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Abstract

Coalescing random walks is a fundamental stochastic process, where a set of particles perform
independent discrete-time random walks on an undirected graph. Whenever two or more par-
ticles meet at a given node, they merge and continue as a single random walk. The coalescence
time is defined as the expected time until only one particle remains, starting from one particle
at every node. Despite recent progress such as by Cooper, Elsässer, Ono, Radzik [CEOR13]
and Cooper, Frieze and Radzik [CFR09a], the coalescence time for graphs such as binary trees,
d-dimensional tori, hypercubes and more generally, vertex-transitive graphs, remains unresolved.

We provide a powerful toolkit that results in tight bounds for various topologies including
the aforementioned ones. The meeting time is defined as the worst-case expected time required
for two random walks to arrive at the same node at the same time. As a general result, we
establish that for graphs whose meeting time is only marginally larger than the mixing time
(a factor of log2 n), the coalescence time of n random walks equals the meeting time up to
constant factors. This upper bound is complemented by the construction of a graph family
demonstrating that this result is the best possible up to constant factors. For almost-regular
graphs, we bound the coalescence time by the hitting time, resolving the discrete-time variant
of a conjecture by Aldous for this class of graphs. Finally, we prove that for any graph the
coalescence time is bounded by O(n3) (which is tight for the Barbell graph); surprisingly even
such a basic question about the coalescing time was not answered before this work. By duality,
our results give bounds on the voter model and therefore give bounds on the consensus time in
arbitrary undirected graphs.

We also establish a new bound on the hitting time and cover time of regular graphs, improving
and tightening previous results by Broder and Karlin [BK89], as well as those by Aldous and
Fill [AF02].
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1 Introduction

Coalescing random walks is a fundamental stochastic process on connected and undirected graphs.
The process begins with particles on some subset of the nodes in the graph. At discrete time-steps,
every particle performs one step of an independent random walk.1 Whenever two or more particles
arrive at the same node at the same time-step, they merge into a single particle and continue as a
single random walk. The coalescence time is defined as the first time-step when only one particle
remains. The coalescence time depends on the number and starting positions of the particles.

Studying the coalescence time is of substantial importance in distributed computing: At the
heart of many distributed computing applications lie consensus protocols and leader election e.g.,
data consistency, consolidation of replicated states, synchronization of processes and devices [Pel02;
DGM+11] and communication networks [PVV09]). Other applications of the coalescence process
appear in robotics [GORN17]; here, robots perform random walks to gather samples from their
environment and need to communicate these samples to all other robots. Studying the coalescence
time also implies results for other interaction types of random walks including predator and prey
particles as well has annihilating particles [CFR09b].

Relationship to consensus protocols Arguably the simplest consensus protocol achieving
consensus on any undirected graph is the voter model. Initially, every node has a distinct opinion.
At every round, each node chooses synchronously one of its neighbors at random and adopts
that node’s opinion. The consensus time is defined as the time it takes until only one opinion
remains. The voting process viewed backwards is exactly the same as the coalescence process
starting with a random walk on every node; thus, the coalescence time and consensus time have the
same distribution. Despite recent progress by Cooper et al. [CEOR13; CFR09a] and Berenbrink et
al. [BGKM16], the coalescence time and consensus time are far from being well-understood—even
for certain fundamental graphs as we describe below. Recently, there have been several studies
on variants of the voter model, most notably 2-Choices and 3-Majority which received ample
attention [CER14; BCN+15; CER+15; BCN+16; CRRS16; EFK+16; BCE+17; GL17]. However,
the behavior of these processes is fundamentally different and despite their efficiency in reaching
consensus on expanders and cliques, they are unsuitable on more general undirected graphs as the
consensus time is exponential in some graphs.

In this paper, we follow the approach of Cooper et al. [CEOR13] and Hassin and Peleg [HP01]
and study the consensus time through the more tangible analysis of the coalescence time. When
starting with two particles, the coalescence time is referred to as the meeting time. Let tmeet

denote the worst-case expected meeting time over all pairs of starting nodes and let tcoal denote the
expected coalescence time starting from one particle on every node. It is clear that tmeet 6 tcoal; as
for an upper bound, it can be shown that tcoal = O(tmeet log n), where n is the number of nodes in
the graph. The main idea used to obtain the bound is that the number of surviving random walks
halves roughly every tmeet steps. A proof of the result appears implicitly in the work of Hassin and
Peleg [HP01].

Aldous [Ald91] showed in continuous-time that the meeting time is bounded by the maximum
hitting time, thit := maxu,v thit(u, v), where thit(u, v) denotes the expected time required to hit v
starting from vertex u. We observe that the result of Aldous also holds in discrete time. Thus,
this gives a bound of O(thit log n) for the coalescing time; however, in general O(thit) may be a
loose upper bound on tmeet. In recent work, Cooper et al. [CEOR13] provide results that are better

1Throughout this paper, we use random walk and particle interchangeably, assuming that every random walk has
an identifier.
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than O(tmeet log n) for several interesting graph classes, notably expanders and power-law graphs.
They show that tcoal = O((log4 n+ ‖π‖−2

2 ) · (1− λ2)−1), where λ2 is the second largest eigenvalue
of the transition matrix of the random walk and π is the stationary distribution. Berenbrink et
al. [BGKM16] show that tcoal = O(m/(dmin · Φ)), where m is the number of edges, dmin is the
minimum degree and Φ is the conductance. Their result improves on that of Cooper et al. for
certain graph classes, e.g., cycles.

As mentioned before, despite the recent progress due to Cooper et al. [CEOR13] and Beren-
brink et al. [BGKM16], for many fundamental graphs such as the binary tree, hypercube and the
(d-dimensional) torus, the coalescing time in the discrete setting remains unsettled. We provide
a rich toolkit allowing us to derive tight bounds for many graphs including all of the aforemen-
tioned ones. One of our main results establishes a relationship between the ratios tcoal/tmeet and
tmeet/tmix, where tmix = tmix(1/e) denotes the mixing time.2 In particular, the result shows that if
tmeet/tmix = Ω(log2 n), then tcoal = O(tmeet); however, we also provide a more fine-grained tradeoff.
For almost-regular graphs,3 we bound the coalescence time by the hitting time. For vertex-transitive
graphs we show that the coalescence time, the meeting time, and the hitting time are equal up to
constant factors. Finally, we prove that for any graph the coalescence time is bounded by O(n3);
it can be easily verified that this is tight by considering the barbell graph. Surprisingly, the right
bound on this fundamental quantity was not known prior to this work. Unlike in the analogous
case of the cover time [AF02] where such a bound can be easily derived, the argument in the case
of coalescence time appears significantly involved.4 Prior to this work, Hassin and Peleg [HP01]
had shown a worst-case upper bound of O(n3 log n). We also give worst-case upper and lower
bounds on the meeting time and coalescence time that are tight for general graphs and regular (or
nearly-regular) graphs.

In the process of establishing bounds on the coalescence time, we develop techniques to give
tight bounds on the meeting time. We apply these to various topologies such as the binary tree,
torus and hypercube. We believe that these techniques might be of more general interest.

The process of coalescing random walks was first studied in continuous time; in this case,
particles jump to a random neighboring node when activated according to a Poisson clock with
mean 1. As Cooper and Rivera [CR16] recently pointed out “It is however, not clear whether the
continuous-time results apply to the discrete-time setting”, and to the best of our knowledge, there
is no general way in which results in continuous time can be transferred to discrete time or vice
versa, even when the random walks in discrete-time are lazy. In the continuous time setting, Cox
[Cox89] show that the coalescence time is bounded by Θ(thit) for tori. Oliveira [Oli12] showed
that the coalescence time is O(thit) in general. In a different work, Oliveira [Oli13] derived so-
called mean field conditions, which are sufficient conditions for the coalescing process on a graph
to behave similarly to that on the complete graph up to scaling by the expected meeting time. His
main result (for non vertex-transitive graphs) in [Oli13, Theorem 1.2], implies that tcoal = O(tmeet)
whenever tmix ·πmax = O(1/ log4 n). One of our main results, Theorem 1.1, implies tcoal = O(tmeet)
whenever tmix/tmeet = O(1/ log2 n). Notice that since tmeet > 1/(‖π‖22) > 1/πmax, our condition is
considerably more general—however, the results in [Oli13] also establish mean-field behavior (that
is, when suitably scaled, the distribution of the coalescence time is similar to that on a complete
graph), while ours are only concerned with the expected coalescence time, tcoal. On the other
hand, our result also applies to graphs where tcoal � tmeet such as the star graph, and together

2The mixing time is the first time-step at which the distribution of a random walk starting from an arbitrary node
is close to the stationary distribution.

3We call a graph almost-regular if deg(u) = Θ(deg(v)) for all u, v ∈ V .
4Cooper et al. [CEOR13] mistakenly stated, as a side remark, that this last result was a simple consequence of

their main result.
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Graph tmix tmeet tcoal thit

Binary tree Θ(n) Θ(n log n) Thm. 1.3 & Thm. C.6 Θ(n log n) Thm. 1.3 & Thm. C.6 Θ(n log n)
Clique Θ(1) Θ(n) [CEOR13; BGKM16]

& Thm. 1.1
Θ(n) [CEOR13; BGKM16] & Thm. 1.1 Θ(n)

Cycle Θ(n2) Θ(n2) [BGKM16] & Thm. 1.3 Θ(n2) [BGKM16] & Thm. 1.3 Θ(n2)
Rand. r-reg. Θ(log n) Θ(n) [CFR09a; CEOR13;

BGKM16] & Thm. 1.1
Θ(n) [CFR09a; CEOR13; BGKM16] & Thm. 1.1 Θ(n)

Hypercube Θ(log n log logn) Θ(n) Thm. 1.3 Θ(n) Thm. 1.1 Θ(n)
Path Θ(n2) Θ(n2) [BGKM16] & Thm. 1.3 Θ(n2) [BGKM16] & Thm. 1.3 Θ(n2)
Star Θ(1) Θ(1) folklore Θ(log n) [HP01], Prop. 3.4 & Thm. 1.5 Θ(n)
Torus (d = 2) Θ(n) Θ(n log n) Thm. 1.3 Θ(n log n) Thm. 1.3 Θ(n log n)

Torus (d > 2) Θ(n2/d) Θ(n) Thm. 1.1 Θ(n) Thm. 1.1 Θ(n)

Table 1: A summary of bounds on the mixing, meeting, coalescence and hitting times for funda-
mental topologies for discrete-time random walks. All bounds on the mixing and hitting times
appear directly or implicitly in [AF02].

with Theorem 1.2, demonstrate that the trade-off between meeting and mixing time is the best
possible.

1.1 Contributions

In this work, we provide several results relating the coalescence and meeting times to each other
and to other fundamental quantities of random walks on undirected graphs. In particular, our focus
is on understanding for which graphs the coalescence time is the same as the meeting time, as we
know that tcoal is always in the rather narrow interval of [tmeet, O(tmeet · log n)]. As a consequence
of our results, we derive new and re-derive existing bounds on the meeting and coalescence times
for several graph families of interest. These results are summarized in Table 1 and discussed in
greater detail in Appendix C. Formal definitions of all quantities used below appear in Section 2.
Throughout this paper, we assume that random walks are lazy meaning that w.p. 1/2 the walk
stays put.

Our first main result relates tcoal to tmeet and tmix. As already mentioned in the introduction,
the crude bound tcoal = O(tmeet log n) is well-known. However, this bound is not in general tight,
as demonstrated by our result below.

Theorem 1.1. For any graph G, we have

tcoal = O

(
tmeet

(
1 +

√
tmix

tmeet
· log n

))
,

Consequently, when tmeet > tmix log2 n, tcoal = O(tmeet).

The proof of Theorem 1.1 appears in Section 3. One interesting aspect about this bound is
that it can be used to establish tcoal = Θ(tmeet) even without having to know the quantities tmeet

or tmix. This flexibility turns out to be particularly useful when dealing with random graph models
for “real world” networks, where we establish (nearly-)tight and sublinear bounds (w.r.t. to the
number of vertices) in Section C.5.

Another interesting feature of our theorem is that the main result of Cooper et al. [CEOR13,
Theorem 1] can be reproven by combining [CEOR13, Theorem 2] with Theorem 1.1 (see Proposi-
tion B.2).
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Our next main result shows that the bound in Theorem 1.1 is tight up to a constant factor,
which we establish by constructing an explicit family of graphs. Interestingly, for this family of
almost-regular graphs we also have thit � tmeet, thus showing that thit may be a rather loose upper
bound for tcoal in some cases.5

Theorem 1.2. For any sequence (αn)n>0, αn ∈ [1, log2 n] there exists a family of almost-regular
graphs (Gn), with Gn having Θ(n) nodes and satisfying tmeet

tmix
= Θ(αn) such that

tcoal = Ω

(
tmeet ·

(
1 +

√
tmix

tmeet
· log n

))
.

The above two results show that that tmeet/tmix should be Ω(log2 n) to guarantee that tcoal =
O(tmeet).

A natural question is therefore whether in the case of structured sub-classes such as regular
graphs, or vertex-transitive graphs, or special graphs such as grids, tori, binary trees, cycles, real-
world (power-law) graphs, etc., better bounds can be obtained through other methods. We provide
results that are tight or nearly tight in several of these cases; some of these results were previously
known using other methods, some are novel to the best of our knowledge.

Theorem 1.3. The following hold for graphs of the stated kind

(i) For any graph G,
tcoal = O (thit · log logn) .

(ii) For any graph G with maximum degree ∆ and average degree d,

tcoal = O (thit + tmeet · log(∆/d)) .

Hence for any almost-regular graph G, tcoal = O (thit) .

(iii) For any vertex-transitive G,
tcoal = Θ (tmeet) = Θ (thit) .

(iv) In the case of binary trees, d-dimensional tori/grids, paths/cycles, expanders, hypercubes,
random power law graphs,6 we have tcoal = Θ(tmeet).

The proof of the first three statements of Theorem 1.3 appear in Section 4 and the last statement
follows from the results in Appendix C. We point out that since tmeet = O(thit) for any graph,7

Theorem 1.3 implies the bound tcoal = O(thit) not only for almost-regular graphs, but also for dense
graphs where |E| = Θ(n2). This settles the discrete-time analogue of a conjecture by Aldous [AF02,
Open Problem 14.13] for these graph classes. In very recent work, Oliveira and Peres improve on
these results and establish that tcoal = O(thit) holds for all undirected graphs [OP18].

Another natural question is to express tmeet or tcoal solely in terms of tmix, the spectral gap
1− λ2 or other connectivity properties of G. We derive several such bounds on tmeet, thit and tcoal.

As a by-product of our techniques, we also derive new bounds on thit and tcov, the cover-time.
The detailed results are given in Appendix B, but we highlight the results for regular graphs here:

5Note that the star also exhibits thit � tmeet. However, the star is not almost-regular.
6The exact model is specified in Section C.5.
7In Proposition B.9, we prove this formally by following the proof for the continuous setting [AF02, Proposition

14.5].
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Theorem 1.4. Let G be any graph with Γ = ∆/δ, where ∆ is the maximum degree and δ the
minimum degree. It holds that

thit = O(Γn/
√

1− λ2) = O(Γn/Φ),

where Φ is the conductance of the graph and λ2 is the second largest eigenvalue of the transi-
tion matrix P of a lazy random walk. Consequently, tmeet 6 tcoal = O(Γn log(Γ)/

√
1− λ2) =

O(Γn log(Γ)/Φ) and tcov = O(Γn log n/Φ).

We point out that so far the best possible bound on tcoal for regular graphs has been tcoal =
O(n/(1− λ2)) from [CEOR13].8 The best possible bound on thit (and tcov) in terms of 1− λ2, was
thit = O(n/(1 − λ2)) and tcov = O(n log n/(1 − λ2)) due to Broder and Karlin [BK89] from 1989.
In all four cases, tmeet, tcoal, thit, and tcov, Theorem 1.4 improves the dependency on 1/(1−λ2) (or,
equivalently tmix), by almost a square-root (we refer the reader to Theorem B.6 and Theorem B.8 for
further details). As a result of this improvement, we get a bound of O(n/Φ) on the hitting time
which is the best known bound on the hitting time (and cover time) in terms of the conductance
and improves the bound of [AF02, Corollary 6.2.1] by a factor of 1/Φ.

We also derive a general lower bound on tmeet that combines the trivial bound, 1/‖π‖22, with
the minimum number of collisions (see Theorem B.1.(iii)). Although this bound does not directly
yield the correct lower bound for binary trees, it forms the basis of a later analysis in Theorem C.6.

Finally, we also provide asymptotically tight worst-case bounds on tmeet and tcoal. We show that
on any graph the coalescence time must be at least Ω(log n) and is no more than O(n3). For regular
(and in particular vertex-transitive) graphs these bounds become Ω(n) and O(n2) (See also Table 2
on page 51, which also contains an explanation why these bounds are asymptotically tight.) These
two new upper bounds for general and regular graphs complete the picture of worst-case bounds:

Theorem 1.5. The following hold for graphs of the stated kind.

(i) For any graph G we have tmeet ∈ [Ω(1), O(n3)] and tcoal ∈ [Ω(log n), O(n3)].

(ii) For any regular graph G we have tmeet, tcoal ∈ [Ω(n), O(n2)].

The proof of Theorem 1.5 appears in Section 5.

Summary of Technical Contributions

Our work also makes several technical contributions, which might be of interest for future re-
search on coalescing walks and other stochastic processes; these are explained in greater detail in
Section 1.2. Below we give a very brief summary.

• Conditional Expectation Approach. Most of our results make use of the conditional
expectation approach given in (1), a very simple yet extremely powerful tool, which to the
best of our knowledge has not been used in the context of meeting and coalescing times before.

• Division of Particles into two Groups. One basic ingredient in our proof is a domination
result that allows us to divide random walks into a group of “destroyers” (G1), which are
particles that cannot be eliminated, and a group of remaining particles (G2), which can be
eliminated by any other random walk. This domination result might be helpful to analyze
other stochastic processes involving different types of particles, e.g. [CFR09a].

8Alternatively, the same bound as the known bound can also be derived from the bound on the conductance in
[BGKM16] together with Cheeger’s inequality.
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• New Concentration Inequalities. We derive a new concentration inequality for random
walks on graphs in Section 4.1. Unlike previous approaches which are based on the mixing
time (or the closely related spectral gap), our new inequality depends only on the hitting
time and improves on the existing bounds when the mixing time is close to the hitting time.
These tighter inequalities are required to derive worst-case upper bounds on the colaescence
time.

1.2 Proof Ideas and Technical Contributions

When dealing with processes involving concurrent random walks, a significant challenge is to un-
derstand the behavior of “short” random walks. This challenge appears in several settings, e.g., in
the context of cover time of multiple random walks [AAK+11; ER09], where Efremenko and Rein-
gold [ER09, Section 6] highlight the difficulty in analyzing the hitting time distribution before its
expectation. In the context of concentration inequalities for Markov chains, Lezaud [Lez89, p. 863]
points out the requirement to spend at least mixing time steps before taking any samples. Related
to that, in property testing, dealing with graphs that are far from expanders has been mentioned
as one of the major challenges to test the expansion of the graph by Czumaj and Sohler [CS10].

In our setting, we also face these generic problems and devise different methods to get a handle
on the meeting time distribution before its expectation. Despite our focus being on coalescing and
meeting times, several of our approaches can be leveraged to derive new bounds on other random
walk quantities such as hitting times or cover times (see Appendix B).

Bounds on tcoal in terms of tmix and tmeet

The key ingredient in the proof of Theorem 1.1, where we express tcoal as a tradeoff between tmeet

and tmix is a better understanding of meeting events prior to the meeting time. More precisely, we
derive a tight bound on the probability p` that two random walks meet before ` time-steps, for `
in the range [tmix, tmeet]. Arguing about meeting probabilities of walks that are much shorter than
tmeet allows us to understand the rate at which the number of alive random walks is decreasing.

Optimistically, one may hope that starting with k random walks, as there are
(
k
2

)
possible

meeting events, roughly
(
k
2

)
· p` meetings may have occurred after ` time-steps. However, the

non-independence of these events turns out to be a serious issue and we require a significantly
more sophisticated approach to account for the dependencies. We divide the k random walks
into disjoint groups G1 and G2 (with |G1| usually being much smaller than |G2|) and walks of G1

can’t be eliminated. The domination of the real process by the group-restricted one is established
by introducing a formal concept called immortal process at the beginning of Section 3.1. In this
stochastic process, we can expose the random walks of G1 first and consider meetings with random
walks in G2 (for an illustration, see Figure 2 on page 12). Conditioning on a specific exposed walk
in G1, the events of the different walks in G2 meeting this exposed walk are indeed independent.
In fact, we will also use the symmetric case where the roles of G1 and G2 are switched. Thus,
the problem then reduces to calculating the probability of a random walk in G2 having a ‘good
trajectory’, i.e., one which many random walks in G1 would meet with large enough probability.

Surprisingly, it suffices to divide trajectories into only two categories (Lemma 3.3). Although,
one may expect that a more fine-grained classification of trajectories would result in better bounds,
this turns out not to be the case. In fact, the bound that we derive on the coalescing time in
Theorem 1.1 is tight, and this is precisely due to the tightness of Lemma 3.3. The tightness is
established by the following construction (cf. Figure 1). The graph is designed such that the vast
majority of meetings (between any two random walks) occur in a relatively small part of the graph

6



ẑ

G2

z1

G1
1

z2

G2
1

z3

G3
1

zκ

Gκ
1

Figure 1: The graph described in Section 3.4 with tcoal = Ω(tmeet +
√
tmeet/tmix · log n · tmix).

(G2 in Figure 1). On average, it takes a considerable number of time-steps before random walks
actually get to this part of the graph. What this implies is that for relatively short trajectories
(of length significantly smaller than tmeet), it is quite likely that other random walks will not meet
them (cf. Lemma 3.3). There is a bit of a dichotomy here, once a walk reaches G2 it is likely that
many random walks will meet it; however, a random walk not reaching G2 is unlikely to be met by
any other random walk.

Equipped with Theorem 1.1, we can bound tcoal = Θ(tmeet) for all graphs satisfying tmeet/tmix >
log2 n. Therefore, the problem of bounding tcoal reduces to bounding tmeet.

For some of the other results including Theorem 1.2 and Theorem 1.3, we will need a more
fine-grained approach to derive lower (or upper bounds) on the probability that two walks meet
during a certain number of steps, which may or may not be smaller than the mixing time or meeting
time. The starting point is the following simple observation. If we have two random walks (Xt)t>0

and (Yt)t>0, and count the number of collisions Z :=
∑τ−1

t=0 1Xt=Yt before time-step τ ∈ N, then

P [Z > 1 ] =
E [Z ]

E [Z | Z > 1 ]
. (1)

If we further assume that both walks start from the stationary distribution, then we have

P [Z > 1 ] =
τ · ‖π‖22

E [Z | Z > 1 ]
.

To the best of our knowledge, this is the first application of this formula to meeting (and coalescence)
times. However, we should mention that variants of this formula have been used by Cooper and
Frieze in several works (e.g., [CF05]) to derive accurate bounds on the hitting (and cover time) on
various classes of random graphs, and in Barlow et al. [BPS12] to bound the collisions of random
walks on infinite graphs. Using (1), we are able to obtain several improvements to existing bounds
on the meeting time, and as a consequence for coalescing time. We believe that our work further
highlights the power of this basic identity.
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The crux of (1) is that in order to lower (or upper) bound the probability that the two walks
meet, we need to derive a corresponding bound on E [Z | Z > 1 ], i.e., the number of collisions
conditioning on the occurrence of at least one collision. Our results employ various tools to get a
handle on this quantity, but here we mention one that is quite intuitive:

E [Z | Z > 1 ] 6 max
u∈V

τ−1∑

t=0

∑

v∈V

(
ptu,v

)2
. (2)

The inner summand
∑

v∈V (ptu,v)
2 is the probability that two walks starting from the same vertex

u will meet after a further t steps. Thus, summing over t and conditioning on the first meeting
happening (i.e., the condition Z > 1) at some vertex u before time-step τ yields the bound in (2).
Despite the seemingly crude nature of this bound, it can be used to derive new results for thit, tmeet

and tcoal that significantly improve over the state-of-the-art for regular graphs (see Appendix B, or
the last paragraph in this section for a summary).

Bounds on tcoal in terms of thit

The derivation of our bounds on tcoal in terms of thit (Theorem 1.3) are based on two general
reduction results, that might be useful in other applications:

Theorem 1.6 (Reduction Results). The following results hold for any graph G:

1. The coalescence process reduces the number of walks from n to O(log3 n) in O(thit) steps with
probability at least 1− n−1. (see Theorem 4.3)

2. The coalescence process reduces the number walks from log4 n to (∆/d)O(1) in O(thit) steps in
expectation, where ∆ is the maximum degree and d is the average degree (see Theorem 4.4)

A basic ingredient are new concentration inequalities, which are derived in Section 4.1. Our
concentration inequalities yield sufficiently strong bounds for upper tails of returns (or other, pos-
sibly more complex random variables) by a random walk of length thit, while most of the existing
bounds (e.g., [CLLM12; Lez89]) require that the expectation of the random variable is at least as
large as tmix. While tmix 6 thit in general, the challenging case in our analysis is when tmix ≈ thit

and in this cases our concentration inequalities provide stronger upper tails than the existing ones.
Equipped with these concentration results, the proof of Theorem 4.3 is surprisingly simple and

rests again on (1). First, by a straightforward bucketing argument on the degree distribution, we
show that with high probability, we can find for each random walk (Xt)t>0 with label i a set S
(depending on the trajectory of Xt), so that with high probability, (i) each vertex in S is visited
frequently during O(thit) steps, and (ii) each vertex in S has the same degree up to constant factors.
Conditioning on this, it follows that a second random walk (Yt)t>0 will have sufficient collisions
with (Xt)t>0 in expectation, i.e., E [Z ] is large enough. To bound E [Z | Z > 1 ], we use the
concentration inequalities to establish that with high probability, the trajectory (Xt)t>0 will be
good in the sense that E [Z | (x0, x1, . . .), Z > 1 ] is not too large. Combining these bounds yields
P [Z > 1 ] = Ω(1/ log3 n), and a straightforward division into groups G1 and G2 of sizes Θ(log3 n)
and n− |G1| shows that all random walks in G2 can be eliminated in O(thit) steps.

The proof of the second reduction result (Theorem 4.4) is more involved, although it again
revolves around (1). The issue is that we can no longer repeat the simple bucketing argument from
Theorem 4.3 about the degree distribution, since the number of buckets may vastly exceed the
number of walks. Furthermore, we may no longer obtain “w.h.p.”-bounds on the probability for
certain good events. For all these reasons, a refined approach is needed.
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Our analysis allocates small phases of length O(thit/κ) in order to halve the number of random
walks, where k = κc is the number of walks at the beginning of the phase, for some suitably large
constant c. The first step is to show that starting from any vertex, there exists a large set of
vertices, so that each vertex is visited the “right” amount of time, but also that it was not too
unexpected to visit that vertex. The latter condition is quite subtle, but it allows us to arrange a
proper scheduling of the walks to show that, regardless of which vertices the random walk i decides
to visit in that set, there are enough walks that are able to reach these vertices by then. In other
words, it rules out the possibility that, despite two random walks visiting the same set of vertices,
they never collide (for an illustration, see Figure 5 on page 45). Using our concentration bounds
with a careful choice of the slackness parameters in terms of κ, the above approach can eventually
be shown to reduce the number of random walks k by a constant fraction within O(thit/κ) steps.
Repeating this iteratively yields the bound O(thit).

Bounds on thit and Worst-Case Bounds

With the two reduction results, Theorem 1.3 follows immediately. Furthermore, the aforementioned
results can be also used to derive worst-case upper and lower bounds on meeting and coalescing
time on general and regular graphs that are tight up to constant factors. Some of these were known,
or follow directly from existing results, the others are novel to the best of our knowledge.

We proceed by establishing that tcoal = O(n3) on all graphs. The proof of tcoal = O(n3)
(Theorem 1.5) follows by first applying both reductions (Theorem 4.3 and Theorem 4.4) to reduce
the number of walks from n to (∆/d)O(1) 6 (n2/|E|)O(1) in O(thit). We have, by Proposition B.9,
tmeet 6 4thit = O(n · |E|), where this last bound follows from [AKL+79].

Finally, combining the bound tmeet = O(n · |E|) together with tcoal(S0) = O(tmeet · log(|S0|))
(Proposition 3.4) for any set of start vertices S0, yields that after additional

O(tmeet · log(|S0|)) = O(n · |E| · log(n2/|E|)) = O(n3)

steps the coalescing terminates. The fact that this is tight can be easily verified by considering the
Barbell graph.9

For regular graphs, the same argument as before shows that tcoal = O(n2), and this is matched
by the cycle, for instance. The proofs of the other results are straightforward, and we refer the
reader to Section 5.3.

Bounds on tmeet and Other Results

In Appendix B, we derive several bounds on tmeet. These bounds are derived more directly by (1)
and/or (2), and involve other quantities such as ‖π‖22 or the eigenvalue gap 1− λ2. One important
technical contribution is to combine routine spectral methods involving the spectral representation
and fundamental matrices that have been used in previous works, e.g., Cooper et al. [CEOR13] with
some short-time bounds on the t-th step probabilities. This allows us to improve several bounds,
not only on tmeet and tcoal but also thit and tcov, by significantly reducing the dependency on the
spectral gap or mixing time—by almost a square root factor. As a corollary, we also derive a new
bound on the cover time for regular graphs that considerably improves over the best known bound
by Broder and Karlin [BK89] from 1989.

9This n-vertex graph is constructed by taking two cliques of size n/4 each, and connecting them through a path
of length n/2.
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Concrete Topologies

Finally, in Appendix C, we apply the derived upper and lower bounds on tmeet and tcoal on various
fundamental topologies including grids, expanders and hypercubes. In most cases, these results
follow immediately from the general bounds by plugging in corresponding values for ‖π‖22, thit or
tmix. One exception is the binary tree, for which it seems surprisingly non-trivial to derive a lower
bound of tmeet = Ω(n log n). Here again we use a refinement of (1) that restricts the vertices to leaf-
nodes u, for which

∑tmix
t=1 (

∑
v∈V p

t
u,v)

2 = Ω(log n). The matching upper bound tmeet = O(n log n)
follows from tcoal = O(thit) for almost-regular graphs (Theorem 1.3).

Of particular interest might be the analysis of “real-world” graph models given in Section C.5.
There we show how to utilize our bounds from earlier sections to establish tcoal = Θ(tmeet) on two
random graph models, leading to bounds on tcoal that are sublinear in the number of vertices.

1.3 Discussion and Future Work

In this work we derived several novel bounds on tcoal. Our first main result implies that a gap of
just Ω(log2 n) between tmix and tmeet is sufficient to have tcoal = Θ(tmeet). We also proved that
this result is essentially tight. Further, we derived several new bounds on tcoal based on thit. For
almost-regular-graphs, our new result implies the following hierarchy for the discrete-time setting,

tmeet 6 tcoal = O(thit),

which refines the already known result tmeet = O(thit). Finally, we also determined tight worst-case
lower and upper bound for tcoal.

For future work, an obvious problem is to extend the tcoal = O(thit) result to all graphs (so far,
we only know tcoal = O(thit · log logn)). Even more ambitious would be to try to prove that the
continuous-time variant and the discrete-time process are (asymptotically) equivalent, as this would
immediately resolve the tcoal = O(thit) problem. A different direction may be to further explore
lower bounds on tmeet; in this work we only derived one lower bound on tmeet in Theorem B.1.

2 Notation and Preliminaries

Throughout the paper, let G = (V,E) denote an undirected, connected graph with |V | = n and
|E| = m. For a node u ∈ V , deg(u) denotes the degree of u and N(u) = {v : (u, v) ∈ E} the
neighborhood of u. By ∆, δ and d = 1

n

∑
u∈V deg(u), we denote the maximum, minimum and

average degree, respectively. We say G is Γ-approximative regular if ∆/δ = Γ.
Unless stated otherwise, all random walks are assumed to be discrete-time (indexed by natural

numbers) and lazy, i.e., if P denotes the n × n transition matrix of the random walk, pu,u = 1/2,
pu,v = 1/(2 deg(u)) for any edge (u, v) ∈ E and pu,v = 0 otherwise. We define ptu,v to be the probability
that a random walk starting at u ∈ V is at node v ∈ V at time t ∈ N. Furthermore, let ptu,· be the
probability distribution of the random walk after t time steps starting at u. By π we denote the
stationary distribution, which satisfies π(u) = deg(u)/(2m) for all u ∈ V .

Let d(t) = maxu ‖ptu,· − π‖TV and d̄(t) = maxu,v ‖ptu,· − ptv,·‖TV, where ‖ · ‖TV denotes the total
variation distance. Following Aldous and Fill [AF02], we define the mixing time to be tmix(ε) =
min{t > 0 : d̄(t) 6 ε} and for convenience we will write tmix = tmix(1/e). We define separation from
stationarity to be s(t) = min{ε : ptu,v > (1−ε)π(v) for all u, v ∈ V }. Then s(·) is submultiplicative,
so in particular, non-increasing [AF02], and we can define the separation threshold time tsep =
min{t > 0 : s(t) 6 e−1} and, by [AF02, Lemma 4.11], tsep 6 4tmix. We write Thit(u, v) to denote
the first time-step t > 0 at which a random walk starting at u hits v. In particular, Thit(u, u) = 0.
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The hitting time thit(u, v) = E [Thit(u, v) ] of any pair of nodes u, v ∈ V is the expected time
required for a random walk starting at u to hit v. Thus, thit(u, v) is the expectation of Thit(u, v).
The hitting time of a graph thit = maxu,v thit(u, v) is the maximum over all such pairs.

For A ⊆ V , we use thit(u,A), to denote the expected time required for a random walk starting
to u to hit some node in the set A. Furthermore, we define thit(π, u) =

∑
v∈V thit(v, u) · π(v).

Furthermore, we define tavg-hit =
∑

u,v∈V π(u) · π(v) · thit(u, v).
Let tmeet(u, v) denote the expected time when two random walks starting at u and v first arrive

at the same node at the same time, and we write tπmeet for the expected meeting time of two
random walks starting at two independent samples from the stationary distribution. Finally, let
tmeet = maxu,v tmeet(u, v) denoted the worst-case expected meeting time.

We define the coalescence process as a stochastic process as follows: Let S0 ⊆ V be the set of
nodes for which there is initially one random walk on it, and for all v ∈ St let

Yv(t) =

{
u ∈ N(v) w.p. 1

2|N(v)|
v w.p. 1

2

The set of active nodes in step t+ 1 is given by St+1 = {Yv(t) | v ∈ St}. The process satisfies the
Markov property, i.e.,

P [St+1 | Ft ] = P [St+1 | St ] , (3)

where Ft is the filtration up to time t, which, informally speaking, is the history of all random
decisions up to time t. Finally, we define the time of coalescence as Tcoal(S0) = min{t > 0 | |St| = 1}.
Throughout this paper, the expression w.h.p. (with high probability) means with probability at least
1 − n−Ω(1) and the expression w.c.p. (with constant probability) means with probability c > 0 for
some constant c. We use log n for the natural logarithm. Appendix A contains some known results
about Markov Chains that we frequently use in our proofs.

3 Bounding tcoal for large tmeet/tmix

In this section we prove Theorem 1.1, one of our main results. We refer the reader to Section 1.2
for a high-level description of the proof ideas.

3.1 Stochastic Process

In order to prove our first main result, it is helpful to consider a more general stochastic pro-
cess, Pimm, called the immortal process, involving multiple independent random walks. In the
immortal process, whenever several random walks arrive at the same node at the same time a sub-
set of them (rather than just one) may survive, while the remaining are merged with one of the
surviving walks. To identify the random walks, we assume that each walk has a natural number (in
N) as an identifier. In order to define this process formally, we introduce some additional notation
and definitions; then we state and prove some auxiliary lemmas. A related concept was introduced
in [Oli12, Section 3.4] under the name of “allowed killings”.

As mentioned before, we assume that every random walk r has a unique identifier id(r) ∈ N. We
divide the ids into two groups G1, the group of immortal walks and G2 the group of the remaining
(mortal) walks. Whenever two or more walks collide at a node and at least of of these walks is
in G1, then all walks with ids in G1 survive, while all walks with ids in G2 are killed (merged with
some walk with id in G1). Furthermore, if all walks have ids in G2, i.e., there are no walks with
id in G1, then the walk with the minimum id among these walks survives. The ids along with the
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Figure 2: Illustration of the process Pimm.

assignment of ids to groups determine which of the random walks that arrive at a given node at
the same time survive.

Formally, let Pimm denote the following process:

1. At time 0, S0 = {(ur, id(r))}, where ur is the starting node of random walk r and id(r) is its
identifier.

2. At time t, several random walks may arrive at the same node. The process Pimm allows some
subset of them to survive, while the rest ‘coalesce’ with one of the surviving walks. Formally,
St+1 is defined using St as follows. Define the (random) next-step position of the random
walk with id i ∈ N which is on node v ∈ V to be

Yv,i(t) :=

{
u where u ∈ N(v) w.p. 1

2|N(v)|
v w.p. 1

2 ,

Let Rv(t) := {(Yv,i(t), i) | (v, i) ∈ St}, v ∈ V be the set of next-step positions (before merging
happens) for random walks that were at node v at time t. Let

R̂v(t) := {(v, i) | ∃u ∈ V, (v, i) ∈ Ru(t)}

be the random walks that have arrived at node v at time-step t + 1, just before merging
happens. Then, merging happens w.r.t. the ids as follows:

(a) If there exists i ∈ G1 such that (v, i) ∈ R̂v(t) (at least one walk with id in G1 arrives at
v), then

Sv(t+ 1) := {(v, j) | (v, j) ∈ R̂v(t), j ∈ G1}
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(b) If there is no i ∈ G1, such that (v, i) ∈ R̂v(t) and R̂v(t) 6= ∅ (no walk with id in G1 arrives
at v, but at least one walk arrives at v), then

Sv(t+ 1) := {(v, j)},

where j = min{i | (v, i) ∈ R̂v(t)}.
(c) Otherwise, Sv(t+ 1) := ∅, i.e., no walk arrived at v.

Finally, let

St+1 :=
⋃

v∈V
Sv(t+ 1).

We now relate this more general process, Pimm, to the coalescing process defined in Section 2.
Let P be regarded as a special instance of Pimm with G1 = {1}. In process P , only one of several
walks arriving at the same node survives and by convention the one having the smallest id is chosen.
Let (St)

∞
t=0 denote the stochastic process P . If we define S̄t := {v | (v, i) ∈ St}, then (S̄t)

∞
t=0 is a

coalescence process as defined in Section 2. Moreover, P represented by (St)
∞
t=0 is the coalescence

process which additionally keeps track of the ids. Throughout this paper, we assume that every
random walk of S0 is on a distinct node.

In the following we show that the time it takes to reduce to k random walks in the original
process P is majorized by the time it takes in Pimm to reduce to k random walks. While this might
be intuitive, one needs to be very careful about the dependencies between the meetings of different
random walks: For instance a random walk which is immortal in Pimm might eliminate many other
random walks whereas the corresponding coupled random walk in P might be eliminated early and
therefore cannot eliminate said random walks.

Proposition 3.1. Consider the following two processes:

1. Process P is the standard process of coalescing random walks, viewed as a special case of Pimm

with G1 = {1} as described above.

2. Process Pimm is the process defined above using groups G1 and G2, where 1 ∈ G1.

Let T k, T kimm be the stopping times given by the condition that fewer than k random walks remain
for the two processes respectively. Assume both processes start with the same initial configuration,
i.e., the vertices occupied by walks in both processes are identical and there is only one walk per
vertex in either process. Then, there exists a coupling such that

T k 6 T kimm.

Proof. We will give a coupling between the moves of walks in Pimm and Pint, a new process that is
essentially intermediate between P and Pimm; furthermore, we will show that the original process
P is essentially a restricted view of the process Pint. The process Pint will label the walks dead,
alive, and phantom. We emphasize that a phantom walk is not considered alive. Note that the
processes P and Pimm can be viewed as processes which assign labels to each random walk of the
type alive and dead.

Let SQ
t denote the set of tuples of alive walks in process Q ∈ {P, Pint, Pimm} at time t. Let

S̄Q
t = {v | (v, i) ∈ SQ

t } for Q ∈ {P, Pint, Pimm} be the set of nodes which are occupied by at least
one alive walk (there might be several in Pimm at t > 1). In order to prove the proposition, we
show that there exists a coupling, such that for any t ∈ N

S̄P
t ⊆ S̄Pint

t (4)
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S̄Pint
t ⊆ S̄Pimm

t (5)

implying that |S̄P
t | 6 |S̄Pimm

t | which yields the claim since

T k = min{t > 0: |S̄Pt | 6 k} 6 min{t > 0: |S̄Pimm
t | 6 k} = T kimm.

We now define Pint. As mentioned above, the walks in Pint will be given three kinds of labels
alive, dead, or phantom; the dead walks do not continue ahead in time; alive and phantom walks
do.

Formally, Pint using the groups G1 and G2 is defined as follows. We say that walk r is of type
Gi, if id(r) ∈ Gi for i ∈ {1, 2}. Whenever at least one walk arrives10 on a node, then the following
happens.

1. At least one of the walks is of type G1

(a) At least one walk of type G1 is alive

i. the walk of G1 with the smallest id is labeled as alive (even if it was labeled phantom
before)

ii. all other walks of type G1 (if there are any) are labeled as phantom

iii. alive walks of type G2 are labeled dead (if present).

(b) All walks of type G1 are phantom walks

i. There is no walk of type G2

A. No label is changed

ii. There is at least one walk of type G2

A. the walk of type G1 with the smallest id is labeled as alive

B. all other walks of type G1 (if there are any) are labeled as phantom

C. alive walks of type G2 are labeled dead.

2. All walks are of type G2

(a) the walk of G2 with the smallest id is labeled as alive

(b) all other walks are labeled as dead.

Note, that walks of G1 are either alive or phantom and walks of G2 are either alive or dead. Also,
note that in the process Pint, there is at most one alive walk at any given node. Throughout the
proof we regard the processes in two stages: First, each random walk selects a destination (possibly
the same node it was on) and moves there. In the second phase the walks are merged according to
the process. See Figure 3 for an illustration.

We prove (4) by induction on t starting from the same initial configuration: if v ∈ S̄P
t , then

v ∈ S̄Pint
t . Consider the inductive step from t to t + 1 and assume that the claim holds at the

end of round t (after merging happened). For the (unique) random walk at v ∈ S̄P
t under process

P , we couple its transition to node Yv(t+ 1) (where we possibly have Yv(t+ 1) = v) with the
corresponding alive walk of S̄Pint

t (there might be several walks of Pint, however only one is alive
and we couple with this alive walk). Let S be the set of nodes to which a random walk in P moved,
i.e., S = {Yv(t+ 1): v ∈ S̄P

t }. Observe, that before the merging takes place in round t + 1 (but
moves have been made), there is, by induction hypothesis and the coupling, at least one alive walk

10Throughout, by arrive we take into account that walks may arrive at a node from the same node through laziness.
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Figure 3: An illustration of couplings between the processes. The squares depict the random walks.
Walks of G1 are colored black and grey (phantom) and the nodes of G2 are white. The blue arrows
denote the moving decisions. Observe that in Pint a phantom becomes alive (and a walk of G2 is
labeled dead).

of Pint on each node of S. Furthermore, the definition of Pint ensures that whenever an alive random
walk moves to a node, then after merging takes place, at least11 one alive walk remains. Thus, our
coupling ensures that if v ∈ S̄P

t+1, then v ∈ S̄Pint
t+1 . In words, if one looks at the subsets where there

is an alive walk of Pint, this is essentially the standard coalescence process. This finishes the proof
of (4) and we turn to proving (5).

When starting from the same initial configuration, we will provide a coupling that satisfies the
following invariants.

1. There is a bijective map from the alive and phantom walks of Pint to the alive walks of Pimm,
such that the following holds. All walks of Pint of type Gi are mapped to walks of Pimm of
type Gi, for i ∈ {1, 2}.

2. Whenever a walk of type G2 is labeled dead in Pimm, then it is also labeled dead in Pint and
vice versa.

At the beginning there are no dead or phantom walks in Pint, there are no dead walks in Pimm,
all walks are alive and as the starting positions in Pimm and Pint are the same, an arbitrary bijective
mapping may be chosen, so long as it respects node positions and walk types.

Assume the invariant holds at time t. We take one random walk step for each alive or phantom
random walk in Pint. These are coupled with the corresponding walks in Pimm, under the chosen
map. Walks that are already dead are neither simulated in Pint nor in Pimm. Hence, we can ensure
the bijection between the walks of G1 in both processes holds at time t+ 1.

11By definition, there is actually exactly one alive walk.
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We now prove the second invariant. Note that whenever a walk r of type G2 in Pimm(Pint) is
labeled dead, this implies there must have been another walk r′ on the same node at the same time.
Since there is a bijective map, r′ must be on the same node in Pint(Pimm). We have that either r′

is of type G1 or r′ is of type G2 and that id(r′) < id(r). In either case, r is also killed (labeled dead)
in Pint(Pimm). Hence, we can ensure the bijection between the walks of G2 in both processes holds
at time t + 1. Thus, the invariant holds at time t + 1. By induction, and since the alive walks of
Pint are a subset of the alive walks of Pimm the invariant holds throughout the process and yielding
(5). This finishes the proof.

3.2 Meeting Time Distribution Prior to tmeet

Let (Xt)t>0 and (Yt)t>0 be independent random walks starting at arbitrary positions. For τ a
multiple of tmix, the following lemma gives a lower bound on the probability of intersection of the
two random walks in τ steps.

Lemma 3.2. Let (Xt)t>0 and (Yt)t>0 be two independent random walks starting at arbitrary posi-
tions. Let intersect(Xt, Yt, τ) be the event that there exists 0 6 s 6 τ , such that Xs = Ys. Then

P [ intersect(Xt, Yt, 5tmix) ] >
1

32α
,

where α = tmeet/tmix. Furthermore, there exists a constant c > 0, such that for any 1 6 b 6 e−1
e ·α,

we have

P [ intersect(Xt, Yt, c b tmix) ] >
b

α
,

Proof. First, let (X̃t)t>0 and (Ỹt)t>0 be two random walks that start from two independent samples
drawn from the stationary distribution and are run for ` := 2dαedtmixe steps. Notice that ` > 2tmeet,
and hence, by Markov’s inequality,

P
[

intersect(X̃t, Ỹt, `)
]
>

1

2
. (6)

Furthermore, if we divide the interval [1, `] into 2dαe consecutive sections of length dtmixe each, the
probability for a collision in each of these section is identical and therefore the union bound implies

P
[

intersect(X̃t, Ỹt, `)
]
6 2dαe · P

[
intersect(X̃t, Ỹt, tmix)

]
, (7)

and hence combining equation (6) and (7) yields

P
[

intersect(X̃t, Ỹt, tmix)
]
>

1

4dαe .

Consider now two independent random walks (Xt)t>0 and (Yt)t>0 starting at arbitrary positions.
By applying Lemma A.5 to both walks, with probability at least (1− e−1)2 both X4tmix and Y4tmix

are drawn independently from the stationary distribution since 4tmix > tsep. Therefore,

P [ intersect(Xt, Yt, 5tmix) ] > (1− e−1)2 · P
[

intersect(X̃t, Ỹt, tmix)
]
> (1− e−1)2 · 1

4dαe .

Observing that for any α > 1, the RHS above expression is greater than 1/(32α) completes the proof
of the first part. For the second part, we consider k blocks of length 5tmix. Due to independence
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of different blocks, the probability of that the two walks meet in at least one of the k blocks is at
least 1− (1− 1

32α)k. We set k :=
⌈
32b/(1− e−1)

⌉
, x := 1/(32α). We distinguish between two cases.

Case k · x < 1: We use the fact that (1 − x)k 6 e−xk 6 1 − (1 − e−1)xk for 0 6 x < 1,
k > 0 and xk 6 1. We derive that the probability of intersecting after k blocks is at least
1− (1− 1

32α)k > (1− e−1)k/(32α) = b/α.
Case k · x > 1: We have 1− (1− 1

32α)k > 1− (1− 1
32α)32α > 1− 1/e > b/α. In both cases the

second part follows.

At the heart of the proof of Theorem 1.1 lies the following lemma that analyses the marginal
distribution of the meeting time distribution. That is, we only expose the first random walk (Xt)

τ
t=0,

and look at how this affects the probability of meeting. In essence, we show that at least one of
the two “orthogonal” cases hold. In Case 1 (corresponding to set C1), there is at least a modest
probability that after exposing (Xt), (Yt) will intersect with significant probability. Otherwise, in
Case 2 (corresponding to set C2), there is a significant probability that after exposing (Xt), (Yt)
will intersect with at least a modest probability.

Lemma 3.3. Fix τ ∈ N and a graph G. Let (Xt)
τ
t=0 and (Yt)

τ
t=0 be independent random walks,

where the starting nodes X0 and Y0 are drawn independently from the stationary distribution π
(w.r.t. to G), and the walks are run for τ steps. Let p = P [ intersect(Xt, Yt, τ) ] and let Tτ denote
the set all possible trajectories of a walk of length τ in G (including possible self-loops). We define
the following two categories C1 and C2 with C1 ⊆ C2

C1 := {(z0, . . . , zτ ) ∈ Tτ : P [∃0 6 s 6 τ, Ys = zs ] >
√
p}

C2 := {(z0, . . . , zτ ) ∈ Tτ : P [∃0 6 s 6 τ, Ys = zs ] > p/3}.

Then, P [ (Xt)
τ
t=0 ∈ C1 ] > p

3 or P [ (Xt)
τ
t=0 ∈ C2 ] >

√
p

3 .

While the actual lower bounds on the probabilities appear rather crude, it turns out that the
“significant probability”

√
p/3 is best possible, as we demonstrate in our lower bound construction

later. Remarkably, the fact that the “modest probability” is only p/3 and much smaller than
√
p/3

does not affect the tightness of our bound, since in Claim 3.5, we can make up for this gap in both
cases through a simple amplification argument over the unexposed random walks.

Proof. Let us suppose that P [ (Xt)
τ
t=0 ∈ C1 ] < p

3 . We show that this implies P [ (Xt)
τ
t=0 ∈ C2 ] >

√
p

3 . Assume for the sake of contradiction P [ (Xt)
τ
t=0 ∈ C2 ] <

√
p

3 . We have

p = P [ intersect(Xt, Yt, τ) ]

6 P [ (Xt)
τ
t=0 ∈ C1 ] · 1 + P [ (Xt)

τ
t=0 ∈ (C2 \ C1) ] · √p+ P [ (Xt)

τ
t=0 6∈ C2 ] · p

3
< p/3 +

√
p/3 · √p+ p/3 6 p,

a contradiction. This completes the proof.

It is well-known that starting with k random walks, the coalescence time is bounded by
O(tmeet log k), this can be deduced from the proof presented in [HP01]. For the sake of com-
pleteness, we give a self-contained proof12.

12One might be tempted to pair random walks in groups of two and run them for 2tmeet time steps so that, by
Markov inequality, they meet with probability at least 1/2. Repeating this iteratively would yield the claim. To
formalize such an argument one would need to disallow coalescence between different pairs of random walk which
differs from the stochastic process we reduce to in Section 3.1.
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Proposition 3.4. We have tcoal(S0) = O(tmeet log |S0|).

Proof. Let P be the coalescing process (with ids) defined in Section 3.1. Recall that G1 = {1}.
Let St be set of coalescing random walks at an arbitrary time-step t. In the following we show the
slightly stronger claim that the expected time to reduce the number of random walks by a constant
factor is O(tmeet).

Formally, we fix an arbitrary time-step t0. With T := min{t > t0 : |St| 6 99/100 · |St0 |, |St0 | >
100} denoting the first time-step the number of coalescing random walks reduces by a factor of
99/100, we will prove that E [T ] = O(tmeet). Iterating the argument O(log |S0|) times implies
that the expected time it takes to reduce to 100 random walks is O(tmeet log |S0|). Note that the
expected time to reduce from 100 random walks to 1 is bounded by O(tmeet). Hence, the claim
tcoal(S0) = O(tmeet log |S0|) follows.

It remains to show that the expected number of time steps it takes to reduce the number of
random walks by a factor of 99/100 is indeed O(tmeet).

We divide time into blocks of length τ := c e−1
e tmeet+4tmix, where c is the constant of Lemma 3.2,

i.e., P
[

intersect(Xt, Yt, c
e−1
e tmeet)

]
> e−1

e . We are primarily interested in what happens at the end
of the blocks, i.e., at time steps t0, t0 + τ, t0 + 2τ, . . .. For simplicity, we will start counting time
from 0 at the beginning of each block. Let (Xt)t>0 be the random walk with id 1. After 4tmix steps,
we can couple the state of the random walk (Xt)t>4tmix with a node drawn from π with probability
at least (1 − e−1), since 4tmix > tsep (see Lemma A.5). Further, note that conditioned on this
coupling, the statement of Lemma 3.3 implies that (Xt)t>4tmix ∈ C2 w.p. at least p/3, where we

used C2 ⊆ C1, and where p := P
[

intersect(X̃t, Ỹt, c · e−1
e · tmeet)

]
> e−1

e for X̃0, Ỹ0 ∼ π.

We condition on the successful coupling ofX4tmix with a node drawn from π and that (Xt)t>4tmix ∈
C2, which happens with probability at least (1−e−1)p/3 = (e−1)2

3e2
(called event E). Finally, consider

any random walk (Yt)t>0b with id other than 1. Again with probability at least 1 − e−1 we can
couple Y4tmix with a node drawn from π and conditioned on successful coupling, (Yt)t>4tmix meets
(Xt)t>4tmix between time-steps [4tmix, τ ] with probability at least p/3, by definition of C2. Thus,

conditioned on event E , each walk of G2 vanishes w.p. (1− e−1)p/3 = (e−1)2

3e2
and thus the expected

fraction of walks killed in the τ time-steps is at least (e−1)2

3e .
Let Z` = |St0+`·τ | denote the number of random walks alive at the beginning of block `.

E
[
Z` | Ft0+(`−1)·τ

]
6 Z`−1 − (Z`−1 − 1) · (e− 1)4

9e4
6 Z`−1 −

Z`−1

100
.

The above holds as long as Z`−1 > 100. We can therefore apply Lemma A.9 with parameters
g = 99/100 · S0 and β = 99/100 to obtain that E [T ] = O (τ) = O(tmeet), which completes the
proof.

3.3 Upper Bound - Proof of Theorem 1.1

We commence by considering the process Pimm defined in Section 3.1. This allows us to establish
Claim 3.5 providing us with the following tradeoff. For a given period τ of length at least tmix we
obtain a bound on the required number of periods to reduce the number of random walks by an
arbitrary factor. The proof relies heavily on Lemma 3.3 which divides the walks of G1 into two
groups allowing us to expose the walks of G1 first and then to calculate the probability of the walks
of G2 to intersect with them. In fact, we will also use the symmetric case where the roles of G1

and G2 are switched. These probabilities are derived from the time-probability tradeoff presented
in Lemma 3.2. We then use Claim 3.5 to derive a bound on the number of time steps it takes
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to reduce the number of walks to d2αe, where α = tmeet/tmix (Corollary 3.6). From there on we
employ Claim 3.5 to reduce the number of walks to 1 in O(tmeet) time steps. Melding both phases
together yields the bound of Theorem 1.1.

We now define a process Pimm(S0, k) with k < |S0|, which is a parameterized version of the
process Pimm defined in Section 3.1:

• Let |S0| = k′; there are k′ random walks with ids 1, . . . , k′ and starting nodes v1, . . . , vk′ .
Thus, S0 = {(vi, i) | 1 6 i 6 k′}.

• Let G1 = {1, . . . , k} and G2 = {k+ 1, . . . , k′}. Recall that, by definition of Pimm, we have that
if some random walks with ids in G1 and some with ids in G2 are present on the same node
at the same time, only the ones with ids in G1 survive. If all the random walks have ids in
only in G1, then all of them survive. If all random walks have ids only in G2, then only the
one with the smallest id survives.

We define
IDs(St) := {id(r) | (ur, id(r)) ∈ St}, t ∈ N.

The following lemma gives the expected time it takes to reduce the number of random walks in G2

from k′ − k to some arbitrary integer g > k: given a period of length τ and integer g, assuming
that k = |G1| is large enough, we derive a bound on the number of periods of length τ until the
walks in G2 are reduced to g. The required size of k is a function of the probability for two random
walks drawn from π intersecting after τ time steps.

Claim 3.5. Let τ ∈ N, let (Xt)
τ
t=0 and (Yt)

τ
t=0 be independent random walks run for τ steps, with

X0 and Y0 drawn independently from π. Let pτ 6 P [ intersect(Xt, Yt, τ) ] be a lower bound on the
probability of the intersection of the two walks during the τ steps. Consider an instantiation of
Pimm(S0, k). Suppose that k > 3

(1−e−1)·pτ . For some 1 6 g 6 |S0| − k, define the stopping condition

Tg = min{t > 0 | |IDs(St) ∩ G2| 6 g}. Then the expected stopping time satisfies

E [Tg ] = O

(
(4tmix + τ) ·

√
1

pτ
· (log |G2| − log g)

)
.

We first describe the high-level proof idea, before delving into the formal proof. We divide time
into blocks of size 4tmix + τ . For any random walk (Zt)

4tmix+τ
t=0 we can couple its position after

4tmix > tsep w.c.p. with a node drawn from π. Thus, conditioning on the success of this coupling

we have, by Lemma 3.3, P
[

(Zt)
4tmix+τ
t=4tmix

∈ C1

]
> pτ

3 or P
[

(Zt)
4tmix+τ
t=4tmix

∈ C2

]
>
√
pτ
3 . In the former

case we have that w.c.p. there is at least one random walk r in G1 which is, due to independence
of the walks, in class C1. The hypothetical extension of the trajectory of any random walk in
r′ ∈ G2 intersects with r w.p. c

√
pτ/3, where the constant arises due to the fact that we also need

to couple the state of r′ at time 4tmix to a node drawn according to π. (We need to consider the
hypothetical extension because the walk r′ may get eliminated sooner–this only helps us.) Thus,
r′ gets eliminated w.p. at least c

√
pτ for a suitable constant c.

In the latter case we have that w.p. at least c
√
pτ/3 a random walks of G2 is in class C2. Every

random walk in that class intersects w.c.p. with at least one of the walks of G1. Thus, in both
cases, we have that in each block a random walk of G2 is eliminated w.p. a least c

√
pτ for some

constant c. Thus, the number of random walks in G2 decrease in expectation by a factor of c
√
pτ .

Proof. We will consider the process in blocks each consisting of 4tmix+τ time-steps. For convenience
in the proof, we’ll restart counting time-steps from 0 at the beginning of each block; we keep track
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of the total number of time-steps by counting the number of blocks. Let C1 and C2 be as defined in
Lemma 3.3. Then we perform a case analysis by considering the two possible outcomes described in
Lemma 3.3 separately. We define Zj = |IDs(Sj·(4tmix+τ)) ∩ G2|, i.e., the number of walks remaining
in G2 after j blocks of time have passed. For any j > 1, we will show that there exists a constant
c > 0 such that,

E [Zj | Fj−1 ] 6 Zj−1 · (1− c
√
pτ ) .

By using Lemma A.9, we get E [Tg ] = O
(

(4tmix + τ) · 1√
pτ
· (log |G2| − log g)

)
(the factor (4tmix+τ)

appears as the size of the block). Recall that Fj is the filtration up to end of the jth block. In the
remainder we show that we have indeed E [Zj | Fj−1 ] 6 Zj−1 ·

(
1− c√pτ

)
.

Case 1. P [ (Xt)
τ
t=0 ∈ C1 ] > pτ

3 :

Consider any random walk r in G1 at the beginning of a block. Using Lemma A.5, after 4tmix steps
we can couple the state of the random walk with a node drawn from π with probability at least
(1−e−1). Furthermore, conditioned on this coupling, the portion of the random walk between time-
steps 4tmix and 4tmix +τ of the walk is in class C1 with probability at least pτ

3 . Since k > 3
pτ ·(1−e−1)

,

w.p. c1 > 0, in any block, there exists a walk in G1 that has the portion between time-steps 4tmix

and 4tmix + τ in C1.
Fix a block and condition on the event that there is a walk in G1, denoted by r1, whose portion

between time-steps 4tmix and 4tmix + τ is in C1. Consider any walk in G2, denoted by r2, at
the beginning of the block. We want to argue that this walk r2 has a reasonable probability of
intersecting some walk in G1 in this block of time-steps. First, consider (the possibly hypothetical
continuation of r2 ) walk r′2 for the entire length of the block. The reason for this is that if r2

and some walk from G1 are at the same node at the same time sometime in the block, r2 will be
eliminated in the process Pimm(S0, k); however, we can consider its hypothetical extension to the
entire length of the block. Using Lemma A.5 the state of the walk r′2 at time-step 4tmix can be
coupled with a node drawn from π with probability at least c2 := 1 − e−1. Then conditioned on
successful coupling, the probability that r′2 and r1 collide during time-steps 4tmix and 4tmix + τ is
at least

√
pτ (by definition of C1 in Lemma 3.3). Thus, the probability that r2 hits at least one

walk in G1 is at least c1 · c2 · √pτ . Note that it is also possible for r′2 to be eliminated by another
walk from G2. In any case, we have that r2 is eliminated w.p. at least c

√
pτ and we get

E [Zj | Fj−1 ] 6 Zj−1 · (1− c1 · c2
√
pτ ) .

Case 2. P [ (Xt)
τ
t=0 ∈ C2 ] >

√
pτ
3 :

Consider a walk in G2, denoted by r2, at the beginning of a block; as in the previous case, we will
consider a possibly hypothetical continuation r′2 of r2. Using Lemma A.5 we can couple the state
of r′2 at time-step 4tmix with a node drawn from π with probability at least 1− e−1. Furthermore,

conditioned on the successful coupling, with probability at least
√
pτ
3 the trajectory of r′2 between

the time-steps 4tmix to 4tmix + τ is in C2. Thus, with probability at least p := (1 − e−1)
√
pτ
3 , r′2

has a trajectory between time-steps 4tmix and 4tmix + τ that lies in C2. Now consider any random
walk r1 ∈ G1 at the beginning of the block. Again, using Lemma A.5 with probability at least
1 − e−1, we can couple the state of the random walk at time 4tmix with a node drawn from π.
Conditioned on this between time-steps 4tmix to 4tmix + τ , this random walk hits any trajectory
whose portion between time-steps 4tmix to 4tmix + τ lies in C2 with probability at least pτ/3 (by
definition of C2 in Lemma 3.3). Since k = |G1| > 3

(1−e−1)·pτ , with at least constant probability

c1 > 0 there is some walk in G1 that intersects any fixed trajectory whose portion between time-
steps 4tmix to 4tmix + τ lies in C2. Since the random walks in G1 are independent, by the definition
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of the immortal process, we have that any walk in G2 is eliminated by the end of the block with
probability at least c1 · p = c

√
pτ for some constant c > 0. Similarly as before, it is possible that r2

is eliminated by at least one of the walks of G2, which only increases the probability for r2 of being
eliminated. We get

E [Zj | Fj−1 ] 6 Zj−1 · (1− c
√
pτ ) .

In the following we bound the time T required to reduce to 2dαe random walks. The claim
follows by applying Claim 3.5 to derive a bound on Timm for processPimm, and using the majorization
of T by Timm (Proposition 3.1).

Corollary 3.6. Consider the coalescence process starting with set S0 and let α = tmeet/tmix. Let
T1 = min{t > 0 | |St| 6 2dαe}. Then E [T1 ] = O(tmix ·

√
α · log |S0|).

Proof. We consider the process P (defined in Section 3.1), which is identical to the coalescence
process, but in addition also keeps track of ids of random walks and that allows only the walk
with the smallest id to survive. We assume that the ids are from the set {1, 2, . . . , |S0|}. Let
S0 = {(v1, 1), . . . , (v|S0|, |S0|)} and S̄0 = {i : (v, i) ∈ S0}. We consider the process Pimm(S0, k) and
k = dαe. Let T ∗1 be the stopping time defined by |IDs(S̄t)∩G2| 6 α for the process Pimm(S0, k). By
definition of Pimm and Proposition 3.1, it follows that Timm stochastically dominates T . Thus, it
suffices to bound E [Timm ]. W.l.o.g. we assume that α > 6 e−1

e , otherwise the claim follows directly
from Proposition 3.4. We apply Lemma 3.2 with b = 6 and derive that for some suitable constant
c,

p = P [ intersect(Xt>0, Yt>0, 6ctmix) ] >
6

α
,

Thus, we have
3

(1− e−1) · p 6
3

1
2 · p

6 α 6 k

Applying Claim 3.5 with g = α, τ = 6ctmix (where c is a constant as given by Lemma 3.2), pτ = 6/α,
and observing that k > 3

(1−e−1)·pτ , we get the required result.

In the following we bound the time T required to reduce from 2dαe random walks to a single
random walk. The proof uses the same ideas as before (Corollary 3.6) however, this time we
consider several phases and in each we reduce the number of random walks by a constant factor.
The expected time per phase is geometrically increasing as the number of walks decreases and the
overall time is essentially dominated by the time for a constant number of random walks to meet,
which is O(tmeet).

Lemma 3.7. Consider the coalescence process starting with set S0, satisfying |S0| 6 4α logα, where
α = tmeet/tmix. Let T2 := min{t > 0 | |St| 6 1}. Then E [T2 ] = O(tmeet).

Proof. We will consider the coalescence process in phases. Let ` be the largest integer such that

|S0| >
(

4
3

)`
. For j > 1, the jth phase ends when |St| <

(
4
3

)`−j+1
. The (j + 1)th phase begins as

soon as the jth phase ends. Note that it may be the case that some phases are empty. Let T2(j)
denote the time for phase j to last. We will only consider phases up to which `− j + 1 > 32.

Now we focus on a particular phase j. Let tj be the time when the jth phase begins and let Stj
denote the corresponding set at that time. Thus, we have

(
4

3

)`−j+1

6 |Stj | <
(

4

3

)`−j+2

(8)
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We consider the process Pimm defined in Section 3.3 as follows. Define nj = |Stj |. Fix a phase j
and define S′0 = {(v1, 1), . . . , (vnj , nj)} and S̄′0 = {v1, . . . , vnj}. Then, consider again the set of
occupied vertices (ignoring the labels) S̄tj+t = {v | ∃i ∈ N, (v, i) ∈ S′t} with t ∈ N. Thus, phase j

ends when |S′t| = |S̄tj+t| <
(

4
3

)`−j+1
. Let

kj :=

⌈ |S′0|
2

⌉

be the size of G1 and consider the process Pimm(S′0, kj) as defined in Section 3.3. Let

gj :=

⌊ |S′0| − kj
3

⌋

and
T ∗2 (j) := min{t | |IDs(S′t) ∩ G2| 6 gj}.

We note that as long as `− j + 1 > 32, gj > 1 and at time T ∗2 (j),

|S′t| 6 gj + kj 6
|S′0| − kj

3
+ kj =

|S′0|
3

+
2kj
3

6
|S′0|
3

+
|S′0|
3

+
2

3
<

3

4
· |S′0|.

By Proposition 3.1, T ∗2 (j) stochastically dominates T2(j) and hence it suffices to bound E [T ∗2 (j) ].
In order to bound E [T ∗2 (j) ], we define

bj := 32α log(4/3)(`− j + 1)(3/4)`−j+1.

Since we only consider phases with j respecting `− j + 1 > 32 we have bj 6 b`−31 6 ((e− 1)/e)α.
Furthermore, we have bj > b0 > 4α logα(3/4)` > 1, where the last inequality follows from (4/3)` 6
|S0| 6 4α logα, which in turn follows from definition of ` and the assumed bound on |S0|. Applying
Lemma 3.2 with this value of bj , we get that for

τj := cbjtmix,

for independent random walks (Xt)
τj
t=0, (Yt)

τj
t=0, P [ intersect(Xt, Yt, τj) ] > pj , where

pj := 32 log(4/3)(`− j + 1)(3/4)`−j+1.

We seek to apply Claim 3.5 to bound E [T ∗2 (j) ]. We first verify that the conditions of Claim 3.5
are fulfilled. In particular, we verify that kj > 8

pj
; to see this consider the following:

8

pj
=

8

32 log(4/3)(`− j + 1)
(4/3)`−j+1 6

1

4
·
(

4

3

)`−j+1

6
1

2
· |S′0| 6 kj ,

where we used (8) and |S′0| = |Stj | in the second-last inequality. Thus we can apply Claim 3.5 and
derive

E [T ∗2 (j) ] 6 (τj + 4tmix) · 1
√
pj
·
(
log |IDs(S′0) ∩ G2| − log gj

)

and we continue by dissecting that bound. Since bj > 1, there exists a suitably large constant c1,
so that τj + 4tmix 6 c1bjtmix. Furthermore,

bj√
pj

=
32α log(4/3)(`− j + 1)(3/4)`−j+1

√
32 log(4/3)(`− j + 1)(3/4)`−j+1

= O

(
α
√
`− j + 1 ·

(
3

4

)(`−j+1)/2
)
.
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Observe that, by definition, |IDs(S′0)∩G2|/gj 6 3, hence log |IDs(S′0)∩G2|− log gj 6 log(3). Putting
everything together, we get that there is a constant c2 such that,

E [T ∗2 (j) ] 6 c2 · tmix · α ·
√
`− j + 1

(
3

4

)(`−j+1)/2

(9)

Note that since we stop when ` − j + 1 < 32, there are at most ` − 30 phases considered.
Let T̃ be the random variable denoting the time-step when the last phase ends; at this point

|S
T̃
| = O(1). Therefore, using Proposition 3.4, E

[
T2 − T̃ | T̃

]
= O(tmeet). But, clearly T̃ is

stochastically dominated by
∑`−30

j=0 T ∗2 (j). Thus, we have

E [T2 ] = E
[
T̃
]

+ E
[
E
[
T2 − T̃ | T̃

] ]

6 c2 · tmix · α
`−30∑

j=0

√
`− j + 1

(
3

4

)(`−j+1)/2

+ c3tmeet (10)

6 c2 · tmix · α+ c3tmeet = O(tmeet) (11)

Above, in (10) we used (9) and the fact that E
[
T2 − T̃ | T̃

]
6 c3tmeet for some constant c3 > 0

and in step (11), we used the fact that
∑∞

j=32 jc
j < 1 for c 6

√
3/4.

Thus, the first phase (Corollary 3.6) and the second phase (Lemma 3.7) take together O(
√
α ·

log n · tmix + tmeet) time-steps, which yields Theorem 1.1.

3.4 Lower Bound - Proof of Theorem 1.2

In this section we give a construction of a graph family in order to establish lower bounds on
tcoal(G) in terms of tmeet(G) and tmix(G) demonstrating that Theorem 1.1 is asymptotically tight.
Additionally, our construction generalizes a claim of Aldous and Fill [AF02, Chapter 14]: They
mention that it is possible to construct regular graphs that mimic the n-star in the sense that
the tmeet = o(tavg-hit), without giving further details of the construction. Our construction shows
that even the coalescence time can be significantly smaller than the average hitting time for almost-
regular graphs. For our family of almost-regular graphs, there is a polynomial gap between tmeet and
tavg-hit. More importantly, we show that these almost-regular graphs have a gap of

√
tmix/tmeet·log n

between coalescing and meeting time. This shows that the bound in Theorem 1.1 is best possible,
even if we constrain G to be almost-regular. We refer the reader to Section 1.2 for a high-level
description of the proof ideas.

More precisely, in the proof of Theorem 1.2 we shall give an explicit construction of a graph
family G = Gn with tcoal = Ω(

√
αn · log n · tmix), where αn = tmeet/tmix. For the remainder of this

section, we will drop the dependence on n and will simply use G instead of Gn and α instead αn.
The construction of G (see Figure 4 for an illustration) is based on two building blocks, G1 and

G2. First, let G1 = (V1, E1) be a clique of size
√
n. Let G2 = (V2, E2) be a

√
n-regular bipartite

Ramanujan Graph on n/
√
α′ nodes [MSS15], where α′ = max{α, 220 · C2}, where C > 1 is the

universal constant of Corollary A.3. The graph G is made of one copy of G2, κ =
√
n copies of G1

(denoted by G1
1, G

2
1, . . . , G

κ
1), and a node ẑ, which has an edge to

√
n/α′ distinct nodes of G2 and

to each of the designated nodes zi ∈ V i
1 in Gi1 for i ∈ [1, κ]. It is not difficult to see that this graph

is almost-regular, i.e., maximum and minimum degree differ by at most a constant factor.
In Lemma 3.12, Lemma 3.13, Lemma 3.14 and Lemma 3.15 respectively we show that tmix =

Θ(n), tmeet = Θ(α′n), tcoal = Ω(
√
α′ · n log n), and tavg-hit = Ω(n3/2). We start with the following
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ẑ

G2

z1

G1
1

z2

G2
1

z3

G3
1

zκ

Gκ
1

Figure 4: The graph described in Section 3.4 with tcoal = Ω(tmeet +
√
tmeet/tmix · log n · tmix).

auxiliary lemma which shows that the walk restricted to V2 behaves similarly to the walk restricted
to V2 ∪ {ẑ}, meaning that the walks have very similar t-step probabilities.

Lemma 3.8. Let P denote the transition matrix of the random walk on G, Q the transition matrix
of the random walk on G2 and Q̂ be the transition matrix of the random walk on the subgraph of G
induced by V2 ∪ {ẑ}. Let ptu,v, q

t
u,v, q̂

t
u,v denote the corresponding transition probabilities for a walk

starting at u to end up at node v after t steps. Let S∗ = {u ∈ V2 ∩ N(ẑ)}. Then the following
statements hold:

(i) For any u, v ∈ V2 we have ‖ptu,· − qtu,·‖TV 6
∑t−1

i=1 p
i
u,S∗/(2

√
n) 6 t/(2

√
n).

(ii) For any u, v ∈ V2 we have ‖q̂tu,· − qtu,·‖TV 6
∑t−1

i=1 p
i
u,S∗/(2

√
n) 6 t/(2

√
n).

(iii) For any u, v ∈ V2 we have that after t = tmix(G2) time steps ‖ptu,· − ptv,·‖TV 6 o(1) + 2/e.

Proof. Let (Xt)t>0 be the Markov chain with transition matrix P and let (Yt)t>0 be the Markov
chain with transition matrix Q. We will inductively couple these two random walks starting from
X0 = Y0 = u. Given that we coupled both chains up to time t−1, we can couple (Xt, Yt) such that
Xt = Yt with an error probability

P [Xt 6= Yt | Xt−1 = Yt−1 ] = P [Xt 6= Yt | Xt−1 = Yt−1, Xt−1 ∈ S∗ ] · P [Xt−1 ∈ S∗ ]

+ P [Xt 6= Yt | Xt−1 = Yt−1, Xt−1 ∈ V2 \ S∗ ] · P [Xt−1 ∈ V2 \ S∗ ]

6 pt−1
u,S∗/(2

√
n) + 0.

We have, by [LPW06, Proposition 4.7], ‖ptu,·−ptv,·‖TV = inf{P [X 6= Y ] | (X,Y ) is a coupling of ptu,· and ptv,·}.
Hence, by a union bound over t steps,

‖ptu,· − ptv,·‖TV = inf{P [X 6= Y ] | (X,Y ) is a coupling of ptu,· and ptv,·} 6 P [Xt 6= Yt ]

6
t−1∑

i=1

piu,S∗/(2
√
n) 6

t

2
√
n
.
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To prove the second part we redefine (Xt)t>0 to be the Markov chain with transition matrix Q̂ and
the proof is identical.

We proceed with the last part. For u, v ∈ V2 we have that after t = tmix(G2) time steps, by the
triangle inequality and using that tmix(G2) = O(1), by Lemma A.2, we get

‖ptu,· − πG2(·)‖TV 6 ‖ptu,· − qtu,·‖TV + ‖qtu,· − πG2(·)‖TV

6
tmix(G2)

2
√
n

+ ‖qtu,· − πG2(·)‖TV

6 o(1) + ‖qtu,· − πG2(·)‖TV 6 o(1) + 1/e,

where the last inequality follows form the definition of mixing time. Again, by the triangle inequal-
ity, ‖ptu,· − ptv,·‖TV 6 o(1) + 2/e.

Based on Lemma 3.8, we can now bound the hitting time to reach ẑ, which will later be used
to establish the bounds on the mixing and meeting time of the whole graph G. But first, we prove
that the mixing time of the graph Ĝ induced by V2 ∪ {ẑ} is constant and that after mixing on Ĝ,
the random walk has a probability of Ω(1/n) to hit ẑ in a constant number of time steps.

Lemma 3.9. The following three statements hold.

(i) Let Ĝ be the induced graph by the vertices V2 ∪ {ẑ}. Then tmix(Ĝ) = O(1).

(ii) Let u ∈ V \ {ẑ}. Then there exists a constant c > 1 such that P [Thit(u, ẑ) > n/c ] > 1/2.

(iii) Let u ∈ V \ {ẑ}. Then thit(u, ẑ) = O(n).

Proof. We prove the statements one by one.

(i) Let Q be the transition matrix of a random walk restricted to G2. Let dQ(t) be the total
variation distance w.r.t. the transition matrix Q. Further, let Q̂ be the transition matrix of
a random walk restricted to Ĝ. Recall that tmix(G2) = O(1), by Lemma A.2.

Fix an arbitrary t ∈ [2tmix(G2), 2tmix(G2)+7]. In the following we show ‖q̂tu,·−πĜ(·)‖TV 6 1/e.
We first consider any start vertex u ∈ V2 \ {ẑ} and afterwards the vertex u = ẑ. Let D be the
set of distributions over V (Ĝ) = V2 ∪ {ẑ} assigning no probability mass to ẑ, i.e.,

D = {D′ : for u ∼ D′ we have P [u = ẑ ] = 0}. (12)

For any such D′ ∈ D, we have, by definition of the total variation distance,

‖q̂tu∼D′,· − πĜ(·)‖TV = 0 +
1

2

∑

v∈V2

∣∣∣q̂tu∼D′,v − πĜ(v)
∣∣∣+

1

2

∣∣∣q̂tu∼D′,ẑ − πĜ(ẑ)
∣∣∣ .

For u ∈ V2 observe that πĜ(u) ∈ [πG2(u)(1−ζ), πG2(u)(1+ζ)] for some ζ = o(1). By [LPW06,
Exercise 4.1] we have the following identity for dQ(t). Let D∗ be the set of all distributions
over V (G2), then

dQ(t) = max
D∈D∗

‖qtu∼D,· − πG2(·)‖TV > max
D′∈D

‖qtu∼D′,· − πG2(·)‖TV.
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Thus, for δv := |q̂tu,v − qtu,v|, we get by using triangle inequality,

1

2

∑

v∈V2

∣∣∣q̂tu∼D′,v − πĜ(v)
∣∣∣ 6 1

2

∑

v∈V2

∣∣q̂tu∼D′,v − πG2(v)
∣∣+

1

2

∑

v∈V2

|πG2(v)− πĜ(v)|

6
1

2

∑

v∈V2

∣∣q̂tu∼D′,v − πG2(v)
∣∣+

1

2

∑

v∈V2

πG2(v)ζ

6
1

2

∑

v∈V2

∣∣qtu∼D′,v − πG2(v)
∣∣+

1

2

∑

v∈V2

|δv|+
1

2

∑

v∈V2

πG2(v)|ζ|

6 dQ(t) + 1/32 +
ζ

2
,

6 dQ(t) + 1/32 + 1/32, (13)

where the second-last inequality is due to Lemma 3.8.(ii), 1
2

∑
v∈V |δv| 6 t/(2

√
n) 6 1

32 . By
definition of the tmix(G2) and by sub-multiplicativity we have dQ(t) 6 dQ(2tmix(G2)) 6 1/e2.

The above equation (13) only consider the variation distance w.r.t. V2. For ẑ we have
1
2 |q̂tu∼D′,ẑ − πĜ(ẑ)| 6 (2tmix(G2) + 7)/

√
n 6 1/32.

Putting everything together we get we get

‖q̂tu∼D′,· − πĜ(·)‖TV =
1

2

∑

v∈V2

∣∣∣q̂tu∼D′,v − πĜ(v)
∣∣∣+

1

2

∣∣∣q̂tu∼D′,ẑ − πĜ(ẑ)
∣∣∣

6 dQ(t) + 1/32 + 1/32 + 1/32 6 1/e2 + 3/32 (14)

6 1/e. (15)

Consider the random walk starting at ẑ and let (X0, X1, . . . ) denote its trajectory. Observe
that at time 7 we have

q̂7
ẑ,ẑ 6

1

27
+
∑

i67

∑

v∈N(ẑ)

q̂i−1
ẑ,v ·

1

2(
√
n+ 1)

6
1

27
+

72

√
n
6 1/32.

The set of distribution for the position of the random walk at time 7 conditioning on X7 6= ẑ
gives the same distribution D as defined in (12). Let Dẑ ∈ D be distribution of the random
at time 7 starting at ẑ. Hence, by(14), we get

‖q̂2tmix(G2)+7
ẑ,· − πĜ(·)‖TV 6 q̂

ẑ,V (Ĝ)\{ẑ} · ‖q̂
2tmix(G2)
u∼Dẑ ,· − π

Ĝ(·)‖TV + q̂ẑ,ẑ · 1 (16)

6 1 · (1/e2 + 3/32) + 1/32 6 1/e. (17)

Thus, for t′ = 2tmix(G2) + 7 we have ‖q̂t′ẑ,· − πĜ(·)‖TV 6 1/e. Together with (14), we conclude

that for all u ∈ V ′, ‖q̂t′u,· − πĜ(·)‖TV 6 1/e and by definition of tmix and we get tmix(Ĝ) 6
2tmix + 7 = O(1).

(ii) To prove P [Thit(u, ẑ) > n/c ] > 1/2 for u ∈ V2 we show that the random walk restricted to
Ĝ does not hit ẑ after n/c1 steps w.c.p. for some large enough constant c1. By the Union
bound, for some large constants c1, c2 that

P
[
TGhit(u, ẑ) 6 n/c1

]
= P

[
T Ĝhit(u, ẑ) 6 n/c1

]
6

n/c1∑

t=1

q̂tu,ẑ 6
c2 logn∑

t=1

1/
√
n+

n/c1∑

t=c2 logn

q̂tu,ẑ

6 o(1) + n/c1 · (πĜ(ẑ) + 1/n2) 6 1/2,
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where we used q̂tu,ẑ 6 πĜ(ẑ) +

√
πĜ(ẑ)

πĜ(u)
λ2(Ĝ)t (Lemma A.1).

We proceed by bounding that P [Thit(u, ẑ) > n/c1 ] > 1/2 for u ∈ V1. Consider first a random
walk (X̃t)t>0 restricted to G1

1 = G1 that starts at vertex z1 and let P̃ denote the transition

matrix. Furthermore, in order to couple the random walk X̃t restricted to G1 with a random

walk in G, we will consider the random variable Z̃ :=
∑t

G1
sep

t=0 1
X̃t=z1

. Since G1 is a clique,

tG1
sep = O(1), and p̃tz1,z1 6 1√

n
+ λ2(G1)t by Lemma A.1, where λ2(G1) is some constant

bounded away form 1. Therefore, E
[
Z̃
]

=
∑n/c1

t=0 p̃tz1,z1 6 2
√
n/c1. Let γ := 4 ·E

[
Z̃
]
. Then,

by Markov’s inequality

P
[
Z̃ > γ

]
6 1/4.

Consider now the straightforward coupling between a random walk (Xt)t>1 in G that starts
at vertex z1 and the random walk (X̃t)t>1 restricted to Gi1 that starts at the same vertex.

Whenever the random walk X̃t is at a vertex different from z1, then the random walk Xt makes
the same transition. If the random walk X̃t is at vertex z1, then there is a coupling so that

the random walk Xt makes the same transition as X̃t with probability 2
√
n−1

2
√
n

. Conditional

on the event Z̃ 6 γ occurring, the random walk X̃t follows the random walk Xt up until step
n/c1 with probability at least

p :=

(
2
√
n− 1

2
√
n

)γ
> 3/4,

since the random walk X̃t has at most γ visits to z1. Therefore, by the Union bound,

P
[
TGhit(u, ẑ) > n/c1

]
> P

[
∪n/c1t=0 Xt = X̃t

]
> 1− P

[
Z̃ > γ

]
− (1− p) > 1/2

and the proof is complete.

(iii) We proceed by showing thit(u, ẑ) = O(n) for u ∈ V2.

Let Q be the transition matrix of the random walk restricted to G2. Let u ∈ V2 and S∗ = N(ẑ)

be the neighbors of ẑ in G2. For every v ∈ S∗ we have πG2(v) =
√
n+1

n√
α′
√
n+
√
n√
α′

>
√
α′

1.2n . Hence,

after t = tsep(G2) we have that

qtu,S∗ :=
∑

v∈S∗
qtu,v >

∑

v∈S∗
πG2(v)(1− e−1) >

√
n√
α′
·
√
α′

1.2n
(1− e−1) =

1− e−1

1.2
√
n
.

By Lemma 3.8, we have for any u ∈ V2 that ‖ptu,· − qtu,·‖TV 6 tsep(G2)/(2
√
n). To bound

TGhit(u, ẑ) we show that after tsep + 1 = O(1) steps the random walk hits ẑ w.p. Ω(1/n).

We distinguish between two cases.
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(a) For all i 6 t we have ptu,S∗ 6 1/tsep(G2). Thus, by Lemma 3.8.(i)

ptu,S∗ =
∑

v∈S∗
ptu,v > qtu,S∗ − ‖ptu,· − qtu,·‖TV

>
1− e−1

1.2
√
n
−

t−1∑

i=1

piu,S∗/(2
√
n)

>
1− e−1

1.2
√
n
− tsep(G2)

tsep(G2)2
√
n

= Ω(1/
√
n).

Hence, the random walk hits ẑ after tsep(G2) + 1 w.p. at least ptu,S∗ · minv∈S∗{pv,ẑ} =
Ω(1/n).

(b) Otherwise there exists a t∗ such that pt
∗
u,S∗ > 1/tsep(G2). Thus the random walk hits ẑ

after tsep(G2) + 1 w.p. at least pt
∗
u,S∗ ·minv∈S∗{pv,ẑ} = Ω(1/n).

Thus after O(1) steps the random walk hits ẑ w.p. Ω(1/n).

We now show a similar statement if u ∈ V1. Let (Xt)t>0 be a random walk on G starting on u.
Observe that Xt (the walk on G) hits ẑ with probability p1

u,z1 · p1
z1,ẑ = Ω(1/n) in 2 time steps.

Hence, for any u ∈ V we P [Thit(u, ẑ) = O(1) ] = Ω(1/n). Thus, repeating this iteratively and
using independence yields thit(u, ẑ) = O(n) for u ∈ V .

To establish a bound on the mixing time of G, we will make use of the following result of Peres
and Sousi.

Theorem 3.10 ([PS15]). For any β < 1/2, let thit(β) = maxu,A:π(A)>β thit(u,A). Then there exist
positive constants cβ and c′β such that

c′β · thit(β) 6 tmix(1/4) 6 cβ · thit(β).

In the following we show for any β close enough to 1/2, that any A ⊆ V satisfying π(A) > β
must include at least a constant fraction of nodes from a constant fraction of copies of G1.

Claim 3.11. Let β = 1/2− 10−3. For any A ⊆ V with π(A) > β, define H(A) = {i | |Gi1 ∩ A| >
|V1|/(2e)}. Then, |H(A)| > κ/(2e).

Proof. This follows from a simple pigeon-hole argument: Suppose |H(A)| < κ/(2e) was true. Then,

π(A) 6 |H(A)| · π(V1) + (κ− |H(A)|) ·
(
π(V1)

2e
+ π(zi)

)
+ π(V2) + π(ẑ)

<
κ

2e
· π(V1) + κ ·

(
π(V1)

2e
+ π(zi)

)
+ 1/20 < β 6 π(A),

which is a contradiction and hence choice of A must fulfill |H(A)| > κ/(2e).

We are now ready to determine the mixing time of G. The lower bound is a simple application
of Cheeger’s inequality, while the upper bound combines the previous lemmas with Theorem 3.10.

Lemma 3.12. Let G be the graph described at the beginning of Section 3.4. We have tmix(G) =
Θ(n).
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Proof. First we show tmix = Ω(n). The conductance of G = (V,E) is defined by Φ(G) =

min
U⊆V,

0<vol(U)6vol(V )/2

|E(U,V \U)|
vol(U) . In particular, for U = V1 we get that Φ(G) 6 4

n . Hence, by Cheeger’s

inequality and
(

1
1−λ2(G) − 1

)
· log( e2) 6 tmix(1/e) (see, e.g., [LPW06, Chapter 12]),

n

4
6

1

Φ(G)
6

2

1− λ2(G)
=

2

1− λ2(G)
− 2 + 2 6

2tmix

log
(
e
2

) + 2.

Rearranging the terms yields tmix = Ω(n).
We proceed with the upper bound on the mixing time. Let β = 1/2 − 10−3 and let A ⊆ V be

an arbitrary set satisfying π(A) > β. First, we apply Claim 3.11 to conclude that |H(A)| > κ/(2e).
This immediately implies that with Z := {zi : i ∈ H(A)}, |Z| > κ/(2e). The remainder of the proof
is divided into the following three parts:

(i) Starting from any vertex u ∈ V , with probability at least 1/2, the random walk hits z∗ after
2 maxu∈V thit(u, ẑ) = O(n) steps.

(ii) With constant probability p1 > 0, the random walk moves from z∗ to a vertex in Z.

(iii) With constant probability p2 > 0 a random walk starting from a vertex in Z will hit A after
one step.

It is clear that combining these three results shows that with constant probability 1
2p1p2 > 0, a

random walk starting from an arbitrary vertex u ∈ V hits a vertex in A after O(n)+1+1 time-steps.
Iterating this and using independence shows that thit(u,A) = O(n), and hence by Theorem 3.10,
tmix = O(n) as needed.

Part (i). Consider maxu∈V thit(u, ẑ). For u ∈ V , Lemma 3.9.(iii) implies thit(u, ẑ) = O(n).
Part (ii). If the random walk is on z∗, then since deg(z∗) = κ +

√
n/α′, |Z| > κ/(2e), it

follows that the random walk hits a vertex in Z after one step with constant probability p1 :=
|Z|

2(κ+
√
n/α′)

> 0.

Part (iii). Finally, for any z ∈ Z we have that p2 = pz,A = |V1|/(2e)
2
√
n

> 0 and the proof is

complete.

In the following we establish the bound on the meeting time. As it turns out, any meeting
is very likely to happen on V2 and it takes about Θ(α′n) time-steps until both walks reach V2

simultaneously. The lower bound then follows from our common analysis method (1). The upper
bound combines the mixing time bound of O(n) (Lemma 3.12), and that once a random walk
reaches a copy of G1, it says there for Θ(n) steps with constant probability Lemma 3.9.(ii).

Lemma 3.13. Let G be the graph described at the beginning of Section 3.4. We have tmeet(G) =
Θ(α′n).

Proof. We start by proving tmeet = Ω(α′n): Consider two non-interacting, random walks with
starting positions drawn from the stationary distribution π. Let ` = c′α′n, for some small enough
constant c′ > 0. Let Z1 be the number of collisions of the two random walks on the nodes in
V 1

1 ∪ V 2
1 ∪ · · · ∪ V κ

1 . Let Z2 be the number of collisions of the two random walks on the nodes in
V2. Let Z∗ be the number of collisions of the two random walks on the node ẑ.

Let Z be the number of collisions of the two walks during the first ` time steps, i.e., Z =
Z1 + Z2 + Z∗. Using the Union bound we derive
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P [Z > 1 ] 6 P [Z1 > 1 ] + P [Z2 > 1 ] + P [Z∗ > 1 ]

6
E [Z1 ]

E [Z1 |Z1 > 1 ]
+

E [Z2 ]

E [Z2 |Z2 > 1 ]
+

E [Z∗ ]

E [Z∗ |Z∗ > 1 ]
. (18)

We have E [Z1 ] 6 `n
(

2
n

)2
, E [Z2 ] 6 ` n√

α′

(
2
n

)2
, and E [Z∗ ] 6 `

(
2
n

)2
, since maxu π(u) 6 2/n.

Conditioning on Z1 > 1 and since both random walks start from the stationary distribution, we
have, by Observation A.8, that the first meeting happens in the first `/2 time steps w.p. at least
1/2.

Consider E [Z1 |Z1 > 1 ]. Suppose the meeting occurred at node u ∈ V1. Let E1 be the event
that for u ∈ V1 we have Thit(u, ẑ) > n/c for both walks, where c > 0 is a large enough constant.
By Lemma 3.9.(ii), we have that P [ E1 ] > (1/2)2 = 1/4 due to independence of the walks. For any
t < n/c let p̂tu,· be the distribution of the random walk on G1 starting on u after t time steps under

the conditioning E1. Observe that
∑

v∈V1 p̂
t
u,v = 1 implying that

∑
v∈V1(p̂tu,v)

2 >
∑

v∈V1

(
1
|V1|

)2
=

1/|V1|. Hence, we get

E [Z1 |Z1 > 1 ] > E [Z1 |Z1 > 1, E1 ] · P [ E1 ] >
1

2
min
u∈V1

n/c−1∑

t=0

∑

v∈V1

(p̂tu,v)
2 >

1

4

n/c−1∑

t=0

1/|V1| =
√
n

4c
.

Using an exactly analogous analysis for Z2 we can upper bound E [Z2 |Z2 > 1 ] as follows:

E [Z2 |Z2 > 1 ] > E [Z2 |Z2 > 1, E2 ] · P [ E2 ] >
1

4
min
u∈V2

n/c−1∑

t=0

∑

v∈V2

(p̂tu,v)
2 >

1

4

n/c−1∑

t=0

1/|V2| =
√
α′

4c
,

where E2 is the event that for u ∈ V2 we have Thit(u, ẑ) > n/c for some large enough constant c.
Plugging everything into (18) and using ` = c′α′n yields

P [Z > 1 ] 6
E [Z1 ]

E [Z1 |Z1 > 1 ]
+

E [Z2 ]

E [Z2 |Z2 > 1 ]
+

E [Z∗ ]

E [Z∗ |Z∗ > 1 ]

6
`n
(

2
n

)2
√
n

4c

+
` n√

α′

(
2
n

)2
√
α′

4c

+
`
(

2
n

)2

1

6 o(1) + 16c · c′ + o(1) 6 1/2,

for any constant c′ ∈ (0, 1
33c ]. This finishes the proof of tmeet = Ω(α′n). In the remainder we prove

tmeet = O(α′n). Consider two independent walks (Xt)t>0 and (Yt)t>0 on G, both starting from
arbitrary nodes. Note tsep = tsep(G) 6 4tmix = O(n) by Lemma 3.12, and

p0 := P
[ {
Xtsep ∈ V2

}
∩
{
Ytsep ∈ V2

} ]
>


∑

u∈V2

(1− e)π(u)




2

= Ω
(

(1/
√
α′)2
)

= Ω (1/α′) .

We assume in the following that
{
Xtsep ∈ V2

}
∩
{
Ytsep ∈ V2

}
. We have tmix(G2) = O(1), by

Lemma A.2. Consider a random walk (X̃t)t>tsep restricted to G2 that starts at vertex Xtsep ∈ V2 and

let P̃ denote the transition matrix. Furthermore, in order to couple the random walk X̃t restricted
to G2 with a random walk in G, we will consider the random variable

Z̃ :=

tsep+n/c−1∑

t=tsep

∑

z∈N(ẑ)

1
X̃t=z

,
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for c = 32. Thus, for any z ∈ N(ẑ),

E
[
Z̃
]
6 tmix(G2) +

tsep+n/c−1∑

t=tsep+tmix(G2)+1

|N(ẑ)|(πG2(z) + dP̃ (t))

6 tmix(G2) + |N(ẑ)|(n/c) +O(1) 6 (1 + 1/e)
√
n/c.

Let γ := 8(1 + 1/e)
√
n/c. Then, by Markov’s inequality

P
[
Z̃ > γ

]
6 1/8.

Consider now the straightforward coupling between a random walk (Xt)t>tsep in G that starts

at vertex X̃tsep ∈ V2 and the random walk (X̃t)t>tsep restricted to G2 that starts at the same vertex.

Whenever the random walk X̃t is at a vertex in V2 \ {N(ẑ)}, then the random walk Xt makes the
same transition. If the random walk X̃t is at vertex z′ ∈ N(ẑ), then there is a coupling so that

the random walk Xt makes the same transition as X̃t with probability 2
√
n

2
√
n+2

. Conditional on the

event {Z̃ 6 γ} occurring, the random walk X̃t follows the random walk Xt up until step n/c with
probability at least

p1 :=

(
2
√
n

2
√
n+ 2

)γ
=

(
1− 1√

n+ 1

)γ
>

3

4
,

since the random walk X̃t has at most γ visits to N(ẑ). Consider now the random walk (Ỹt)t>tsep
using P̃ (i.e., restricted to V2) starting at Ytsep , i.e., Ỹtsep = Ytsep . By an analogous argument as

before we can couple (Yt)t>tsep and (Ỹt)t>tsep for n/c time steps w.p. at least p1.

Furthermore, after tsep(G2) = O(1) steps we can couple X̃t and Ỹt with nodes drawn indepen-
dently from πG2 . Hence,

p2 := P
[
X̃t+tsep(G2) = Ỹt+tsep(G2) | Ft

]
> (1− 1/e)2‖πG2‖22 >

√
α′

8n
.

Recall that α′ > 220tsep(G2)2 by definition. Therefore, the probability that X̃t and Ỹt do not meet
in the time-interval [tsep(G1), tsep(G1) + n/c− 1] is at most

p3 := (1− p2)bn/(tsep(G2)c)c 6 (1− p2)b2
10n/(

√
α′c)c 6 1/4.

Therefore, by the Union bound,

P
[
∪tsep(G1)+n/c−1
t=0 Xt = Yt

]
> p0 ·

(
1− P

[
Z̃ > γ

]
− 2 · (1− p1)− p3

)
= Ω(α′).

Repeating this O(1/p3) times and using the independence yields that the expected meeting time is
O((tsep(G1) + n/c− 1)/p3) = O(α′n) and the proof is complete.

Finally, we analyze the coalescing time of G. The proof idea is to consider 5
√
n random walks

starting from π and show that meetings only occur on V2 and that at least one random walk requires
Ω(
√
α′ · n log n) time-steps to reach V2.

Lemma 3.14. Let G be the graph described at the beginning of Section 3.4. We have tcoal(G) =
Ω(
√
α′ · n log n).
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Proof. Let ε = 1/5. We show that even the coalescing time of nε random walks requires Ω(
√
α′ ·

n log n) time-steps w.c.p.. Let R be a collection of nε independent, i.e., non-interacting, random
walks with starting positions drawn from the stationary distribution π. We define the following
three bad events:

(i) Let E1 be the event that any of the nε random walks meet on a node V \ V2 in
√
α′ · n log2 n

steps.

(ii) Let E2 be the event that fewer than nε/4 random walks start on copies of G1, i.e., on nodes
V \ (V2 ∪ ẑ).

(iii) Let E3 be the event that all random walks starting from a copy of G1 require fewer than
c ·
√
α′ · n log n time-steps for leaving V \ (V2 ∪ z∗) for some constant c > 0 to be determined

later.

In the following we show that P [ E1 ] = o(1), P [ E2 ] = o(1), and P
[
E3 | E2

]
< 1/e, which

implies, by union bound,

P
[
E1 ∩ E2 ∩ E3

]
> P

[
E1

]
− (1− P

[
E2 ∩ E3

]
) > 1− o(1)−

(
1− (1− o(1)) ·

(
1− 1

e

))
> 1− 1

2e
.

Conditioning on E1 ∩ E2 ∩ E3, none of the independent random walks meet on any node V \ V2

and hence they are indistinguishable from coalescing random walks until they reach V2. Therefore,
it is necessary for all random walks to reach G2 in order to coalesce. Hence, we conclude that
tcoal(G) = Ω(

√
α′ · n log n) yielding the lemma.

(i) We now prove P [ E1 ] = o(1). Consider any pair of the random walks R. Since both random
walks start from the stationary distribution, the probability for them to meet on a node on ẑ
in a fixed step t > 0 is at most O(1/n2).

Hence, by the Union bound over
(
nε

2

)
pairs of random walks and

√
α′ · n log2 n 6 n log3 n

steps, the probability of any two random walks meeting on ẑ is at most

p1 :=

(
nε

2

)
· n log3 n ·O(1/n2) = o(1),

since ε = 1
5 . Furthermore, the probability that no two walks start on the same copy of G1 is

at most p2 := nε · nε√
n

= o(1) by the Union bound.

Moreover, using a Chernoff bound together with Lemma 3.9.(ii), it follows that a random
walks visits the vertex z∗ at most 10 log3 n times during n log3 n steps with probability at
least 1−n−2. By the Union bound over all random walks, it follows that w.p. at least 1−n−1,
each random walk visits at most 10 log3 n different copies of G1, and by construction of G each
such copy is chosen uniformly and independently at random among G1

1, G
2
1, . . . , G

κ
1 . Therefore,

the probability that there exists a copy of G1 which is visited by at least two random walks
in n log3 n steps is at most

p3 := n−1 + nε(10 log3 n+ 1) · n
ε(10 log3 n+ 1)√

n
= o(1). (19)

Putting everything together, using union bound, yields P [ E1 ] 6 p1 + p2 + p3 = o(1).
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(ii) We now prove P [ E2 ] = o(1). The probability p for each random walk to start on a node of
V \ (V2 ∪ ẑ) is π(V \ (V2 ∪ ẑ)) > 1/2. For each of the random walks with label 1 6 i 6 nε

we define the indicator variable Xi to be one, if that random walk starts on V \ (V2 ∪ ẑ). Let
X =

∑nε

i=1Xi. We have E [X ] = nε · E [Xi ] > nε/2. Since the starting positions of the nε

random walks are drawn independently, by a Chernoff bound

P [ E2 ] = P
[
X 6

1

4
nε
]
6 P [X 6 E [X ] /2 ] 6 e−n

ε/16 = o(1).

(iii) We now prove P
[
E3 | E2

]
< 1/4. From Lemma 3.9.(ii) we get that w.p. at least 1/2 a

random walk starting at any node u ∈ V1 does not leave G1, i.e., does not reach z∗, after
c1n time-steps for some constant c1 > 0. It is easy to see that the number of visits to ẑ
required before the random walk hits G2 instead of returning to G1 is w.c.p. at least

√
α′/2;

this is because the fraction of edges from ẑ to G2 is
√
n/α′/(

√
n/α′+

√
n). Using a Chernoff

bound, we conclude that any random walk starting at G1 doesn’t hit G2 during the first
T = c1 ·

√
α′n/2 time-steps with constant probability p > 0. Thus the probability that a

random walk does not reach G2 after λ · T time-steps is at least pλ, for any integer λ > 1.
Setting λ = ε · log(1/p) · log(n/4), the probability that all of the at least 1

4n
ε random walks

starting from G1 reach G2 within λ · T = Ω(
√
α′ · n log n) steps is

P
[
E3 | E2

]
6 (1− pλ)

1
4
nε 6 1/e,

completing the proof.

The following lemma establishes a bound on the average hitting time.

Lemma 3.15. Let G be the graph described at the beginning of Section 3.4. We have tavg-hit =
Ω(n3/2)

Proof. Consider a random walk that starts from an arbitrary vertex u ∈ V . By Lemma 3.9.(ii),
every time a vertex zi is visited, with probability at least c > 0 it takes Ω(n) time-steps to visit
another vertex zj , j 6= i. Using a Chernoff bound, it follows that with probability larger than 1/2 it
takes at least Ω(n3/2) time-steps to visit at least half of the nodes in {z1, z2, . . . , zκ}. By symmetry,
it follows that for every vertex in a copy of G1 there are Ω(n) vertices to which the hitting time is
Ω(n3/2). Thus, by symmetry, tavg-hit =

∑
u,v∈V π(u) · π(v) · thit(u, v) = Ω(n2 1

n2n
3/2) = Ω(n3/2).

4 Bounding tcoal = O(thit) for Almost-Regular Graphs

As mentioned in the introduction, the bound on tcoal in terms of thit will be based on the combination
of two reduction results; the first result reduces the number of walks from O(n) to O(log3 n), while
the second one reduces the number of walks from O(log3 n) to (∆/d)100; both taking O(thit) time.
In Section 4.1, we first develop concentration inequalities that will be needed for these reductions.
Then in Section 4.2, we present the first and technically simpler reduction to O(log3 n) walks,
which is stated in Theorem 4.3. The proof basically combines the concentration inequalities with
our well-known formula (1).

The derivation of the second reduction is done in Section 4.3. It is based on identifying nearly-
regular and dense subsets S, which will contain enough vertices visited by a random walk, even if

33



the walks only run for o(thit) steps (Lemma 4.7). The proof of this Lemma 4.7 also rests on the
concentration inequalities we derive. The second reduction is then completed by Lemma 4.8, which
uses the dense subsets S provided by Lemma 4.7 in order to prove that random walks are likely to
collide. A more detailed proof outline can be found at the beginning of Section 4.3.

4.1 Concentration Inequalities for Random Walks

In this part, we derive several concentration inequalities for random walks that are new to the
best of our knowledge. We point out that existing concentration inequalities tend to fail in our
setting, since the events we are considering (like visits to a certain vertex or expected collisions
with an unexposed walk) may only appear a small number of times during thit steps. Therefore,
we have to develop new concentration inequalities that are parameterized by thit. Although the
derivation is fairly elementary, the bounds are quite general and may complement existing bounds
that are usually parameterized by the mixing time [CLLM12; Lez89]. In particular, our bounds
are most useful when tmix and thit are close, which is precisely the challenging regime for proving
tcoal = O(thit). One limitation though is that our bounds only work for large deviations exceeding
the expectation by a multiplicative factor.

Lemma 4.1. Let f : V → [0, 1] be any function over the vertices and f =
∑

u∈V f(u) · π(u). Then
for any random walk starting from an arbitrary vertex X0 and any number of steps T > 0,

E

[
T−1∑

t=0

f(Xt)

]
6 8 · T+ · f,

where T+ = max{thit, T}. Furthermore, for any integer λ > 1,

P

[
T−1∑

t=0

f(Xt) > λ ·
(
16 · T+ · f + 1

)
]
6 2−λ.

Moreover, suppose we have time-dependent functions, ft : V → [0, 1], 0 6 t 6 T , where T may be
any integer. Further assume that there is a universal bound Υ > 0 so that for any 1 6 s 6 T and
any w ∈ V ,

E

[
T−1∑

t=s

ft(Xt) | Xs = w

]
6 Υ.

Then, again for any integer λ > 1,

P

[
T−1∑

t=s

ft(Xt) > λ · (2Υ + 1)

]
6 2−λ

Proof. We first prove that for all pairs of states u, v ∈ V and any T > thit that,

T−1∑

t=0

ptu,v 6 8 · T+ · π(v).

Suppose for a sake of contradiction that
∑T−1

t=0 ptu,v > 8 · T+ · π(v). Then, for an arbitrary vertex

w ∈ V , by Markov’s inequality, P [Thit(w, u) 6 2 thit ] > 1
2 , where we recall that Thit(w, u) is the
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first time step at which a random walk starting at w hits u. We will use Nt(u, v) =
∑t−1

i=0 1Xt=v to
denote the number of visits to v up step t− 1 starting at u. Therefore,

E [N3T+(X0, v) | X0 = w ] > P [Thit(w, u) 6 2 thit ] · E [NT+(X0, v) | X0 = u ]

>
1

2
·
T−1∑

t=0

ptu,v > 4 · T+ · π(v).

Since this holds for every vertex w ∈ V , we conclude E [N3T+(X0, v) | X0 ∼ π ] > 4T+ · π(v).
However, by definition of the stationary distribution, we also have E [N3T+(X0, v) | X0 ∼ π ] =
3T+ · π(v), which yields the desired contradiction. Now the first statement of the lemma follows
simply by linearity of expectations:

E

[
T−1∑

t=0

f(Xt) | X0 = w

]
= E

[
T−1∑

t=0

∑

u∈V
1Xt=u · f(u) | X0 = w

]

=
∑

u∈V

T−1∑

t=0

f(u) · E [ 1Xt=u | X0 = w ]

=
∑

u∈V
f(u) ·

T−1∑

t=0

ptw,u

6
∑

u∈V
f(u) · 8T+ · π(u) = 8 · T+ · f.

We now prove the second statement. By Markov’s inequality, for every w ∈ V ,

P

[
T−1∑

t=0

f(Xt) > 16 · T+ · f | X0 = w

]
6

1

2
.

Hence with τ := min
{
s ∈ N :

∑s
t=0 f(Xt) > 16 · T+ · f

}
we have for every w ∈ V ,

P [ τ 6 T − 1 | X0 = w ] 6
1

2
.

Since f is bounded by 1, we get
∑τ

t=0 f(Xt) 6 16 · T+ · f + 1 and therefore,

P

[
T−1∑

t=0

f(Xt) > λ · (16 · T+ · f + 1) | X0 = w

]
6

(
max
v∈V

P [ τ 6 T − 1 | X0 = v ]

)λ
6 2−λ.

The third statement is derived in exactly the same way we proved the second statement.

The third statement of Lemma 4.1 is very useful in that it can be used the following concentra-
tion inequality on Z̃. Notice that the variable random variable Z̃ is defined using only one random
walk (Xt)t>0, but it can be viewed as the expected number of collisions on the vertex set S of
the random walk (Xt)t>0 with another (unexposed) random walk (Yt)t>0, starting from the same
vertex u.

Lemma 4.2. Let S be any subset of vertices such that the degree of any pair of vertices in S differs
by at most a factor of γ. Consider any random walk (Xt)t>0 that starts at an arbitrary vertex
u ∈ S, and for any T > 0

Z̃ :=
T−1∑

t=0

1Xt∈S · ptu,Xt .
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Then with T+ = max{thit, T} it holds that

E
[
Z̃
]
6 16γ · T+ ·max

w∈S
π(w) =: Υ.

Furthermore, for any λ > 1,

P
[
Z̃ > λ · (2Υ + 1)

]
6 2−λ.

Proof. First note that Z̃ is a random variable over the walk (X0 = u,X1, X2, . . . , XT−1) with u ∈ S.
Let us first upper bound the expectation of Z̃:

E
[
Z̃
]
6

T−1∑

t=0

∑

v∈S
ptu,v · ptu,v 6 γ ·

T−1∑

t=0

∑

v∈S
ptu,v · ptv,u 6 γ ·

T−1∑

t=0

p2t
u,u 6 8γ · T+ · π(u),

where the second inequality is due to reversibility, i.e., ptu,s ·π(u) = pts,u ·π(s) and the fact that the
degrees in S differ by a factor of at most γ, and the fourth inequality uses p2t

u,u 6 π(u) which hold
since ptu,u is non-decreasing (Lemma A.1) and the first statement of Lemma 4.1.

Furthermore, suppose now that we condition on the walk (Xt)t>0 being at an arbitrary vertex
w ∈ S at step s, where 1 6 s 6 T − 1. Then the remaining contribution towards Z̃ is at most

E

[
T−1∑

t=s

1Xt∈S · ptu,Xt | Xs = w

]
=

T−1∑

t=s

∑

v∈S
pt−sw,v · ptu,v

6 γ ·
T−1∑

t=s

∑

v∈S
pt−sw,v · ptv,u

6 γ ·
T−1∑

t=s

∑

v∈V
pt−sw,v · ptv,u

= γ ·
T−1∑

t=s

p2t−s
u,w

6 γ ·
2T−2∑

t=0

ptu,w

6 γ · 16 · T+ · π(w) 6 Υ,

where the penultimate inequality is due to the first statement of Lemma 4.1, applied to the number
of visits to w of a random walk of length T , i.e., f(v) := 1v=w. Finally, by the third statement of
Lemma 4.1, applied to the functions ft(v) := 1v∈S · ptu,v, 0 6 t 6 T − 1,

P
[
Z̃ > λ ·

(
32γ · T+ ·max

w∈S
π(w) + 1

)]
6 2−λ.

4.2 Reducing the Walks from n to O(log3 n) in O(thit)

We now present our first reduction result that reduces the number of walks from n to O(log3 n) in
O(thit) time.
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Theorem 4.3. Let G = (V,E) be an arbitrary, possibly non-regular, graph. Then after O(thit)
steps, the number of walks can be reduced from n to O(log3 n) with probability at least 1− n−1.

Thanks to tmeet 6 4thit (Proposition B.9) and tcoal(S0) = O(tmeet log |S0|) (Proposition 3.4),
the result of Theorem 4.3 implies, among other things, a bound of tcoal = O(thit · log logn) for any
graph. The proof idea is as follows. First, we use the concentration inequalities of the previous
section to show for a given random walk (Xt)t>0, there exists w.h.p. a set S′ = S′((Xt)t>0) of nodes
where (i) all nodes have up to a factor of 2 the same degree, (ii) the stationary mass of that set
is at least π(S′) > 1/ log3 n, and (iii) the nodes S′ receives at least Ω(thit/ log n) visits during the
interval [tsep, tsep + 2thit]. From this we will be able conclude that any random walk collides with
(Xt)t>0 w.p. at least p = Ω(1/ log2 n). Second, we consider the process Pimm of Section 3.1 and
make use of the majorization given by Proposition 3.1. We divide the walks into two sets G1 and
G2 with |G1| = Θ(log3 n). We show, using the first part, that w.h.p. each walks (Xt)t>0 of G2 will
vanish due to its frequent visits to S′ and the fact that each independent random walk (Yt)t>0 of
G1 intersects with (Xt)t>0 on S′ w.p. at least p: Using independence, the probability for each walk
of G2 to survive is (1− p)|G1| 6 n−2. The claim then follows by the Union bound.

Proof of Theorem 4.3. First consider any random walk (Xt)
tsep+2thit−1
t=0 , that reaches an arbitrary

vertex u at time tsep. Next divide all vertices in V into buckets Si = {v ∈ V : deg(u) ∈ [2i−1, 2i)},
where 1 6 i 6 log2 n. For any bucket i with π(Si) 6 1/ log3 n, let Zi :=

∑tsep+2thit−1
t=tsep 1Xt∈Si count

the number of visits to Si. Then by the first statement of Lemma 4.1, E [Zi ] 6 16thit · π(Si) 6
16thit/ log3 n. By the second statement of Lemma 4.1, it follows that

P [Zi > thit/(2 log2 n) ] 6 P
[
Zi > log1.5 n · (32thit/ log3 n+ 1)

]
6 2− log1.5 n 6 n−2/(2 log2 n),

where we used the fact that thit > n (Lemma A.7). Hence with

S :=
⋃

16i6log2 n :

π(Si)>1/ log3 n

Si,

it follows by the Union bound that S gets at least thit − log2 n · thit/(2 log2 n) = thit/2 visits with
probability at least 1− n−2/2.

Let us now consider any Si with π(Si) > 1/ log3 n, and define

Z̃i(s) :=

tsep+2thit−1∑

t=s

1Xt∈Si · pt−sXs,Xt
, for any s ∈ [tsep, tsep + 2thit − 1].

Notice that by Lemma 4.2, κ = 2, setting Υ = 16 · κ · max{thit, 2thit − 1 − s} · maxw∈Si π(w) 6
64thit ·maxw∈Si π(w) we have

P
[
Z̃i(s) > 520 log n · thit ·max

w∈Si
π(w)

]
6 P

[
Z̃i(s) > 8 log n(2Υ + 1)

]
6 n−8,

having used the fact that thit > 1/minv∈V π(v) due to Lemma A.7. Since thit = O(n3) and there
are at most log2 n buckets, by the Union bound,

P




⋃

16i6log2 n :

π(Si)>1/ log3 n

⋃

tsep6s6tsep+2thit−1

{
Z̃i(s) > c log n · thit ·max

w∈Si
π(w)

}

 6 n−2/2.
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Hence by the Union bound, with probability at least 1−n−2, the trajectory (x0, x1, . . . , xtsep+2thit−1)

of (Xt)
tsep+2thit
t=0 is good, i.e., its trajectory (i) makes at least thit/2 visits to S during the steps

[tsep, tsep + 2thit] and (ii) all Z̃i(s) are bounded by c log n · thit ·maxw∈Si π(w).

In the following, condition on (Xt)
tsep+2thit−1
t=0 being a good random walk, and let us denote by

(x0, x1, . . . , xtsep+2thit−1) the deterministic trajectory. Since S gets at least thit/2 visits in the time-
interval [tsep, tsep + 2thit−1], by the pigeonhole principle, there must be at least one bucket Sj with
π(Sj) > 1/ log3 n so that bucket Sj gets at least (1/8)·thit/ log n visits in that time-interval. We shall

now prove that any other random walk (Yt)
tsep+2thit−1
t=0 , starting from an arbitrary vertex w ∈ V ,

collides with this deterministic trajectory on a vertex in Sj in the time-interval [tsep, tsep + 2thit−1]
with probability at least Ω(1/ log2 n). To this end, let us define

Z :=

tsep+2thit−1∑

t=tsep

1xt∈Sj · 1Yt=xt .

Since for any t > tsep we have ptw,v >
1
2 · π(v) for any pair of vertices w, v ∈ V , it follows that

E
[
Z | (x0, x1, . . . , xtsep+2thit−1)

]
>

tsep+2thit−1∑

t=tsep

∑

v∈Sj

1xt=v · ptw,v

>
∑

v∈Sj

tsep+2thit−1∑

t=tsep

1xt=v ·
1

2
· π(v)

>
1

2
· min
w∈Sj

π(w) ·
∑

v∈Sj

tsep+2thit−1∑

t=tsep

1xt=v

>
1

16
· min
w∈Sj

π(w) · 1

log n
· thit,

where the last inequality holds because the deterministic path (x0, x1, . . . , xtsep+2thit−1) makes at
least (1/8) · thit/ log n visits to Sj .

Furthermore, since the deterministic walk (x0, x1, . . . , xtsep+2thit−1) satisfies invariant (ii), con-
ditional on Yt having its first collision with Xt at step s on a vertex xs ∈ Sj ,

E
[
Z | (x0, x1, . . . , xtsep+2thit−1), Z > 1

]
6 max

tsep6s6tsep+2thit−1

tsep+2thit−1∑

t=s

1xt∈Sj · pt−sxs,xt

= O(log n · thit · max
w∈Sj

π(w)),

by part (ii) of the definition of a good walk. Combining our last two bounds yields

P
[
Z > 1 | (x0, x1, . . . , xtsep+2thit−1)

]
=

E
[
Z | (x0, x1, . . . , xtsep+2thit−1)

]

E
[
Z | (x0, x1, . . . , xtsep+2thit−1), Z > 1

]

= Ω(1/ log2 n) =: p (20)

To complete the proof of the theorem, divide the k > 2/p · lnn random walk arbitrarily into
two disjoint groups G1 and G2 such that |G1| = 2/p · lnn. We will analyze the Pimm process defined
in Section 3.1 in which random walks from G1 are immortal. By making use of the majorization
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given in Proposition 3.1, to show the claim it suffices to bound the time it takes in Pimm for all
walks of G2 be eliminated.

By the above argument, any random walk (Xt)
tsep+2thit−1
t=0 in G2 will be good with probability

at least 1 − n−2. Hence by Markov’s inequality, all trajectories of the random walks in G2 are
good with probability at least 1 − |G2|n−2. Conditioning on this event, (20) shows that any from
the random walks in G1 collides with the trajectory of any fixed good random walk in G2 in the
time-interval [tsep, tsep + 2thit − 1] with probability at least p. By independence of these events

across random walks in G1, random walk (Xt)
tsep+2thit−1
t=0 is not eliminated with probability at most

(1− p)|G1| = (1− p)2 1
p
·lnn 6 n−2.

Note, that we neglected the fact that random walks of G2 can eliminate each other, which only
further decreases the probability of a walks of G2 to survive. Combining everything, and using Union
bound, it follows that with probability at least 1−n−1 all random walks in G2 are eliminated. The
claim follows by noting that the number of steps used is tsep + 2thit = O(tmix + thit) = O(thit).

4.3 Reducing the Walks from log4 n to (∆/d)O(1) in O(thit)

Theorem 4.4. Let G = (V,E) be any graph with maximum degree ∆ and average degree d. Then
the expected time to reduce the number of walks from log4 n to (∆/d)100 is at most O(thit).

4.3.1 Proof Overview

In comparison with Theorem 4.3, the reduction in Theorem 4.4 is more subtle, as there might be a
sub-logarithmic number of random walks preventing us from using the simple bucketing-argument
into “nearly-regular” partitions used in Theorem 4.3. Furthermore, Theorem 4.3 achieved the
reduction in just a single phase of Θ(thit) steps: All random walks have w.h.p. a distribution of
visits to nodes which is reasonably close to the expectation of visits to these nodes when starting
from the stationary distribution.

Here however, we are only able to prove an “exponential” progress and consider periods which
can be much shorter than the mixing time. This means that we need to cope with random walks
whose distribution may be far from the stationary distribution. Specifically, if there are k random
walks left, we will analyze a phase of length ≈ thit/κ, with k = κ100, and show that a constant
fraction of random walks will be eliminated. To account for the fact that the random walks are
not mixed, we will identify certain “dense” subsets D0 having the crucial property that each node
in D0 has a sufficiently large stationary mass and all nodes together have a stationary mass which
is close to 1.

We then show the existence of a subset of D1(i) ⊆ D0 which random walk i will pay enough
visits to within thit/κ steps (see first part of the proof of Lemma 4.7). This is derived via our new
concentration inequality (Lemma 4.1) to show that (i) random walk i does not spend too many
steps outside D0 and (ii) most vertices do not receive much more visits than predicted by the
stationary distribution. Thus we end up in a favorable situation where for most walks 1 6 i 6 k,
we have a subset D1(i) ⊆ D0 with |D1(i)| > 2n/κ8. Since we have ≈ k = κ100 of such walks, an
overwhelmingly large fraction of these subsets S(i), 1 6 i 6 k, must overlap.

Unfortunately, we are still not done since in order to reduce the number of random walks, we
also need to consider when the visits to D1(i) occur. Specifically, if random walk i makes a visit to
a vertex u ∈ D1(i) at time, say, t, then we need to ensure that there are enough other random walks
j which could potentially also visit vertex u at time t. To ensure this, we will discard “surprising”
visits, which are visits to vertices when the probability for this to happen at this step or before is
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at most κ−23. It is worth pointing out that the property of a visit to u being surprising, depends
not only on the vertex but also on the start vertex of the walk. The second part of the proof of
Lemma 4.7 deals with this issue and shows that for most walks, there is a subset D2(i) ⊆ D1(i)
with |D2(i)| > n/κ8 containing only vertices which receive enough “unsurprising” visits.

Equipped with these subsets D2(i), we regard the “unsurprising” visits as a balls-into-bins
configuration, where each ball on a bin (vertex) is associated to a walk i which may visit this vertex
(we refer to Figure 5 for an illustration). Through a series of counting arguments Lemma 4.8, we
establish that for most random walk i there is a subset D4(i) ⊆ D2 of vertices, so that each vertex
receives enough visits and for each such visit at some time t, there are sufficiently many other walks
j which have a probability of at least κ−23 each to visit the same vertex at time t.

After all these preparations, we analyze the coalescing process and achieve the desired reduction
in the number of the random walks in Lemma 4.9. Similarly to previous analyses, we use a division
of random walks into groups G1 and G2. The roles of G1 and G2 are as before; walks in G1 are
merely used to eliminate walks in G2. This time, however, the division into G1 and G2 is completely
uniformly at random, in particular, this means that G1 and G2 are roughly of the same size. We
establish that for most fixed random walks 1 6 i 6 k, conditional on being in group G2, there is a
constant probability of picking a trajectory that will likely lead to an intersection with any of the
other k − 1 unexposed random walk.

Combining the two steps of the proof, the structural result in Lemma 4.7 with the probabilistic
analysis in Lemma 4.8, it immediately follows that the number of walks can be reduced by a
constant factor within O(thit/κ) steps, yielding Theorem 4.4.

4.3.2 Definitions and Lemmas required to prove Theorem 4.4

Before giving the formal proof of Theorem 4.10, we introduce additional notation. Recall that k is
the number of random walks at a certain time, w.l.o.g., say t = 0. Consider a fixed random walk
(Xt)

∞
t=0 with label 1 6 i 6 k, where k = κ100 that is run for

τ := 4thit/κ

steps, and starts at an arbitrary vertex X0 = ui. Since we seek to reduce the number of random
walks to (∆/d)100, we assume the following.

Assumption 4.5. Throughout this section we assume k1/100 = κ > max{210,∆/d}.

Note that if κ 6 max{210,∆/d} the claim follows immediately from Proposition 3.4. We define
a “dense” subset of nodes as

D0 :=
{
v ∈ V : π(v) > 1/(nκ2)

}
.

Clearly,

π(D0) > 1− |V \D0| · 1/(κ2n) > 1− 1

κ2
. (21)

π(u) 6 πmax 6
∆

nd
6 k1/100 · 1

n
= κ · 1

n
, (22)

where the penultimate inequality holds since k1/100 > ∆/d by assumption. Hence the degree of any
two vertices in D0 differ by at most a factor of κ3.
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Before proceeding further, we introduce another piece of notation. For any random walk 1 6
i 6 k denoted by (Xt)t>0, we call a time-step s ∈ [0, τ − 1] is bad if Xs ∈ D0 and additionally,

τ−1∑

t=s

1Xt∈D0 · pt−sXs,Xt
> 16 · κ10 · thit/n.

Intuitively, a time-step s is bad, if the expected number of collisions for another random walk
starting at vertex Xs ∈ D0 at step s with the walk (Xs, Xs+1, . . .) is too large.

Lemma 4.6. Consider a random walk (Xt)
τ−1
t=0 of length τ = 4thit/κ. Then with probability at least

1 − 2−κ, there are at most τ · 2−κ bad time-steps t ∈ [0, τ ]. Consequently, for a collection of κ100

random walks with κ > 210, all of these walks have at most τ · 2−κ bad time-steps t ∈ [0, τ − 1] w.p.
at least 1− 1/κ.

Proof. First, let us fix any step s ∈ [0, τ − 1], and following the notation of Lemma 4.2, let

Z̃(s) :=
τ−1∑

t=s

1Xt∈D0 · pt−sXs,Xt
.

Then, since τ − s 6 thit, by Lemma 4.2, for any vertex u ∈ D0,

E
[
Z̃(s) | Xs = u

]
6 8κ3 · thit · max

w∈D0

π(w) 6 8κ4 · thit/n =: Υ.

Since thit > n by Lemma A.7, we have Υ > 2 and the concentration inequality in Lemma 4.2
implies

P
[
Z̃(s) > 16 · κ10 · thit/n

]
6 P

[
Z̃(s) > 2κ · (2Υ + 1)

]
6 2−2κ.

Now let B denote the number of bad time-steps, i.e.,

B :=
∣∣∣
{

0 6 s 6 τ − 1: Z̃(s) > 16 · κ10 · thit/n
}∣∣∣ .

Then, by linearity of expectation

E [B ] =
τ−1∑

s=0

P
[
Z̃(s) > 16 · κ10 · thit/n

]
6 τ · 2−2κ,

and a simple application of Markov’s inequality implies the first part of the claim. For the second
part we simply take Union bound over all κ100 walks and using that 1− κ100/2κ > 1− 1/κ.

Let Nt(i, v) denote the number of visits of the random walk i to v within t time-steps. Let

D1(i) :=
{
v ∈ D0 : Nτ (i, v) > 2τ/κ4 · π(v)

}
,

i.e., D1 are all vertices v ∈ D0 that are visited at least 2τ/κ4 ·π(v) times before time-step τ . Notice
that D1 is a (random) set that depends on the realization of the walk.

Furthermore, let
t(i, v) := min

{
t : P [Thit(ui, v) 6 t ] > κ−23

}
.

Basically t(i, v) is the “smallest” step t so that the probability that random walk i visits vertex v
at step t or earlier is bounded below by κ−23. Note that t(i, v) is a deterministic integer that does
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not depend on the realization of the walk. With reference to our proof outline, we regard any visit
before t(i, v) as a “surprising” visit, while visits at step t(i, v) or later as an “unsurprising” visit.

Let D2(i) be the set of vertices v that get at least τ/κ4 ·π(v) visits between the time steps t(i, v)
and τ ; in symbols

D2(i) :=
{
v ∈ D1(i) : Nτ (i, v)−Nt(i,v)(i, v) > τ/κ4 · π(v)

}
. (23)

We now to state a structural lemma, providing lower bounds on the size of D2(i). Recall that
D2(i) is a subset of the “dense” set D0 that has a large stationary mass and contains only vertices
with sufficiently high degree. This “projection” is not required on regular graphs, where we could
simply work with all vertices, i.e., D0 = V . However, for non-regular graphs, the projection on D0

is essential since on the set D0, the random walk will behave sufficiently similar to a random walk
on a regular graph.

Lemma 4.7. Let G = (V,E) be an arbitrary graph and let κ > 210 be any integer. Consider any
random walk (Xt)t>0 with label i. Then, we have that |D2(i)| > n/κ8 w.p. at least 1− 6/κ.

Proof of Lemma 4.7. First we bound the number of visits of walk i to V \D0. To this end, let C̃
be the hits from i to the vertices which are not in D0 before time step τ , in symbols,

C̃ :=
τ−1∑

t=0

1Xt 6∈D0 .

By Lemma 4.1 and using τ 6 thit, we derive

E
[
C̃
]
6 8 max{thit, τ} · π(V \D0) 6 8thit/κ

2 = 2τ/κ,

where we used the fact that π(V \D0) 6 1/κ2 by (21). Hence by Markov’s inequality,

P
[
C̃ > τ/2

]
6 P

[
C̃ > κ/4 · E

[
C̃
] ]

6
4

κ
. (24)

Next for any fixed vertex v ∈ V , we know that for any λ > 1 the probability that the random
walk makes more than 32λ · thit · π(v) visits to v is

P [Nτ (i, v) > 32λ · thit · π(v) ] 6 P [Nτ (i, v) > λ · (16 · thit · π(v) + 1) ] 6 2−λ, (25)

where we used the facts that thit · π(v) > 1 (Lemma A.7) and the second statement of Lemma 4.1.
Recall that Nt(i, v) denotes the number of visits of the random walk i to v within t time-steps.
Define

B :=
∑

v∈V
1Nτ (i,v)>κ2·thit·π(v) ·Nτ (i, v).

Then
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E [B ] =
∑

v∈V

∞∑

j=κ2·thit·π(v)

j · P [Nτ (i, v) = j ]

6
∑

v∈V

∞∑

σ=κ2

(σ + 1) · thit · π(v) ·
(σ+1)·thit·π(v)−1∑

j=σ·thit·π(v)

P [Nτ (i, v) = j ]

6
∑

v∈V

∞∑

σ=κ2

(σ + 1) · thit · π(v) · P [Nτ (i, v) > σ · thit · π(v) ]

=
∑

v∈V
thit · π(v) ·

∞∑

σ=κ2

(σ + 1) · P [Nτ (i, v) > σ · thit · π(v) ]

(25)

6
∑

v∈V
thit · π(v) ·

∞∑

σ=κ2

2σ · 2−σ/32

= thit ·
∞∑

σ=κ2

2σ · 2−σ/32

6 2thit · κ−10 6 τ · κ−9,

where we used that κ > 210 and
∑

v∈V π(v) = 1. Hence, by Markov’s inequality,

P
[
B > τ · κ−8

]
6

1

κ
. (26)

Suppose now that
{
C̃ 6 τ/2

}
and

{
B 6 τ · κ−8

}
both occur. Conditioning on B 6 τ/κ8 and

C̃ 6 τ/2, we will show by pigeonhole principle

|D1(i)| > 2n/κ8. (27)

Suppose for the sake of contradiction that |D1(i)| < 2n/κ8. Then, using πmax 6 κ/n by (22), we
have that the total number of visits to nodes in D is at most
∑

u∈D0

Nτ (i, u) =
∑

u∈D0\D1(i)

Nτ (i, u) +
∑

u∈D1(i)

Nτ (i, u)

6
∑

u∈D0\D1(i)

2π(u) · τ/κ4 +
∑

u∈D1(i) : Nτ (i,u)6κ2·thit·π(u)

Nτ (i, u) +
∑

u∈D1(i) : Nτ (i,u)>κ2·thit·π(u)

Nτ (i, u)

6
∑

u∈D0\D1(i)

2π(u) · τ/κ4 + |D1(i)| · max
u∈D0

π(u) · thit · κ2 +B

6 2(|D0| − |D1(i)|) · max
u∈D0

π(u) · τ/κ4 + |D1(i)| · max
u∈D0

π(u) · thit · κ2 +B

6 2(|D0| − |D1(i)|) · (κ/n) · τ/κ4 + |D1(i)| · (κ/n) · thit · κ2 +B

< 2(|D0| − |D1(i)|) · τ/(n · κ) + 2n/κ8 · (κ/n) · thit · κ2 +B

6 2τ/κ+ 2n/κ8 · (κ/n) · τ · κ · κ2 + τ/κ8

= 2τ/κ+ τ/κ2 + τ/κ8 6
1

2
τ.

Thus, C̃ > τ − 1
2τ = 1

2τ which is a contradiction to the assumption that the event
{
C̃ 6 τ/2

}

occurs.
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Finally, we will upper bound the number of “surprising” visits, which are visits to vertices that
happen too early. That is, we will upper bound the number of visits to vertices v before time t(i, v);
in symbols,

B̃ :=
∑

v∈V

∑

06t<t(i,v)

1Xt=v.

By definition of t(i, v), with probability at most κ−23 the random walk visits the vertex v before

t(i, v). Conditional on this event occurring, the expected number of visits is at most
∑t(i,v)

t=0 ptv,v.
Hence by linearity of expectations,

E
[
B̃
]
6
∑

v∈V


κ−23 ·

t(i,v)−1∑

t=0

ptv,v.




Since t(i, v) 6 2thit, it follows by the first statement of Lemma 4.1 that
∑t(i,v)−1

t=0 ptv,v 6 16thit ·π(v)
and hence

E
[
B̃
]
6 κ−23 · 16thit ·

∑

v∈V
π(v) 6 τ/2 · κ−16,

and thus by Markov’s inequality,

P
[
B̃ > τ/2 · κ−15

]
6 P

[
B̃ > κ · E

[
B̃
] ]

6
1

κ
. (28)

Hence, the total number of visits to vertices in V before time t(i, v) is at most τ/2 · κ−15 with
probability at least 1− 1/κ.

Hence, by (24), (26), and (28) and by taking Union bound, we have

p := P
[{

C̃ > τ/2
}
∩
{
B > τ · κ−8

}
∩
{
B̃ > τ/2 · κ−15

}]

> 1− P
[{

C̃ > τ/2
}
∪
{
B > τ · κ−8

}
∪
{
B̃ > τ/2 · κ−15

}]

> 1− 6

κ
.

In particular, w.p. p and by (27), we have |D1(i)| > 2n/κ8. Observe that, by definition of the sets,
each vertex v ∈ D1(i) \D2(i) is visited at least 2τ/κ4 · π(v)− τ/κ4 · π(v) = π(v) · τ/κ4 times before
time-step t(i, v) and thus,

|D2(i)| = |D1(i)| − |D1(i) \D2(i)| > |D1(i)| − B̃

minw∈S π(w) · τ/κ4
>

2n

κ8
− τ/2 · κ−15

1/(κ3n) · τ/κ4
>

n

κ8
.

The next step in the proof is to elaborate on the sets D2(i) from Lemma 4.7 in order to analyze
collisions on this set. Before doing this, we need to introduce additional notation in order to define
a balls-into-bins configuration.

Let us denote the random walk with label i by (Xi
t)
τ
t=0. The random walk may start from an

arbitrary vertex Xi
0 = ui and is run for τ = 4thit/κ steps. Recall

t(i, v) := min
{
t : P [Thit(ui, v) 6 t ] > κ−23

}
.

44



v1 v2 v3 v4 v5 v6

(1, 4)

(2, 4)

(3, 5)

(4, 2)

(1, 3)

(3, 3)

(4, 5) (3, 2)

(1, 3)

(4, 3)

(2, 4)

(4, 4)

(2, 5)

(1, 6)

i t(i, v1) t(i, v2) t(i, v3) t(i, v4) t(i, v5) t(i, v6)

1 4 3 > τ 3 6 > τ

2 4 > τ > τ 4 5 > τ

3 5 3 > τ 2 > τ > τ

4 > τ 2 5 3 4 > τ

Figure 5: Illustration of the balls-into-bins configuration of k = 4 walks labeled 1, 2, 3, 4 into 6
vertices v1, v2, . . . , v6. In the illustration, a ball (i, t(i, u)) on bin u is good if there is at least one
other ball with t(i, u) < t(j, u) (or t(i, u) = t(j, u) and i < j). For each of the random walks 1, 2
and 3, there are at least two good balls, while for random walk 4 only one ball is good.

We now consider the following balls-into-bins configuration, where we emphasize that the balls-
into-bins configuration is completely deterministic (for fixed start vertices at time 0) and does not
depend on the realization of any of the random walks. Every vertex in V corresponds to a bin. For
every walk j and u ∈ D0(j), we place deterministically a ball with label (j, t(j, u)) into bin u. We
call a ball with label (j, t(j, u)) in bin u bad if there are fewer than κ55 other balls i in the same bin
such that either (i) t(i, u) < t(j, u) or (ii) t(i, u) = t(j, u) and i < j. Next define a random walk j
to be bad if at least n/κ9 bad balls have label j and otherwise we call j good. Since there are at
most κ55 · n bad balls, it follows that the number of bad walks j ∈ {1, . . . , k} is at most

κ55 · n
n/κ9

= κ64. (29)

In the following, we will focus on the κ100 − κ64 good walks and ignore all other walks. Recall
that any fixed good walk i has at most n/κ9 bad balls. We now make another central definition of
a random subset:

D4(i) :=
{
v ∈ D0 : the ball (i, t(i, v)) is good and NG(i, v) > τ/(κ9n)

}
,

where NG(i, v) denotes the number of times v ∈ D0 is visited by walk i on a good time step in the
interval [t(i, v), τ − 1]. Intuitively, every such visit of a random walk i to a vertex v ∈ D4(i) at a
time t is very helpful for the following reason: Since the ball (i, t(i, v)) is good, there are at least
κ55 other random walks j 6= i with t(j, v) 6 t(i, v) 6 t, and thus each walk j has a probability of
at least κ−23 to visit vertex v at a time t(j, v) and potentially collide with random walk i at time
t later. The next lemma provides a lower bound on the size of |D4(i)|.
Lemma 4.8. Consider any random walk (Xt)t>0 with label i. Then P

[
|D4(i)| > n/(4κ8)

]
>

1− 8/κ.

Proof. Recall that, (see (23))

D2(i) =
{
v ∈ D1(i) : Nτ (i, v)−Nt(i,v)(i, v) > τ/κ4 · π(v)

}
.

Let us now define
D3(i) = {v ∈ D2(i) : the ball (i, t(i, v)) is good }. (30)

By Lemma 4.7, we have P
[
|D2(i)| > n/κ8

]
> 1 − 6/κ. In the following assume that the event{

|D2(i)| > n/κ8
}

occurs. Since by definition a good walk has fewer than n/κ9 bad balls, we have

|D3(i)| = |D2(i)| − number of bad balls of i > n/κ8 − n/κ9 >
n

2κ8
(31)
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Further, by definition of D2(i) each vertex in v ∈ D3(i) is visited at least

τ/κ4 · π(v) > τ/(κ7n) (32)

times during the interval [t(i, v), τ − 1], where the inequality is due to the definition of D0 and the
fact that D2(i) ⊆ D0. We now define the following random variables. Let

1. NG(i, u) be the number of times u ∈ D3(i) is visited by walk i on a good time step in the
interval [t(i, u), τ − 1] (as defined previously).

2. NB(i, u) be the number of times u ∈ D3(i) is visited by walk i on a bad time step in the
interval [t(i, u), τ − 1].

3. NE(i) be the set of nodes u ∈ D3(i) that are visited by walk i prior to t(i, u), i.e., NE(i) :=
{u ∈ D3(i) : Thit(ui, v) < t(i, v)}.

We have

E
[
NE(i)

]
= E


 ∑

v∈D3(i)

1Thit(ui,v)<t(i,v)


 =

∑

v∈D3(i)

E
[
1Thit(ui,v)<t(i,v)

]

=
∑

v∈D3(i)

P [Thit(ui, v) < t(i, v) ] 6
∑

v∈D3(i)

1/κ23 = |D3(i)|/κ23,

where the inequality comes from the definition of t(i, v). By Markov inequality,

P
[
NE(i) 6

|D3(i)|
κ22

]
> 1− 1

κ
. (33)

In the remainder we condition on NE(i) 6 |D3(i)|
κ22

. By Lemma 4.6, with probability at least
1− κ, all random walks have at most τ · 2−κ 6 thit/κ

20 bad time-steps s ∈ [0, τ ], where we recall t
is bad if Xs ∈ D0 and

∑τ
t=s 1Xt∈D0 · pt−sXs,Xt

> 16 · κ10 · thit/n. In the following we condition on the

number of bad time steps being bounded by thit/κ
20. We claim that

|D4(i)| > |D3(i)|/2. (34)

Assume, for the sake of contradiction, that |D4(i)| < 1
2 |D3(i)|. Let

D̃ := {v ∈ D3(i) \D4(i) : Thit(ui, v) > t(i, v)}.

We have, using |D3(i) \D4(i)| > |D3(i)| − |D4(i)| > 1
2 |D3(i)| that

|D̃| > |D3(i) \D4(i)| −NE(i) >
1

2
|D3(i)| − |D3(i)|

κ22
>

1

4
|D3(i)|.

For each vertex u ∈ D̃ ⊆ D3(i) \D4(i), we have NG(i, u) < τ/(2nκ9) and thus

NB(i, u)
u∈D̃
= Nτ (i, u)−Nt(i,v)(i, u)−NG(i, u)

> τ/κ4 · π(u)− τ(2nκ9) > τ/(κ7n)− τ/(2nκ9) > τ/(2nκ7),
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where the first inequality follows from (32) and u ∈ D2(i). In words, at least τ/(2nκ7) visits to
u happened on a bad time step during the interval [t(i, u), τ ]. Thus, the total number of visits to
nodes of D̃ at bad time steps is at least

∑

v∈D̃

NB(i, v) > |D̃| · τ/(2nκ7) >
1

8
|D3(i)| · τ

nκ7

(31)
>

thit

κ20
.

This contradicts the assumption that there are at most thit/κ
20 bad time steps in total. Thus, (34)

holds and we derive using (31)
|D4(i)| > n/(4κ8). (35)

As shown above, this lower bound on |D4(i)| holds whenever the following three events all occur: (i)

|D2(i)| > n/κ8 (which holds with probability at least 1− 6/κ by Lemma 4.7), (ii) NE(i) 6 |D3(i)|
κ22

occurs (which holds with probability 1 − 1/κ by (33)) and (iii) the number of bad time steps of
random walk i is at most thit/κ

20 (which holds with probability 1− 1/κ by Lemma 4.6). Hence by
the Union bound,

P
[
|D4(i)| > n/(4κ8)

]
> 1− 6/κ− 1/κ− 1/κ = 1− 8/κ.

The previous lemma established that with reasonably large probability, any fixed good random
walk i satisfies |D4(i)| > n/κ10. In the next lemma we show that, conditioning on this event
occurring, that random walk i is eliminated by any of the other random walks with some constant
probability > 0.

Lemma 4.9. Assume that a good random walk i has a trajectory (x0 = ui, x1, . . . , xτ−1) satisfying
|D4(i)| > n/κ10. Then random walk i will be eliminated before time τ with probability at least 1/10.

Proof. Consider now another random walk j 6= i starting from an arbitrary vertex uj . Define

D5(i, j) := {u ∈ D4(i) : t(j, u) 6 t(i, u)}. (36)

With reference to Figure 5, u ∈ D5(i, j) if the green ball (i, t(i, u)) lies above the ball (j, t(j, u)).
Intuitively, D5(i, j) contains all the vertices in u ∈ D4(i) so that each time random walk i visits
u, also random walk j could visit that vertex with sufficiently large probability. For u ∈ D4(i)
we have that (u, t(i, u)) is good and for each such good ball, by definition there at least κ55 other
random walks j such that t(j, u) < t(i, u) (or t(j, u) = t(i, u) and j < i). Hence by considering all
bins we conclude

κ100∑

j=1,j 6=i
|D5(i, j)| > κ55 · |D4(i)| > κ55 · n/(4κ8) = nκ47/4, (37)

where the second inequality holds by our assumption |D4(i)| > n/(4κ8).
We are now in a position to apply our common analysis method. We consider the Pimm process

of Section 3.1 and make use of the majorization of Proposition 3.1. We assign each random walk
1 6 i 6 k = κ100 into group G1 and G2 independently and uniformly at random. Recall that
walks of G1 cannot be eliminated. In the following, we define the following event Ei for walk i:
Ei = {i ∈ G2}. Clearly, P [ Ei ] = 1/2. We will prove that conditional on this event occurring,
random walk i is eliminated by one of the walks in G1 with at least constant probability > 0. Let
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Z(i, j) denote the number of collisions between random walk i, denoted by (Xt)t>0, and j denoted
by (Yt)t>0, that happen on a vertex in D5(i, j) at a good time step, in symbols,

Z(i, j) := 1i∈G2 · 1j∈G1 ·
∑

u∈D5(i,j)

∑

t(i,u)6t6τ−1:
t is good

1Xt=u · 1Yt=u

By conditioning on Ei and the trajectory of (x0, x1, . . . , xτ−1) of the good random walk i,

E [Z(i, j) | trajectory i =(x0, x1, . . . , xτ−1), Ei ] =
1

2
·
∑

u∈D5(i,j)

∑

t(i,u)6t6τ−1:
t is good and xt=u

ptuj ,u.

We now would like to derive a lower bound on ptuj ,u, where t(i, u) 6 t 6 τ − 1 is a good time-step

with Xi
t = u, u ∈ D5(i, j). By definition of D5(i, j) we have t(i, u) > t(j, u). By conditioning on

the first visit of random walk j to u, we obtain

ptuj ,u =
t∑

s=0

P [Thit(uj , u) = s ] · pt−su,u

Lemma A.1
> π(u) ·

t∑

s=0

P [Thit(uj , u) = s ]

u∈D0

> 1/(κ3 · n) · P [Thit(uj , u) 6 t ]
t>t(i,u)>t(j,u)

> 1/(κ3 · n) · P [Thit(uj , u) 6 t(j, u) ]

def. of t(j, u)

> 1/(κ26 · n).

By definition of D4(i), for any vertex u ∈ D5(i, j) ⊆ D4(i), u is visited at least τ/(κ9n) times
during the interval [t(i, u), τ − 1]. Therefore,

E [Z(i, j) | trajectory i =(x0, x1, . . . , xτ−1), Ei ]

>
1

2
· |D5(i, j)| · τ

κ9 · n ·
1

κ26 · n =
1

2
· |D5(i, j)| · τ

κ35
· 1

n2
.

Recall that if a time step s ∈ [0, τ − 1] is good (i.e., not bad), then Xs ∈ D0 implies

τ−1∑

t=s

1Xt∈D0 · pt−sXs,Xt
< 16 · κ10 · thit/n.

Since Z(i, j) sums only over good time steps and using D5(i, j) ⊆ D0 we conclude that

E [Z(i, j) | trajectory i =(x0, x1, . . . , xτ−1), Ei, Z(i, j) > 1 ]

6 max
s : Xs∈D0

E




∑

s6t6τ−1:
t is good

1Xt∈D5(i,j) · pt−sXs,Xt


 6 16κ10 · thit

n

Combining the last two inequalities yields

P [Z(i, j) > 1 | trajectory i =(x0, x1, . . . , xτ−1), Ei ]

=
E [Z(i, j) | trajectory i =(x0, x1, . . . , xτ−1), Ei ]

E [Z(i, j) | trajectory i =(x0, x1, . . . , xτ−1), Ei, Z > 1 ]

>
|D5(i, j)|
n · κ47
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We are interested in the probability for i being eliminated. Neglecting the possibility that i might
even be eliminated by another rand walk of G2, which can only increase the probability of i being
eliminated, we derive

P [ Walk i is eliminated | trajectory i =(x0, x1, . . . , xτ−1), Ei ]

> P
[
∪κ100j=1,j 6=i {Z(i, j) > 1} | trajectory i =(x0, x1, . . . , xτ−1), Ei

]

> 1−
κ100∏

j=1,j 6=i

(
1− |D5(i, j)|

n · κ47

)

> 1− exp


− 1

n · κ47
·

κ100∑

j=1,j 6=i
|D5(i, j)|




(37)

> 1− exp (−1/4) .

Note that the above derivation was conditional on Ei, but this event holds with probability 1/2.
Hence with probability at least 1/2 · (1 − exp (−1/4)) > 1/10, the trajectory of i meets with that
of a random walk in G1 and hence the random walk i is eliminated before time step τ .

4.3.3 Completing the Proof of Theorem 4.4

We are now ready to complete the proof of Theorem 4.4 by combining Lemma 4.7, Lemma 4.8 and
Lemma 4.9.

Proof of Theorem 4.4. Let k = κ100 be the number of random walks. Since we seek to reduce
the number of random walks to (∆/d)100, we assume in the following that that k1/100 = κ > ∆/d
and κ > 210 (cf. Assumption 4.5). Otherwise, if κ < 210, then with V0 denoting the set of start
vertices of the k walks, we have tcoal(V0) = O(tmeet · log(|V0|)) = O(thit), by Proposition 3.4
and Proposition B.9. As derived in (29) we have that out of the κ100 random walks at least
κ100−κ64 random walks are good. By Lemma 4.8, any good random walk (Xt)t>0 with label i sat-
isfies P

[
|D4(i)| > n/(4κ8)

]
> 1− 8/κ. Conditioning on the trajectory (x0, x1, . . . , xτ−1) satisfying

|D4(i)| > n/(4κ8), Lemma 4.9 shows that with probability at least 1/10 the random walk i will
be eliminated before time step τ = O(thit/κ). Hence a constant fraction of all k = κ100 random
walks are eliminated in a single phase of O(thit/κ) steps with constant probability > 0, provided
that κ > ∆/d.

In conclusion, for any k′ > (∆/d)100, there exists a constant c > 0 such that the expected time
required to reduce the number of walks from k′ to max{k′/2, (∆/d)100} is bounded by c · thit/

100
√
k′,

by Lemma A.9. Therefore, the expected time to reduce the number of walks from k′ 6 log4 n to
(∆/d)100 is upper bounded by

log(log4 n)∑

i=0

c · thit
100
√

2i
6 c · thit

∞∑

i=0

(
1

100
√

2

)i
=

c · thit

1− 100
√

1/2
= O(thit).

4.4 Bounding tcoal in terms of thit

In this subsection we prove the following theorem relating tcoal to thit. Recall that tmeet 6 4thit

(Proposition B.9) for any graph.
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Theorem 4.10. Let G = (V,E) be any graph with maximum degree ∆ and average degree d. Then
tcoal = O(thit + tmeet · log(∆/d)). So in particular, for any almost-regular graph, tcoal = O(thit).

Theorem 4.10 follows almost immediately from the previous two reductions in Theorem 4.3 and
Theorem 4.4.

Proof of Theorem 4.10. By Theorem 4.3, we can reduce the number of walks from n to O(log3 n) in
O(thit) steps with probability at least 1−n−1. Then, using Theorem 4.4, we can reduce the number
of walks from O(log3 n) to (∆/d)100 in O(thit) expected time. Finally, we apply Proposition 3.4 to
reduce the number of walks from (∆/d)100 to 1 in O(tmeet · log(∆/d)) expected time to obtain the
result.

4.5 Proof of Theorem 1.3

Part (i) follows from Theorem 4.3 together with tmeet 6 4thit (Proposition B.9) and tcoal(S0) =
O(tmeet log |S0|) (Proposition 3.4).

Part (ii) is the statement of Theorem 4.10. To prove Part (iii) follows from the following three
facts. First, thit = Θ(tmeet) by Proposition B.9. Second, tcoal = O(thit + tmeet) by Part (ii). Third,
tcoal > tmeet. Finally, Part (iv) follows from the results presented in Appendix C.

4.6 Conjecture and a Possible Improvement for Non-Regular Graphs

Before concluding this section, we mention an intriguing conjecture that might be useful to improve
our bound on tcoal when ∆� d.

Conjecture 4.11. There exists a universal constant C > 0 so that for any graph G = (V,E), any
vertex u ∈ V and any path of vertices (x0, x1, . . . , xthit), i.e., either xi = xi+1 or {xi, xi+1} ∈ E(G),

thit∑

t=0

ptu,xt 6 C ·
thit∑

t=0

π(xt).

Note that the inequality is a stronger version than the one given in the first statement of Lemma 4.1
or Lemma 4.2. We do not know whether the conjecture is actually true in this generality. However,
if it is true, it would imply that any random walk of length 4thit starting from an arbitrary vertex
meets with any deterministic path of length 4thit with constant probability > 0. This would then
result in a simple proof that tcoal = O(thit · log∗ n) for any graph, since each phase of O(thit) steps
would reduce the number of walks from k to O(log k).

Conjecture 4.11 can be also seen as the optimization problem of “predicting” a random walk
(Yt)t>0 for thit time steps. More precisely, we are given the start vertex of the random walk Y0 = u
and for each time step 1 6 t 6 thit, we have to specify a vertex xt that acts as a predictor of the
random location of the random walk at step t. The goal is to maximize the (expected) number of
correct predictions, which is equal to

thit∑

t=0

ptu,xt .

The conjecture states that regardless which prediction, i.e., which path (x0, x1, . . . , xthit) is picked,
the expected number of correct predictions cannot be made larger than in the setting where the
random walks starts from stationarity (and the start vertex is unknown).
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Graph tmeet tcoal

General Graphs Ω(1), O(n3) Thm. B.1 Ω(log n), O(n3) Lem. 5.2 & Thm. 1.3
Regular Graphs Ω(n), O(n2) Thm. B.1 & Thm. 1.3 Ω(n), O(n2) Thm. B.1 & Thm. 1.3
Vertex-Trans. Graphs Ω(n), O(n2) Thm. B.1 & Thm. 1.3 Ω(n), O(n2) Thm. B.1 & Thm. 1.3

Table 2: A summary of bounds on the meeting and coalescence times graph classes. All bounds are
easily shown to be tight: For general graphs the meeting time and coalescence bounds are matched
by the star and the barbell graph. For vertex-transitive and regular graphs the bounds are matched
by the clique and the cycle.

One specific strategy would be to choose x0 = x1 = · · · = xthit = v for some vertex v. In that
case we know by Lemma 4.1 that

thit∑

t=0

ptu,v 6 4 · (thit + 1) · π(v),

so the conjecture holds in this case.
It is also worth mentioning that we cannot replace thit by a smaller value, say, tmix. Indeed if

G is a two-dimensional grid, then tmix = Θ(n) and choosing x0 = x1 = · · · = xthit = u, we obtain∑tmix
t=0 p

t
u,u = Ω(log n), while,

∑tmix
t=0 π(xt) = O(1).

Finally, there is some resemblance to the meeting-time-lemma in the continuous-time set-
ting [Oli12], however, one important difference is that in Conjecture 4.11, the right hand side
depends on the actual path (x0, x1, . . . , xthit).

5 Bounding tcoal ∈ [Ω(log n), O(n3)]

Given that worst-case upper and lower bounds have long been known for tmix, thit and tcov, it is
very natural to pose the same question for tmeet and tcoal. In the following we determine the correct
asymptotic worst-case upper and lower bounds for tmeet and tcoal on (i) general graphs, (ii) regular
graphs and (iii) vertex-transitive graphs. We refer to Table 2 for an overview.

5.1 General Upper Bound tcoal = O(n3)

In this section we establish that tcoal = O(n3) on all graphs, which is matched for instance by the
Barbell graph.

Theorem 5.1. For any graph G we have tcoal = O(n · |E| · log(|E|/n)), so in particular, tcoal =
O(n3).

Proof of Theorem 5.1. It is well-known that thit 6 n · 2|E| (cf. [AKL+79]). From Proposition B.9
and Theorem 4.10 we derive

tcoal = O(thit + tmeet · log(∆/d))

= O(thit + thit log(n2/|E|))
= O(n · |E|+ n · |E| · log(n2/|E|)) = O(n3),

where the last inequality holds since |E| < n2.
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5.2 General Lower Bound tcoal = Ω(log n)

In this section, we prove that the coalescing time of any graph is Ω(log n). We consider a process
P ′ where there is exactly one random walk starting at each node in the graph. For every node
u ∈ V and every time step t ∈ N we draw an independent random variable Zu,t ∈ {0, 1} with
P [Zu,t = 1 ] = 1/2 and P [Zu,t = 0 ] = 1/2. If Zu,t = 1, then the random walk on u at time t (if
there is any), moves to a neighboring node chosen u.a.r.. Otherwise (Zu,t = 0), the random walk
on u at time t (if there is any) stays on the same node. It is straightforward to show that the
set of nodes which have an active random walk according to this process can be coupled with the
coalescence process defined in Section 2.

We show that after c log n steps, for a sufficiently small c, there are at least two surviving walks
in this process. In order to do this, we simply argue that there must be at least two walks that
have not left their starting position. Note that there is no way for these walks to be eliminated,
because even if other walks visited one of their starting nodes, there are two nodes from which no
walks can have left. The formal proof follows.

Lemma 5.2. For any graph G = (V,E), |V | = n we have tcoal = Ω(log n).

Proof. Consider the process P ′ defined above. Let T be the coalescence time. Note that coalescence
at time τ in P ′ requires that for n− 1 nodes u ∈ V there exists tu 6 τ such Zu,tu = 1. In symbols,
let T be the first point in time where all walks coalesced, then T > T ′, with T ′ := min{t′ ∈
N : |{u : ∃tu 6 t′ s.t. Zu,tu = 1}| > n − 1}. Let Yu be the indicator variable which is 1 if Zu,t = 0
for all t 6 τ := log n/2. The process ensures independence of the Yu. Due to the laziness of the
random walk, P [Yu = 1 ] = 1/2τ = 1/

√
n. Thus, using the independence of the Yu,

P [T > τ ] > P
[
T ′ > τ

]
> P

[∑

u∈V
Yu > 2

]
= P

[
Binomial(n, 1/

√
n) > 2

]
= 1− o(1),

where Binomial(n, p) denotes the binomial distribution with parameters n and p. We conclude that
E [T ] = Ω(log n) which yields the claim.

5.3 Proof of Theorem 1.5

We are now ready to put all the pieces together. The upper bound on general graphs follows
directly from tmeet 6 tcoal = O(n3), by Theorem 5.1. The lower bound on the meeting time holds
by definition and the lower bound on the coalescing time follows from Lemma 5.2. For the upper
bound on regular graphs we have tmeet 6 tcoal = O(thit) = O(n2) due to Theorem 1.3, having used
the standard bound thit = O(n2) for regular graphs (see [AF02]). The lower bound follows from
tcoal > tmeet > tπmeet = Ω(n), by Theorem B.1.
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Natale. “Ignore or Comply?: On Breaking Symmetry in Consensus”. In: PODC. 2017,
pp. 335–344. url: http://doi.acm.org/10.1145/3087801.3087817 (cit. on p. 1).

[BGKM16] P. Berenbrink, G. Giakkoupis, A.-M. Kermarrec, and F. Mallmann-Trenn. “Bounds
on the Voter Model in Dynamic Networks”. In: ICALP. 2016 (cit. on pp. 1–3, 5, 65).

[BK89] A. Z. Broder and A. R. Karlin. “Bounds on the cover time”. In: Journal of Theoretical
Probability 2.1 (1989), pp. 101–120 (cit. on pp. 5, 9, 66, 71).

[CG97] F. R. Chung and F. C. Graham. Spectral graph theory. 92. American Mathematical
Soc., 1997 (cit. on p. 67).

[CLLM12] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher. “Chernoff-Hoeffding Bounds for
Markov Chains: Generalized and Simplified”. In: STACS. 2012, pp. 124–135 (cit. on
pp. 8, 34).

[CFR09a] C. Cooper, A. Frieze, and T. Radzik. “Multiple Random Walks in Random Regular
Graphs”. In: SIAM J. Discret. Math. 23.4 (2009), pp. 1738–1761 (cit. on pp. 1, 3, 5).
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A Basic Results about Markov Chains

We will frequently use the following basic fact about lazy random walks, which in fact also holds
for arbitrary reversible Markov chains:

Lemma A.1 (cf. [LPW06, Chapter 12]). Let P be the transition matrix of a reversible Markov
chain with state space Ω. Then the following statements hold:

(i) If P is irreducible, then for any two states x, y ∈ Ω,

ptx,y 6 π(y) +

√
π(y)

π(x)
· λt,

where λ := max{λ2, |λn|} and λ1 > λ2 > · · · > λn are the n real eigenvalues of the matrix P .

(ii) If the Markov chain is a non-lazy random walk on a bipartite regular graph with two partitions
V1 and V2, then for any pair of states x, y in the same partition

ptx,y 6
2

n
·
(
1 + (−1)t−1

)
+ 2 (max{λ2, |λn−1|})t .

Similarly, if x and y are in opposite partitions,

ptx,y 6
2

n
·
(
1 + (−1)t

)
+ 2 (max{λ2, |λn−1|})t .

(iii) If the Markov chain is lazy, then for any state x ∈ Ω, ptx,x is non-increasing in t. In particular,
ptx,x > π(u).
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Proof. The first statement can be found in [LPW06, Equation 12.11].
For the second statement, recall the spectral representation [LPW06, Lemma 12.2 (iii)]

ptx,y = π(y) + π(y) ·
n∑

k=2

uk(x) · uk(y) · λtk, (38)

where uk is the corresponding eigenvector to λk. Since all eigenvalues are non-negative, we conclude
from (38) that ptx,x is non-increasing in t as needed. Since G is bipartite and regular, it is not

difficult to verify that λn = −1 and un(x) =
√

1/n if x ∈ V1 and un(x) = −
√

1/n if x ∈ V2 is the
corresponding eigenvector. Hence,

∣∣∣∣ptx,y −
2

n
·
(
1 + (−1)t−1

)∣∣∣∣ 6 π(y) ·
∣∣∣∣∣
n−1∑

k=2

uk(x) · uk(y) · λtk

∣∣∣∣∣

6
2

n
· max

26k6n−1

∣∣λtk
∣∣ · 1

n
·
n−1∑

k=2

|uk(x) · uk(y)|

6
2

n
· max

26k6n−1

∣∣λtk
∣∣ ·

√√√√
n−1∑

k=2

uk(x)2 ·
n−1∑

k=2

uk(y)2

As in [LPW06, Proof of Theorem 12.3], using the orthonormality of the eigenvectors, we have

n−1∑

k=2

uk(x)2 6
n∑

k=2

uk(x)2 6 n,

and the second statement follows if u and v are in the same partition. The case where u and v are
in different partitions follows analogously.

For the third statement, first note that by [LPW06, Exercise 12.3], all eigenvalues of the transi-
tion matrix P are non-negative. Since all eigenvalues are non-negative, we conclude from (38) that
ptx,x is non-increasing in t as needed. Due to this and the fact that ptx,x converges to πx, we get
that ptx,x > πx.

The following is a simple corollary from a recent work by Marcus et al. [MSS15] on the existence
of Ramanujan graphs.

Lemma A.2 (cf. Marcus et al. [MSS15]). For any integer d > 3, there are d-regular bipartite
Ramanujan graph H = (V,E) with tmix = O(log n/ log d).

Proof. Marcus et al. [MSS15] show that the existence of a d-regular bipartite Ramanujan graph H
such that max{λ2(Q̂), |λn−1(Q̂)|} = O(1/

√
d), where Q̂ = 1

dA is the transition matrix of a non-lazy
random walk where A is the adjacency matrix. By the second statement of Lemma A.1, for any
pair of states x, y in the same partition

q̂tx,y 6
2

n
·
(
1 + (−1)t−1

)
+ 2 (max{λ2, |λn−1|})t .

Similarly, x and y are in opposite partitions,

q̂tx,y 6
2

n
·
(
1 + (−1)t

)
+ 2 (max{λ2, |λn−1|})t .
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Furthermore note that qtx,y > 2/n due to Lemma A.1.(iii) for even (or odd) t depending on whether
x and y are in the same partitions.

Fix t = O(log n/ log d) such that 2
(

max{λ2(Q̂), |λn−1(Q̂)|}
)t

6 1
20n , where we note that such

a t exists due to max{λ2(Q̂), |λn−1(Q̂)|} = O(1/
√
d). We choose s to be the smallest odd integer

being greater than 20t. To translate from the non-lazy random walk Q̂ to a lazy-random walk P ,
let Z denote the number of non-loops performed by a lazy random walk of length s. Since, the
probability for a self-loop is 1/2 and the number of self-loops is binomially distributed, we have

P [Z > t ] > 19/20.

By symmetry and the fact that s is odd, P [Z is even ] = 1
2 . Hence, by the Union bound,

P [Z is even | Z > t ] > P [Z is even ∩ Z > t ] > P [Z is even ]− P [Z < t ] >
9

20
,

and similarly, P [Z is odd | Z > t ] > 9
20 . Let V1 and V2 be the bipartite partition of V .

‖psu,· − π‖TV 6 P [Z < t ] · 1 + P [Z > t ] ·


∑

v∈V1

∣∣∣∣
11

20
q̂tu,v −

1

n

∣∣∣∣+
∑

v∈V2

∣∣∣∣
11

20
q̂tu,v −

1

n

∣∣∣∣




6 P [Z < t ] · 1 + P [Z > t ] ·
(∑

v∈V

∣∣∣∣
11

20

(
2

n
+

1

20n

)
− 1

n

∣∣∣∣

)

6 P [Z < t ] · 1 + P [Z > t ] ·
(∑

v∈V

∣∣∣∣
22

20n
− 1

n

∣∣∣∣+
11

400

)

6
1

20
· 1 +

19

20

(
2

20
+

11

400

)
< 1/e,

where the first inequality follows from the equations for ptx,y above.

Corollary A.3. Let n0 be a sufficiently large constant. Let Hn be the graph of Lemma A.2 with n
nodes and d = d√ne for n > n0. There exists a universal constant C such that maxn>n0{tsep(Hn)} 6
C.

The corollary follows directly from Lemma A.2 and tsep 6 4tmix.
The following lemma will be helpful to define a coupling between distributions that are close to

the stationary distribution and the exact stationary distribution. (A very similar lemma has been
derived in [ES11, Lemma 2.8])

Lemma A.4. Let ε ∈ (0, 1] be an arbitrary value. Let Z1 and Z2 be two probability distributions
over {1, . . . , n} so that P [Z1 = i ] > ε · P [Z2 = i ] for every 1 6 i 6 n. Then, there is a coupling
(Z̃1, Z̃2) of (Z1, Z2) and an event E with P [ E ] > ε so that

P
[
Z̃1 = i | E

]
= P

[
Z̃2 = i

]
for every 1 6 i 6 n.

Proof. Let U ∈ [0, 1] be a uniform random variable. We next define our coupling (Z̃1, Z̃2) of Z1

and Z2 that will depend on the outcome of U . First, if U ∈ [0, ε), then we set

Z̃1 = Z̃2 = i, if i satisfies ε
∑i−1

k=1 P [Z2 = k ] 6 U < ε
∑i

k=1 P [Z2 = k ].
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For the case where U ∈ (ε, 1), it is clear that the definition of U can be extended in a way so that
Z̃1 has the same distribution as Z1, and Z̃2 has the same distribution as Z2. Furthermore, notice
that if U ∈ [0, ε) happens, then Z̃1 has the same distribution as Z2, and Z̃1 = Z̃2. Observing that
P [U ∈ [0, ε) ] = ε completes the proof.

The following lemma is an immediate consequence of Lemma A.4.

Lemma A.5. Consider a random walk (Xt)t>0, starting from an arbitrary but fixed vertex x0.
Then with probability at least 1− 1/e, we can couple X4tmix with the stationary distribution.

Proof. Consider the random walk (Xt)t>0 after step s := tsep 6 4tmix. By definition of tsep,
psu,v > (1−1/e)π(v). Applying Lemma A.4, where Z1 is the distribution given by ptu,v and Z2 is the
stationary distribution shows that with probability at least 1− 1/e, Xs has the same distribution
as π. If this is the case, then the same holds for X4tmix as well.

The lemma above shows that for tmeet and tcoal it suffices to consider the stationary case:

Lemma A.6. For any graph G,

max{(1/e)tmix, t
π
meet} 6 tmeet 6

2

(1− 1/e)2
· (4tmix + 2tπmeet) ,

and similarly, tcoal 6 4 · (4tmix + 2tπcoal).

Proof. We begin by proving the lower bound on tmeet. First, consider two independent random
walks (Xt)t>0 and (Yt)t>0 that are run for t = e · tmeet time-steps. Then, we have

d̄(t) = max
u,v
‖ptu,· − ptv,·‖TV 6 P

[
∪ts=0Xs = Ys

]
6

1

e
,

where the first inequality is due to the coupling method [LPW06, Theorem 5.3] and the second
inequality follows by Markov’s inequality. The above inequality implies tmix 6 e·tmeet. Furthermore,
tπmeet 6 tmeet holds by definition, and the lower bound follows.

For the upper bound, we divide the two random walks into consecutive epochs of length ` :=
4tmix + 2tπmeet. For the statement it suffices to prove that in each such epoch, regardless of the start
vertices of the two random walks, a meeting occurs with probability at least (1− 1/e)2 · 1/2.

Consider the first random walk (Xt)t>0 starting from an arbitrary vertex after s := 4tmix steps.
By Lemma A.5, we obtain that with probability at least 1− 1/e, the distribution of Xs is equal to
that of a stationary random walk. Similarly, we obtain that with probability at least 1− 1/e, the
distribution of Ys is equal to that of a stationary distribution. Hence with probability (1 − 1/e)2,
Xs and Ys are drawn independently from the stationary distribution. In this case, it follows by
Markov’s inequality that the two random walks meet before step s + 2tπmeet with probability at
least 1/2. Overall, we have shown that with probability at least (1− 1/e)2 · 1/2, a meeting occurs
in a single epoch. Since this lower bound holds for every epoch, independent of the outcomes in
previous epochs, the upper bound on the expected time tmeet follows. The upper bound on tcoal in
terms of tπcoal is shown in exactly the same way.

Lemma A.7. For a lazy random walk on an n-vertex graph with n > 2, we have thit >
2

πmin
− 2.

In particular for n > 2, we have thit > 1/πmin > n.

Note that thit > 2
πmin

− 2 is tight in the sense that the hitting time of the clique is indeed

2(n − 1) = 2
πmin
− 2 since the random walk moves w.p. 1/2 and when it moves the probability to

hit the target node is 1/(n− 1) (assuming that the random walk is not on the target node).
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Proof. Let u be a vertex attaining πmin = π(u). Consider the random walks (Xt)t>0 starting at u.
Then it is well-known (cf. [AF02]) that for the first return τ+(u, u) := min{t > 0 : Xt = u,X0 = u},
we have E [ τ+(u, u) ] = 1/π(u) = 1/πmin. By conditioning on the first step of the random walk, we
obtain

1

πmin
= E

[
τ+(u, u)

]
= 1 +

1

2
· 0 +

1

2

∑

v∈N(u)

1

deg(u)
· thit(v, u),

and rearranging yields

1

deg(u)
·
∑

v∈N(u)

thit(v, u) =
2

πmin
− 2.

Now by the pigeonhole principle there exists a vertex v ∈ N(u) with thit(v, u) > 2
πmin
− 2, and

the first claim follows. The second part follows from observing that if n > 2 we have πmin 6 1/2
and thus thit >

2
πmin
− 2 > 1

πmin
> n, where the last inequality follows from the simple pigeon hole

principle.

Observation A.8. Consider two random walks (Xt)t>0 and (Yt)t>0 starting on nodes drawn from
the stationary distribution. Fix an arbitrary t ∈ N. Define the collision-counting random variables

Z1 =
∑dt/2e

i=0 1Xt=Yt, Z2 =
∑t

i=dt/2e+1 1Xt=Yt, and Z = Z1 + Z2. Then P [Z1 > 1 | Z > 1 ] > 1
2 .

Proof. Since both nodes start from the stationary distribution, P [Z1 > 1 ] > P [Z2 > 1 ]. By the
Union bound, P [Z > 1 ] 6 P [Z1 > 1 ] + P [Z2 > 1 ] 6 2 · P [Z1 > 1 ] . By law of total probability,
P [Z1 ] = P [Z1 > 1 | Z > 1 ] · P [Z > 1 ]. Putting everything together yields P [Z1 > 1 | Z > 1 ] >
1
2 .

Lemma A.9. Let (Xt)t>0 be a stochastic process satisfying (i) E [Xt|Ft−1 ] 6 β ·Xt−1, for some
β < 1, and (ii) Xt > 0 for all t > 0. Let τ(g) := min{t > 0|Xt 6 g} for g ∈ (0, |X0|), then

E [ τ(g) ] 6 2 · dlogβ(g/(2X0))e.

Proof. By the iterative law of expectation, we have

E [Xt ] 6 βt ·X0.

Furthermore, by Markov’s inequality, for any λ > 1

P
[
τ(g) > λ · dlogβ(g/(2X0)e

]
6 P

[
Xλ·dlogβ(g/(2X0)e > g

]
6

E
[
Xλ·dlogβ(g/(2X0)e

]

g
6 2−λ.

Therefore,

E [ τ(g) ] =

∞∑

i=1

P [ τ(g) > i ]

6 dlogβ(g/(2X0))e+

∞∑

λ=1

dlogβ(g/(2X0))e · P
[
τ(g) > λ · dlogβ(g/(2X0)e

]

6 2 · dlogβ(g/(2X0))e.
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B Bounding tmeet and Implications for tcoal, thit and tcov

Although the focus of this work is on understanding the coalescence time, in order to apply our
general results, we need to devise some tools to obtain lower and upper bounds on tmeet. In
Theorem B.1 (Section B.1) we establish upper and lower bounds on the meeting time in terms
of ‖π‖22 =

∑
u∈V π(u)2. Section B.1 contains several additional upper bounds on tmeet and thit.

Through combination with other results, we also obtain new bounds on tcoal and tcov. A common
feature of many of these bounds is a sub-linear dependence on the spectral gap 1/(1− λ2), which
we obtain by an application of short-term bounds on the t-step transition probabilities.

In Proposition B.9 (Section B.2) we establish a discrete-time counterpart of [AF02, Proposition
14.5], albeit with worse constants, stating that the meeting time is at most of the order of the
hitting time; on vertex transitive graphs these quantities are asymptotically of the same order.

B.1 Relating Meeting Time to tmix and 1
1−λ2

We first state some basic bounds on thit and tmeet, which mostly follow directly from (1) and its
counterpart for the hitting times (cf. Cooper, Frieze [CF05]). In these bounds, we will use the
following notation:

Cmax := max
u∈V

tmix−1∑

t=0

∑

v∈V

(
ptu,v

)2
,

Cmin := min
u∈V

tmix−1∑

t=0

∑

v∈V

(
ptu,v

)2
.

Note that Cmax and Cmin provide worst-case upper respective lower bounds on the expected colli-
sions of two independent random walks of length tmix, starting from the same vertex u. Similarly,
we define

Rmax := max
u∈V

tmix−1∑

t=0

ptu,u.

Note that Rmax is the number of expected returns of a random walk to u during tmix steps.
This quantity is more convenient to bound than Cmax, for instance, it can be easily bounded
by maxu∈V π(u) · tmix + 1

1−λ2 (cf. Lemma A.1, or also [CEOR13]).

Theorem B.1. For any graph G = (V,E), the following statements hold:

(i) For any pair of vertices u, v ∈ V ,

thit(u, v) 6
5e · (∑tmix−1

t=0 ptv,v)

π(v)
.

In particular, if the graph G is Γ-approximative regular, then thit(u, v) 6 5e ·Γ ·n ·∑tmix−1
t=0 ptv,v.

(ii) For any pair of vertices u, v ∈ V ,

tmeet(u, v) 6
5e2 · Cmax

‖π‖22
.

In particular, if the graph G is Γ-approximative regular, then

tmeet(u, v) 6
10e2 · (4 + log2(Γ)) ·Rmax

‖π‖22
.
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(iii) It holds that,

tπmeet >
Cmin

64‖π‖22
.

In particular, if the graph G is Γ-approximative regular, then tπmeet = Ω(n/Γ).

Since Cmin > 1, the last statement of the lemma implies also tπmeet = Ω( 1
‖π‖22

). We remark that

the second upper bound on tmeet(u, v) depends only logarithmically on Γ.

Proof. We begin by proving the first part. Consider one random walk (Xt)t>0, starting from an
arbitrary vertex. Divide the time-interval into consecutive epochs of length tsep + tmix, and let

Z :=

tsep+tmix−1∑

t=tsep

1Xt=v

denote the number of visits. Then, by the separation time, E [Z ] > tmix · 1
e · π(v), and (1) yields

P [Z > 1 ] >
tmix · π(v)

e

E [Z | Z > 1 ]
.

Clearly, E [Z | Z > 1 ] 6 maxtmix−1
t=0

∑tmix
s=t p

s−t
v,v 6

∑tmix−1
t=0 ptv,v. Hence,

P [Z > 1 ] >
tmix · π(v)

e∑tmix−1
t=0 ptv,v

=: p.

This means that in every epoch of length tsep + tmix 6 5tmix, the random walk has a probability of
at least p to visit vertex v, and this is independent of any previous epoch. Therefore, the expected
number of steps until v is visited is upper bounded by

thit(u, v) 6 5tmix ·
1

p
6

5e ·∑tmix−1
t=0 ptv,v
π(v)

.

The claim for Γ-approximative regular graphs follows from the observation that minu∈V π(u) >
1/(Γn). We continue with the second part. Consider two independent random walks, (Xt)t>0,
(Yt)t>0 of length tsep + tmix with arbitrary start vertices. Let Z be the random variable counting
the number of collisions between steps tsep and tsep + tmix − 1, i.e.,

Z : =

tsep+tmix−1∑

t=tsep

1Xt=Yt .

By linearity of expectation,

E [Z ] =

tsep+tmix−1∑

t=tsep

∑

u∈V
P [Xt = u ] · P [Yt = u ] > tmix ·

1

e2
· ‖π‖22. (39)

Let us now consider E [Z | Z > 1 ] and recall that conditioning on Z > 1 can be regarded as
jumping to the first step τ := min{t : tsep 6 t 6 tmix − 1, Xτ = Yτ} without knowing anything
about the future steps t > τ of both walks. Therefore,

E [Z | Z > 1 ] 6 max
u∈V

tmix−1∑

t=0

∑

v∈V

(
ptu,v

)2
= Cmax.
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Plugging this into (1) and using (39) we finally arrive at

P [Z > 1 ] =
E [Z ]

E [Z | Z > 1 ]
>
tmix · 1

e2
· ‖π‖22

Cmax
=: p.

Hence,

tmeet(u, v) 6 5tmix ·
1

p
6

5e2 · Cmax

‖π‖22
.

Let us derive the result for Γ-approximate regular graphs. To this end, define

Si :=
{
u ∈ V : deg(u) ∈ [2i−1, 2i)

}
,

and note that S0, . . . , Slog2 n forms a partition of V . Since the graph is Γ-approximate regular, at
most 4 + log2(Γ) of the Si’s are non-empty. Hence there exists a set Sj with

∑

j∈Si

π(j)2 >
1

4 + log2(Γ)
· ‖π‖22.

Let us now by Zj denote the collisions on the set Sj , i.e.,

Zj : =

tsep+tmix−1∑

t=tsep

1{Xt=Yt}∩{Xt∈Sj}.

Then,

E [Zj ] =

tsep+tmix∑

t=tsep

∑

u∈Sj

P [Xt = u ] · P [Yt = u ] > tmix ·
∑

j∈Si

1

e2
· π(j)2 >

tmix

e2
· 1

4 + log2(Γ)
· ‖π‖22.

Furthermore,

E [Zj | Zj > 1 ] 6 max
u∈Si

tmix∑

t=0

∑

v∈Si

(
ptu,v

)2
6 max

u∈Si

tmix∑

t=0

∑

v∈Si

ptu,v · 2ptv,u,

having used reversibility, i.e., ptu,vπ(u) = ptv,uπ(v) and π(v)/π(u) 6 2 by definition of Si. Further,

E [Zj | Zj > 1 ] 6 2 ·max
u∈Si

tmix−1∑

t=0

∑

v∈V
ptu,v · ptv,u 6 2 ·max

u∈V

tmix−1∑

t=0

p2t
u,u 6 2 ·max

u∈V

tmix−1∑

t=0

ptu,u = 2 ·Rmax,

where the last inequality holds since ptu,u is non-increasing by Lemma A.1. Hence, similarly as
before,

tmeet(u, v) 6 5tmix ·
2 ·Rmax

tmix
e2
· 1

4+log2(Γ) · ‖π‖22
6

10e2 · (4 + log2(Γ)) ·Rmax

‖π‖22
.

Finally, for the third statement, let (Xt)t>0, (Yt)t>0 be two random walk starting from stationarity.
Let Z̃ be the random variable counting the number of collisions between steps 0 and 2tmix, i.e.,

Z̃ :=

2tmix−1∑

t=0

1Xt=Yt .
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Then,

E
[
Z̃
]

= 2tmix · ‖π‖22.

In order to lower bound E
[
Z̃ | Z̃ > 1

]
, let us write Z̃ = Z̃1 + Z̃2 with Z̃1 :=

∑tmix
t=0 1Xt=Yt and

Z̃2 :=
∑2tmix−1

t=tmix+1 1Xt=Yt . By Observation A.8, P
[
Z̃1 > 1 | Z̃ > 1

]
> 1

2 . Therefore, by law of total

expectation,

E
[
Z̃ | Z̃ > 1

]
>

1

2
· E
[
Z̃ | Z̃1 > 1

]
>

1

2
·min
u∈V

tmix∑

t=0

∑

v∈V

(
ptu,v

)2
=

1

2
· Cmin.

Hence,

P
[
Z̃ > 1

]
6

2tmix · ‖π‖22
1
2 · Cmin

=: p.

Consider now d Cmin

16‖π‖22·tmix
e consecutive time-intervals of length 2tmix each. Note that if 2tmix >

1
2 · Cmin

16‖π‖22
, then we have

tπmeet > tmix >
Cmin

64‖π‖22
,

and the claim follows immediately. Hence we may assume for the remainder of the proof that
2tmix <

1
2 · Cmin

16‖π‖22
and we conclude that, if B denotes the total number of collisions between the

walks across all the intervals,

E [B ] 6

⌈
Cmin

16‖π‖22 · tmix

⌉
· p 6 Cmin

8‖π‖22 · tmix
· 2tmix · ‖π‖22

1
2 · Cmin

6
1

2
.

Hence by Markov’s inequality, P [B > 1 ] 6 1
2 and thus tπmeet >

1
2 · Cmin

8‖π‖22
in this case. The claim

for Γ-approximate regular graph follows immediately since ‖π‖22 6 maxu∈V π(u) 6 Γ/n. Together
with Cmin > 1 this completes the proof of the theorem.

It is interesting to compare the upper bound on tmeet in Theorem B.1 with the bound tmeet =
O( 1

1−λ2 · ( 1
‖π‖22

+ log n)) from Cooper et al. [CEOR13, Theorem 2]. Using the trivial bound

Cmax 6 tmix and tmix = O( logn
1−λ2 ), we obtain tmeet = O( 1

1−λ2 ·
logn
‖π‖22

), which is at most a log n-

factor worse. However, for certain graphs like grids or tori one may have a better control on the
t-step probabilities, so that Cmax � tmix could be established.

Proposition B.2. Combining the upper bound on tmeet in Theorem B.1 with the bound tmeet =
O( 1

1−λ2 · (
1
‖π‖22

+ log n)) from Cooper et al. [CEOR13, Theorem 2] together with Theorem 1.1 we

derive

tcoal = O

(
1

1− λ2
· 1

‖π‖22
+ tmix · log3 n

)
,

which is at least as good as the bound of [CEOR13, Theorem 1] and equally good if one uses the

trivial bound tmix = O
(

logn
1−λ2

)
.
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Proof. First assume tmeet/tmix > log2 n. In this case, by Theorem 1.1,

tcoal = O(tmeet) = O

(
1

1− λ2
·
(

1

‖π‖22
+ log n

))

follows immediately. Next assume tmeet/tmix 6 log2 n, so tmeet 6 tmix · log2 n. By Proposition 3.4,

tcoal = O(tmeet log n) = O
(
tmix log3 n

)
. Using tmix = O

(
logn
1−λ2

)
we derive indeed O( 1

1−λ2 · (
1
‖π‖22

+

log4 n)) the same bound as [CEOR13, Theorem 1].

In the following, we will try to get more concrete estimates than the ones in Theorem B.1 by
expressing the number of expected returns or Cmax through 1−λ2 and tmix. To this end, we define

β := min

{
log(1/(1− λ2))

1− λ2
, tmix

}
.

Note that since tmix = Ω(1/(1 − λ2)) (e.g., [AF02]), we have β > Ω(1/(1 − λ2)). Further, β 6
tmix = O(log n/(1 − λ2)). Hence β is always sandwiched between the relaxation time 1/(1 − λ2)
and mixing time.

We will frequently make use of the following result, which is a straightforward generalization of
a result in the textbook by Aldous and Fill [AF02] from regular to Γ-approximate regular graph.

Lemma B.3 ([AF02, Proposition 6.16 (iii)]). Let G be any Γ-approximate regular graph. Then for
any τ 6 5n2,

τ−1∑

t=0

ptu,u 6 2 Γ ·
√

5τ .

Since ptu,u is non-increasing, this implies for any 1 6 t 6 5n2, ptu,u 6 20Γ√
t
.

Theorem B.4. For any regular graph we have

thit = O

(
n√

1− λ2

)
,

and by Cheeger’s inequality we obtain thit = O( nΦ), where Φ is the conductance of G. Furthermore,
for any non-regular graph with maximum degree ∆, average degree d and minimum degree δ, we
have

thit = O

(√
∆d

δ
· n√

1− λ2

)

Proof. By [LPW06, Lemma 10.2] and [LPW06, Proposition 10.19],

thit 6 2 max
u

∑

v

thit(v, u)π(v) =
2

π(u)

∞∑

t=0

(
ptu,u − π(u)

)

6
2

π(u)

2trel∑

t=0

(
ptu,u

)
+

2

π(u)

∞∑

t=2trel+1

(
ptu,u − π(u)

)

6
O(1)

π(u)

√
trel +

2

π(u)
2trel

∞∑

k=0

(
p2(
√
trel+ktrel)

u,u − π(u)
)
, (40)
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where the bound on the first term of the last inequality follows from p
√
trel

u,u 6 O
(

1√
trel

)
(Lemma B.3).

We can bound the sum as follows using that π(v) = 1/n and that for regular graphs any τ it
holds that p2τ

u,u =
∑

v∈V (pτu,v)
2 as follows

∞∑

k=0

(
p2(
√
trel+ktrel)

u,u − 1

n

)
=
∞∑

k=0

(∑

v∈V

(
p
√
trel+ktrel

u,v

)2
− 1

n

)

=

∞∑

k=0

(∑

v∈V

(
p
√
trel+ktrel

u,v

)2
− 2

∑

v∈V
p
√
trel+ktrel

u,v · 1

n
+
∑

v∈V

1

n2

)

=
∞∑

k=0

∥∥∥∥p
√
trel+ktrel

u,· − 1

n

∥∥∥∥
2

=
∞∑

k=0

∥∥∥∥P k·trelp
√
trel

u,· −
1

n

∥∥∥∥
2

6
∞∑

k=0

λk·trel2

∥∥∥∥p
√
trel

u,· −
1

n

∥∥∥∥
2

=
∞∑

k=0

λk·trel2

(∑

v∈V
p2
√
trel

u,v − 2
∑

v∈V
p
√
trel

u,v +
∑

v∈V

1

n2

)

6
∞∑

k=0

λk·trel2 p2
√
trel

u,u
(∗)
= O

( ∞∑

k=0

λk·trel2

1√
trel

)
(∗∗)
= O

(
1√
trel

)
, (41)

where (∗) follows from p
√
trel

u,u 6 O
(

1√
trel

)
(Lemma B.3) and (∗∗) follows since f(y) = y1/(1−y) is

bounded from above by 1/e for any y ∈ (0, 1) and hence the sum is a geometric series. Combining
(40) into (41) yields the claim.

To obtain the result for non-regular graphs, we consider the modified Markov chain with transi-
tion matrix Q where the loop probability of every vertex is 1− deg(u)

∆ . As a result, every transition
of the walk to another vertex is made with probability 1/∆. Thus Q is symmetric and the station-
ary distribution πQ is uniform. We can apply the result from the first statement to Q and it only
remains to relate λ2(Q) to λ2(P ). The variational characterization of λ2(P ) gives:

1− λ2(Q) = inf
ϕ:V→R,ϕ non-constant

∑
u,v∈V (ϕ(u)− ϕ(v))2πQ(u)Qu,v∑
u,v∈V (ϕ(u)− ϕ(v))2πQ(u)πQ(v)

= inf
ϕ:V→R,ϕ non-constant

∑
u,v∈V (ϕ(u)− ϕ(v))2 1

n∆∑
u,v∈V (ϕ(u)− ϕ(v))2 1

n2

Similarly,

1− λ2(P ) = inf
ϕ:V→R,ϕ non-constant

∑
u,v∈V (ϕ(u)− ϕ(v))2 1

2|E|∑
u,v∈V (ϕ(u)− ϕ(v))2 · deg(u)

2|E| ·
deg(v)
2|E|

.

Comparing the two equations, we can see that

1− λ2(Q) > (1− λ2(P )) · ∆

d
·
(
d

δ

)2

.

It turns out that the hitting time bound of Theorem B.4 is tight in the sense that for for any Φ
there exists a graph with conductance Φ and hitting time and coalescence time of order Ω(n/Φ).

Proposition B.5 ([BGKM16] ). For every n, d > 3, and constant Φ, there exists a d-regular graph
G with n nodes and a constant conductance such that the expected consensus time on G is Ω(n).
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Furthermore, for every even n, Φ > 1/n, and constant d, there exists a d-regular graph G with Θ(n)
nodes and a conductance of Θ(Φ) such that the meeting time time on G is Ω(n/Φ). Therefore, the
coalescence time and hitting time are of order Ω(n/Φ).

Theorem B.6. Let G be any non-regular graph with maximum degree ∆, average degree d and
minimum degree δ, we have

tmeet = O

(√
∆d

δ
· n√

1− λ2

)
.

In particular,

tcoal = O(thit log(∆/δ)) = O

(√
∆d

δ
· n√

1− λ2
log(∆/δ)

)

Furthermore,

tcov = O

(√
∆d

δ
· n√

1− λ2
log n

)

The upper bound on tmeet and tcoal gives tmeet = O(n2) for cycles and paths, and tmeet = O(n) on
regular expanders (since 1/(1−λ2) = O(1)). It thus improves the bound by Cooper et al. [CEOR13,
Theorem 1], which states that for any regular graph, tmeet = O(n/(1− λ2)).

Proof. The proof of the first part follows from Theorem B.4 and tmeet 6 4thit (Proposition B.9). The
Second part is due to Theorem B.4 and Theorem 1.3. The last statement follows from Theorem B.6
and the well-known trivial bound tcov = O(thit · log n).

For any Γ = O(1)-approximate regular graph, we also improve the best-known bound on the
cover time tcov in terms of the eigenvalue gap, which is tcov = O (n log n/(1− λ2)) established by
Broder and Karlin in 1989 [BK89].

As mentioned earlier,
∑tmix−1

t=0 ptu,u 6 tmix · π(u) + 1
1−λ2 are well-known bounds. The next

corollary provides an improvement in many cases:

Corollary B.7. For any Γ-approximate regular graph G = (V,E)

Rmax = max
u∈V

tmix−1∑

t=0

ptu,u = O


min



Γ

√
d

δ

log(1/(1− λ2))

1− λ2
,Γ3/2

√
tmix






 = O

(
Γ3/2 ·

√
β
)
.

Proof. Thus, using that ptu,u is non-increasing (e.g., Lemma A.1) and Lemma B.3, we derive for
any τ

τ−1∑

t=0

ptu,u 6 2Γ
√

5τ +

τ−1∑

t=5n2

p5n2

u,u 6 2Γ
√

5τ + τ · 20Γ√
5n
, (42)

where we used that p5n2

u,u 6 20Γ√
5n

, by Lemma B.3. In particular, using tmix 6 thit = O(Γ ·n2) ([AF02,

Corollary 6.9])

Rmax 6 2Γ
√

5tmix + tmix ·
20Γ√

5n

= O
(
Γ ·
√
tmix

(
1 +
√
tmix/n

)) tmix=O(Γ·n2)
= O

(
Γ3/2
√
tmix

)
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In the remainder we derive a bound in terms on Rmax in terms of log(1/(1−λ2))
1−λ2 . We split the

expected number of returns to u at time x 6 tmix and obtain

tmix−1∑

t=0

ptu,u =
x−1∑

t=0

ptu,u +

tmix−1∑

t=x

ptu,u
Lemma A.1 & (42)

6
(

2Γ ·
√

5x+ x · 20Γ/n
)

+

tmix−1∑

t=x

(
π(u) + λt2

)

6 2Γ ·
√

5x+ 21Γ · tmix/n+
λx2

1− λ2
.

Next choose x = ln(1/(1−λ2))
1−λ2 . Since f(y) = y1/(1−y) is bounded from above by 1/e for any y ∈ (0, 1),

we have

tmix−1∑

t=0

ptu,u 6 10Γ ·
√
d

δ

ln (1/(1− λ2))

1− λ2
+ 21Γ · tmix/n+ 1.

We next prove that the second term in the bound above is always asymptotically upper bounded by
the first one. This is established via a simple case distinction. First, if 1/(1− λ2) 6 n1/2, then the
claim holds because of tmix = O(log n/(1− λ2)) = O(

√
n log n) and hence Γtmix/n = o(Γ) whereas

the first term is Ω(Γ). Secondly, if 1/(1 − λ2) > n1/2, then using the same bound on tmix along
with the fact that 1− λ2 > δ

dn2 , where d is the average degree and δ the minimum degree:
By [CG97, Lemma 1.9], we have 1− λ2 > 1

diam dn , and since the diameter of a graph is at most

n/δ, we get 1− λ2 > δ
dn2 .

tmix = O

(
log n√

1− λ2 ·
√

1− λ2

)
= O

(√
dn2

δ

2 log(n1/2)√
1− λ2

)
= O


n ·

√
d

δ

log(1/(1− λ2))

1− λ2


 .

We now derive an extension of Theorem B.6 that is more suited for graphs with a very high
degree discrepancy.

Theorem B.8. Let G = (V,E) be any Γ-approximate regular graph. Then,

tmeet = O

(
Γ3/2 log2(Γ) · √β

‖π‖22

)
.

Furthermore,

tmeet = O

(
log(Γ)
1−λ2 + log2(Γ) · tmix ·maxu∈V π(u)

‖π‖22

)
.

We point out that for constant Γ, the first statement of the theorem recovers the second state-
ment of Theorem B.6.

Proof. Similar to the proof of Theorem B.1, we define Si :=
{
u ∈ V : deg(u) ∈ (2i−1, 2i]

}
, and

note that S0, . . . , Slog2 n forms a partition of V . Since the graph is Γ-approximate regular, at most
4 + log2(Γ) of the Si’s are non-empty. Hence there exists a set Sj with

∑

j∈Sj

π(j)2 >
1

4 + log2(Γ)
· ‖π‖22.
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We will only count collisions on vertices in that bucket, i.e., Z :=
∑tsep+tmix−1

t=tsep 1Xt=Yt · 1Xt∈Sj ,
where (Xt)t>0 and (Yt)t>0 are two arbitrary walks. Then,

E [Z ] >
tmix · ‖π‖22

e2 · (4 + log(Γ))
.

Furthermore,

E [Z | Z > 1 ] 6 max
u∈Sj

tmix−1∑

t=0

∑

v∈Sj

(
ptu,v

)2
6 4 max

u∈Sj

tmix−1∑

t=0

p2t
u,u = O

(
Γ3/2 ·

√
β
)

where the second inequality holds due to the fact that vertices in Sj have the same degree up to a
factor of 2 and the final inequality holds due to Corollary B.7. Plugging the two bounds into (1)
yields

P [Z > 1 ] = Ω

(
tmix · ‖π‖22

Γ3/2 log2(Γ) · √β

)
=: p.

Hence, by iterating over consecutive time-intervals of length tsep+tmix 6 5tmix that are independent,
we conclude

tmeet 6
1

p
· 5 tmix = O

(
Γ3/2 log2(Γ) · √β

‖π‖22

)
.

For the second statement, we also have, by Lemma A.1,

4 max
u∈Si

tmix−1∑

t=0

ptu,u 6 4 · 1

1− λ2
+ tmix ·max

u∈V
π(u),

and the bound on tmeet is derived in exactly the same way as before.

B.2 Relating Meeting Time to thit

In this section we prove the following proposition which can be seen as an analogous version of
[AF02, Proposition 14.5] in discrete time.

Proposition B.9. For any graph G = (V,E) and u, v ∈ V we have

(min
u′∈V

thit(π, u
′) + thit(u, v)− thit(π, v))/2 6 tmeet(u, v) 6 2(max

u′∈V
thit(π, u

′) + thit(u, v)− thit(π, v)).

Consequently, for any graph we have tmeet 6 4thit and for any vertex transitive graph G we have
thit/2 6 tmeet 6 2thit.

Proof. We define a pair of chains ((Xt)t>0, (Yt)t>0) with arbitrary start vertices X0, Y0 ∈ V , called
sequential random walks, by

Xt+1 =

{
v ∈ N(Xt) w.p. 1

2|N(Xt)| if t is even

Xt otherwise
,

and

Yt+1 =

{
v ∈ N(Yt) w.p. 1

2|N(Yt)| if t is odd

Yt otherwise
.
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In particular, for odd t (even t, respectively) the random-walk is lazy meaning Xt+1 = Xt (and
Yt+1 = Yt, respectively).

Consider two “non-sequential” random walks (X ′t)t>0 and (Y ′t )t>0 with X ′0 = X0 and Y ′0 = Y0.
We will couple their decisions with the walks (Xt)t>0 and (Yt)t>0, by setting X ′t = X2t and Y ′t = Y2t.
Due to this coupling and since each random walk is lazy w.p. 1/2,

P
[
X ′t+1 = Y ′t+1 | X2t = Y2t

]
= P [X2t+2 = Y2t+2 | X2t = Y2t ] > 1/4,

and
P
[
X ′t+1 = Y ′t+1 | X2t+1 = Y2t+1

]
= P [X2t+2 = Y2t+2 | X2t+1 = Y2t+1 ] = 1/2

Let tseqmeet(u, v) be the meeting time of the sequential chains Xt and Yt, i.e.,

tseqmeet(u, v) = min{t > 0 | Xt = Yt, X0 = u, Y0 = v}

and tseqmeet = maxu,v t
seq
meet(u, v). We seek to relate tmeet with tseqmeet. Clearly, tseqmeet/2 6 tmeet since

a meeting of X ′t = Y ′t implies that X2t = Y2t. For an upper bound on tmeet recall that X ′t and
Y ′t meet, i.e., X ′t = Y ′t w.p. at least 1/4 whenever X2t−2 = Y2t−2 or X2t−1 = Y2t−1. Hence, by
independence tmeet = maxu,v tmeet(u, v) 6 4(tseqmeet/2) = 2tseqmeet. We conclude,

tseqmeet(u, v)/2 6 tmeet(u, v) 6 2tseqmeet(u, v). (43)

We proceed by deriving upper and lower bounds on tseqmeet, which gives us bounds on tmeet. We
will make use of the following statement that is a weaker version of the original statement Aldous
and Fill [AF02, Proposition 3.3]. For all u, v ∈ V we have

min
u′∈V

thit(π, u
′) 6 tseqmeet(u, v)− (thit(u, v)− thit(π, v)) 6 max

u′∈V
thit(π, u

′)

Using (43) we derive,

tmeet(u, v) 6 2tseqmeet(u, v) 6 2(thit(u, v)− thit(π, v) + max
u′∈V

thit(π, u
′)),

and
tmeet(u, v) > tseqmeet(u, v)/2 > (min

u′∈V
thit(π, u

′) + (thit(u, v)− thit(π, v)))/2,

which yields the first part of the claim. For vertex transitive chains we get using thit(π, u) =
thit(π, u

′) for all u, u′ ∈ V and thus

tseqmeet(u, v) = thit(u, v).

Thus, putting everything together and fixing u, v ∈ V to be the nodes maximizing thit(u, v), we
derive

thit = thit(u, v) = tseqmeet(u, v) 6 tseqmeet 6 2tmeet.

Similarly,
tmeet 6 2tseqmeet = 2 max

u,v
tseqmeet(u, v) 6 2thit.

This yields Proposition B.9.

B.3 Proof of Theorem 1.4

The proof follows from Theorem B.4 and Theorem B.6.
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C Applications to Concrete Topologies

Here we derive tmeet and tcoal on specific topologies. Note that more general bounds for certain
graph classes like regular graphs or vertex-transitive graphs have been stated earlier, see, e.g.,
Theorem 1.3 or Appendix B.

C.1 2-Dimensional Grids/Tori and Paths/Cycles

Next we apply our machinery to the 2-dimensional grid and the 2-dimensional torus. For the
continuous case a manual approach to bound meeting and coalescence times can be found in [Cox89].
Thanks to our general results, we can not only easily derive the correct bound on tmeet, but also on
tcoal. First, we recall the following well-known fact that for 2-dim. grid and torus: For any integer
t = O(n),

ptu,u = π(u) + Ω(t−1), (44)

which can be derived, e.g., by using the central limit theorem. Further, tmix = Θ(n), and combining
these two results, we immediately obtain

Cmin := min
u∈V

tmix∑

t=0

∑

v∈V
(ptu,v)

2 >
1

2
min
u∈V

tmix∑

t=0

p2t
u,u = Ω(log n).

Thus, by Theorem B.1.(iii), tmeet = Ω(n log n). For the upper bound, we apply Theorem 1.3
together with the well-known bound thit = O(n log n) to derive tcoal = O(thit) = O(n log n).

For cycles or paths, the corresponding formula to (44) is, for t = O(n2),

ptu,u = π(u) + Ω(t−1/2).

Hence Cmin = Ω(n), and therefore the third statement of Theorem B.1 implies tmeet = Ω(n2). For
the upper bound, we apply Theorem 1.3 together with thit = O(n2) to derive tcoal = O(thit) =
O(n2). Alternatively, the upper bound on tcoal could be also shown by using tmix = O(n2) and
applying the third statement Theorem B.6.

C.2 d-Dimensional Grids and Tori, d > 3

Here the bounds on tmeet and tcoal follow immediately from our general results. First, for any
regular graphs we have tmeet = Ω(n) (Theorem B.1.iii). Further, it is well-known that thit =
O(n) (e.g., [LPW06]), and the result follows by tcoal = O(thit) shown in Theorem 1.3. Alternatively,
we could also use tmeet = O(thit) (Proposition B.9) to deduce tmeet = O(n). Combining this with
the fact that tmix = O(n2/d) [AF02], Theorem 1.1 yields the correct bound tcoal = O(n).

C.3 Hypercubes

Tight bounds for the hypercube can be obtained through different tools we provide.
Firstly, it follows trivially from Theorem 1.3: Since the hypercube is regular (in fact, it is even

vertex-transitive) it suffices to consider the hitting time. We have thit = O(n) (see e.g., [Lov93]) and
recall that thit = Ω(n) by Theorem B.1. Hence applying Theorem 1.3 yields tcoal = Θ(thit) = Θ(n).

Alternatively, we could also use the more elementary bound tmeet 6 2thit by Proposition B.9 to
conclude tmeet = O(n). Since it is a well-known fact that tmix = O(log n · log logn) [LPW06], we
obtain by Theorem 1.1 that tcoal = Θ(tmeet) = Θ(n).
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C.4 (Regular) Expanders

It is not surprising that on regular expander graphs, we have tcoal = Θ(n) and there is a multitude
of approaches to establish this (for instance, the result is a consequence of the main result by
[CEOR13]). With regard to our bounds, the easiest route is to follow the arguments for the
hypercube: Combine the result thit = O(n) (e.g., [BK89]) together with our bound tcoal = O(thit)
(Theorem 1.3). The lower bound tcoal > tmeet = Ω(n) holds for any regular graph.

C.5 Real World Graph Models

There is a variety of different graph models for “real world” networks. In this subsection we
demonstrate that random walks coalesce quickly on these graphs by establishing several bounds on
tcoal which are sublinear in n.

First note that common features of real world graph models are (i) a power law degree distri-
bution with exponent β ∈ (2, 3) and (ii) high expansion, i.e., 1 − λ2 is not too large, and hence
tmix = O(log n). Notice that (i) β ∈ (2, 3) implies that w.h.p. we have ∆ = O(n1−ε), and hence
‖π‖22 6 maxu∈V π(u) 6 n−ε, for ε > 0.

For the sake of concreteness, let us take a specific model by Gkantsidis, Mihail and Saberi [GMS03],
which was also analyzed by Cooper et al. [CEOR13]. In this model, for some α ∈ (2, 3) we generate a
random graph which has Θ(n/dα) vertices of degree d and an eigenvalue gap 1/(1−λ2) = O(log2 n).
Cooper et al. [CEOR13] derived the general bound tcoal = O( 1

1−λ2 · (‖π‖
2
2 + log4 n)), which implies

tcoal = O(n(α−1)/2 · log2 n) - a sublinear bound on the coalescing time. However, this leaves open
how close tcoal and tmeet are.

Combining Theorem 1.1 with the fact that tmix = O(log n/(1−λ2)) = O(log3 n), we immediately
obtain tcoal = Θ(tmeet), without having to know the actual value of tmeet.

13

More generally, we have the following result, saying that we have tcoal = Θ(tmeet) whenever tmix

is slightly smaller than 1/‖π‖22:

Theorem C.1. Let G = (V,E) be any graph. Then,

tcoal = O

(
tmeet ·

(
1 +

√
tmix · ‖π‖22 · log n

))
.

In particular, whenever tmix · log2 n 6 1/‖π‖22, we have tcoal = Θ(tmeet).

Proof. First, by the third statement of Theorem B.1, we have tmeet > 1
9‖π‖22

. Inserting this into The-

orem 1.1 yields the upper bound. The lower bound for the setting tmix · log2 n 6 1/‖π‖22 trivially
holds since tcoal > tmeet.

It is worth comparing this result with the bound derived by Cooper et al. [CEOR13]:

tcoal = O

(
1

1− λ2
·
(

1

‖π‖22
+ log4 n

))
. (45)

The advantage of (45) is that requires relatively little knowledge about G; only 1
1−λ2 and 1

‖π‖22
(which is equivalent to knowing the degree distribution) are needed. One potential drawback of the
bound in (45) however, is that it involves the product of two factors 1

1−λ2 and 1
‖π‖22

, each of which is

13That being said, deriving the correct bound on tmeet is an interesting open problem. So far, it seems rather
difficult to use one of our “off-the-shelf” bounds or the results from [CEOR13]. One potential route towards a tight
bound may involve stronger bounds on Rmax, as suggested by the second upper bound on tmeet(u, v) in Theorem B.1.
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a lower bound on the meeting time on its own. For instance for regular graphs, by Theorem B.6, we

immediately obtain that tcoal = O(tmeet log n) = O
(
n log n ·

√
1

1−λ2 · log( 1
1−λ2 )

)
. As a consequence,

for regular graphs, our bound improves over the bound in (45) whenever 1
1−λ2 > log2+ε n for an

arbitrarily small constant ε > 0.
It is also interesting to consider an alternative graph model for real world networks, proposed

by Mihail et al. [MPS06]. Also in this model, the degree distribution has the same Power law with
exponent α ∈ (2, 3), but there is a stronger bound on the spectral gap, 1

1−λ2 = O(1) [MPS06]. Hence
Theorem C.1 implies tcoal = Θ(tmeet). Further, thanks to Proposition B.2 (or alternatively, the
bound by Cooper et al. (45)) we get the explicit bound tcoal = O(1/‖π‖22), which is asymptotically
tight due to the trivial lower bound tmeet = Ω(1/‖π‖22) (Theorem B.1).

C.6 Binary Trees

In this subsection, we derive a lower bound tmeet = Ω(n log n) for complete binary trees. Un-
fortunately, this bound does not follow directly from our general results and a manual analysis
is required. To some extent, this is due to the structural difference between nodes close to the
leaves and nodes close to the root. While a collision close to the leaves triggers Θ(n log n) expected
additional collisions, a collision near the root triggers only Θ(n) additional collisions.

Our proof consists of the following two steps. In Section C.6.1, we first provide a lower bound
on the probability that a random walk starting from any nodes u ∈ V is on a leaf after O(log n)
steps. We also show that any t-step probability ptu,v is at the most return probability for a leaf.
Both results shown in Lemma C.3 are derived by projecting the random walk on the tree to a
random walk on a weighted path of length log2 n− 1.

In Section C.6.2, we proceed to analyzing the expected number of collisions between two random
walks in n steps. The main component is Lemma C.5, establishing that this number is at least
Ω(log n) provided the walks start from the same vertex not too far from the root. This result is
complemented by a union-bound type argument in Lemma C.4, showing that it is unlikely that two
random walks collide on a vertex close to the root. Combining the two results and applying them
to (1) establishes the desired lower bound tmeet = Ω(n log n).

For the other bounds on tmeet and tcoal, we combine tcoal = O(thit) (Theorem 1.3) with the well-
known fact thit = O(n log n) (cf. [AF02]) to obtain tcoal = O(n log n). Together with the established
lower bound, this shows that tmeet and tcoal are both of order Θ(n log n).

C.6.1 Bounds on the t-step probabilities

We assume that the complete binary tree has log2 n−1 levels, i.e., there are n/2 leaves and the total
number of nodes is n−1. We define L ⊆ V to be the set of leaves. For the analysis, it will be helpful
to relate a random walk on the binary tree to a corresponding random walk on a weighted path G̃
of length log2 n−1 with nodes Ṽ = {1, 2, . . . , log2 n−1}, where each vertex on the path corresponds
to all vertices in the binary tree on the same level. Let Q denote the (log2 n − 1) × (log2 n − 1)
transition matrix of the corresponding weighted random walk. For i, j ∈ Ṽ we have

qij =





1/2 if i = j

1/3 if j > i, i 6= 1

1/2 if j > i, i = 1

1/6 if j < i, i 6= log2 n− 1

1/2 if j < i, i = log2 n− 1 .
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Let π̃ denote the stationary distribution of this process. Since the random walk on G̃ is also lazy,
Lemma A.1 implies that qtlog2 n−1,log2 n−1 > 1

4 for all t > 0. Define τu,L := minv∈L τu,v to be the first
time-step a leaf is visited, where the walk starts at u; τu,L = 0 if u is a leaf. We will frequently use
the following two simple facts about random walks on binary trees:

Lemma C.2 ([Moo73]). Let G be any tree, and u and v be two adjacent nodes. Then thit(u, v) =
2 ·nu,v− 1, where nu,v is the number of vertices in the subtree containing u obtained by deleting the
edge {u, v}.
Lemma C.3. Let G be a complete binary tree, and let u be an arbitrary node. Then the following
statements hold: there is a constant c1 > 0, so that

1. for any t > c1 log2 n, ptu,L > 1
5 . Moreover, if u is a leaf, then the same inequality holds for all

t > 0.

2. For any vertex v ∈ V , ptu,v 6 7 · pt−2c1 log2 n
w,w , where w is any leaf.

Proof. To derive a lower bound on ptu,L, we consider the contracted binary tree G̃. Recall that
τu,L is the random variable of the first time-step at which the random walk visits a leaf where the
random walk starts at u; τu,L = 0 if u is a leaf. By conditioning on the first visit to a leaf,

ptu,L >
2c1 log2 n∑

s=0

P [ τu,L = s ] · qt−sL,L >
1

4
· (1− P [ τu,L > 2c1 log2 n ]) ,

since the chainQ can be seen as a projection of P to the line. Our next claim is that P [ τu,L > c1 log2 n ] 6
n−2, provided that the constant c1 > 0 is sufficiently large. This can be derived by coupling the
random walk on a binary tree, starting from the root, with a random walk on the integers, starting
from zero and waiting until the random walk reaches the vertex log2 n−1. Using a Chernoff bound

for X :=
∑c1 log2 n

i=1 Xi, with P [Xi = +1 ] = 1/3, P [Xi = −1 ] = 1/6 and P [Xi = 0 ] = 1/2, we
conclude that P [ τu,L > c1 log2 n ] 6 n−2, which implies the first statement.

To prove the second statement, consider the first c1 log2 n steps of a random walk starting at
u. Similarly as before,

ptu,v 6
c1 log2 n∑

s=0

P [ τu,L = s ] ·max
w∈L

pt−sw,v + P [ τu,L > 4 log2 n ] .

As seen above, P [ τu,L > c1 log2 n ] 6 n−2 and therefore

ptu,v 6 max
t−c1 log2 n6s6t

max
w∈L

psw,v + n−2. (46)

Let us now compare ptw,v to ptv,w. Since the random walk is time-reversible, we have

ptw,v · π(w) = ptv,w · π(v),

and hence

ptu,v 6 max
t−c1 log2 n6s6t

max
w∈L

3 · psv,w + n−2.

Applying (46) to each psv,w, we conclude that

ptu,v 6 6 · max
t−2c1 log2 n6s6t

max
w,w′∈L

psw,w′ + 4n−2.
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Further, by symmetry psw,w′ is maximized if w = w′, so that

ptu,v 6 6 · max
t−2c1 log2 n6s6t

psw,w + 4n−2,

where w is any leaf. Applying Lemma A.1, it follows that the maximum is attained for s =
t− 2c1 log2 n and psw,w > 1

2n−2 , which implies the second statement.

C.6.2 Establishing the Lower Bound on the Meeting Time

We now prove that the meeting time on binary trees is Ω(n log n). The intuition for this is as
follows. While two random walks of length Θ(n log n) will lead to Θ(log n) expected collisions,
it turns out that the distribution of collisions is poorly concentrated. In fact we will prove that,
conditional on the existence of at least one collision, the expected number of total collisions is
Ω(log n). This will imply the desired lower bound on the meeting time. A slight complication is
that the collision could occur on different nodes, which is why we will first bound the probability
for a collision to occur close to the root.

Let us define U to be the set of all nodes that have distance at least 1
2 log2 n from the root.

Note that |V \ U | 6 2 · √n. Further, let E denote the event that two random walks starting from
the stationary distribution of length n log2 n meet on a vertex in V \ U .

Lemma C.4. We have P [ E ] 6 n−1/3.

Proof. By the Union Bound, P [ E ] 6
∑n log2 n

t=1

∑
u∈V \U π(u)2 = n log2 n · 2

√
n ·
(

2
n

)2
6 8 log2 n√

n
.

Lemma C.5. For any node u ∈ U and any 2
√
n 6 t 6 n/200, we have

∑
v∈L(ptu,v)

2 = Ω(1/t).

Proof. Recall that
∑

v∈L(ptu,v)
2 is the probability of two non-interacting, independent random walks

starting from u to meet at the same leaf at time t.
Our first claim is that with probability at least c1 > 0, both random walks reach a leaf before

returning to u within 4 log2 n steps. To prove this claim, recall that with probability at least
1 − 2n−2, both random walks reach a leaf before step 4 log2 n. Secondly, by [Lov93, Proposition
2.3], applied to the collapsed binary tree G̃, where node u is at level ` and the leafs are in level
log2 n − 1, it follows that the probability that a random walk starting at u visits a leaf before
returning to u is

p :=
1

(tG̃hit(`, log2 n− 1) + tG̃hit(log2 n− 1, `)) · πG̃`
.

Further, tG̃hit(`, log2 n − 1) = O(log n) and tG̃hit(log2 n − 1, `) 6 minw∈L thit(w, u) 6 2log2 n−`+2 by

Lemma C.2 and πG̃` 6 2− log2 n+`+2, where dist(L, u) = minw∈L dist(w, u). Hence p is at least some
constant > 0. Hence with probability at least p2 − 2n−1, both random walks reach a leaf before
time 4 log2 n without returning to u.

Consider now the original binary tree, and one of the two random walks starting from a leaf
w at some time ∈ [1, 4 log2 n] up until time step t − 4 log2 n. Consider the shortest path from w
to the root, and let z be a node that is on this shortest path and has distance log2(100t) from w.

Applying Lemma C.2, it follows that thit(w, z) =
∑log2(100t)

i=1 2i − 1 > 49t. By Markov’s inequality,

P [Thit(w, z) > 2thit(w, z) ] 6 1/2. (47)

Now divide the random walk into consecutive epochs of length 2thit(w, z) + 4 log2 n. Combining
(47) and Lemma C.3 it follows that the random walk will visit the vertex z in each epoch with
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probability at least 1
2 , conditional on having not visited the vertex z in any of the previous epochs.

Therefore for any integer λ > 1,

P [Thit(w, z) > λ · 3 · thit(w, z)) ] 6 P [Thit(w, z) > λ · (2 · thit(w, z) + 4 log2 n) ] 6 2−λ,

where the first inequality holds since thit(w, z) = Ω(t) = ω(log n). Hence,

thit(w, z) 6
1

20
thit(w, z) + P

[
Thit(w, z) >

1

20
thit(w, z)

]
· c1 · 3thit(w, z) +

∞∑

λ=c1

2−λ · λ · 3thit(w, z),

and it follows that by choosing the constant c1 > 0 large enough, there is a constant c2 = c2(c1) > 0
so that

P
[
Thit(w, z) >

1

10
thit(w, z)

]
> c2.

Hence with probability at least c2 > 0, the random walk does not reach the node z before time t.
Further, with probability at least 1− n−2, the random walk visits a leaf, say, w′, before step t, say
at step s, and therefore by Lemma C.3, the random walk is at a leaf at step t with probability at
least (1− n−2) · 1

5 .
Now define F1 := {Thit(w, z) > t} and F2 := {Xt ∈ L}. Clearly, the events F1 and F2 are

positively correlated so that

P [F1 ∩ F2 ] > P [F1 ] · P [F2 ] > c2 ·
(
1− n−2

)
· 1

5
.

Combining all the events, we conclude that with constant probability c3 > 0 both random walks
are on a leaf at step t and have never left the subtree with root z. For one walk, the distribution
will be uniform over all the leafs within a subtree whose root is the vertex closest to the root ever
visited. Hence let L1 be all the leafs that have a non-zero probability to be visited at step t by the
first random walk, and L2 similarly. W.l.o.g. let |L1| 6 |L2| and observe that L1 ⊆ L2 since both
walks start at the same node. Therefore,

∑

v∈L
(ptu,v)

2 >
(
p2 − 2n−1

)
· c3 ·

∑

v∈L1∩L2

1

|L1|
· 1

|L2|
>
(
p2 − 2n−1

)
· c3 ·

1

|L2|
>
(
p2 − 2n−1

)
· c3 ·

1

10t
,

where the last inequality holds since we are conditioning on the event that none of the two random
walks reaches the vertex z.

Theorem C.6. For the binary tree it holds that tmeet = Ω(n log n).

Proof. We first only consider collisions on nodes in U by two random walks (Xt)t>0, (Yt)t>0 starting
from the stationarity distribution. More formally, we are interested in the random variable

Z :=

cn log2 n∑

t=1

∑

v∈V \U

1Xt=Yt=v.

By linearity of expectations,

E [Z ] 6
cn log2 n∑

t=1

∑

v∈V
P [Xt = Yt = v ] 6 cn log2 n ·

∑

v∈V
π(v)2 6 n log2 n · n ·

(
2

n

)2

= 4c log2 n,
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and clearly,

P [Z > 1 ] =
E [Z ]

E [Z | Z > 1 ]
.

Hence to derive an upper bound on P [Z > 1 ], we will derive a lower bound on E [Z | Z > 1 ]. In
order to this, it will be helpful if we can work under the assumption that the first collision occurs in
the first half of the walk. To this end, let Z1 be the indicator random variable that is 1 if a collision
appears before time 1

2n log2 n and Z2 be the indicator random variable if a collision appears after
time 1

2n log2 n. Applying Observation A.8, we get P [Z1 > 1 | Z > 1 ] > 1
2 . Thus,

E [Z | Z > 1 ] > P [Z1 > 1 | Z > 1 ] · E [Z | Z1 > 1 ]

>
1

2
·
tmix∑

t=0

∑

v∈V

(
ptu,v

)2

>
1

2
·
tmix∑

t=2
√
n

∑

v∈L
(ptu,v)

2 >
tmix∑

t=2
√
n

Ω(1/t) = c4 log2 n,

where c4 > 0 is a constant (the penultimate inequality is due to Lemma C.5).
Consequently, for the modified process where collisions are only allowed on nodes in U

P [Z > 1 ] 6
4c log2 n

c4 log2 n
.

Hence by choosing c = min{c4/8, 1}, it follows that P [Z > 1 ] 6 1/2.
This implies that with probability at least 1/2, no collision occurs on nodes in U before time

cn log2 n. Furthermore, by Lemma C.4, with probability at least 1− n−1/3 there is no collision on
nodes in V \ U . Therefore, with probability at least 1/2 − n−1/3, there is no collision among two
random walks before time cn log2 n, and we have shown that tmeet = Ω(n log n).

C.7 Star

Clearly, the coalescing time is Θ(logn) which could be easily shown by a direct analysis. For the
sake of completeness, we point out that the upper bound also follows from Proposition 3.4 and the
fact that tmeet = O(1). The matching lower bound follows from the general bound tcoal = Ω(log n),
holding for any graph (see Lemma 5.2).
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