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Supplementary results 

Crosstalk between oscillatory models of the cell cycle G1/S phase, NF-κB and p53 

Table S1 gives the numerical values used to generate Figures 2A-C in the main text. 

NF-κB – cell cycle D  p53 – cell cycle D  p53 – NF-κB – cell cycle D 

E2F-Rbpp 0.899  p21 0.968  p21 0.969 

CycD-CDK2-p16 0.75  CycA-CDK2-p21 0.941  CycA-CDK2-p21 0.94 

CycD-CDK2-p27 0.667  CycE-CDK2-p21 0.822  E2F-Rbpp 0.93 

CycE 0.585  CycD-CDK2-p21 0.812  CycD-CDK2-p21 0.849 

CycA 0.455  CycE 0.685  CycE-CDK2-p21 0.798 

E2F 0.447  CycA 0.613  CycD-CDK2-p16 0.75 

CycD-CDK2-p21 0.374  E2F-Rbpp 0.476  CycD-CDK2-p27 0.675 

CycD-CDK4/6 0.348  CycA-CDK2 0.438  CycA-CDK2 0.503 

CycA-CDK2 0.335  E2F 0.428  CycE 0.366 

p21 0.272  CycE-CDK2 0.205  CycD-CDK4/6 0.353 

CycE-CDK2 0.224  CDK2 0.19  E2F 0.338 

CycE-CDK2-p21 0.222  CycE-CDK2-p27 0.188  CycA 0.209 

CycE-CDK2-p27 0.217  CycD-CDK2-p27 0.174  CycA-CDK2-p27 0.201 

CycA-CDK2-p27 0.196  Rbpppp 0.098  Rbpppp 0.181 

Rbpppp 0.177  CycA-CDK2-p27 0.04  CycE-CDK2 0.152 

CycD 0.146  E2F-Rb 0.039  CycD 0.148 

CDK2 0.092  p27 0.032  CDK2 0.144 

E2F-Rb 0.083  CycD-CDK2-p16 0.032  E2F-Rb 0.083 

CDK4/6 0.078  CycD-CDK4/6 0.027  CDK4/6 0.08 

CycA-CDK2-p21 0.071  CycD 0.012  p27 0.04 

p27 0.028  Skp2 0.011  CycE-CDK2-p27 0.028 

Rb 0.009  CDK4/6 0.008  Skp2 0.008 

Skp2 0.007  Rb 0.008  Rb 0.007 

p16 0.004  p16 0.005  p16 0.006 

        

Table S1: Crosstalk in the cell cycle coupled to p53, to NF-κB and both p53 and NF-κB. 
Each species of the cell cycle is assigned a D value (Equation (4)) in the interval [0,1] by 

Procedure B (Methods), where larger values indicate greater crosstalk. Values less than 0.1 

correspond to amounts of crosstalk which are difficult to discern in the time and frequency plots. 

In each case, species are listed in descending order of D. 

Increased coupling strength 

The coupling strength of the oscillatory systems is controlled by the values of rate constants R30b 

and R40b. The initial coupling strength was chosen to be plausible and to respect known parameters 

and experimentally verified behaviour. To validate our results, we also considered twice and ten 

times this coupling strength. Figure S1 illustrates the perturbation (D) of cell cycle components by 

p53a using double coupling strength. While the trend of crosstalk is reinforced by most 

components, in line with intuition, it is noticeable that E2F-Rbpp is apparently influenced less with 

increased coupling strength (D = 0.178 vs. 0.476). With ten times coupling strength (Figure S4) this 
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unexpected trend is partially reversed (0.369). This counter-intuitive behaviour is to be expected in 

non-linear dynamical systems that are sensitive to both the amplitude and frequency of 

perturbations. Overall, Figures S1-S6, variously illustrating the influence of NF-B alone, p53 

alone and the fully coupled systems with double and ten times coupling strength, tend to follow a 

more or less intuitive trend of increased measured perturbation with increased coupling.  Whereas 

with single coupling strength the influence of p53a tends to be local and the influence of NF-Bn 

tends to be indirect, with increased coupling strength more species are affected to a greater degree 

and this demarcation is blurred. There are some noticeable exceptions, however. Species E2F-Rb, 

p16, Rb and Skp2 are minimally perturbed by any combination of coupling and coupling strengths. 

Values for double and ten times coupling strength are given in Tables S2 and S3, respectively. 

 

 

Figure S1: Perturbation of the cell cycle by p53a with double coupling strength. While the 

pattern of crosstalk evident in Figure 2 is broadly reinforced with increased coupling strength, 

contrary to intuition the perturbation of species E2F-Rbpp is reduced. Values of perturbation 

(D) are given in Table S2. 

 

x2 
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Figure S2: Perturbation of the cell cycle by NF-Bn with double coupling strength. 

Values are given in Table S2. 

 

 

Figure S3: Perturbation of the cell cycle in full model with double coupling strength. 
Values are given in Table S2. 
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Figure S4: Perturbation of the cell cycle by p53a with ten times coupling strength. 

Values are given in Table S3. 

 

 

Figure S5: Perturbation of the cell cycle by NF-Bn with ten times coupling strength. 

Values are given in Table S3. 
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Figure S6: Perturbation of the cell cycle in full model with ten times coupling strength. 
Values are given in Table S3. 
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NF-κB – cell cycle D  p53 – cell cycle D  p53 – NF-κB – cell cycle D 

E2F-Rbpp 0.943  p21 0.993  p21 0.989 

CycD-CDK2-p16 0.836  CycE 0.969  CycA-CDK2-p21 0.968 

CycD-CDK2-p27 0.754  CycA-CDK2-p21 0.967  E2F-Rbpp 0.946 

CycE 0.586  E2F 0.954  CycD-CDK2-p21 0.915 

CycA 0.525  CycD-CDK2-p21 0.904  CycE-CDK2-p21 0.863 

CycD-CDK4/6 0.474  CycE-CDK2-p21 0.888  CycD-CDK2-p16 0.835 

CycD-CDK2-p21 0.464  CycA-CDK2 0.86  CycD-CDK2-p27 0.763 

CycA-CDK2 0.42  CycA 0.86  CycA-CDK2 0.744 

E2F 0.419  CycE-CDK2 0.275  CycE 0.566 

p21 0.353  CycE-CDK2-p27 0.267  CycA 0.505 

CycE-CDK2-p27 0.324  CDK2 0.256  CycD-CDK4/6 0.482 

CycE-CDK2-p21 0.287  CycD-CDK2-p27 0.242  E2F 0.473 

CycA-CDK2-p27 0.23  E2F-Rbpp 0.178  CycA-CDK2-p27 0.272 

CycE-CDK2 0.22  CycA-CDK2-p27 0.174  CDK2 0.22 

CycD 0.211  p27 0.141  CycD 0.22 

Rbpppp 0.185  CycD 0.118  Rbpppp 0.188 

CDK4/6 0.111  CycD-CDK4/6 0.101  CDK4/6 0.115 

CycA-CDK2-p21 0.102  CycD-CDK2-p16 0.057  p27 0.087 

CDK2 0.098  E2F-Rb 0.053  E2F-Rb 0.083 

E2F-Rb 0.083  Rbpppp 0.042  CycE-CDK2 0.068 

p27 0.037  Skp2 0.015  CycE-CDK2-p27 0.061 

Skp2 0.011  CDK4/6 0.013  Skp2 0.015 

p16 0.01  p16 0.005  p16 0.011 

Rb 0.005  Rb 0.004  Rb 0.007 

        

Table S2: Crosstalk in the cell cycle coupled to p53, to NF-κB and both p53 and NF-κB with 

double coupling strength. Each species of the cell cycle is assigned a D value (Equation (4)) in 

the interval [0,1] by Procedure B (Methods), where larger values indicate greater crosstalk. 

Values less than 0.1 correspond to amounts of crosstalk which are difficult to discern in the time 

and frequency plots. 
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NF-κB – cell cycle D  p53 – cell cycle D  p53 – NF-κB – cell cycle D 

E2F-Rbpp 0.943  p21 0.998  p21 0.998 

CycD-CDK2-p16 0.932  
CycD-CDK2-
p21 0.996  CycD-CDK2-p21 0.998 

CycD-CDK2-p27 0.856  CycE 0.995  E2F 0.993 

CycD-CDK4/6 0.781  E2F 0.994  CycE 0.993 

CycA 0.631  CycA-CDK2 0.994  CycA-CDK2 0.99 

CycD-CDK2-p21 0.613  CycE-CDK2-p21 0.99  CycA-CDK2-p21 0.98 

CycA-CDK2 0.572  CycA-CDK2-p21 0.974  CycE-CDK2-p21 0.976 

CycE-CDK2-p27 0.53  CycA 0.958  CycA 0.952 

CycE 0.513  CycA-CDK2-p27 0.753  E2F-Rbpp 0.945 

p21 0.513  p27 0.469  CycD-CDK2-p16 0.929 

CycD 0.451  CycE-CDK2 0.455  CycD-CDK2-p27 0.872 

CycE-CDK2-p21 0.431  CycE-CDK2-p27 0.392  CycA-CDK2-p27 0.828 

CycA-CDK2-p27 0.295  
CycD-CDK2-
p27 0.381  CycD-CDK4/6 0.816 

E2F 0.232  E2F-Rbpp 0.369  CycD 0.52 

CDK4/6 0.227  CycD 0.33  CycE-CDK2 0.399 

CycE-CDK2 0.227  CycD-CDK4/6 0.306  p27 0.36 

Rbpppp 0.188  CDK2 0.263  CDK2 0.262 

CycA-CDK2-p21 0.149  
CycD-CDK2-
p16 0.138  CDK4/6 0.231 

CDK2 0.086  E2F-Rb 0.08  Rbpppp 0.19 

E2F-Rb 0.083  Rbpppp 0.042  CycE-CDK2-p27 0.162 

p27 0.058  CDK4/6 0.016  E2F-Rb 0.083 

p16 0.009  Skp2 0.015  p16 0.01 

Rb 0.008  Rb 0.009  Rb 0.008 

Skp2 0.005  p16 0.005  Skp2 0.007 

        

Table S3: Crosstalk in the cell cycle coupled to p53, to NF-κB and both p53 and NF-κB with 

ten times coupling strength. Each species of the cell cycle is assigned a D value (Equation(4)) in 

the interval [0,1] by Procedure B (Methods), where larger values indicate greater crosstalk. Values 

less than 0.1 correspond to amounts of crosstalk which are difficult to discern in the time and 

frequency plots. 
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The effect of stochasticity on independent networks 

Table S4 quantifies the differences between the fully stochastic and quasi-deterministic models in 

isolation. Although there are some species with apparently significant differences, the coupling 

species (p53a and NF-κBn) show minimal stochasticity and the effect on crosstalk was found to be 

negligible. Some interesting behavioural differences are noted in the main text.  

 

p53 D  NF-κB D  Cell cycle D  Cell cycle D 

p53i 0.025  nIkB-NF-kB 0.46  CycE-CDK2-p27 0.94  CycA-CDK2-p21 0.017 

p53a 0.01  IkBn 0.34  CycE-CDK2-p21 0.863  CycD 0.015 

Mdm2 0.01  IkB 0.11  CycD-CDK2-p21 0.685  CycA-CDK2 0.012 

I 0.01  IKK-IkB 0.055  CycE-CDK2 0.455  Skp2 0.012 

S 0.01  NF-kB 0.035  p21 0.122  Rbpppp 0.011 

   KIkB-NF-kB 0.03  CycD-CDK4/6 0.073  Rb 0.008 

   IkB-NF-kB 0.025  CycE 0.072  CycD-CDK2-p27 0.007 

   IkBt 0.015  E2F 0.053  CDK2 0.006 

   IKK 0.015  E2F-Rbpp 0.034  p16 0.006 

   NF-kBn 0.01  CycA 0.02  CDK4/6 0.003 

      CycA-CDK2-p27 0.019  p27 0.003 

      CycD-CDK2-p16 0.019  E2F-Rb 0.003 

           

Table S4: Differences between reaction-based and quasi-deterministic models in the absence of 

coupling. Each species is assigned a D value (Equation (4)) in the interval [0,1] by Procedure B 

(Methods), where larger values indicate greater difference. Values less than 0.1 correspond to minimal 

visible stochasticity in the time courses. Coupling species p53a and NF-Bn have very low stochasticity, 

so the cell cycle is minimally affected by the stochasticity in the perturbing systems. 
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Supplementary methods 

The following subsections describe the construction of the system of networks and simulation 

models used in the main text. The three networks are given as independent models, with the 

coupling reactions itemised separately. The rate constants and initial numbers of molecules are 

common to both the stochastic and quasi-deterministic models. The following general assumptions 

were made: earlier studies revealed oscillatory NF-B activity in cells lacking IB  &  [1] and 

biphasic dynamics in cells in which NF-B-inducible IB was over-expressed [2]; induced 

expression of IB also gives rise to an oscillatory NF-B signal that is out of phase with IB-

induced oscillations [3] and which helps to keep the late phase of TNF- and IL1--induced NF-B 

activity steady [4]; possibility that oscillations are a trade-off against rapid response to 

inflammatory signals and the necessity of additional feedback to provide steady supply of active 

NF-B, which might arguably be present in other linking pathways – e.g. p53-MDM2; in contrast to 

some other models that focus mainly on G1/S-phase transition control [5-9], this model is only 

interested in key processes involving data sets previously published (which strengthens the idea that 

cell cycle process can also be induced by NF-B active proteins).  

NF-κB system 

We and others have previously re-constructed a computational model to explain NF-B activation 

events following IKK activation by TNF stimulation [2, 10]. That model, which represented the 

most studied aspect of the NF-B pathway, comprises NF-B, canonical IB // and IKK. Both 

the IKK and NF-B are represented as singular species (without separate descriptions for the 

IKK/ heterodimer and its scaffold protein IKK). Their synthesis, degradation, cellular 

localisation and interactions were calculated using a deterministic method. The key processes 

modelled included: mRNA transcription and protein translation of NF-B Inhibitor protein IB 

(IB, IB, IB); the inter compartment transport of IB (IB, IB, IB), NF-B and their 

complexes; formation of protein complexes; catalytic activation of canonical and alternative IKK; 

catalytic degradation of the NF-B Inhibitor proteins due to IKK-induced phosphorylation and 

subsequent ubiquitination. 

Cell cycle system 

Many groups have reported the construction of the mammalian cell cycle models, the most recent 

being [11, 12]. Works on models of yeast cell cycle are more advanced and incorporate explicit 

representation of cell mass and cell growth. For the mammalian cell cycle model used here, we have 
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not included cell growth, as we were only interested in the events leading to the G1/S transition 

phase, the point where NF-B and p53 signal transduction events are active the most. The model 

comprises: G1 phase; inhibition of cell cycle activity as a result of Rb binding to E2F. For the 

activation of the cell cycle and thus the transition phase from G1 to S, Rb phosphorylation by the 

CDKs (CDK4/6, CDK2) is necessary, which results in the activation and release of E2F. However, 

the CDKs have their inhibitory counterparts (p16, p21 and p27). The model receives as input a 

signal from the NF-B signal transduction pathway for the synthesis of CycD1, which quickly 

forms a complex with CDK4/6 to become the active form CycD-CDK4/6. This complex can further 

bind to their inhibitory counterpart forming the following; CycD-CDK4/6-p16, CycD-CDK4/6-p21 

and CycD-CDK4/6-p27, out of which formation of CycD-CDK4/6-p16 inhibits its activity. Hypo-

phosphorylation of the bound Rb (Rb-E2F) by complex formation of CycD-CDK4/6 releases E2F. 

Free E2F is involved in CycE, CycA and Skp2 gene transcription. Free CycE and CycA form 

complexes with CDK2 to form active compounds. CycE-CDK2 and CycA-CDK2 can also act as a 

further phosphorylating factor to bound Rb (Rb-E2F), releasing more E2F. CycE and CycA 

complexes also bind to their inhibitory counterparts forming the following: CycE-CDK2-p27, 

CycE-CDK2-p21, CycA-CDK2-p27, CycA-CDK2-p21; and is mainly described by mass balance 

equations. The parameter values have been chosen to quantitatively and qualitatively represent the 

phases of the cell cycle of interest. The degradation of the components were also accounted for in 

the model. 

DNA damage transduction system 

Stimuli such as DNA damage can activate both the NF-κB and the p53 pathways [13]. While p53 

induces cell-cycle arrest or cell death in response to these treatments, the contribution of NF-κB to 

cell fate is more complex, and pathways in which it either antagonizes or cooperates with p53 have 

been described. NF-κB-mediated negative regulation of p53 can contribute to tumorigenesis and has 

been shown to operate at a number of levels. The delay oscillator describe by Geva-Zatorsky et. al 

[14] was the model of choice for the p53 system. 
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Stochastic delay differential equations 

Unlike the cell cycle and NF-κB models, which are described by standard chemical and enzymatic 

reactions that can be straight-forwardly converted into the stochastic domain, the original p53 

model is constructed around delay differential equations (DDEs) and requires special consideration 

when simulating stochastically. DDEs allow the current rate of a reaction to be dependent on the 

state of the system at some time in the past, abstracting potentially very complex (unknown) 

mechanisms into a combination of delays. Stochastic simulations based on a variant of the Gillespie 

algorithm [15] treat the evolution of the system as a Markov process, such that the current rate of a 

reaction is only dependent on the current state of the system. To incorporate a model based on 

DDEs into a stochastic simulation of this kind, it is also necessary to store the past states of the 

system. We thus implemented a function in our simulation software which returns the number of 

molecules of species X at τ time units in the past: delay(X,τ). Given that the time course of a 

stochastic simulation consists of the numbers of molecules of different species recorded at irregular 

time points 0, t1, t2, ... etc., where 0 < t1< t2 < ..., the amount of species X at time t can be described 

by the sequence X0, Xt1, Xt2, ..., etc. At time t, the value returned by delay(X,τ) is then Xti, where i 

is the maximum value that satisfies ti ≤ t-τ. If t < τ (as may happen at the beginning of a simulation), 

delay(X,τ) returns X0. This algorithm is consistent with the standard deterministic interpretation of 

delay differential equations and guarantees that for any specified initial state and past state 

corresponding to the delay used, the magnitude and direction of the average rate of leaving the state 

in the stochastic and quasi-deterministic models is identical (allowing for the conversion from 

concentration to numbers of molecules) to that for the deterministic case. 
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Model naming convention 

For the purposes of simulation we used simplified names of the chemical species. The following 

table maps the names used in the text to the names used in the models. 

 

Text Model  Text Model  Text Model 

p53i p53i  CycA-CDK2-p21 CycACDp21  CycA CycA 

p53a p53a  CycA-CDK2-p27 CycACDp27  CycD CycD 

Mdm2 Mdm2  CycA-CDK2 CycACDK2  CycE CycE 

I I  CycD-CDK4/6 CycDCDK46  CDK4/6 CDK46 

S S  CycD-CDK2-p27 CycDCDp27  Skp2 Skp2 

IkBn-NF-kBn nIkBNFkB  CycD-CDK2-p16 CycDCDp16  Rbpppp Rbpppp 

IkBn IkBn  CycD-CDK2-p21 CycDCDp21  Rb Rb 

IkB IkB  CycE-CDK2 CycECDK2  CDK2 CDK2 

IKK-IkB IKKIkB  CycE-CDK2-p27 CycECDp27  p16 p16 

NF-kB NFkB  CycE-CDK2-p21 CycECDp21  p27 p27 

IKK-IkB-NF-kB KIkBNFkB  E2F-Rbpp E2FRbpp  p21 p21 

IkB-NF-kB IkBNFkB  E2F-Rb E2FRb  E2F E2F 

IkBt IkBt       

IKK IKK       

NF-kBn NFkBn       
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Stochastic (reaction-based) models 

The following models are based on standard chemical reactions of the kind A + B  C + D, where 

a single reaction event simultaneously consumes molecules of A and B while producing molecules 

of C and D. Where not otherwise stated, the rates of reactions are calculated using the given 

constants and the assumption of mass action. An explicit rate function to generate the reaction 

propensity [15] is given for reactions where this does not apply. The function delay(·) is defined 

above. The symbol Ø is used to denote an arbitrary source or sink in creation and degradation 

reactions, respectively. 

p53 

 

Reaction Rate constant / function 

p53i + Mdm2  Mdm2 kap53i 

Ø  p53i kbp53i 

p53a + Mdm2  Mdm2 kap53a 

p53i  p53a w×(S
n
/(S

n
+Ts))×p53i 

ARF + p53a  2 p53a R46 

Mdm2  Ø kaMdm2 

Mdm2 + ARF  Ø R48 

Ø  Mdm2 kbMdm2×delay(p53a,tau) 

I  Ø kai 

Ø  I kbi×(delay(p53a,tau)+delay(p53i,tau)) 

ARF  Ø R47 

Ø  ARF R45a 

S + I  I kas 

Ø  S kbs×e 

 

Cell cycle 

 

Reaction Rate constant  

CycDCDK46  CDK46 R1 

CycDCDK46 + p16  CycDCDp16 R29 

CycDCDK46 + p27  CycDCDp27 R6 

CycDCDK46  CDK46 + CycD R21b 

CycD + CDK46  CycDCDK46 R21a 

CDK46  Ø R32 

CycACDK2 + E2F  CycACDK2 R15 

Ø  E2F R43 

E2F  E2F + E2F R42 

CycE  Ø R26 

E2F  CycE + E2F R2 

CycECDK2  CDK2 R3 
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CycECDK2  CDK2 + CycE R24b 

CDK2 + CycE  CycECDK2 R24a 

CDK2 + CycA  CycACDK2 R25a 

CDK2  Ø R33 

CycA  Ø R27 

E2F  CycA + E2F R4 

CycACDK2  CDK2 R5 

CycACDK2  CycA + CDK2 R25b 

p27 + CycECDK2  CycECDp27 R7 

p27 + CycACDK2  CycACDp27 R8 

Ø  p27 R20 

CycECDp27 + Skp2  Skp2 + CycECDK2 R9 

CycACDp27 + Skp2  Skp2 + CycACDK2 R10 

Skp2  Ø R34 

Ø  Skp2 R31 

Rb  Ø R18 

Rb + E2F  E2FRb R11 

Ø  Rb R17 

Rbpppp  Rb R16 

CycDCDK46 + E2FRb  E2FRbpp + CycDCDK46 R12 

CycDCDp27 + E2FRb  E2FRbpp + CycDCDp27 R13 

CycDCDp21 + E2FRb  E2FRbpp + CycDCDp21 R41 

E2FRbpp + CycECDK2  CycECDK2 + Rbpppp + E2F R14 

CycDCDp16  p16 R19 

p16  Ø R23 

Ø  p16 R28 

CycD  Ø R22 

E2F  CycD + E2F R44 

Ø  CycD R30a 

p21 + CycDCDK46  CycDCDp21 R35a 

p21 + CycECDK2  CycECDp21 R36a 

p21 + CycACDK2  CycACDp21 R37a 

Ø  p21 R40a 

CycDCDp21  p21 + CycDCDK46 R35b 

CycECDp21  p21 + CycECDK2 R36b 

Skp2 + CycECDp21  CycECDK2 + Skp2 R38 

CycACDp21  p21 + CycACDK2 R37b 

Skp2 + CyCACDp21  CycACDK2 + Skp2 R39 
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NF-κB 

 

Reaction Rate constant / function 

IkB  Ø kdeg1 

IkB  IkBn ktp1 

IkB + NFkB  IkBNFkB la4 

IkBt  IkB + IkBt ktr1 

IkBn  IkB ktp2 

IkBn + NFkBn  nIkBNFkB la4 

IkBn  Ø kdeg1 

nIkBNFkB  IkBn + NFkBn kd4 

nIkBNFkB  IkBNFkB k2 

nIkBNFkB  NFkBn kdeg5 

IkBNFkB  nIkBNFkB k3 

IkBt  Ø ktr3 

Ø  IkBt tr2a 

Ø  IkBt tr2×(NFkBn)
h
 

IkBNFkB  IkB + NFkB kd4 

IkBNFkB  NFkB kdeg4 

IKK + IkB  IKKIkB la1 

IKK + IkBNFkB  KIkBNFkB la7 

IKK  Ø k02 

IKKIkB  IKK + IkB kd1 

IKKIkB  IKK  kr1 

IKKIkB + NFkB  KIkBNFkB la4 

KIkBNFkB  IKK + IkBNFkB kd2 

KIkBNFkB  IKKIkB + NFkB kd4 

KIkBNFkB  NFkB + IKK kr4 

NFkB  NFkBn k1 

NFkBn  NFkB k01 

 

Coupling reactions 

 

Reaction Rate constant / function 

Ø  CycD R30b×(NFkBn)
h
 

p53a  p21 + p53a R40b 
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Quasi-deterministic (combined production / consumption) models 

 

The following models are based on quasi-deterministic ‘reactions’, where a single reaction event is 

an unsynchronised production or consumption of a single molecule of a given species. The 

propensity [15] of a quasi-deterministic reaction is given by an explicit rate function that is the 

signed sum of the propensities of creation and consumption reactions. 

p53 

 

Species Combined rate function of production and consumption 

p53i kbp53i-kap53i×Mdm2×p53i-w×(S
n
/(S

n
+Ts))×p53i 

p53a 
w×(S

n
/(S

n
+Ts))×p53i-

kap53a×Mdm2×p53a+R46×p53a×ARF 

Mdm2 
kbMdm2×delay(p53a,tau)-kaMdm2×Mdm2-
R48×ARF×Mdm2 

I kbi×(delay(p53a,tau)+delay(p53i,tau))-kai×I 

ARF R45a-R46×p53a×ARF-R47×ARF-R48×ARF×Mdm2 

S kbs×e-kas×I×S 

 

NF-κB 

 

Species Combined rate function of production and consumption 

IkB 
-(kdeg1+ktp1)×IkB+ktp2×IkBn+ktr1×IkBt+kd4×IkBNFkB+kd1×IKKIkB-la1×IkB×IKK 
-la4×IkB×NFkB 

IkBn ktp1×IkB+kd4×nIkBNFkB-ktp2×IkBn-la4×IkBn×NFkBn-kdeg1×IkBn 

nIkBNFkB -kd4×nIkBNFkB-k2×nIkBNFkB-kdeg5×nIkBNFkB+k3×nIkBNFkB+la4×IkBn×NFkBn 

IkBt tr2a-ktr3×IkBt+tr2×(NFkBn)
h
 

IkBNFkB 
k2×nIkBNFkB-kd4×IkBNFkB-kdeg4×IkBNFkB-la7×IkBNFkB×IKK-k3×nIkBNFkB 
+kd2×KIkBNFkB+la4×IkB×NFkB 

IKK 
-la1×IkB×IKK-la7×IkBNFkB×IKK-k02×IKK+kd1×IKKIkB+kr1×IKKIkB+kd2×KIkBNFkB 
+kr4×KIkBNFkB 

IKKIkB la1×IkB×IKK-kd1×IKKIkB-kr1×IKKIkB+kd4×KIkBNFkB-la4×IKKIkB×NFkB 

KIkBNFkB la7×IkBNFkB×IKK-kd2×KIkBNFkB-kd4×KIkBNFkB-kr4×KIkBNFkB+la4×IKKIkB×NFkB 

NFkB 
kd4×IkBNFkB+kdeg4×IkBNFkB+kd4×KIkBNFkB+kr4×KIkBNFkB+k01×NFkBn-k1×NFkB 
-la4×IkB×NFkB-la4×IKKIkB×NFkB 

NFkBn kd4×nIkBNFkB+k1×NFkB+k3×nIkBNFkB-k01×NFkBn-la4×IkBn×NFkBn 
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Cell cycle 

 

Species Combined rate function of production and consumption 

CycDCDK46 
-R1×CycDCDK46-R29×CycDCDK46×p16-R6×CycDCDK46×p27-R35a×CycDCDK46×p21 
-R21b×CycDCDK46+R35b×CycDCDp21+R21a×CycD×CDK46 

CDK46 R1×CycDCDK46+R21b×CycDCDK46-R21a×CycD×CDK46-R32×CDK46 

E2F R43+R42×E2F+R14×E2FRbpp×CycECDK2-R11×Rb×E2F-R15×E2F×CycACDK2 

CycE R2×E2F+R24b×CycECDK2-R24a×CycE×CDK2-R26×CycE 

CycECDK2 
-R3×CycECDK2-R7×CycECDK2×p27-R36a×CycECDK2×p21-R24b×CycECDK2 
+R36b×CycECDp21+R24a×CycE×CDK2+R9×CycECDp27×Skp2+R38×CycECDp21×Skp2 

CDK2 
R3×CycECDK2+R5×CycACDK2+R24b×CycECDK2+R25b×CycACDK2 
-R24a×CycE×CDK2-R25a×CycA×CDK2-R33×CDK2 

CycA R4×E2F+R25b×CycACDK2-R25a×CycA×CDK2-R27×CycA 

CycACDK2 
-R5×CycACDK2-R8×CycACDK2×p27-R37a×CycACDK2×p21-R25b×CycACDK2 
+R37b×CycACDp21+R25a×CycA×CDK2+R10×CycACDp27×Skp2 
+R39×CycACDp21×Skp2 

p27 R20-R6×CycDCDK46×p27-R7×CycECDK2×p27-R8×CycACDK2×p27 

CycDCDp27 R6×CycDCDK46×p27 

CycECDp27 R7×CycECDK2×p27-R9×CycECDp27×Skp2 

CycACDp27 R8×CycACDK2×p27-R10×CycACDp27×Skp2 

Skp2 R31-R34×Skp2 

Rb R17+R16×Rbpppp-R18×Rb-R11×Rb×E2F 

E2FRb 
R11×Rb×E2F-R12×E2FRb×CycDCDK46-R13×E2FRb×CycDCDp27 
-R41×E2FRb×CycDCDp21 

E2FRbpp 
R12×E2FRb×CycDCDK46+R13×E2FRb×CycDCDp27 +R41×E2FRb×CycDCDp21-
R14×E2FRbpp×CycECDK2 

Rbpppp R14×E2FRbpp×CycECDK2-R16×Rbpppp 

CycDCDp16 R29×CycDCDK46×p16-R19×CycDCDp16 

p16 R28+R19×CycDCDp16-R29×CycDCDK46×p16-R23×p16 

CycD R44×E2F+R21b×CycDCDK46-R21a×CycD×CDK46-R22×CycD+R30a 

p21 
R40a-R35a×CycDCDK46×p21-R36a×CycECDK2×p21-R37a×CycACDK2×p21 
+R35b×CycDCDp21+R36b×CycECDp21+R37b×CycACDp21 

CycDCDp21 R35a×CycDCDK46×p21-R35b×CycDCDp21 

CycECDp21 R36a×CycECDK2×p21-R36b×CycECDp21-R38×CycECDp21×Skp2 

CycACDp21 R37a×CycACDK2×p21-R37b×CycACDp21-R39×CycACDp21×Skp2 

 

Coupling reactions 

 

Species Combined rate function of production and consumption with coupling 

CycD R44×E2F+R21b×CycDCDK46-R21a×CycD×CDK46-R22×CycD+R30a+R30b×(NFkBn)
h
 

p21 
R40a-R35a×CycDCDK46×p21-R36a×CycECDK2×p21-R37a×CycACDK2×p21 
+R35b×CycDCDp21+R36b×CycECDp21+R37b×CycACDp21+R40b×p53a×p21 

 

Rate and other constants 

 

The following constants are common to both sets of models. The reaction rates are derived from 

models based on concentration, hence alpha has units of l mol
-1

 and is the constant which is used to 
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convert these into numbers of molecules. A nominal value of alpha = 100000 was chosen, based on 

an estimate of nuclear volume. Rate constants defined as a value divided by alpha generally 

correspond to bimolecular reactions of the kind A + B  ... and have units mol
-1

l minutes
-1

, while 

rate constants defined as a value multiplied by alpha generally correspond to creation reactions of 

the kind Ø  ... and have units mol l
-1

minutes
-1

. Reaction rate constants which are not a function of 

alpha generally correspond to simple degradation reactions of the kind A  ... and have units 

minutes
-1

. There were no homodimerisation reactions. 

  

Name Value Name Value Name Value 

alpha 100000 R8 7.0×10
-2

/alpha R35b 5.0×10
-3

 

h 2 R9 0.225/alpha R36a 1.0×10
-2

/alpha 

kdeg1 0.16 R10 2.5×10
-3

/alpha R36b 1.75×10
-4

 

ktp1 0.018 R11 5.0×10
-5

/alpha R37a 7.0×10
-2

/alpha 

ktp2 0.012 R12 1.0×10
-4

/alpha R37b 1.75×10
-4

 

ktr1 0.2448 R13 1.0×10
-2

/alpha R38 0.225/alpha 

kd4 0.00006 R14 0.073/alpha R39 2.5×10
-3

/alpha 

la1 0.1776/alpha R15 0.022/alpha R40a 5.0×10
-5

×alpha 

kd1 0.000888 R16 5.0×10
-8

 R40b 1.0×10
-3

 

la4 30/alpha R17 5.0×10
-5

×alpha R41 1.0×10
-2

/alpha 

k2 0.552 R19 5.0×10
-2

/alpha R42 1.0×10
-4

 

k3 0.00006 R20 1.0×10
-4

×alpha R43 5.0×10
-5

×alpha 

tr2a 0.000090133×alpha R21a 2.0×10
-3

/alpha R44 3.0×10
-4

 

ktr3 0.020733 R21b 8.0×10
-3

 R45a 8.0×10
-5

×alpha 

tr2 0.5253/alpha
(h-1)

 R22 7.5×10
-3

 R45b 0.008 

kdeg4 0.00006 R23 5.0×10
-3

 R46 2.333×10
-5

/alpha 

kdeg5 0.00006 R24a 8.0×10
-3

/alpha R47 0.01167 

la7 6.06/alpha R24b 3.9×10
-3

 R48 1.167×10
-5

/alpha 

kd2 0.095 R25a 8.0×10
-3

/alpha kbp53i 0.015×alpha 

kr1 0.012 R25b 4.0×10
-3

 kbMdm2 0.01667 

kr4 0.22 R26 2.5×10
-3

 kap53i 2.333/alpha 

k1 5.4 R27 5.0×10
-4

 kaMdm2 0.01167 

k01 0.0048 R28 2.0×10
-4

×alpha tau 80 

k02 0.0072 R29 5.0×10
-4

/alpha kap53a 0.02333/alpha 

R1 5.0×10
-6

 R30a 0.004×alpha kas 0.045/alpha 

R2 4.5×10
-3

 R30b 0.9961/alpha
(h-1)

 kbi 0.01667 

R3 5.0×10
-3

 R31 5.0×10
-4

×alpha kai 0.01167 

R4 2.5×10
-3

 R32 8.0×10
-4

 kbs 0.015×alpha 

R5 5.0×10
-4

 R33 8.0×10
-4

 e 1 

R6 5.0×10
-4

/alpha R34 9.0×10
-4

 n 4 

R7 1.0×10
-2

/alpha R35a 5.0×10
-4

/alpha w 11.665 

    Ts 1×alpha
n
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Initial numbers of molecules 

 

The following table contains the initial numbers of molecules used by all the simulation models. 

Note that the values are either 0 or some number (an initial concentration in units of mol l
-1

) 

multiplied by alpha, the global constant used to specify the number of molecules in the system. 

 

Species Amount  Species Amount 

p53i 0  CycECDK2 0 

p53a 0.1×alpha  CDK2 2.0×alpha 

Mdm2 0.15×alpha  CycA 0 

I 0.1×alpha  CycACDK2 0 

S 0  p27 1.0×alpha 

ARF 0  CycDCDp27 0.001×alpha 

IkB 0  CycECDp27 0  

IkBn 0  CycACDp27 0 

nIkBNFkB 0  Skp2 1.0×alpha 

IkBt 0  Rb 1.0×alpha 

IkBNFkB 0.2×alpha  E2FRb 1.95×alpha 

IKK 0.2×alpha  E2FRbpp 1.0×10
-3

×alpha 

IKKIkB 0  Rbpppp 1.02×alpha 

KIkBNFkB 0  CycDCDp16 1.0×10
-5

×alpha 

NFkB 0  p16 1.0×alpha 

NFkBn 0.025×alpha  CycD 0 

CycDCDK46 0  p21 0 

CDK46 5.0×alpha  CycDCDp21 0 

E2F 0  CycECDp21 0 

CycE 0  CycACDp21 0 

 

Supplementary example: a stochastic model of the eukaryotic cell cycle 

The presented technique of frequency domain analysis can be particularly useful and revealing 

when applied to stochastic simulations of chemical systems containing one or more species in low 

copy numbers. The apparent behaviour in such simulation time courses may be very noisy, yet the 

underlying average behaviour will nevertheless be obvious to human observers. Frequency domain 

analysis is a means to formalise the perceived behaviour. Figure S7 illustrates the differences 

between stochastic and deterministic simulations, using as example the generic model of the 

eukaryotic cell cycle in [18]. Table S5 describes the stochastic model, extracted from the ODEs, 

comprising elemental reactions using mass action kinetics, enzymatic reactions with arbitrary 

kinetics and mass balance equations. Parameters are chosen to represent budding yeast and the 

species names are those used in [18]. The deterministic model exhibits limit cycle oscillation, 



 21 

making it conceivable to run arbitrarily long stochastic simulations and so arbitrarily define the 

resolution of the frequency domain analysis. This is not in general guaranteed: when a continuous 

deterministic model is discretised and made stochastic (or quasi-deterministic, as described above), 

it may contain states which have a non-zero probability of being reached but from which the system 

cannot exit. These absorbing states may exist in reality or may be unforeseen artefacts of the ODE 

approximation of reality, hence the validity of stochastic models created from deterministic systems 

containing arbitrary simplifications and abstractions is sometimes questioned. Such questions may 

be answered by the presented methodology. 

 

Figure S7A shows a typical time course of CycBT (black) in the stochastic model of the budding 

yeast cell cycle, exhibiting variable amplitude and phase. In red is the result of averaging 800 such 

time series: random phase shifts between independent simulation runs cause average oscillatory 

behaviour to decay with time and for the oscillatory waveform to become more sinusoidal; the 

average trajectory gets closer to the long term mean number of molecules of CycBT (grey line). 

Figure S7B compares frequency spectra of deterministic (black), quasi-deterministic (blue) and 

fully stocahastic (red) models of the budding yeast cell cycle. The deterministic spectrum (created 

from a single time course of 10000 minutes sampled at 5 minute intervals) is clearly ‘spiky’ in 

nature, with many evident high frequency components and apparent numerical artefacts. By 

contrast, the average stochastic frequency spectrum (red) contains only four discernable low 

frequency peaks that are relatively rounded. The spectrum of the quasi-deterministic simulation 

appears closer to the fully stochastic than to the deterministic, however it contains three more 

discernable peaks and at higher frequencies it follows more closely the trend of the deterministic 

spectrum. The peaks of the stochastic and quasi-deterministic spectra apparently align with peaks in 

the deterministic spectrum, suggesting that the three systems have the same average primary mode 

of oscillation, however this alignment between models is not in general guaranteed. In each case the 

spectral value at zero frequency corresponds to the long term mean of the time series. 
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B 

 
 

Figure S7: Time and frequency domain behaviour of CycBT in generic eukaryotic cell cycle 

A Typical (black) and average (red) time series of CycBT in the stochastic version of the generic 

model of the eukaryotic cell cycle of Table S5. As a result of random phase shifts between simulation 

runs, oscillatory behaviour in the average trace decays with time and hovers around the long term 

average number of molecules of CycBT (grey line). B Average frequency distribution of CycBT in 

stochastic (red), quasi-deterministic (blue) and determinist (black) models. The deterministic 

spectrum is clearly more ‘spiky’ than the stochastic spectra and has many high frequency components 

that are apparently ‘lost in the noise’ of the other models. The average time course was created from 

800 simulation traces of 4000 minutes sampled at 2 minute intervals. The average frequency spectra 

were created from 800 traces of 10000 minutes sampled at 5 minute intervals. The deterministic 

spectrum was created from a single trace of 10000 minutes sampled at 5 minute intervals. 
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Elemental reaction Mass action rate constant Other constants 

Ø  CycBT k1 0.04×alpha k3.1 1×alpha 

CycBT  Ø k2.1 0.04 k3.2 10 

Cdh1 + CycBT  Cdh1 k2.2 1/alpha k4 35 

CycBT + Cdc20A  Cdc20A k2.3 1/alpha k4.1 2 

Ø  Cdc20T k5.1 0.005×alpha k5.2 0.2×alpha 

Cdc20T  Ø k6 0.1 k7 1 

Cdc20A  Ø k6 0.1 k8 0.5 

IE  Ø k10 0.02 k9 0.1/alpha 

Ø  CKIT k11 1×alpha k15.1 1.5×alpha/beta 

CKIT  Ø k12.1 0.2 k15.2 0.05 

CKIT + SK  SK k12.2 50/alpha k16.1 1×alpha 

CKIT + CycB  CycB k12.3 100/alpha k16.2 3 

Ø  SK k13.1 0×alpha J3, J4 0.04×alpha 

TF  SK + TF k13.2 1 J5 0.3×alpha 

SK  Ø k14 1 J7, J8 0.001×alpha 

   J15, J16 0.01×alpha 

   mu 0.005 

   Mstar 10×beta 

   Kdiss 0.001×alpha 

  

Enzymatic reaction Reaction kinetics 

Ø  Cdh1 (k3.1+k3.2×Cdc20A)×(alpha-Cdh1)/(J3+alpha-Cdh1) 

Cdh1  Ø (k4.1×SK+k4×CycB)×Cdh1/(J4+Cdh1) 

Ø  Cdc20T k5.2×CycB
4
/(J5^4+CycB

4
) 

Ø  Cdc20A k7×IE×(Cdc20T-Cdc20A)/(J7+Cdc20T-Cdc20A) 

Cdc20A  Ø k8×Mad1×Cdc20A/(J8+Cdc20A) 

Ø  IE k9×(alpha-IE)×CycB 

Ø  TF (k15.1×M+k15.2×SK)×(alpha-TF)/(J15+alpha-TF) 

TF  Ø (k16.1+k16.2×CycB)×TF/(J16+TF) 

Ø  M mu×M×(1-M/Mstar) 

 

Mass balance equations 

BB = CycBT+CKIT+Kdiss 

CycB = (1-2×CKIT/(BB+sqrt(BB
2
-4×CycBT×CKIT)))×CycBT×M/beta 

 

Table S5: Stochastic model of the generic eukaryotic cell cycle. The ODE model of [18] was 

resolved into elemental reactions with mass action kinetics and enzymatic reactions having 

arbitrary kinetic laws. A  constant of alpha = 424 l mol
-1

 was used to convert initial 

concentrations and rate constants to numbers of molecules. To discretise the cell growth, a mass 

granularity constant of beta = 1000 was adopted. 
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