98 %, TOP1 82 %, GAR1 67 %; DDX42 49 %; Figure 3.11A&B) and 

similar growth rates between non-targeting and non-transfected controls 

(Figure 3.11C). The differences in confluency of cells transfected with 

targeting siRNAs compared to non-targeting controls were plotted as 

previously (Figure 3.12).  
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Figure 3.11. Knockdown of key sensitisers in HT1080 cells shows differential 
sensitivity responses to cPDS treatment 
(A) Western blot showing HT1080 lysates immunoblotted for BRCA1, TOP1, 
DDX42, GAR1 and beta-actin loading control for untransfected cells (U) and 
cells transfected with targeting (T) and non-targeting control (NT) siRNA at 48hr 
post transfection for two biological replicas. (B) Graph showing BRCA1, TOP1, 
DDX42 and GAR1 proteins levels from siRNA targeting cell lysates normalized 
to the non-targeting control for the two replicas (mean ± standard deviation). (C) 
HT1080 cells either untransfected (blue l ine), or transfected with targeting 
siRNA (against BRCA1, TOP1, DDX42 or GAR1)  or non-targetin control (green) 
were treated with 0.5 µM PDS, cPDS (5 µM or 10 µM) or vehicle control 
(DMSO). The average confluency accumulation over 120 h for the two biological 
replicas is shown (mean ± SEM). 
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Corroborating earlier observations (section 3.2.1) cells transfected with 

targeting siRNAs against the four proteins, all demonstrated growth sensitivity 

to 0.5 µM PDS treatment by 120 h (Figure 3.12C). For cPDS the greatest 

growth inhibition compared to DMSO treatment was seen for BRCA1- and 

DDX42-deficient cells, which was most significant at the 120 h timepoint for 

both 5 µM (-36.4 %, p = 0.0063; -21.4 %, p = 0.0223 respectively) and 10 µM 

cPDS (-43.7 %, p = 0.0009; -27.5 % p = 0.0109 respectively; Figure 3.12 

A&D). Conversely, TOP1 and GAR1 knockdowns were relatively insensitive to 

cPDS treatment (unlike PDS, Figure 3.12B-C), only showing a significant 

difference to DMSO treatment at 120 h with 10 µM cPDS (-11.27 %, p = 

0.0317;  -13.93 %, p = 0.0349 respectively). 
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Figure 3.12. BRCA1 and DDX42 depletion causes sensitivity to cPDS treatment 
For DMSO, PDS and cPDS treated HT1080 cells, confluency difference (mean ± 
standard deviation) compared to NT siRNA were plotted across two replicates 
for A) BRCA1, B) TOP1, C) GAR1, D) DDX42. Confluency differences at 72, 96 
and 120 h were plotted for comparison for E) BRCA1, F) TOP1, G) GAR1, H) 
DDX42. Significant confluency differences for G4-ligand versus DMSO treatment 
were determined using an unpaired parametric t-test, assuming equal standard 
deviation. 
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3.2.4. Screening derivatives of PDS with improved medicinal 

chemistry properties via siRNA-induced sensitivity 

Having shown that siRNA knockdown of BRCA1, GAR1, DDX42 and TOP1 

shows sensitivity to three structurally independent G4-stabilising ligands, this 

approach was used to screen whether 12 PDS-analogues (structures not 

shown) with improved medicinal chemistry properties show similar 

sensitivities to the better characterised G4-ligands used elsewhere within this 

thesis. 

 

For this HT1080 cells were used due to greater siRNA transfection efficiency, 

protein knockdown and PDS sensitivity compared to the A375 cell line as per 

previous experiments. As positive and negative controls 0.5 µM PDS and 

DMSO were included and the assay performed and analysed as previously, 

with two concentrations of each of the 12 molecules (0.5 µM and 2.5 µM). 

These concentrations were chosen as 0.5 µM matched that of PDS, while a 

concentration 5-fold higher (i.e. 2.5 µM) may ensure that any phenotypes are 

clear.  The difference in cell confluency compared to the DMSO control is 

shown below, with the exception of molecule 11, which precipitated at 2.5 µM 

and thus was discarded from analysis (Figure 3.13). Molecule 8 (2.5 µM) was 

toxic to cells regardless of the siRNA treatment and was thus not included in 

the final assay. For easier visualisation, confluency differences for cells 

transfected with targeting siRNAs compared to the non-targeting control is 

shown for 48 h, 72 h and 96 h treatments (Figure 3.14). 
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Figure 3.13. Screening clinically improved PDS derivatives via siRNA depletion of key 
sensitisers 
HT1080 cells were transfected with targeting siRNAs alongside non-targeting 
controls for 24 h before treatment with 0.5 µM or 2.5 µM of 12 candidate G4-
ligands derived from PDS, alongside 0.5 µM PDS and DMSO, positive and 
vehicle controls respectively, cultured for 120 h as previously. Confluency 
differences compared to a non-targeting siRNA control were plotted for (A) 
BRCA1, (B) TOP1, (C) DDX42, (D) GAR1, shown as an average of 2 biological 
replicas.  
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Five molecules gave promising growth inhibition phenotypes (Figure 3.14 and 

listed below). For these, confluency differences compared to DMSO and 0.5 

µM PDS are depicted below (Figure 3.15). For the molecules that did not 

cause significant ligand-specific sensitivity, a higher concentration and/or a 

longer time period may be required. 

 

BRCA1:  molecule 1 (0.5 and 2.5 µM), 4 (0.5 µM), 6 (2.5 µM), 7 (2.5 µM) 

   and 9 (2.5 uM) 

TOP1:   molecule 1 (2.5 µM) and 9 (2.5 µM) 

DDX42:   molecule 4 (0.5 µM), 7 (2.5 µM), 9 (2.5 uM) 

GAR1:   molecule 9 (2.5 µM) 
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Figure 3.14. Five candidate molecules show sensitivity to siRNA-induced deficiencies 
in at least one of the key sensitivities  
For the growth curves in f igure 3.14, confluency differences at 72, 96 and 120 h 
for each drug conditions for (A) BRCA1, (B) TOP1, (C) DDX42, (D) GAR1, 
shown as an average of two biological replicas. Red dotted l ine denotes the 
growth inhibit ion caused by the protein knockdown compared to the non-
targeting control for DMSO. Anything below this l ine denotes l igand specific 
sensitivity. A red arrow denotes the 5 molecules that gave the greatest 
sensitivit ies at the indicated timepoints. 
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Figure 3.15. SA-100-128 (molecule 9) is synthetic lethal with BRCA1, TOP1,DDX42 and 
GAR1 siRNA knockdowns 
For the 5 candidate molecules, DMSO and PDS, confluency differences 
compared to non-targeting siRNA controls following 120 h treatment were 
plotted for siRNA induced knockdown of (A) BRCA1, (B) TOP1, (C) DDX42 and 
(D) GAR1. One molecule (9) showed growth inhibit ion for all 4 knockdowns at 
2.5 µM.  



	 152 

Molecule 9, referred to as SA-100-128 henceforth, showed significant 

synthetic lethality with all four key protein knockdowns at 2.5 µM, with 

sensitivity comparable to 0.5 µM PDS treatment. This may suggest that SA-

100-128 reflects a pan-G4 ligand with similar synthetic lethalities to PDS and 

PhenDC3, thus worthy of further exploration. SA-100-128 has improved 

physicochemical, adhering more to Lipinski’s criteria compared to PDS (data 

not shown).  

 

3.2.5. A focused “quadruplex” screen with SA-100-128  

As outlined above SA-100-128 may present a promising “drug-like” PDS 

derivative: selective G4 stabilisation in vitro; improved pharmacokinetic 

properties and synthetic lethality with cells deficient in the top four key 

sensitisers (BRCA1, TOP1, DDX42, GAR1). Given its potential to be taken 

forward for future clinical development, it is of benefit to understand the 

spectrum of synthetic lethalities that this molecule could be applied to. As 

such, the focused G4 pool developed in chapter 2 was used to perform an 

shRNA screen with SA-100-128.  

 

For consistency with the shRNA screens performed with PDS and PhenDC3 

(chapter 2), cells were treated with a GI20 SA-100-128 concentration, pre-

determined by a 96 h viability assay (see methods) (Figure 3.16A; 1 µM and 

1.7 µM for A375 and HT1080, respectively), and the focused screen 

performed for 15 population doublings (t15) alongside a DMSO control as 

outlined previously. However, when upscaled for the long-term shRNA 

screen, this calculated value did not result in a growth rate difference 
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compared to the DMSO treatment for both A375 (Figure 3.16B) and HT1080 

(Figure 3.16C). Increasing SA-100-128 concentrations caused binary 

outcomes, either complete death or no growth difference compared to DMSO 

treatment (data not shown). Therefore, t15 from cells treated with the 96 h 

GI20 concentrations (A375 1 µM and HT1080 1.7 µM, described above) were 

chosen for sequencing and analysis, to investigate how ligand treatment 

influenced the representation of individual shRNAs during the course of the 

experiment.  

 

Using a hairpin threshold of FDR ≤ 0.05, resulted in 570 and 459 differentially 

expressed shRNAs for A375 and HT1080 respectively, of which 349 and 75 

were ligand-specific i.e. not found in DMSO (Figure 3.18D-E). A gene was 

denoted significantly depleted if the median log2FC < 0 for 50 % or 3 hairpins. 

Overall, this gave 36 and 8 depleted genes for A375 and HT1080 cells 

respectively (Figure 3.16F-G). Considering the similarity between DMSO and 

ligand-treated growth curves, further applying a log2FC ≤ -1 threshold, as for 

PDS and PhenDC3 screening, was deemed too stringent. 
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Figure 3.16. A focused ‘quadruplex’ screen performed with SA-100-128  
(A) HT1080 and A375 cells at two different seeding densities were treated with 
serial dilutions of SA-100-128 for 96 h and viabil i ty recorded via Cell Titre-Glo 
viabil i ty luminescent assay. For each seeding density, curves were plotted 
averaging the four replicates using a non-linear regression model (± standard 
deviation) (B-C) cumulative population doubling graph for SA-100-128 and 
DMSO treated cells for experiment duration for (B) HT1080 and (C) A375 cells. 
(D-G) Venn diagrams overlapping, for DMSO and SA-100-128 treated cells, (D-
E) significantly differentially expressed shRNAs, FDR ≤  0.05 and (F-G) 
significantly depleted gene deficiencies (FDR ≤  0.05; 50 % or 3 hairpins) for 
A375 (D&F) and HT1080 (E&G). (H) Table of median log2FC and number of 
significantly depleted hairpins for “positive control” G4-ligand synthetic 
lethalit ies BRCA2 and ATRX that were uncovered as SA-100-128 specific hits in 
the A375 cell l ine. (I) Venn diagram overlapping the SA-100-128 specific 
depleted genes for both HT1080 and A375, revealing one common sensitivity 
(AHCYL1). For this gene, median log2FC and number of significantly depleted 
hairpins are shown. 
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For A375 cells, among the gene deficiencies that showed SA-100-128 

sensitivity are “positive controls” ATRX and BRCA2 (Figure 3.16H) previously 

shown to be synthetic lethal with G4-stabilising ligands (McLuckie et al, 2013; 

Watson et al, 2013) and a known G4-interactor HNRNPA2/B1. This supports 

that SA-100-128 may stabilise endogenous G4-structures. Despite the low 

number of HT1080 hits, overlap with A375 significantly depleted genes 

revealed one common sensitivity to SA-100-128 treatment – AHCYL1 (Figure 

3.16I).  

 

Due to the low number of hits, HT1080 and A375 sensitivities were combined 

to provide 43 gene deficiencies synthetic lethal with SA-100-128 treatment. 

These were overlapped with the synthetic lethalities uncovered in the 

genome-wide and focused PDS and PhenDC3 screens to look for recurring 

sensitivities (Figure 3.17). Of the 19 genes common to all four screens, 

several components were found within the ubiquitin pathway: CUL1, UBA5, 

USP1 and USP37. Additional ubiquitin components are also found in the 

overlap with the genome-wide and PhenDC3 focused screens, including 

CAND1 and USP9X.  
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Figure 3.17. PDS and PhenDC3 sensitisers overlap with SA-100-128 depleted genes  
Venn diagram showing the overlap between the 758 sensitisers identif ied in the 
genome-wide screen with PDS and PhenDC3, the 281 PDS sensitisers, 274 
PhenDC3 sensitisers and 43 SA-100-128 upregulated genes uncovered in either 
the A375 or HT1080 focused screens. Significantly depleted genes are 
classified as 50 % or 3 hairpins significantly depleted at FDR ≤  0.05. Additional 
thresholds of log2FC < -1 were used to classify sensitisers throughout the 
screens. 
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3.3 Discussion 

3.3.1 Validating the synthetic lethality of BRCA, TOP1, GAR1 and 

DDX42 with PDS and PhenDC3 

 

Within this chapter, I set out to vaIidate the four key sensitisers from the 

shRNA screen via an orthogonal short-term siRNA approach (5 days versus 

~28 days for the shRNA screen). In the HT1080 cell line, reduced expression 

of all four genes resulted in PDS and PhenDC3 sensitivity, successfully 

recapitulating the shRNA screen results. Generally, the PDS and PhenDC3 

sensitivities seen for cells deficient in the four proteins were greater for 

HT1080 cells versus A375 cells. This perhaps arises from the lower siRNA-

induced depletion of all four proteins in A375 cells compared to the HT1080 

cell line. Nonetheless, A375 BRCA1- and GAR1-deficient cells were PDS and 

PhenDC3 sensitive and TOP1-deficient cells were PDS sensitive and 

PhenDC3 insensitive. 

 

For both cell lines, BRCA1- and TOP1-deficiencies caused comparatively 

greater PDS sensitivity compared to DDX42- and GAR1-deficient cells. As 

BRCA1 and TOP1 are primarily DNA-interacting proteins, one explanation 

could be that PDS has greater affinity for DNA-G4s over RNA-G4s. This 

hypothesis is in line with focused shRNA screen observations (chapter 2), 

where PDS hits were more enriched in DNA-related terms than for PhenDC3 

hits. Alternatively, the DNA enrichment may be a reflection that although PDS 

stabilises both RNA- and DNA-G4 in cells, perturbation of the DNA-associated 

pathways resulted in a stronger phenotype than less essential RNA 
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dependent pathways. Perhaps TOP1 and BRCA1 represent key players in the 

cellular response to stabilised DNA-G4s: TOP1 prevents their formation while 

BRCA1 repairs G4-induced damage. For BRCA1 this hypothesis has been 

explored in the literature (McLuckie et al, 2013). For TOP1, this is the first 

study to show G4-stabilising ligand synthetic lethality, although human TOP1 

has been shown to bind to G4s in vitro (Arimondo et al, 2000). This study also 

indicated TOP1 was able to encourage the formation of parallel G4-structures, 

whereas, another biophysical investigation indicated TOP1-inhibition by G4 

structures (Ogloblina et al, 2015). More recently linked to suppression of 

DNA-damage at G4s in yeast (Yadav et al, 2014). Another explanation for 

TOP1 synthetic lethality is that topoiosomerase I uses G4-structures as a 

docking site to bind and perform its superhelical strain relaxation role. In this 

scenario, TOP1-depletion potentially increases the quantity of “free” G4-

structures for G4-stabilising ligands to bind.  

 

The less PDS sensitive response of DDX42- and GAR1-deficiencies 

compared to TOP1- and BRCA1-knockdown may reflect less critical DNA-G4 

roles and more of a possible RNA-G4 relationship. In support of an RNA (and 

perhaps RNA-G4) function, the strong PhenDC3 sensitisation following 

siRNA-induced GAR1 depletion corroborates the enrichment of RNA and 

mRNA related PhenDC3 sensitivities within the shRNA screen (chapter 2). 

For GAR1, the possible mechanisms of this sensitivity will be discussed in 

section 3.3.3. The mechanism of DDX42 sensitivity to G4-ligands will be 

further explored in chapter 4. 
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Of note, compared to non-targeting siRNA controls, cells deficient in the key 

four sensitisers were more sensitive to the lower PDS concentration. At higher 

concentrations, control cells may also show significant PDS-induced growth 

inhibition, thus limiting the window by which protein-deficiency induced 

sensitivity can be gauged. Both PhenDC3 concentrations (20 µM and 40 µM) 

were less toxic to normal cells than PDS. Therefore a similar sensitivity 

window exists for both concentrations, and revealed that 40 µM PhenDC3 

caused greater growth inhibition than 20 µM. The PDS and PhenDC3 

responses affirm that non-toxic ligand concentrations for normal cells may be 

the most useful, by widening the sensitivity window. As discussed in chapter 

2, one way to achieve this is via combinatorial ligand treatments, a concept 

further explored in the overall discussion (chapter 6). 

 

3.3.2 Extending validation of the four key sensitivities to CX-5461 

and cPDS treatment 

The synthetic lethality of the four genes was investigated with two further G4-

ligands: CX-5461 (Xu et al, 2017) and the RNA-G4 specific cPDS (Biffi et al, 

2014a; Di Antonio et al, 2012). CX-5461 showed synthetic lethality with all 

four proteins in both cell lines. The extension of this sensitivity to a further G4-

ligand supports that these four proteins represent key players in G4-biology. It 

also suggests that GAR1-, TOP1- and DDX42-deficient backgrounds can be 

similarly therapeutically targeted by CX-5461 as for BRCA-deficiencies.  

 

Deficiencies in BRCA1 and DDX42 were sensitive to cPDS whereas TOP1 

and GAR1 were largely insensitive at the concentrations and time frame used. 
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For TOP1, this supports that this nuclear protein predominantly acts on DNA, 

perhaps involving DNA-G4 roles. For DDX42, a hypothesised RNA-helicase 

(see section 4.1.1), cPDS sensitivity supports the existence of RNA-G4 

associated roles among its functions. This is not mutually exclusive with 

DDX42 performing DNA and perhaps DNA-G4 roles. The acute sensitivity of 

BRCA1-deficiency to cPDS is interesting, given that the primary association of 

BRCA1 with G4s is the repair of DNA-G4 associated damage. The cPDS 

sensitivity perhaps suggests an additional RNA-G4 associated BRCA1 role, 

and several studies in the literature link RNA to the DDR. For example, it was 

recently shown that small non-coding RNAs are transcribed at DNA DSB, and 

perform a recruitment role for an incompletely characterised complex of DNA 

damage proteins (Michelini et al, 2017). Of note, non-DDR BRCA1 roles 

include activatory and co-repressor transcriptional regulation, cell cycle 

control and ubiquitylation (Mullan et al, 2006), all of which were enriched 

sensitivities within the genetic screening results (chapter 2). In support of a 

possible RNA (and RNA-G4) role, BRCA1 shuttles between the nucleus and 

cytoplasm, enabling contact with RNA species (Fabbro & Henderson, 2003) 

and interacts with PABP1 (Poly(A)-binding protein). Further, BRCA1-depletion 

correlates with a global translation decrease in MCF7 cells (Dizin et al, 2006; 

Dacheux et al, 2013) possibly contributing to the cPDS sensitivity observed. 

 

GAR1 cPDS insensitivity, but responsiveness to PDS, PhenDC3 and CX-

5461, could suggest that while RNA-G4 stabilisation may contribute to GAR1 

synthetic lethality, it is insufficient in isolation, and other G4-targets (perhaps 

DNA-G4) need to be targeted. However, having only tested one RNA-G4 
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ligand, this lack of response could be ligand-specific rather than due to a 

mechanistic/physical interaction of GAR1 with RNA-G4. 

 

3.3.3 Possible mechanisms of GAR1 G4-ligand synthetic lethality 

GAR1 is a member of the H/ACA small nucleolar ribonucleoproteins 

(snoRNPs), forming a complex with DKC1, NOP10 and NHP2 (reviewed in 

McMahon, Contreras, & Ruggero, 2015). DKC1 was also identified as a PDS 

and PhenDC3 sensitiser in the genome-wide screen (median log2FC -5.41 

and -4.08 respectively), and a PDS sensitiser in the A375 focused screen 

(median log2FC -2.54). NHP2 was an A375 PDS sensitiser for both genome-

wide and focused screens (median log2FC -2.1 and -2.0 respectively). This 

establishes that H/ACA protein deficiencies, and perhaps the deficiencies in 

the whole complex, as G4-ligand sensitivities. 

 

The H/ACA snoRNPs are required for ribosomal RNA biosynthesis and 

telomere extension (Kiss, 2001; Pogacić et al, 2000) via interaction with an 

ACA RNA motif, within snoRNA guides  (Ganot et al, 1997a; Ni et al, 1997) 

and the human telomerase RNA (hTR) component (Mitchell et al, 1999a, 

1999b; Dragon et al, 2000; Pogacić et al, 2000) respectively. H/ACA protein 

depletion causes shortened telomeres and reduced telomerase and ribosome 

levels. 

 

The structure of snoRNAs are well characterised, consisting of stem loops 

and conserved “pseudouridylation pockets” (Ganot et al, 1997b), but no G4-

potential sequences. Thus synthetic lethality is unlikely to derive from GAR1 
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binding RNA G4s within the snoRNA. One explanation is that both G4-ligand 

treatment and GAR1-deficiency are problematic for translation, the former by 

inhibiting ribosomal scanning via mRNA 5’ UTR G4-stabilisation and the latter 

by ribosome biogenesis reduction. Of note, the DNA G4-stabiliser, CX-5461 

(Xu et al, 2017) was originally identified as an RNA polymerase inhibitor, 

specifically inhibiting rRNA synthesis (Drygin et al, 2011). Thus, given that 

GAR1 is required for ribosomal RNA maintenance, this may contribute to the 

observed CX-5461 sensitivity, independent of G4-stabilisation.  

 

An alternative synthetic lethality mechanism is that GAR1-deficiency induced 

telomerase dysfunction may synergise with the telomere structure disruption 

caused by G4-ligand treatment (see section 1.3.3). A telomeric DNA-G4 

associated role may explain why GAR1-deficient cells are PDS, PhenDC3 

and CX-5461 sensitive but unaffected by cPDS treatment. Another possibility 

comes from recent Drosophila evidence suggesting that several snoRNA can 

associate with chromatin binding proteins, where they may perform 

chromatin-remodelling roles (Schubert et al, 2012). Chromatin alterations 

induced by GAR1 depletion may impact G4 formation and/or ligand 

accessibility and thus also contribute to G4-ligand sensitivity. In terms of 

therapeutic insights, several solid tumours and haematological malignancies 

show H/ACA snoRNA deregulation, although this often arises from alteration 

of specific snoRNA subsets, rather than changes in snoRNP levels 

themselves (McMahon et al, 2015). However, reduced GAR1 transcript levels 

are reported in chronic lymphocytic leukaemia cells compared to normal 
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clinical biopsies (Dos Santos et al, 2017), perhaps suggesting an area for G4-

ligand therapeutic exploitation.  

 

3.3.4 SA-100-128 as a novel G4-stabiliser with improved 

pharmacokinetic properties  

Following siRNA screening of 12 PDS derivatives with improved medicinal 

chemistry properties, SA-100-128 showed synthetic lethality with the four 

siRNA knockdowns. The “quadruplex” focused screen (see chapter 2) was 

then employed to identify further SA-100-128 sensitivities. This screen 

revealed that, despite toxicity problems for the longer shRNA experiment, SA-

100-128 shared some synthetic lethalities also seen with PDS and PhenDC3. 

As PDS and PhenDC3 were chosen as representative G4-stabilising ligands, 

perhaps SA-100-128 is a step closer to a promising “drug-like” molecule that 

shares the G4-stabilisation phenotypes experimentally reported for G4-ligands 

in the literature (see section 1.4.2). 

 

Despite the siRNA knockdown of the key sensitivities (BRCA1, TOP1, DDX42 

and GAR1) showing SA-100-128 synthetic lethality, these hits were not 

significantly depleted in the SA-100-128 shRNA screen. This suggests two 

main findings: 1) the SA-100-128 concentration used was insufficient to 

identify the complete spectrum of synthetic lethalities; 2) genes uncovered 

reflect strong sensitivities, more so than the BRCA1/TOP1 counterparts.  

 

Overlapping the SA-100-128 depleted genes with sensitisers identified in PDS 

and PhenDC3 screens revealed positive controls BRCA2, ATRX and 
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HNRNPA1, and multiple components of the ubiquitin pathway: CUL1, UBA5, 

USP1, USP37, CAND1 and USP9X. As discussed in chapter 2, several of 

these ubiquitin components are being explored as therapeutic targets due to 

their cancer deregulation. The sensitivity of cells deficient in these genes to 

SA-100-128, a more “drug-like” molecule than PDS, may bring us closer to 

the clinical development of G4-stabilising ligands in, for example, ubiquitin-

deregulated malignancies. Another gene that showed sensitivity to PDS, 

PhenDC3 and SA-100-128 was CCAR1 (cell cycle and apoptosis regulator) 

an oncogene overexpressed and required for tumour progression in gastric 

carcinoma (Chang et al, 2017). CCAR1 is currently being investigated as a 

therapeutic target, and such pharmacological inhibition could be potentiated 

by co-treatment with SA-100-128. 

 

One gene deficiency, AHCYL1 (S-adenosylhomocysteine hydrolase-like 

protein 1) caused sensitivity to SA-100-128, PDS and PhenDC3 in both 

HT1080 and A375 cells, perhaps indicating that this gene is integral in G4-

biology regulation. AHCYL1 has several functions, including suppression of 

the inositol phospholipid pathway (Berridge et al, 2000; Ando et al, 2003, 

2006) and regulation of several ion channels and transporters, among them 

the Cystic Fibrosis Transmembrane Receptor (CFTR) chloride channel 

(reviewed Ando, Kawaai, & Mikoshiba, 2014). More recently, AHCYL1 has 

been identified as a regulatory inhibitor of ribonucleotide reductase (RNR), the 

enzyme required for production and balance of dNTPs (Arnaoutov & Dasso, 

2014). Compromising this nucleotide balance is problematic for replication 

and induces genomic instability (Pai & Kearsey, 2017). G4-ligand sensitivity 
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arising from AHCYL1 deficiencies may relate to cellular ionic composition 

deregulation, possibly favouring uptake of the positively charged G4-

stabilising ligands and/or increase G4-stabilisation. Alternatively, AHCYL1-

deficiencies could induce replicative damage at the level of RNR dysfunction, 

which is further exacerbated by treatment with G4-stabilising ligands.  

 

From a possible therapeutic standpoint, AHCYL1 is a tumour suppressor in 

ovarian cancer with low expression levels correlating with poor prognosis 

(Jeong et al, 2012) and is often downregulated in malignant melanoma 

including those with acquired fotemustine and cisplatin resistance (Wittig et al, 

2002). It would be interesting to investigate the response of these cancers to 

G4-ligands, as a single agent in ovarian cancers, and either as a 

combinatorial treatment for melanoma, or in isolation for melanoma tumours 

resistant to current standard-of-care drugs. 

 

Overall, the siRNA investigation has been successful in validating the key four 

sensitisers (BRCA1, TOP1, GAR1 and DDX42), and has provided hints at the 

mechanisms underlying this synthetic lethality. Additionally, they suggest SA-

100-128 is a promising compound with potential for further development as a 

clinical G4-stabilising ligand. 
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Chapter 4 

Characterising the mechanism of DDX42 

synthetic lethality to G4-stabilising ligand 

treatment 

 

4.1 Background and objectives 

In addition to identifying synthetic lethal genotypes with G4-ligand treatment, 

another primary aim of this thesis was to gain insights into the regulation of 

G4-structures. Literature to date suggests that cells avoid deleterious effects 

of persistent G4s by rapidly repairing G4-induced damage and/or tightly 

regulating their formation by dedicated helicase machinery (see introduction 

1.5.1 and 1.5.5). The full repertoire of these regulators is unknown and in part, 

could be expanded by the identification of helicases that specifically bind and 

unwind G4 structures. I reasoned that deficiencies in an important G4 

regulator would impart consistent sensitivity, across cell lines and ligands, to 

G4-stabilisation by small molecule treatment. As shRNA-induced deficiencies 

in DDX42 caused synthetic lethality with four independent G4-stabilising 

ligands (PDS, PhenDC3, CX-5461 and cPDS) in both A375 and HT1080 cell 

lines (see chapters 2 and 3), I chose this protein for further investigation. 

DDX42 is a member of the Asp-Glu-Ala-Asp (DEAD) box protein family. Many 

of this family are RNA-helicases, with roles including RNA secondary 

structure regulation in translation initiation, splicing (nuclear and 
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mitochondrial), and ribosome and spliceosome assembly (Linder & 

Jankowsky, 2011). The majority of DDX proteins analysed to date have been 

shown to have a preference for RNA over a DNA substrates (Cordin et al, 

2006), but in some cases show DNA helicase activity (Kikuma et al, 2004; 

Linder & Jankowsky, 2011). However, as DDX42 was identified as a putative 

splicing component (see section 4.1.1), the DNA affinity of this protein is 

largely uninvestigated. Given the results of the synthetic lethality screen and 

the roles of other helicases in G4 biology, DDX42 represents a promising 

novel G4-helicase candidate. Firstly I will summarise research to date for this 

largely uninvestigated gene before discussing my preliminary investigations 

into the relationship between DDX42 and G4-biology. 

 

4.1.1 Discovery of DDX42 and its characterisation as a putative 

DEAD-box RNA helicase 

DDX42 was first identified in 2000, as a highly abundant mRNA in the sera of 

insulin-dependent diabetes patients (Suk et al, 2000). In this study, ubiquitous 

DDX42 expression was identified in all tissues tested including liver, lung and 

pancreas. DDX42 was also independently uncovered by immunopurification 

and mass spectrometry as an interactor of the core splicing factor U2 snRNP 

protein (Will et al, 2002). Both studies identified DDX42 as a putative DEAD-

box RNA helicase, based on peptide sequence motif and bioinformatics 

analyses respectively. Unusual for members of this family, DDX42 is encoded 

by two transcript variants with different 5’UTR introns, both lacking a 

canonical polyA box signal (Uhlmann-Schiffler et al, 2006) suggestive of 

translational regulation. Recombinant protein studies showed that in vitro, 
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DDX42 non-processively unwinds RNA strands in an ATP-bound form. This is 

increased in the presence of the single-stranded binding protein T4gp32. In 

an ADP-bound form, DDX42 function switches to promote association of 

synthetic complementary RNA strands in vitro (Uhlmann-Schiffler et al, 2006). 

Additionally, DDX42 interacts with and inhibits the apoptotic inducer ASPP2 

(Uhlmann-Schiffler et al, 2009). ASPP2 is epigenetically silenced in several 

cancers, allowing apoptotic evasion (Song et al, 2015); DDX42 upregulation 

might provide an alternative tumorigenic mechanism. Consistent with an anti-

apoptotic role for DDX42, Epstein-Barr Virus promotes cell death by 

downregulating mRNAs including DDX42 (Choi et al, 2013). The closest 

structurally related DEAD box proteins to DDX42 are DDX5 and DDX3, with 

amino acid conservation evident across the full length of the protein (~40 % 

homology) (Uhlmann-Schiffler et al, 2006; Suk et al, 2000). However, DDX5 

and DDX3 are tumour suppressors, co-activating p53 and p21 respectively 

(Bates et al, 2005; Chao et al, 2006). 

 

DDX42 has also been linked to the viral inflammatory immune response, 

interacting with the non-structural protein (NS4A) of the Japanese encephalitis 

virus in vitro (Lin et al, 2008). Consistent with a function for this in vivo, partial 

colocalisation of DDX42 and NS4A has also been reported in human 

medullablastoma cells (Lin et al, 2008). Based on these observations, DDX42 

was hypothesised to detect foreign dsRNA, an interaction antagonized by 

NS4A. Evasion of the immune system and apoptosis are cited among the 

hallmarks of cancer (Hanahan & Weinberg, 2011). Thus, while DDX42 

deficiencies are not fully characterised regarding their tumour forming 
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capabilities, with further research into this protein, a cancer association may 

be possible and perhaps exploitable in conjunction with G4-ligand treatment. 

Within this chapter, preliminary investigations into the mechanism of G4-

ligand sensitivity in DDX42-deficient cells are described.  

 

4.2 Results  

4.2.1 DDX42 is a nuclear protein 

As DDX42 is classified as an RNA-associated helicase, it is important to 

identify the subcellular localisation of this protein in order to understand the 

processes in which it could be involved. Within the cell, there are two defined 

areas of RNA localisation (and thus RNA-G4s). For example, lncRNAs, pre-

miRNAs and pre-mRNAs (including nascent transcripts and R-loops) exist in 

the nucleus, where RNA G4s are involved in functions including 

transcriptional regulation and RNA processing. Conversely, mature mRNAs 

and miRNAs are cytoplasmic, with secondary structures contributing to post-

transcriptional regulation e.g. stability, transport and translation.  

 

To investigate which RNAs and therefore processes, DDX42 putatively 

regulates, subcellular fractionation was used to separate cytoplasmic and 

nuclear lysates from three independent cell lines, HT1080, HEK and HeLa 

cells, and these fractions probed via immunoblot for DDX42 (Figure 4.1A). 

This specificity of this antibody was validated in chapter 3, in which the single 

band detected at 120 kDa was depleted in lysates from cells transfected with 

an siRNA targeting DDX42 in two independent cell lines (see section 3.2.1). 
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To confirm efficient separation of the nuclear and cytoplasmic lysates, lysates 

were also probed with antibodies targeting laminB1 and GAPDH, nuclear and 

cytoplasmic proteins respectively (Figure 4.1B&C). DDX42 was found to be 

nuclear in all three cell lines (4-9-fold increase compared to cytoplasmic 

levels; figure 4.1D). The small amount of ‘cytoplasmic’ DDX42 protein is likely 

due to slight nucleoplasm leakage during fractionation, reflected by a low 

laminB1 in cytoplasmic fractions (Figure 4.1B). This suggests that the G4-

associated roles of DDX42 are primarily nuclear, based on DDX42 

abundance.  

 

Figure 4.1. Subcellular location of DDX42 is exclusively nuclear 
(A) Representative immunoblot showing cytoplasmic (C) and nuclear (N) lysates 
for HT1080, human embryonic kidney (HEK) and HeLa cells probed for DDX42 
alongside laminB1 and GAPDH2 (exclusively nuclear and cytoplasmic 
expression respectively) 
(B-C) Graph showing the average area for the GAPDH and laminB1 peaks for 
(B) cytoplasmic and (C) nuclear lysates for the three cell l ines 
(D) Graph showing area of DDX42 peak normalised to cytoplasmic levels (mean 
for 2 technical replicates ± standard deviation) 
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4.2.2 DDX42 specifically binds both RNA- and DNA-G4 

oligonucleotides in vitro 

As DDX42 is a predicted RNA helicase, its binding affinity for RNA-G4s was 

next investigated. For this, a G4 sequence derived from the NRAS 5’UTR, 

which forms a stable parallel G4, even in the absence of cations (Kumari et al, 

2007) was used. For comparison the less thermodynamically stable RNA 

5’UTR G4 from BCL2 mRNA was also employed (Shahid et al, 2010).  

Additionally the BCL2 sequence was modified replacing the terminal G-rich 

tract with adenines (i.e. GGG à AAA). This maintains the purine:pyramidine 

composition but abolishes formation of an intramolecular G4. However, the 

two remaining G-tracts permit intermolecular G4 formation. As controls, for 

both NRAS and BCL2 sequences, the central G in each G-rich tract was 

mutated (G à A), to prevent both intra- and intermolecular G4 formation.  

 

These oligonucleotides were folded in either 100 mM KCl or LiCl, permitting 

strong and weak stabilisation of G4s respectively, and their resultant 

structures analysed by circular dichroism spectroscropy (CD; see Methods for 

details). In KCl, the CD spectrum of the NRAS and BCL2 intra- and 

intermolecular G4-sequences showed a positive peak at 263 nm and a 

negative peak at 241 nm, the characteristic signature for parallel G4 

structures (Tang & Shafer, 2006; Balagurumoorthy et al, 1992). The NRAS 

G4 annealed under lithium conditions, also showed this signature, albeit 

weaker than its KCl counterpart, which is in keeping with its stability even in 

LiCl. For all other sequences, mutating the central G or annealing in LiCl 

prevented G4 formation as reflected by the altered CD signature (Figure 4.2). 
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Figure 4.2. Structure of annealed RNA oligonucleotides 
CD spectra for G4 forming RNA oligonucleotides (rG4) and controls (rG4 mut) 
folded either in 100 mM KCl or LiCl as indicated for sequences corresponding to 
(A) NRas 5’UTR G4 and controls; (B) Bcl-2 5’UTR RNA G4 and controls; (C) 
intermolecular G4 structure due to GGG à  AAA substitution in one of the G-
tracts; (D) single stranded/unstructured TERRA complement and RNA hairpin 
controls 
 

Having confirmed that the various G4-sequences and mutants form the 

expected structures in vitro, the affinity of DDX42 for these structures was 

analysed via Enzyme Linked Immunosorbent Assay (ELISA; see Methods for 

details) and data modeled via a non-linear regression model, assuming one-

site specific binding and saturation kinetics. With the exception of the binding 

curve for the KCl annealed NRAS G4, the curves did not reach saturation, a 

necessity to calculate an accurate Kd, therefore the values reported below 

reflect a best estimate for these values. DDX42 was found to bind both NRAS 

and BCL2 intramolecular G4s folded in KCl with nanomolar affinity, 46.15 ± 

4.26 nM and 160.9 ± 21.3 nM respectively. The affinity difference may reflect 

the stability and/or persistence of the G4-structure. This is supported by the 

~7-fold less affinity (approximate Kd = 333 nM based on non-saturated curve) 

of DDX42 for LiCl-annealed NRAS RNA-G4. Additionally, DDX42 also bound 
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the BCL2 intermolecular G4s, but with much lower affinity than for the 

intramolecular counterpart. Moreover, DDX42 did not bind detectably to 

mutant oligonucleotides or the BCL2 G4-forming oligonucleotides folded in 

LiCl, showing that the interaction is dependent on the presence of a G4-

structure. The in vitro RNA-G4 specific affinity was further supported by the 

lack of DDX42 binding to an RNA hairpin or a single-stranded C-rich RNA 

sequence, derived from the complement of TERRA.  

Figure 4.3. DDX42 specifically binds RNA-G4s in vitro 
In vitro ELISA binding curves for a representative biological replicate (mean ± 
S.E.M) for the following oligonucleotides annealed in 100 mM KCl or LiCl as 
indicated  (A) NRas 5’ UTR RNA G4 and mutated G4 sequence alongside an 
RNA hairpin also annealed in 100 mM KCl and (B) Bcl-2 5’ UTR intramolecular 
and intermolecular RNA-G4 and mutant G4 sequence alongside a single 
stranded RNA control corresponding to C-rich complement of TERRA. Values 
reflect the apparent Kd of two biological replicates, however as the model 
assumes saturations kinetics, these are only approximate values. 
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Given the nuclear localisation of DDX42 and as other members of the DDX 

family have been shown to have DNA helicase activity (Kikuma et al, 2004), 

the in vitro DNA-G4 affinity of DDX42 was also investigated. For this an 

oligonucleotide corresponding to the stable parallel G4 in the promoter of 

MYC (González & Hurley, 2010; Yang & Hurley, 2006) and a non-G4 forming 

control was used. These were folded in KCl and LiCl and analysed by CD 

(Figure 4.4A). In the presence of K+ cations, MYC DNA-G4 showed positive 

and negative ellipticities at 263 and 241 nm, confirming parallel G4 formation. 

This CD spectroscopic signature was absent in mutant and LiCl-annealed 

oligonucleotides, affirning no G4-structure formation.  

 

Next, DDX42 affinity for these annealed sequences was investigated (Figure 

4.4B). This revealed that DDX42 also binds MYC DNA-G4 with comparable 

affinity to the BCL2 intramolecular RNA G4 (approximate Kd =159.2 ± 25.2 

nM), but not to the mutant or controls folded in LiCl, suggesting a G4-structure 

specific interaction.  
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Figure 4.4. DDX42 bind a parallel DNA-G4 structure in vitro 
A) CD spectra for G4 forming DNA oligonucleotide sequence corresponding to 
the cMyc promoter parallel G4 (dG4) and controls (dG4 mut) folded either in 100 
mM KCl or LiCl as specified 
B) In vitro ELISA binding curves for a representative biological replicate (mean 
± S.E.M) for the Myc parallel promoter G4 and mutated G4 sequences annealed 
in 100 mM KCl or LiCl. The Kd value stated refers to the apparent Kd of two 
biological replicates. 
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4.2.3 Investigation of whether DDX42 protein depletion alters 

nuclear BG4 foci 

Deficiencies in helicases with G4-resolving activity may result in increased 

persistence of their G4-substrates, either globally at the majority of G4-

forming sequences or for a select subset of G4s. Given that DDX42 is found 

in the nucleus and can specifically bind DNA and RNA-G4s in vitro, the effect 

of DDX42 depletion on nuclear G4 levels was next investigated in HT1080 

cells.  

 

First, it was confirmed via western blot that HT1080 cells transfected with a 

siRNA targeting DDX42 caused protein knockdown relative to the non-

targeting (NT) control (Figure 4.5A; ~73 % knockdown, 72 h after 

transfection). Next, DDX42-depleted cells and non-targeting siRNAs were 

cultured with DMSO or 0.5 µM PDS for either 72 h or 120 h. This 

concentration of PDS was included to additionally investigate whether a global 

G4 increase at this low dose could explain the ligand sensitivity seen following 

siRNA-induced knockdown (chapter 3). Following treatment, cells were fixed, 

permeabilised and treated with the G4-specific FLAG-tagged BG4 single 

chain antibody (Biffi et al. 2013). BG4 signal was amplified via incubation with 

an anti-FLAG secondary antibody, which was subsequently recognised by a 

fluorophore-labeled tertiary antibody, to give nuclear foci corresponding to the 

detection of endogenous G4-structures (red foci; Figure 4.5B). For each 

condition the number of BG4 foci were quantified for 70-100 nuclei (Figure 

4.6C-D). Additionally, no BG4 and no secondary antibody controls were 
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included for the 72 h timepoint, which confirmed the absence of non-specific 

binding by the secondary and tertiary antibodies respectively (Figure 4.5C).  

 

 
After 72 h, no significant difference was seen between the average nuclear 

BG4-foci for any condition, suggesting neither the treatment with low 

concentration of PDS nor DDX42 depletion was sufficient to globally increase 

nuclear G4 levels, across two biological replicas (Figure 4.5C). Following 120 

h, a significant increase was seen in the PDS-treated NT cells compared to 

DMSO vehicle control (Figure 4.5D), suggesting that 0.5 µM PDS can cause a 

small but significant increase in the nuclear G4-level in HT1080 for both 

biological replicas one (p = 5 x 10-4) and two (p = 2.7 x 10-3). However, no 

significant increase was seen in DDX42-depleted cells (p = 0.2134 and 

0.1046 for biological replica 1 and 2 respectively), supporting that the single 

gene knockdown does not cause a detectable increase in nuclear G4 levels 

with this method. 
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Figure 4.5. DDX42 deficient cells do not show a global increase in G4 structures 
(A) Top - representative western blot showing lysates immunoblotted for DDX42 
and beta-actin loading controls for cells transfected with a siRNA targeting 
DDX42 (T) or non-targeting control siRNA (NT), 72 h after transfection. Bottom - 
for all samples DDX42 protein levels were normalised internally to the beta actin 
control, and averaged for two technical replicates. For each biological replica 
DDX42 protein levels in targeting lysates were then expressed as a percentage 
of levels in the non-targeting control (technical replicate mean ± standard 
deviation). 
(B-D) Indirect immunofluorescence microscopy to visualise endogenous G4-
structures (B) Representative confocal microscopy images following 72 h 
treatment with either DMSO or PDS as indicated in conjunction with either NT or 
DDX42 siRNA transfection. No BG4 = NT cells + DMSO were incubated with 
secondary and tertiary fluorescent antibodies; No secondary antibody = NT cells 
+ DMSO, incubated with BG4 and the tertiary fluorescent antibody but not the 
secondary anti-FLAG which binds to and amplif ies the BG4 signal. Nuclei are 
counterstained with DAPI (blue) and BG4 foci are red (Alexafluor 594). 
(C-D) Quantif ication of BG4 nuclear foci following (C) 72h and (D) 120 h siRNA 
transfection, for two biological replicas per condition. For each condition the 
number of nuclei counted (n) is indicated and the number of BG4 foci per 
nucleus plotted alongside mean ± standard deviation. Significance was 
determined via an unpaired parametric t-test, assuming equal standard 
deviation. 



	 179 

4.2.4 Investigating the effect of G4-ligand treatment on DDX42 

levels 

Previous RNA-seq data following 24 h treatment of MCF-7 breast cancer cell 

line with PDS had shown upregulation of DDX42 mRNA levels (personal 

communication Dr. Debbie Sanders). However, increased mRNA levels do 

not necessarily correlate with protein translation, and thus increased activity of 

a protein (Liu et al, 2016). Therefore, it was next investigated whether 

treatment of HT1080 with G4-stabilising ligands directly altered DDX42 

endogenous protein levels, rather than drawing inferences from mRNA 

alterations.  

 

First, to explore whether ligand-induced alterations in DDX42 expression 

contributed to its identification as a sensitiser in the shRNA screen (section 

2.4.10), DDX42 protein levels in the initial reference (t0) and final timepoint 

(t15) samples (treated with either DMSO, 0.5 µM PDS and 1 µM PhenDC3 for 

15 population doublings; ~25 days) from two biological replicates of the 

HT1080 focused screen were analysed via western blot. No significant 

difference was observed between t0 and t15 DDX42 levels (data not shown). 

It was hypothesised that the screen may represent too long a time period to 

evaluate translational changes in DDX42 levels, as the cells may have 

adapted to prolonged depletion of DDX42 and/or treatment with G4-stabilising 

ligands.  

 

Therefore the influence of G4-ligand treatment on DDX42 levels in HT1080 

cells for a shorter time period was evaluated. Based on short-term siRNA 
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validation assays (chapter 3), G4-ligand sensitivity was observed within 96 h 

after DDX42-knockdown. This could suggest that the G4-ligand response in 

DDX42-proficient cells may also occur within this time frame. Therefore, 

HT1080 cells were treated with G4-ligand concentrations previously optimised 

to cause greater growth inhbition in DDX42-deficient cells compared to non-

targeting siRNA controls for 96 h (section 3.2.1). For this PDS (0.25 µM and 

0.5 µM) and PhenDC3 (20 µM and 40 µM) were used. Cells were also treated 

with CX-5461 (10 nM and 50 nM) and SA-100-128 (0.5 µM), to compare 

responses.  

 

 
Figure 4.6. PDS and PhenDC3 treatment reduces DDX42 protein expression levels 
(A) Representative western blot of one biological replica in which HT1080 
lysates, treated with PDS, PhenDC3, CX-5461 and SA-100-128 for 96 h, 
alongside DMSO (vehicle) and anti-DDX42 siRNA treated controls were 
immunoblotted for DDX42 alongside beta-actin loading control. 
(B) Graph showing the DDX42 level for each sample, normalized to the actin 
loading control and expressed as a percentage of the level found in DMSO 
treated cells for three biological replicates (mean ± standard deviation). 
Significance was determined by a parametric t-test assuming equal standard 
deviation (p < 0.05). * p<0.05; ** p< 0.01; *** p<0.001; **** p< 1 x 10-4. 
 

Following 96 h ligand or DMSO-vehicle control treatment, cell lysates were 

immunoblotted for DDX42, alongside DDX42-depleted control lysates for 

comparison (Figure 4.6A). Average DDX42 levels for two biological replicates 
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were expressed as a percentage of the levels in DMSO-treated cells for each 

condition (Figure 4.6B) and revealed that 0.25 µM PDS (p = 0.29), 50 nM CX-

5461 (p = 0.08), SA-100-128 (p = 0.49) did not significantly alter DDX42 levels 

compared to the DMSO control at this time frame and ligand concentration. At 

10 nM treatment CX-5461 induced a 24 % increase in DDX42 protein levels 

(p = 0.0014). For PhenDC3 treated cells the protein expression was similar to 

that caused by siRNA knockdown (28.8 %) at both 20 µM (31.1 %, p < 

0.0001) and 40 µM (24.7 %, p < 0.0001) concentrations. Treatment with 0.5 

µM PDS also caused a 15 % decrease relative to DMSO control (p = 0.011). 

Thus the DDX42 phenotypes at the protein level differed between ligand 

treatments, but what was apparent is that there is no major upregulation of the 

protein. 

 

4.3 Discussion 

In this chapter, preliminary investigations into the G4-DDX42 relationship 

were performed, as this is a gene that when depleted caused robust 

sensitivity to several G4-ligands in A375 and HT1080 cells. As bioinformatic 

analysis indicates that DDX42 belongs to the DEAD-box RNA helicase family 

(Suk et al, 2000; Will et al, 2002) and other helicases have specific G4-

resolving activity, I hypothesised that DDX42 may represent a novel G4-

helicase.  

 

DDX42 was exclusively nuclear in three separate cell lines. This location 

suggests that any RNA roles DDX42 performs are nuclear, such as splicing, 

and transcriptional regulation rather than cytoplasmic, e.g. translational 



	 182 

regulation at the ribosomal level. This is in keeping with its identification as an 

interactor with the U2 splicing component (Will et al, 2002). Although 

characterised as an RNA-helicase, given that several RNA-G4 binding 

proteins also show DNA-G4 affinity, for example TRF2 and XRN1 (see 

1.5.5.2), a nuclear localisation also suggests the possibility of DNA-specific 

roles. In support of this, recombinant human DDX42 selectively bound several 

parallel G4-structures in vitro with nanomolar affinity: RNA-G4s from the 5’-

UTR of NRAS and BCL2, and MYC promoter DNA-G4. For the RNA-G4s, this 

affinity correlated with G4 thermodynamic stability, as DDX42 bound the 

NRAS RNA-G4 with 4-fold greater affinity than the less stable BCL2-G4 

(Kumari et al, 2007; Shahid et al, 2010). Additionally, DDX42 bound the 

NRAS RNA-G4 folded under lithium conditions, with 10-fold less affinity than 

the KCl folded counterpart. This may reflect the cationic stability dependence 

of G4s (Huppert & Balasubramanian, 2005; Davis, 2004). In addition to 

binding the BCL2 intramolecular G4, DDX42 could also bind the 

intermolecular structure, albeit with a much lower affinity. This could reflect a 

biological phenomenon that DDX42 binds intermolecular structures more 

weakly than intramolecular G4s. More likely the observation reflects a kinetic 

property, with intermolecular G4 formation being less likely and more 

transiently to form due to the loss of entropy of two molecules becoming one 

(Van Rysselberghe, 1935). Having confirmed that DDX42 could bind G4s in 

vitro, the next step would be to investigate whether DDX42 can also unwind 

these structures, to delineate whether DDX42 is a G4-specific helicase. 
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The effect of DDX42-deficiency on HT1080 nuclear G4 levels was also 

investigated. It was hypothesised that G4-ligand synthetic lethality arises from 

an inability to resolve either RNA/DNA-G4s causing translation, splicing or 

transcriptional blockages either at a global scale or at a small subset of G4s. 

Global BG4-foci levels were found unaltered upon DDX42 depletion, 

suggesting that DDX42 is not a universal G4-resolvase. This may make 

evolutionary sense, since if one protein was responsible for unwinding a 

significant proportion of the prevalent G4 structures, the cell would be acutely 

susceptible to mutations in this gene. Thus a universal resolvase would be 

incompatible with the ‘genetic redundancy’ theory in which genes with 

overlapping functions exist to allow genetic buffering and minimise adverse 

phenotypes (Kafri et al, 2009). In the nucleus, the majority of BG4 signal is 

derived from genomic DNA-G4 which can be largely abolished via DNAse 

treatment (Biffi et al, 2013). Therefore, an alternative explanation is that, 

although able to bind RNA and DNA-G4s in vitro, within the nucleus DDX42 

only binds and/or unwinds RNA structures. Perhaps an increase in nuclear 

RNA-G4 levels is obscured by the large DNA-signal, thus is an artifact of the 

sensitivity limit of this method. Further, although it is hypothesised that the 

BG4 foci represent G4s, it is unknown if these represent a cluster of G4s or 

only detect G4s at specific loci. Therefore, even if DDX42 depletion does 

increase DNA- and/or RNA-G4 levels, this may not correlate with increased 

nuclear BG4 foci. Therefore, a more appropriate technique to detect 

alterations in DNA-G4 number following DDX42-depletion would be via G4-

ChiP-seq (see section 1.3.1). Alternatively, it would be of interest to map the 

binding site of DDX42 via ChIP-seq, to investigate whether DNA-G4s are 



	 184 

genome-wide targets of DDX42, in an analogous manner to the mapping of 

the transcriptional helicases XPB and XPD to G4-motifs at transcription start 

sites (Gray et al, 2014). 

 

If DDX42 is not a global G4-resolvase, DDX42 may bind to and/or unwind a 

specific subset of G4 structures. Given the presence of DDX42 in 

spliceosome complexes (Will et al, 2002), the most likely candidate substrates 

are mRNA G4s. In the absence of DDX42, perhaps these mRNAs are 

improperly processed, a defect exacerbated by G4-stabilising ligands, in turn 

inhibiting the growth rate of cells. Although the effect of DDX42 depletion on 

processing of specific transcripts has not been investigated, this mechanism 

has been explored for other essential splicing factors including SRSF10 and 

HNRNPM, genes also identified as G4-ligand sensitisers in the genetic screen 

(see section 2.4.5). SRSF10 was shown to be a key pre-mRNA splicing 

regulator of BCLAF1 (Bcl-2-associated transcription factor 1). SRSF10-

depletion promoted exon5a inclusion of BCLAF1 which was sufficient and 

necessary to increase colon cancer growth rate (Zhou et al, 2014). 

Conversely, hnRNPM-depletion inhibits breast cancer growth and metastasis 

in mouse models specifically due to incorrect alternative splicing of CD44 (Xu 

et al, 2014b). These case studies highlight that dysregulation of a single pre-

mRNA substrate can significantly impact cellular growth rate, a mechanism 

that may also be shared by DDX42. Thus for future investigation it would be of 

merit to perform RNA immunoprecipitation to identify DDX42 associated 

RNAs, and analyse the PQS prevalence in the enriched sequences. 

Additionally, transcriptome-wide analysis of alternative splicing differences 
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between wild-type and DDX42-deficient cells could be performed, as 

successfully achieved for SRSF10 knockout cells (Zhou et al, 2014). For a 

more focused approach, several mRNAs contain G4s that are thought to 

contribute to their alternative splicing: IGF-II (Christiansen et al, 1994), TP53 

(Marcel et al, 2011), BACE1 (Fisette et al, 2012) and CD44 (Xu et al, 2014). 

Thus it is of merit to investigate the splicing alteration of these mRNAs 

following DDX42 depletion. 

 

Finally, the effect of G4-ligand treatment on DDX42 expression levels was 

investigated. Such regulation at the gene expression level would be 

compatible with the gene and mRNA structure of DDX42 (Uhlmann-Schiffler 

et al, 2006a, section 4.1.1). DDX42 protein levels were decreased following 

treatment with PDS and PhenDC3 at concentrations used to validate synthetic 

lethality in HT1080 DDX42-deficient cell lines (section 3.2.1). This decrease 

was particularly apparent for PhenDC3 treatment where DDX42 protein 

expression was comparable to that seen following siRNA-induced knockdown. 

A decrease in DDX42 was not seen following CX-5461 and SA-100-128 

treatment, although DDX42-deficient cells are also sensitive to these ligands. 

Thus although DDX42 was downregulated following PhenDC3 treatment, this 

does not seem to reflect a universal response to G4-ligand treatment and is 

unlikely to be the only mechanism behind the synthetic lethality observed.  

 

On a wider level, the identification of DDX42 as a novel G4-binding protein in 

vitro also supports the concept that other specific interactors may exist within 

the sensitiser list of over 700 proteins (chapter 2). The lack of alteration in 
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nuclear G4 levels following DDX42 depletion may highlight that synthetic 

lethality with low-level G4-ligand treatment can arise from slight alterations 

rather than large-scale changes in endogenous regulatory mechanisms. More 

concrete support for this will arise based on the outcome of the further 

experiments I suggest above. Additionally, differences in the ability of the 

different G4-ligands to alter DDX42 expression levels, reflects a recurring 

theme within the G4-field and also this thesis. Despite their hypothesised 

common in vitro G4-targets, cellular treatment with G4-ligands can give 

differential phenotypes, which must be carefully considered when designing 

and adapting these molecules for future clinical use. 
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Chapter 5 

Identifying gene deficiencies that cause 

resistance to G4-ligand induced cell death 

 

5.1 Objectives 

In chapter 2, a genetic shRNA screen approach (genome-wide and focused) 

was described for identifying synthetic lethal interactions with the G4 ligands 

PDS and PhenDC3, using low ligand doses and cell death as an experimental 

readout (Figure 5.1, gene C). Within this dataset, gene deficiencies also 

resulted in a growth advantage in the presence of these molecules compared 

to DMSO treatment alone (Figure 5.1, gene A). For this chapter, these genes 

will be investigated to give insight into the possible resistance mechanisms 

cells can develop in response to treatment with G4-stabilising ligands. 

Furthermore, a subset of these identified resistance genes will be 

supplemented with a secondary siRNA experiment to provide further 

validation. The use of a low GI20 ligand concentration, used to identify the 

most sensitive vulnerabilities, potentially does not provide a sufficiently strong 

driving pressure to engage all resistance mechanisms, compared to a classic 

‘positive’ selection screen where most cells die, and ‘surviving’ cells are 

expanded (reviewed in Miles, Garippa, & Poirier, 2016). However, gene 

knockdowns that consistently cause resistance across the genome-wide and 

focused screens are unlikely to be false positives and worthy of exploration as 

important in G4-ligand induced resistance. Overall, this chapter aims to 
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provide further insights into 1) the cellular response to G4 stabilisation and 2) 

undesirable off-target effects for G4-ligands in order to lay the foundations to 

develop more targeted G4-stabilising ligands. Minimising such non-specific 

toxicities could widen the sensitivity window between normal cells and those 

with backgrounds acutely sensitive to G4-stabilisation. Additionally, this 

investigation may reveal key genes and/or pathways that when depleted 

reduce the number of intracellular G4s accessible to PDS and PhenDC3, 

complementing the synthetic lethality investigations outlined in chapter 2, and 

revealing genotypes that may not be applicable to G4-ligand treatment.  

Figure 5.1. Identifying gene deficiencies that cause resistance to G4-stabilising ligands 
via genetic shRNA screening  
Cells expressing genome encoded synthetic shRNAs against protein coding 
genes were cultured with G4-stablising l igands for 15 population doublings 
(t15), and shRNA counts were quantif ied and compared for t0 and t15. shRNAs 
can be classified into three categories based on their differential expression in 
t15 versus t0: 1) shRNA is present at greater levels in t15 versus t0 suggesting 
that the shRNA-induced protein knockdown offers the cells l igand specific-
growth advantage, referred to as ‘resistance’ (green shRNA targeting protein A); 
2) shRNA representation is unaltered, suggesting that growth rate was 
unaffected by the protein depletion, i.e. “neutral” (yellow shRNA targeting 
protein B); 3) shRNA is depleted in t15 versus t0, suggesting this protein 
deficiency causes sensitivity to G4-stabil ising l igands (purple shRNA, protein 
C). Scenario 3 has been evaluated from a synthetic lethality perspective in 
chapter 2. Within this chapter resistance is analysed by investigating the genes 
and shRNAs that contribute to scenario 1. 



	 189 

5.2 Results 

5.2.1 Defining a list of resistance genes from across the genome-

wide and focused screens 

 For the A375 genome-wide screen, following ligand or DMSO treatment, 

15,015 hairpins were differentially expressed across all three treatments 

(Figure 5.2A). From these, a gene knockdown was classified as causing 

significant growth advantage following ligand treatment, if 50 % or 3 hairpins 

had a positive log2FC with an FDR ≤ 0.05, in PDS or PhenDC3 but not in 

DMSO vehicle control (713 genes, Figure 5.2B). Of these, 510 exhibited a 

log2FC ≥ 1 (i.e. a minimum 2-fold increase) and were denoted G4 ‘resistance’ 

genes (Figure 5.2C).  

 

Of the genome-wide resistance genes, 464 (91 %) were included in the 

custom focused pool alongside the 751 sensitiser genes (discussed in chapter 

2). The remaining 46 genes were excluded as they were only targeted by one 

hairpin (see Methods for further details). As mentioned previously, this 

focused screen was applied to the HT1080 and A375 cell lines and 

significantly upregulated shRNAs (Figure 5.2D&G) and genes (Figure 

5.2E&H) classified using the genome-wide parameters. Further applying 

log2FC ≥ 1 threshold revealed that 207 (A375; Figure 5.2F) and 165 (HT1080; 

Figure 5.2G) gene knockdowns caused ligand specific resistance. Giving 

confidence that the majority of identified resistance genes are not false 

positives, only a small number of the genome-wide resistance genes were 

uncovered in the DMSO control during focused screening (A375 23 genes; 

4.9 % and HT1080 43 genes; 9.3 %) (Figure 5.2E&H). Also considered within 
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our analysis of G4-ligand induced resistance, were genes uncovered with the 

SA-100-128 focused screen (Figure 5.2J-N, see also chapter 3). For this, 20 

ligand-specific upregulated genes were observed in A375 despite the lack of 

growth rate difference between DMSO and SA-100-128 treated samples 

(Figure 5.2J-L). For HT1080, no resistance genes were identified, perhaps 

suggesting that the SA-100-128 concentration was too low in an already 

restricted screen to induce resistance mechanisms (Figure 5.2M&N). An 

alternative biological explanation could be that there are no resistance genes 

in the HT1080 cell line, however this warrants further investigation. 
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Figure 5.2. Gene sets that when knocked down cause resistance to G4-stabilising 
ligand treatment revealed by genome-wide and focused shRNA screening (see overleaf 
for figure legend description) 
(A-C) Venn diagrams from the genome-wide A375 screen showing (A) 
significantly differentially expressed shRNAs (FDR <0.05), (B) significantly 
upregulated genes and (C) l igand specific resistance genes. 
(D-F) As (A-C) for focused screening in A375 cells; (G-I) As (D-F) for HT1080 
cells. (J-L) SA-100-128 A375 focused screen (J) significant differentially 
expressed shRNAs, (K) significant upregulated genes, (L) table showing the 20 
l igand specific upregulated genes, with their associated significant shRNAs and 
median log FC. (M-N) SA-100-128 HT1080 focused screen (M) significant 
differentially expressed shRNAs, (N) significant upregulated genes. 
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The 510 resistance genes identified in the genome-wide screen was used to 

globally investigate gene deficiencies associated with G4-ligand resistance 

(section 5.2.2). Additionally, the resistance genes outlined above for PDS and 

PhenDC3 treatment in the focused screens were overlapped with the parent 

screen to allow 1) PDS and PhenDC3 resistance comparisons and 2) identify 

consistent, resistance genes common to both cell lines (Figure 5.3). For A375, 

this revealed 104 and 44 reproducible PhenDC3 and PDS hits (145 total, 

Figure 5.3A). Comparing the genome-wide and HT1080 focused screens 

revealed 6 and 41 PhenDC3 and PDS resistance genes respectively (45 total, 

Figure 5.3B). Also compared were focused screen specific resistance genes 

(Figure 5.3C) to reveal five PhenDC3 and 30 PDS common hits. The 

identified genes in the different screens and with different ligands (outlined in 

Figure 5.2 and 5.3) will now be evaluated.  
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Figure 5.3. Focused screening reveals high confidence resistance hits 
Venn diagrams showing the overlap of PDS and PhenDC3 resistance genes for 
(A) genome-wide and A375 focused screens, (B) genome-wide and HT1080 
focused screens, (C) A375 and HT1080 focused screens. 

 

5.2.2 Resistance genes uncovered by genome-wide screening 

provides a global view of G4-ligand resistance 

First, to gain unbiased and systematic insights into possible resistance 

mechanisms to G4-ligand treatment, genome-wide resistance genes (i.e. 

gene deficiencies that caused resistance to either PDS and/or PhenDC3 in 

the genome-wide screen) were analysed. Inter-gene interactions were 

evaluated via STRING, performed with experimental evidence and 

coexpression data parameters and a high confidence threshold (0.7, Figure 

5.4). This revealed a transcription factor cluster, including core transcriptional 

machinery components alongside tumour suppressors (e.g. TP53, RB1 and 
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TP53IL) and a suite of interacting genes (Figure 5.4A). Smaller clusters of 

vacuolar protein sorting genes (VPS53, VPS52 and VPS54) and lysosomal 

ATPase components (ATP6V1C1, ATP6V0D1, ATP6V0D2, ATP6V1E1 and 

ATP6V1G1) were also seen (Figure 5.4C). For RB1, TP53 and TP53IL1 (an 

early transcriptional TP53 target) shRNA-enrichment following ligand 

treatment was high (Figure 5.4D). For example, RB1 shRNA-induced 

knockdown resulted in a log2FC of 3.9 in PDS and 3.5 in PhenDC3 (~14-fold 

increase). This suggests that these genes are key in the cellular response to 

G4-ligand treatment, which may arise from an increase in G4-structure 

stabilisation. 
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Figure 5.4. Genome-wide resistance genes show a transcription related interacting 
network including cancer related genes 
(A-C) STRING (v2) network analysis using experimental evidence and 
coexpression data and a high confidence interaction threshold (0.7) of the 510 
genome-wide resistance hits (A) cluster 1, largest cluster of transcription factors 
and associated proteins with the cancer association highlighted for selected 
genes, (B) cluster 2 of vacuolar proteins, (C) cluster 3 of ATPase components, 
(D) table showing the number of significant hairpins and associated log2FC for 
the tumour suppressors within cluster 1: TP53, TP53I11 and RB1. 
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To investigate the pathways involved in resistance to G4-ligands further, 

Cytoscape was used to analyse enriched KEGG and GO pathways for 

genome-wide hits (Figure 5.5). These can be broadly separated into two 

categories, 1) genes involved in drug uptake and processing (energy, 

transport, secretion, lysosome) and 2) nucleic-acid related genes involved in 

transcription and covalent modification. For genes identified via Cytoscape, 

enriched GO and KEGG terms are shown below in Figure 5.6. 
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Figure 5.5. Genome-wide resistance genes are enriched in transcription, chromatin 
modification and lysosome associated terms 
Cytoscape analysis for enriched KEGG and GO terms for the 510 genome-wide 
resistance genes showed two main categories of genes: (A) transcription and 
chromatin modification and (B) energy transport and secretion. Significance was 
determined using Bonferroni adjustment (p < 0.05) and p-value correction for 
multiple hypothesis testing. Node shape indicates database and colour 
represents significance (as outl ined in the figure). Node size reflects the 
number of genes contributing to the term. 
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Figure 5.6 Genome-wide resistance genes show enrichment of general transcription 
factors and chromatin remodellers 
(A-C) Enriched terms ordered by –log10 P-value (most to least significant); 
significance determine p < 0.05 for (A) GO Molecular Function terms, (B) GO 
Biological Processes and (C) KEGG pathway. Blue indicates 
transcription/chromatin modification related terms. (D) Table showing the genes 
enriched in chromatin and transcription associated terms for the genome-wide 
sensitisers. 
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5.2.3 Identifying gene deficiencies resulting in specific ligand 

resistance 

To gain insights into ligand resistance effects specific to each molecule 

focused screen resistance genes were next explored. For the 145 resistance 

genes overlapping the genome-wide and A375 focused screens, chromatin/ 

histone associated gene enrichment in addition to lysosome/ligand-related 

terms were again observed (Figure 5.7A-E). Of the 39 genes that contributed 

the transcription and chromatin enrichment within the genome-wide screen, 

15 reemerged in the focused screen (Figure 5.7E&F). 

 

Specifically focusing on the 104 recurring PhenDC3 resistance genes, similar 

KEGG and GO enrichment terms are revealed (Figure 5.7G-I). These include 

several PhenDC3-specific transcription associated genes such as HOXA1, 

HOXA11, HOXB4 and SP3, a transcription factor that regulates DNMT1 

expression (Kishikawa et al, 2002), a protein recently investigated in our lab to 

have DNA-G4 affinity (S. Mao et al. in press 2018) (Figure 5.7J). For PDS, 

there were too few resistance genes to analyse enrichment (44 genes causing 

PDS resistance in both the A375 genome-wide and focused screen). 

However, within this list, were also chromatin and transcription associated 

genes. The former comprises enzymes involved in post-translational 

modification of histones including ubiquitnation (BMI-1) and lysine methylation 

(SUV420H1). For the latter, deficiencies in the oncogenic leucine zipper, 

MAF1 and three zinc finger transcription factors, PHF6, ZNF268 and ZNF217 

were uncovered as inducing PDS resistance. Only one of these deficiencies, 

ZNF217, was also found to cause PhenDC3 resistance (see below). 
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Figure 5.7. Focused screening in A375 cells reflects similar resistance gene 
enrichment as seen by genome-wide screening 
(A-C) Enriched terms ordered by –log10 P-value (most to least significant) for 
the 145 resistance genes replicated by A375 focused screening; significance 
determine p < 0.05 for (A) Gene Ontology Molecular Function terms, (B) Gene 
Ontology Biological Processes and (C) KEGG pathway. In blue are 
transcription/chromatin related terms. (D) genes that contribute to the 
enrichment of chromatin and transcription associated terms for the 145 A375 
focused screen sensitisers.(E) Venn diagram showing the overlap between the 
resistance genes from the A375 focused screen and the 39 genes that 
contributed to chromatin and transcription terms within the genome-wide 
resistance genes and (F) the 15 genes in common. (G-I) Enriched (G) GO 
molecular function, (H) GO biological process and (I) KEGG terms for PhenDC3 
resistance genes with transcription and chromatin related terms shown in blue 
which are l isted in (J) with HOX genes shown in red. 
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Next, the HT1080 focused screen was used to identify resistance genes 

common to both cell lines. Overlapping resistance genes, regardless of ligand 

(i.e. PDS or PhenDC3), across all screens (Figure 5.8A) gave 40 genes that 

when knocked down caused consistent resistance to ligand treatment. 

Several databases were used to categorise these according to their ligand-

related (transport, energy and lysosome), nucleic acid related and “other” 

roles (Figure 5.8B). 

 

 

Figure 5.8. 40 high confidence resistance hits identified across all screens 
(A) Venn diagram showing the overlap of the resistance genes (FDR ≤  0.05, 50 
% or 3 hairpins log2FC > 1) from the genome-wide screen and the focused 
screens in A375 and HT1080. 
(B) DAVID, STRING (experimental data, co-expression, medium confidence (≥  
0.4)) interaction and UniprotKB data was used to categorise the common 
resistance hits. These were broadly d into “Transport, Energy and Lysosome”, 
“Nucleic acid related” and “Other” roles 
 

Then, PDS and PhenDC3 hits common across all screens were considered 

(Figure 5.9A&B). This gave 15 consistent PDS (Figure 5.9A) and four 

consistent PhenDC3 (Figure 5.9B) hits. Only one gene deficiency, ZNF217, 

was found to be independent of screen and ligand treatment (Figure 5.9C). 

For the focused screens in isolation, a lack of DHX29 was additionally 

identified to cause resistance (Figure 5.9D).  
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Figure 5.9. Focused screening reveals consistent PDS and PhenDC3 resistance hits 
Venn diagrams showing the overlap of resistance genes (FDR <0.05, 50 % or 3 
hairpins, log2FC > 1) for (A) PDS for all three screens, (B) PhenDC3 across all 
three screens, (C) PDS and PhenDC3 across all three screens, (D) PDS and 
PhenDC3 in HT1080 and A375 focused screen 
 

 

Finally, the 20 genes that caused a growth advantage following treatment with 

the top “drug-like” PDS derivative, SA-100-128 (Figure 5.2 K and L) were 

overlapped with PDS and PhenDC3 resistance genes to investigate 

commonalities across all screens and revealed six genes, including the 

transcription factors ZNF268 and HOXA11 (Figure 5.10). Considering only 

genes uncovered via focused screening, revealed that DHX29 deficiency also 

provided a growth advantage for A375 cells in the presence of SA-100-128, 

as was previously seen for PDS and PhenDC3 treatment of A375 and 

HT1080 cells. 
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Figure 5.10. SA-100-128 focused screen reveals common resistance genes with PDS 
and PhenDC3 
Venn diagram overlapping the PDS and PhenDC3 resistance genes (FDR ≤  
0.05, 50 % or 3 hairpins, log2FC > 1) from the three screens: A375 PDS and 
PhenDC3 genome-wide; A375 focused screen PDS and PhenDC3; HT1080 
focused screen PDS and PhenDC3, with the upregulated SA-100-128 genes 
uncovered in the A375 focused screen (FDR ≤  0.05, 50 % or 3 genes, log2FC > 
0) 
 

 

 

 

 

 

 

 



	 204 

5.2.4 Validation of resistance genes via a short-term siRNA 

approach 

As for the four key sensitisers (chapter 3: BRCA1, TOP1, GAR1 and DDX42), 

resistance to PDS and PhenDC3 was independently verified by a short-term 

siRNA approach. For this, four genes were selected based on their consistent 

identification in multiple screens with different G4-stabilising ligands and/or 

enrichment in pathway analyses. The first two genes (see section 5.2.3) 

chosen were the predicted zinc finger ZNF217 (Lee et al, 2016) and RNA-

helicase DHX29 (Parsyan et al, 2009). The third gene selected was the 

general transcription factor TAF1 (Wassarman & Sauer, 2001), given the 

general enrichment of transcription-associated genes and the consistent 

resistance to PhenDC3 in all shRNA screens upon depletion of this gene. 

Finally, DDX39A, a DEAD box RNA helicase (Sugiura et al, 2007b) was the 

fourth gene selected due to its functional similarity to DHX29 and to make 

comparisons to DDX42 which, despite belonging to the same helicase family 

was validated as a G4-ligand sensitiser (see chapter 3). The significant 

hairpins and associated median log2FC values for these four selected genes 

are summarised below for all shRNA screens (Figure 5.11). 
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Figure 5.11. Four resistance genes identified by shRNA screening chosen for siRNA 
validation 
(A-C) tables summarising the log2FC and significant hairpins (FDR ≤  0.05) for 
ZNF217, DHX29, TAF1 and DDX39A for (A) genome-wide A375 shRNA screen, 
(B) A375 focused shRNA screen and (C) HT1080 focused screen. ✓  = passed, 
�  = did not pass the 50 % or 3 significant hairpin threshold, median log2FC > 1 
criteria for a gene knockdown considered to cause PDS and/or PhenDC3 
resistance. 

 

 

A schematic of two possible outcomes expected for siRNA-induced resistance 

is depicted below (Figure 5.12): 

1) siRNA-induced target protein depletion does not cause growth 

differences under DMSO conditions compared to the control non-

targeting siRNA, but causes a growth advantage following G4-

ligand treatment 

2) Protein knockdown causes growth inhibition compared to the non-

targeting siRNA in DMSO treated cells, but this inhibition phenotype 

is relieved by G4-ligand treatment 
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Figure 5.12. Possible outcomes for a siRNA model for G4-ligand resistance genes 
Scenario (1) knocking down the protein does not cause a growth defect 
compared to the non-targeting in DMSO treatment but causes a growth 
advantage following G4-ligand treatment. Scenario (2) Knocking down the 
protein causes a growth defect compared to non-targeting control in the DMSO 
condition, but this growth defect is reduced in the presence of G4-ligand 
treatment. Solid l ines = DMSO treatment; Dotted l ines = G4-ligand treatment; 
Red = non-targeting siRNA; Blue = Targeting siRNA. 
 

HT1080 and A375 cells were transfected separately with siRNAs targeting 

ZNF217, DHX29, DDX39A and TAF1 alongside non-targeting siRNA and non-

transfected controls. Following 24 h, cells were treated with PDS, PhenDC3 or 

vehicle control for 144 h (A375: 5 µM or 10 µM PDS, 40 µM or 70 µM 

PhenDC3; HT1080: 0.25 µM or 0.5 µM PDS, 20 µM or 40 µM PhenDC3) 

(Figure 5.13 and 5.14, HT1080 and A375 respectively).  
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Figure 5.13. Short-term siRNA knockdowns in HT1080 of ZNF217, DHX29, TAF1 and 
DDX39A ahow altered growth profiles in the presence of PDS and PhenDC3 
HT1080 cells were transfected with targeting siRNAs (orange) against  ZNF217, 
DHX29, TAF1 or DDX39A for 24 h before treatment with PDS (0.25 µM and 0.5 
µM), PhenDC3 (20 µM and 40 µM) or vehicle control (DMSO). For each 
knockdown, confluency over 144 h was monitored and plotted against 
confluency of non-transfected cells (blue) and cells transfected with a non-
targeting control siRNA (green). Experiments were performed in triplicate and 
average confluency accumulation shown (mean ± standard deviation). 
 

 

 

 
 



	 208 

Figure 5.14. Short-term siRNA knockdowns in A375 of ZNF217, DHX29, TAF1 and 
DDX39A ahow altered growth profiles in the presence of PDS and PhenDC3 
A375 cells were transfected with targeting siRNAs (orange) against  ZNF217, 
DHX29, TAF1 or DDX39A for 24 h before treatment with PDS (5 µM and 10 µM), 
PhenDC3 (40 µM and 70 µM) or vehicle control (DMSO). For each knockdown, 
confluency over 144 h was monitored and plotted against confluency of non-
transfected cells (blue) and cells transfected with a non-targeting control siRNA 
(green). Experiments were performed in triplicate and average confluency 
accumulation shown (mean ± standard deviation). 
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For reasons outlined in chapter 3, section 2.1, the non-targeting siRNA 

transfected cell growth curve (non-targeting control) was used as a reference, 

for each ligand/DMSO treatment condition. To confirm protein depletion, cell 

lysates were immunoblotted with appropriate antibodies 48 h post-transfection 

(Figure 5.15A and Figure 5.16A; HT1080 and A375 respectively). For both 

HT1080 and A375 (Figure 5.15B and 5.16B), protein depletion was evident for 

all targeting siRNAs (ranging from 30 – 65 % knockdown for A375, and 38 – 

89 % knockdown for HT1080). Next, confluency differences compared to the 

non-targeting control for treated samples were investigated and analysed as 

in chapter 3 (Figure 5.15 and 5.16C-J). In summary ZNF217-knockdown 

provided resistance to PDS and PhenDC3 in HT1080, but only PhenDC3 in 

A375. For HT1080, this growth advantage only becomes apparent after 96 h. 

DHX29-deficiency did not replicate the ligand sensitivities shown in the 

screen, at the doses and treatment durations tested, showing a phenotype 

more associated with sensitisation. TAF1-deficiency also caused resistance to 

PhenDC3, and to a lower extent PDS, in both cell lines for the short-term 

siRNA experiment. Lastly, DDX39A knockdown caused both PDS and 

PhenDC3 resistance for HT1080, but not A375. Moreover, the phenotype 

seen for ZNF217-deficient cells reflects an increased growth rate in the 

presence of G4-ligands (scenario 1) whereas for TAF1 and DDX39A, the 

knockdown seems to rescue the G4-ligand growth inhibition phenotype 

(scenario 2). 
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Figure 5.15. Short-term siRNA knockdowns to validate resistance genes identified by 
shRNA screening in HT1080 
(A) Representative western blots showing lysates immunoblotted for ZNF217, 
DHX29, TAF1, DDX39A and beta-actin loading control for non-transfected cells 
(U) and cells transfected with targeting (T) and non-targeting control (NT) 
siRNA, 48 h after transfection  
(B) ZNF217, DHX29, TAF1, DDX39A proteins levels in targeting lysates were 
normalized internally to the beta-actin loading controls and expressed as a 
percentage of the levels in the non-targeting control for two independent blots 
(mean ± standard deviation). 
(C-J) HT1080 cells were transfected with the targeting siRNAs for 24 h before 
PDS, PhenDC3 or DMSO treatment. Confluency difference (mean ± standard 
deviation) compared to NT siRNA were plotted across two biological replicates 
for A) ZNF217, B) DHX29, C) TAF1, D) DDX39A. Confluency differences at 48, 
72, 96 and 120 h were plotted for comparison for E) ZNF217, F) DHX29, G) 
TAF1, H) DDX39A. Significant confluency differences for G4-ligand versus 
DMSO treatment were determined using an unpaired parametr ic t-test, 
assuming equal standard deviation. 
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Figure 5.16. Short-term siRNA knockdowns to validate resistance genes identified by 
shRNA screening in A375 
(A) Representative western blots showing lysates immunoblotted for ZNF217, 
DHX29, TAF1, DDX39A and beta-actin loading control for non-transfected cells 
(U) and cells transfected with targeting (T) and non-targeting control (NT) 
siRNA, 48 h after transfection  
(B) ZNF217, DHX29, TAF1, DDX39A proteins levels in targeting lysates were 
normalized internally to the beta-actin loading controls and expressed as a 
percentage of the levels in the non-targeting control for two independent blots 
(mean ± standard deviation). 
(C-J) A375 cells were transfected with the targeting siRNAs for 24 h before 
PDS, PhenDC3 or DMSO treatment. Confluency difference (mean ± standard 
deviation) compared to NT siRNA were plotted across two biological replicates 
for A) ZNF217, B) DHX29, C) TAF1, D) DDX39A. Confluency differences at 48, 
72, 96 and 120 h were plotted for comparison for E) ZNF217, F) DHX29, G) 
TAF1, H) DDX39A. Significant confluency differences for G4-ligand versus 
DMSO treatment were determined using an unpaired parametric t-test, 
assuming equal standard deviation. 
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5.3 Discussion 

5.3.1 General observations 

The studies described in this chapter aimed to investigate gene depletions 

that cause resistance to G4-stabilising ligand treatment. Ligand resistance in 

cells may arise due to decreased uptake, greater extrusion and/or decreased 

target accessibility (reviewed in Gottesman, 2002). In this case, the target is 

the G4 structure. Other common mechanisms of resistance to 

chemotherapeutic drugs include mutation of the drug target, for example 

active site mutation, or upregulation of compensating pathways, to circumvent 

the pathway and/or protein that has been pharmacologically inhibited (Zheng, 

2017). I propose that the resistance genes uncovered, and discussed in this 

chapter, fall into two main categories: 1) lysosome and energy related genes 

and 2) transcription and chromatin modification related genes. The latter may 

reflect a reduction in binding sites for PDS and PhenDC3, as transcriptional 

and chromatin compaction alteration is hypothesised to reduce the number of, 

and/or accessibility to, DNA-G4s and RNA-G4s. Conversely therefore, 

increased transcription and chromatin relaxation may facilitate ligand G4-

binding, and increase sensitivity to these molecules.  

 

In support of the transcription/chromatin-related hypothesis, the strand 

separation and torsional stress associated with transcription encourages G4 

formation (reviewed in Kim, 2017) and treatment of SV40-transformed MRC-5 

cells with the pol II transcriptional inhibitor DRB, prevents PDS-induced DNA 

damage (Rodriguez et al, 2012; Bensaude, 2011). Supporting a correlation 

between chromatin relaxation and a potential increase in G4-ligand binding 
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sites, treatment of HaCaT cells with the HDAC inhibitor entinostat expanded 

open chromatin sites, correlating with an increase of 4,000 G4 peaks, as 

visualised by G4 ChIP-seq (Hänsel-Hertsch et al, 2016). 

 

Extending this hypothesis, both transcription and translation are increased in 

many cancers to support increased proliferation and biosynthesis (Martín-

Martín et al, 2017; Bhat et al, 2015; Bywater et al, 2013). This could contribute 

to the increased G4s in several cancers compared normal tissues (Biffi et al, 

2014b). One way of chemotherapeutically exploiting cancer-associated 

transcriptional upregulation in solid tumour xenograft models is through RNA 

polymerase (RNAP) inhibition by TAS-106 (Friday et al, 2012). Based on the 

results of this chapter, an alternative approach could be the use of G4-ligands 

to target the potential increase in G4-structures (this will be discussed in more 

detail in section 5.3.2).  

 

The global lysosome term enrichment, particularly evident in the A375 

genome-wide screen, suggests that lysosomal deficiencies provide a growth 

advantage to G4-stabilising ligand treatment. I hypothesise that these reflect 

off-target ligand effects and that, in lysosome-proficient cells, these organelles 

are involved in the cellular response to PDS and PhenDC3 treatment. In 

particular, they contribute to sensitivity unrelated to stabilisation of G4-

structures, as indicated by the fact that depletion of a single lysosome 

component (e.g. individual components of the lysosomal ATPase) is sufficient 

to induce G4-ligand resistance.  
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This could be a result of ‘lysosomal trapping’ a phenomenon reported for 

other bulky, cationic lipophilic drugs (Kazmi et al, 2013). Given that G4-ligand 

targets are nuclear (DNA/RNA) and cytoplasmic (RNA), lysosomal 

accumulation would prevent PDS and PhenDC3 from reaching the desired 

binding sites. This may indicate a requirement to reduce lysosomal trapping in 

the future development of clinical G4-stabilising ligands. However, the best in 

vitro G4 stabilisers are inherently planar, aromatic and amine-rich, features 

known to exacerbate lysosome trapping for other molecules (Kazmi et al, 

2013). Therefore weaker G4-stabilising ligands with reduced lysosome 

accumulation may be more clinically appropriate. To test this hypothesis, one 

could exploit the focused G4 shRNA pool (developed in chapter 2), to screen 

future clinical G4-ligands and investigate whether such molecules engage 

similar synthetic lethalities and chromatin/transcription-related resistance 

genes to PDS and PhenDC3 while reducing the emergence of lysosome 

related hits. 

 

Deficiencies in several solute carrier components (SLC) proteins that perform 

facilitative and secondary transporter roles within the cell and golgi 

membranes (He et al, 2009) were also found to cause a G4 ligand resistance 

phenotype. Examples include three of nine SLC12 isoforms (A7, A10 and A9) 

that function as cation cotransporters responsible for of K+ and Cl- uptake. 

One interpretation of this resistance phenotype is that by reducing the 

intracellular concentration of K+, a cation that stabilises endogenous G4 

structures, through the depletion of SLC, the ability for intracellular G4 to form 

might be reduced. As SLC12 transporter deficiencies have been linked to 
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peripheral neuropathy (Howard et al, 2002), it would be interesting to 

investigate whether reduced G4-structure formation contributes to this 

pathology. Other SLC component deficiencies identified as resistance genes 

may represent off-target effects and thus provide insights into improving the 

specificity of G4-stabilising ligands. For example SLC17A1 and SLC18A3 are 

vesicular glutamate and amine transporters respectively (Eiden, Schafer, 

Weihe, & Schatz, 2004; Reimer & Edwards, 2004) and SLC47A1 is involved 

in multidrug and toxin extrusion (Otsuka et al, 2005). 

 

5.3.2 Hypothesised resistance mechanisms illustrated by specific 

gene-deficiency examples 

Resistance to G4-ligand treatment induced by the deficiency in several core 

transcription components suggests that reduced transcription may decrease 

available G4-binding sites (section 5.3.1). Thus, the converse scenario, where 

transcription is increased may encourage G4-permissiveness and thus G4-

stabilising ligand target accessibility. Among these resistance hits are gene-

deficiencies in TATA-binding proteins associated factors (TAF): 1,2,4,6,12 

and 13, required for pol II transcription (Furukawa & Tanese, 2000). These 

TAFs are overexpressed in and contribute to the malignancy of several 

cancers: TAF2 and TAF4 in high-grade serous ovarian cancers (Ribeiro et al, 

2014); TAF12 in colorectal cancer (Voulgari et al, 2008) and acute myeloid 

leukaemia (Xu et al, 2018); TAF1 in lung and breast cancers (Wada et al, 

1992), HPV-dependent cervical (Centeno, Ramirez-Salazar, Garcia-Villa, 

Gariglio, & Garrido, 2008) and uterine serous cancers (Zhao et al, 2013). 

Inhibiting TAFs has been explored for treatment of such malignancies. An 



	 216 

alternative may be G4-ligand usage to target a hypothesised transcription-

associated G4 increase. 

 

Within the genome-wide resistance investigations, specialised transcription 

factors were also identified, including the tumour suppressors TP53 and RB1. 

TP53 protein can cause cellular apoptosis and senescence following DNA 

damage and/or oncogene overexpression (Schmitt et al, 2002) and is mutated 

in >50 % of human cancers (Ko & Prives, 1996). Given the enrichment of 

DNA damage genes in the PDS and PhenDC3 sensitiser list (Chapter 2), and 

the well-established hypothesis that ligand stabilised G4s can induce a DDR 

(see sections 1.4.2.2 and 1.6), it is perhaps unsurprising, but never before 

shown, that TP53 depletion would provide a growth advantage in the 

presence of a G4-stabilising ligand. 

 

Similarly, Rb1 is mutated/inactivated in the majority of cancers including 

paediatric retinoblastoma (Chinnam & Goodrich, 2011) and prevents cell 

proliferation at the S-phase mitotic checkpoint following genotoxic stress, 

including DNA-damage (Sherr, 2001). Here, Rb1 depletion provided G4-

ligand resistance and similarly, imparts resistance to other DNA-damaging 

chemotherapies, such as cisplatin in breast, lung and prostate cancer cells 

(Sharma et al, 2007), suggesting comparable mechanisms whereby the Rb1 

response to these molecules causes lethality.  

 

Further specific transcription factor examples include three homeobox genes 

(HOXA1, HOXA11 and HOXB4). Deficiencies in these genes showed 



	 217 

consistent PhenDC3 resistance in the genome-wide and focused screens. 

HOXA11 deficiencies also caused PDS resistance in HT1080 cells and a 

growth advantage following SA-100-128 treatment of A375 cells. This 

phenotype may reflect a reduction of transcription causing decreased DNA-

G4 ligand binding sites. Non-transcriptional HOX functions include promoting 

replication and translational regulation (Rezsohazy, 2014; Miotto & Graba, 

2010). As mRNA G4s represent an abundant target and G4-ligand synthetic 

lethality is linked to replication-associated DNA damage, reducing both via 

HOX gene suppression may also explain the observed resistance. 

 

Chromatin remodelling deficiencies also caused G4-ligand resistance, which 

may be linked with the observation that G4-structures are predominantly 

found in nucleosome-depleted chromatin (Hänsel-Hertsch et al, 2016). 

Consequently, in cells lacking genome decompaction machinery, G4s may be 

less abundant and/or inaccessible to PDS and PhenDC3. This is highlighted 

by BRD2- and BRD9- (Bromodomain 2 and 9) deficiencies causing G4-ligand 

resistance, proteins that bind transcriptionally active (i.e. G4-permissiveness) 

euchromatin, increasing chromatin decompaction by recruiting histone 

acetylases and remodellers (reviewed in Belkina & Denis, 2012). Depletion of 

these proteins removes this chromatin decompaction role whereas 

overexpression may increase open chromatin (reviewed in Josling, 

Selvarajah, Petter, & Duffy, 2012). For example, several leukaemias exhibit 

increased BRD2 activity and two BRD inhibitors JQ1 and I-BET, show 

promise in mouse xenograft BRD-driven malignancies (reviewed in Belkina & 

Denis, 2012). Similarly BRD9 depletion prevents mouse and human AML 
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proliferation (Hohmann et al, 2016). If the mechanism behind BRD-deficiency 

induced G4-ligand resistance stems from reduced G4 numbers and/or 

accessibility in closed chromatin, then BRD overexpression in these 

malignancies may increase G4-ligand sensitivity. Therefore targeting G4s 

rather than BRD proteins may provide therapeutic alternatives in these 

cancers.  

 

5.3.3. Four frequent “resistance” genes uncovered via genetic 

screening for further exploration 

Based on the outcome of the PDS and PhenDC3 screens, four resistance 

genes were chosen for siRNA validation: ZNF217, TAF1, DHX29 and 

DDX39A. As discussed in chapter 2, siRNA is a related but independent 

approach to shRNA-induced knockdown. Both ZN7217- and TAF1-depletion 

reflected the resistance seen for the screens. DDX39A-deficiencies reflected 

the resistance phenotype shown by HT1080, but not A375. Intriguingly, 

DHX29-deficiency seemed to cause PDS and PhenDC3 sensitivity in both cell 

lines. The possible mechanisms of the G4-ligand phenotypes following 

depletion of the four proteins are discussed below, alongside putative areas 

for their therapeutic exploitation.  

 

While TAF1 represents a core transcription factor, ZNF217 is a promoter-

specific Kruppel-like transcription factor (Lee et al, 2016). TAF1 validation by 

siRNA supports the hypothesis that general transcription decrease can cause 

G4-ligand resistance, possibly by decreasing the G4 target formation and 

accessibility. Transcription deficiencies may reduce the number of 1) DNA 
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G4-structures at single-stranded transcription bubbles and/or 2) RNA-G4s, 

due to less cytoplasmic transcripts. Similarly to TAFs (section 5.3.2), ZNF217 

is overexpressed in several cancers, correlating with poor prognosis and 

metastasis (Cohen et al, 2015; Quinlan et al, 2007; Plevova et al, 2010). 

ZNF217 activates oncogenes and pluripotency genes (Littlepage et al, 2012; 

Krig et al, 2007) but represses tumour suppressors (Quinlan et al, 2007; 

Banck et al, 2009; Thillainadesan et al, 2008). Bioinformatic analysis of 

promoters of these gene classes show enrichments and depletions of PQS 

respectively (Eddy & Maizels, 2006; Huppert & Balasubramanian, 2007). This 

may explain the G4-ligand resistance observed with ZNF217-depletion, as 

reducing oncogene expression and increasing tumour suppressor 

transcription would cause a net decrease in transcriptionally active, accessible 

promoter G4s. For ZNF217-overexpression, the opposite may occur perhaps 

suggesting such malignancies would be acutely sensitive to treatment with 

G4-stabilising ligands, though this requires further investigation.  

 

DDX39A, an ATP-dependent DEAD box RNA helicase that unwinds dsRNA in 

vitro and increases HeLa cell proliferation when overexpressed (Sugiura et al, 

2007a) was chosen due to homology with DDX42. Whilst DDX42 deficiencies 

resulted in G4-ligand sensitivity (chapter 3), DDX39A-depletion caused a 

growth advantage in the presence of PDS and PhenDC3. As other known G4-

interactors were identified as sensitisers, including DHX36 and XRN1, this 

converse resistance phenotype suggests that DDX39A is unlikely to directly 

bind and/or unwind G4 structures. DDX39A also interacts with the telomeric 

G4-binder TRF2, with depletion causing telomere shortening and DDR 
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induction (Biffi, Tannahill, & Balasubramanian, 2012; Pedroso, Hayward, & 

Fletcher, 2009; Yoo & Chung, 2011). However, as G4-ligands can cause cell 

lethality by telomere deprotection, this is unlikely to be the G4-ligand 

resistance mechanism. 

 

One explanation could arise from the interaction of DDX39A with CIP29, an 

mRNA export factor that regulates gene expression after DDR induction in X. 

laevis (Holden et al, 2017). This interaction increases DDX39A RNA-helicase 

activity in vitro (Sugiura et al, 2007b). Perhaps DDX39A-deficiency reduces 

detection of G4-induced DNA damage, providing a PDS and PhenDC3 

resistance mechanism analogously to that described above for RB1- and 

TP53-deficiency. From a therapeutic perspective, DDX39A is upregulated in 

pancreatic, mesothelioma, bladder and gastrointestinal tumours (Kuramitsu et 

al, 2013a, 2013b; Kato et al, 2012; Kikuta et al, 2012), which may respond to 

G4-stabilising ligand treatment, based on the checkpoint mechanism 

hypothesised here. However, it remains to be explored if DDX39A 

overexpression causes sensitivity, a converse phenotype to what we have 

revealed by depletion. 

 

Of the four proteins, only DHX29 did not replicate any resistance phenotypes 

seen via shRNA screening in the siRNA approach. This is surprising, as 

shRNA-induced DHX29 knockdown also caused a growth advantage 

following SA-100-128 treatment of A375 cells. This suggests a different 

mechanism for short-term (causing PDS and PhenDC3 sensitisation) versus 

long-term treatment. DHX29 is a processive mRNA helicase, necessary for 
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translation initiation for transcripts with structured 5’UTRs in vitro and in vivo 

(Parsyan et al, 2009; Pisareva et al, 2008; Pisareva & Pisarev, 2016). DHX29 

deficiency impedes tumour growth in mouse xenografts (Parsyan et al, 2009), 

congruous with an increased translation requirement. Short-term sensitivity 

may be consistent with DHX29-deficiencies preventing 5’ UTR G4s resolution, 

similar to that seen for DHX36 (Chen et al, 2015). Thus further RNA-G4 

stabilisation caused by PDS or PhenDC3 treatment could cause cell lethality 

in the 6-day siRNA experiment. However, during long-term G4 ligand 

treatment, a translation and proliferation decrease may reduce DNA and RNA 

accessibility to PDS and PhenDC3, circumventing the initial sensitivity seen at 

earlier timepoints. 

 

Overall, resistance gene analysis complements the synthetic lethality 

interactions uncovered in chapter 2, revealing transcription, both core and 

promoter specific, and chromatin remodeling as key determinants of G4 

formation and accessibility by G4-stabilising ligands. Analogously to DDR-

deficiencies representing synthetic lethal interactions with G4-stabilisation, 

here depletion of genes sensing such damage causes resistance. I therefore 

suggest three possible mechanisms for responding to stabilised G4s: i) 

helicases that resolve G4s (e.g. DHX36, RTEL1, DDX42); ii) genes that repair 

damage caused by targeting G4s (e.g. BRCA1, BRCA2, PALB2); iii) removing 

genes encoding senescent/lethality inducing checkpoints that detect G4-

induced damage (e.g. TP53, RB1, DDX39A). Each of these could be 

exploited in a cancer-associated context as discussed above. Additionally, a 

novel candidate for an RNA 5’ UTR G4 helicase was uncovered, DHX29, 
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which is reported to be cytoplasmic, rather than nuclear as for DDX42 and 

thus may act on a different set of RNA-G4s. Resistance analysis further 

indicated lysosome deficiencies as resistance mechanisms to PDS and 

PhenDC3; I propose that these molecules undergo lysosome trapping, 

highlighting an area that needs to be optimised in the generation of “drug-like” 

G4-stabilising ligands for clinical application.  
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Chapter 6 

Overall conclusions and future objectives 

6.1 General aim and objectives  

In this thesis I have outlined a genetic screening approach and preliminary 

validation experiments to identify genes, that when knocked down via RNAi 

result in a difference in the growth (either sensitisation or resistance) of cells 

treated with G4-stabilising ligands (compared to DMSO). The overall aim was 

to understand the genes and pathways that interact with or mediate G4 

formation and function (both RNA- and DNA-G4s) and thus explore the 

biological factors affecting G4-ligand sensitivity. As previously discussed in 

Section 1.9, the outcome of these investigations provide insight into the 

following three interlinked areas:  

 

1) G4 Biology – Understanding the cellular response to stabilised G4s and, 

by inference the processes normally involving and regulating G4s  

2) Putative clinical exploitation  – Identifying possible genotypes acutely 

sensitive to G4-stabilising ligand treatment and increase our understanding of 

these ligands 

3) Technical – Create and optimise a set of tools and resources for future 

testing of different cell lines, novel G4-stabilising ligands and for the 

community to establish new directions in G4-biology.  

  

In addition to generally exploring proteins and pathways interacting with G4s 

and identifying G4-ligand sensitive genotypes, I set out to address several 
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areas within the field. Firstly, whether G4-structures perform functional roles 

or are merely problematic structures that require resolution. Secondly, recent 

evidence has suggested that RNA-G4s are globally unfolded in the cell (Guo 

& Bartel, 2016) despite multiple prior studies suggesting regulatory RNA-G4s 

roles (reviewed in Rhodes & Lipps, 2015), a dichotomy requiring resolution. 

More generally, available G4-stabilising ligands still require further 

exploration, including methods and/or features to improve their G4-specifity 

and medicinal chemistry properties. Additionally, a side-by-side comparison of 

the similarities and/or differences following application of G4-ligands to cells 

was lacking. A systematic comparison of the synthetic lethalities and 

resistance mechanisms for PDS and PhenDC3 was discussed in chapter 2 

and 3, and revealed differences between the two molecules, going some way 

to address this area. As such this will not be further discussed. In this chapter, 

I will summarise how work within this thesis has partly explored these areas 

and also provided the foundations for future investigations. 

 

6.2 Endogenous pathways involving G4-structures 

Insights into the endogenous roles and regulation of RNA and DNA-G4s were 

provided by gene depletions causing either sensitisation or resistance to G4-

stabilisation by small molecule ligands. The biological concepts identified 

within this thesis are summarised in Figure 6.1 and will be discussed below, 

providing a few illustrative examples for each (gene deficiencies imparting 

sensitivity in green; imparting resistance in purple). Further examples for each 

can be found within individual chapters. Generally, biological insights into G4s 
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are discussed as either complications associated with unresolved G4s or the 

normal, positive functions for these dynamic structures.  

Figure 6.1. Possible locations and roles of RNA- and DNA-G4s in the cell as revealed 
by shRNA screening  
 



	 226 

6.2.1 DNA replication 

DNA G4s are thought to perform regulatory roles in DNA replication, 

alongside dedicated helicase machinery that unwinds these structures 

(Rhodes & Lipps, 2015). In the absence of helicase regulation, DNA 

polymerase obstruction via DNA-G4 can induce DNA damage (see section 

1.4.2.3). Consistent with these proposed functions, and regulation of DNA-

G4s, deficiencies in genes associated with DNA replication and DNA damage 

(both detection and repair) were identified as causing sensitisation and also 

resistance to stabilisation of these structures via G4-ligands (DNA damage 

will be discussed in section 6.2.3). Among these were DNA-G4 helicases 

including RECQL4, ATRX and RTEL1, with the latter known to be required for 

both telomeric replication (Vannier et al, 2012) and  genomic DNA replication 

as part of the replisome complex (Vannier et al, 2013). DNA topoisomerase 1 

(TOP1), which is required to relieve superhelical tension ahead of the 

replication fork (Wang, 2002), was also identified as a synthetic lethality to 

G4-ligand treatment. This supports an additional key method of regulating 

DNA-G4s, other than helicases (as was discussed in section 3.2.1).  

 

The synthetic lethality screening methodology also highlighted that small 

reductions in DNA replication proficiency can induce G4-stabilisation synthetic 

lethality. This is supported by the sensitivity seen following deficiency in 

several independent polymerase subunits including POLA2 (a DNA 

polymerase alpha-primase required for replication initiation, Fioani, Lucchini, 

& Plevani, 1997); POLD2, (a DNA polymerase for lagging strand synthesis; 

Tumini, Barroso, -Calero, & Aguilera, 2016) and POLQ (DNA polymerase 
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theta which recruits ORC2 and ORC4 to allow correct timing of DNA 

replication; Fernandez-Vidal et al., 2014). This indicates that stabilised G4s 

can compromise the activity of several polymerases and that their absence 

leads to cell death. 

 

Synthetic lethalities were also seen with other replication components, ORC1, 

PCNA, RFC2 and RFC4 (Cullmann et al, 1995). Replication factor C 

components (RFC) and PCNA are required to coordinate leading and lagging 

strand synthesis (Ellison & Stillman, 1998; Tsurimoto & Stillman, 1991) and 

their identification as sensitisers suggests a strong relationship between G4 

stabilisation and DNA replication. Also identified were replication-associated 

proteins that have not previously been implicated with G4s, including ligases 

responsible for non-proteolytic ubiquitin modifications. For example the 

NEDD8-activating enzyme E1 ligase catalytic subunit, UBA3, which modifies 

Cullins to ensure controlled DNA replication (Read et al, 2000). UBA3 

deficiencies are associated with uncontrolled S-phase DNA replication and 

DNA damage (Xu et al, 2014a).  

 

6.2.2 Cell cycle  

Linked to DNA replication, synthetic lethalities also extend to other phases of 

the cell cycle including mitotic entry (WEE1, CCND1), metaphasic 

chromosome alignment (USP37; Yeh et al., 2015) and anaphase (ANAPC4, 

ANAPC11, CUL1). For the latter, G4s were previously linked to sister 

chromatid alignment in yeast during meiosis (Anuradha & Muniyappa, 2004). 

Here, the identification of cell cycle components as sensitivities in mitotic cell 
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lines could implicate a role for G4-structures in normal chromosome alignment 

and correct cell cycle progression.  

 

ATRX-deficiencies also cause abnormalities in spindle alignment and mitosis 

in mice (De La Fuente et al, 2004; Baumann et al, 2010; Ritchie et al, 2008), 

in addition to causing DNA replication hindrance and induction of DNA 

damage (section 6.2.3 Juhász, Elbakry, Mathes, & Löbrich, 2018). The DNA-

damage phenotypes and G4-ligand sensitivity associated with ATRX-

deficiency are reminiscent of those portrayed by G4-helicase deficiencies. 

Based on these phenotypes, ATRX conceivably directly interacts with and 

aids in the resolution of DNA-G4 structures in cells.   

 

Synthetic lethality associated with cell cycle deficiencies is complemented by 

the identification of the mitotic checkpoint RB1 (Giacinti & Giordano, 2006) as 

a resistance gene. RB1 functions to inhibit problematic cell cycle progression, 

such as that putatively caused by aberrant G4-stabilisation (e.g. DNA 

replication inhibition). This checkpoint control is removed following shRNA-

induced deficiency, thus cells are able to continue dividing rather than stalling. 

Similarly, deficiencies in TP53 and its target gene TP53I11, which contributes 

to the apoptotic induction/proliferation inhibition of the former (Liang et al, 

2004) were also associated with resistance. Knock down of a further 

replication checkpoint, PHB, similarly provided G4-ligand resistance, a potent 

tumour suppressor that interacts with both p53 and Rb1 as a negative cell 

proliferation regulator (Wang et al, 1999). Additionally, DDX39A deficiency 

was identified as a resistance mechanism, a gene recently linked to the DDR 
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in X.laevis (see section 5.3.3; Holden, Taylor, & Lindsay, 2017) in a manner 

similar to p53 and Rb1. If also true of human cells, this may explain the 

DDX39A-deficient resistance to PDS and PhenDC3 treatment. 

 

6.2.3 DNA damage  

Homologous recombination (HR) DNA damage repair deficiencies, have 

previously been exploited for BRCA1 and BRCA2 as synthetic lethality 

strategies with several G4-stabilising ligands (McLuckie et al., 2013; Tauchi et 

al., 2003; H. Xu et al., 2017). Here DDR synthetic lethalities were extended to 

other HR pathway components, including SRCAP (see section 6.2.5), PALB2 

(Nepomuceno et al, 2017), BAP1 (Carbone et al, 2013), POLD2 (Tumini et al, 

2016) and RPA3 (Safa et al, 2014).  Additionally non-HR synthetic lethalities 

were identified including the Fanconi anaemia pathway (USP1; Nijman et al., 

2005) and microhomology-mediated end joining (POLQ and POLA2; Dantzer, 

Nasheuer, Vonesch, de Murcia, & Ménissier-de Murcia, 1998; Wood & 

Doublié, 2016). Emphasising this, TP53, RB1, TP53I11 and PHB in addition 

to presenting cell cycle checkpoints, are important players in the induction of 

cell cycle arrest or apoptosis in response to DNA damage, thus a depletion in 

any one of these components may allow continued cell proliferation in the 

presence of stabilised G4-induced DNA damage. 

 

6.2.4 Transcriptional roles for G4s 

Similarly to DNA polymerase deficiencies, RNA polymerase depletions also 

resulted in G4-ligand sensitivity, as revealed by the identification of POLR1A, 

a component of polymerase 1 (Pol1) as a sensitiser. Pol1 is responsible for 
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ribosomal RNA transcription (Boisvert et al, 2007) and previous studies show 

that Pol1 inhibition combined with treatment with the G4-stabilising ligand CX-

4561, induces p53-mediated apoptosis (Quin et al, 2016). This supports the 

hypothesis that stabilised G4s can act as regulatory obstacles to transcription. 

 

Contrasting the link between Pol1 transcription and synthetic lethality with G4-

ligands, a number of gene deficiencies in components of the core transcription 

machinery lead to resistance (rather than sensitivities), compared to the 

DMSO control. These genes were outlined extensively in chapter 5 and 

included general transcription factors (GTFs), transcription associated factors 

(TAFs), and components of mediator (MED6). The formation of single 

stranded DNA in the transcription bubble is thought to favour G4 structures, 

by removing competition for DNA duplex formation (reviewed in Kim, 2017). If 

loss of a transcription machinery component leads to a lower transcriptional 

output, then this suggests there are fewer DNA-G4s and RNA-G4s, the latter 

due to decreased mRNA production. This would suggest that in the absence 

of any gene deficiency, G4s exist, and that they may perform a transcriptional 

regulatory role, providing experimental support for a mechanistic hypothesis. 

 

Despite this, many integral general transcription machinery deficiencies were 

not identified as resistance genes. This could be technical (reflecting the 

strength of the shRNA knockdown, an experimental artefact and/or protein 

levels within the cell) or that only specific transcription components are 

specifically important regarding DNA-G4s. An example is the RNA 

polymerase 2 Mediator complex, a transcriptional coactivator at enhancers 
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(Soutourina, 2017). The Mediator complex is composed of 25 subunits, yet 

only MED6, 8, 23 deficiencies were identified as resistance genes. MED6 and 

MED8 interact in the mammalian complex, and are on the surface on the 

structure, while the position and function of Med23 is less understood 

(Soutourina, 2017). Isolated deletion of yeast homologues of Med6 and Med8 

are lethal in yeast, although not explored in human cells (Soutourina, Wydau, 

Ambroise, Boschiero, & Werner, 2011), suggestive of an important 

transcriptional role. Thus the components most important for transcription, 

such as specific mediator components, may be the most susceptible to G4 

interference following their depletion.  

 

In addition to the general transcription machinery, deficiencies in specific 

transcription factors, including TP53, RB1 and ZNF217, also caused 

resistance to G4-stabilising ligands (see section 5.3). Conversely, deficiencies 

in some specific transcription factors caused PDS and PhenDC3 sensitivity. 

For example depletion of ADAR1, a known DNA G4-binding protein 

associated with transcriptional repression at genes with promoter G4s (Kang 

et al, 2014) caused a sensitisation to G4-ligands. Perhaps shRNA-induced 

ADAR1 depletion alleviated the transcriptional repression and increased 

exposed G4s for ligand binding at genes containing promoter G4s. In addition 

to a role in DDR, the key sensitiser BRCA1 has also been linked to 

transcriptional roles (Mullan et al, 2006), perhaps exacerbating the synthetic 

lethality phenotype. Overall, the multitude of transcriptionally linked proteins 

that were identified via my screen supports that regulation of transcription can 
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be modulated by dynamically forming G4s, and thus perturbed via ligand-

induced G4 persistence. 

 

Extending a G4-transcriptional role to the mitochondria, depletion of the 

mitochondrial transcription factor TFAM (Ngo et al, 2014), shown to bind both 

RNA and DNA G4 within the mitochondrial genome and transcriptome in vitro 

(Lyonnais et al, 2017), was associated with G4-ligand sensitivity. However, 

this sensitivity seems to contradict the hypothesis outlined here: TFAM 

deficiencies would be predicted to reduce mitochondrial transcription, and 

thus a putative reduction in ligand accessible G4-structures. Distinct to this 

transcriptional function, TFAM also provides a chromatin-like role by 

multimerising to coat, condense and protect the mtDNA (Ngo et al, 2014). 

Studies in vitro support that mitochondrial G4 structures can drive this 

multimerisation (Lyonnais et al, 2017). This latter role for G4s is arguably 

more compatible with the synthetic lethality phenotype: in the absence of 

TFAM, mitochondrial DNA G4s are less compact and more accessible to G4-

stabilising ligands. Regardless, my screen has provided experimental 

evidence in human cells, that the in vitro observation of TFAM binding G4s 

has a functional role, which can be manipulated by G4-ligand treatment. A 

more general link between altering genomic DNA compaction, via 

nucleosome remodelling, and how this can alter G4 accessibility is next 

described. 
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6.2.5 G4s link to chromatin structure 

BG4 ChIP experiments have shown that G4s preferentially form in open 

chromatin (Hänsel-Hertsch et al, 2016). It is hypothesised that chromatin 

decompaction increases G4 accessibility and/or formation and ligand 

sensitivity whilst nucleosomal compaction would limit G4 ligand binding, 

causing resistance. The ability of chromatin remodellers to alter chromatin 

compaction, and in this way influence G4 accessibility, is reflected by their 

identification as both sensitisers and resistance genes. Examples of 

deficiencies causing sensitisation include ATP-dependent SWI/SNF DNA 

translocases: ATRX, SMARCA4, SMARCB1 and SMARCE1 (discussed in 

section 2.5.3). Another example is CHD8, an ATP-dependent DNA helicase 

that causes transcriptional repression due to chromatin remodelling (Ronan et 

al, 2013) and may promote G4-ligand sensitivity via chromatin accessibility. 

Deficiencies in the SRCAP chromatin remodeller, associated with 

transcriptionally active chromatin (Ruhl et al, 2006) also caused G4-ligand 

synthetic lethality. As SRCAP depletion is associated with a reduction in open 

chromatin, this is incompatible with the simple G4-DNA ligand accessibility 

hypothesis presented above. However, SRCAP has recently been identified 

as a HR DDR protein, and SRCAP depletion increased HeLa cell sensitivity to 

DNA damaging agents including ionising radiation and mitomycin C (Dong et 

al, 2014). Thus, for SRCAP, synthetic lethality may arise from DNA damage 

deficiencies rather than nucleosomal compaction alteration.  

 

In addition to direct nucleosome remodellers, deficiencies in histone tail 

modifiers and the proteins that recruit them were also identified as sensitisers. 
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These include H3K4 methyltransferase MLL4 (Froimchuk et al, 2017), H3K36 

methyltransferase WHSC1 (Bennett et al, 2017), HDAC recruiter ANKRD11 

(Neilsen et al, 2008) and HCF-1, shown to interact with HDAC1, HDAC2 and 

MLL methyltransferases (Tyagi et al, 2007).  A set of different modifier 

deficiencies were also identified as resistance genes: histone deacetylases, 

HDAC4 and HDAC11, which act as transcriptional repressors (Bottomley et 

al, 2008); BRD2 and BRD9 (Belkina & Denis, 2012), which cause chromatin 

decompaction via histone lysine acetylase recruitment and the H3 

methyltransferases PRDM2 and PRDM4 (Bogani et al, 2013) acting as both 

transcriptional repressors and activators. Many ‘resistance’ chromatin 

remodellers, perform inhibitory, closed chromatin roles. Therefore, their 

depletion would lead to chromatin opening, increasing G4 accessibility and 

G4-ligand sensitivity. The resistance phenotype observed however, indicates 

that the mechanism that I propose is too simplistic and requires further 

exploration. To evaluate this mechanism further, a possible next step would 

be to pharmacologically inhibit each of these individual chromatin remodellers 

and directly investigate how this alters G4 formation via G4 ChIP, such as in 

Hänsel-Hertsch et al., 2016. More importantly, there is a need to identify 

where in the genome (i.e. intro or exon) these G4s are formed, and how this 

differs and can be altered via specific inhibition of the individual proteins. This 

more detailed understanding may help expand the mechanistic association 

between chromatin remodelling and G4-ligand sensitivity. 
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6.2.6 Telomeric G4 roles 

The telomere is enriched in G4-structures (see section 1.3.3) and many 

deleterious phenotypes are seen following cell treatment with various G4-

stabilising ligands and have been attributed to telomere damage (Neidle, 

2010). Telomere G4s are hypothesised to perform a protective role via protein 

interactions at the chromosome end. Several synthetic lethalities were 

associated with telomere proteins, including, but not limited to deficiencies in 

FUS, which regulates telomere length via ternary complex formation with 

TERRA RNA- and telomeric DNA-G4s (Takahama et al, 2013); ATRX and 

RTEL1, which are required to unwind and allow replication of telomeric DNA 

G4 (Wong et al, 2010; Vannier et al, 2012); RPA3, deletion of which results in 

telomere shortening (Kobayashi et al., 2010); and DNA2 which binds to and 

cleaves inter and intramolecular G4 at the telomere (Masuda-Sasa et al, 

2008) to maintain telomere integrity. This perhaps supports the concept that 

hypothesised G4 interactions within these proteins have a biological role. 

 

Telomere binding proteins not identified as synthetic lethalities, include 

shelterin components, and helicases such as WRN and BLM that reportedly 

unwind telomeric G4s (Aggarwal et al, 2011; Sfeir et al, 2009; Palm & de 

Lange, 2008). This may point to a hierarchy of biological importance of 

telomeric G4-interacting proteins, a comparison only achievable via a 

systematic and unbiased investigation, such as that provided within this 

thesis. For DNA2, nucleolytic processing of telomeric G4s is hypothesised to 

allow quicker and more efficient removal of G4 structures than helicase 

unwinding (Lin et al, 2013) on a timescale more compatible with accurate 
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replication, perhaps explaining why nuclease but not helicase deficiency is 

associated with synthetic lethality, in the context of the telomere.  

 

6.2.7 RNA G4 roles: splicing, translation and mRNA decay 

A role for G4-structures in pre-mRNA processing is supported by the 

emergence of several key splicing factors as sensitisers, including SRSF10, 

HNRNPM and SF3B3. SF3B3 interacts with U2 snRNP at the splicing 

branchpoint and is hypothesised to bind G4-structures (Mori et al, 2013). It is 

notable that DDX42, identified here as a potential novel RNA G4-helicase 

(chapter 4), was shown to interact with SF3b  (product of SF3B3) in early 

mass spectrometric studies (Will et al, 2002). SF3b is currently being explored 

as an anti-tumour pharmacologic target with pladienolide derivatives (Kotake 

et al, 2007). G4-stabilising ligands might therefore be candidates for further 

exploration from the same pharmacological perspective. 

 

RNA-G4s in mRNA UTRs are proposed to perform regulatory translational 

roles (Beaudoin & Perreault, 2010; Bugaut & Balasubramanian, 2012). 

Supporting the hypothesis that aberrant G4 regulation can lead to ribosome 

translocation impediment (Bugaut & Balasubramanian, 2012), multiple small 

and large cytoplasmic ribosome subunit components, (RPS and RPL 

respectively) and the initiation factor, eIF3H were identified as synthetic lethal 

interactions. Mitochondrial ribosome deficiencies were also identified as 

sensitivities (MRPS and MRPL), suggesting that G4 forming sequences exist 

within mitochondrial transcripts and may also perform regulatory roles. The 

key sensitiser GAR1, in conjunction with other H/ACA snoRNPs is also 
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essential in ribosomal biogenesis (reviewed in Watkins & Bohnsack, 2012). 

Also identified were several predicted helicases, including members of the 

DDX and DHX families (see section 2.4.5), whose deficiencies imparted 

sensitivity to PDS and/or PhenDC3. This included the known RNA-G4 

unwinder DHX36 (Vaughn et al, 2005). Currently, other than DHX36, these 

helicases have not been characterised with respect to G4-biology and it 

remains an open question as to their role. Overall, my observations suggest 

that gene deficiencies that compromise ribosome function, i.e. rRNA 

biogenesis, ribosomal protein synthesis or mRNA helicase deficiency, are 

synthetic lethal with G4-ligand treatment, supporting a role for G4s in 

translation regulation.  

 

Extending the possible roles of G4-interactions in RNA biology, XRN1 and 

XRN2 5’ and 3’ exoribonuclease deficiencies were sensitive to PDS and 

PhenDC3 treatment. Previous studies have shown that XRN1 preferentially 

binds and degrades mRNA containing G4 structures (Bashkirov et al, 1997), 

suggesting that G4s provide a docking role to allow efficient turnover and 

translational control of an mRNA subset. The phenotypic data presented here 

suggest that XRN2 may function similarly to XRN1. 

 

6.2.8 Cellular ionic composition  

Depletion of several ion SLC channels caused G4-ligand resistance, many of 

which I hypothesise reflect off-target ligand effects. As discussed in chapter 5, 

loss of several components of the SLC12 chloride/cation transporters caused 

a growth advantage to both PDS and PhenDC3. These channels are 
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responsible for the cellular uptake of potassium and sodium cations, and 

alterations in the ionic balance may alter the stability of endogenous G4 

structures. This may highlight an additional novel regulatory mechanism, in 

addition to dedicated helicase machinery and DDR, by which the cell can 

regulate G4 formation.  

 

6.2.9 Ubiquitination as a novel player involved in G4-biology  

Another novel G4-link identified by the screen is the synthetic lethality seen 

with deficiencies of several components of the ubiquitin pathway. Several of 

these have been discussed above, in the context of the DNA damage 

response, DNA replication and mitosis, and involve components in both 

proteolytic and non-proteolytic modification of substrates. For the former, this 

includes deficiencies in the proteasome itself (PSMC2). Thus while the 

ubiquitin pathway itself has not previously been linked to G4-biology, many of 

the processes post-translationally regulated by ubiquitination have been 

studied from a G4-perspective.  

 

6.2.10 Summary insights into the role and regulation of G4s  

The results of the shRNA screens have provided systematic and unbiased 

experimental evidence for roles and subcellular locations of G4s. Many of 

these roles and loci have been hypothesised and shown in vitro, but never 

demonstrated in human cells. These include several RNA related proteins, 

covering a wide range of RNA functions from splicing to mRNA decay. This 

may provide a counter argument to the proposal that RNA-G4s are globally 

unfolded endogenously (Guo & Bartel, 2016). More generally, the breadth of 
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pathways that are engaged via stabilisation of G4s with low ligand 

concentrations strongly support that G4s are involved in wide-ranging DNA 

and RNA roles. 

 

Here the functions of G4s within the cell have been probed by perturbing the 

system with small molecules. Not all of these G4s may exist endogenously 

and small molecule treatment may promote the formation of physiologically 

unstable G4-structures by favouring the equilibrium of the folded state. 

Therefore, although the genes and pathways discussed above provide 

insights into positive functions for G4s, to further understand the specific 

biological roles of G4s will require a combination of experiments to genetically 

remove a specific G4, or to modulate a protein binding to G4s and 

characterise the resultant phenotypes. The genes and areas identified here 

provide likely candidates for future investigation via such approaches. 

 

The screen presented here uses G4-ligand treatment as a surrogate for G4-

stabilisation. However, it is unknown whether the biophysical data on these 

molecules reflects the situation within cells. In addition to G4-ligands, another 

set of tools developed to probe G4 function are G4-specific antibodies, such 

as BG4 (see section 1.4). Unlike small molecules, BG4 binds endogenously 

forming G4s, that have been trapped by cell fixation, rather than altering their 

dynamics in living cells. Further exploration of the targets identified here could 

come from integrating the results of the screen with BG4 ChIP-seq (Hänsel-

Hertsch et al, 2016) to identify the locations of G4s in HT1080 and A375 cells. 

Additionally, BG4 ChIP-seq would provide insights into chromatin landscape 
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differences between the two cell lines, which may partially contribute to the 

differences in gene sensitivities and resistance genes between the two cell 

lines. 

 

It is of note that the synthetic lethalities and resistance genes identified here 

are based on a single gene knockdown. From an evolutionary standpoint, it is 

perhaps surprising that a significant G4-ligand response is observed following 

perturbation of single gene and/or G4-role. One explanation for this could be 

that the G4-stabilisation by small molecules is greater or more widespread 

than normally seen within a cell, and that simultaneously disrupting several 

pathways makes it easier to see a defect of a single gene, because the 

system is ‘primed’ to fail. Such an unphysiological onslaught may allow 

effective chemotherapy, particularly seeing as cancer cells in general seem to 

show a higher level of G4-structures compared to normal cells (Biffi et al, 

2014b). General chemotherapeutic possibilities will be next discussed, 

although more detailed and specific examples can be found elsewhere within 

the thesis.  

 

6.3 Towards a chemotherapeutic use of G4 ligands 

In addition to probing G4 functions, my project was also aimed to identify 

disease-associated genotypes, particularly in cancer, that may be susceptible 

to G4-stabilising ligands. This aim has three interdisciplinary parts: 
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Part 1) Identify disease-associated genetic backgrounds.  

Extend our knowledge of the genetic contribution to diseases such as cancer. 

This is not addressed within this thesis and refers more widely to the 

continued understanding of genetic diseases and/or the development of the 

personalised medicine field. 

 

Part 2) Identify genetic backgrounds that are sensitive to G4-stabilising 

ligands. Some of these genotypes identified may already be known to be 

disease related, while other sensitivities have not been linked with disease but 

may emerge in the future. 

 

Part 3) Support the clinical medicinal development of G4-stabilising 

ligands.  

Moving a research grade molecule towards a more drug-like entity will allow 

the eventual clinical exploitation of any acutely susceptible disease-

associated genotypes identified. 

 

Throughout this thesis, the tools and resources that have been developed 

may contribute to this aim and will be discussed below, now considering the 

same genes and pathways highlighted in Figure 6.1 from a therapeutic 

perspective.  

 

6.3.1 Non-G4 associated effects of G4-targeting ligands 

A central assumption to investigations in this thesis is that the sensitivities or 

resistance genes uncovered following PDS and/or PhenDC3 treatment arise 
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from G4-stabilisation. However, suggestive of non-G4 associated interactions, 

deficiencies in vesicle (VPS52, VPS53, VPS54) and lysosome components 

(ATPase V1C1, V0D1, V1E1, V1G1) (Figure 6.1) were uncovered as causing 

ligand resistance. These V-ATPases consist of V0 transmembrane and V1 

cytosolic domains and are important for lysosome acidification (Holliday, 

2014). Conversely, VPS52, 53, 54, comprising all three of the Golgi-

associated retrograde protein (GARP) complex subunits are required for 

recycling of the lysosomal hydrolases. The observation that impairing 

lysosome formation and/or function provides G4-ligand resistance suggests 

that normally these ligands accumulate in the lysosome and also, that 

lysosomal stress may contribute to non-G4 associated ligand induced death. 

In support of this, work in our lab suggests PDS can gather in the lysosome 

(personal communication, Dr. Marco di Antonio, University of Cambridge). 

 

For other polar lipophilic drugs, including the anti-depressants thioridazine 

and perazine, acidification in the lysosome prevented diffusion back into the 

cytosol (Daniel et al, 2001). Such molecules are referred to as lysosomotropic 

and their excessive lysosomal accumulation can cause dysfunction, stress 

and ultimately apoptosis (Lu et al, 2017). For G4-ligands, lysosomal 

accumulation prevents the molecules from reaching their G4 targets in the 

nucleus and/or cytoplasm. As lysosome function is found in both normal and 

cancer cells, minimising such unwanted side effects in the development of 

future ligands, will increase the therapeutic window between normal and 

cancer cells, and increase the proportion of G4-ligands that reach their 

intended G4-target. Furthermore, the identification of vesicular and drug 
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export ion channels deficiencies (e.g. SLC17, SLC18 and SLC47) as 

resistance mechanisms, may support that the G4-stabilising molecules enter 

the cell via active uptake rather than simple diffusion across the cell 

membrane, something that also needs to be optimised for future drug 

development. Alternatively, this may suggest that ion balance of the cell is 

important for the formation of G4s and that this can be disrupted by SLC 

deficiency. Evaluating the impact of SLC depletion on the G4 formation, for 

example via BG4 ChIP, would provide more insight into this.  

 

To date, G4-ligands have been tailored for in vitro rather than clinical work. 

The features that make G4-stabilising ligands potent and selective stabilisers 

of G4-structures in vitro often make them poor clinical drugs, with respect to 

molecular weight, cell permeability and potential for lysosome trapping (Kazmi 

et al., 2013; Lipinski, Lombardo, Dominy, & Feeney, 2001; see chapters 3 and 

5). Therefore despite the considerable chemotherapeutic potential for G4-

stabilising ligands (discussed throughout this thesis), there is an unmet need 

to develop their chemistry for application to the clinic. A different method to 

ameliorate lysosomal stress would be co-treatment of G4-ligands with a 

lysosomal inhibitor such as chloroquine, to increase the ‘active’ G4-ligand 

concentration in cells and encourage engagement with their G4 targets.  

 

As G4-stabilising molecules with more desirable medicinal and 

pharmacokinetic properties are needed, my G4-specific focused screening 

approach can be exploited to benchmark the synthetic lethalities of new 

molecules against PDS and PhenDC3. This was exemplified with SA-100-



	 244 

128, a PDS derivative with improved medicinal chemistry properties. As an 

additional tool, a five-day experiment has been designed with siRNA 

knockdown of the top synthetic lethalities BRCA1, TOP1, DDX42 and GAR1 

in HT1080 cells, that enables the rapid screening of a panel of molecules. 

These four knockdowns were sensitive to PDS, PhenDC3 and CX-5461, and 

represent positive controls for comparisons with future developed ligands. As 

proof-of-principle, this screening capacity was demonstrated with 12 

candidate G4-stabilising ligands with improved medicinal properties. Overall, I 

propose that a clinically effective G4-stabilising ligand would show synthetic 

lethalities similar to that seen for PDS and PhenDC3, with reduced 

engagement of lysosome/vesicle associated genes. 

 

6.3.2 Tailoring G4-stabilising ligands towards specific therapeutic 

niches 

Much of the work within the G4-field, and also within this thesis, focuses on 

pan-G4 stabilising ligands. The use of pan G4-ligands for the genetic 

screening investigation was imperative to the unbiased aim of systematically 

investigating the response to global G4-stabilisation. Targeting multiple 

processes simultaneously via such pan G4-stabilisation may be 

chemotherapeutically advantageous in a) killing cells and b) preventing the 

subsequent emergence of resistance cells. For this to work optimally, 

however, there needs to be selectivity in targeting of cancerous over normal 

cells. As several cancers exhibit increased G4s compared to controls (Biffi et 

al, 2014b), this may be one method to gauge their sensitivity.  
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Alternatively, cancers with certain genotypes may be acutely sensitive to G4-

ligands. Examples, where I hypothesise G4-ligands may be of particular 

benefit are summarised in Figure 6.2 and have been discussed and 

referenced in greater detail in earlier chapters. For example, given the efficacy 

of CX-5461 in BRCA-deficient tumours (Xu et al, 2017), myeloid leukaemia 

and uveal melanoma, which are characterised by DDR deficiencies in PALB2 

and BAP1 respectively, may show similar therapeutic success. Breast cancer 

associated genotypes beyond BRCA-deficiencies may also be exploitable, 

such as in KEAP1-deficiency and/or TAF1 overexpression. Similarly, the 

TAF2 and TAF4 status of HGSOC may impact the effectiveness of using G4-

ligands in combination with CDK12 inhibitors (see Figure 6.3). Finally, multiple 

myeloma offers several distinct combinatorial opportunities with G4-ligands, 

including pharmacological inhibition of WHSC1, XRN2 and components of the 

ubiquitin pathway. 

 

Figure 6.2. Examples of cancers that may be targeted by G4-ligand based therapies 
 
 

Within both the genome-wide and focused screens, several synthetic 

lethalities were recurrently enriched including DNA replication, DNA damage, 

translation and splicing. Within the literature and clinic to date, cancer 
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chemotherapies often target DNA: the nucleoside analogue gemcitabine is a 

chain terminator inhibiting DNA polymerase and disrupting dNTP balance 

within the cell also via ribonucleotide reductase (de Sousa Cavalcante & 

Monteiro, 2014); methotrexate inhibits thymine production and thus DNA 

replication (Rajagopalan et al, 2002); cisplatin inhibits mitosis and induces a 

DNA damage response via DNA crosslinking (Dasari & Tchounwou, 2014) 

and olaparib prevents activation of an appropriate DNA damage response via 

PARP inhibition (Rottenberg et al, 2008). These current therapies, while 

somewhat effective, are not applicable to all patients, can have toxic and 

undesirable side effects and cancers can develop resistance. Thus, there is 

scope for G4-ligands to augment the current panel of DNA-targeting 

chemotherapies. Additionally, as highlighted in our screen, many non-DNA 

associated synthetic lethalities were uncovered, for example genes with a 

hypothesised RNA function, perhaps supporting a niche chemotherapeutic 

target for G4 stabilising ligands. Specific examples of this have been 

discussed in chapter 2, such as deficiencies in: splicing factors including 

oncogenes SRSF10 and HNRNPM, mRNA exoribonucleases XRN1 and 

XRN2 and, the snoRNPs GAR1, DKC1 and NHP2. 

 

6.3.3 Identifying and validating genotypes susceptible to G4-

ligand treatment 

My shRNA screening approach identifies synthetic lethal gene deficiencies, 

many of which are cancer-related and may offer future therapeutic 

possibilities with G4-stabilising ligands either as single agent (for synthetic 

lethal interactions with tumour suppressor gene deficiencies) or combinatorial 



	 247 

therapies (where the sensitivity is based on deficiency of an oncogene). Also, 

some ‘resistance’ genotypes might offer scope for chemotherapeutic 

exploitation. These have been discussed extensively elsewhere in the thesis 

and now I discuss future experiments aimed at validating such 

chemotherapeutic possibilities. 

 

6.3.3.1 Paired tumour and normal tissue samples 

The cell lines (A375 and HT1080) used within this thesis were chosen for 

technical rather than biological reasons. The next step would be to validate 

top hits in cancer cell lines with appropriate mutations. However, a caveat with 

any cancer cell line study is identifying the appropriate control. Several 

candidate cases from the literature are outlined below, chosen due to an 

appropriate control for reference. For each paired tumour and normal tissue 

samples, it would be informative to compare G4-ligand sensitivity and G4 

quantification (via BG4 IF or G4-ChIP). 

 

1) GAR1 – liquid biopsies from patients with chronic lymphocytic 

leukaemia (CLL) from a randomised clinical group alongside normal 

biopsies (Dos Santos et al, 2017). CLL samples showed significantly 

upregulated GAR1 mRNA levels compared to controls 

 

2) XRN2 – Various spontaneous lung tumour samples in mice versus 

normal margin lung tissue are reported to have a positive correlation 

between the incidence rate and XRN2 transcript levels (Lu et al, 2010)  
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3) SMARCE1/BAF57 – xenograft mouse samples of MDA-MD-231 lung 

metastasis versus metastatic tumours derived from cells with a 

SMARCE1 knockdown (Sethuraman et al, 2016).  

 

4) SMARCA4 – Gene is highly expressed in high-grade serous ovarian 

cancer but depleted in small cell carcinoma of the ovary. For each, 

paired tumour and normal margin tissue is available (Jelinic et al, 

2014). 

 

6.3.3.2 Comparison with other chemotherapeutic molecules 

Other ways to explore and validate the chemotherapeutic options for G4-

stabilising ligands would be via the use of other molecules that target the 

same pathway and/or deficiency. In chapters 3 and 5, I discussed and 

referenced several drugs (both clinical and experimental, referred to as 

‘available drug treatments’, Figure 6.3) that were used to target cancers with 

genotypes that emerged from to the shRNA screen results. I also 

hypothesised areas where G4-ligands could be applied (summarised Figure 

6.3). These drugs are split into two categories: ‘single agent’ refers to a 

genotype susceptible to a particular drug treatment, which is also predicted to 

be sensitive to G4-ligands. For these scenarios, the possible next steps would 

be to compare the efficacy of these drugs to G4-ligands (PDS, PhenDC3 and 

CX-5461). I also present ‘combinatorial’ options, where G4-ligands may 

increase the potency of pharmacological inhibition of a drug target. This 

remains to be validated via drug combination synergy screening. One route 

for further exploration would be via the use of relevant mouse models. 
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6.3.3.3 Validation in mouse models 

Once G4-ligands with improved medicinal chemistry properties have been 

developed, the next stage before clinical use in human trials would be their 

investigation in appropriate mouse models. Of particular interest would be 

investigating the response of tumours that occur in genetically engineered 

mouse models (GEMMs). GEMMs are cited as better models than their 

cancer cell inoculation models as the tumours develop in a completely 

immune proficient environment (Kersten et al, 2017). The success of G4-

ligands in GEMM trials relies on clinically tolerable version of G4-ligands that 

would be amenable to administration, such as via tail vein injection, which as 

discussed above, are currently lacking.  

 

Several mouse models that would be useful to study the 

sensitisers/resistance genes uncovered in the screen (Figure 6.3) have been 

developed as part of the Wellcome Trust Sanger Institute Sanger Mouse 

Genetics Project (Sanger MGP; 

www.sanger.ac.uk/science/collaboration/mouse-resource-portal). In addition 

to these GEMMs, there also exists a Trp53 GEMM in which both alleles are 

replaced with tamoxifen inducible Trp53 alleles (Martins, Brown-Swigart, & 

Evan, 2006). Deficiency of p53 was identified as a putative resistance 

mechanism to G4-ligand treatment. This mouse model would allow 

investigation into whether p53 deficient tumours are also resistant to G4-

ligand treatment, and by using tamoxifen to restore p53 in established 

tumours, investigate whether we can restore G4-ligand sensitivity. The use of 

such GEMM models has been integral in refining and bringing other drugs to 
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clinical trial. For example, the BRCA1-deficient KBIP mouse model, which 

closely mimicks the human cancer response to PARP inhibtor and platinum 

drugs (Rottenberg et al, 2008, 2007) was imperative in establishing the 

clinical use of olaparib for ovarian, breast and colorectal cancer treatment 

(Lee et al, 2014). Such models could similarly refine the clinical advancement 

of current and future G4-stabilising ligands.		

Figure 6.3. Chemotherapeutic options for G4-stabilising ligands and possible mouse 
models for validation  
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6.4 Adapting the screening approach for other investigations 

In this thesis I have described a successful and optimised screening 

technique for investigating genotypes sensitive or resistant to G4-stabilising 

ligands. To identify the strongest sensitisers and the foremost resistance 

mechanisms, low ligand doses and readout of cell death were used. This 

methodology can be adapted to answer several other questions. One obvious 

step would be to extend the screen to more ligands with several cell lines, and 

look for universal commonalities, completely independent of cell type and G4-

ligand. This would indicate a core set of synthetic lethalities arising from G4-

stabilisation. I have gone someway to investigate this, performing the focused 

screen in two cell lines of discrete lineages: HT1080 (mesenchymal) and 

A375 (neural crest).  

 

Also, it would be prudent to perform the screen with control molecules, 

including isoforms of G4-ligands that do not stabilise G4-structures such as 

iPDS, a non-G4 stabilising isomer of PDS (Dr. Marco Di Antonio, personal 

communication), in order to distinguish between cellular responses to 

treatment with a large, polar molecule from phenotypes derived from 

stabilisation of G4-structures. Another interesting comparison would be to 

perform the screen with TMPyP4 and TMPyP2, cationic porphyrin isomers 

that both stabilise G4s in vitro, but do so via different binding mechanisms 

(Frank Xiaoguang Han, Richard T. Wheelhouse, & Hurley, 1999). It is 

currently unknown if differences in biophysical binding between molecules 

such as the ‘TMPyP’ molecules would engage independent synthetic 

lethalities or resistance mechanisms in cells. Furthermore, to investigate gene 
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deficiencies that cause resistance to G4-stabilising ligands, the screen could 

be performed with higher ligand concentrations to create a greater selection 

pressure and look for an outgrowth of resistant cells, as is more characteristic 

of positive selection screens (Miles et al, 2016).  

 

Throughout these investigations with the pan-G4 ligands PDS and PhenDC3, 

I have separated biological G4 roles and/or sensitive genotypes into either 

RNA or DNA G4-stabilisation responses (Figure 6.1). However, many RNA 

processes are inevitably also DNA related (at the level of transcription), 

preventing precise differentiation between the two. One way to discern 

between the two is to perform the screen using molecules that solely bind 

either DNA- or RNA-G4. As a starting point, within the focused screen results, 

PDS and PhenDC3 enriched synthetic lethality terms seemed to show a DNA 

and RNA bias respectively, perhaps suggesting that the molecules have an 

endogenous preferentially affinity for DNA-G4 and RNA-G4 respectively. 

Within the literature however, both molecules are reported to cause 

transcription and translational changes via binding to RNA and DNA G4s (see 

introduction for details). For a RNA-G4 screen, cPDS, a molecule reported to 

increase cytoplasmic not nuclear BG4 foci, could be performed. However, this 

limits the investigation to cytoplasmic RNA-G4, thus omitting investigations 

into the cellular response to pre-mRNA G4 stabilisation (i.e. those involved in 

splicing). Thus there is an experimental need to develop RNA and DNA 

specific G4-ligands, which can then be explored via the tools provided here.  
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Both cell lines used for our investigations (A375 and HT1080) are p53-

proficient. This was important for the initial setup, as p53 is an important 

regulator of the BRCA1 and BRCA2 damage response, which represented 

positive controls in terms of synthetic lethality with G4-stabilising ligands. 

Indeed, p53 proficiency was integral in expanding the knowledge of the DDR 

to stabilised G4s. However, many cancers are p53 deficient or mutated (Ko & 

Prives, 1996), and p53 deficiency has been uncovered as a resistance 

mechanism. Thus, it would be interesting to perform the screen in a p53-

deficient cell line, and investigate how this alters the synthetic lethalities and 

resistance mechanisms uncovered.  

 

6.5 Concluding remarks 

Here, I present a set of tools and resources towards answering key 

outstanding areas in the G4 field. The first was expanding our knowledge of 

the genes and processes involved in the cellular response to stabilised G4s. 

The second was to identify disease related genotypes in which G4-stabilising 

ligands, both current and future, could be successfully applied to in the clinic. 

This body of work provides a significant step forward in answering these 

questions and has identified a new in vitro G4-binder and putative helicase, 

DDX42. In addition, I created a set of resources to test future G4-binding 

molecules, as they are developed to become more clinically appropriate. I 

provide a proof-of-principle on this here with the G4-ligand currently in clinical 

trials (CX-5461) and also with a panel of pharmacologically improved PDS 

derivatives. This identified a top candidate SA-100-128, which shows some 

similarities in sensitivity to other G4-ligands e.g. BRCA2 and ATRX 
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deficiencies. I envisage that these tools can be employed to identify new 

clinical pan-G4 ligands for use in cancer, by pinpointing genotypes that are 

truly sensitised to stabilisation of G4s. Ultimately my work will refine our 

knowledge of the key players in G4-biology, and the application and 

exploitation of these structures in disease. 

 

 

 

 

 

 

 

 

 

 

	
	
	
	
	
	
	



	 255 

Chapter 7 

Materials and Methods 

 7.1 General Methods 

Unless otherwise stated oligonucleotides were obtained from Sigma Aldrich 

as lyophilised powders and dissolved in TE buffer (pH 7.4) and stored at -20 

0C as 100 µM stock. All DNA and RNA (plasmid and oligonucleotides) stocks 

were stored at -20 0C. The UV spectrum of all nucleic acid samples quantified 

was recorded via Nanodrop Onec (Thermo Fisher Scientific). 

 

 7.2 Ligand Synthesis 

Pyridostatin (PDS): 4-(2-aminoethoxy)-N2,N6-bis(4-(2-aminoethoxy)quinolin-

2- yl)pyridine-2,6-dicarboxamide. Synthesis was described by Rodriguez et al. 

(Rodriguez et al, 2008). PhenDC3: 3,3'-((1,10-phenanthroline-2,9-

dicarbonyl)bis(azanediyl))bis(1- methylquinolin-1-ium). Synthesis was 

described by De Cian et al (De Cian et al, 2007b). Synthesis was performed 

by Dr. Marco di Antonio.  All PDS derivatives with improved medicinal 

chemistry properties (Chapter 3, section 3.2.4-3.2.5) were synthesised in-

house by Dr. S. Adhikari and Mr. J Patterson. 

 

 7.3 Cell Lines 

HT1080, A375 (ATCC CRL-1619, CRL-121) and Plat-A (Cell Biolabs Inc, RV-

102) cell lines were cultured in DMEM medium (ThermoFisher Scientific, cat 

#41966029) supplemented with 10% (v/v) heat inactivated FBS 
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(ThermoFisher Scientific, cat #10500064). All cell lines were grown at 37 °C in 

a 5% CO2 humidified atmosphere and regularly checked to be mycoplasma-

free by RNA-capture ELISA. Cell line genotypes were certified by STR 

profiling (by CRUK Cambridge Insitute Biorepository). 

 

 7.4 Quantification of live cell numbers 

Live cell numbers (e.g. for plating cells for CellTitre-Glo assays, the screens 

and Incucyte experiments) were determined using the Muse Cell Analyser 

(Merck), ‘Count & Viability’ assay according to manufacturer’s instructions. 

Cells were diluted either 1:10 or 1:20 in ‘Muse Count & Viability kit’ solution 

(Merck, cat # MCH60013), to give a viable cell concentration of 1-2 x 106 

cells/mL, with ‘Events to Acquire’ parameter set at 1000 events. 

 

 7.5 Determination of G4 ligand concentration for shRNA screens 

PDS, PhenDC3 and SA-100-128 were used as 50 mM stocks, dissolved in 

DMSO (Thermofisher Scientific, cat # 20688). GI20 values were calculated by 

treating A375 and HT1080 cells with serial dilutions of PDS, PhenDC3 and 

SA-100-128 (maximum concentration 100 µM, 300 µM and 25 µM 

respectively) for 96 h and determining cell death via a CellTitre-Glo One 

Solution assay (Promega, cat # G8461) according to manufacturer’s protocol. 

Each serial dilution was replicated 4 times for 2 cell-seeding densities 

(1000/1500 cells per well). For both cell densities, curves were plotted 

averaging the 4 replicates in Prism (GraphPad v6) using a Non-Linear 

regression model, “dose-response – inhibition” equation [log(inhibitor) vs. 

normalized response – variable slope] and GI20 values calculated. The GI20 
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concentrations used represent an average for three separate assays per cell 

line and yielded the following concentrations used for the screens - A375: 10 

µM PhenDC3, 1.5 µM PDS and 1 µM SA-100-128; HT1080: 1 µM PhenDC3, 

0.5 µM PDS and 1.7 µM SA-100-128. 

 

 7.6 Composition of and recombinant DNA production from shRNA 

libraries 

The genome-wide screen uses the Transomic LMN shRNA library against the 

human protein coding genome (a kind gift from Professor Greg Hannon, 

University of Cambridge, vector shown in Figure 2.3), consisting of 113,002 

total shRNAs, split between 12 pools for ease-of-handling (approximately 

10,000 shRNAs per pool) with an average number of 6 optimised hairpins per 

gene. The G-quadruplex-focused screen consists of a custom shRNA pool 

(Purchased from Transomic) with the same LMN vector (8,018 shRNAs); this 

includes 1247 genes (7,436 shRNAs) uncovered in the genome-wide screen 

(751 sensitizers and 496 upregulated genes), 116 additional genes identified 

from the literature as potentially G4-associated (439 shRNAs) and shRNAs 

targeting 37 olfactory receptors as non-targeting controls (143 shRNAs). The 

496 upregulated genes (FDR ≤ 0.05, 50 % or 3 hairpins; log2FC ≥ 1) were 

included to mimic the genome-wide screen on a smaller scale by maintaining 

the population ratio of sensitisation and resistance. These resistance genes 

were secondly used to understand the mechanisms that can cause resistance 

to G4-stabilising ligands. In this custom pool, unlike the genome-wide library, 

the number of shRNAs was capped at seven per gene. The backbone of both 

libraries contains NeoR and ZsGreen markers to allow monitoring of infected 
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cell lines by Geneticin (Gibco, cat # 10131035) selection and fluorescence 

(MacsQUANT) respectively. Both libraries were provided as glycerol stocks. 

Bacterial density was determined by calculating the colony forming units 

(CFU) from dilutions of the original glycerol stock after plating on agar (O/N, 

37 °C, 100 µg/ml ampicillin). Then, glycerol stocks were thawed completely 

and sufficient volume was taken (based on CFU) to ensure a minimum of 

1000-fold hairpin representation, and inoculated in Gigaprep bacterial cultures 

(LB media + 100 µg/ml ampicillin). Plasmid DNA was isolated from these 

cultures using a ZR Gigaprep kit D4057 (Zymo research) according to the 

manufacturer’s protocol and DNA was quantified by Nanodrop Onec (Thermo 

Fisher Scientific). 

 

 7.7 shRNA stable cell line creation 

For the genome-wide screen, each pool was treated independently, 

necessitating the creation of 12 different polymorphic A375 cell lines each 

containing an average of 10,000 shRNAs, per replica (3 replicas, 36 

polymorphic cell lines). For the focused screen, virus was created from all 

shRNAs simultaneously to create a single polymorphic cell line for both 

HT1080 and A375, (3 replicas per cell line). Virus was produced using the 

Platinum-A packaging cell line (4-6 15 cm plates per pool) and calcium 

phosphate transfection. 24 h after plating Platinum-A cells (70-80 % 

confluency), media was replaced with DMEM medium supplemented with 1 % 

(v/v) PenStrep (Thermo Fisher Scientific, cat # 150763) and 10 % (v/v) heat 

inactivated FBS, shRNA library plasmid (75 µg) was then mixed with pCMV-

VSV-G plasmid (7.5 µg, Addgene cat # 8454), Pasha/DGCR8 siRNA (2.7 µM, 
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Qiagen cat # 1027423), to increase viral titre and 0.75 M CaCl2 in a total 

volume of 1.5 mL per 15 cm dish and bubbled with 1.5 mL 2 x HBS (50 mM 

HEPES, 10 mM KCl, 12 mM Dextrose, 280 mM NaCl, 1.5 mM Na2PO4 at pH 

7.00) buffer and added to the Platinum-A cells in a dropwise fashion.  

Immediately before adding the DNA-Pasha-transfection mixture to the 

Platinum-A cells, chloroquine diphosphate (lysosomal inhibitor, Acros 

Organics cat # 455200250) was added to the plates at a final concentration 

2.5 µM. 14-16 h after transfection, fresh media was added with 1:1000 1M 

sodium butyrate (Merck, cat # 303410) for enhanced mammalian expression 

of the shRNA LMN plasmid. Virus was then harvested 48 h after transfection 

and filter sterilised (0.45 µM) and stored at 4 °C for a maximum of 7 days. 

Viral titre was determined by performing mock infections with the experimental 

cell line and quantifying fluorescent cells, via flow cytometry (MacsQUANT, 

Miltenyi Biotec Ltd.) 48 h after infection. For both the genome-wide and 

focused-screen, 3.6 x 106 target cells were infected at a viral volume predicted 

to cause 30 % infection (MOI 0.3) to minimise multiple shRNA integrations per 

cell. This provides approximately 10 x 106 shRNA expressing cells (1000-fold 

shRNA representation). Virus was diluted in serum free media plus polybrene 

(8 µg/mL). Infections were carried out in triplicate, and treated as independent 

replicates hereafter. 48 h after infection cells were selected in 800 µg/ml 

(HT1080) and 1000 µg/ml (A375) geneticin for 7-9 days. These 

concentrations were determined via 7 day geneticin toxicity curves prior to 

transfection setup. ‘Complete’ selection was determined via flow cytometry 

(MacsQUANT, Miltenyi Biotec Ltd.) as a minimum of 95 % fluorescent cells. 
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 7.8 Cell culture process for genome-wide and focused pool of 

shRNAs 

Following complete selection (see section 7.7), a reference time point was 

harvested (t0) and cells were split into 3 x 15 cm plates per replica: PDS, 

PhenDC3 and DMSO vehicle control, each containing 8-10 x 106 cells to 

maintain 1000-fold hairpin representation. Every 72 h, cells were trypsinised, 

counted to determine the number of population doublings, and 10 x 106 (A375 

genome-wide and focused) or 8 x 106 (HT1080) cells per replica replated in 

fresh drug/DMSO and media (17 mL media per plate). At all times, sufficient 

cell numbers were used so that a minimum of 1000 or 800 cells per shRNA 

was maintained (A375 and HT1080 respectively). The volume of DMSO used 

in the ‘vehicle’ condition is equal to the volume for 10 µM PhenDC3. The 

remaining drug treatments were also supplemented with DMSO to match this 

volume and keep the DMSO concentration constant between treatments, cell 

lines and screens. A final time point (tF) was harvested after 15 population 

doublings. For each pool of the genome-wide screen, 12 samples were 

generated (t0, DMSO tF, PDS tF, PhenDC3 tF; 3 replicas each). Therefore, 

144 samples of 10 x 106 cells were generated to cover the entire screen. For 

the focused screen, for each cell line, 12 samples were generated (t0, DMSO 

tF, PDS tF, PhenDC3 tF, 3 replicas each). An additional focused screen was 

also performed with SA-100-128, using the same conditions, experiment 

duration and parameters as above, again with the volume of DMSO used in 

the ‘vehicle’ equal to the volume for 10 µM PhenDC3, to facilitate interscreen 

comparisons. Cells were treated with 1 µM (A375) and 1.7 µM (HT1080) SA-
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100-128 and this screen generated 9 samples per cell line (t0, DMSO tF, SA-

100-128 tF, 3 replicas each). 

 

 7.9 Barcode recovery, adapter ligation and sequencing 

All PCR and sequencing oligonucleotides were supplied by Sigma Aldrich and 

sequences are summarised in the table below. Cell pellets (10 x 106 cells) 

were resuspended in PBS and genomic DNA (gDNA) extracted using QIAmp 

DNA Blood Maxi Kit (Qiagen, cat # 51194) according to the manufacturer’s 

spin protocol, eluted in a final volume of 1200 µl and quantified by a Qubit 

DNA HS Assay Kit (Thermo Fisher Scientific, cat # Q32851). The shRNA 

inserts were PCR-amplified from all gDNA in each sample, in multiple 50 µl 

reactions each using 1.5 µg gDNA, with KOD Hot Start DNA Polymerase and 

the following reagents (Merck, cat # 710864): 5 µl 10 x buffer, 5 µl 2 mM each 

dNTPs, 4 µl MgSO4 (25 mM), 1.5 µl polymerase, 4 µl DMSO. Forward (Mir-F) 

and reverse (PGKpro-R) primers flanking the loop and antisense sequence of 

the hairpin region were used at a final concentration of 300 nM. PCR was 

performed under the following conditions: 98 °C for 5 min, then for 25 cycles 

of 98 °C for 35 s, 58 °C 35 s, 72 °C for 35 s, followed by 72 °C for 5 min. 1.2 

mL of pooled PCR reaction were cleaned-up using QIAquick PCR purification 

kit (Qiagen, cat # 28104) according to manufacturer’s protocol. 2 µg of this 

purified PCR product were PCR amplified in a second PCR step, using 

forward (P5-Seq-P-Mir-Loop) and reverse (P7-Index-n-TruSeq-PGKpro-R) 

primers containing the P5 and P7 flowcell adapters respectively. The PCR 

was performed in 8 x 50 µL reactions each containing 500 ng template DNA. 

The reverse primer contains TruSeq adapter small RNA Indexes (Illumina) to 
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allow multiplexing of the samples and a 6 nucleotide barcode, denoted 

‘nnnnnn’ below. PCR reagents were used as for the first PCR, with the 

exception of the primers, which were used at a final concentration 1.5 µM. 

The second PCR was performed under the following conditions: 98 °C for 5 

min, then for 25 cycles of 94 °C for 35 s, 52 °C 35 s, 72 °C for 35 s, followed 

by 72 °C for 5 min. All PCR reactions were performed using the BioRad T100 

Thermocycler. 200 µl of pooled secondary PCR product was cleaned up as 

previously and the desired product (~340 bp) was size selected using a 

BluePippin instrument with 2 % Internal Standard Marker Kit (DF marker 100-

600 bp; Sage Science, BDF2010), according to manufacturer’s protocol using 

a broad range elution (300-400 bp). Individual samples were quantified with a 

KAPA library quantification kit (KAPA Biosystems, cat # 0796-6014-0001) 

using a BioRad CFX96 Real Time PCR instrument with no ROX according to 

manufacturer’s protocols. Libraries were diluted to 4 nM in RNAse free water. 

The following were combined to create 4 nM pooled libraries: for the genome-

wide screen samples 24 libraries (2 pools); for the PDS and PhenDC3 

focused screen samples, 24 libraries (both cell lines), and for the SA-100-128 

focused screen, 18 libraries (both cell lines), with each sample within the 4 nM 

pool, having a unique TruSeq adapter. The genome-wide screen samples 

were sequenced in 6 batches; all focused screen samples were sequenced 

simultaneously. DNA-Seq libraries were prepared from these samples using 

the NextSeq Illumina Platform v2 High Output Kit 75 cycles, followed by 36 

base pair single-read sequencing performed on an Illumina NextSeq 

instrument, using a custom sequencing primer. 
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Table 7.1. PCR and sequencing primers for shRNA recovery and quantification 
 

 
Oligo name 

 
Description 

 
Sequence 5’-3’ 

Mir5-F 
Primary PCR 
Forward 
Primer 

5’-CAGAATCGTTGCCTGCACATCTTGGAAAC- 3’ 

PGKpro-R 
Primary PCR 
Reverse 
Primer 

5’ -CTGCTAAAGCGCATGCTCCAGACTGC- 3’ 

P5-Seq-P-
Mir-Loop 
 

Secondary 
PCR forward 
Primer 

5’-AATGATACGGCGACCACCGAGATCTACACT 
AGCCTGCGCACGTAGTGAAGCCACAGATGTA-3’ 

P7-Index-n-
Truseq-
PGKpro-R 

Secondary 
PCR barcoded 
reverse primer 

5’-CAAGCAGAAGACGGCATACGAGAT 
nnnnnnGTGACTGGAGTTCAGACGTGTGCTCTTCC
GATCTCTGCTAAAGCGCATGCTCCAGACTGC – 3’ 

SeqPrimer 
MirLoop 

Custom 
sequencing 
primer 

5’-AGCCTGCGCACGTAGTGAAGCCACAGATGTA-3 

  

 7.10 siRNA preliminary optimisation experiments 

ON-TARGETplus Set of 4 - Human siRNAs (Dharmacon/GE healthcare) were 

ordered for each protein, in addition to Non-targeting siRNA 1,2,3 and 4 

(Dharmacon/GE healthcare), each as individual stocks (5 nmol lyophilised 

powder) and diluted to 200 nM stocks in nuclease free water (according to 

manufacturer’s recommendations (Ambion). Preliminary 

transfection/knockdown experiments (as described below) for both HT1080 

and A375 were performed. For each protein the level 48 h after transfection 

with the 4 targeting and the 4 non-targeting siRNAs was quantified via 

immunoblotting (as described below). Based on this optimisation, the 

targeting siRNA that caused the greatest knockdown compared to the non-

transfected control for each protein was selected for further experimental use. 

The non-targeting control that was least toxic and gave a protein level most 

similar to the non-transfected control was also selected (Non-targeting siRNA 

number 2). These optimised siRNAs are summarised in the section below. 
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 7.11 siRNA – transfection, experimental outline and 

immunoblotting 

Cells were transfected with either targeting or non-targeting control siRNAs 

using lipofectamine RNAiMAX (Thermo Fisher Scientific, cat # 13778150) and 

OptiMEM Reduced Serum medium (Thermo Fisher Scientific) according to 

the manufacturer’s protocol (Reagent protocol 2013) alongside a non-

transfected control. 24 h after transfection, cells were trypsinised, counted and 

replated in media supplemented with ligand (PDS, PhenDC3, cPDS, CX-

5461, SA-100-128, and 11 PDS derivatives with improved medicinal 

chemistry properties – concentrations can be found within sections 3.2.1-3.2.4 

and 5.2.4) or DMSO vehicle control (minimum 2 replicates per condition) in 

either a 48-well plate format (seeding density - 8,000 cells per well A375; 

4,000 cells per well HT1080) or a 96-well plate format (seeding density 1,500 

cells per well HT1080). For all experiments, cell growth was monitored for 144 

h using IncuCyteZOOM live cell analysis (Sartorius), which approximates cell 

confluency as a percentage of the well area covered. Scans were performed 

every 3 h; 9 and 3 scans per well (48- and 96-well plate respectively). To 

monitor protein levels, cells transfected simultaneously with the same siRNA-

reagent mixture were harvested 48 h and 144 h after transfection, by cell 

scraping and lysed on ice (30 min) with RIPA lysis buffer with protease 

inhibitor + EDTA (Thermo Fisher Scientific, cat # 8990). Lysates were 

quantified via Direct Detect Spectrometry (Merck) and analysed by capillary 

electrophoresis via the Protein Simple WES platform, which separates and 

blots with antibody of interest, according to manufacturer’s protocol with 

antibodies summarised in the table below. Lysates from non-transfected and 
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siRNA-treated (targeting and non-targeting) samples were probed with 

antibodies against the target plus mouse or rabbit anti-beta actin antibody (as 

appropriate) by multiplexing, with the exception of DDX39A, where beta-actin 

was run in a separate lane. For non-targeting and targeting lysates, the area 

of the desired band was normalized to beta-actin and then normalised to the 

protein level in the non-targeting sample, for three (48 h after transfection 

lysates) or two independent WES runs (144 h after transfection). Protein 

depletion is expressed as an average of these normalised values. Growth 

differences for targeting siRNAs were taken from the average growth curve of 

the non-targeting control, and then expressed as individual time points (as 

shown in the text). Significant differences between targeting and the non-

targeting siRNA for ligand treatment versus DMSO (p < 0.05) were 

determined using a one-tailed parametric t-test, assuming equal standard 

deviation. 

Table 7.2. optimised siRNAs used for validation of G4-ligand resistance and sensitivity 
 

Dharmacon 
siRNA 

 
Catalogue number 

 
Sequence 5’-3’ 

Non-targeting 2 D-001810-02-05 UGGUUUACAUGUUGUGUGA 
BRCA1 (A375) J-003461-08 CAACAUGCCCAUAGAUCAA 
BRCA1 (HT1080) J-003461-12 GAAGGAGCUUUCAUCAUUUC 
TOP1 (both cell lines) J-005278-08 CGAAGAAGGUAGUAGAGGUC 
DDX42 (both cell lines) J-012393-11 GGAGAUCGACUAACGGCAA 
GAR1 (both cell lines) J-013386-06 UCCAGAACGUGUAGUCUUA 

ZNF217 (A375) J-004987-12 GUGCAGGCCUCUCGCAAGA 
ZNF217 (HT1080) J-004987-11 UGAUAAAAGUCAAGUGCGA 
DHX29 (both cell lines) J-013759-09 CUGCAGAUCAUUACGGAAC 

TAF1 (both cell lines) J-005041-10 GGACAAGACAGGGUUACUA 

DDX39A (both cell lines) J-004920-12 UGGAGGUGUUUGUGGACGA 
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Table 7.3. Optimised antibody conditions for WES Simple Western Platform detection 
 

Protein Antibody Protein 
Concentration 
(mg/ml) 

Antibody 
dilution 

Loading control 
(LC) 

LC 
antibody 
dilution 

BRCA1 Cell Signalling 
Technology, cat # 
4970-CST 

1.0 1:50 Rabbit beta-
actin 
4970-CST 

1:100 

TOP1 Abcam, cat # 
AB109374 

0.5 1:500 Rabbit beta-
actin 
4970-CST 

1:500 

DDX42 NovusBio cat 
#NBP2-31742 

0.5 1:250 mouse beta-
actin 
Merck cat # 
A5441 

1:250 

GAR1 Abcam cat 
#AB80975 

0.8 1:100 Rabbit beta-
actin 
4970-CST 

1:500 

ZNF217 Abcam cat 
#AB48133 

0.5 1:250 Rabbit beta-
actin 
4970-CST 

1:500 

DHX29 Cell Signalling 
Technology, cat # 
4159-CST 

0.8 1:50 Rabbit beta-
actin 
4970-CST 

1:500 

TAF1 Cell Signalling 
Technology, cat 
#12781-CST 

0.8 1:100 Rabbit beta-
actin 
4970-CST 

1:250 

DDX39A Abcam cat 
#AB50697 

0.8 1:250 mouse beta-
actin 
Merck cat # 
A5441 

1:250 

 

 7.12 Sequencing, read processing, alignment and counting of 

shRNAs 

Bioinformatic analyses were performed by Sergio Martinez Cuesta, with input 

and discussion from Darcie Mulhearn, Katie Zyner and Nicolas Erard. Reads 

were trimmed to 22 nucleotides, base qualities were evaluated with FastQC 

v0.11.3 (Andrews, 2010) and bases were filtered from the 3' end with a Phred 

quality threshold of 33 using the FASTX-Toolkit v0.0.14 (Gordon, 2010). 

Trimmed reads were aligned to the 113,002 reference shRNA sequences 

provided by transOMIC technologies (Knott et al., 2014) using Bowtie 2 v2.2.6 

with default parameters (Langmead and Salzberg, 2012), which resulted in 
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overall alignment rates of 90-95 % with an average of 98 % of reference 

sequences detected. The generated SAM files were processed to obtain 

shRNA counts using Unix tools (https://opengroup.org/unix) and Python 

scripts (v2.7.10, https://www.python.org), and library purity and potential 

contaminations were investigated with stacked bar plots and multidimensional 

scaling (MDS) using the R programming language v3.2.1 (https://cran.r-

project.org). The code and scripts developed during the development of the 

project are available in the Balasubramanian group’s GitHub website 

(https://github.com/sblab-bioinformatics/GWscreen_G4sensitivity). 

 

 7.13 Filtering, normalisation, differential representation analysis 

and defining sensitisation 

To discard shRNAs bearing low counts, each library was filtered based on a 

counts-per-million threshold of 0.5 for all initial time points (t0), e.g. in a library 

of 10 x 106 reads, with a threshold of at least 5 counts for each shRNA for all 

initial time points (t0). Normalisation factors were calculated to scale the raw 

library sizes using the weighted trimmed mean of M-values (TMM) approach 

(Robinson and Oshlack, 2010). To compare groups of replicates (time points 

and chemical treatments) for each pool, differential representation analysis of 

shRNA counts was performed using edgeR (Robinson et al, 2010). Common 

and shRNA-specific dispersions were estimated to allow the fitting of a 

negative binomial generalised linear model (glm) to the treatment counts. 

Contrasts between the initial time point and the treatments were defined 

(PDS-t0, PhenDC3-t0, and DMSO-t0) and likelihood ratio tests were carried 

out accordingly (Dai et al., 2014). Fold changes (FC) were then computed for 
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every shRNA, and false discovery rates (FDR) were estimated using the 

Benjamini-Hochberg method. A gene was defined as significantly differentially 

represented for a given treatment if at least 50 % or a minimum of 3 shRNAs 

were significant (FDR ≤ 0.05); sensitisation was additionally determined by 

applying a median log2FC ≤ -1 and resistance was determined by applying a 

median log2FC ≥ -1. For the SA-100-128 cell line, as the number of hits was 

too low this additional sensitisation/resistance threshold was not included and 

“hits” were considered if they were significantly depleted or upregulated (FDR 

≤ 0.05; 50 % or 3 hairpins median log2FC < 0 or median log2FC > 0, 

respectively). 

 

 7.14 Exploring genes associated to G-quadruplexes in databases 

and biomedical literature 

Three different approaches were developed to uncover genes linked to G-

quadruplexes. 18 high confidence G4-related genes were obtained by 

scanning for genes where the corresponding UniprotKB (The UniProt 

Consortium, 2017) entry is annotated with the term 'quadruplex' or genes 

annotated with at least one of the following 11 GO terms with any evidence 

assertion method (Ashburner et al., 2000, Table 7.4). Furthermore, 55 

confirmed human G4 interacting proteins as defined by the G4IPB database 

(Mishra et al, 2016) (http://bsbe.iiti.ac.in/bsbe/ipdb/index.php) were also used 

to determine predefined G4-interacting proteins from our genome-wide 

shRNA screen. To obtain this list we removed from the G4IPBD, gene entries 

where the only G4-relationship was a predicted G4-forming sequence in the 

mRNA or DNA (i.e. not a direct protein interaction) or where the protein wasn’t 
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human. To expand these lists the text-mining tool PolySearch2 (Liu et al, 

2015b) was used to explore associations between G-quadruplex terms and 

gene names in the biomedical literature. 

Table 7.4. 11 G4-associated gene ontology terms for database searching 
 

GO id Name Type Link 

GO:0051880 G-quadruplex 
DNA binding 

Molecular 
function https://www.ebi.ac.uk/QuickGO/term/GO:0051880 

GO:0002151 G-quadruplex 
RNA binding 

Molecular 
function https://www.ebi.ac.uk/QuickGO/term/GO:0002151 

GO:0061849 
Telomeric G-
quadruplex 
DNA binding 

Molecular 
function https://www.ebi.ac.uk/QuickGO/term/GO:0061849 

GO:0071919 
G-quadruplex 
DNA 
formation 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:0071919 

GO:0044806 
G-quadruplex 
DNA 
unwinding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:0044806 

GO:1905493 
regulation of 
G-quadruplex 
DNA binding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:1905493 

GO:1905494 

negative 
regulation of 
G-quadruplex 
DNA binding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:1905494 

GO:1905495 

positive 
regulation of 
G-quadruplex 
DNA binding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:1905495 

GO:1905465 

regulation of 
G-quadruplex 
DNA 
unwinding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:1905465 

GO:1905466 

negative 
regulation of 
G-quadruplex 
DNA 
unwinding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:1905466 

GO:1905467 

positive 
regulation of 
G-quadruplex 
DNA 
unwinding 

Biological 
process https://www.ebi.ac.uk/QuickGO/term/GO:1905467 
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This algorithm assumes that the greater the co-occurence frequency of terms 

within sentences or database records, the stronger the association. The word 

span between co-occurring terms in the text also influences the association 

score. The set of G-quadruplex entities and synonyms was defined using the 

corresponding MeSH term id D054856 

(https://www.ncbi.nlm.nih.gov/mesh/68054856) and the thesaurus of gene 

names obtained from the PolySearch2 website 

(http://polysearch.cs.ualberta.ca/). A total of 5477 pieces of text were 

identified in PubMed and PubMed Central where any of the G-quadruplex 

terms co-occur with more than 500 human gene names. The PolySearch2 

relevancy score measures the strength of association between two text 

groups, in this case human protein-coding gene names and G4-terms and 

synonyms (as defined in MeSH; see methods). The higher the score, the 

more likely terms from the two groups co-occur within the same abstract. In 

addition to co-occurrence frequency, the score also accounts for the distance 

between terms from the two groups, using both parameters to determine G4-

association. Overall, this generated 526 G4-associated genes of which 54 

(10%) were uncovered as G4-sensitisers (https://github.com/sblab-

bioinformatics/GWscreen_G4sensitivity), which were manually edited to 16 

genes as discussed in chapter 2. 

 

 7.15 KEGG Pathway, Gene Ontology and Protein domain 

enrichment analysis 

ClueGO v2.3.3 (Bindea et al, 2013, 2009), a plugin for Cytoscape (Shannon 

et al, 2003) (v3.5.1) was used to determine and visualise networks of enriched 
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KEGG pathways and Gene Ontology terms (Biological Process and Molecular 

Function) for the lists of significantly depleted genes upon G4 ligand 

treatment. Specifically, a right-sided (Enrichment) test based on the hyper-

geometric distribution was performed on the corresponding Entrez gene IDs 

for each gene list and the Bonferroni adjustment (p < 0.05) was applied to 

correct the p-value for multiple hypothesis testing. Only experimental 

evidence codes (EXP,IDA,IPI,IMP,IGI,IEP) were used. The Kappa-statistics 

score threshold was set to 0.4 and GO term fusion was used to diminish 

redundancy of terms shared by similar proteins. Other parameters include: 

GO level intervals (3-8 genes) and Group Merge (50%). Protein domains were 

investigated using DAVID (v6.8) to integrate GENE3D crystallographic data 

and PFAM sequence information and enrichment was considered significant if 

the EASE score p < 0.05 (Finn et al, 2016; Yeats et al, 2006). 

 

 7.16 COSMIC analysis 

Cancer mutation data (CosmicMutantExport.tsv) from COSMIC database v82 

(Forbes et al, 2015) was used to investigate the association between G4 

sensitisers and cancer genes. ~ 150,000 were mutations available in 

COSMIC for 702 (93%) sensitiser genes, with some predicted to be 

pathogenic by the fathmm algorithm embedded within the resource. The 

Cancer Gene Census (http://cancer.sanger.ac.uk/census) was used to 

investigate whether G4 sensitisers are often enriched in genes containing 

mutations causally implicated in cancer. Fisher’s exact tests as implemented 

the R programming language were used to calculate the significance of the 
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old enrichments for the three subsets of PDS only, PhenDC3 only and 

PDS+PhenDC3 sensitisers with cancer genes as defined by COSMIC. 

 

 7.17 DDX42 characterisation - nuclear versus cytoplasmic 

localisation 

HT1080, HEK and HeLa cells were harvested from a 70 % confluent 15 cm 

plate by cell scraping in PBS on ice and pelleted by centrifugation (500 g, 5 

min, 4 oC). Pellet was resuspended in 3 volumes of low salt buffer (20 mM 

HEPES pH7.4, 10 mM NaCl, 3 mM MgCl2, 0.2 mM EDTA, 1 mM DTT) plus 

protease inhibitor (cOmplete mini, Roche cat#11836153001), lysed on ice (15 

min) and added 0.5 % Igepal. Samples were vortexed (1 min) and centrifuged 

(900 g, 15 min, 4 oC). Supernatant was collected for cytoplasmic extract. 

Residual pellets were washed in low salt buffer, and supernatant discarded. 

Nuclei pellets were resuspended in high salt buffer (20 mM HEPES pH7.4, 

500 mM NaCl, 3 mM MgCl2, 0.5 % Igepal, 0.2 mM EDTA, 1 mM DTT) plus 

protease inihibitors and lysed on ice with intermittent vortexing (30 min). 

Lysates were syringed to promote lysis and shear gDNA and nuclei lysis 

confirmed by trypan blue staining according to manufacturer’s protocols 

(Thermofisher Scientific cat#15250061), followed by centrifugation (13,000 g, 

10 min, 4 oC). The supernatant was then collected as nuclear extract. 

Cytoplasmic and nuclear lysates were quantified by Direct Detect and 

analysed via Wes at a concentration 0.5 mg/mL (both as described above) for 

DDX42 expression. Samples were also immunoblotted with antibodies 

targeting nuclear laminB1 (CST 1258; 1:250) and cytoplasmic GAPDH to 

confirm subcellular fractionation efficiency (CST 5172, 1:50). 
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 7.18 DDX42 characterisation – annealing of G4s for ELISA 

treatment 

Biotinylated oligonucleotides for G-quadruplex and non-G-quadruplex forming 

sequences (IDT technologies; see Table 7.5) were annealed in 10mM TrisHCl 

pH 7.4, 100 mM KCl by heating at 95 0C, 10 min followed by slow cooling to 

RT O/N at a controlled rate of 0.2 oC/min. Annealed oligonucleotides were 

stored at 4 0C for maximum 1 month. Biotinylated oligonucleotides were also 

annealed in 10 mM TrisHCl pH 7.4, 100 mM LiCl, which is less permissive for 

G4 folding to act as negative controls in the ELISA assay. 

Table 7.5. Biotinylated oligonucleotides for ELISA investigation 

 
	
	

 7.19 DDX42 characterisation – Enzyme Linked Immunosorbent 

Assay 

Recombinant human DDX42 with an N-terminal GST tag was used (NovusBio 

H0001325-P01). UltraPure distilled water (Invitrogen 10977-035) was used for 

all buffers. Streptavidin Coated High Binding Capacity 96-well plates 

(ThermoScientific prod #15501) were hydrated with PBS (30 min) and coated 

with 50 nM biotinylated oligonucleotides (1 h, shaking 450 rpm). Wells were 

Oligo RNA/
DNA 

Sequence 

nRAS G4 RNA 5’ [Btn] GGG A GGGG C GGG UCU GGG 3’ 
nRAS mut RNA 5’ [Btn] GAG A GAGG C GAG UCU GAG 3’ 
Bcl-2 intraG4 RNA 5’ [Btn] UUA GGGGG CCGU GGGG U GGG AGCU GGGG 3’ 
Bcl-2 interG4 RNA 5’ [Btn] UUA GGGGG CCGU UUUU U GGG AGCU GGGG 3’ 
Bcl-2 mutant RNA 5’ [Btn] UUA GAGAG CCGU UUUU U GAG AGCU GAGG 3’ 
TERRA-
comp 
(ssRNA) 

RNA 5’ [Btn] CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA 3’ 

Stem loop RNA 5’ [Btn] ACA GGG CUC CGC GAU GGC GGA GAA 3’ 
Myc G4 DNA 5’ [Btn] TGA GGG T GGG TA GGG T GGG TAA 3’ 
Myc mut DNA 5’ [Btn] TGA GAG T GAG TA GAG T GAG TAA 3’ 
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washed three times with ELISA buffer (50 mM K2HPO4 pH 7.4 and 100 mM 

KCl/100 mM LiCl); 1 min shaking, 450 rpm. Wells were blocked in 3 % (w/v) 

BSA in ELISA buffer for 1 h, at RT and then incubated with serial dilutions of 

hDDX42 up either 300 nM or 200 nM for 1 h (as outlined in the text). Wells 

were washed 3 times with 0.1 % TWEEN-20 in ELISA buffer and incubated 

for 1 h with anti-GST HRP-conjugated antibody (AbCam AB3416) diluted 

1:10000 in blocking buffer. Wells were again washed 3 times with ELISA-

Tween, and the bound anti-GST HRP detected with TMB substrate (Sigma 

T4444) for 2 min. Reactions were stopped with 2 M HCl. Absorbance at 450 

nm was measured with PheraSTAR plate reader (BMG labtech). Binding 

curves with standard error of the mean (SEM) were fitted using GraphPad 

Prism software, using a non-linear regression fit, one site, specific binding 

model with saturation kinetics. The following equation was used: 

y=(Bmax*x)/(Kd + x), where x = concentration of DDX42 (nM) and Bmax is the 

maximum specific binding (i.e. saturation). 

 

 7.20 Circular dichroism spectroscopy analysis of oligonucleotides 

200 µL of 10 µM oligonucleotide were prepared in assay buffer and annealed 

as described above. Circular dichroism (CD) experiments were then 

performed by Dr. Marco di Antonio. CD spectra were recorded on an Applied 

Photo-physics Chirascan CD spectropolarimeter using a 1 mm path length 

quartz cuvette. CD measurements were performed at 298 K over a range of 

200-320 nm using a response time of 0.5 s, 1 nm pitch and 0.5 nm bandwidth. 

The recorded spectra represent a smoothed average of three scans, zero-
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corrected at 320 nm (Molar ellipticity θ is quoted in 105 deg cm2 dmol−1). The 

absorbance of the buffer was subtracted from the recorded spectra. 

 

 7.21 siRNA transfection and cell fixation for BG4 

Immunofluorescence in DDX42-depleted cells 

HT1080 cells were transfected with non-targeting and anti-DDX42 siRNA 

using the optimised siRNAs (GE healthcare/Dharmacon) described above 

(section 7.9), in a 6-well plate format; 2 biological replicas performed for each 

sample with each replica transfected independently. 24 h after transfection, 

cells were trypsinised, counted and 60,000 cells replated per well in a 6-well 

plate containing autoclaved 18 mm coverslips (VWR, cat#631-0153) in 3 mL 

media supplemented with 0.5 µM PDS or the equivalent volume of DMSO, 

and left overnight. For each biological replica and sample sufficient coverslips 

were prepared for two timepoints: 72 h and 120 h after transfection. For each 

timepoint NT and DDX42 siRNA transfected cells were treated with PDS or 

DMSO.  For each biological replica, two further 72 h NT + DMSO 

wells/coverslips were prepared for antibody controls (see below). Additionally, 

an extra well of DDX42 and NT transfected cells were plated for immunoblot 

analysis, to confirm protein knockdown after 72 h (performed and analysed as 

in section 7.10). Following 72 h and 120 h, media was removed from the 

wells, cells were washed with PBS (2 x 2 mL), and fixed with 4 % PFA in PBS 

(2 mL per well, 10 min, RT). After washing with PBS (2 x 2mL), cells were 

permeabilised with 0.1 % Triton-PBS (10 min), and washed again with PBS (2 

x 2mL). At this stage, 72 h timepoints were kept at 4 oC and 

immunofluorescence staining as described below was performed 
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simultaneously with the 120 h timepoints. Biological replicas were stained on 

separate days. 

 

 7.22 DDX42 characterisation - BG4 Immunofluorescence staining 

and microscopy quantification analysis 

BG4 was produced and quantified in-house according to Hansel-Hertsch 2018 

Nature Protocols (in press). Briefly, 8 µM BG4 was used for the IF 

experiment. Coverslips were incubated in on parafilm with 200 µL blocking 

buffer (2 % Marvel in PBS; 1 h, 37 oC). Next, cells were incubated with 1/800 

BG4 in blocking buffer (50 µL per silde; 1 h, 37 0C). One 72 h NT + DMSO 

sample was incubated in blocking buffer without BG4 (50 µL; 1 h, 37 0C; no 

BG4 control). Cells were then washed 3 x PBS + 0.1 % Tween (PBS-T; 5 min 

per wash, shaking), before incubating with rabbit anti-FLAG antibody (Cell 

Signalling Technology; cat# CST-2368S 1:800 in blocking buffer; 50 µL per 

slide; 1 h, 37 oC). Also included was a ’72 h NT + DMSO’ slide untreated with 

anti-FLAG (50 µL blocking buffer; 1 h, 37 oC). Following a further 3 x PBS-T 

washes (5 min; shaking), all slides were incubated with goat anti-rabbit Alexa-

fluor594 (45 min, 37 oC; LifeTech A11037), washed 1 x PBS-T (5 min) and 

incubated with DAPI (0.4 µg/mL in PBS-T, 10 min, shaking) and again 

washed with PBS-T (5 min). Then coverslips were quickly washed with 

distilled water (3 x) and air-dried (30 min). Coverslips were mounted onto 

slides using ProLong Diamond Antifade Mountant (Thermofisher Scientific, 

B36961), dried O/N at RT and stored at 4oC until imaged. Confocal images 

were acquired using a Leica TCS SP5 microscope with 63x oil objective 

(Leica Microsystems). The 405 nm diode laser was used to excite the DAPI 
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channel and tertiary Alexa594 fluorophore was excited via the 543 laser line. 

Fluorescence was performed with sequential acquisition (2 seqeuntial scans, 

switch between frames) detected via hybrid detectors (Leica HyD Photon 

Counter), with the following wavelengths collected: 410-485 nm and 640-800 

nm for DAPI and Alexa594 respectively. Pixel size was set to 2048 X 2048 

with zoom factor 2, with a frame average of 3 to reduce background signal. 

Pinhole, laser power, and gain settings were consistent between samples 

within the same biological replica, and set to prevent oversaturation and 

ensure no 594 nm signal in the no antibody controls. 10 frames were acquired 

per condition representing a total 70-100 nuclei per sample. Images were 

processed via CellProfiler v3.0.0 (Carpenter et al, 2006) using the DAPI stain 

to denote nuclei localisation. The following parameters were used: nuclei 

“primary objects” diameter restricted to 150-500 pixel units and objects 

outside the image border or diameter range discarded and “speckle” counter 

settings, with BG4 foci restricted to 2-35 pixels. For each sample, the average 

BG4 foci per nuclei were plotted. 

 

 7.23 DDX42 characterisation – DDX42 level quantification in 

response to G4-ligand treatment 

HT1080 cells were seeded in a 6 well plate format at 20 % confluency. 24 h 

after seeding, one well was transfected with anti-DDX42 siRNA. The 

remaining wells were treated for 96 h with either DMSO vehicle control or the 

following ligands and concentrations: PDS (0.25 and 0.5 µM), PhenDC3 (20 

and 40 µM), CX-5461 (10 and 50 nM) and SA-100-128 (0.5 µM). Samples 

were then lysed and immunoblotted for DDX42 as outlined in section in 7.10. 
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For each biological replica, DDX42 level was normalised to the internal beta-

actin control and expressed as a percentage of that the DMSO treated 

control. This was averaged for two biological replicas and significant 

difference was determined by a parametric t-test assuming equal standard 

deviation.  
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