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Abstract Conservation laws that describe the behavior of partially molten mantle rock have been
established for several decades, but the associated rheology remains poorly understood. Constraints on
the rheology may be obtained from recently published experiments involving deformation of partially
molten rock around a rigid, spherical inclusion. These experiments give rise to patterns of melt
segregation that exhibit the competing effects of pressure shadows and melt-rich bands. Such patterns
provide an opportunity to infer rheological parameters through comparison with models based on the
conservation laws and constitutive relations that hypothetically govern the system. To this end, we have
developed software tools to simulate finite strain, two-phase flow around a circular inclusion in a
configuration that mirrors the experiments. Simulations indicate that the evolution of porosity is
predominantly controlled by the porosity-weakening exponent of the shear viscosity and the poorly known
bulk viscosity. In two-dimensional simulations presented here, we find that the balance of pressure
shadows and melt-rich bands observed in experiments only occurs for bulk-to-shear viscosity ratio of less
than about five. However, the evolution of porosity in simulations with such low bulk viscosity exceeds
physical bounds at unrealistically small strain due to the unchecked, exponential growth of the porosity
variations. Processes that limit or balance porosity localization should be incorporated in the formulation of
the model to produce results that are consistent with the porosity evolution in experiments.

1. Introduction

Segregation and extraction of melt from the mantle control the chemical evolution of the mantle and crust
over geological time. Observations of petrological and isotopic disequilibrium suggest that melt extraction
to produce oceanic crust is rapid and potentially localized into channels [Kelemen et al., 1997]. The mechan-
ics of such melt extraction processes are still somewhat mysterious. Equations that are thought to describe
melt extraction are well established [McKenzie, 1984], but these require refinement and validation. In partic-
ular, although the relevant conservation principles are known, the constitutive laws and closure conditions
remain poorly constrained.

New experiments on melt migration by Qi et al. [2013] provide an opportunity to improve our under-
standing of the rheology of partially molten rocks. In these experiments, a fine-grained, partially molten
aggregate of olivine and basalt is deformed around a nearly rigid, olivine sphere. The experimental samples
start with an approximately uniform porosity; after they are deformed, quenched, and sectioned to reveal
the resulting distribution of olivine and basaltic melt, samples show clear evidence for melt migration. Mea-
surements of the resulting patterns show that the spherical inclusion induces a perturbation to the pressure
field around it, driving flow of magma from the high-pressure sectors to the low-pressure sectors. These
sectors are known as pressure shadows.

The experimental results by Qi et al. [2013] indicate that the pressure shadows can interact with emergent
bands of high melt fraction, as shown in Figure 1a. These bands are the result of a known instability in
deforming, partially molten aggregates. This instability has been investigated theoretically [Stevenson, 1989;
Spiegelman, 2003; Katz et al., 2006; Butler, 2009, 2010; Takei and Katz, 2013; Katz and Takei, 2013] and exper-
imentally [Holtzman et al., 2003; King et al., 2010] and has been shown to produce melt-enriched bands at a
low angle to the shear plane. In the experiments by Qi et al. [2013], such melt bands nucleate at or near the
pressure shadows and grow at the expense of the shadows.
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Figure 1. (a) Melt distribution map resulting from a torsion experiment
on partially molten rock with an olivine inclusion (white area) at a local
strain of 2.1. The top has moved to the right, and the bottom to the
left. The dotted black lines on top of the map indicate two low-porosity
pressure shadows and one high-porosity pressure shadow around the
inclusion and a melt-rich band adjacent to the inclusion. Modified from
Qi et al. [2013]. (b) Schematic of the domain and boundary conditions
used for the simulations presented in section 4. The side boundaries
indicated by P are periodic; the top and bottom boundaries have a
prescribed horizontal velocity. The height of the domain is indicated by
H, and the radius of the inclusion around the origin is given by a.

The present work aims to derive con-
straints on the rheology of the partially
molten mantle from the aforementioned
experiments. We hypothesize that the
theory developed to model partially
molten aggregates [McKenzie, 1984] can
be used to describe the results obtained
by Qi et al. [2013] if the correct constitu-
tive laws are included. In particular, we
seek to quantify the form and magnitude
of the viscous resistance to compaction
based on comparisons between numer-
ical simulations, analytical solutions,
and laboratory experiments. Moreover,
our goal is to establish a framework for
the interpretation of current and future
laboratory experiments that is based
on the two-phase dynamics of partially
molten aggregates.

Previous analysis by McKenzie and
Holness [2000] addressed melt segre-
gation into pressure shadows around a
rigid inclusion based on the theory of
McKenzie [1984]. The authors show that
the pattern of compaction and decom-
paction is sensitive to the ratio of the
bulk-to-shear viscosity. They develop
analytical solutions for an extremal case
where the compaction length, the intrin-
sic length scale associated with the
two-phase dynamics, is much larger
than the size of the rigid inclusion and
is hence approximated as being infi-
nite. In this context, they solved only for
the instantaneous pattern of pressure
and (de)compaction associated with the
onset of flow. In contrast to their anal-
ysis, experiments by Qi et al. [2013] are
performed with a compaction length
that is on the order of the size of the
spherical inclusion. Furthermore, pat-
terns in experiments develop over finite

strain, during which segregation of melt and solid modifies the viscosity structure, and the inclusion under-
goes finite rotation. This is further complicated by the emergence of melt bands in the experiments and
the associated interaction and competition between the two modes of melt segregation. Hence, the mod-
els of McKenzie and Holness [2000], while instructive, cannot be used to quantify constitutive parameters.
The present work addresses these deficiencies by computing time-dependent solutions of the governing
equations for a partially molten aggregate with finite compaction length.

To compute solutions, we use a finite element discretization and implement the simulation code in the
FEniCS software framework [Logg et al., 2012; Logg and Wells, 2010]. FEniCS is an advanced library of tools for
finite element modeling. Our numerical solutions extend a recently published set of analytical solutions for
the instantaneous compaction rate surrounding a spherical inclusion at arbitrary compaction length [Rudge,
2014]. The simulation code is benchmarked against analytical theory, and our results are compared with
patterns observed in experiments by Qi et al. [2013].
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The manuscript is organized as follows. We first describe the governing equations of two-phase mantle flow
and discuss the numerical methods used to model them. We then explore the role of rheological parameters
in three different two-dimensional model configurations of increasing complexity. The first suite of simu-
lations addresses the formation of melt bands in a medium with randomly distributed melt, but without a
rigid inclusion. The second suite focuses on the evolution of pressure shadows around a circular inclusion
for an initially uniform porosity field. The final set of simulations incorporates both the random initial poros-
ity and the rigid, circular inclusion. We examine the competition between melt bands and pressure shadows
and compare these simulations with previous experimental results. The computed solutions are followed by
a discussion and conclusions.

2. Governing Equations

Mass and linear momentum balances for a two-phase (partially molten) system in a domain Ω ⊂ R
d , 1 ≤

d ≤ 3, can be written as follows [McKenzie, 1984]:

𝜕𝜙

𝜕t
− ∇ ⋅ (1 − 𝜙)us = 0 , (1)

∇ ⋅ ū = 0 , (2)

𝜙(uf − us) = −
K𝜙

𝜇f
∇pf , (3)

∇ ⋅ 𝝈̄ = 0 , (4)

where 𝜙 is the porosity, us is the solid velocity, uf is the fluid velocity, and ū = 𝜙uf + (1 − 𝜙)us. The fluid
pressure is given by pf , and 𝜇f is the fluid viscosity. K𝜙 is the permeability, with the subscript 𝜙 denoting a
dependence on the porosity. Furthermore, 𝝈̄ = 𝜙𝝈f +(1−𝜙)𝝈s with 𝝈f the fluid stress and 𝝈s the solid stress.

Equation (1) describes mass conservation for the solid phase, and equation (2) describes conservation of
mass for the two-phase mixture. Equations (3) and (4) are linear momentum balances for the fluid phase
and the two-phase mixture, respectively. It is assumed here that there is no mass transfer between the two
phases, i.e., no melting or recrystallization takes place, that the densities of the two phases are constant and
that gravitational forces are negligible.

We assume a Newtonian constitutive model for 𝝈̄

𝝈̄ = −pf I + 𝜁𝜙(∇ ⋅ us)I + 𝝉̄ , (5)

where 𝜁𝜙 is the effective bulk viscosity of the two-phase mixture

𝝉̄ = 𝜂𝜙

(
∇us + ∇uT

s − 2
3
(∇ ⋅ us)I

)
(6)

is the deviatoric stress and 𝜂𝜙 is the effective shear viscosity.

Inserting equation (3) into (2), under the preceding constitutive assumptions, equations (1)–(4) reduce to

𝜕𝜙

𝜕t
− ∇ ⋅ (1 − 𝜙)us = 0, (7)

∇ ⋅
(
−

K𝜙

𝜇f
∇pf + us

)
= 0, (8)

− ∇pf + ∇(𝜁𝜙∇ ⋅ us) + ∇ ⋅ 𝝉̄ = 0, (9)

where the primal unknowns are 𝜙, pf , and us.

To complete the problem, the following boundary conditions are applied as follows:

−
K𝜙

𝜇f
∇pf ⋅ n = 0 on 𝜕Ω , (10)

us = w on 𝜕Ω , (11)
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where impermeability at the boundaries is represented by equation (10), and the solid velocity is prescribed
according to equation (11).

To nondimensionalize the equations above, we use the following scalings:

K𝜙 = K0K ′
𝜙
, x = Hx′, us = H𝛾̇us

′, t = 𝛾̇−1t′,

𝜂𝜙 = 𝜂0𝜂
′
𝜙
, 𝜁𝜙 = 𝜁0𝜁

′
𝜙
, pf = 𝜂0𝛾̇p′

f
,

(12)

where 𝜙0 is the reference porosity, K0 the permeability at the reference porosity, 𝜂0 and 𝜁0 the shear viscosity
and bulk viscosity at the reference porosity, H is a length measure, and 𝛾̇ the imposed shear strain rate. The
nondimensional forms of equations (7)–(9) are as follows:

𝜕𝜙

𝜕t′
+ ∇′ ⋅ (1 − 𝜙)u′

s = 0 , (13)

∇′ ⋅
(
− D2

R + 4∕3
K ′
𝜙
∇′p′

f + u′
s

)
= 0 , (14)

∇′ ⋅
(

2𝜂′
𝜙
𝝐̄(u′

s)
)
+ ∇′

((
R𝜁 ′

𝜙
− 2

3
𝜂′
𝜙

)
∇′ ⋅ u′

s

)
− ∇′p′

f = 0 , (15)

where 𝝐̄(u′
s) = (∇us + ∇uT

s )∕2 is the strain rate tensor, the bulk-to-shear viscosity ratio R = 𝜁0∕𝜂0, and the
length scale D = 𝛿∕H, in which

𝛿 =

√
(R + 4∕3)𝜂0K0

𝜇f
(16)

is the compaction length at reference porosity 𝜙0.

In this study, we choose the nondimensional permeability K ′
𝜙

, bulk viscosity 𝜁 ′
𝜙

, and shear viscosity 𝜂′
𝜙

to be

K ′
𝜙
=
(

𝜙

𝜙0

)n

, 𝜁 ′
𝜙
= 𝜂′

𝜙

(
𝜙

𝜙0

)−m

, 𝜂′
𝜙
= e−𝛼(𝜙−𝜙0), (17)

with n = 2 and m = 1; the porosity-weakening exponent 𝛼 and the bulk-to-shear viscosity ratio R are varied
between simulations. The boundary conditions in nondimensional form become

− D2

R + 4∕3
K ′
𝜙
∇′p′

f ⋅ n′ = 0 on 𝜕Ω , (18)

u′
s = w′ on 𝜕Ω. (19)

We dispense with the prime notation from this point and work at all times with the nondimensional form.

3. Model Setup

The governing equations in the previous section are solved using the finite element method. The finite
element method is chosen for the ease with which arbitrarily shaped inclusions can be modeled and to per-
mit localized spatial refinement. The software implementation builds on the open-source FEniCS Project
libraries [Logg et al., 2012; Logg and Wells, 2010]. The complete code for reproducing all examples in this
work is freely available at http://www.repository.cam.ac.uk/handle/1810/245252. We summarize in this
section some important aspects of the method that we use.

3.1. Discretization
To solve the dimensionless governing equations (13)–(15), together with the boundary conditions in
equations (18) and (19), using the finite element method, we cast the equations in a weak form. Taylor-Hood
elements on triangles (P2–P1) are used for fields in equations (14) and (15). A Crank-Nicolson scheme is used
to discretize the time derivative in the porosity evolution equation (13). The weak forms and finite element
scheme are detailed in Appendix A.
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3.2. Boundary and Initial Conditions
Figure 1b shows a schematic of the domain and boundary conditions used for the simulations presented in
section 4. In all simulations, the top and bottom boundary are impermeable. The velocity is prescribed on
these boundaries to create simple shear with the top moving to the right

utop
s (x,H∕2) =

(H
2
𝛾̇ , 0

)
, ubottom

s (x,−H∕2) =
(
−H

2
𝛾̇ , 0

)
, (20)

where 𝛾̇ is the shear strain rate. The domain is periodic in the x direction. In simulations with an inclusion,
we additionally enforce zero net torque on the inclusion boundary using a Lagrange multiplier and make
the inclusion rotate as a rigid body using Nitsche’s method (see Appendix B). The model is validated against
published analytic and computational results described in Appendix C.

The simulations that are presented in section 4 either have a uniform initial background porosity 𝜙0 = 0.05
or a randomly perturbed initial field with mean 𝜙0 = 0.05 and a maximum perturbation amplitude A = 0.03.
This is within the range of initial porosities used in experiments [for example, Holtzman and Kohlstedt, 2007;
Qi et al., 2013]. The random field is created once and then reused for all simulations to ensure reproducibil-
ity. The random initial perturbations in the porosity field are coarser than the grid scale, so that porosity
variations are sufficiently resolved.

3.3. Rheology
The porosity-weakening exponent 𝛼 (see equation (17)) has been experimentally determined to be around
26 for diffusion creep and 31 for dislocation creep [Kelemen et al., 1997; Mei et al., 2002]; 𝛼 = 28 has previ-
ously been used in simulations [e.g., Katz et al., 2006]. In this study, we vary 𝛼 between 0 and 50 so that we
can establish, in detail, the effects of this porosity-weakening exponent on model dynamics.

The bulk-to-shear viscosity ratio R, however, is significantly less well constrained. Simpson et al. [2010]
used homogenization theory on two interpenetrating, viscously deformable fluids to deduce that the
bulk-to-shear viscosity ratio R is proportional to the porosity as 𝜙−1 and consider R ∼ 20 for a background
porosity 𝜙0 = 0.05. In contrast, Takei and Holtzman [2009] find, through a microscale model of diffusion
creep of a grain partly wetted by melt, that R ∼ 5∕3, independent of porosity except when the porosity is
vanishingly small (or when it is above the disaggregation fraction). In the simulations presented in section 4,
we use bulk-to-shear viscosities between 5/3 and 100 to encompass the values advocated in the above
referenced studies.

With increasing strain, the amplitude of porosity variations is expected to grow. Given that there is no
porosity-limiting term in the model, the porosity perturbations will grow to values beyond the mathemat-
ical bounds of zero and one. Therefore, we terminate simulations when the porosity anywhere within the
domain becomes less than zero or greater than one.

4. Results

We now present three model problems of increasing complexity. First, we consider melt bands in a partially
molten medium without an inclusion but with a randomly perturbed initial porosity field. Then we inves-
tigate the compaction pattern around a circular inclusion in an initially uniform porosity field. Finally, we
combine a randomly perturbed initial porosity field with a circular inclusion.

The simulations presented in section 4 with no inclusion are solved on a uniform square mesh of height 1
with approximately 300 × 300 triangles, such that the cell size is approximately 5 × 10−3. Simulations with
an inclusion have a mesh that is linearly refined toward the inclusion boundary, with cell sizes ranging from
1 × 10−2 near the outer boundaries to 2 × 10−3 near the inclusion.

4.1. Melt Bands in a Random Medium Without an Inclusion
For a partially molten medium without any inclusions, we consider a random initial porosity field with a
perturbation amplitude of 0.03 with a background value of 0.05 (Figure 2a). We study a suite of simulations
with a wide range of values for the porosity-weakening exponent (𝛼 ∈ [15, 50]) and bulk-to-shear viscosity
ratio (R ∈ [1.7, 100]) in order to establish the parameter regime for which melt-rich bands readily develop.
For this case, we do not consider simulations with 𝛼 = 0, since a positive porosity-weakening exponent is
required for a positive growth rate of melt bands (see equation (C10)).

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5907
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(a) (b)

(c) (d)

(e) (f)

Figure 2. (a) Porosity and (b) compaction rate in a partially molten medium with random initial porosity under simple
shear without inclusion, 𝛼 = 28 and R = 1.7, at its initial state. (c) Porosity and (d) compaction rate for the same simula-
tion at a strain of 0.1. (e) Porosity and (f ) compaction rate for a simulation with R = 20 at a strain of 0.5. In all cases, the
top boundary moves to the right and the bottom boundary to the left.

Figures 2c and 2d show that for 𝛼 = 28 and a small bulk-to-shear viscosity ratio R of 1.7, high-porosity bands
form rapidly and are well developed at a strain of 0.1. The bands rotate clockwise in the simple shear velocity
field but continue to form at 45◦. The bands with positive compaction rate and high porosity dominate over
the negative compaction rate and low-porosity features due to the porosity-weakening rheology.

For R = 20, melt bands have not fully formed yet at a strain of 0.5, as shown in Figures 2e and 2f. Even
though bands are not widely present in the porosity field, high-compaction rates are concentrated in nar-
row bands at 45◦ to the plane of shear. Melt bands grow more slowly for higher bulk-to-shear viscosity ratios
(see equation (C10)), and therefore, band reforming at a 45◦ angle occurs more slowly relative to advection.
Under these conditions, a fraction of the bands in the compaction rate field have a higher angle than for the
R = 1.7 case.

A small bulk-to-shear viscosity ratio (R ≤ 10) and a large porosity-weakening exponent are required to form
persistent melt bands. However, both factors enhance melt band growth rates and thus cause the porosity
to exceed the physical range of [0, 1] more rapidly. We therefore conclude from these simulations that it is
challenging to obtain simulations with well-developed melt bands at high strains while keeping the porosity
within physical bounds.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5908
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Figure 3. Porosity and compaction rate for a simulation with uniform initial porosity, R = 50 and 𝛼 = 0, at strains (a, b)
0.1 and (c, d) 4.0. (e) Porosity and (f ) compaction rate integrated between a and 2a for different angles at various strains.

4.2. Compaction Around an Inclusion With Uniform Initial Porosity
In this section we introduce a circular inclusion into the domain. With a uniform initial porosity, the instan-
taneous compaction rate at zero strain is identical to the pattern shown in Figure C1a (Benchmark 1,
section C1.). When a medium with 𝛼 = 0 and R = 50 is deformed by simple shear, the porosity field initially
develops according to this instantaneous compaction rate pattern as indicated in Figures 3a and 3b. As the
strain increases, the porosity lobes rotate around the inclusion according to the simple shear velocity field.
Figures 3c and 3e show that the high-porosity lobes become stretched and grow faster and into sharper fea-
tures than the low-porosity lobes. Even though the porosity exponent in the shear viscosity is zero in the
case shown here, the permeability and bulk viscosity still depend on porosity (see equation (17)).

The compaction rate evolves in a different manner than the porosity. The divergence of the velocity field is
mainly governed by the prescribed constant simple shear. Hence, the nonrotating instantaneous pattern
generally dominates, as illustrated in Figure 3b. At high strains, the compaction rate is affected by the large
porosity variations that have developed. Figures 3d and 3f show that the areas with highest porosity and
therefore lowest bulk viscosity are most easily deformed, partially overprinting the instantaneous pattern,
which results in deformed compaction rate lobes.

To further analyze the evolution of porosity and compaction rate, we compute integrals of 𝜙 and ∇ ⋅ us from
the boundary of the inclusion at radius r = a outward to a radius of r = 2a, for a series of azimuths between
0 and 2𝜋

1
a ∫

2a

a
𝜙 dr,

1
a ∫

2a

a
(∇ ⋅ us) dr. (21)
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Figure 4. (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity, R = 1.7 and 𝛼 = 0, at a strain
of 0.3. (c) Porosity and (d) compaction rate integrals at various strains.

These integrals show the rotation and evolution of the asymmetry of the high- and low-porosity lobes in
Figure 3e and the deformation of features in the compaction rate field in Figure 3f.

Both the bulk-to-shear viscosity ratio R and the porosity-weakening exponent 𝛼 in the shear viscosity have
a profound effect on the porosity evolution and compaction rate. A smaller bulk-to-shear viscosity ratio
results in faster and more asymmetric growth of features in the porosity field and causes the porosity to go
out of bounds more quickly. For example, the simulation with R = 1.7 and 𝛼 = 0 in Figures 4a and 4c shows
a similar porosity pattern as the case with R = 50 but with larger amplitude variation. The compaction
rate field is more strongly affected by the porosity for smaller R because the porosity differences in space
are larger. A low porosity acts to decrease the compaction rate. As the porosity lobes rotate with shear and
become misaligned with the nonrotating compaction rate lobes, they decrease the magnitude of negative

Figure 5. (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity, R = 1.7 and 𝛼 = 28, at a
strain of 0.1. (c) Porosity and (d) compaction rate integrals for various strains.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5910
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(a)

(c)

(b)

(d)

Figure 6. (a) Porosity and (b) compaction rate integrals for simulations with uniform initial porosity, 𝛼 = 0 at 𝛾 = 0.3, for
various values of R. (c) Porosity and (d) compaction rate for simulations with 𝛼 = 28 at 𝛾 = 0.1 for various values of R.

compaction rate lobes in an asymmetric manner (Figures 4b and 4d). This simulation goes out of physical
bounds for a strain of ∼ 0.32.

In the small bulk-to-shear viscosity regime, the effect of the porosity exponent 𝛼 is particularly discernible.
When 𝛼 is chosen to be the experimentally determined value of 28, the porosity reaches the physical limits
at an even smaller strain of ∼ 0.11. The porosity and compaction rate features in Figure 5 develop similar to
the melt bands seen in the previous section, with an elongated shape toward 45◦ from the plane of shear.
The maximum value of the compaction rate grows with time when 𝛼 > 0, and its peaks flatten with the
widening high-compaction rate lobes.

Figure 6 shows radial integrals as a function of azimuth for a suite of calculations at five values of R and
two values of 𝛼; it summarizes the controlling effect of these parameters. For 𝛼 = 0 in Figures 6a and 6b,

Figure 7. (a) Porosity and (b) compaction rate for a simulation with random initial porosity, R = 1.7 and 𝛼 = 28, at a
strain of 0.06. (c) Porosity and (d) compaction rate integrals for the same simulation at various strains. The solid lines are
fits with Fourier functions with the lowest nine coefficients included.

ALISIC ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5911
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Figure 8. (a) Porosity and (b) compaction rate for a simulation with random initial porosity, R = 20 and 𝛼 = 28, at a strain
of 0.15. (c) Porosity and (d) compaction rate integrals for the same simulation at various strains. The solid lines are fits
with Fourier functions with the lowest nine coefficients included.

increasing R causes compaction around the inclusion to have larger amplitudes, resulting in sharper positive
porosity lobes and deformed negative compaction rate lobes. Figures 6c and 6d show that when 𝛼 = 28, a
higher R results in wider and flatter positive lobes in porosity and compaction rate. The behavior of pressure
shadows for 𝛼 > 0 is similar to that of melt bands.

4.3. Melt Bands and Pressure Shadows Around an Inclusion
The final suite of tests involves a random initial porosity field around the inclusion. Generally, the porosity
goes out of bounds significantly faster than in the preceding tests, as the compaction around the inclusion
associated with pressure shadows compounds the growth of porosity in melt bands. Figure 7a shows that
this results in less extensive melt bands, even with high 𝛼 and low R. At most, short, high-porosity bands
can be seen adjacent to the inclusion for a case with 𝛼 = 28 and R = 1.7. The compaction rate shows both
the bands and the effect of the inclusion (Figure 7b). In the integrals, melt bands distinguish themselves
by peaks that flatten with strain, whereas pressure shadows around the inclusion manifest themselves as a
sinusoidal quadrupole shape. Figure 7c indicates that the porosity amplitudes increase as the positive lobes
grow faster with increasing strain. In the compaction rate field in Figure 7d, only the positive lobes grow.

Figures 8a and 8b show that an increase in R causes melt bands to grow more slowly and compaction
around the inclusion to be dominant over domain-wide melt bands. This is especially reflected in the poros-
ity and compaction rate integrals in Figures 8c and 8d compared to Figure 7. Figure 9 summarizes the
change of shape of the porosity and compaction rate integrals with increasing R: for large R, the integrals
closely resemble the uniform case with wide troughs and sharp peaks.

Figure 9. (a) Porosity and (b) compaction rate integrals for simulations with random initial porosity, 𝛼 = 28 at 𝛾 = 0.05,
for various values of R. The solid lines are fits with Fourier functions with the lowest nine coefficients included.
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Figure 10. (a) Maximum strain 𝛾max reached as function of 𝛼 and R
(black contours) in simulations with uniform initial porosity and an
inclusion. The background color denotes the scaled average width of
high-porosity lobes W . The black circles indicate parameter combi-
nations used in simulations. (b) Maximum strains in simulations with
random initial porosity without an inclusion. The red circles indicate
simulations that do not display significant melt bands at the final
strain 𝛾max, and the green circles indicate simulations that do. (c) Max-
imum strains reached in simulations with random initial porosity with
an inclusion.

4.4. Model Regimes
The results of the three sets of simula-
tions are summarized as a function of the
porosity exponent 𝛼 and bulk-to-shear
viscosity ratio R in Figure 10. The maxi-
mum strain 𝛾max reached in simulations
is an indicator for the effective growth
rate brought about by all melt segre-
gation processes together. Generally,
𝛾max increases with decreasing effective
growth rate, i.e., with increasing R and
decreasing 𝛼, indicated by the black con-
tours in Figure 10. Figure 10a shows that
simulations with uniform initial porosity
and with only linearly increasing com-
paction around an inclusion evolve to
the largest strains of the three suites. The
maximum strain is the lowest in simu-
lations where compaction around the
inclusion competes with the exponential
growth of melt bands originating in the
random initial porosity field, as indicated
in Figure 10c.

For the simulations with uniform ini-
tial porosity, we compute the average
width W of the two high-porosity lobes
around the inclusion at the final strain
scaled by 𝜋∕2 (the width of a lobe in
its initial state), shown as the color
background in Figure 10a. A scaled
lobe width larger than one indicates
flattened high-porosity lobes and nar-
row low-porosity lobes and therefore
shearing, such as in Figure 5a. On the
other hand, W < 1 indicates that the
high-porosity lobes are narrow because
they are advected according to the sim-
ple shear velocity field, as for example in
Figure 3e. The lobe width increases with
𝛼 and decreases with R; it is inversely
proportional to the maximum strain,
demonstrated by the contours of W
that parallel those of maximum strain.
Therefore, W must be proportional to the
growth rate of porosity perturbations in
melt band mode.

A scaled lobe width W > 1 is seen for R ≤ 10 when 𝛼 > 15 and for R ≤ 5 when 𝛼 = 15. This could be
viewed as the regime where melt-rich bands could develop. For small R and large 𝛼, W decreases again; this
indicates the underdevelopment of porosity lobes for small maximum strain.

Green circles in Figure 10b indicate that in simulations with random initial porosity without an inclusion,
melt bands are seen for R < 20 when 𝛼 < 50 and for R ≤ 20 when 𝛼 = 50. Figure 10c shows that in simu-
lations with random initial porosity and a circular inclusion, melt bands are more elusive and only develop
for R < 5 and 𝛼 > 15. Outside this narrow regime, the porosity field is dominated by compaction around
the inclusion.
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5. Discussion

The numerical models of partially molten mantle material presented in this paper explore the evolution of
melt segregation as a function of the bulk-to-shear viscosity ratio R and the porosity-weakening exponent of
the shear viscosity 𝛼. These parameters control the balance between pressure shadows around an inclusion
and domain-wide melt bands. Generally, the pressure shadows around the inclusion dominate the porosity
field. There is a small portion of the parameter regime that allows for significant development of melt bands,
requiring a small bulk-to-shear viscosity ratio and therefore a material that is relatively easily compactable.

The porosity field that represents the melt distribution in the simulations does not bear close resemblance
to the experimental results obtained by Qi et al. [2013]. Most importantly, we are not able to reproduce
prominent melt bands adjacent to the inclusion that overprint the pressure shadows around the inclusion.
Second, the strains at which the porosity in the simulations exceeds the physical regime of [0, 1] are sig-
nificantly smaller than those at which the experiments fail. Qi et al. [2013] report maximum local strains
between 0.9 and 5.0, whereas in our numerical simulations with a random initial porosity around an inclu-
sion the maximum strains are between 0.03 and 0.8. Furthermore, when the porosity increases past ∼ 0.25
in partially molten rock, it disaggregates and the solid particles are in suspension. We do not consider
these processes in our numerical models since laboratory experiments are terminated before reaching the
disaggregation regime.

In our simulations, the presence of an inclusion causes the porosity to go out of bounds more quickly,
as the compaction in pressure shadows around the inclusion compounds the porosity growth in melt
bands directly adjacent to the inclusion. For the same total strain, simulations with and without a circular
inclusion show the same amount of melt band development, indicating that the lack of melt bands in sim-
ulations with the inclusion compared to the simulations without the inclusion is exclusively the result of
a smaller maximum strain. The exact maximum strain reached in a simulation is not necessarily relevant,
as it may depend on the placement of the initial random high-porosity perturbations directly adjacent to
the inclusion. Rather, the observed trends in maximum strains as a function of model parameters inform us
about the effective growth rates of porosity near the inclusion as a result of the two competing modes of
melt segregation.

The porosity going out of bounds is indicative of physics not captured by the set of governing equations and
constitutive relations presented in this paper. Several studies suggest possible modifications to constitutive
relations that would limit the growth of sharp porosity gradients. For example, Bercovici and Ricard [2003]
use surface tension terms, and Takei and Hier-Majumder [2009] consider a second melt segregation process
aside from decompaction and compaction of the solid that results from dissolution and precipitation in the
melt. Keller et al. [2013] implement a higher-order polynomial form for the porosity-dependent permeability
that results in a decrease in permeability for very high porosities. The most appropriate approach to this
question remains a debate; more theoretical work is likely needed to resolve it. Incorporation of mechanisms
that prevent the porosity going out of bounds at small strains could expand the parameter subspace in
which simulations develop melt bands and thus improve the agreement with experiments.

Melt-rich bands are observed to form at shallow angles of 15–20◦ [Holtzman et al., 2003; Holtzman and
Kohlstedt, 2007; King et al., 2010; Qi et al., 2013]. In the models presented here, melt bands form at a 45◦

angle to the simple shear plane. Previous work has shown that a non-Newtonian rheology with large stress
exponent (n > 3) [Katz et al., 2006] or an anisotropic viscosity [Takei and Katz, 2013; Katz and Takei, 2013]
can produce lower band angles. In this work, we are primarily concerned with understanding the model
behavior as function of the bulk-to-shear viscosity ratio and the porosity-weakening exponent. The incor-
poration of non-Newtonian and/or anisotropic viscosity is a topic of ongoing work and should improve the
agreement of our simulations with experimental results.

An important feature of laboratory experiments is their three-dimensional nature. Numerical simulations
should also be performed in three dimensions to advance a detailed quantitative comparison with exper-
imental results. The compaction rate around a circular inclusion in two dimensions decays as 1∕r2 and
around a spherical inclusion in three dimensions as 1∕r3. We therefore expect pressure shadows to be
spatially limited in three-dimensional models, which could allow planar melt bands to become more promi-
nent. However, such computations in three dimensions are computationally challenging as they involve
very large systems of equations. The key to tractable simulations in three dimensions is the development
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of effective preconditioners to accelerate the solution of linear systems. Research in this area is underway
[Rhebergen et al., 2013], and the implementation and use of recently developed preconditioners will enable
three-dimensional computations of two-phase flow at high resolution, which will be the core of future work.

6. Conclusions

We computed two-dimensional models of partially molten mantle material under simple shear, with and
without inclusions that perturb the flow. The model configurations are based on recent laboratory experi-
ments that exhibit pressure shadows around an inclusion and associated melt bands as competing features
in the melt distribution. Previous theoretical studies of magma/mantle dynamics around an inclusion only
considered instantaneous solutions to the governing equations; we improve on this by computing the
evolution of the two-phase material with strain. The simulations display the pressure shadows around a
circular inclusion, as well as abundant melt band development in simulations without an inclusion. The
geometry and evolution of these features depend on the bulk-to-shear viscosity ratio as well as on the
porosity-weakening exponent in the shear viscosity. However, it has proven challenging to determine a
parameter regime for which melt bands develop in the presence of an inclusion. We find that a bulk-to-shear
viscosity ratio of less than five is required in our simulations. For such small bulk-to-shear viscosity ratios,
the porosity field reaches its physical bounds at unrealistically small strains. This indicates that an important
component of the physics is not captured in the governing equations and constitutive relations outlined in
this paper, and some form of limiter on porosity weakening would be required to obtain numerical results
that resemble the laboratory experiments more closely.

Appendix A: Weak Form

To solve equations (13)–(15), together with boundary conditions in equation (18)–(19), we cast them in a
weak form. Given 𝜙, the weak solutions us and pf satisfy

0 = ∫Ω
2𝜂𝜙𝝐(us) ∶ 𝝐(vs)dx + ∫Ω

(
R𝜁𝜙 − 2

3
𝜂𝜙

)
(∇ ⋅ us)(∇ ⋅ vs)dx

− ∫Ω
pf∇ ⋅ vs dx − ∫Ω

qf∇ ⋅ us dx − ∫Ω

(
D2

R + 4∕3

)
K𝜙∇pf ⋅ ∇qf dx, (A1)

where vs and qf are arbitrary test functions. To obtain the weak form of equation (13), it will be useful to first
discretize in time. We use a Crank-Nicolson time-stepping scheme:

𝜙 − 𝜙0 + Δt
(

us ⋅ ∇𝜙mid − (1 − 𝜙mid)∇ ⋅ us

)
= 0, (A2)

where Δt is the time step, 𝜙mid = 1
2
(𝜙 + 𝜙0) and 𝜙0 and 𝜙 are, respectively, the known and unknown

porosities from the previous and current time step. Given us from the previous time step, the weak solution
𝜙 satisfies

0 = ∫Ω
w
(
𝜙 − 𝜙0 + Δt

(
us ⋅ ∇𝜙mid − (1 − 𝜙mid)∇ ⋅ us

))
dx, (A3)

where w is an arbitrary test function.

Additionally, we apply standard streamline upwind Petrov-Galerkin stabilization by adding a term rSUPG to
the porosity transport equation (A3) [Brooks and Hughes, 1982]

keff = 1
2

(
h|us|

2
− 1 +

||||h|us|
2

− 1
||||
)

(A4)

rSUPG = ∫Ω

keff|us|2
(us ⋅ ∇w) rCN dx, (A5)

where h is the cell size, |us| is the norm of the solid velocity field, and rCN is the residual of equation (A3).
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Appendix B: Boundary Conditions on the Inclusion

We impose a no-net torque boundary condition on the circular inclusion

∫Ωs

x × (𝝈̄ ⋅ n) ds = 0 (B1)

which is applied by adding a term FL to the weak form in equation (A1)

FL = 𝝀 ⋅ ∫Ωs

x × (𝝈̄ ⋅ n) ds, (B2)

where 𝝀 is the Lagrange multiplier, which reduces to (0, 0, 𝜆) in our two-dimensional model.

The second boundary condition on the inclusion is a rigid body rotation. Nitsche’s method is used to ensure
that us = 𝝎 × x on the inclusion boundary. This is a variationally consistent method for the weak imposition
of Dirichlet boundary conditions, consisting of a term FN added to the weak form in equation (A1)

FN = ∫Ωs

10
h
(us − 𝝎 × x) ⋅ vs − (us − 𝝎 × x) ⋅ tv − vs ⋅ tu ds (B3)

where h is the cell size, 𝝎 is the unknown rotation rate of the inclusion, and tu and tv are traction vectors
(𝝈̄ ⋅ n) corresponding to velocities us and vs. For the simulations presented here, 𝝎 = (0, 0, 𝜔).

Appendix C: Benchmarks

We present in this appendix benchmarking of the developed numerical tools.

C1. Instantaneous Compaction Around a Circle
The instantaneous compaction around a circular inclusion in a medium with a uniform initial porosity
has been described analytically by Rudge [2014] and therefore lends itself as a benchmark for numerical
simulations of compaction.

The far-field velocity consists of simple shear and can be written as u∞ = (𝛾̇y, 0) in terms of a strain rate 𝛾̇ .
The governing equations (13)–(15) are solved with us = 0 and ∇pf ⋅ n = 0 on the circle. This results in the
following analytical solutions for matrix velocity us and pressure pf [Rudge, 2014]:

us = u∞ +
(
−4G

r4
+

2HK2(r)
r2

)
E ⋅ x +

(
−2F

r4
+ 8G

r6
−

HK3(r)
r3

)
(x ⋅ E ⋅ x)x , (C1)

pf =
(
−4F

r4
+

HK2(r)
r2

)
x ⋅ E ⋅ x , (C2)

where Kn(r) is the modified Bessel function of the second kind,  = 𝜂∕(𝜁 + (4∕3)𝜂), and

F = −
a4K ′

2(a)
4K1(a) − a2K ′

2(a)
, (C3)

G = a4

4
+

4a3K2(a)
4K1(a) − a2K ′

2(a)
, (C4)

H = 8a
4K1(a) − a2K ′

2(a)
, (C5)

where r is the distance from the center of the inclusion and a the radius of the circle. This solution assumes a
finite compaction length 𝛿, and all lengths have been scaled with the compaction length.

The term E is the constant, trace-free, symmetric, second-rank, strain rate tensor of the far-field flow,
E = 1

2

(
∇u∞ + ∇uT

∞
)

, which can be written in components as

E = 1
2

(
0 𝛾̇

𝛾̇ 0

)
. (C6)
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(a)

(b)

Figure C1. (a) Instantaneous compaction pattern around a circular inclusion under simple shear (only a part of the full
domain is shown). The top moves to the right, the bottom to the left. (b) L2 difference e between the analytical and
numerical velocity field, for various inclusion radii, with a mesh of 160 × 160 cells. The inclusion radius a is given as a
fraction of the height of the domain.

The compaction rate is

∇ ⋅ us =
FK2(r)

r2
x ⋅ E ⋅ x . (C7)

Figure C1a shows the antisymmetric pattern of the instantaneous compaction rate, with two positive and
two negative lobes around the circle in the shape of a quadrupole. The negative compaction rate lobes
form where overpressure causes melt to be expelled, leading to compaction and therefore low porosity. The
positive lobes have an underpressure and therefore attract melt and decompact, resulting in high porosity.

To validate the numerical results, we compute the L2 difference e between the numerical solid velocity field
uN

s and the analytical solution uA
s given in equation (C1)

e =
||uN

s − uA
s ||2||uA

s || , (C8)

for different radii of the inclusion a. The results are shown in Figure C1b. The analytical solution assumes an
infinite domain, whereas the numerical solution is affected by the boundaries at the top and bottom. These
boundary effects (and therefore e) are reduced if the size of the inclusion is decreased relative to the domain
size while still resolving the compaction around the inclusion.
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Figure C2. Plane wave porosity field at strains of (a) 0.0, (b) 1.5, and (c) 3.0. The top boundary moves to the right, the
bottom boundary to the left. The arrows show the perturbations in the solid velocity with respect to the simple shear
velocity field.

C2. Plane Wave Melt Bands
We will now look at the angle and growth of melt bands as they rotate under simple shear in a rectangular,
two-dimensional domain with aspect ratio 4. This benchmark aims to reproduce analytical solutions of initial
melt band growth rate [Spiegelman, 2003].

The initial condition for this benchmark is a plane wave in the porosity field described by the following:

𝜙init(x, y) = 1.0 + A cos
(

k0x sin 𝜃0 + k0y cos 𝜃0

)
. (C9)

The wave number and melt band angle at t = 0 are given by k0 = |k|t=0 and 𝜃0 = tan−1
[

k0
x∕k0

y

]
, respectively.

The amplitude of the perturbation (A) must be small for the linear approximation in the analytical solution
to be valid. The analytical solution for melt band growth rates is [Spiegelman, 2003]

ṡA = −
𝜂0

𝜁0 + (4∕3)𝜂0
𝛼(1 − 𝜙0)2𝜀̇xy sin 2𝜃 . (C10)

The strain rate 𝜀̇xy is equal to 1∕2 for simple shear. The numerical melt band growth rate is computed
as follows:

ṡN =
(1 − 𝜙0)

A𝜙0
∇ ⋅ us . (C11)

Figure C2 shows the melt bands rotating with increasing shear, i.e., with progressing time [Spiegelman,
2003]. The band angle 𝜃(t) is given by Katz et al. [2006]

𝜃(t) = tan−1

[
sin 𝜃0

cos 𝜃0 − t sin 𝜃0

]
. (C12)

We first validate the numerical results by comparing numerical and analytical growth rates for different ini-
tial melt band angles 𝜃0. Figure C3a displays a sinusoidal dependence on 𝜃0. Figure C3b shows that the
numerical error in the growth rate decreases with decreasing grid spacing h and with decreasing wave num-
ber k0. A higher wave number results in narrower melt bands and therefore requires smaller grid cells in
order to be sufficiently resolved. The rate of convergence is approximately of order (h2) in both cases.

The analytical solution is valid only when perturbations in the porosity field are small, which becomes appar-
ent when the perturbation amplitude is increased, as shown in Figure C3c. The difference between the
numerical and analytical growth rates becomes significant for amplitudes ≥ 10−2. Hence, the analytical
solution does not hold under experimental conditions where perturbations have magnitudes of (10−2)
to (10−1). This is unsurprising given that the analytical growth rate is obtained by linearizing the governing
equations about a uniform porosity state.
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(a)

(b)

(c)

Figure C3. (a) Initial melt band growth rate for various initial melt band angles, with porosity amplitude A = 10−4,
wave number k0 = 4𝜋, and number of grid points along the short side n = 80. (b) Relative error in initial melt band
growth rate as a function of grid spacing h = 1∕n for k0 = 8𝜋 and 16𝜋; 𝜃0 = 30◦ . The dotted line indicates an order
(h2) convergence. (c) Relative error in initial melt band growth rate for various porosity perturbation amplitudes, with
n = 80 and k0 = 4𝜋. For all simulations shown: porosity-weakening exponent 𝛼 = 1, background porosity 𝜙0 = 0.05,
bulk-to-shear viscosity ratio R = 10, and the compaction length 𝛿 = 1.
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