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ABSTRACT
Suppose we have a Bayesian model that combines evidence from several different sources. We want to know
which model parameters most affect the estimate or decision from the model, or which of the parameter
uncertainties drive the decision uncertainty. Furthermore, we want to prioritize what further data should
be collected. These questions can be addressed by Value of Information (VoI) analysis, in which we estimate
expected reductions in loss from learning specific parameters or collecting data of a given design. We
describe the theory and practice of VoI for Bayesian evidence synthesis, using and extending ideas from
health economics, computer modeling and Bayesian design. The methods are general to a range of decision
problems including point estimation and choices between discrete actions. We apply them to a model for
estimating prevalence of HIV infection, combining indirect information from surveys, registers, and expert
beliefs. This analysis shows which parameters contribute most of the uncertainty about each prevalence
estimate, and the expected improvements in precision from specific amounts of additional data. These
benefits can be traded with the costs of sampling to determine an optimal sample size. Supplementary
materials for this article, including a standardized description of the materials available for reproducing the
work, are available as an online supplement.
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1. Introduction

Bayesian modeling is a natural paradigm for decision mak-
ing, in the presence of uncertainty, based on multiple sources
of evidence. However, as more data sources, parameters, and
assumptions are built into a model, it becomes harder to see the
influence of each input or assumption. The modeling process
should involve an investigation of where the weak parts of the
model are, to identify which uncertainties in the model inputs
contribute most to the uncertainty in the final result or decision
(sensitivity analysis). We might then want to assess and compare
the potential value of obtaining datasets of specific designs or
sizes to strengthen different parts of the model. Furthermore,
we may want to formally trade-off the costs of sampling with
the resulting expected improvement to decision making.

Annual estimation of HIV prevalence in the United Kingdom
has, for several years, been based on a Bayesian synthesis of
evidence from various surveillance systems and other surveys
(Goubar et al. 2008; Presanis et al. 2010; De Angelis et al. 2014;
Kirwan et al. 2016). This is an example of a class of problems
called multiparameter evidence synthesis (MPES) (e.g., Ades and
Sutton 2006), where the quantities of interest cannot be esti-
mated directly, but can be inferred from multiple indirect data
sources linked through a network of model assumptions that can
be expressed as a directed acyclic graph. Markov chain Monte
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Carlo (MCMC) is typically required to estimate the posterior.
The HIV MPES model is used to inform health policies, thus it is
crucial to be able to assess sensitivity to uncertain inputs and to
indicate how the model could be strengthened with further data.

These dual aims can be achieved with value of information
(VoI) analysis, a decision-theoretic framework based on
expected reductions in loss from future information. The
concepts of VoI were first set out in detail by Raiffa and Schlaifer
(1961), while Parmigiani and Inoue (2009) give a more recent
overview. The expected value of partial perfect information
(EVPPI) is the expected reduction in loss if the exact value
of a particular parameter or parameters θ0 were learnt, also
interpreted as the amount of decision uncertainty that is due
to θ0. The expected value of sample information (EVSI) is the
expected reduction in loss from a study of a specific design. The
EVSI can be traded off with the costs of data collection to give
the expected net benefit of sampling (ENBS). Therefore, as well
as recommending a policy based on minimising expected loss
under the current model and data, the decision-maker may also
recommend collecting further data according to a design which
minimises the ENBS.

These concepts have been applied in various forms in
three distinct areas: health economics, computer modeling
and Bayesian design. In health economic modeling, there is
a large literature on calculation and application of VoI, see,
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for example, Felli and Hazen (1998); Willan and Pinto (2005);
Claxton and Sculpher (2006); Welton et al. (2008). The model
output is then the expected net benefit of each alternative policy,
a known deterministic function g(θ) of uncertain inputs θ , and
the decision problem is the choice of policy that minimises g(θ).
In computer modeling, see, for example, Oakley and O’Hagan
(2004) and Saltelli et al. (2004), the influence of a particular
element θ0 of θ is calculated as the expected reduction in
var(g(θ)), if we were to learn θ0 exactly. This is equivalent to
the EVPPI for θ0 under a decision problem defined as point
estimation of g(θ) with quadratic loss (Oakley and O’Hagan
2004). The decision-theoretic view of Bayesian experimental
design also has a long history, see, e.g. Lindley (1956); Bernardo
and Smith (1994); Chaloner and Verdinelli (1995); Berger
(2013), and a recent review of the computational challenges
by Ryan et al. (2016).

However, the current tools in any one of these three areas
cannot be applied directly to MPES. First of all, it is not always
feasible or desirable to make a discrete decision with a quan-
tifiable loss, as in health economic modeling. Instead, the aim
of evidence synthesis is often to estimate one or more quan-
tities. For a scalar quantity of interest, we might then define
the “loss” as the posterior variance of this quantity, as Oak-
ley and O’Hagan (2004) described in the computer modeling
context. In computer modeling, however, tools to estimate the
expected value of a proposed study to learn a particular θ0
more precisely have not been developed, and it is not clear
what an appropriate loss for a vector of model outputs would
be. Challenges also arise with computation. Current methods
for computing the expected variance reduction in the computer
modeling field (Sobol’ 2001; Saltelli et al. 2004) assume the
output is an explicit function g(θ) of the inputs, therefore do not
apply in MPES, where this function is unknown and the outputs
must be estimated by MCMC. For Bayesian design, Ryan et al.
(2016) reviewed methods where evaluating the expected utility
of a design (equivalent to the EVSI) is relatively inexpensive,
so that maximizing the utility over a complex design space is
feasible. However, this can again be difficult with MCMC. Given
a sample from the posterior p(θ |x), potential future datasets
y under a specific design can be simulated cheaply from the
posterior predictive distribution, but then to obtain the expected
utility, the posterior p(θ |x, y) needs to be repeatedly updated for
different y, which is feasible with Monte Carlo only for smaller
problems (e.g., Han and Chaloner 2004).

Here, we use and extend methods from health economics,
computer modeling, and Bayesian design to devise a new VoI
framework for sensitivity analysis and research design in evi-
dence syntheses based on graphical models fitted by MCMC.
This is a broader class of models than those typically used
in health economics or computer modeling, since the model
“output” is not necessarily a known function of the inputs,
but depends on the model parameters θ and observed data x
through a network of statistical models or deterministic func-
tions, potentially with hierarchical relationships. We apply this
new VoI framework to the part of the HIV prevalence esti-
mation model that estimates prevalence in men who have sex
with men (MSM), in London. Here, the decision problem is
point estimation of a single scalar or a vector of parameters,
followed by the choice of what extra data should be collected
in the future. We use ideas from Bayesian design to choose

appropriate loss functions in this context. We also generalize
methods of computing EVPPI (Strong, Oakley, and Brennan
2014) and EVSI (Strong et al. 2015), developed for finite choices
in health economics, to a broader class of decision problems,
including point estimation. The method for computing EVSI
enables the expected utility over all potential y to be estimated
cheaply without an additional level of simulation, assuming only
that the information provided by y can be represented as a low-
dimensional sufficient statistic T(y).

In Section 2, we describe the general MPES model, and define
the expected VoI under different decision problems and loss
functions, and in Section 3, we present methods to compute
them. In Section 4, we describe the model for HIV prevalence
estimation, and in Section 5, we use VoI to identify the areas
of greatest uncertainty in this model and determine what spe-
cific data should be collected to improve the precision of the
estimates of various subgroup-specific prevalences. Finally, we
discuss potential extensions to the methods and application and
the associated challenges.

2. Theory and Methods

2.1. Bayesian Graphical Modeling for Evidence Synthesis

In our motivating applications, the general model can be rep-
resented as a directed acyclic graph (Figure 1) in the standard
way, see, for example, Lauritzen (1996). Nodes in the graph
may represent scalar or vector quantities. A set of datasets x =
{x1, . . . , xn} is observed, most generally from n different sources.
These data are assumed to arise from statistical models with
parameters μ1, . . . , μn respectively, collectively denoted μ. The
“founder nodes” of the graph are denoted φ = (φ1, . . . , φp) and
given a joint prior distribution φ ∼ p(.) which may also include
substantive information. The full set of unknowns is denoted
θ . Most simply, the μ could equal the φ or be related to the φ

through deterministic functions, so that θ = φ. More generally,
some of the relationships in the graph could be stochastic, defin-
ing a hierarchical model, where the μ themselves arise from a
distribution with parameters given by the φ or descendants of
φ. The vector of unknowns θ would then comprise φ and the
stochastic descendants of φ such as random effects.

We further denote α as an intermediate node in the graph,
the model “output,” which is used for decision making. This
could be any unknown quantity, including one of the μ or φ,
a function of these, or a prediction of new data. We may also
plan to collect additional data, either from the same source as
one of the existing datasets (e.g., y1 in Figure 1), or from a new
source informing a parameter μn+1 on which no direct data (y2)
were available.

This DAG (Figure 1) is a generalization of the typical
structure (Figure 2) used in computer modeling (Oakley
and O’Hagan 2004) where the output α is a known (usually
complicated) deterministic function of uncertain model inputs
φ, which are given substantive priors that may be derived
separately from data.

2.2. Expected VoI: Definitions

In a general decision-theoretic framework, the purpose of the
model is to choose a decision or action d from a space of possible
decisions D, to minimise an expected loss Eθ (L(d, θ)), with the
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Figure 1. Directed acyclic graph for Bayesian evidence synthesis.

Figure 2. Graph representing a known deterministic model.

expectation taken with respect to the posterior distribution of θ .
Let α = α(θ) be the minimal subset or function of θ necessary
to make the decision, so that Eθ (L(d, θ)) = Eα(L(d, θ)), ∀d ∈
D. For example, the purpose could be the choice of decision d
among a finite set D = {1, . . . , D} expected to minimize a loss
defined as a function of the parameters, so that α would be a vec-
tor with D components αd = fd(θ) = L(d, θ). This is the typical
situation in health policy decisions (e.g., Claxton and Sculpher
2006), where a treatment d is chosen to maximize a measure of
utility such as expected quality-adjusted survival. Alternatively,
as in our examples, the decision could simply be the choice
of a point estimate α̂ of some parameter α, in which case the
decision space D is the support of α (see Section 2.3). Alongside
making a decision, we wish to also determine where further
research should be prioritized to reduce the uncertainty about
the decision, and given the costs of data collection, to determine
the optimal design of further research (see Section 2.4).

For general decision problems, let d∗ = arg mind Eθ (L(d, θ))

be the optimal decision under current knowledge about θ , rep-
resented by the posterior distribution p(θ |x). Suppose now we
are in a position to collect new information. Let d∗

y be the
optimal decision given further knowledge of a quantity y (either
parameters or potential data) that informs α, so that the updated
posterior would be p(θ |x, y). We define the following quantities.

1. The expected value of perfect information (EVPI) is the
expected loss of the decision d∗ under current informa-
tion, minus the expected loss for the decision d∗

α we would

make if we knew the true α (Raiffa and Schlaifer 1961).
EVPI = Eθ (L(d∗, θ)) − Eθ (L(d∗

α , θ))

Since additional information is always expected to reduce
the expected loss of the optimal decision (Parmigiani and
Inoue 2009), the EVPI is an upper bound on the expected
gains from any new information.

2. The expected value of partial perfect information (EVPPI)
for a particular parameter φ is the expected reduction in
loss if φ were to be learnt precisely. Since this precise value
is not yet known, an expectation must be taken over all
possible values.

EVPPI(φ) = Eθ (L(d∗, θ)) − Eφ[Eθ |φ(L(d∗
φ , θ))], (1)

where d∗
φ is the optimal decision if φ were known. This is

an upper bound on the potential value of data y which
inform only φ. In a graphical model, this means data
y that are conditionally independent of θ given φ, for
example y = y1 and φ = μ1 in Figure 1.

3. The expected value of sample information EVSI(y) is the
reduction in loss we would expect from collecting an
additional dataset y of a specific design

EVSI(y) = Eθ (L(d∗, θ)) − Ey
[

Eθ |y(L(d∗
y , θ)

]
. (2)

The inner expectation is now with respect to the updated
posterior distribution of θ |y, after learning y as well as the
existing data x, or “preposterior” (Berger 2013).

2.3. VoI in Different Decision Problems

Finite-Action Decisions. For a choice of d among a finite set
{1, . . . , D} with loss L(d, θ) = αd and α = {α1, . . . , αd, . . . , αD},
the expected loss with current information is mind{Eα(αd)}, so
(Raiffa and Schlaifer 1961)

EVPI = min
d

{Eα(αd)} − Eα min
d

{αd},

EVPPI(φ) = min
d

{Eα(αd)} − Eφ min
d

{Eθ |φ(αd)}, (3)

EVSI(y) = min
d

{Eα(αd)} − Ey min
d

{Eα|y(αd)},
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Point estimation. When the decision is the choice of a point
estimate α̂ of a vector of parameters α, with quadratic loss

L(α̂, α) = (α̂ − α)TH(α̂ − α) (4)
for a symmetric, positive-definite H, the optimal estimate with
current information is the posterior mean, α̂ = Eα(α).

For a scalar α = α and H = 1, the expected loss is var(α)

under current information and zero under perfect information,
so that EVPI = var(α) and

EVPPI(φ) = var(α) − Eφ

[
varα|φ(α|φ)

]
(5)

EVSI(y) = var(α) − Ey
[
varα|y(α|y)

]
(6)

the expected reduction in variance given new information.
Expression (5) is used by Oakley and O’Hagan (2004) and
Saltelli et al. (2004) as a measure of sensitivity of the output
of a deterministic model α = g(φ, . . .) to an uncertain input φ,
termed the main effect of φ, but this has not been extended to
the EVSI of potential data y in a point estimation context.

When α is a vector, the typical situation where a MPES of the
form in Figure 1 is carried out, we could conduct independent
VoI analyses for each component of α. In more formal decision
analyses, we may want a scalar loss for the overall vector α.
There are various alternatives based on generalizations v(α) of
the variance, which can be used instead of the scalar variance
var(α) in Equations (5) and (6) to define the expected VoI. These
have been applied in the context of Bayesian study design, and
we explain two examples that can be adopted for EVPPI and
EVSI in our context as follows.

1. If H = ccT in the quadratic loss (4), for some vector of
weights c, then the expected loss is v(α) = cTcov(α)c =
var(cTα), corresponding to optimal (under squared error
loss) estimation of the weighted sum of the parameters,
cTα. For example, when the elements αs of α are weighted
equally, the goal is to minimise the sum of all elements
(r, s) of the covariance matrix, v(α) = ∑

r,s cov(α)r,s,
or, if the αs are also independent of each other, v(α) =
tr(cov(α)) = ∑

s var(αs). The same absolute reductions
in variance for different components of α would then
be valued equally. More generally, if c is given a prior,
then loss (4) also arises (see Chaloner and Verdinelli
1995 and references therein). Designs that minimize (4)
are Bayesian analogs of classical A-optimal designs. See
also Lamboni, Monod, and Makowski (2011) for similar
measures of sensitivity for multivariate outputs in deter-
ministic computer models.

2. A Bayesian D-optimal design, on the other hand, min-
imizes the determinant v(α) = det(cov(α)) (Chaloner
and Verdinelli 1995; Ryan et al. 2016). This simplifies to
the product of the var(αs) when the αs are independent
and equally weighted. Equivalently, a standardized ver-
sion det(cov(α))1/S, where S is the number of compo-
nents of α, represents a geometric average variance of the
αs, adjusted for their covariance.
Here, the same relative reductions in variance for different
components of α would then be valued equally, which
would be more appropriate when the output of interest α

comprises quantities on very different scales and/or with
different interpretations.

2.4. Maximising the Expected Net Benefit of Sampling

The EVSI measures the expected benefits from sampling. The
costs of sampling should also be considered. The decision-maker
can then choose the design and sample size for data y to maxi-
mize the expected net benefit of sampling Ey(b(y)− c(y)), where
b(y) = EVSI(y) is the benefit and c(y) is the cost of obtaining
data y (Parmigiani and Inoue 2009). This requires benefits and
costs to be measured on the same scale, which can be achieved in
different ways. Improved precision of point estimates might be
valued in monetary terms, as described below and illustrated in
Section 5.4. Alternatively, the better knowledge given by the new
data could lead to indirect benefits which could be valued, for
example, improved health from better-informed health-related
decision making, as discussed in Section 6. We will assume c(y)

depends only on the design and sample size, thus is known in
advance of observing y, so that Ey(c(y)) = c(y).

To directly translate improved precision to a monetary ben-
efit, the decision-maker should specify the amount they are
willing to pay to reduce the posterior variance by a certain
amount. This willingness to pay may depend on the origi-
nal posterior variance. Formally, the benefit function b(y) =
f (v0, vy), specified by the decision-maker, places a value on a
reduction in variance (or its multivariate analog as in Section
2.3) from v0 = var(α) to vy, the variance after collecting
new data y. For example, if any absolute variance reduction is
valued the same way (as in A-optimal design, see Section 2.3),
f (v0, vy) = λ(v0 − vy), where λ is the constant willingness-to-
pay for one unit of variance reduction. The expected benefit is
then Ey(b(y)) = λ(v0 − Ey(varα|y(α|y)), which equals EVSI(y)

using the quadratic loss function (4) multiplied by a constant
λ. Alternatively, if the same relative gains are valued equally (as
in D-optimal design), the decision-maker could specify λ as the
amount they are willing to pay to (e.g.,) halve the variance, so
that f (v0, vy) = f (v0, v0/2k) = kλ, for k = log(v0/vy)/ log(2).

3. Computation of VoI

3.1. Partial Perfect Information

Computation of the EVPPI in general is not straightforward.
Given a sample from the posterior distribution, the first term
in Equation (1) can be calculated by a Monte Carlo mean.
The double expectation in the second term is more challeng-
ing. While it can be evaluated using nested Monte Carlo, this
is expensive. Strong, Oakley, and Brennan (2014) proposed a
method for estimating the EVPPI in the special case of finite
choice decisions (Equation 3) which uses only a single Monte
Carlo loop. To estimate EVPPI (1) in a broader class of decision
problems, which also includes point estimation, the method
needs to be generalized.

Strong, Oakley, and Brennan (2014) estimated formula (3) by
expressing

αd = Eαd|φ(αd|φ) + ε = gd(φ) + ε (7)

for each d = 1, . . . , D, where ε is an error term with mean
zero. Then, gd(φ) is estimated by regression of αd on φ, fitted
to a Monte Carlo sample of (α

(k)
d , φ(k)) : k = 1, . . . , K. If φ

comprises p parameters that could be learned simultaneously,



1440 C. JACKSON ET AL.

the regression will have p predictors. Since the functional form
of gd() will not be known in general, nonparametric regression
methods are used. This produces a fitted value ĝd(φ

(k)) for each
k, which allows the second term in Equation (3) to be estimated
by a Monte Carlo mean

Eφ[min
d

(Eθ |φ(αd))] = Eφ[min
d

(Eαd|φ(αd|φ))]

≈ 1
K

K∑
k=1

min
d

(ĝd(φ
(k))). (8)

Our generalization of this approach computes EVPPI (Equation
1) in a broader class of decision problems defined as follows.
Given a state of knowledge about the decision-relevant quanti-
ties α represented by a distribution ψ(·), the expected loss under
the optimal decision should be a known function h of the mean
of α under that distribution

Eψ(L(d∗
ψ , θ)) = h(Eψ(α)). (9)

If ψ(·) is the current posterior, this is h(Eα(α)), and if we
were to learn the value of φ, the expected loss would be
h(Eα|φ(α|φ)). The method of Strong, Oakley, and Brennan
(2014) only applies to the special case, where α is a vector and
h(E(α)) = mind{E(αd)}. To estimate Eα|φ(α|φ) in more general
problems, we use a similar principle to (7–8), by expressing

α = Eα|φ(α|φ) + ε = g(φ) + ε (10)
then fitting a regression model g() of α on φ allows us to estimate

Eφ[Eθ |φ(L(d∗
φ , θ))] = Eφ[h(Eα|φ(α|φ))] ≈ 1

K

K∑
k=1

h(ĝ(φ(k))).

Point estimation problems are also a special case of Equation
(9), for example, for estimation of a scalar α with quadratic
loss, h(Eα(α)) = E[(α − Eα(α))2] = var(α). Therefore
to calculate EVPPI in this case (Equation (5)), we estimate
var(α|φ(k)) by the squared residual (α − ĝ(φ(k)))2, substitute
this for h(ĝ(φ(k))) and estimate Eφ

[
varα|φ(α|φ)

]
as the mean,

over k, of the squared residuals. Equivalently, we can estimate
var(θ) − Eφ

[
varα|φ(α|φ)

] = varφ(Eα|φ(α|φ)) as the vari-
ance, over k, of the fitted values. Similarly, for vector α and
loss functions based on cov(α), we can fit regressions to get
the marginal mean for each component αd, and calculate the
empirical covariance matrix of the residuals.

Several methods of nonparametric regression have been sug-
gested. For small p, Strong, Oakley, and Brennan (2014) used
generalized additive models, with tensor products of splines
to represent interactions between components of φ. Where φ

included about p = 5 or more components, Gaussian pro-
cess regression was recommended as a more efficient way of
modeling interactions, though the resulting matrix computa-
tions rapidly become impractical as the MCMC sample size K
increases. Heath, Manolopoulou, and Baio (2016) developed an
integrated nested Laplace approximation for fitting Gaussian
processes more efficiently where p ≥ 2. For the application
in Section 4 (with K = 150, 000, p ≤ 3), we have found
multivariate adaptive regression splines (Friedman 1991) via the
earth R package (Milborrow 2011) to be more efficient. Standard
errors for the EVPPI estimates can be calculated in general
by simulating from the asymptotic normal distribution of the
regression coefficients (Mandel 2013).

3.2. Sample Information

The regression method above can also be used to estimate
the expected value of sample information EVSI(y). This again
requires a generalization of the approach described by Strong
et al. (2015) from finite decision problems to any problem sat-
isfying condition (9), including point estimation. The method
requires that the information provided by the data y can be
expressed as a low-dimensional sufficient statistic T(y), so that
Eα|y(α|y) = Eα|y(α|T(y)). This could be a point estimator of
the parameter μ (as in Figure 1) that y gives direct information
on. As in (10), we can write

α = Eα|y(α|T(y)) + ε = g(T(y)) + ε

and estimate g() using a regression fitted to a Monte Carlo
sample of (α(k), T(y(k))) : k = 1, . . . , K, where y(k) are drawn
from their posterior predictive distribution. Then, the fitted
values ĝ(T(y(k))) enable the double expectation to be estimated
as

Ey[Eθ |y(L(d∗
y , θ))] = Ey[h(Eα|y(α|y))] ≈ 1

K

K∑
k=1

h(ĝ(T(y(k)))).

Then, for example, for point estimation with quadratic loss, this
is the estimated residual variance from the regression, as in
Section 3.1.

4. The HIV Prevalence MPES Model

We consider the submodel of the full HIV burden model
(De Angelis et al. 2014; Kirwan et al. 2016) that estimates
HIV prevalence in men who have sex with men (MSM), in
London. We define three subgroups of MSM: those who have
attended a genitourinary medicine (GUM) clinic in the past year
(GMSM), those who have not (NGMSM), and previous MSM
(PMSM), men who no longer have sex with men. We denote the
proportion of all men who are in these subgroups by ρG, ρN , and
ρP respectively. For each group g ∈ (G, N, P), we aim to estimate
simultaneously these subgroup proportions ρg , prevalence of
HIV in this group πg and the proportion of infections that
are diagnosed, δg . Given these parameters, further important
quantities are easily derived: the prevalence of diagnosed
(πgδg = (πδ)g) and undiagnosed (πg(1 − δg) = (πδ)g)
infection; and the numbers of MSM living with diagnosed
(μDg = μpopρg(πδ)g) and undiagnosed (μUg = μpopρg(πδ)g)
infection, where μpop is the number of men (MSM and non-
MSM) living in London. Since the prevalence among PMSM is
much lower, this subgroup is not examined in detail.

We construct a Bayesian model to link the unknown
ρg , πg , δg with the available evidence provided by various
routinely-collected and survey datasets as well as expert belief.
Figure 3 shows a directed acyclic graph representing this model,
in the form of Figure 1, distinguishing founder nodes, observed
data, and outputs of interest. The following sections explain in
detail the quantities and relationships illustrated in Figure 3. All
data and estimates refer to the year 2012 (unless indicated) and
the Greater London area.
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Figure 3. Directed acyclic graph for HIV prevalence estimation model.

4.1. Subgroup Membership

The total male population of London, μpop, is informed by pub-
lished data ypop (Office for National Statistics 2012), assumed
to be a Poisson count: ypop ∼ Po(μpop). A log-normal prior
for μpop is assumed, log(μpop) ∼ N(0, 10002). The number of
people in each group g is estimated as rg = ρgμpop. Estimates
of the subgroup proportions ρg are informed by data from the
National Survey of Sexual Attitudes and Lifestyles (Mercer et al.
2013): yG = 7, yN = 38, yP = 10, out of yNAT = 824
men, which we assume to come from a multinomial distribution
with probabilities ρG, ρN , ρP given a uniform Dirichlet prior.
Thus, the expected number of people with HIV (diagnosed or
undiagnosed) in group g is μg = πgrg .

4.2. Registry of Diagnosed Infections and Diagnosed
Prevalence

Individuals diagnosed with HIV and accessing care in the UK
are reported to the HIV and AIDS Reporting System (Kirwan
et al. 2016). From the 2012 version of this dataset, known as
SOPHID (Surveillance of Prevalent HIV Infections Diagnosed),
we obtain the reported number of HIV diagnoses for MSM,
yM ∼ Po(μM), with yM = 8390. A reporting bias of unknown
direction is assumed, through log(μM) = aS + log(μD) where
exp(aS) ∼ N(1, 0.0182), giving a prior 90% interval of about
(−3%, 3%) for the adjustment to the number of MSM HIV
diagnoses μM . After adjustment, μD = μDG + μDN + μDP is
the expected number of diagnoses among MSM, summed from
the expected numbers of diagnoses among GMSM, NGMSM,
and PMSM, respectively. The following sections explain where
μDG, μDN come from; μDP is modeled using similar techniques.

Since SOPHID did not record GUM clinic attendance, to
strengthen the evidence on diagnosed prevalence in GMSM,
we include data from the HIV and AIDS New Diagnoses and
Deaths Database (HANDD) (Kirwan et al. 2016), recording
how many of the yM prevalent diagnosed MSM were newly
diagnosed in 2012 and reported to have been diagnosed initially
in a GUM clinic. These new diagnoses, yH = 630, are modeled
as yH ∼ Bin(yM , pH), where pH is assumed to be a lower
bound for the proportion of prevalent diagnosed MSM who
have attended a GUM clinic in 2012. This bound is expressed
through pH = aHμDG/μD, where aH ∼ U(0, 1) is the unknown
probability that a prevalent diagnosed MSM who has attended a
GUM clinic in 2012 was newly diagnosed that year. yH therefore
gives us additional indirect information on μDG, the number of
prevalent diagnosed GMSM.

The number of diagnosed infections is related to the total
number of infections in each group g as μDg = δgμg . The
proportion of infections that are diagnosed δg is not known, but
given our inferences about the undiagnosed prevalence (πδ)g =
πg(1−δg) (explained in the subsequent sections), we can exploit
the implicit constraint 1 − δg > (πδ)g . Therefore, we define
δg = aδg(1 − (πδ)g), with aδg ∼ U(0, 1), and the diagnosed
prevalence (πδ)g = πgδg in each group follows.

4.3. Undiagnosed Prevalence Among GMSM

Information about undiagnosed infections in GMSM is
obtained from GUMCAD (Genitourinary Medicine Clinic
Activity Dataset) (Kirwan et al. 2016) a registry of attendance
episodes in GUM clinics. HIV tests are offered routinely to
previously undiagnosed patients. Thus, we have a sequence
of observations gi, representing firstly the number of GUM
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clinic visitors (g1 = 35,121) and then the number of patients
with no previous HIV diagnosis (g2 = 34,187), HIV tests
offered (g3 = 30,570), HIV tests accepted (g4 = 29,529),
and HIV diagnoses made (g5 = 855). For i = 2, . . . , 5,
gi ∼ Bin(gi−1, γi−1), with priors γ1, γ2, γ3 ∼ U(0, 1) and
γ4 ∼ U(0, 0.15) (see below). An HIV infection may therefore
remain undiagnosed if either a test is not offered or the patient
opts out of testing. We can then decompose the prevalence of
undiagnosed infection (πδ)G into “unoffered” π(UN) and “opt-
out” π(OP) components.

(πδ)G = π(UN) + π(OP). (11)

Both of those require strong prior assumptions to estimate,
which will later be relaxed in a sensitivity analysis (Section 4.5).
First, the prevalence of infection that remains undiagnosed due
to an unoffered test is

π(UN) = γ1(1 − γ2)p(UN),

where γ1(1 − γ2) is the proportion of clinic attenders that are
undiagnosed but not offered a test, and p(UN) is the probability
that a test would be positive for these people. We assume the
prevalence in this group is between 0.5 and 1.5 times the preva-
lence in people actually tested, and logit(p(UN)) = logit(γ4) +
a(UN), with a(UN) ∼ U(log(0.5), log(1.5))

Secondly, the prevalence of infection remaining undiagnosed
due to refusing a test is

π(OP) = γ1γ2(1 − γ3)(γ4 + a(EX))

where γ1γ2(1 − γ3) is the proportion of clinic attenders that
are undiagnosed and offered a test but opt out. We assume
this group has an underlying HIV prevalence higher than those
given tests, but not more than 15%, so that the excess prevalence
in this group is a(EX) = a(OP)(0.15−γ4), where a(OP) ∼ U(0, 1),
and the prior on γ4 is truncated above at 0.15.

A small amount of additional evidence on (πδ)G is available
from another dataset, GUM Anon (Public Health England, Lon-
don 2012), a convenience survey of men not previously diag-
nosed with HIV who had attended a GUM clinic in the previous
year. This gives direct information about the prevalence of HIV
among previously undiagnosed GMSM,

π(GA) = ((πδ)G + π(GD))/γ1, (12)

where π(GD) = ∏4
1 γr is the prevalence of newly diagnosed

infection among clinic attenders. The data in GUM Anon are
g(A) ∼ Bin(g(AN), π(GA)), where g(A) = 4 and g(AN) = 85.

4.4. Undiagnosed Prevalence Among NGMSM

To inform undiagnosed HIV prevalence in NGMSM, we use
data from the Gay Men’s Sexual Health Survey (GMSHS)
(Aghaizu et al. 2016), based on face-to-face interviews in
selected venues where participants were offered anonymous
HIV tests. While this group is likely to have a higher HIV
prevalence than the general population of MSM, it is assumed
that the relative odds of having HIV between NGMSM and
GMSM is the same as in the general population. The GMSHS
data provide the numbers y(GM)

g out of n(GM)
g previously

undiagnosed people in group g who tested positive for HIV
(20 out of 493 GMSM and 20 out of 452 NGMSM) so that
y(GM)

g ∼ Bin(n(GM)
g , p(GM)

g ), with p(GM)
g ∼ U(0, 1). Defining

the odds o(p) = p/(1 − p), we apply the resulting odds ratio
or(GM) = o(p(GM)

N )/o(p(GM)
G ) to the baseline estimated from

GUMCAD (Section 4.3), giving o((πδ)N) = o((πδ)G)or(GM).

4.5. Alternative Assumptions

The results presented in Section 5 are for the above model
assumptions, unless specified otherwise. Two alternative
assumptions are also explored.

(a) Undiagnosed prevalence from GUM Anon only To avoid the
strong prior assumptions on prevalence among those not
offered a test or refusing a test, which are necessary to use
the GUMCAD data to infer (πδ)g , we could infer (πδ)g
from GUM Anon alone. To construct this model, we replace
Equation (11) by a U(0, 1) prior on (πδ)g , although the
GUMCAD data are still used to estimate the parameters
π(GD) and γ1 relating the prevalence in GUM Anon to (πδ)g .

(b) GUMCAD also informs diagnosed prevalence Instead of
being inferred indirectly through the graph, the diagnosed
prevalence can be modeled directly as

(πδ)G = (1 − γ1) + γ1γ2γ3γ4, (13)

where 1 − γ1 is the probability of a previous diagnosis, and
γ1γ2γ3γ4 is the probability of a new diagnosis, in GUM-
CAD. This is not done in the base case due to concerns
about inconsistencies in reporting between GUMCAD and
SOPHID/HANDD.

5. VoI Results in the HIV Model

The model outputs of interest (as in Figures 1, 3) are α =
((πδ)G, (πδ)N , (πδ)G, (πδ)N , μDG, μDN, μUG, μUN, μ), the
diagnosed and undiagnosed prevalences among both GMSM
and NGMSM, and the corresponding absolute numbers of
people living with HIV (or “case-counts”), and the total number
of MSM with HIV μ = μDG + μDN + μUG + μUN.
Samples from the posterior are generated using Hamiltonian
Monte Carlo methods in the Stan software (Stan Development
Team 2016). These are illustrated in Figure 4 along with the
overall prevalence πg = (πδ)g + (πδ)g in each group g,
and each of these quantities summed over the two groups
g. The estimates of diagnosed prevalence in all MSM (top
panel) are reasonably precise, while the corresponding estimates
for NGMSM and GMSM are more uncertain. Estimates of
undiagnosed prevalence are lower and more precise. Full results
under the two alternative assumptions are presented in the
supplementary figures.

5.1. Partial Perfect Information (EVPPI) for Single Outputs

Defining the decision problem as point estimation of α with
quadratic loss, we use EVPPI formula (5) to determine which
parameters φ contribute most to the uncertainty about each
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Figure 4. Posterior distributions of HIV prevalence (top) and numbers of MSM living with HIV/AIDS (bottom), London 2012. Darkness within each strip proportional to
posterior density, with 95% credible intervals indicated.

component of α, thus which φ may be worth learning more pre-
cisely. We will take φ to include the founder nodes of the graph
illustrated in Figure 3. Since they are related to the α through a
network of deterministic functions, perfect knowledge of these
implies perfect knowledge of α. Each of the φ are either directly
informed by data or given a substantive prior distribution based
on belief. In the former case, EVPPI measures the maximum
potential value of collecting more data from the same source. In
the latter case, it will not necessarily be feasible to collect data to
improve the precision of the belief, but EVPPI is still useful as
a measure of how much of the uncertainty in α is explained by
the uncertainty in the parameter.

The results are presented in Figure 5 as a grid whose r, s entry
is colored according to EVPPIαs(φr)/var(αs), the proportion of
variance in αs which would be reduced if we learnt φr . The
lighter cells correspond to φr with greater EVPPI. Standard
errors in these and all following EVPPI and EVSI estimates, aris-

ing from uncertainty in the coefficients of the regression (10),
were negligible, at less than 1% of the EVPPI or EVSI estimates.

The parameters aδG and aδN , governing the proportions of
HIV infections that are diagnosed in each of the two groups,
and the probability aH that a GMSM is newly diagnosed in a
GUM clinic, explain most of the uncertainty in the diagnosed
prevalences (πδ)G, (πδ)N and the corresponding numbers of
people diagnosed μDG, μDN. Direct data on any of these param-
eters would be difficult to obtain. However, if we were willing
to make the assumption in Equation (13), the estimates of
diagnosed prevalence would become more precise, for example
the posterior median (SD) of (πδ)G would change from 0.06
(0.13) to 0.051 (0.001), though the extent of uncertainty around
(πδ)N , μDN would not change substantively.

For the undiagnosed prevalences (πδ)G, (πδ)N and undiag-
nosed case count μUG, Figure 5 shows that more GUM-Anon
data (via π(GA)), more GMSHS data (via or(GM)) and more
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Figure 5. Expected value of partial perfect information in the HIV prevalence model.

NATSAL data (via ρUG), respectively, would give the greatest
uncertainty reductions. These outcomes, however, are already
precisely estimated in absolute terms (Figure 4). The number
of NGMSM μUN with undiagnosed HIV is more uncertain,
with 95% CrI (279,1442), and more GMSHS data would be
potentially valuable to reduce this uncertainty.

If (πδ)G were informed only from the 4 infections out of
85 people observed in GUM Anon (alternative assumption (a)),
the estimates of undiagnosed prevalence or case counts become
extremely uncertain, for example, var(μUN) increases from 3022

to 28722. We could reduce this uncertainty by collecting more
GUM Anon data—since EVPPIμUN(π(GA)) is p = 62% of
var(μUN), more GUM Anon data could reduce var(μUN) to a
minimum of 28722(1−p) = 17772 (note that the square root of
the expected variance after learning data is not the same as the
expected standard deviation).

5.2. Partial Perfect Information for Multiple Outputs

Staying with alternative assumption (a), suppose we wish to
calculate the maximum potential value of extra GUM Anon
data for jointly reducing the uncertainty about the number of
GMSM, NGMSM, and PMSM with undiagnosed HIV, so that
α is the vector (μUG, μUN, μUP). As described in Section 2.3,
we could simply calculate the standard EVPPI based on a scalar
output α redefined as their sum, μU = μUG + μUN + μUP, the
total number of MSM with undiagnosed HIV, whose posterior
median is 5149 (SD 3280). This would ensure that any data
expected to reduce the variance of any of these three outputs
by the same (additive) amount would be valued equally. From
this, we find that extra GUM Anon data would be expected to
reduce var(μU) from 32802 to a minimum of 18012. Since μU is
dominated by NGMSM (posterior median of μUN is 4185), this
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is mostly explained by an expected reduction in var(μUN) from
28642 to a minimum of 17702.

Alternatively, suppose both the prevalences and the case
counts are of interest, for example in NGMSM, so that α =
((πδ)N , μUN). Since these two components are on very dif-
ferent scales, the Bayesian “D-optimality” criterion v(α) =
det(cov(α)) would be a preferable measure of overall expected
loss due to uncertainty. We use this criterion to compare the
maximum expected value of extra GUM Anon data and extra
GMSHS data, which combine to estimate the outcomes for
NGMSM as described in Section 4.4. The EVPPI is interpreted
as the expected reduction in the product of var((πδ)N) and
var(μUN) given by extra GUM Anon or GMSHS data, adjusted
for their covariance. This is 425 and 135, respectively, favoring
extra data from GUM Anon. Though in this example, examin-
ing expected reductions in var((πδ)N) or var(μUN) separately
would lead to the same conclusion, since (πδ)N is defined as the
proportion μUN/rN of NGMSM with HIV, and GUM Anon and
GMSHS are not informative about the number rN of NGMSM,
thus extra data informs μUN entirely through information on
(πδ)N (or vice versa).

5.3. Sample Information (EVSI)

We now estimate the expected value of data with specific sample
sizes for improving the precision of the estimated number of
people μU with undiagnosed HIV. Using the GUMCAD data
and associated strong prior assumptions, the posterior median
of μU is 804 (SD 320), compared to 5149 (SD 3280) with this
information excluded (a). We compare the value of additional
data from GUM Anon and additional data from GMSHS (on
top of their original sample sizes of 85 and 945, respectively) for
reducing these posterior standard deviations.

The EVSI is computed for a series of sample sizes n using
the method in Section 3.2. For GUM Anon (Section 4.3), the
sufficient statistic T(y) consists of the empirical HIV prevalence
y/n from an additional survey y ∼ Bin(n, π(GA)). For GMSHS
(Section 4.4), given a sample size n, y = (N(GM)

G , Y(GM)
G , Y(GM)

N ),
where N(GM)

G is the number of previously undiagnosed MSM in
the future sample of n who attend GUM clinics (the equivalent
of the observed n(GM)

G = 493). Then Y(GM)
G and Y(GM)

N are
the numbers of men out of denominators N(GM)

G and N(GM)
N =

n−N(GM)
G (GMSM and NGMSM, respectively) who test positive

for HIV, the equivalents of the observed y(GM)
G = 20, y(GM)

N =
492. We take T(y) = o(p̂(GM)

N (y))/o(p̂(GM)
G (y)), a point esti-

mator of the odds ratio, where p̂(GM)
G (y) is an estimator of the

proportion of MSM in group g who have HIV. To avoid zeros
in the denominator o(p̂(GM)

G (y)), we use a Bayesian estimator
p̂(GM)

G (y) = (Y(GM)
G + 0.5)/(N(GM)

G + 1), the posterior mean of
a binomial proportion under a Jeffreys Beta(0.5,0.5) prior, rather
than the empirical proportion Y(GM)

G /N(GM)
G .

Figure 6 shows var(μU) − EVSI(y), the expected variance
remaining after data collection, under the two alternative
assumptions. With the strong priors, μU is relatively well
informed, and extra data from GUM Anon at realistic sample
sizes (1000 or less) would not noticeably reduce var(μU).

GMSHS data would be more valuable, through improving the
estimate of μUN, the more uncertain contributor to μU =
μUG + μUN. 1000 extra observations from GMSHS would be
expected to reduce var(μU) from 3202 to 2792.

Without the strong prior information, var(μU) = 32802 is
substantially greater, and μU is only directly informed by the
85 observations from GUM Anon. Extra data from this source
would be valuable, for example, another 500 observations would
be expected to reduce this variance to 21842. Relative to these
improvements, GMSHS data of the same size would be much
less valuable. GMSHS data, however, would be expected to give
around the same absolute reductions in var(μU), whether or not
the strong priors are included.

5.4. Net Benefit of Sampling

The benefits from improved precision of estimates of μU must
be traded off with the costs of data collection, to determine an
optimal sample size for extra survey data. Consider the scenario
which excluded the GUMCAD data and associated strong pri-
ors. In the GUM Anon survey, there was a cost of around £17
per participant, which is assumed to be the same for collecting
further data from this source. The cost c(y) is illustrated against
sample sizes of y from 1 to 400 by the straight line in Figure 7.
Suppose also that the decision-maker is willing to pay £5000
to reduce the variance of μU by dv = 32712 − 27712, which
in this case would reduce the standard deviation by 500, from
3271 to 2771. The willingness to pay per unit variance is then
λ = 5000/dv.

Collecting extra data y will give an expected reduction in
var(μU) of EVSI(y), as illustrated in Figure 7. The resulting
expected (monetary) benefit Ey(b(y)) (Section 2.4) is shown to
be a nonlinear function of the sample size of y, with an asymp-
tote representing the expected value of partial perfect infor-
mation on π(GA). Hence, the expected net benefit of sampling
Ey(b(y)−c(y)) is illustrated in the bottom panel of Figure 7. The
expected benefits of sampling always exceed the costs, and the
net benefit is maximized at a sample size of 166. Also illustrated
are the benefit and net benefit that would result if the decision
maker was willing to pay twice or half the original amount, 2λ

or λ/2. The corresponding optimal sample sizes would be 315
or 81, respectively.

6. Summary and Potential Further Work

We have presented tools to find the most influential sources
of uncertainty in MPES models and determine the expected
value of extra data. We generalized methods, previously applied
only in deterministic models, to complex graphical models, a
class which also includes hierarchical models. We have shown
how VoI methods developed for formal finite-choice decision
problems can be extended to deal with estimation of single or
multiple quantities.

While the purpose of our model was to estimate a quantity
of interest to policy-makers, the same methods could be used
for models to compare specific health policies. Sections 2.4 and
5.4 illustrated how the benefits from more precise estimates of
HIV prevalence could be converted directly into a monetary
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Figure 6. EVSI: value of additional data from GUM Anon or GMSHS for reducing the variance of the total number of MSM with undiagnosed HIV, μU = μUG + μUN. The
x-axis is on the log scale. The y-axis is the variance, with the labels as SD2.

value. An alternative approach would be to value the indirect
health gains that would result from better data, through better-
informed health policies. This would allow standard health
economic principles to be used (see, e.g., Briggs, Sculpher, and
Claxton 2006). For example, the National Institute for Health
and Care Excellence in the UK recommends that a new health-
care intervention is funded by the National Health Service if
the cost per quality-adjusted life year (QALY) gained, compared
to current practice, is less than around λ =£20,000, implying
a willingness to pay of λ per QALY. This is a choice between
two actions d ∈ “{accept,reject} intervention” (as in Section
2.3) with loss L(d, θ) = cd(θ) − λqd(θ), where qd(θ) is the
expected QALY and cd(θ) is the expected cost for a person under
action d, from a health economic model with parameters θ .
See, for example, Carmona, O’Rourke, and Robinson (2016);

Baggaley et al. (2017), for how such models might be built for
HIV testing interventions to increase the proportion δ of people
who are diagnosed. Briefly, any QALY gains strongly depend
on the underlying prevalence of HIV among the population
receiving the intervention. Thus, improved estimates of preva-
lence will lead to more precise estimates of the QALY gains,
and a better-informed decision about whether to implement the
intervention, which may result in a better use of health service
resources. VoI methods may then be used to decide whether
further information should be collected to support the decision.

In the HIV application, we found that structural assump-
tions, such as whether to include a particular piece of infor-
mation, were influential to both the parameter estimates and
the VoI. Such uncertainties might be parameterized (see, e.g.,
Strong, Oakley, and Chilcott 2012), for example a particular
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Figure 7. Expected cost, benefit, and net benefit of sampling up to 400 extra participants from GUM Anon, if we wish to reduce the variance of μU , the number of MSM
with undiagnosed HIV. The optimal sample size is illustrated as a dotted line.

prior or dataset of uncertain relevance could be discounted
using an unknown weight (e.g., Neuenschwander, Branson, and
Spiegelhalter 2009). The EVPPI of the extra parameter would
then quantify this uncertainty in the context of all other uncer-
tainties, referred to as the “expected value of model improve-
ment” by Strong and Oakley (2014).

Note that VoI refers to the expected value of potential future
information, which differs from the observed value of a dataset
xi currently included in the model. The latter could be computed
as the observed reduction in loss when the model is refitted
without xi. This could demonstrate the value of past data to
the policymaker responsible for funding the collection of future
data of the same type. For surveys or longitudinal studies con-
ducted at regular intervals, VoI might be used to determine the
expected value of future surveys or follow-up, although a full
analysis would require modeling the expected changes through
time in the quantities, such as disease prevalence or incidence,
informed by the data.

While our method is broadly applicable, the details of
computation for different decision problems and loss functions
may be different. We discussed finite-action decisions and
point estimation. A more general decision problem is to
estimate the entire uncertainty distribution of θ . The stan-

dard posterior p(θ |y) is then optimal under a log scoring
rule (Bernardo and Smith 1994), and (following Lindley
1956) standard Bayesian design theory aims to maximize the
information gain from new data y, which we can write as
EVSI(y) = Eθ (− log(p(θ))) + EyEθ |y{log(p(θ |y)). Under linear
models (Chaloner and Verdinelli 1995), this is equivalent to
minimising det(cov(θ)), but more generally this is challenging
to compute (Ryan et al. 2016).

Note that the VoI approach to sensitivity analysis is an exam-
ple of the “global” approach, which examines the changes in
model outputs given by varying parameters within the ranges
of their belief distributions. The “local” approach is based on
examining the posterior geometry resulting from small param-
eter perturbations around a base case, for example, Roos et al.
(2015) assess the robustness of hierarchical models to prior
assumptions in this way. While the global approach is easier
to interpret, as discussed by Oakley and O’Hagan (2004) and
Roos et al. (2015), it conditions on one particular prior specifica-
tion, and parameterising all potential prior beliefs or structural
assumptions would be impractical.

The regression method for VoI computation that we
described requires only a MCMC sample from the joint distri-
bution of parameters of interest φ and outputs α. Additionally
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for EVSI it requires that the information in the new data y can be
condensed into an analytic sufficient statistic T(y). Alternative
methods which exploit particular analytic structures of g(),
where α is a known function g(φ), thus avoiding a regression
approximation, were discussed by Madan et al. (2014) for EVPPI
and Ades et al. (2004) for EVSI. Menzies (2016) also presented
an importance resampling method for EVSI computation which
needs only a single MCMC sample and not a sufficient statistic.

In conclusion, the consideration of future evidence require-
ments is an often-neglected part of statistical analysis. The VoI
methods we have presented provide a practicable set of tools for
achieving this aim in the context of Bayesian evidence synthesis.

Supplementary Materials

A supplementary document provides estimates of HIV prevalence and
expected value of partial perfect information under the alternative assump-
tions described in Section 4.5.

Acknowledgments

The authors are grateful to the HIV department of Public Health England
for providing the data and permission to use the example, to the NATSAL
team for providing data, and Louise Logan for advice on costs of data
collection in GUM Anon.

Funding

This work was funded by the Medical Research Council, grant code
U105260566, and from Public Health England (funding DDA and SC).

References

Ades, A., Lu, G., and Claxton, K. (2004), “Expected Value of Sample Infor-
mation Calculations in Medical Decision Modeling,” Medical Decision
Making, 24, 207–227. [1448]

Ades, A. E., and Sutton, A. J. (2006), “Multiparameter Evidence Synthesis
in Epidemiology and Medical Decision-Making: Current Approaches,”
Journal of the Royal Statistical Society, Series A, 169, 5–35. [1436]

Aghaizu, A., Wayal, S., Nardone, A., Parsons, V., Copas, A., Mercey, D., Hart,
G., Gilson, R., and Johnson, A. (2016) , “Sexual Behaviours, HIV Testing,
and the Proportion of Men at Risk of Transmitting and Acquiring HIV
in London, UK, 2000–13: A Serial Cross-Sectional Study,” The Lancet
HIV, 3, e431–e440. [1442]

Baggaley, R. F., Irvine, M. A., Leber, W., Cambiano, V., Figueroa, J.,
McMullen, H., Anderson, J., Santos, A. C., Terris-Prestholt, F., Miners,
A., Hollingsworth, D., and Griffiths, C. J. (2017) , “Cost-effectiveness
of Screening for HIV in Primary Care: A Health Economics Modelling
Analysis,” The Lancet HIV, 4, e465–e474. [1446]

Berger, J. O. (2013), Statistical Decision Theory and Bayesian Analysis, New
York, NY: Springer. [1437,1438]

Bernardo, J. M., and Smith, A. F. M. (1994), Bayesian Theory, Chichester:
Wiley. [1437,1447]

Briggs, A., Sculpher, M., and Claxton, K. (2006), Decision Modelling for
Health Economic Evaluation, Handbooks in Health Economic Evalua-
tion. Oxford: Oxford University Press. [1446]

Carmona, C., O’Rourke, D., and Robinson, S. (2016), “HIV Testing: Increas-
ing Uptake Among People Who May Have Undiagnosed HIV. Evidence
Review on the Most Cost Effective Ways to Increase the Uptake of HIV
Testing to Reduce Undiagnosed HIV Among People Who May Have
Been Exposed to It,” available at https://www.nice.org.uk/guidance/ng60/
documents/evidence-review-5 [1446]

Chaloner, K., and Verdinelli, I. (1995), “Bayesian Experimental Design: A
Review,” Statistical Science, 273–304. [1437,1439,1447]

Claxton, K. P., and Sculpher, M. J. (2006), “Using Value of Information
Analysis to Prioritise Health Research,” Pharmacoeconomics, 24, 1055–
1068. [1437,1438]

De Angelis, D., Presanis, A. M., Conti, S., and Ades, A. E. (2014), “Estima-
tion of HIV Burden Through Bayesian Evidence Synthesis,” Statistical
Science, 29, 9–17. [1436,1440]

Felli, J. C., and Hazen, G. B. (1998), “Sensitivity Analysis and the Expected
Value of Perfect Information,” Medical Decision Making, 18, 95–
109. [1437]

Friedman, J. H. (1991), “Multivariate Adaptive Regression Splines,” The
Annals of Statistics, 19, 1–67. [1440]

Goubar, A., Ades, A. E., DeAngelis, D., McGarrigle, C. A., Mercer, C. H.,
Tookey, P. A., Fenton, K., and Gill, O. N. (2008), “Estimates of Human
Immunodeficiency Virus Prevalence and Proportion Diagnosed Based
on Bayesian Multiparameter Synthesis of Surveillance Data,” Journal of
the Royal Statistical Society, Series A, 171, 541–580. [1436]

Han, C., and Chaloner, K. (2004), “Bayesian Experimental Design for
Nonlinear Mixed-Effects Models With Application to HIV Dynamics,”
Biometrics, 60, 25–33. [1437]

Heath, A., Manolopoulou, I., and Baio, G. (2016), “Estimating the Expected
Value of Partial Perfect Information in Health Economic Evaluations
Using Integrated Nested Laplace Approximation,” Statistics in Medicine,
35, 4264–4280. [1440]

Kirwan, P., Chau, C., Brown, A., Gill, O., Delpech, V., and contributors
(2016), “HIV in the UK — 2016 Report,” Technical report, Public Health
England, London. [1436,1440,1441]

Lamboni, M., Monod, H., and Makowski, D. (2011), “Multivariate Sen-
sitivity Analysis to Measure Global Contribution of Input Factors in
Dynamic Models,” Reliability Engineering & System Safety, 96, 450–459.
[1439]

Lauritzen, S. L. (1996), Graphical Models (Vol. 17), Oxford, UK: Clarendon
Press. [1437]

Lindley, D. V. (1956), “On a Measure of the Information Provided
by an Experiment,” The Annals of Mathematical Statistics, 986–1005.
[1437,1447]

Madan, J., Ades, A. E., Price, M., Maitland, K., Jemutai, J., Revill, P., and Wel-
ton, N. J. (2014), “Strategies for Efficient Computation of the Expected
Value of Partial Perfect Information,” Medical Decision Making, 34, 327–
342. [1448]

Mandel, M. (2013), “Simulation-based Confidence Intervals for Functions
With Complicated Derivatives,” The American Statistician, 67(2), 76–81.
[1440]

Menzies, N. A. (2016), “An Efficient Estimator for the Expected Value of
Sample Information,” Medical Decision Making, 36, 308–320. [1448]

Mercer, C., Tanton, C., Prah, P., Erens, B., Sonnenberg, P., Clifton, S.,
Macdowall, W., Lewis, R., Field, N., Datta, J., Copas, A., Phelps, A.,
Wellings, K., and Johnson, A. (2013), “Changes in Sexual Attitudes and
Lifestyles in Britain Through the Life Course and Over Time: Findings
From the National Surveys of Sexual Attitudes and Lifestyles (Natsal),”
Lancet, 382, 1781–1794. [1441]

Milborrow, S. (2011), earth: Multivariate Adaptive Regression Splines. R
package. Derived from mda:mars by T. Hastie and R. Tibshirani. Avail-
able at http://CRAN.R-project.org/package=earth [1440]

Neuenschwander, B., Branson, M., and Spiegelhalter, D. J. (2009), “A Note
on the Power Prior,” Statistics in Medicine, 28, 3562–3566. [1447]

Oakley, J. E., and O’Hagan, A. (2004) , “Probabilistic Sensitivity Analysis of
Complex Models: A Bayesian Approach,” Journal of the Royal Statistical
Society, Series B, 66, 751–769. [1437,1439,1447]

Office for National Statistics (2012), “Mid-year Population Estimates,”
available at https://www.ons.gov.uk/peoplepopulationandcommunity/
populationandmigration/populationestimates [1441]

Parmigiani, G., and Inoue, L. (2009), Decision Theory: Principles and
Approaches, Chichester, UK: Wiley. [1436,1438,1439]

Presanis, A. M., Gill, O. N., Chadborn, T. R., Hill, C., Hope, V., Logan,
L., Rice, B. D., Delpech, V. C., Ades, A. E., and De Angelis, D. (2010),
“Insights Into the Rise in HIV Infections, 2001 to 2008: A Bayesian
Synthesis of Prevalence Evidence,” AIDS (London, England), 24, 2849–
2858. [1436]

Public Health England, London (2012), “UA Survey of Genitourinary
Medicine (GUM) Clinic Attendees (GUM Anon Survey),” available

https://www.nice.org.uk/guidance/ng60/documents/evidence-review-5
https://www.nice.org.uk/guidance/ng60/documents/evidence-review-5
http://CRAN.R-project.org/package=earth
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1449

at https://www.gov.uk/guidance/hiv-overall-prevalence#ua-survey-of-
genitourinary-medicine-gum-clinic-attendees-gum-anon-survey [1442]

Raiffa, H., and Schlaifer, R. (1961), Applied Statistical Decision Theory,
Cambridge, MA: Harvard University. [1436,1438]

Roos, M., Martins, T. G., Held, L., and Rue, H. (2015), “Sensitivity Anal-
ysis for Bayesian Hierarchical Models,” Bayesian Analysis, 10, 321–349.
[1447]

Ryan, E. G., Drovandi, C. C., McGree, J. M., and Pettitt, A. N. (2016),
“A Review of Modern Computational Algorithms for Bayesian Optimal
Design,” International Statistical Review, 84, 128–154. [1437,1439,1447]

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004), Sensitivity
Analysis in Practice: A Guide to Assessing Scientific Models, Chichester,
UK: Wiley. [1437,1439]

Sobol’, I. M. (2001), “Global Sensitivity Indices for Nonlinear Mathematical
Models and Their Monte Carlo Estimates,” Mathematics and Computers
in Simulation, 55, 271–280. [1437]

Stan Development Team (2016), Stan Modeling Language Users Guide and
Reference Manual, Version 2.14.0. Available at http://mc-stan.org [1442]

Strong, M., and Oakley, J. E. (2014), “When is a Model Good
Enough? Deriving the Expected Value of Model Improvement Via

Specifying Internal Model Discrepancies,” SIAM/ASA Journal on
Uncertainty Quantification, 2, 106–125. [1447]

Strong, M., Oakley, J., and Chilcott, J. (2012), “Managing Structural Uncer-
tainty in Health Economic Decision Models: A Discrepancy Approach,”
Journal of the Royal Statistical Society, Series C, 61, 25–45. [1446]

Strong, M., Oakley, J. E., and Brennan, A. (2014), “Estimating Multiparam-
eter Partial Expected Value of Perfect Information From a Probabilistic
Sensitivity Analysis Sample: A Nonparametric Regression Approach,”
Medical Decision Making, 34, 311–326. [1437,1439,1440]

Strong, M., Oakley, J. E., Brennan, A., and Breeze, P. (2015), “Estimating the
Expected Value of Sample Information Using the Probabilistic Sensitiv-
ity Analysis Sample: A Fast, Nonparametric Regression-based Method,”
Medical Decision Making, 35, 570–83. [1437,1440]

Welton, N., Ades, A., Caldwell, D., and Peters, T. (2008), “Research Prioriti-
zation Based on Expected Value of Partial Perfect Information: A Case-
Study on Interventions to Increase Uptake of Breast Cancer Screening,”
Journal of the Royal Statistical Society, Series A, 171, 807–841. [1437]

Willan, A. R., and Pinto, E. M. (2005), “The Value of Information and
Optimal Clinical Trial Design,” Statistics in Medicine, 24, 1791–1806.
[1437]

https://www.gov.uk/guidance/hiv-overall-prevalence#ua-survey-of-genitourinary-medicine-gum-clinic-attendees-gum-anon-survey
https://www.gov.uk/guidance/hiv-overall-prevalence#ua-survey-of-genitourinary-medicine-gum-clinic-attendees-gum-anon-survey
http://mc-stan.org

	Abstract
	1.  Introduction
	2.  Theory and Methods
	2.1.  Bayesian Graphical Modeling for Evidence Synthesis
	2.2.  Expected VoI: Definitions
	2.3.  VoI in Different Decision Problems
	Finite-Action Decisions
	Point estimation

	2.4.  Maximising the Expected Net Benefit of Sampling

	3.  Computation of VoI
	3.1.  Partial Perfect Information
	3.2.  Sample Information

	4.  The HIV Prevalence MPES Model
	4.1.  Subgroup Membership
	4.2.  Registry of Diagnosed Infections and Diagnosed Prevalence
	4.3.  Undiagnosed Prevalence Among GMSM
	4.4.  Undiagnosed Prevalence Among NGMSM
	4.5.  Alternative Assumptions

	5.  VoI Results in the HIV Model
	5.1.  Partial Perfect Information (EVPPI) for Single Outputs
	5.2.  Partial Perfect Information for Multiple Outputs
	5.3.  Sample Information (EVSI)
	5.4.  Net Benefit of Sampling

	6.  Summary and Potential Further Work
	Supplementary Materials
	Acknowledgments
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Adobe Gray - 20% Dot Gain)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


