
Energy and AI 8 (2022) 100137

A
2

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Semantic 3D City Agents—An intelligent automation for dynamic geospatial
knowledge graphs
Arkadiusz Chadzynski a, Shiying Li b, Ayda Grisiute b, Feroz Farazi c, Casper Lindberg a,
Sebastian Mosbach c, Pieter Herthogs b, Markus Kraft a,c,d,∗

a Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
b Singapore-ETH Centre, CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
c Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Site, CB3 0AS Cambridge, UK
d School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore

A R T I C L E I N F O

Keywords:
Cognitive architecture
Artificial intelligence
Knowledge graph
Automation
City modelling
Geospatial

A B S T R A C T

This paper presents a system of autonomous intelligent software agents, based on a cognitive architecture,
capable of automated instantiation, visualisation and analysis of multifaceted City Information Models in
dynamic geospatial knowledge graphs. Design of JPS Agent Framework and Routed Knowledge Graph Access
components was required in order to provide backbone infrastructure for an intelligent agent system as well
as technology agnostic knowledge graph access enabling automation of multi-domain data interoperability.
Development of CityImportAgent, CityExportAgent and DistanceAgent showcased intelligent automation capa-
bilities of the Cities Knowledge Graph. The agents successfully created a semantic model of Berlin in LOD 2,
compliant with CityGML 2.0 standard and consisting of 419 909 661 triples described using OntoCityGML.
The system of agents also visualised and analysed the model by autonomously tracking interactions with a
web interface as well as enriched the model by adding new information to the knowledge graph. This way
it was possible to design a geospatial information system able to meet demands imposed by the Industry 4.0
and link it with the other multi-domain knowledge representations of The World Avatar.
1. Introduction

General context and problem space
Present needs for sustainable digitisation [1] of geospatial fea-

tures [2] at the country level are already recognised by Australia,
Austria, Belgium, Canada, Estonia, Finland, France, Germany, Ireland,
Japan, Luxembourg, Netherlands, UK, USA, Poland, Singapore, Switz-
erland [3], Turkey [4], Taiwan [5,6], and Oman [7], amongst others.
It has also been realised that standards-based 3D city models, apart
from aiding more traditional urban planning efforts [8], could play
an important role in multi factor optimisation scenarios [9]. Such
complex simulations on interoperable data, spanning multiple domains
of interest, could be targeted to get closer to answering the set of
problems regarded by the United Nations as ‘the biggest threat ever
faced by modern humanity as a whole’ [10]. Namely, the climate
change, which could act as a crisis multiplier and, to countries like
Singapore, even poses an existential threat [11].

Cities Knowledge Graph (CKG) [12–14] is envisioned as a subsystem
of The World Avatar (TWA) - a general, all-encompassing dynamic

∗ Corresponding author at: Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Site, CB3 0AS
Cambridge, UK.

E-mail address: mk306@cam.ac.uk (M. Kraft).

knowledge graph, built in accordance with semantic web standards
and recommendations provided by the W3C, and capable of multi-
domain knowledge representation [15], which is being developed as a
collaborative research effort between Cambridge Centre for Advanced
Research and Education in Singapore (CARES) and Singapore ETH
Centre (SEC). TWA has been already used for optimal site selection
for modular nuclear power plants [16], simulations of chemical ki-
netic reaction mechanisms [17], quantum chemistry calculations [18],
combustion chemistry [19] and power systems optimisation in eco
industrial parks [20]. As a dynamic geospatial knowledge graph, based
on the Semantic 3D City Database [2], CKG is designed to produce
and process multi dimensional representations of urban environments.
Knowledge graph architecture allows to easily combine them with the
J-Park Simulator (JPS) [21–26] - an agent-based subsystem, capable
of simulating emissions dispersion from various types of air pollution
sources as well as optimising designs of Eco-Industrial Parks (EIPs)
with respect to their carbon footprint, within TWA. The Parallel World
vailable online 5 February 2022
666-5468/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.egyai.2022.100137
Received 8 November 2021; Received in revised form 11 January 2022; Accepted 1
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

3 January 2022

http://www.elsevier.com/locate/egyai
http://www.elsevier.com/locate/egyai
mailto:mk306@cam.ac.uk
https://doi.org/10.1016/j.egyai.2022.100137
https://doi.org/10.1016/j.egyai.2022.100137
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyai.2022.100137&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy and AI 8 (2022) 100137A. Chadzynski et al.

G
d
s
3

b
g
i
W
3
i
r
t
g
f
e

Framework [27], capable of complex scenario analysis and adding time
varying aspects to knowledge graphs, could be utilised as a basis for the
above mentioned multi factor optimisation scenarios that also take into
account other domain representations and further enrich insight scope.

Unlike endeavours such as TWA and CKG, presented in this paper,
currently available information systems that do not implement at least
some of the elements of cognitive architecture [28] encounter a number
of problems due to their human–computer interaction orientated design
that are typical to the pre-fourth industrial revolution computer systems
architectures. Contrary to that, CKG would be able to close some of the
gaps, commonly found in today’s Geographic Information System (GIS)
applications and infrastructure that are more elaborated on in the next
few paragraphs.

GIS and Industry 4.0
Smart Cities that make use of as well as provide interoperable

sources of various types of multi-domain data are one of the flagship
Industry 4.0 applications [29]. While many of the GIS available at
the moment serve as means for creating digital twins of geospatially
describable elements of cities, they generally lack of automation that is
regarded as a second most important characteristics of the information
systems that are capable of meeting demands imposed by the fourth
industrial revolution [30]. Because of that, they very often do no longer
meet modern needs for intelligent systems, capable of autonomously
analysing information and taking into account multiple domains [31].
Existing software relies on human–computer interaction and very often
there is more human than computer involved in performing analytical
tasks.

Creating and updating City Information Models (CIM [32]) via
existing techniques relies on time consuming and error prone manual
data curating processes. Legacy GIS also lack dynamics, as existing data
formats and modelling techniques make models hard to keep up to date.
Such systems were designed to work with data spread over multitude of
various flat files. There is no easy way to learn lessons from such static
models that remove historical aspect and, because of that, do not allow
to get insights about evolution, stagnation or deterioration of cities.
They commonly also do not allow to analyse CIM changes without a
complex process of importing and exporting multiple types of files for
an entire city.

Examples of such CIMs are XML file based models describing var-
ious urban elements in the CityGML standard, provided by the Open

eospatial Consortium (OGC) [33]. They are commonly used as a
ata exchange standard for city landscape management and planning
ystems or even as a file-based data source for applications visualising
D city landscapes on the web. 3D City Database was developed at

the Technische Universität München (TUM) with intention of adding
flexibility and scalability to the CityGML based models by transforming
XML into Relational Database Management System (RDBMS) [34].
Better data interoperability is supported by implementation of domain
specific extensions as well [35]. However, data transformation pro-
cesses for CIM creation and visualisation utilise its Importer/Exporter
tool application, making them manual and error prone, especially when
larger models are taken into consideration.

Synthesis
The Semantic 3D City Database [2], based on a semantic triple store

ack-end instead of RDBMS, enabled dynamic geospatial knowledge
raph capabilities in TWA. This innovation removed data interoperabil-
ty limits of the original 3D City Database imposed by the default Closed

orld Assumption (CWA) in relational databases [36]. The Semantic
D City Database’s adoption of the Open World Assumption (OWA)
mplies that it can operate as a semantic knowledge-base, enabling
easoning and truth maintenance capabilities via inference engines,
ogether with OntoCityGML as its schema. Secondly, it also added
eospatial search features that allow to efficiently retrieve CIM data
rom specific regions bounded by a set of coordinates [37]. How-
2

ver, in the proof of concept described by Chadzynski et al. [2], data
import as well as export still relied on the appropriately augmented
Importer/Exporter tool, and remained manual. While the manual ap-
proach of the proof of concept stage allowed to successfully produce
a semantic twin of the Charlottenburg-Wilmersdorf district of Berlin
based on a CityGML 2.0 LOD2 model, the lack of automation of
that approach became an issue while attempting to instantiate the
remaining eleven districts of Berlin in the knowledge graph, and link
the instantiated city data into other knowledge domains.

The purpose of this paper is to present elements of a cognitive
architecture applied in CKG that enable automated data processing
tasks and automated analytical capabilities. These functionalities are
demonstrated by a set of software agents that automatically load and
produce a semantic representation of the entire city of Berlin (all 12
districts) in TWA, automatically visualise it using an adapted version of
the 3D City Database’s web map client, as well as automatically calcu-
late and visualise various distances of interest between particular city
objects by tracking external interactions with the representation. The
most general elements of the architecture are discussed in Section 2 de-
scribing the JPS agent framework (Section 2.2) and Routed Knowledge
Graph Access (Section 2.3) in more detail. Concrete implementations of
intelligent autonomous agents based on those elements are presented
in Section 3, which discusses and demonstrates an automated CIM
creation workflow using the City Import Agent (Section 3.1), dynamic
visualisation capabilities in the CKG facilitated by the City Export
Agent (Section 3.2), and automated distance-related analytical capabil-
ities, deriving new knowledge based on external interactions using the
Distance Agent (Section 3.3). Empirical evaluation of the Berlin CIM
autonomously instantiated, visualised and analysed by the Semantic
3D City Agents in the CKG as well as potential research direction are
described in the last Section 4.

2. Cognitive architecture in The World Avatar

Information system architecture of TWA is designed to fulfil the
needs of a general knowledge graph operated on by a system of
intelligent autonomous agents. Such agents typically consist of methods
allowing them to intercept some inputs (sensors), programs that perform
information processing based on those inputs, as well as previously ac-
quired knowledge representing the external environment, and methods
resulting in certain actions based on the outcomes of that information
processing (actuators) [38]. According to Langley et al. [28], a cognitive
architecture includes aspects of a cognitive agent that are constant over
time and across different application domains. These typically include:

• the short-term and- long term memories that store content about
the agent’s beliefs, goals and knowledge;

• the representation of elements that are contained in these mem-
ories and their organisation into larger-scale mental structures;

• the functional processes that operate on these structures.

2.1. The World Avatar

The target of The World Avatar is to serve as an intelligent digital
representation of the entire world. Such a representation must be
multi-domain by its nature. Representations of individual elements that
belong to different layers of the world, ranging from those considered
by chemistry or physics, at the micro scale, to larger macro scale
objects, events and processes studied by other sciences, are encoded
in a form of semantic triples. Those triples form basic building blocks
of knowledge about the entire world. In essence, they are Subject–
Predicate–Object statements, each of which corresponds to some fact
describing a certain aspect of the world. Such statements relate dif-
ferent elements to each other and when combined as a linked data
form a knowledge graph. The advantage of such complex semantic
representation is that it provides some artificial intelligence capabilities

by allowing to use semantic reasoners that derive new information



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 1. Architecture of a cross-domain The World Avatar platform, based on distributed knowledge graph and interoperable agents.
from existing statements using ontologies and first order logic. Such
capabilities are built in directly into a data storage layer. Even more
intelligent operations on the representation are supported by the sys-
tem of cognitive agents capable of knowledge acquisition, refinement,
verification and other more advanced operations that resemble those
usually displayed by any intelligent beings. Just described architectural
building blocks are presented at Fig. 1

As pointed by Inderwildi et al. [39], one of the potential applica-
tions of TWA is to be used as a Cyber–Physical System (CPS) aiding
energy decarbonisation efforts. CKG is a part of TWA that forms a
subsystem dedicated to representation of the mentioned macro scale
objects as well events and processes that occur within the entire cities.
It is well recognised that cities are one of the major CO2 contrib-
utors due to high energy demands traditionally supplied by fossil
fuels. Representing them in a form of data linked to other domains
allows for complex multi-domain optimisation simulations. This way
it is possible to assess impact on energy efficiency, energy storage
and energy management within cities. Case studies of Jurong Island’s
electrical grid optimisation for carbon tax have been already conducted
by the means of Parallel World Framework and described by Eibeck
et al. [27]. Other studies, such as waste to energy management in
Singapore’s food courts are currently in progress. Electrical and other
energy grids are part of critical infrastructure in any country. Using
multi-domain simulations on interoperable data within TWA allows for
complex economic and environmental assessment taking into account
national security implications due to cyber threats as well as analysis of
impacts on various policies. Combining information in the form of all
encompassing knowledge graph allows to discover interdependencies
that may be otherwise hidden in a siloed data.

The knowledge graph of TWA provides an infrastructure for in-
telligent autonomous agents to store and retrieve memories built on
representations of elements from multiple domains. All knowledge is
stored in a form of semantic triples, in accordance with semantic web
standards and recommendations by W3C. The JPS Agent Framework,
together with Routed Knowledge Graph Access components, provides
interfaces for such agents to intercept inputs and efficiently operate
on a highly distributed multi-domain knowledge representations, en-
abling them to perform certain actions that either augment previously
acquired knowledge or have an effect on the external environment.
Therefore, such a combination of a knowledge graph and an agent
system forms a set of basic architectural building blocks allowing TWA
to replicate and automate, at least some of, the fundamental behaviours
and functions found in other cognitive systems, including human-like
intelligence [40].
3

2.2. JPS Agent Framework

The JPS Agent Framework is a result of generalisations of an agent
system actively worked on within The World Avatar (TWA) project un-
der its J-Park Simulator (JPS) since 2014 [21]. It is a part of JPSBaseLib
library, developed in the Java programming language and widely used
within TWA as a whole [41]. The agents as well as the library have
been designed around Microservices Architecture [42,43] while follow-
ing the Minimal Service Model [44,45]. This approach to modularity
ensures scalability of a highly distributed system and improves change
management. It also enables sustainable service evolution [43] by
extending system components to be reusable and replaceable at the
same time. Those architectural properties of the agent system in TWA
make automated service integration and composition [46] default for
heterogeneous linked data interoperability. Semantically encoded data
corresponds to the elements contained in knowledge representations of
multiple domains and is worked on by its agents regarded as linked
semantic web services [44].

As depicted in Fig. 2, JPSAgents in TWA inherit from standard
Java HttpServlet class [47]. This makes HTTP a default inter-agent
communication protocol that allows for synchronous and asynchronous
information exchange using common serialisation formats, like XML
or JSON, on the same machine, local network, or over the Internet.
Such scalability makes it easier to implement TWA agent system in a
highly distributed form as well as leaves it open to a smooth integration
with a plethora of external web services available on the web. The
JPS Agent Framework makes agent programs independent of the inter-
agent communication protocol by extracting HTTP request parameters
into a JSON format that is passed to the agent as the input. In other
words, agents built on the framework intercept symbolic inputs [28]
via their virtual sensors. Following such separation of concerns during
design makes agents’ programs relatively easily portable to frameworks
that use other protocols for messaging. Agents that work with physical
sensor devices, measuring parameters such as temperature, humidity
or the amount of light, receive symbolic inputs in the same manner by
intercepting requests coming from appropriate middleware.

The framework’s JPS Agent Interface requires all agents to perform
syntactic input validation in the next step after receiving their inputs.
Accordingly to the cybersecurity best practices and recommendations,
this step is performed to ensure that only properly formed data is
entering the workflow in an information system, preventing malformed
data from persisting in the knowledge graph and triggering malfunction
of various downstream components [48]. This way, inputs such as the
sentence ‘‘All swans are white.’’, the number 11235813, or the IRI
‘‘http://www.some.com/input/’’ are accordingly evaluated as a valid
string, a valid integer, and a valid IRI, regardless of whether the

http://www.some.com/input/


Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 2. A class diagram of fundamental building blocks of the cognitive architecture in TWA. An abstract JPSAgent, based on Java HTTP Servlet technology, is a base class for all
the other agent classes. This includes AccessAgent facilitating data store and retrieval functionality for the knowledge graph. This design ensures maximum backwards compatibility
with all the other JPS and TWA infrastructure as well as offers flexibility to integrate with plethora of existing web APIs working over HTTP protocol.
sentence is true, the number represents the beginning of the Fibonacci
Sequence and the IRI is actually resolvable to an existing resource,
etc. The agents’ programs, in turn, include various functional processes
that operate on representations of elements from multiple domains
and perform semantic validation of the symbolic inputs by comparing
them with existing knowledge and the agent system’s beliefs stored
in the knowledge graph. An agent could thus respectively check the
knowledge graph for an existing instance of an animal that is a bird
with black feathers belonging to the family Anatidae within the genus
Cygnus, an existing mechanism that allows to detect mathematical
patterns in sequences of numbers, and an existence of the knowledge
routing graph entry matching a certain resource, in order to seman-
tically validate its inputs before performing any further information
processing or including them in the knowledge-base.

The JPS Agent Framework allows for flexibility in developing
agents’ programs and does not require further conformance to any
specific interfaces. This way, agents process their inputs by comparing
them against existing memories and knowledge, transform these inputs
via code included in various libraries, execute any specialised software
required to perform more sophisticated operations, and contact other
agents as well as existing web APIs via the inter-agent communication
protocol. Agents’ virtual actuators either contact other agents, external
APIs or physical actuators’ middleware concurrently with augmenting
existing knowledge, or add new elements to the knowledge graph in
separate sets of tasks. Existing memories are retrieved by agents for
such processing purposes, as well as stored in the knowledge graph
by the means of technology agnostic routed knowledge graph access
mechanisms, described in the next subsection. Appropriate methods to
do so are included in the interface that all the JPS Agents conform to
by default. The knowledge graph made available via this mechanism
provides agents with messaging context that is needed in order to guide
the semantics so that congruence about the semantics can be achieved
between the sender and receiver and to enable an agent to orient the
semantics to a specific application or circumstance [49].
4

2.3. Routed knowledge graph access

The routed knowledge graph access is a set of TWA components that
allow agents to navigate through resources in its distributed multido-
main knowledge graph. It consists of the StoreRouter and StoreClients
that provide a storage technology agnostic way of information man-
agement to the other agents. Those components are integrated into
the AccessAgent that acts as a knowledge graph entry point to them.
They contact it whenever the representations of certain elements are
needed for their own purposes and are not concerned with the storage
technologies used to persist those representations within the knowledge
graph.

The StoreRouter in tandem with the StoreClients are able to locate a
data store by a resource identifier as well as retrieve, insert, update or
delete corresponding representations upon an agent’s request, regard-
less of whether the representations are recorded in a form of a flat file, a
relational database table or a graph in a semantic triple store. It makes
JPS Agents’ designs independent of the underlying TWA knowledge
graph storage layer and allows for the parallel evolution of those layers
within the system as a whole. It also automates inter-agent data interop-
erability by making representations of multiple domains accessible via
an uniform interface to the all-encompassing TWA knowledge graph,
when looked at from the point of view of all agents.

2.3.1. Knowledge graph routing via OntoKGRouter
To enable agents to operate on classes, properties, instances and

data collated from multiple domains and represented in TWA that is
distributed over several servers with the possibility of migrating to
newly setup servers due to ever-increasing demand of improved per-
formance and storage capacity, a server agnostic approach is required
in accessing the knowledge-graph. To this end, a StoreRouter is built
with the instantiation of an ontology called OntoKGRouter developed
for describing routing information in the form of triples in a routing
table consisting of subject, predicate and object columns, where the
subject refers to the relative IRI of a domain, the object refers to the
absolute IRI, and the predicate links the subject and object.



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 3. An activity diagram of the knowledge-graph router built with the instantiation of an OntoKGRouter ontology developed for describing routing information in the form of
semantic triples. The routing table consists of subject, predicate and object columns, where the subject refers to the relative IRI of a domain, the object refers to the absolute IRI,
and the predicate links the subject and object. StoreRouter that receives a request from an agent with the relative IRI of a store validates the request and detects the corresponding
store type for a domain.
As depicted at Fig. 3, when the StoreRouter receives a request from
an agent with the relative IRI of a triple store or the absolute IRI of an
RDF/OWL file to establish access to the domain of interest, it validates
the request and detects the corresponding store type of domain. Any
request targeting a triple store or an RDF/OWL file invokes the query
builder to form a query to retrieve the available, absolute IRI of the
triple store endpoint or base IRI of the file store from the KG routing
table. By combining the base IRI and the absolute IRI of a file, the
absolute file path is formulated, which is indispensable to execute
update operations on a file.

Finally, the StoreRouter instantiates a StoreClient object of the Store-
ClientInterface type and returns it to the requesting agent for querying or
updating the target resource within the knowledge graph. An agent can
issue multiple requests to set up combined access to different domains
stored either in triple stores or files or both.

2.3.2. Technology agnostic knowledge graph access via store clients
Storage technology agnostic access to the knowledge graph is pro-

vided by the RemoteStoreClient and FileBasedStoreClient. Both Store-
Clients implement the StoreClientInterface, which defines abstract meth-
ods to retrieve, insert, SPARQL query and SPARQL update data stored
in the knowledge graph. Abstraction of the clients through the Store-
ClientInterface allows to decouple the knowledge storage technology
from JPS Agents, which are concerned only with representations of re-
spective domains, regardless of the technology. This design allows JPS
5

Agents to access knowledge about multiple domains, for which different
storage technologies are most suitable and make it interoperable via
uniform interface. All JPS Agents utilise this design to retrieve and store
required representations from multiple namespaces of the CKG, which
separate information about built environments described in separate
coordinate systems.

The RemoteStoreClient, presented at Fig. 4, is agnostic to the technol-
ogy behind the remote SPARQL endpoint. It uses Jena JDBC SPARQL
over the JDBC framework that is also utilised by the CityImportA-
gent and CityExportAgent, making the knowledge storage and retrieval
interfaces uniform across all the JPS Agents. The FileBasedStoreClient
allows access to RDF data stored in a flat file format using Jena
RDFConnection, which provides a unified set of operations for working
on RDF data loaded from file-based storage into a Jena dataset. Instan-
tiation of a RemoteStoreClient or FileBasedStoreClient is handled by the
StoreRouter.

3. Semantic 3D city agents

Semantic 3D City Agents that are part of the CKG, a knowledge
graph dedicated to representations of built environments in the TWA,
are based on the components and principles of the cognitive architec-
ture described in the previous section. They demonstrate application of
the architecture and potential for intelligent automation applied to city
modelling:



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 4. An activity diagram of an agent using a RemoteStoreClient to perform a SPARQL query on a remote triple store. The RemoteStoreClient, an instance of the StoreClientInterface
type, is agnostic to the technology behind the SPARQL endpoint. Instantiation of the RemoteStoreClient is performed by the StoreRouter.
• Import process from CityGML 2.0 into CKG model does not re-
quire a person operating desktop software anymore. Instead,
CityImportAgent performs data validation and city objects instan-
tiation in the knowledge graph as soon as it finds a .gml file in
a hard drive directory which it was instructed to watch for the
appearance of such files

• KML export process for visualisation also does not require anyone
operating export application manually. Instead, CityExportAgent
creates visualisation data either for the whole model or a part of it
automatically upon receiving a request to do so. It is also capable
of updating KML for individual city objects, which adds truly
dynamic visualisation capabilities to the city modelling software.

• DistanceAgent demonstrates potential for intelligent analytical ca-
pabilities of city modelling software. It autonomously calculates
distances of city objects, which were interacted with on the web
map client and displays this information whenever it is ready.
There is no manual process involved in the analytics, which
occurs independently of the interaction process. It is possible to
extend this design pattern to support more advanced analytical
features.

3.1. City import agent

The CityImportAgent automates creation of semantic representa-
6

tions of cities that are used by all the other CKG agents. As depicted
at Fig. 5, it instantiates elements of cities in a form of Semantic 3D
City database [2] using OntoCityGML as a schema for linked data
structure spread across multiple named graphs [50] that store CityGML
2.0 features in different levels of detail. The agent operates in two
modes, depending on which of the two IRIs it intercepts the request
at. Upon receiving a request on the Listen IRI it gets activated in the
filesystem observation mode by the means of the Asynchronous Watcher
Service code capable to watch for appearance of new GML files in a
directory specified by the request, in a separate thread. Upon receiving
a request on the Action IRI, it creates instances of the city model
elements, found in a GML file using the listening mode, by the means
of augmented 3D City Database Importer/Exporter tool [2], originally
developed at TUM. Prior to that the agent splits the file to smaller and
more manageable chunks before importing each chunk using four tasks
running in separate threads. Detailed activity diagram is available in
the Appendix A.

JPS Asynchronous Watcher Service [51] is a self contained Java
library that could be either imported by other agents and called by their
programs directly or run as a standalone web service on an embedded
Apache Tomcat [52] server. The service is designed to listen to watch
requests pointing it into specific filesystem directories and types of
files. It also requires callback URL parameter in order to work in an
asynchronous manner. Upon input validation the service immediately
responds to a calling agent with either information about bad request,

in case of invalid input, or creation of file watcher Java object observing



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 5. CityImportAgent automates instantiation of city models in TWA, by listening on two IRIs. Upon receiving a request on the Listen IRI, it calls JPS Asynchronous Watcher
Service and instructs it to watch for appearance of new GML files in a directory specified by the request, in a separate thread. Upon receiving a request on the Action IRI, it splits
the file to smaller and more manageable chunks before importing each chunk using four tasks running in separate threads: BlazegraphServerTask, ImporterTask, NquadsExporterTask
and NquadsUploaderTask. This way it incrementally creates semantic representations for the whole cities.
a directory specified in the request for appearance of new files of certain
type or modifications to the existing files. This way the calling agent
does not have to wait until such file-system event occurs but it could be
performing other tasks while waiting to be contacted on the callback
URL or simply stay dormant until it receives a request on that URL.
The CityImportAgent makes use of the service as a library called directly
from his program while operating in the listen mode. The agent creates
filesystem watcher objects by the means of this code and instructs them
to call itself back on the Action IRI whenever an event of new GML
file appearing in an import directory occurs. Although it makes the
import agent asynchronously self referential, any of the watcher tasks
terminates as soon as such filesystem event occurs and just after issuing
successful callback request. This avoids infinite self reference loops.

Interception of the callback request on the Action IRI triggers the
CityImportAgent to attempt automated data validation and processing of
the GML file in order to instantiate a new CIM in the Cities Knowledge
Graph. The agent uses four tasks running in a separate threads to
accomplish this goal. It also uses two BlockingQueues form Java Col-
lections Framework [53] in order to facilitate concurrent information
exchange between the tasks. They inform each other about completion
of a particular piece of work on a given data chunk and signal start and
termination of a task dedicated to that chunk so it could be picked up
by other tasks before it is finally sent over to TWA knowledge graph
in a semantic form. All tasks implement Java Runnable [54] interface
extended by adding methods that allow to detect whether the task is
currently running as well as to stop it.

BlazegraphServerTask creates local instances of the NanoSparqlServer
and puts them on a BlockingQueue to be picked up by the Importer-
Task. At first it creates Blazegraph configuration file with a name
corresponding to a given data chunk. Next it copies the file from a
template as well as updates its content with the Blazegraph journal
name containing data chunk sequence number. It also sets up all
the required system properties and server properties with appropriate
configuration file, created at the first step, before starting Standalo-
neNanoSparqlServer [55]. It places the server at the queue and keeps
observing the server for its termination until it stops itself as well when
such an event is detected.

ImporterTask at first keeps observing the queue for appearance of
NanoSparqlServer instances. Whenever a new instance appears in the
queue, the task takes it out of there and sets up 3D City Database
Importer/Exporter tool’s project.xml file by updating server details
7

and import namespace variables accordingly to the given data chunk
number. After that it calls the importer’s main entry point method
with chunk and project configuration file paths for a given chunk as
arguments. When the import process is finished it stops the server,
which also signals the previous task to terminate. Then the task creates
new empty 𝑛-quads file indicating that the data imported into the
Blazegraph journal could be exported before being sent over to the
remote location. After the server is stopped and the file is created the
task terminates itself.

NquadsExporterTask uses the ExportKB Blazegraph [56] code to
create 𝑛-quads file containing data transformed by the importer to the
semantic form. Local IRIs are replaced with TWA IRIs at this point. The
server, host and port information for IRIs is taken from the project file
used for importing the given chunk with the same sequence number
as the 𝑛-quads file prepared by the task. After the IRI replacement the
task removes all helper files generated by the previous tasks processing
the given data chunk and puts the file on the queue before terminating
itself.

NquadsUploaderTask reads the updated 𝑛-quads file that it finds in
the queue and uploads it to the BulkDataLoad endpoint of TWA. When
the upload request finishes the task terminates itself. In case of a given
𝑛-quads file corresponds to the last chunk of the data to be imported, it
creates a timestamped audit trail archive for the whole dataset import
process.

This work shows potential of a complex task automation by an
agent based on the JPS Agent Framework that results in creation of
multifaceted CIMs in the CKG. The CityImportAgent was used to trans-
form 14.9 GB Berlin LOD2 building data from GML into semantic form
uploaded into TWA without anyone manually operating the original
TUM tool. The whole semantic representation contains 419 909 661
Subject-Predicate-Object triples in total, partitioned into named graphs
that separate from and link to each other:

• 3 475 683 City Objects
• 15 258 678 Generic Attributes of City Objects
• 539 274 Buildings
• 587 109 Addresses
• 540 660 External References
• 2 936 408 Thematic Surfaces
• 9 558 218 Surface Geometries



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 6. The City Export Agent automates the export of the city model data needed for visualisation. The data could be exported for the whole model, different areas found via
geospatial search, as well as individual city object members. The original 3DCityDB Importer/Exporter SQL queries are translated to SPARQL using the SQL2SPARQL transformer
when the agent is connected to the Semantic 3D City Database. After the execution of the queries and the post-processing of returned results by the GeoSpatialProcessor, a KML
file is generated for visualisation of the city model.
As it is demonstrated in the next two subsections, such large-scale
mental structures encoded in a semantic form provide knowledge-base
open to analysis and augmentation as well as linking to and comparing
with other domain representations by all the other TWA agents. In
terms of cognitive architecture, the agent demonstrates following ca-
pabilities: recognition, decision making, choice, monitoring, execution,
action, interaction, communication as well as acquisition, representa-
tion, refinement and organisation of knowledge. When evaluated, it
also proves to be: efficient, scalable, reactive, persistent, autonomous
and improvable [28].

3.2. City export agent

The CityExportAgent exports the semantically encoded geospatial
representation of city objects stored in the Semantic 3D City Database
of CKG for CIM visualisation and external interactions in an automated
manner. This process is depicted in Fig. 6. The data could be exported
for the whole model, different areas found via geospatial search, as
well as individual city object members stored in the knowledge graph.
Similar to the CityImportAgent, it also makes use of the augmented TUM
Importer/Exporter tool (ImpExp), that offers a Command Line Interface
(CLI) to facilitate automatic execution of various tasks via commands
and parameters.

The CityExportAgent starts operating when a request is intercepted
at a pre-defined IRI. The export operation performed by the ImpExp
requires certain program arguments as inputs, such as the gml IDs of the
city objects to be exported, the output destination of the generated KML
file, and the location of configuration file for the tool. When an export
activity is required, a HTTP POST request with the required parameters,
presented in a JSON format, is sent to the CityExportAgent. After a
successful validation, the parameters are added to the configuration
file, which also contains the database connection information for the
export activity. As the agent is designed to operate in a automated
manner, the output destination of the KML file and the path to the
configuration file are considered predefined parameters and read from
a Java property file.

Once all the program parameters are in place, the execution of the
exporter task is triggered by the agent that chooses one of the three
options: export a single object, export multiple objects, and export
the whole database (denoted with ‘‘*’’ as input). Each input variant
8

leads to different combinations of queries used to retrieve the geometry
information of the city objects in the database via SPARQL.

The original TUM Importer/Exporter tool is designed to work with
relational databases like PostGIS and Oracle using SQL queries. In this
augmented version of the tool, the KML export process (KmlExporter)
has been extended to export the city model by executing SPARQL
statements using the OntoCityGML schema against the Semantic 3D
City Database of the CKG [2]. The connectivity to the respective
database has been implemented using Jena JDBC, a SPARQL-over-JDBC
driver framework [57]. In order to maximise the re-usability of the
existing code and preserve the initial functionalities, two main compo-
nents are implemented for the export operation against semantic graph
databases: the SQL2SPARQL Transformer and the GeoSpatial Processor.

The SQL2SPARQL Transformer has been implemented to translate
SQL statements to equivalent SPARQL statements that use the On-
toCityGML schema when the tool is connected to the semantic graph
database. The second component, the GeoSpatial Processor, has been
introduced specifically to enable the system to provide the same infor-
mation when generating KML files as PostGIS provides when making
use of built-in functions. Particular SQL statements make use of built-
in geospatial functions provided by PostGIS and Oracle databases, but
these are not present in the current version of Blazegraph, the graph
database used as the backend for the Semantic 3D City Database of
the CKG. For example, geospatial functions like ST_Transform, ST_Area,
ST_IsValid are embedded in original SQL statements and evaluated
directly by the database engine. Such functions are predominantly
used to filter intermediate query results. The GeoSpatial Processor has
been implemented to provide similar geospatial functionalities to post-
process the query results. By means of this system component, the
translated complex SPARQL statements are broken down into multiple
simple SPARQL statements and sent to the database in such a way that
the returned intermediate results are filtered by it as well as used for the
next query statement. The outcome of this process provides identical
information for the KML generation process as the original PostGIS. A
detailed flow of activities is presented in the UML diagram included in
the Appendix B.

These two components of the CityExportAgent address problems
that arise upon attempting to manage CIMs larger than a single city.
For example, Buyukdemircioglu and Kocaman [58], who worked on a
model of Turkey, stated that: ‘Currently, the main issue in web-based



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 7. Different views of a Charlottenburg-Wilmersdorf dataset visualised using KML files exported by the CityExportAgent from the Semantic 3D City Database of the Cities
Knowledge Graph. The KML files contain the city model in LOD2 in extruded footprint display form.
visualization of 3D city models using open-source software is the model
updating. Since the visualized model is static and not directly visual-
ized from a database or a similar dynamic source, the whole model
must be generated again every time there is an update on the model.
Serving a city model with topography directly from a spatial database
management system (DBMS) to the web interface would eliminate this
problem. Efficient geospatial database solutions should be developed
for high-performance visualization of city and terrain models, which
is of great importance for updating such models.’ The Semantic 3D
City Database [2] provides such dynamic spatial management system in
the CKG, and the CityExportAgent automates data management for the
visualisation of such dynamic geospatial models. It is hence possible
to trigger an automated KML export by the agent whenever there is
a change in the underlying knowledge graph, and dynamically reflect
that change in the visualisation layer. Fig. 7 provides an illustration of
the visualisations exported by the CityExportAgent.

In terms of cognitive architecture, the agent demonstrates following
capabilities: recognition, decision making, choice, monitoring, execu-
tion, action, interaction, and communication. When evaluated, it also
proves to be: efficient, scalable, reactive, persistent, autonomous and
improvable [28].

3.3. Distance agent

The DistanceAgent is an example of an autonomous agent that
operates on semantic structures found in representations of elements of
a built environment — it automatically computes physical distances be-
tween city objects stored in the Semantic 3D City Database of the CKG.
The agent design is based on the cognitive information architecture of
TWA (Section 2) and contains methods to locate a data store by means
of a resource, allowing it to retrieve or insert relevant information using
StoreRouter and RemoteStoreClient. The agent also contains methods and
interfaces for information processing. All methods are presented in the
UML diagram included in the Appendix C.

The agent makes sense of the represented environment that it oper-
ates on by independently tracking information about events occurring
on the 3DCityDB-Web-Map-Client. When triggered by an interaction
event, the DistanceAgent receives a HTTP POST request with the request
parameters – city object IRIs – in JSON format. Upon successful re-
quest validation, the agent checks whether the corresponding distance
9

information already exists in the CKG, which it does by invoking the
query builder to form a query to retrieve that particular distance. If the
executed query does not return any distance information, the following
set of tasks are performed by the agent in order to compute the distance.

The DistanceAgent executes query statements with the OntoCityGML
schema against the CKG and retrieves the city object envelopes linked
to IRIs in the HTTP request. As the envelope essentially defines a
bounding box for any type of geospatial CityGML2.0 object – 1D points,
2D polygons or 3D objects – the agent handles heterogeneous spatial
data universally. Envelopes are used to extract city objects’ centroids,
between which distances are computed. Using envelopes with only
four unique coordinates, reduces the centroid computation effort when
original geometries are complex or when the triple store contains
heterogeneous geospatial data. Additionally, to ensure accurate results,
a query statement is executed to retrieve the native namespace’s Co-
ordinate Reference System (CRS) and set the centroids to a uniform
(Cartesian) target CRS. When computing the distance, the agent also
considers Z coordinate values, further improving the accuracy, as well
as broadening the potential scope of an application. The returned
distance values between city object pairs are formalised and described
in terms of Units of Measure Ontology (OM) [59] and, by executing
SPARQL statements, added to the CKG in a separate named graph.

The DistanceAgent can compute distances for city objects spread
across multiple named graphs in separate namespaces, as a city object
TWA IRI structure carries the necessary information, such as namespace
and graph name, to retrieve its precise location in the triple store.
It also works independently from the Importer/Exporter tool (i.e. the
semantically augmented version utilised by the CityImportAgent and
the CityExportAgent), as it directly tracks interactions occurring on
the 3DCityDB-Web-Map-Client. It manifests the acquired knowledge
(i.e. visualises distances) by highlighting the elements of the city ob-
jects’ representation between which distances are computed, as well as
learned information about relationships between them (Fig. 8).

In principle, it is possible to extend the design pattern of the
DistanceAgent to support more advanced analytical features in the
future. For example, it could analyse topological relationships between
representations of elements found in a built environment based on
distances, or analyse the prevalence of computed distances for an
object over time as a proxy for interest in that object. Nevertheless,
when its cognitive architecture is taken into account, the agent already



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Fig. 8. The DistanceAgent automatically calculates distances between city object representations, which were interacted with on the web map client. It dynamically manifests the
acquired knowledge by displaying the learned information about spatial relationships through connection lines and distance values whenever it is ready.
Table 1
City planning related questions answered by the live CKG subsystem of TWA.

Query no. Question No. of Elapsed
solutions time

1. Ask if a certain building function exists in the
dataset.

1 31 ms.

2. Ask if a certain street name exists in the dataset. 1 141 ms.
3. Return all data about a building in a specified

address.
117 4063 ms.

4. Return all distinct generic attribute names found
in the dataset.

56 19141 ms.

5. Return all distinct building function codes in the
dataset.

208 3828 ms.

6. Return all generic attribute names and their values
found in the dataset.

56 58296 ms.

7. Return specified generic attribute ‘‘Qualitaet’’ with
all its values found in the dataset and order
solutions by the value in descending order.

74919 91145 ms.

8. Return all distinct street names found in the
dataset. Count the number of buildings in every
street.

8874 4063 ms.

9. Return all distinct street names that have building
function code ‘‘1134’’ in it. Count how many times
that function occurred and order streets by the
number of function occurrence in descending
order.

67 3703 ms.

10. Return all distinct street names that have building
function code ‘‘1444’’ in it. Count the ratio of the
specified function in each street. Order results by
the ratio in descending order.

799 23314 ms.
demonstrates the following capabilities: recognition, decision making,
choice, monitoring, execution, action, interaction, communication as
well as acquisition, representation, refinement and organisation of
knowledge. When evaluated, it also proves to be: efficient, scalable,
reactive, persistent, autonomous and improvable [28].

4. Conclusions and future work

A system of intelligent autonomous agents, such as above described
Semantic 3D City Agents, in combination with a knowledge graph,
such as CKG, provide a suite of solutions to address common gaps in
current geospatial information systems that make them unsuitable to
meet demands imposed by the fourth industrial revolution. However,
adhering to the existing standards as well as reusing, adapting and
integrating existing components of such systems stays in accordance
with the sustainable digitisation practices. This paper presented one of
the ways of achieving such goal.
10
Cognitive architecture of the JPS Agent Framework, elaborated on
in Section 2, provides a backbone for flexible creation of intelligent
autonomous agents, compliant with existing web standards, in TWA.
Routed Knowledge Graph Access components described in Section 2.3,
namely the Store Router (Section 2.3.1) and the Store Clients (Sec-
tion 2.3.2), provide means to navigate through elements that represent
objects spanning multiple domains of knowledge encoded in a form
compliant with the semantic web standards and recommendations by
the W3C. Section 3 demonstrated capabilities of the system of Semantic
3D City Agents based on the framework that make use of the access
components. The CityImportAgent (Section 3.1) demonstrated capabil-
ity of fully automated creation of multifaceted CIMs in an ontological
form, compliant with the CityGML 2.0 standard at the same time. The
model of Berlin, autonomously created by the agent, consists of 419 909
661 triples and shows satisfactory performance on the set of sample city
planning questions presented in Tables 1 and 2. The CityExportAgent,
described next (Section 3.2), shows possibility of data management



Energy and AI 8 (2022) 100137A. Chadzynski et al.

a
m
m

Table 2
City planning questions answered by the live CKG subsystem of TWA. (continued from Table 1)

Query Question No. of Elapsed
no. solutions time

11. Return all street names that have building function
code ‘‘1171’’ in it. Return other existing functions
in those streets. Count and order other functions
by their occurrence in descending order.

1574 29520 ms.

12. Return the average height of each function code
found in the dataset and order functions by
average height in descending order.

208 3875 ms.

13 Return all distinct street names found in the
dataset. Count average, minimum and maximum
height of each street. Order solutions by average
height a descending order."

8211 8829 ms.

14. Return all distinct streets found in the dataset.
Order solutions by the number of buildings in the
street and by the average height in ascending
order.

8211 8874 ms.

15. Return all distinct street names that have at least
one of the specified function codes. Order
solutions by the number of matched function
codes in descending order and by the average
street height in ascending order.

604 4375 ms.

16. Return all addresses of buildings with function
code ‘‘2921’’ found in the dataset. Order results by
street name and number in ascending order.

2226 3969 ms.

17. Return all addresses and envelope coordinates of
buildings with function code ‘‘2921’’ found in the
dataset.

2215 4250 ms.

18. Count all city object Ids found within a given
boundary.

1 16 ms.

19. Return all building footprints found within a
boundary.

258 31 ms.

20. Count all city objects found in the dataset based
on its type: GroundSurface, RoofSurface,
WallSurface, BuildingPart, Building and
CityObjectGroup.

6 3125 ms.
for visualisation of the CIMs stored in dynamic geospatial knowledge
graphs on the fly and autonomously reflecting changes in them on
the web map client. The DistanceAgent (Section 3.3) demonstrates
example autonomous analytical capabilities for such semantic CIMs by
independently tracking interactions with their elements on the web
visualisation. The agent’s virtual sensors capture symbolic inputs that
correspond to those interactions in the background while its programs
enrich the underlying CIMs with the newly derived knowledge, stored
in the dynamic geospatial knowledge graph of the CKG, and presented
back on the web map client autonomously by sending the symbolic
outputs to it via virtual actuators.

Apart from reusing existing components this work required design
and development of the following novel elements:

• JPS Agent Framework that generalised upon the past agent devel-
opment in the J-Park Simulator and provided a set of uniform in-
terfaces to all TWA agents allowing them to implement cognitive
capabilities as well.

• Routed Knowledge Graph Access components that allow the JPS
Agents to navigate TWA knowledge graph by consulting routing
information encoded in the OntoKGRouter ontology, introduced
for this purpose, and access the heterogeneous multi-domain data
in a technology agnostic manner.

• Semantic 3D City Agents that demonstrate intelligent automation
for dynamic geospatial knowledge graphs and adhere to the sus-
tainable digitisation practices as well as allow to adapt existing
geospatial information systems’ components into applications that
meet the needs imposed by Industry 4.0.

Automated CIM instantiation, dynamic visualisation and
utonomous analytics solely are not sufficient to conduct complex
ulti-factor optimisations, that would allow to assist with solving the
11

ost pressing problems faced by the countries across the globe at the
present time, even when such datasets are combined with other domain
data within TWA. In order to get closer to some of the answers, its
Parallel World Framework needs to be adapted to work with large scale
simulations combining the CIM data with other datasets representing
different domains. To achieve this, agents and mechanisms need to
be developed that allow efficient modification of the CIM as well as
elimination of some of its components. Although it is currently possible
to simply override existing models with new data, the efficient update
and delete capabilities are not yet present in the TWA. Such large scale
simulations would result in the increased demand for data storage. In
order to minimise the impact of it, improved agent communication
in a form of ontology that provides vocabularies necessary for the
agents to perform forms of inferencing while exchanging symbolic
inputs could be developed as well. This would form a basis of an
agent communication language allowing JPS Agents to organise the
underlying datasets, required to perform such large scale simulations.
This future work could be also regarded as a next brick on paving the
road towards self-sustainable knowledge graphs.

Acknowledgments

This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Campus for Research Ex-
cellence and Technological Enterprise (CREATE) programme. Markus
Kraft gratefully acknowledges the support of the Alexander von Hum-
boldt foundation, Germany.

The research was conducted as part of an Intra-CREATE collabo-
rative project involving CARES (Cambridge Centre for Advanced Re-
search and Education in Singapore), which is University of Cambridge’s
presence in Singapore, and Future Cities Laboratory at the Singapore-
ETH Centre, which was established collaboratively between ETH Zurich
and the National Research Foundation Singapore.



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Appendix A. City import agent - UML activity diagram
12



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Appendix B. City export agent - UML activity diagram
13



Energy and AI 8 (2022) 100137A. Chadzynski et al.
Appendix C. Distance agent - UML activity diagram
14



Energy and AI 8 (2022) 100137A. Chadzynski et al.
List of abbreviations

EIP Eco-Industrial Park
ETH Eidgenössische Technische Hochschule

Zürich
HTTP Hypertext Transfer Protocol
URL Uniform Resource Locator
URI Uniform Resource Identifier
IRI Internationalized Resource Identifier
JPS J-Park Simulator
JSON JavaScript Object Notation
OWL Web Ontology Language
RDF Resource Description Framework
TUM Technische Universität München
RDBMS Relational Database Management System
SQL Structured Query Language
SPARQL SPARQL Protocol and RDF Query

Language
W3C World Wide Web Consortium
XML Extensible Markup Language
GML Geography Markup Language
JDBC Java Database Connectivity
TWA The World Avatar
OWA Open World Assumption
CWA Closed World Assumption
DL Description Logic
OBDA Ontology-Based Data Access
OGC Open Geospatial Consortium
WKT Well-Known Text
CKG Cities Knowledge Graph
CARES Cambridge Centre for Advanced Research

and Education in Singapore
SEC Singapore-ETH Centre
LOD2 Level Of Detail 2
CIM City Information Model
DT Digital Twin
CPS Cyber-Physical System

References

[1] Winkelhake U. Roadmap for sustainable digitisation. In: The digital transforma-
tion of the automotive industry: catalysts, roadmap, practice. Cham: Springer
International Publishing; 2018, p. 127–78. https://doi.org/10.1007/978-3-319-
71610-7_6.

[2] Chadzynski A, Krdzavac N, Farazi F, Lim MQ, Li S, Grisiute A, et al. Semantic
3D city database — An enabler for a dynamic geospatial knowledge graph.
Energy AI 2021;6:100106. https://doi.org/10.1016/j.egyai.2021.100106, URL:
https://www.sciencedirect.com/science/article/pii/S2666546821000574.

[3] Wysocki O. Awesome cityGML. 2021, URL: https://github.com/OloOcki/
awesome-citygml/. [Accessed 17 September 2021].

[4] Ates Aydar S, Stoter J, Ledoux H, Demir Ozbek E, Yomralioglu T. Establishing
a national 3D geo-data model for building data compliant to citygml: case of
turkey. Int Arch Photogramm Remote Sens Spatial Inf Sci 2016;XLI-B2:79–86.
https://doi.org/10.5194/isprs-archives-XLI-B2-79-2016, URL: https://www.int-
arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B2/79/2016/.

[5] chin Chiang H. Data modelling and application of 3D cadastre in Taiwan. In:
Proceedings of the 3rd international workshop on 3D cadastres: developments
and practices. Shenzhen, China, 2012, p. 137–58.

[6] OGC Asia Forum - ShowCases. 2021, URL: http://www.ogc.org.tw/en-US/
ShowCases. [Accessed 06 October 2021].

[7] Al Kalbani K, Abdul Rahman AB. Appropriateness of using CityGML stan-
dard version 2.0 for developing 3D city model in oman. In: Ben Ahmed M,
Rakıp Karaş İ, Santos D, Sergeyeva O, Boudhir AA, editors. Innovations in smart
cities applications volume 4. Cham: Springer International Publishing; 2021, p.
1332–43.

[8] von Richthofen A, Herthogs P, Kraft M, Cairns S. Semantic city planning systems
(SCPS): A literature review. Technical report 270, Cambridge: Singapore ETH
Centre; 2021, URL: https://como.ceb.cam.ac.uk/preprints/270/. ISSN 1473 –
4273.
15
[9] Perera A, Javanroodi K, Nik VM. Climate resilient interconnected infrastruc-
ture: Co-optimization of energy systems and urban morphology. Appl Energy
2021;285:116430. https://doi.org/10.1016/j.apenergy.2020.116430, URL: https:
//www.sciencedirect.com/science/article/pii/S0306261920317918.

[10] COUNCIL S. Climate change ‘biggest threat modern humans have ever faced’,
world-renowned naturalist tells security council, calls for greater global
cooperation. 2021, URL: https://www.un.org/press/en/2021/sc14445.doc.htm.
[Accessed 20 September 2021].

[11] of the Environment M, Resources W. Zero waste masterplan Singapore. 2019,
URL: https://www.towardszerowaste.gov.sg/images/zero-waste-masterplan.pdf.
[Accessed 20 September 2021].

[12] Cities knowledge graph - CARES. 2021, URL: https://www.cares.cam.ac.uk/
research/cities/. [Accessed 15 April 2021].

[13] Cities knowledge graph - SEC. 2021, URL: https://fcl.ethz.ch/research/research-
projects/cities-knowledge-graph.html. [Accessed 15 April 2021].

[14] Cities knowledge graph - ResearchGate. 2021, URL: https://www.researchgate.
net/project/Cities-Knowledge-Graph. [Accessed 15 April 2021].

[15] Zhou L, Zhang C, Karimi IA, Kraft M. An ontology framework towards decen-
tralized information management for eco-industrial parks. Comput Chem Eng
2018;118:49–63. https://doi.org/10.1016/j.compchemeng.2018.07.010.

[16] Devanand A, Kraft M, Karimi IA. Optimal site selection for modular nuclear
power plants. Comput Chem Eng 2019;125:339–50. https://doi.org/10.1016/j.
compchemeng.2019.03.024.

[17] Farazi F, Akroyd J, Mosbach S, Buerger P, Nurkowski D, Salamanca M, et al.
OntoKin: An ontology for chemical kinetic reaction mechanisms. J Chem Inf
Model 2020;60(1):108–20. https://doi.org/10.1021/acs.jcim.9b00960.

[18] Krdzavac N, Mosbach S, Nurkowski D, Buerger P, Akroyd J, Martin J, et al. An
ontology and semantic web service for quantum chemistry calculations. J Chem
Inf Model 2019;59(7):3154–65. https://doi.org/10.1021/acs.jcim.9b00227.

[19] Farazi F, Salamanca M, Mosbach S, Akroyd J, Eibeck A, Aditya LK, et al.
Knowledge graph approach to combustion chemistry and interoperability. ACS
Omega 2020;5(29):18342–8. https://doi.org/10.1021/acsomega.0c02055.

[20] Devanand A, Karmakar G, Krdzavac N, Rigo-Mariani R, Foo EYS, Karimi IA, et
al. OntoPowSys: A power system ontology for cross domain interactions in an
eco industrial park. Energy AI 2020;1:100008. https://doi.org/10.1016/j.egyai.
2020.100008.

[21] Pan M, Sikorski J, Kastner CA, Akroyd J, Mosbach S, Lau R, et al. Ap-
plying industry 4.0 to the jurong island eco-industrial park. Energy Procedia
2015;75:1536–41. https://doi.org/10.1016/j.egypro.2015.07.313.

[22] Pan M, Sikorski J, Akroyd J, Mosbach S, Lau R, Kraft M. Design technologies
for eco-industrial parks: From unit operations to processes, plants and industrial
networks. Appl Energy 2016;175:305–23. https://doi.org/10.1016/j.apenergy.
2016.05.019.

[23] Zhang C, Romagnoli A, Zhou L, Kraft M. Knowledge management of eco-
industrial park for efficient energy utilization through ontology-based approach.
Appl Energy 2017;204:1412–21. https://doi.org/10.1016/j.apenergy.2017.03.
130.

[24] Kleinelanghorst MJ, Zhou L, Sikorski J, Shyh EFY, Aditya K, Mosbach S, et al.
J-park simulator: Roadmap to smart eco-industrial parks. In: Proceedings of the
second international conference on internet of things, data and cloud computing.
ICC ’17, New York, NY, USA: Association for Computing Machinery; 2017, p.
1–10. https://doi.org/10.1145/3018896.3025155.

[25] Zhou L, Pan M, Sikorski JJ, Garud S, Aditya LK, Kleinelanghorst MJ, et al.
Towards an ontological infrastructure for chemical process simulation and opti-
mization in the context of eco-industrial parks. Appl Energy 2017;204:1284–98,
http://dx.doi.org/j.apenergy.2017.05.002.

[26] Zhou X, Lim MQ, Kraft M. A Smart Contract-based agent marketplace for the
J-Park Simulator – a knowledge graph for the process industry. Comput Chem
Eng 2020;139:106896. https://doi.org/10.1016/j.compchemeng.2020.106896.

[27] Eibeck A, Chadzynski A, Lim MQ, Aditya LK, Ong L, Devanand A, et al. A parallel
world framework for scenario analysis in knowledge graphs. Data-Centric Eng
2020;1:e6. https://doi.org/10.1017/dce.2020.6.

[28] Langley P, Laird JE, Rogers S. Cognitive architectures: Research issues
and challenges. Cogn Syst Res 2009;10(2):141–60. https://doi.org/10.1016/
j.cogsys.2006.07.004, URL: https://www.sciencedirect.com/science/article/pii/
S1389041708000557.

[29] Lu Y. Industry 4.0: A survey on technologies, applications and open research
issues. J Ind Inf Integr 2017;6:1–10. https://doi.org/10.1016/j.jii.2017.04.005,
URL: https://www.sciencedirect.com/science/article/pii/S2452414X17300043.

[30] Liao Y, Deschamps F, de Freitas Rocha Loures E, Ramos LFP. Past, present and
future of Industry 4.0 - a systematic literature review and research agenda pro-
posal. Int J Prod Res 2017;55(12):3609–29. https://doi.org/10.1080/00207543.
2017.1308576, arXiv:https://doi.org/10.1080/00207543.2017.1308576.

[31] Prandi F, Devigili F, Soave M, Di Staso U, De Amicis R. 3D web visual-
ization of huge CityGML models. Int Arch Photogramm Remote Sens Spatial
Inf Sci 2015;XL-3/W3:601–5. https://doi.org/10.5194/isprsarchives-XL-3-W3-
601-2015, URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.
net/XL-3-W3/601/2015/.

https://doi.org/10.1007/978-3-319-71610-7_6
https://doi.org/10.1007/978-3-319-71610-7_6
https://doi.org/10.1007/978-3-319-71610-7_6
https://doi.org/10.1016/j.egyai.2021.100106
https://www.sciencedirect.com/science/article/pii/S2666546821000574
https://github.com/OloOcki/awesome-citygml/
https://github.com/OloOcki/awesome-citygml/
https://github.com/OloOcki/awesome-citygml/
https://doi.org/10.5194/isprs-archives-XLI-B2-79-2016
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B2/79/2016/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B2/79/2016/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B2/79/2016/
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb5
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb5
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb5
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb5
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb5
http://www.ogc.org.tw/en-US/ShowCases
http://www.ogc.org.tw/en-US/ShowCases
http://www.ogc.org.tw/en-US/ShowCases
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb7
https://como.ceb.cam.ac.uk/preprints/270/
https://doi.org/10.1016/j.apenergy.2020.116430
https://www.sciencedirect.com/science/article/pii/S0306261920317918
https://www.sciencedirect.com/science/article/pii/S0306261920317918
https://www.sciencedirect.com/science/article/pii/S0306261920317918
https://www.un.org/press/en/2021/sc14445.doc.htm
https://www.towardszerowaste.gov.sg/images/zero-waste-masterplan.pdf
https://www.cares.cam.ac.uk/research/cities/
https://www.cares.cam.ac.uk/research/cities/
https://www.cares.cam.ac.uk/research/cities/
https://fcl.ethz.ch/research/research-projects/cities-knowledge-graph.html
https://fcl.ethz.ch/research/research-projects/cities-knowledge-graph.html
https://fcl.ethz.ch/research/research-projects/cities-knowledge-graph.html
https://www.researchgate.net/project/Cities-Knowledge-Graph
https://www.researchgate.net/project/Cities-Knowledge-Graph
https://www.researchgate.net/project/Cities-Knowledge-Graph
https://doi.org/10.1016/j.compchemeng.2018.07.010
https://doi.org/10.1016/j.compchemeng.2019.03.024
https://doi.org/10.1016/j.compchemeng.2019.03.024
https://doi.org/10.1016/j.compchemeng.2019.03.024
https://doi.org/10.1021/acs.jcim.9b00960
https://doi.org/10.1021/acs.jcim.9b00227
https://doi.org/10.1021/acsomega.0c02055
https://doi.org/10.1016/j.egyai.2020.100008
https://doi.org/10.1016/j.egyai.2020.100008
https://doi.org/10.1016/j.egyai.2020.100008
https://doi.org/10.1016/j.egypro.2015.07.313
https://doi.org/10.1016/j.apenergy.2016.05.019
https://doi.org/10.1016/j.apenergy.2016.05.019
https://doi.org/10.1016/j.apenergy.2016.05.019
https://doi.org/10.1016/j.apenergy.2017.03.130
https://doi.org/10.1016/j.apenergy.2017.03.130
https://doi.org/10.1016/j.apenergy.2017.03.130
https://doi.org/10.1145/3018896.3025155
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb25
https://doi.org/10.1016/j.compchemeng.2020.106896
https://doi.org/10.1017/dce.2020.6
https://doi.org/10.1016/j.cogsys.2006.07.004
https://doi.org/10.1016/j.cogsys.2006.07.004
https://doi.org/10.1016/j.cogsys.2006.07.004
https://www.sciencedirect.com/science/article/pii/S1389041708000557
https://www.sciencedirect.com/science/article/pii/S1389041708000557
https://www.sciencedirect.com/science/article/pii/S1389041708000557
https://doi.org/10.1016/j.jii.2017.04.005
https://www.sciencedirect.com/science/article/pii/S2452414X17300043
https://doi.org/10.1080/00207543.2017.1308576
https://doi.org/10.1080/00207543.2017.1308576
https://doi.org/10.1080/00207543.2017.1308576
http://dx.doi.org/10.1080/00207543.2017.1308576
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://doi.org/10.5194/isprsarchives-XL-3-W3-601-2015
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3-W3/601/2015/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3-W3/601/2015/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3-W3/601/2015/


Energy and AI 8 (2022) 100137A. Chadzynski et al.
[32] Gil J. City information modelling: A conceptual framework for
research and practice in digital urban planning. Built Environ
2020;46(4):501–27, http://dx.doi.org/10/ghqp88. URL: https://www.
ingentaconnect.com/content/10.2148/benv.46.4.501. ZSCC: 0000001
tex.ids=gil_2020_CityInformationModelling.

[33] Gröger G, Kolbe TH, Nagel C, Häfele KH. OGC city geography markup language
(CityGML) en-coding standard. 2012, URL: https://www.ogc.org/standards/
citygml. [Accessed 11 March 2021].

[34] Yao Z, Nagel C, Kunde F, Hudra G, Willkomm P, Donaubauer A, et al. 3DCityDB
- a 3D geodatabase solution for the management, analysis, and visualization
of semantic 3D city models based on CityGML. Open Geosp Data Softw Stand
2018;3(1):5. https://doi.org/10.1186/s40965-018-0046-7.

[35] Stadler A, Nagel C, König G, Kolbe TH. Making interoperability persistent: A
3D geo database based on CityGML. In: 3D geo-information sciences. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2009, p. 175–92. https://doi.org/10.
1007/978-3-540-87395-2_11.

[36] Sir M, Bradac Z, Fiedler P. Ontology versus database. IFAC-PapersOnLine
2015;48(4):220–5, 13th IFAC and IEEE Conference on Programmable Devices
and Embedded Systems.

[37] Blazegraph - GeoSpatial. 2021, URL: https://github.com/blazegraph/database/
wiki/GeoSpatial. [Accessed 20 April 2021].

[38] Russell S, Norvig P. Artificial intelligence: A modern approach. 3rd ed. Pearson;
2010.

[39] Inderwildi O, Zhang C, Wang X, Kraft M. The impact of intelligent cyber-
physical systems on the decarbonization of energy. Energy Environ Sci
2020;13:744–71. https://doi.org/10.1039/C9EE01919G, URL: http://dx.doi.org/
10.1039/C9EE01919G.

[40] Kotseruba I, Tsotsos JK. 40 Years of cognitive architectures: core cognitive
abilities and practical applications. Artif Intell Rev 2020;53(1):17–94. https:
//doi.org/10.1007/s10462-018-9646-y.

[41] JPS Base Lib. 2021, URL: https://github.com/cambridge-cares/TheWorldAvatar/
tree/develop/JPS_BASE_LIB. [Accessed 06 October 2021].

[42] Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis N. Microservices in
practice, part 1: Reality check and service design. IEEE Softw 2017;34(1):91–8.
https://doi.org/10.1109/MS.2017.24.

[43] Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis N. Microser-
vices in practice, part 2: Service integration and sustainability. IEEE Softw
2017;34(2):97–104. https://doi.org/10.1109/MS.2017.56.

[44] Pedrinaci C, Domingue J. Toward the next wave of services: Linked services for
the web of data. J UCS 2010;16(13):1694–719, URL: http://www.jucs.org/jucs_
16_13/toward_the_next_wave.
16
[45] Kopecký J, Gomadam K, Vitvar T. HRESTS: An HTML microformat for describing
restful web services. In: Proceedings of the 2008 IEEE/WIC/ACM international
conference on web intelligence and intelligent agent technology - volume 01.
WI-IAT ’08, USA: IEEE Computer Society; 2008, p. 619–25. https://doi.org/10.
1109/WIIAT.2008.379.

[46] Zhou X, Eibeck A, Lim MQ, Krdzavac N, Kraft M. An agent composition
framework for the J-Park Simulator – a knowledge graph for the process industry.
Comput Chem Eng 2019;130:106577. https://doi.org/10.1016/j.compchemeng.
2019.106577.

[47] Java servlet technology overview. 2021, URL: https://www.oracle.com/java/
technologies/servlet-technology.html. [Accessed 11 October 2021].

[48] OWASP - Input validation. 2021, URL: https://cheatsheetseries.owasp.org/
cheatsheets/Input_Validation_Cheat_Sheet.html. [Accessed 12 October 2021].

[49] Poslad S. Specifying protocols for multi-agent systems interaction. ACM Trans
Auton Adapt Syst 2007;2(4):15–es. https://doi.org/10.1145/1293731.1293735.

[50] Carroll JJ, Bizer C, Hayes P, Stickler P. Named graphs. J Web Semant
2005;3(4):247–67. https://doi.org/10.1016/j.websem.2005.09.001, URL: https:
//www.sciencedirect.com/science/article/pii/S1570826805000235. World Wide
Web Conference 2005——Semantic Web Track.

[51] Asynchronous watcher service. 2021, URL: https://github.com/cambridge-
cares/TheWorldAvatar/tree/develop/AsynchronousWatcherService. [Accessed 18
October 2021].

[52] Apache tomcat. 2021, URL: https://tomcat.apache.org/. [Accessed 21 October
2021].

[53] Java collections framework. 2021, URL: https://docs.oracle.com/javase/8/docs/
technotes/guides/collections/overview.html. [Accessed 21 October 2021].

[54] Java runnable interface. 2021, URL: https://docs.oracle.com/javase/8/docs/api/
java/lang/Runnable.html. [Accessed 21 October 2021].

[55] Blazegraph - NanoSparqlServer. 2021, URL: https://github.com/blazegraph/
database/wiki/NanoSparqlServer. [Accessed 20 October 2021].

[56] Blazegraph - DataMigration. 2021, URL: https://github.com/blazegraph/
database/wiki/DataMigration. [Accessed 20 October 2021].

[57] Jena JDBC - A SPARQL over JDBC driver framework. 2021, URL: https://jena.
apache.org/documentation/jdbc/. [Accessed 27 October 2021].

[58] Buyukdemircioglu M, Kocaman S. Reconstruction and efficient visualization of
heterogeneous 3D city models. Remote Sens 2020;12(13). https://doi.org/10.
3390/rs12132128, URL: https://www.mdpi.com/2072-4292/12/13/2128.

[59] Rijgersberg H, Van Assem M, Top J. Ontology of units of measure and related
concepts. Semant Web 2013;4(1):3–13.

https://www.ingentaconnect.com/content/10.2148/benv.46.4.501
https://www.ingentaconnect.com/content/10.2148/benv.46.4.501
https://www.ingentaconnect.com/content/10.2148/benv.46.4.501
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/citygml
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1007/978-3-540-87395-2_11
https://doi.org/10.1007/978-3-540-87395-2_11
https://doi.org/10.1007/978-3-540-87395-2_11
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb36
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb36
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb36
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb36
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb36
https://github.com/blazegraph/database/wiki/GeoSpatial
https://github.com/blazegraph/database/wiki/GeoSpatial
https://github.com/blazegraph/database/wiki/GeoSpatial
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb38
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb38
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb38
https://doi.org/10.1039/C9EE01919G
http://dx.doi.org/10.1039/C9EE01919G
http://dx.doi.org/10.1039/C9EE01919G
http://dx.doi.org/10.1039/C9EE01919G
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://github.com/cambridge-cares/TheWorldAvatar/tree/develop/JPS_BASE_LIB
https://github.com/cambridge-cares/TheWorldAvatar/tree/develop/JPS_BASE_LIB
https://github.com/cambridge-cares/TheWorldAvatar/tree/develop/JPS_BASE_LIB
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2017.56
http://www.jucs.org/jucs_16_13/toward_the_next_wave
http://www.jucs.org/jucs_16_13/toward_the_next_wave
http://www.jucs.org/jucs_16_13/toward_the_next_wave
https://doi.org/10.1109/WIIAT.2008.379
https://doi.org/10.1109/WIIAT.2008.379
https://doi.org/10.1109/WIIAT.2008.379
https://doi.org/10.1016/j.compchemeng.2019.106577
https://doi.org/10.1016/j.compchemeng.2019.106577
https://doi.org/10.1016/j.compchemeng.2019.106577
https://www.oracle.com/java/technologies/servlet-technology.html
https://www.oracle.com/java/technologies/servlet-technology.html
https://www.oracle.com/java/technologies/servlet-technology.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://doi.org/10.1145/1293731.1293735
https://doi.org/10.1016/j.websem.2005.09.001
https://www.sciencedirect.com/science/article/pii/S1570826805000235
https://www.sciencedirect.com/science/article/pii/S1570826805000235
https://www.sciencedirect.com/science/article/pii/S1570826805000235
https://github.com/cambridge-cares/TheWorldAvatar/tree/develop/AsynchronousWatcherService
https://github.com/cambridge-cares/TheWorldAvatar/tree/develop/AsynchronousWatcherService
https://github.com/cambridge-cares/TheWorldAvatar/tree/develop/AsynchronousWatcherService
https://tomcat.apache.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://github.com/blazegraph/database/wiki/NanoSparqlServer
https://github.com/blazegraph/database/wiki/NanoSparqlServer
https://github.com/blazegraph/database/wiki/NanoSparqlServer
https://github.com/blazegraph/database/wiki/DataMigration
https://github.com/blazegraph/database/wiki/DataMigration
https://github.com/blazegraph/database/wiki/DataMigration
https://jena.apache.org/documentation/jdbc/
https://jena.apache.org/documentation/jdbc/
https://jena.apache.org/documentation/jdbc/
https://doi.org/10.3390/rs12132128
https://doi.org/10.3390/rs12132128
https://doi.org/10.3390/rs12132128
https://www.mdpi.com/2072-4292/12/13/2128
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb59
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb59
http://refhub.elsevier.com/S2666-5468(22)00002-7/sb59

	Semantic 3D City Agents—An intelligent automation for dynamic geospatial knowledge graphs
	Introduction
	Cognitive architecture in The World Avatar
	The World Avatar
	JPS Agent Framework
	Routed knowledge graph access
	Knowledge graph routing via OntoKGRouter
	Technology agnostic knowledge graph access via store clients


	Semantic 3D city agents
	City import agent
	City export agent
	Distance agent

	Conclusions and future work
	Acknowledgments
	Appendix A. City Import Agent - UML Activity Diagram
	Appendix B. City Export Agent - UML Activity Diagram
	Appendix C. Distance Agent - UML Activity Diagram
	List of abbreviations
	References


