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Summary

The optically active nature of direct bandgap semiconductors makes them

well suited for applications in quantum optics. Semiconductor quantum dots

(QDs) are particularly promising, due to their discrete atom-like energy lev-

els. In this thesis, transitions between these energy levels are used to inves-

tigate the effects of electric and magnetic fields on the energy structure of

single QDs, with a view to developing applications in the field of quantum

computing.

In the work presented here a novel method of creating entangled photon

pair emitters is presented, in which an electric field is used to tune the energy

structure of single QDs to allow the fidelity of the emitted entangled state

to be increased. In addition, a technique for the creation of energy-tunable

entangled photon pairs is proposed and shown to be feasible with current

technology.

Furthermore, the potential of QDs to act as an interface between photonic

and spin qubits is explored. Application of a time varying electric field is

used to dynamically tune the QD energy levels, allowing the evolution of

excitons confined within single QDs to be manipulated. Using this system a

controlled phase rotation of the exciton spin state is implemented.

Finally, indistinguishable single photons, emitted by the radiative decay

of the exciton state, are used to generate the input state for an integrated-

photonic two-qubit quantum logic gate. This is the first demonstration of a

two-qubit gate using on-demand single photons. It is also the first demon-

stration of such a gate with all components realised using semiconductor

materials.

vii



Contents

1 Introduction 1

1.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Semiconductor quantum dots 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Carrier confinement . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Confinement-modified density of states . . . . . . . . . 7

2.3 Self assembled growth . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Optical excitation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Above-band excitation . . . . . . . . . . . . . . . . . . 12

2.5.2 Quasi-resonant phonon assisted excitation . . . . . . . 13

2.6 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Gross Energy Structure . . . . . . . . . . . . . . . . . . 14

2.6.2 Fine-structure of the neutral exciton . . . . . . . . . . 15

2.7 Neutral biexciton cascade . . . . . . . . . . . . . . . . . . . . 17

2.7.1 State and transition notation . . . . . . . . . . . . . . 19

2.8 Entangled photon pair emission . . . . . . . . . . . . . . . . . 20

2.8.1 Entangled particles . . . . . . . . . . . . . . . . . . . . 20

2.8.2 Entangled pairs from the biexciton cascade . . . . . . . 21

2.9 Quantum dots in optical cavities . . . . . . . . . . . . . . . . . 23

3 Experimental methods and devices 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



CONTENTS

3.2.1 Electronic diodes . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Pillar microcavities . . . . . . . . . . . . . . . . . . . . 31

3.3 Optical measurement techniques . . . . . . . . . . . . . . . . . 32

3.3.1 Photoluminescence spectroscopy . . . . . . . . . . . . . 32

3.3.2 Etalon spectroscopy . . . . . . . . . . . . . . . . . . . 34

3.3.3 Photoluminescence excitation spectroscopy . . . . . . . 35

3.3.4 Time-resolved spectroscopy . . . . . . . . . . . . . . . 36

3.3.5 Photon correlation measurements . . . . . . . . . . . . 37

3.4 Measurement of fine-structure splitting . . . . . . . . . . . . . 42

4 Electrical manipulation and coherent coupling of the exciton

states in single quantum dots 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Sample characterisation . . . . . . . . . . . . . . . . . . . . . 47

4.3 Manipulation of fine-structure with electric field . . . . . . . . 49

4.3.1 Measurement of FSS as a function of electric field . . . 50

4.3.2 FSS tuning rate . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Effects of QD growth conditions on FSS tuning rate . . 53

4.4 Coupling of the exciton states . . . . . . . . . . . . . . . . . . 54

4.4.1 Coherent coupling model . . . . . . . . . . . . . . . . . 56

4.4.2 Anticrossing ensemble . . . . . . . . . . . . . . . . . . 57

4.5 Entangled photon pair emission . . . . . . . . . . . . . . . . . 59

4.5.1 Measurement of entanglement . . . . . . . . . . . . . . 60

4.5.2 Fidelity of entanglement . . . . . . . . . . . . . . . . . 62

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Control of the neutral exciton fine-structure via simultaneous

application of electric and magnetic fields 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Fine-structure of the neutral exciton states in magnetic field . 68

5.2.1 Faraday geometry . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Voigt geometry . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Faraday g-factor as a function of electric field . . . . . . . . . 72

ix



CONTENTS

5.4 Magnetic and electric tuning of the fine-structure splitting . . 74

5.5 Towards wavelength-tunable entangled emission . . . . . . . . 78

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Effects of nuclear field fluctuations and dynamic electric field

on the exciton eigenstates in single quantum dots 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Temporal evolution of exciton superposition states . . . . . . . 85

6.2.1 State initialisation . . . . . . . . . . . . . . . . . . . . 86

6.2.2 Temporal measurements of fine-structure splitting . . . 87

6.3 Fluctuating nuclear field . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Free induction decay . . . . . . . . . . . . . . . . . . . 91

6.4 Dynamic manipulation of exciton states . . . . . . . . . . . . . 95

6.4.1 Single qubit rotation . . . . . . . . . . . . . . . . . . . 96

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Controlled-NOT gate operating with single photons 100

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 The CNOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 NOT operation . . . . . . . . . . . . . . . . . . . . . . 102

7.2.2 CNOT operation . . . . . . . . . . . . . . . . . . . . . 102

7.3 CNOT operation with a waveguide network . . . . . . . . . . 104

7.3.1 Optical circuitry . . . . . . . . . . . . . . . . . . . . . 104

7.3.2 Operating principle . . . . . . . . . . . . . . . . . . . . 105

7.3.3 Expected correlations . . . . . . . . . . . . . . . . . . . 106

7.3.4 Experimental operation . . . . . . . . . . . . . . . . . 107

7.4 Photon source . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Initialisation of the two-photon input state . . . . . . . 112

7.4.2 Source characterisation . . . . . . . . . . . . . . . . . . 113

7.4.3 Indistinguishable single photon emission . . . . . . . . 117

7.5 Demonstration of an optical CNOT gate . . . . . . . . . . . . 119

7.5.1 Experimental configuration . . . . . . . . . . . . . . . 119

7.5.2 Correlation measurements . . . . . . . . . . . . . . . . 121

x



CONTENTS

7.5.3 Success probability . . . . . . . . . . . . . . . . . . . . 123

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Conclusion 127

8.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 128

8.1.1 Emission of entangled photon pairs . . . . . . . . . . . 128

8.1.2 Control of the exciton state . . . . . . . . . . . . . . . 129

8.1.3 Demonstration of an integrated photonic logic circuit . 130

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

References 144

xi



Chapter 1

Introduction

Quantum computing is the use of quantum mechanical phenomena in or-

der to allow computation which outperforms classical algorithms. The key

difference between classical and quantum information processing lies in the

properties of how the information is encoded. In classical computing infor-

mation is encoded using a series of “bits”, each of which can be in one of

two different states. However, quantum computing encodes information us-

ing quantum bits (qubits), which can exist in superpositions of the possible

states. In addition, quantum computing can take advantage of other novel

properties of quantum mechanics, such as entanglement.

Optical quantum computing, in which information is encoded into the

states of single photons, is a promising area of research. Using photons as

qubits offers several advantages. For example, photons have long coherence

lengths and travel at nature’s speed limit, the speed of light. This makes

them well suited for the transmission of quantum information. Also, indi-

vidual photonic qubits can be manipulated by simply passing them through

linear optics components, such as waveplates and beamsplitters. However,

interactions between photonic qubits are difficult to achieve, which makes ef-

ficient methods of processing information encoded into photons cumbersome

to implement.

The direct bandgap of the InGaAs quantum dots (QDs) studied in this

work allows them to be used for several different applications in the field of

1



1.1. THESIS OVERVIEW

optical quantum computing. Of particular relevance to this thesis is the abil-

ity of single QDs to generate non-classical light, along with their ability to

interact with individual photons to allow optically transmitted qubits to be

converted into solid-state qubits, which are often easier to manipulate. Other

quantum systems, such as isolated molecules or trapped ions, possess similar

characteristics, however the use of semiconductor materials has several ad-

vantages. Specifically, the well established processing techniques developed

by the electronics industry allows incorporation of semiconductor QDs conve-

niently into electronic and optical devices. As such, semiconductor QDs, and

associated optical structures, provide an interesting environment in which to

investigate quantum information applications with a view to developing a

scalable quantum computing regime. Although the creation of a viable large

scale quantum computer remains a long term goal, this thesis presents work

towards the development of components which may be suitable for inclusion

in such a computer.

1.1 Thesis overview

This thesis studies the effects of electric and magnetic fields on the energy

structure of single QDs, via observation of photons emitted from transitions

between different states. The known energy structure of QDs, along with

other relevant background theory required in order to understand the ex-

perimental work, is introduced and explained in chapter 2. In addition, the

devices and experimental methods used throughout the work presented in

this thesis are detailed in chapter 3.

Much of the experimental work in this thesis concentrates on the effects

of the fine-structure splitting (FSS) of the neutral exciton state. In chapter 4

a method of tuning this FSS using an electric field is introduced and charac-

terised. This leads to a method of reducing the magnitude of the FSS, which

is used to allow the observation of entanglement between photons emitted

from the two neutral transitions. In addition, as the magnitude of the FSS is

reduced, coherent coupling between the two eigenstates of the neutral exciton

2



1.1. THESIS OVERVIEW

is observed.

The effects of a magnetic field, applied to the QDs in conjunction with the

electric field, are investigated in chapter 5. Two different magnetic field ori-

entations are studied: one which allows the out-of-plane g-factor of confined

excitons to be probed as a function of electric field; and one which tunes the

FSS, thus allowing the application of two independent tuning mechanisms.

A method of creating energy-tunable entangled photon pairs using these two

mechanisms simultaneously is proposed and shown to be feasible.

The potential of using the exciton state as a solid-state qubit is also

explored. In chapter 6 a method of transferring quantum information from

photons into the spin of the exciton state is demonstrated. This allows

the initialisation of a solid-state qubit, which is then manipulated with the

application of a time varying electric field in order to dynamically control the

FSS. The effects of the fluctuating nuclear magnetic field on the evolution of

the exciton state are also investigated.

Finally, in chapter 7, a controlled two-qubit interaction is demonstrated

using indistinguishable single photons from a single QD, emitted by the tran-

sition between the neutral exciton state and the ground state. This work is

the first implementation of a photonic two-qubit gate where the input state

is generated using an on-demand single photon source. Furthermore, all the

components required for the gate are realised using semiconductor devices.

As such, this work represents a significant step towards the creation of a

scalable optical quantum computing regime in the solid-state.

3



Chapter 2

Semiconductor quantum dots

2.1 Introduction

Semiconductor quantum dots (QDs) are nanosized regions of semiconductor

which can confine carriers to within their de Broglie wavelength, leading to

a range of interesting quantum phenomena. The QDs studied in this thesis

typically are lens shaped, with a diameter of ∼ 20 nm and an apex height

of ∼ 5 nm. The work in this thesis is conducted using III-V semiconductor

materials, with InAs QDs being encapsulated in GaAs or AlGaAs. The

direct bandgap of these materials allows the QDs to be optically active, and

therefore transitions between different QD states can emit or absorb photons

easily.

In this chapter an overview of QDs is presented, beginning with an expla-

nation of the effects of carrier confinement. This is followed by a discussion

of the growth method used to create the QDs. Carrier creation via opti-

cal pumping is also explained. The energy structure of single QDs is then

introduced, leading to a discussion of the optical transitions which are par-

ticularly important in this thesis. Finally, the effects of optical cavities on

QD emission is included to aid in understanding the devices used throughout

this thesis. For a more complete review of QDs see references [1, 2].

4



2.2. CARRIER CONFINEMENT

2.2 Carrier confinement

A brief summary of the important consequences of carrier confinement within

QDs is included here, however a detailed explanation can be found in either

[3] or [4].

Before considering the effects of quantum confinement, it is useful to first

consider the energy and dispersion relation of particles in a semiconductor.

Consider the Schrödinger equation for a carrier in a semiconductor,[
− h̄2

2m∗
∇2 + V (r)

]
Ψ(r) = εkΨ(r) (2.1)

where h̄ is the reduced Planck’s constant, m∗ is the effective mass of the

carrier, V (r) is the potential, and Ψ(r) is the particle wavefunction with εk

the corresponding energy eigenvalue.

LX

L Z

Figure 2.1: Diagram showing a semiconductor of finite dimensions Lx, Ly, Lz,
as described in the main text.

The solutions to equation 2.1 for carriers subjected to the periodic po-

tential of the semiconductor lattice are then of the form of Bloch functions

Ψ(r) = uk(r)exp(ik · r), (2.2)

5



2.2. CARRIER CONFINEMENT

where uk(r) is periodic with the same period as the lattice potential, and k

is the wavevector. For a finite semiconductor of dimensions Lx, Ly, Lz, k

can only take certain discrete values given by

k = kxx̂ + kyŷ + kzẑ ≡
2nxπ

Lx
x̂ +

2nyπ

Ly
ŷ +

2nzπ

Lz
ẑ, (2.3)

where nx,y,z are positive integers. The corresponding energy eigenvalues, and

dispersion relation, for states near to the band edges (i.e. states with |k| near

zero for the direct bandgap semiconductors of interest here) are given by

εk = E(k) =
h̄2|k|2

2m∗
. (2.4)

A carrier is confined when its motion is restricted to a length comparable

or smaller than its de Broglie wavelength, which for carriers in a semicon-

ductor is given by

λb ∝
h√

m∗kBT
(2.5)

where h and kB have their usual meanings of Planck’s and Boltzmann’s

constants, respectively, and T is the temperature. A reduction in the length

of one dimension results in an increase in the separation between the allowed

values of the corresponding component of k, as can be seen in equation

2.3. Thus, confinement in a given direction results in quantization of the

corresponding component of k.

For InAs and GaAs, λb is of the order of 10 - 100 nm at the cryogenic

temperatures used for the experiments detailed in this thesis. Therefore, the

QDs used in this work, which have approximate dimensions of 20 × 20 × 5

nm, confine carriers in all three spatial directions and act as zero-dimensional

potential wells. The quantum confinement energy due to these wells can be

estimated from the difference in energy of photons emitted from the ground

state of the QDs and those emitted from the bulk GaAs surrounding material.

The QDs studied in this thesis have confinement energies in the range of ∼ 90

- 175 meV.

6



2.2. CARRIER CONFINEMENT

2.2.1 Confinement-modified density of states

The density of states can be calculated by considering how much volume in

k-space is required for each state, along with the volume element for small

changes in k, in the relevant geometry determined by the number of uncon-

strained dimensions.

For example, in a bulk semiconductor the carriers are free to move in all

three spatial dimensions. For the corresponding three dimensional k-space,

the volume occupied by each state is V3D = 8π3

LxLyLz
, and the volume element

(see figure 2.2a) is given by Vdk = 4π|k|2 dk. The ratio of these quantities

gives the density of states in k-space. Taking into account the two-fold spin

degeneracy of the carriers, the density of states, per unit volume of real space

V , is given by

D (k)3D =
2

V

Vdk

V3D

=
|k|2

π2
dk. (2.6)

To get the density of states in terms of energy, E, the dispersion relation

given in equation 2.4 can be used. From the dispersion relation |k| =
√

2m∗E
h̄2

and dk =
√

m
2h̄2
E−

1
2 dE. Substitution into equation 2.6 yields

D(E)3D =
1

2π2

(
2m∗

h̄2

) 3
2

E
1
2 dE (2.7)

and so the density of states smoothly varies and is proportional to
√
E for

unconfined carriers in bulk semiconductor, as shown in figure 2.2a.

The volume element and the space occupied by each state depends on the

number of unconstrained dimensions. Figures 2.2b and 2.2c show the k-space

available to particles confined in one and two dimensions, respectively, along

with the density of states as a function of energy. These are calculated using

the same method as used above for the case of a bulk semiconductor and are

given by,

D(E)2D = m∗

πh̄2
dE

D(E)1D =
√

2m∗

π2h̄2
E−

1
2 .

(2.8)

Note that the different possible values which the quantized components

7



2.2. CARRIER CONFINEMENT
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Figure 2.2: Diagram of fermi surface in k-space and the corresponding density
of states for carriers free to move in three dimensions (a), two dimensions (b), and
one dimension (c).

of k can take leads to the multiple energy levels seen in D(E)2D and D(E)1D.

Density of states in QDs

QDs confine carriers in all three directions, with Lx, Ly, and Lz all compa-

rable or smaller than λb. As a result, carriers in a QD are not free to move

in any spatial direction. All three components of the carrier wavevector are

then quantized and k can only take a set of discrete values with the energy

of the corresponding states given by

Enx,ny ,nz =
h̄2

2m∗

(
2nxπ

Lx
+

2nyπ

Ly
+

2nzπ

Lz

)
≡ Enx + Eny + Enz (2.9)

Thus, the density of states for an ideal QD is a set of delta functions, one
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2.3. SELF ASSEMBLED GROWTH

for each combination of nx,y,z, as described by

D(E)QD =
∑

nx,ny ,nz

δ
(
E − Enx − Eny − Enz

)
(2.10)

This gives rise to the discrete set of ladder-like energy levels depicted in figure

2.4. The transitions between these energy levels are of great interest to the

work presented in this thesis.

2.3 Self assembled growth

There are a variety of methods available for the fabrication of semiconductor

QDs, however all of the QDs studied in this work were grown via molecular

beam epitaxy (MBE). MBE is a process which allows semiconducting mate-

rial to be deposited epitaxially and allows precise control of layer thicknesses.

A substrate wafer is held in an ultra high vacuum, and crucibles of the desired

materials are heated until sublimation is achieved. The resulting stream of

particles condense on the wafer and thus the sample is grown. The very slow

growth rate, typically on the order of micrometers per hour, combined with

heating of the substrate results in significant surface diffusion which allows

reorganisation of the atoms into a stable ordered crystal.

Epitaxial growth QD formed

= InAs

= GaAs

Increasing growth time

Figure 2.3: Diagram showing QD formation via Stranski-Krastanov growth. QD
material is deposited on the lower cladding layer, growth is epitaxial until a critical
thickness above which 3D islands spontaneously form.

MBE is well suited for depositing flat layers of material and creating

9



2.4. BAND STRUCTURE

wafers with well defined planar structure. In order to create the three di-

mensional structures of QDs, Stranski-Krastanov growth is used[5, 6, 7]. This

mode of growth relies on strain between different layers, due to the unequal

lattice constants of the different materials, to achieve the formation of three

dimensional islands. A layer of cladding material is grown onto which a thin

layer of dot material is deposited. Initially the growth is epitaxial, how-

ever at a critical thickness, which is typically a few monolayers, the lattice

mismatch induced strain results in the nucleation and growth of small three

dimensional islands. The QDs are then capped in another layer of cladding

material. This method of self-assembled growth results in a layer of QDs,

with random lateral positions, on top of a thin epitaxial layer of the QD ma-

terial. This thin layer from which the QDs emerge is known as the wetting

layer and forms a two dimensional quantum well, the effects of which are

clearly visible in optical spectroscopy. The QD growth process, and resulting

structure, is shown schematically in figure 2.3.

2.4 Band structure

The three dimensional confinement potential of a QD is achieved via differ-

ences in the conduction and/or valence band energy of the QD material and

the surrounding cladding material. Depending on the relative energies of the

conduction and valence bands in the two materials it is possible for QDs to

confine both electrons and holes, or to confine just one kind of carrier whilst

repelling the other. Those that confine just one kind of carrier are known

as type 2 QDs. In type 2 QDs the energy level of both the conduction and

valence bands are offset from those of the surrounding material in the same

direction. For example, in a type 2 QD which confines only electrons the

conduction and valence levels of the QD material are both lower than those

of the surrounding material, leading to a potential well for electrons in the

conduction band but not for holes in the valence band. The QDs studied in

this thesis are type 1 QDs which confine both kinds of carriers. To achieve

this, the bandgap of type 1 QD material must be smaller than that of the

10



2.4. BAND STRUCTURE

surrounding cladding material, in order to create a potential well for carriers

in both the conduction and valence bands. The bandgap of GaAs, at a tem-

perature of 300 K, is 1.424 eV and that of InAs is 0.354 eV. The resulting

bandgap of the QDs is between these two values. This is because, although

the QDs are grown using InAs, subsequent diffusion of Ga atoms leads to a

mixed composition.

CB

VB

QD material

Surrounding
material

Figure 2.4: Schematic diagram of a one dimensional cross section of a QD band
structure along the growth direction. The dot material has a smaller bandgap
than the surrounding material, forming a potential well for both electrons in the
conduction band and holes in the valence band. The confinement creates a lad-
der of discrete energy levels for carriers trapped in the QD, these are indicated
schematically by dashed horizontal lines.

Figure 2.4 shows a schematic diagram of a one dimensional cross-section

through the resulting band structure. Carriers in the surrounding material

which enter the QD are trapped by the lower potential in the QD material.

Confinement of electrons in the conduction band and holes in the valence

band leads to a modification of the density of states as discussed above. This

results in each kind of carrier occupying a discrete set of energy levels, two

of which are shown schematically in figure 2.4 as dashed horizontal lines.
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2.5. OPTICAL EXCITATION

2.5 Optical excitation

The above sections explain how the band structure of a QD embedded within

a semiconductor forms a potential that can trap carriers. In this section the

origins of the carriers are discussed. In the region of the QDs the semicon-

ductor is undoped and so the fermi energy lies between the top of the valence

band and the bottom of the conduction band. Thus, at the cryogenic tem-

peratures used throughout this thesis, the valence band is normally full and

the conduction band is normally empty. Carriers can be introduced into the

QDs using a variety of methods ranging from electrical injection[8, 9], such as

in a light emitting diode, to more exotic methods involving surface acoustic

waves, which can modulate the QD energy levels[10] or transport electrons

through the semiconductor[11]. The method of carrier creation used for the

work presented in this thesis is optical excitation, where electrons from the

valence band are promoted across the bandgap into the conduction band via

the absorption of a photon. The two different excitation schemes widely used

throughout this thesis are detailed below.

2.5.1 Above-band excitation

In the above-band excitation regime the sample is excited by photons with

an energy greater than the bandgap of the bulk GaAs which surrounds the

QD layer. This creates a large amount of carriers around the region of the

QD, some of which are captured in the wetting layer which forms a thin

two-dimensional quantum well near the region of the QDs. The trapped car-

riers then decay via non-radiative processes, predominately via longitudinal-

optical phonon scattering[12, 13], into the lowest unoccupied QD energy lev-

els. An electron from the conduction band can then combine with a hole from

the valence band with the emission of a photon. Due to the non-radiative

relaxation prior to recombination of the electron-hole pair the emitted pho-

ton has a lower energy than the laser being used to excite the carriers. This

difference in energy is useful as it allows the excitation laser to be easily

removed from the collected emission via spectral filtering.

12
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This method of carrier creation can populate all of the states, with vari-

ation of the excitation power and the applied electric field able to control

the relative intensity of the various transitions which are studied. A single

excitation wavelength can be used to study all the QDs in a given sample, as

the carriers are created in the surrounding GaAs and so the rate of carrier

creation does not depend on the energy levels of the individual QD being

measured. These properties make above band excitation a useful regime for

characterising samples and for measuring ensembles of QDs.

2.5.2 Quasi-resonant phonon assisted excitation

In the quasi-resonant phonon assisted excitation regime carriers are excited

via phonon resonances. This is achieved by using excitation photons with an

energy of

E = E|X〉 + Ephonon, (2.11)

where E|X〉 is the energy of the desired transition and Ephonon is the energy

of a phonon. Thus an electron from the valence band can be promoted into

the desired state, along with the creation of a phonon. In the GaAs/InAs

material system used in this work, a suitable phonon resonance is found ∼ 32

meV above the energy of the transition[14], which allows for spectral filtering

of the laser light from the collected emission as in the above band regime.

In addition to driving individual transitions, quasi-resonant excitation

leads to narrower lines in the emission spectrum and an improvement of the

coherence time of the emitted photons compared to above band excitation.

This is because quasi-resonant excitation only creates carriers in the QD and

so fluctuations of the Coulomb potential around the QD are reduced rela-

tive to the above band case. However, due to the reduced absorbtion cross

section, significantly higher excitation powers are required for quasi-resonant

excitation. Furthermore, as quasi-resonant excitation selectively excites indi-

vidual transitions, the energy of the excitation laser must be carefully tuned

to match the phonon resonance of the particular QD being measured. There-

fore, this method of excitation is useful for studying individual transitions in

detail, but less convenient for observing all QD transitions simultaneously or
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for rapid assessment of many QDs.

2.6 Electronic structure

The electronic energy structure of QDs is the focus of much of the work

presented in this thesis. In chapters 4, 5 and 6 the effects of external electric

and magnetic fields on the energy levels of single QDs is investigated. In

chapter 7 a well defined transition between two QD states is used to emit

indistinguishable photons for use in an optical logic circuit. In this section

the electronic structure of single QDs is discussed, and the excited states,

caused by carriers trapped within the QD, are introduced and defined.

2.6.1 Gross Energy Structure

As detailed in section 2.2, the gross energy level structure of carriers within a

QD is determined by the 3D confinement potential, which results in a series

of discrete energy levels leading to an emission spectrum composed of several

narrow peaks. Each energy level can be occupied by up to two carriers with

opposite spin, in accordance with the Pauli exclusion principle. The QDs

studied in this thesis can trap electrons in the conduction band, holes in the

valence band, or a combination of both electrons and holes. The number of

confined energy levels is determined by the size of the QD and the difference

in bandgap between the QD and the cladding material.

The state of a QD is defined by the number of carriers confined within it.

The ground state, |0〉, corresponds to an empty QD containing no trapped

carriers. The neutral exciton state, |X1〉, corresponds to one confined exciton.

The neutral biexciton state, |X2〉, corresponds to two confined excitons. In

general, the nth neutral state corresponds to n electron-hole pairs and is

denoted |Xn〉. It is also possible for a QD to confine unpaired electrons or

holes, leading to states with a net electric charge. A charged state with

m unpaired electrons or holes and n electron-hole pairs is denoted |X±mn 〉.
This thesis only considers transitions involving the ground state and excited

states in which the confined carriers occupy exclusively the lowest energy
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Figure 2.5: Diagram of the carrier configurations corresponding the states studied
in this thesis. (a)-(b) neutral exciton and biexciton states, respectively. (c)-(d)
Negative and positive singly charged exciton states, respectively.

level in the conduction or valence band; i.e. the neutral exciton (|X1〉), the

neutral biexciton (|X2〉), and the singly charged exciton states (|X±1
1 〉). The

carrier configurations corresponding to these states are shown in figure 2.5.

Photons emitted from transitions involving other excited states are excluded

using spectral filtering.

The transitions corresponding to each spectral line can be identified with

certainty using a range of techniques including analysis of the emission in-

tensity as a function of excitation power and applied electric field, and via

temporal measurements of the radiative lifetimes.

2.6.2 Fine-structure of the neutral exciton

The gross energy structure is furnished with additional fine structure due to

other effects, such as inter-carrier interactions. Of most significance to this

thesis is the fine structure of the neutral exciton state[15]. The |X1〉 state

corresponds to the confinement of one exciton, comprised of an electron in

the conduction band and a hole in the valence band. The electron has spin
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2.6. ELECTRONIC STRUCTURE

s = ±1
2
. The hole dispersion curve is split, however it is the heavy holes

with j = ±3
2

which are dominant. The |X1〉 state thus has four possible

projections of its angular momentum with m = ±1 or m = ±2. The electron-

hole exchange interaction lifts this four-fold degeneracy, resulting in two pairs

of states with m = ±1 or m = ±2, as shown schematically in figure 2.6. The

two states with |m| = 1 form a degenerate pair known as the ‘bright states’,

due to fact that they can couple to photons which also have spin of ±1.

The two states with |m| = 2 do not couple to photons and so are known as

the ‘dark states’. Typically, transitions involving the dark states are only

observed in the presence of a magnetic field. In addition, in QDs without

in-plane rotational invariance the degeneracy of the bright states is lifted by

anisotropy in the strain, shape, and composition of the QD, as well as by

effects of crystal inversion asymmetry.

1X

2X

0

Gross structure Electron-hole 
exchange interaction

m = ±1

m = ±2

Fine-structure 
splitting

FSS, |s|

α
1X

β
1X

Figure 2.6: Diagram showing the energy structure of QD states. The exciton
(|X1〉) state is composed of four energy levels. The exchange interaction between
electrons and holes splits the levels, as described in the main text. In QDs with
in-plane anisotropy the bright states with |m| = 1 are separated by a fine structure
splitting.

In the work presented in this thesis it is the bright states which are

studied. The difference in energy between these two states is known as the

fine-structure splitting (FSS), s, and results in the |X1〉 state being split into
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two spin-dependent energy eigenstates |Xα
1 〉 and |Xβ

1 〉. Transitions involving

|Xα,β
1 〉 emit linearly polarised photons, with the axis of polarisation orien-

tated parallel to the angular momentum of the relevant eigenstate. Typically,

in the absence of an applied electric field, the two axes are orthogonal to each

other with one axis parallel to the [110] crystalline axis. This is thought to

be due to the strain effects which result in an elongation of the QDs along

the [110] axis[16, 17, 18].

2.7 Neutral biexciton cascade

The radiative relaxation process from the biexciton state to the ground state

is known as the neutral biexciton cascade. This process is of central impor-

tance to much of the work presented in chapters 4 and 5. In addition, the

emission from transitions between the neutral states is used to allow mea-

surement of the FSS (see section 3.4). The neutral biexciton cascade emits

two photons, one as each of the exciton electron-hole pairs recombine. As

the first recombination happens in the presence of the remaining exciton the

Coulomb potential is different for each of the recombination events. Thus,

the two photons usually have different energy. Hence, in the absence of any

fine-structure splitting, the neutral biexciton cascade results in two distinct

lines in the QD emission spectrum.

Due to the fine-structure of the |X1〉 state there are two possible decay

paths for the neutral biexciton decay, one via |Xα
1 〉 and one via |Xβ

1 〉. This

results in each emission line from both the |X2〉 → |X1〉 and |X1〉 → |0〉 tran-

sitions being split into a pair of closely spaced lines with an energy separation

equal to |s|.
The emitted photons are linearly polarised. As the two |Xα,β

1 〉 eigenstates

have different spin (and thus a different orientation of angular momentum)

the photons emitted from transitions involving each of the eigenstates have a

different axis of polarisation. In fact, transitions involving |Xα
1 〉 emit photons

with orthogonal linear polarisation to those involving |Xβ
1 〉. Figure 2.7a

shows the two decay paths from the biexciton state to the ground state,
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Figure 2.7: Features of the neutral biexciton cascade. (a) Diagram of the two
radiative decay paths from the biexciton state, inset boxes show the carrier config-
uration of each state. The pair of transitions referred to as the biexciton (exciton)
transitions are labeled X2 (X1). The transitions are shown with arrows which are
colour coded to indicate the polarisation of the resulting photon. (b) Polarised PL
emission from the neutral transitions, colours correspond to the decay paths indi-
cated in (a). Peaks are labeled according to the initial state of the corresponding
transition. (c) Diagram showing θ0, the angle between the polarisation basis of
the neutral emission, and thus the orientation of the eigenstates, relative to the
[110] crystalline direction.
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along with inset diagrams showing the carrier configuration in the QD at

each level. Example polarised spectra, showing emission from the two decay

paths, are shown in figure 2.7b and the effects of the FSS can clearly be seen.

The angle between the polarisation of the emitted photons and the [110]

crystalline direction, as shown schematically in figure 2.7c, is labeled as θ0.

As discussed in detail in chapter 4 typically θ0 ∼ 0◦ and the eigenstates are

closely aligned to the [110] and [11̄0] direction.

2.7.1 State and transition notation

This section explains the main notation used throughout this thesis when

referring to the energy levels and transitions involved in the neutral biexciton

cascade, as the nature of the presented work makes the established notation

inconvenient.

Typically in literature, the linear polarisation of the photons emitted by

the neutral biexciton cascade are fixed, with one path emitting horizontally

polarised photons and the other emitting vertically polarised photons in the

lab frame. This leads to the common notation of |XH
1 〉 and |XV

1 〉 for the

two |X1〉 eigenstates. The resulting photons are often referred to by their

polarisation using similar notation, such that a horizontally polarised pho-

ton emitted by the |XH
1 〉 → |0〉 transition is denoted as |H〉. Using this

convention, the two-photon state resulting from the horizontally polarised

decay path is denoted |HH〉 and that of the vertically polarised decay path

is denoted |V V 〉.
In the work discussed in this thesis the orientations of the eigenstate an-

gular momentum, and thus the axes of linear polarisation of the photons

emitted by the neutral biexciton cascade, are not fixed. This variation in

the orientation of the polarisation makes the notation described above cum-

bersome. For example, photons emitted from transitions involving the state

denoted |XH
1 〉 will not always emit photons with horizontal polarisation in

the lab frame.

To prevent any confusion a new notation convention has been used through-

out this thesis. The two exciton eigenstates are labeled as |Xα
1 〉 and |Xβ

1 〉,
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as detailed in section 2.7. Photons emitted from transitions involving |Xα
1 〉

are denoted |α〉 and those from transitions involving |Xβ
1 〉 are denoted |β〉.

Correspondingly, the two-photon states resulting from each of the neutral

biexciton decay paths are |αα〉 and |ββ〉.
In addition, it is also useful to re-label the common polarisation bases. In

order to measure entanglement between the photons emitted from the neutral

biexciton cascade the emission is usually analysed in three polarisation bases,

two linear bases offset by 45◦ and the circular basis. It is common in previous

work to use the the rectilinear basis, labeled {H,V }, where the two axes of

polarisation are horizontal and vertical in the lab frame; the diagonal basis,

labeled {D,A}, where the two axes are at 45◦ to those of the rectilinear

basis; and to label the right and left handed circular polarisation basis as

{R,L}. However, in this work it is more convenient to define the polarisation

bases relative to the orientation of eigenstates, rather than the lab frame.

Thus, throughout this thesis the linear polarisation basis aligned with the

polarisation of the two decay paths is labeled as {α, β}, and the basis offset

by 45◦ is labeled as {α45β45}. The circular basis is unchanged by rotation

of the linear axes in the equatorial plane of the Bloch sphere and so the

standard notation is used.

2.8 Entangled photon pair emission

Much of the work presented in chapters 4 and 5 is motivated by the fact that

the two photons emitted from the neutral biexciton cascade are entangled.

This section gives a brief overview of entanglement and how it arises in the

neutral biexciton cascade.

2.8.1 Entangled particles

An entangled wavefunction describing more than one particle cannot be fac-

torised into a product of the individual wavefunctions of the constitute par-

ticles. One common example is the Bell state for two particles, here labeled
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a and b, with two basis states |0〉 and |1〉, given by

|Ψ+〉 =
1√
2

(|0〉a|1〉b + |1〉a|0〉b) ≡
1√
2

(|01〉+ |10〉) (2.12)

where |0〉a denotes that particle a is in state |0〉 etc. The two particles are

entangled, as |Ψ+〉 cannot be expressed as the product of each individual

particle wavefunction. This is in contrast to the unentangled state given by

|Φ〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) (2.13)

which can be factorised in terms of each individual particle’s wavefunction

to give

|Φ〉 =
1

2
([|0〉+ |1〉]a × [|0〉+ |1〉]b) . (2.14)

Systems described by the two wavefunctions, |Ψ+〉 and |Φ〉, have drasti-

cally different properties upon measurement. If the system is in state |Ψ+〉
then measurement of one of the particles reveals the state of the other. For

example, if particle a is individually measured to be in state |0〉 then the sys-

tem wavefunction is collapsed into state |01〉 and subsequent measurement of

particle b will always yield it to be in state |1〉. However, if the system is in

state |Φ〉 then measurement of one particle does not give information about

the state of the other. In this case, if particle a is measured to be in state |0〉
then the system is either in state |00〉 or |01〉 and particle b is equally likely

to be measured in either state.

2.8.2 Entangled pairs from the biexciton cascade

The two photons emitted by the neutral biexciton cascade are polarisation

entangled, however unless |s| = 0 the resulting wavefunction describing the

two emitted photons is not time-independent[19]. As shown in figure 2.7,

there are two possible decay paths for the biexciton state. When the first

electron-hole pair recombines both the |X2〉 → |Xα
1 〉 and |X2〉 → |Xβ

1 〉 tran-

sitions are equally likely, and thus the QD is left in a superposition of the

two |Xα,β
1 〉 states. After a delay, τX , the remaining electron hole pair re-
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combines with the emission of a second photon. Due to spin conservation,

both photons have the same linear polarisation and thus the final two-photon

wavefunction will be a superposition of the two possible decay paths, |αα〉
and |ββ〉. Where the state |αα〉 corresponds to the first and second transi-

tion both involving exciton state |Xα
1 〉. As discussed in detail in references

[19] and [20], during the time between the two emission events a phase differ-

ence, given by |s|τX
h̄

, develops between the two possible states such that the

two-photon wavefunction is given by

|Ψ〉 =
1√
2

(
|αα〉+ exp(

i|s|τX
h̄

)|ββ〉
)
, (2.15)

which, using the notation convention detailed in section 2.7.1, corresponds

to

|Ψ〉 =
1√
2

(
|X2

αX
1
α〉+ exp(

i|s|τX
h̄

)|X2
βX

1
β〉
)
. (2.16)

If |s| is reduced to zero equation 2.15 becomes the maximally entangled

Bell state given by

|Ψ+〉 =
1√
2

(|αα〉+ |ββ〉) ≡ 1√
2

(
|X2

αX
1
α〉+ |X2

βX
1
β〉
)

(2.17)

and the two-photon state is time-independent, and thus ideally suited for

applications which require a known input state such as quantum logic oper-

ations.

Note that even if |s| > 0 the emitted photons are still entangled, however

time resolved measurements with a temporal resolution capable of resolving

oscillations of frequency |s|
h̄

are required in order to observe the entanglement.

If the oscillation frequency is fast relative to the temporal response time of

the measurement, the entanglement cannot be detected and instead clas-

sically correlated polarisation pairs are observed and the system has equal

probability of appearing to be in either state |αα〉 or state |ββ〉.
In addition, temporal filtering of emission from a QD with |s| > 0 can

allow restoration of the time-independent state given in equation 2.17. This

can be achieved by only selecting photon pairs which have a small value
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of τX , i.e. filtering out events in which the time between detection of the

biexciton and exciton photons is above a threshold value. Although this

limits the phase differences accrued between the two eigenstate components

of the collected photons, it also reduces the efficiency of the system due to

a reduced count rate of photon pairs. A smaller value of |s| leads to slower

evolution of the exciton superposition state and thus less drastic temporal

filtering is required to yield a useable entangled state. As a result, QDs with

small |s| are desirable.

2.9 Quantum dots in optical cavities

Placing QDs in optical cavities alters the spontaneous emission rate via mod-

ification of the optical density of states, ρ (ω). The spontaneous emission rate

of a transition, 1
τR

, is given by Fermi’s golden rule:

1

τR
=

2π

h̄
|〈d · E〉|2ρ (ω) , (2.18)

where ω is the angular frequency of the photons, d is the dipole moment

operator, E is the electric field operator, and 〈d ·E〉 is the matrix element of

the perturbation between the initial and final states.

In a bulk semiconductor material the optical density of states, normalised

over a volume V , is given by

ρ0 (ω) =
V n3ω3

π2c3
. (2.19)

The presence of a Lorentzian cavity mode centered at frequency ωc with

width ∆ωc alters the optical density of states. The density of states then has

the form

ρc (ω) =
2

π∆ωc

∆ω2
c

4 (ω − ωc)2 + ∆ω2
c

+ ρ0. (2.20)

The emission rate of a transition resonant with such a cavity, 1
τCAV

, is

found by substituting the modified density of states into equation 2.18.

The factor by which the emission rate is changed is known as the Purcell
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factor[21], Fp, and is given by the ratio of the emission rates with and with-

out a cavity, such that Fp = ρc
ρ0

. If the transition is exactly on resonance with

the cavity, i.e. it emits photons with ω = ωc, is located at an antinode of the

electric field inside the cavity mode, and its electric dipole is parallel to the

cavity electric field, this is given by[22]:

Fp =
3Q

4π2V

(
λ

n

)3

(2.21)

where the volume, V , is now the volume of the cavity mode and 2πλ
n

= c
ω

.

Thus the emission rate of transitions are increased when Fp > 1. Transitions

which are resonant with the cavity experience an increased rate of emission,

due to the increased optical density of states at the resonance. However, the

factor by which the emission is increased decreases as the detuning between

the cavity mode and a transition increases.

In addition to emitting at a modified rate, an emitter coupled to a cavity

will emit photons preferentially into the cavity mode. Thus the cavity alters

the angular distribution of the emitted photons. This is very useful as it

leads to collimation of the emission, which increases collection efficiency.

The fraction of photons which are emitted into the cavity mode is known as

the spontaneous emission coupling factor, βse. This is related to the Purcell

factor and is given by

βse =
Fp

1 + Fp
. (2.22)

Note that the analysis presented in this section is only applicable to weak

coupling, i.e. when the coupling rate between the emitter and the cavity is

less than the radiative decay time. This is the case for the devices studied

in the work presented throughout this thesis.
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Chapter 3

Experimental methods and

devices

3.1 Introduction

One of the key advantages of semiconductor quantum dots is that they are

compatible with well developed processing techniques and can easily be inte-

grated into a wide range of semiconductor devices. The results presented in

chapters 4, 5, and 6 are obtained from QDs embedded inside diodes which al-

low the application of a vertical electric field. In chapter 7, pillar microcavity

structures are used to enhance the temporal properties of photons emitted

from QDs.

In this chapter, the structure and properties of the devices used in this

work, and the experimental methods used to assess them, are discussed.

3.2 Devices

3.2.1 Electronic diodes

Electronic diode devices are used to allow the application of a vertical electric

field to a layer of quantum dots. The diodes are designed to maximise the

range of applied electric fields over which the quantum dots remain optically
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active. The diodes are fabricated from a wafer grown via MBE. The structure

and fabrication of the diode devices is described below.

Planar structure

The planar structure is grown on a commercially supplied substrate. First a

250 nm buffer layer of GaAs is deposited. Then a distributed Bragg reflector

(DBR) consisting of 15 periods of alternating GaAs and AlGaAs layers is

grown. Each layer in the DBR has a thickness of λ0
4n

, where λ0 is the free-

space wavelength for which the structure is optimised and n is the refractive

index of the layer. On top of the DBR a 70 nm GaAs/AlAs superlattice is

deposited. The superlattice consists of 31 periods of alternating GaAs and

AlAs layers and is equivalent to a single layer of 75% AlGaAs. The use of a

superlattice allows the effective alloy concentration to be controlled, without

varying the rate of Al deposition, by changing the relative thicknesses of the

GaAs and AlAs layers. Next a 5 nm layer of GaAs is deposited, onto which

the InAs quantum dots are grown before being capped by another 5 nm layer

of GaAs. Another 70 nm superlattice layer, identical to the previous one,

is then deposited. Finally, 4.5 periods of a second GaAs/AlGaAs DBR are

deposited, with equal layer thicknesses as used in the bottom DBR.

Top DBR

Bottom DBR

Substrate

AlAs/GaAs Barrier Layers

Dot layer at center of GaAs layer 

n-doped

p-doped

Figure 3.1: Diagram of wafer structure used for diode devices.

The resulting wafer structure is shown in figure 3.1. The superlattices

create a two-dimensional potential quantum well, which significantly reduces
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the rate at which carriers can tunnel out of the QD and thus drastically

increases the range of electric field which can be applied without quenching

the optical activity[23]. The two DBRs form a weak planar cavity, with the

thickness of the superlattices and GaAs cladding layers chosen so that the

optical length of the cavity is λ0
2n

.

Effects of a planar cavity

The high refractive index of III-V materials, relative to air, leads to total in-

ternal reflection of a significant fraction of the photons emitted by the QDs.

This results in only 1-5% of QD emission penetrating the top semiconductor-

air interface for QDs in a single semiconductor slab[24]. The collection ef-

ficiency is further limited by the numerical aperture (NA) of the objective

lens, as only photons which leave the semiconductor with angles less than

sin−1
(

NA
nGaAs

)
are collected. Embedding the QDs in a planar cavity improves

the collection efficiency, both by increasing the proportion of photons which

leave the semiconductor from the top surface and by reducing the angular

spread of the photons[25].

The DBRs which form the cavity have a very high reflectivity at the

wavelength for which they are designed, due to constructive interference of

reflections from successive layer interfaces. The reflectivity of a DBR at its

design wavelength is determined by the refractive indices of the two materials

which make up each period, n1 and n2, as well as those of the material either

side of the DBR, na, nb. The reflectivity increases with the number of mirror

periods, N , and is given by

R = |r|2 =

1− nb
na

(
n1

n2

)2N

1 + nb
na

(
n1

n2

)2N


2

. (3.1)

Although the refractive indices are wavelength dependent, the major con-

tributor to the wavelength dependence of the DBR reflectivity is the phase

difference between successive reflections. This depends on the refractive in-

dex, n, and thickness, l, of each layer, and is given by δ = 2π
λ

2nl.
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The effective reflection coefficient, Γ, for a DBR can be calculated using

recursive iteration of the propagation and reflection matrices for each layer,

as described in [26]. The value of Γ for interface I of a DBR is given by

ΓI =
rI + ΓI+1 exp (−iδ)
1 + rIΓI+1 exp (−iδ)

, (3.2)

where rI = nI−nI−1

nI+nI−1
is the reflection coefficient for layer I. Iteration of equa-

tion 3.2 from the final DBR interface forward to the first interface allows the

total reflectivity, |Γ1|2, to be calculated. Figure 3.2a shows the calculated

reflectivity as a function of wavelength for four DBRs, each of which has

a different number of mirror periods. The design wavelength of the DBRs

is λ0 = 930 nm and around this wavelength destructive interference effects

cause a highly reflective region known was the stopband. As the number

of periods is increased the stopband becomes increasingly defined and its

reflectivity increases.
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Figure 3.2: Reflectivity as a function of wavelength for planar structures. (a)
Calculated reflectivity for four DBRs, each with a different number of mirror peri-
ods, N. The DBRs are deposited on a GaAs substrate and the design wavelength
is λ0 = 930 nm. (b) Measured reflectivity of a planar cavity wafer from which
diode device used in this thesis were fabricated.

In the wafers studied in this thesis, a cavity layer is sandwiched between

two DBRs. This cavity layer causes a narrow transmission window in the
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stopband, resulting in the cavity mode. Photons with wavelength in this

region can couple to the mode, as described in section 2.9, resulting in an

increase in the collection efficiency as desired. Figure 3.2b shows the room

temperature reflectivity of a wafer, with the planar structure described in

section 3.2.1, from which some of the diode devices used in the thesis were

fabricated. The cavity mode can clearly be seen around 966 nm. However,

when cooled to 5 K the cavity wavelength shifts to around 930 nm.

Note that although the planar cavity increases collection efficiency it does

not significantly alter the radiative lifetime of transitions. This is because of

the large cavity volume which leads to a small Purcell factor, as shown in

equation 2.21.

Diode fabrication

The structure described above is doped to place the QD layer at the center

of the intrinsic region of a P-I-N diode. The bottom DBR and the first three

periods of the bottom superlattice are n-doped with Silicon at a concentration

of 1.75 × 1018 cm−1. The last three periods of the upper superlattice and

the top DBR are p-doped with Carbon at a concentration of 1× 1018 cm−1,

apart from the top 5 nm of the wafer for which the dopant concentration is

increased to 5.4 × 1019 to ensure a good ohmic contact between the wafer

and metal contacts deposited on the top surface. The applied electric field,

E, is calculated from E = V−Vb
d

, where V is the potential difference between

the n-type and p-type contacts, Vb is the built in potential due to the P-I-N

junction, and d is the thickness of the intrinsic region. For the devices used

in this work Vb = 2.2 V and d = 140 nm.

The diodes are fabricated using a combination of metal deposition via

thermal evaporation and wet-etching. Optical lithography is used to pattern

the features for both of these processes. An Aluminium shadow mask is

first deposited on the wafer surface. Wet-etching is then used to expose an

area of n-doped GaAs in the bottom DBR, onto which the n-type contacts

are deposited using thermal evaporation of a Gold-Germanium-Nickel alloy.

Thermal annealing ensures good penetration of the contacts into the n-doped
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region of the wafer. A second wet-etching step is then used to define a

mesa, with dimensions to accommodate the Aluminium shadow mask. The

etch depth is such that the p-doped layer is penetrated but the n-doped

layer remains intact. Finally, the p-contacts are deposited using thermal

evaporation of 20 nm of Titanium followed by 100 nm of Gold. The resulting

device structure is shown schematically in figure 3.3

Aluminium Mask

p-contact

Isolation Mesa

n-contact

Figure 3.3: Diagram of diode devices.

The Aluminium shadow mask is patterned with an array of micron diam-

eter holes. This allows small areas of the wafer to be optically addressed so

that individual quantum dots can be probed. The mesa under the shadow

mask serves to reduce the active volume of the device. This both limits the

effects of wafer defects which can cause current leakage and reduces the ca-

pacitance, thus allowing the device to respond faster to changes in electric

field. The majority of the work presented in this thesis was conducted on

devices with mesa areas of 360×360 µm. However for the experiments in

chapter 6 involving rapidly varying electric field a device with a mesa area

of 35×60 µm was used.
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3.2.2 Pillar microcavities

Pillar microcavities are used to alter the temporal properties of the emission

from QDs via coupling between the QD transitions and the optical mode of

the microcavity structure. As explained in section 2.9, this coupling enhances

the rate of spontaneous emission from the coupled transition, thus reducing

the radiative lifetime of the initial state.

Pillar structure and fabrication

As with the planar structure described above, the pillar microcavities are

fabricated from wafers grown via MBE. The pillars are defined using a com-

bination of optical lithography and reactive ion etching.

The planar structure of the pillars consists of a GaAs cavity of thickness
λ0
n

sandwiched between two unequal DBR mirrors. This is similar to that of

the diode devices, however there are no superlattice layers and the sample

is not doped. The pillars create three dimensional optical cavities. The

DBRs provide vertical confinement, with the lateral confinement caused by

the interface between the pillar edge and its surroundings.

The purpose of embedding QDs in pillar microcavities is to increase the

rate and coherence time of photons emitted from QD transitions coupled to

the cavity mode. This is achieved via Purcell enhancement of the emission,

as described in section 2.9. In order to increase the Purcell factor the ratio of

quality factor to cavity volume (Q
V

) must be increased. Scattering caused by

rough pillar sidewalls leads to a reduction of Q, necessitating optimisation of

the etch conditions to increase sidewall smoothness. Furthermore, the quality

factor can be increased by adding more periods to the DBRs. However,

increasing Q reduces the spectral width of the cavity mode and thus reduces

the probability of finding QDs which have transitions resonant with the cavity

mode. The pillars used in this thesis have 17 (24) DBR periods above (below)

the cavity.

The volume of the cavity can be decreased by reducing the pillar diameter.

However this also reduces the Q, due to increased sidewall scattering. This

leads to an optimum diameter which, for the samples used in this thesis, was
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found to be around 1− 3µm.

3.3 Optical measurement techniques

For all optical measurements the sample is held in a cryostat and cooled

using a continuous flow of liquid Helium. A heater and temperature sensor,

embedded in the cold finger on which the sample is mounted, allow the

sample temperature to be set by an automatic temperature controller. Most

of the measurements are conducted at temperatures of ∼ 5 K. The cryostat

is equipped with electrical feedthroughs which allow voltages to be applied to

the device if required. For all of the techniques described below, the objective

lens is mounted on a 3-axis micrometer controlled positioning stage. This

allows the location of the sample onto which the laser is focused, and from

which emission is collected, to be varied.

3.3.1 Photoluminescence spectroscopy

The most widely used technique in this thesis is photoluminescence (PL)

spectroscopy. The basic experimental configuration used for this technique

is shown in figure 3.4a. The sample is optically excited by a laser, a variety

of excitation regimes are used as described in section 2.5. The resulting QD

emission is collected and collimated by an objective lens with a numerical

aperture of 0.42. The QD emission is spectrally filtered to remove laser

light before being dispersed by a spectrometer onto a liquid Nitrogen cooled

Silicon charged coupled device (CCD) detector. The spectrometer, which

has a focal length of 640 mm, has two interchangeable diffraction gratings:

a coarse grating with line density of 600 mm−1, which allows spectra over a

wide wavelength range of 60 nm with a spectral resolution of 0.06 nm; and

a fine grating with line density of 1800 mm−1, which allows measurements

over a smaller range of 10 nm but with a finer spectral resolution of 0.02

nm. White light can be combined coaxially with the excitation laser using

a beamsplitter (BS2), and a removable beamsplitter (RBS) in front of the

spectrometer allows imaging of the sample for positioning.
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RBS Camera
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RBS Camera
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Figure 3.4: Diagram of experimental arrangement for PL spectroscopy. (a)
Polarisation insensitive configuration, a beamsplitter (BS2) allows laser and white
light to be combined and directed to the sample via another beamsplitter (BS1).
An objective lens both focuses the laser and collects the QD emission, which is
passed to a spectrometer. A removable beamsplitter (RBS) allows the sample
to be imaged on a camera. (b) Configuration for performing linear polarised PL
measurements. The set-up is as in (a) but a polarising beamsplitter (PBS1) and
half-waveplate (HWP1) allow for polarisation selection. (c) Independent control of
the excitation and emission polarisation is achieved by including two Glan-polariser
and half-waveplate pairs, as described in the text.
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The configuration shown in figure 3.4a is insensitive to the polarisation

of the QD emission. The ability to measure the spectra as a function of

polarisation is achieved by the addition of polarisation optics. In 3.4b the

beamsplitter which directs laser light to the sample (BS1) is replaced with a

polarising beamsplitter (PBS1) and a half-waveplate (HWP1) is inserted in

front of the sample. Rotation of HWP1 rotates both the polarisation of the

laser light which excites the sample, and that of the QD emission which is

transmitted through PBS1 into the spectrometer.

Some experiments require independent control of the polarisation of the

excitation laser and of the polarisation of the QD emission which is collected.

This is achieved using the configuration shown in 3.4c. The laser polarisation

is controlled by placing HWP1 and a Glan-polariser (GP1) directly in front

of the laser; and a second half wave-plate (HWP2) and Glan-polariser (GP2)

is used to control the polarisation of the emission which is transmitted into

the spectrometer. Note that a non-polarising beamsplitter (BS1) is used to

direct the laser onto the sample for this configuration.

3.3.2 Etalon spectroscopy

The resolution of the diffraction grating spectrometer described above is

broader than the natural linewidth of the QD transitions. In order to accu-

rately measure the shape and linewidths of transitions a wavelength tuneable

etalon is used to perform detailed spectroscopy.

The etalon is composed of two mirrors separated by an air gap to form a

highly reflective cavity with a narrow transmission range. The cavity length

is controlled by piezo actuators which can vary the separation of the mirrors.

This allows the wavelength of transmission to be selected by setting the

voltage applied to the piezo actuators. The linewidth of the transmission

band through the etalon is 0.8µeV, allowing accurate measurements of the

QD transition linewidths which are typically on the order of 10µeV.

The configuration used to perform etalon spectroscopy is shown in figure

3.5, it is similar to that used for PL spectroscopy but before the QD emission

reaches the spectrometer it is coupled into fiber and sent through the etalon
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Figure 3.5: Diagram of the experimental configuration used to perform etalon
spectroscopy.

to an avalanche photodiode detector (APD). The transmission wavelength

is varied by sweeping the voltage applied to the piezo actuators, and the

intensity detected by the APD is recorded. If polarisation control is required

BS1 is replaced with a polarising beamsplitter and a half-waveplate is inserted

in front of the sample. This method of spectroscopy has a narrow range

and is time consuming, relative to using the diffraction grating spectrometer

and CCD. Therefore it is only appropriate to use this method for specific

measurements where an exceptionally fine resolution is required, such as

measurements of the linewidth of transitions within single QDs.

3.3.3 Photoluminescence excitation spectroscopy

Information about the energy structure of a QD can be investigated using

photoluminescence excitation (PLE) spectroscopy. This technique measures

the intensity of transitions as a function of the excitation laser wavelength

and allows resonances to be found.

The configuration used to perform PLE spectroscopy is shown in figure

3.6a. It is similar to that used for etalon spectroscopy but the etalon is

replaced with a transmission grating. The QD is excited by a variable wave-

length laser. The QD emission is spectrally filtered using a transmission

grating to select the wavelength of the transition to be measured. The fil-

tered emission is then sent to an APD and the intensity of the transition
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Figure 3.6: PLE measurements. (a) Diagram of the experimental configuration
used to perform PLE spectroscopy. (b) Example PLE measurement of a |X1〉 → |0〉
transition in a typical QD. The phonon resonance is indicated with an arrow.

is measured as the wavelength of the excitation laser is varied. Peaks in

the transition emission intensity correspond to excitation resonances. There-

fore they reveal information about the energy structure of the QD, such as

the energy of the s-shell, p-shell, and other excited states which decay via

the transition being measured. In this thesis, PLE spectroscopy is used to

find the phonon resonances required for the quasi-resonant excitation scheme

described in section 2.5. Figure 3.6b shows an example PLE measurement

which shows a typical phonon resonance.

3.3.4 Time-resolved spectroscopy

It is possible to measure the temporal properties of individual transitions

using time-resolved spectroscopy techniques. This is achieved using the con-

figuration shown in figure 3.7a. The sample is excited with a pulsed laser

and the desired transition is selected via spectral filtering with a transmission

grating. The filtered emission is sent to an APD, which is used to trigger the

start input of a Single Photon Counting Module (SPCM). The stop input

of the SPCM is triggered using a signal generated from the excitation laser

clock. This allows the timing of the photons emitted by the QD, relative

to the excitation pulse, to be measured. One common use for this set up
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is seen in section 7.4 where the radiative lifetime of the |X1〉 state in a QD

is measured by recording the temporal distribution of photons emitted from

the |X1〉 → |0〉 transition.
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Figure 3.7: Diagram of experimental configuration used for time resolved spec-
troscopy of individual transitions. (a) Polarisation insensitive configuration, used
for measurements of the radiative lifetime of excitons within QDs. (b) Inclusion of
polarisation optics allows the polarisation of the excitation laser and the collected
emission to be selected.

In chapter 6, polarised time-resolved spectroscopy is used to investigate

the temporal evolution of the |X1〉 state. To obtain these measurements,

polarising optics are added to the time-resolved spectroscopy setup. Two

half-waveplate and Glan polariser pairs are inserted: one directly after the

laser (GP1 and HWP1) and one before coupling the emission into fiber (GP2

and HWP2), as shown in figure 3.7b. This enables the polarisation of the

excitation laser and of the emission which is analysed to be individually

selected, as required for the measurements detailed in section 6.2

3.3.5 Photon correlation measurements

Photon correlation measurements allow the relative timing of different pho-

ton detection events to be measured. As with time-resolved spectroscopy

a SPCM is used, however both the start and stop signals are supplied by

APDs which are triggered by photon detection events. This allows the time

interval, τ , between the detected photons to be measured.
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Several kinds of photon correlation measurements are used in this the-

sis. Polarised correlation measurements of the bi-exciton cascade are used to

measure entanglement in chapter 4, and correlation measurements are crucial

to the measurement of the optical CNOT gate presented in chapter 7. Out-

lined below are the principles of three important correlation measurement

techniques.

Second-order autocorrelation

A second-order autocorrelation, g(2)(τ), is a widely used technique for de-

termining the quantum nature of an emitter. It is obtained by comparing

the intensity, I(t), of a signal with itself as a function of a time interval, τ ,

according to equation 3.3.

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

(3.3)

A second-order autocorrelation function can be measured using the set-up

shown in figure 3.8a. Light from an emitter is split at a 50/50 beamsplitter,

and sent to two APDs. One APD triggers the start input and the other

triggers the stop input of the SPCM, and thus the time interval between

emitted photons can be measured. The results are accumulated into a his-

togram showing the number of counts as a function of τ . Normalisation of

this histogram yields g(2)(τ).

A light source can be categorised according to the value of its second-order

autocorrelation at τ = 0. Classical light sources can only have g(2)(0) ≥ 1,

as a classical wave can always have half of its intensity directed out of each

of the outputs from the 50/50 beamsplitter. However, a single quantum

emitter can have g(2)(0) < 1, as an individual photon must exit from one of

the beamsplitter outputs and cannot be split between them. An ideal single

photon source, which emits exactly one photon at a time, has g(2)(0) = 0, as

it is impossible for a single photon to simultaneously be detected by both of

the APDs.

Photon correlation measurements can be acquired under both continuous
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Figure 3.8: (a)Diagram of experimental configuration for the measurement of
second-order autocorrelation functions. (b) Simulated g(2)(τ) for an ideal single
photon source with pulsed excitation at frequency 1

τex
.

wave or pulsed excitation regimes, as both the start and stop events are trig-

gered by photons emitted from QDs. This is in contrast to the time-resolved

spectroscopy described in section 3.3.4, where the timing of emitted photons

is recorded relative a pulsed excitation laser. For the work in the thesis,

second-order autocorrelation functions are measured under pulsed excitation

such that the QD based emitters are excited at regular time intervals, τex, by

a pulsed laser. Under these conditions, peaks in g(2)(τ) are expected when

τ is equal to an integer multiple of τex. A peak at τ = 0 is only possible if

multiple photons are emitted simultaneously. The relative area of the peak

at τ = 0 compared to the other peaks gives the probability of multi-photon

emission. Figure 3.8b shows a simulated g(2)(τ) for an ideal single photon

source under pulsed excitation conditions.

Polarised second-order pair correlation

Polarised second-order pair correlation measurements are used in this thesis

as a means to measure entanglement of photon pairs emitted from the neu-

tral biexciton cascade, as outlined in section 4.5. These second-order pair

correlations are calculated by comparing the intensity of emission from the

two transitions in the cascade as a function of time interval, τ , as described

39



3.3. OPTICAL MEASUREMENT TECHNIQUES

by

g
(2)
P1,P2(τ) =

〈I1(t)I2(t+ τ)〉
〈I1(t)〉〈I2(t+ τ)〉

, (3.4)

where I1 and I2 are the intensities from the |X2〉 → |X1〉 and |X1〉 → |0〉
transitions respectively. This is very similar to the second-order autocorre-

lation described by equation 3.3. However for the autocorrelation both the

start and stop signal to the SPCM are triggered by photons from the same

transition, but for the pair correlation the start signal is triggered by a pho-

ton from the |X2〉 → |X1〉 transition and then the stop signal is triggered by

the subsequent photon from the |X1〉 → |0〉 transition. The subscripts P1

and P2 indicate the polarisation of the start and stop photon, respectively.

Recall the two-photon state resulting from the neutral biexciton cascade

given in equation 2.15,

|Ψ〉 =
1√
2

(
|αα〉+ exp(

i|s|τX
h̄

)|ββ〉
)

(3.5)

where τX is the time interval between the two emission events and state

|αα〉 (|ββ〉) corresponds to both the photons being emitted via the |Xα
1 〉

(|Xβ
1 〉) state. Second-order pair correlation measurements are very useful for

assessing this state as g
(2)
P1,P2(τ) is proportional to the probability that the

two emitted photons are in state |P1 P2〉.
Figure 3.9a shows a schematic diagram of the experimental measurement

used to achieve this. The emission from a QD is spectrally filtered to separate

the photons emitted by the |X2〉 → |X1〉 transition from those emitted by

the |X1〉 → |0〉 transition. To achieve this, the emission is split with a

50/50 beamsplitter, with light from the two beamsplitter outputs sent to

different spectrometers. One spectrometer then selects the |X2〉 → |X1〉
transition and the other selects the |X1〉 → |0〉 transition. Emission from

the |X2〉 → |X1〉 transition is passed through a polarising beamsplitter. This

selects emission from just one of the decay paths, which is then sent to an

APD. Emission from the |X1〉 → |0〉 transition is split at another polarising

beamsplitter, and light from each of the two decay paths is sent to two

separate APDs. The three APDs are used to trigger the start and stop inputs
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on two synchronised SPCMs, allowing co- and cross-polarised second-order

pair correlation measurements to be simultaneously acquired.
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Figure 3.9: (a) Diagram of experimental configuration used for measuring second-
order pair correlations as described in the text. (b) Example of second-order pair
correlations for co- and cross-polarised emission in the basis aligned with the QD
eigenstates. The legend indicates P1, P2 for each measurement. As explained
in the main text the two measurements show that polarisation correlated photon
pairs are likely to be emitted as expected.

Half-waveplates inserted in front of the two polarising beamsplitters allow

the orientation of the linear polarisation basis being measured to be rotated.

Replacing these with quarter-waveplates allows the circular polarisation basis

to be measured. Thus, this configuration allows measurement of the second-

order pair correlations required to observe entanglement between the two

photons, as detailed in section 4.5.

The correlation measurements are normalised to the value of g
(2)
P1,P2(τ)

for |τ | � 0, as coincidence events in this time range correspond to photons

from different cascade events and so are uncorrelated. Thus g
(2)
P1,P2(τ) = 1

is expected for photon pairs with uncorrelated polarisation; g
(2)
P1,P2(τ) >

1 indicates an increased probability of state |P1 P2〉 being emitted; and

g
(2)
P1,P2(τ0) < 1 indicates a suppression of state |P1 P2〉, relative to the ex-

pected emission if each photon had random polarisation.

Figure 3.9b shows an example of a co- and cross polarised second-order

pair correlation for a QD measured in the linear basis aligned to the eigenstate

orientation. As discussed in section 2.7, each of the decay paths of the neutral

biexciton cascade emits a pair of co-polarised photons. The effects of this

41



3.4. MEASUREMENT OF FINE-STRUCTURE SPLITTING

are clearly visible in the data. Coincidences with small positive values of

τ correspond to cases where both photons are likely to be from the same

cascade event. The co-polarised correlation shows a peak in this region as

a result of the increased probability of the two photons having the same

polarisation. Correspondingly, the cross-polarised correlation shows a dip

below g
(2)
α,β(τ) = 1 in this region, indicating the reduced probability of the

two photons having opposite polarisation. Coincidences with −τ correspond

to events in which a photon from the |X1〉 → |0〉 transition is detected before

a photon from the |X2〉 → |X1〉 transition. Both data sets show a dip in

g
(2)
P1,P2(τ) for small negative values of τ . This is because coincidences in this

region are only possible if the |X2〉 state is re-excited very quickly after the

|X1〉 → |0〉 transition has occurred, which is unlikely.

3.4 Measurement of fine-structure splitting

As detailed in section 2.6.2, the spectral lines due to the |X2〉 → |X1〉 and

|X1〉 → |0〉 transitions are each composed of a pair of linearly polarised lines

separated in energy by the fine-structure splitting, s (see figure 2.6). Photons

from the two decay paths have orthogonal polarisation and thus the fine-

structure splitting can be measured using polarised PL-spectroscopy. This

technique is used extensively in chapters 4 and 5.

The experimental set-up shown in figure 3.4b is used, allowing acquisi-

tion of polarised spectra as explained in section 3.3.1. To measure the fine-

structure splitting, the angle of linear polarisation measured, θ, is rotated

through 180◦ in increments of 11.25◦ and the emission spectrum is recorded

for each polarisation. The lines due to the |X1〉 → |0〉 and |X2〉 → |X1〉 tran-

sitions are fit with Lorentzian peaks, and the energy of the peak intensity for

each line is extracted.

If |s| is large enough to be clearly resolved by the spectrometer the two

polarised transitions can clearly be seen, and the energy of the peak intensity

abruptly changes when HWP1 is aligned with each of the transitions, as

shown in figure 3.10a. It is trivial to extract the value of |s| in this case.
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3.4. MEASUREMENT OF FINE-STRUCTURE SPLITTING

If |s| is below the resolution of the system, as in figure 3.10b, then the

energy at which the peak intensity is detected appears to vary sinusoidally

between the energy of the two transitions, as the relative contribution from

each transition is varied. For each polarisation, the difference in energy be-

tween the |X2〉 → |X1〉 and |X1〉 → |0〉 transitions, ∆EX2−X1(θ),is calculated.

Calculating the difference between the two lines removes any systemic drift

due to rotation of the polarisation optics, which can cause small deflections

to the path of the emitted light. A sinusoidal function is fit to ∆EX2−X1(θ),

with the peak-to-peak amplitude of the sinusoid equal to 2|s|, as shown in

figure 3.10c.
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Figure 3.10: Method of measuring fine-structure splitting. (a) and (b) show
emission spectra the |X1〉 → |0〉 transition as a function of linear polarisation
angle from two quantum dots with |s| 65µeV and |s| 12µeV respectively. Black
spheres show the energy of peak intensity which is extracted from a Lorentzian fit.
For cases where |s| is smaller than the system resolution the difference in energy
between the two neutral transitions is calculated as a function of polarisation angle.
A sinusoidal fit then allows |s| and the orientation of the state polarisation basis,
θ0, to be extracted as shown in (c).

In principle it is possible to measure |s| by simply acquiring two polarised

spectra, one aligned with each of the polarisation axes. However, the method

described above allows much smaller values of |s| to be accurately measured.

In addition, using multiple polarisation angles between 0◦ and 180◦ allows

43



3.4. MEASUREMENT OF FINE-STRUCTURE SPLITTING

the orientation of the eigenstates to be measured. This is the actual angle, θ0,

which the polarisation basis makes with the crystalline axis and is obtained

from the phase of the fit to ∆EX2−X1(θ) as shown in figure 3.10c.
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Chapter 4

Electrical manipulation and

coherent coupling of the

exciton states in single

quantum dots

4.1 Introduction

As detailed in Chapter 2, the energy structure of single quantum dots pro-

vides a simple level system which is well suited for demonstrations of quantum

phenomena in the solid-state. The neutral biexciton cascade is of particular

interest as it can be used as a source of entangled photon pairs[27]. However

in order for the entangled state to be practically useful, the fine structure

splitting, s, of the |X1〉 state must be small, as detailed in section 2.8. This

has motivated significant work into methods to reduce |s|.
Several methods have been demonstrated for tuning the FSS. Manipula-

tion of the strain field has been much studied, with early attempts to reduce

|s| involving the piezoelectric application of strain[28]. Although promising,

these initial experiments were not able to bring the FSS close to zero. How-

ever, more recently the effects of strain on the exciton eigenstates and the

FSS have been understood in more detail[29, 30, 31]. A theoretical analysis
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of different QD symmetries is presented by Singh and Bester[29], where they

show that the application of uniaxial stress can only eliminate the FSS in ide-

ally symmetric QD. For experimentally realised QDs they predict that there

will be a lower bound below which the FSS can not be reduced, and that the

orientation of the exciton eigenstates rotates as the system is swept through

the resulting anticrossing. This work is built upon by Gong et al.[31], who

establish a theoretical relationship between the applied strain and properties

of the exciton eigenstates, such as their orientation and the FSS. In addition,

they demonstrate that the minimum values attainable for the FSS under

the application of strain can be estimated from measurements made at zero

external strain, thus allowing QDs with small enough minimums to be pre-

selected for further study easily. These findings are of particular relevance

to the work presented in this chapter, where similar behaviour is observed

experimentally whilst tuning the FSS using the application of an electric

field.

Other approaches which have been investigated include the application of

magnetic fields[32, 33], strong coherent lasers[34, 35], lateral electric field[36,

37, 38], and vertical electric field[39, 40]. Those studies that have been able

to minimize the FSS have observed the states to cross through each other[32,

34, 35, 36, 37].

Tuning of the FSS via application of a vertical electric field is possibly the

most convenient technique yet reported. However previous work using this

method has been limited by the low confinement potential of QDs, which

results in carriers tunneling from the QDs at field magnitudes on the order

of tens of kilovolts per centimeter. Thus, only relatively small changes in |s|
have been observed using this method to date. The work presented in this

chapter overcomes this limitation via the use of the diode devices described

in chapter 3. In these devices the QDs are embedded in a two-dimensional

quantum well which increases carrier confinement and allows large electric

fields, on the order of a few hundred kilovolts per centimeter, to be applied

without carrier tunneling quenching optical emission (see section 3.2.1 and

figure 3.1).

In this chapter, a linear shift in |s| over a range of ∼ 100µeV is reported,
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4.2. SAMPLE CHARACTERISATION

due to the two |X1〉 eigenstates (|Xα
1 〉 and |Xβ

1 〉) undergoing Stark shift at dif-

ferent rates. As |s| is reduced, an anticrossing of the eigenstates is observed.

This imposes a minimum value, s0, below which |s| can not be reduced using

this method. In addition, close to the anticrossing hybridization of the |Xα
1 〉

and |Xβ
1 〉 states induces a rotation in the linear polarisation of the photons

emitted from the two |Xα,β
1 〉 → |0〉 transitions. The angle between the axes

of linear polarisation and the [110] crystalline direction, θ0, is observed to

rotate through ∼ 90◦ as the system is swept through the anticrossing. The

behaviour of the system is well described by a coherent coupling model, which

allows the variation in both |s| and θ0 to be explained. Finally, entangled-

photon-pair emission is measured from the neutral biexciton cascade of a QD

which has a minimum |s| of s0 = 1.4µeV [41].

4.2 Sample characterisation

The results presented in this chapter are obtained from studies of QDs em-

bedded in P-I-N diodes, as described in detail in chapter 3 section 3.2.1.

These devices allow the application of a vertical electric field, parallel to

the growth direction of the sample. In addition, a patterned shadow mask

on the top surface of these devices creates micron sized apertures through

which individual QDs can be optically addressed. This allows photolumines-

cence (PL) spectroscopy measurements to be used to investigate the effects

of electric field on the energy level structure of single QDs.

The samples are cooled to ∼ 5 K using liquid helium in a continuous flow

cryostat and polarised PL spectroscopy measurements are acquired using the

methods detailed in section 3.3.1. For measurements of the FSS, the sample

is optically excited using the above-band method described in section 2.5,

as this method can drive both of the |0〉 → |Xα,β
1 〉 transitions. Figure 4.1a

shows the PL emission from a typical quantum dot as a function of electric

field. The parabolic variation in the emission energy due to the Stark shift

can clearly be seen. The relative intensity of the different transitions also

varies, as the electric field strongly affects the tunneling rates of electrons
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Figure 4.1: Photoluminescence (PL) measurements from a typical QD, emission
lines are labeled according to the initial state of the corresponding transition.
(a)Unpolarised PL as a function of electric field. (b)Polarised PL spectra showing
emission from the neutral transitions, solid (dashed) line shows the emission via

the |Xβ
1 〉 (|Xα

1 〉) state. (c) Magnitude of fine-structure splitting (|s|), at fixed
electric field, as a function of temperature (left pane) and excitation power (right
pane).

48



4.3. MANIPULATION OF FINE-STRUCTURE WITH ELECTRIC
FIELD

and holes. At lower field magnitudes the |X−1
1 〉 state is preferentially created

due to an excess of electrons in the QD; whilst at higher field magnitudes

an excess of holes preferentially populates the |X+1
1 〉 state. There exists a

narrow range of fields where both transitions from the charged states can be

observed. In this range, the intensity of the neutral transitions relative to

that of the charged transitions is greatest as expected.

Suitable QDs are identified by examining the PL emission from each aper-

ture. Spectral lines due to the different transitions are identified with cer-

tainty using a variety of techniques, such as analysis of the emission intensity

as a function of excitation power and electric field magnitude. Example spec-

tra showing typical emission from the neutral biexciton cascade are shown in

figure 4.1b, with the effects of a relatively large ∼ 60µeV FSS clearly visible.

The relative intensities of the |X2〉 → |X1〉 and |X1〉 → |0〉 transitions de-

pend on the power of the excitation laser. However, the FSS is remarkably

robust to changes in both the excitation power and temperature as shown in

figure 4.1c.

4.3 Manipulation of fine-structure with elec-

tric field

Application of a vertical electric field, F , induces a Stark shift in the energy

levels of the QDs of the form

E = E0 − pF + βF 2 (4.1)

where E0 is the energy when F = 0, p is the permanent dipole moment in

the z direction, and β is the polarisability. The values of these parameters

are different for each transition and each QD.

The |Xα
1 〉 and |Xβ

1 〉 neutral exciton eigenstates undergo a Stark shift at

different rates, and thus the FSS is varied as the electric field is changed.
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The magnitude of the FSS is given by

|s| = |Eα − Eβ| = |∆Eα−β − F (pα − pβ) + F 2(βα − ββ)| (4.2)

where subscripts on E, p, and β indicate the energy, dipole moment in the z

direction, and polarisability, respectively, of the corresponding |Xα,β
1 〉 states;

and ∆Eα−β is the magnitude of the energy difference between the two states

in the absence of an applied electric field, such that ∆Eα−β = |E0,α − E0,β|.

4.3.1 Measurement of FSS as a function of electric field

The effects of the electric field on the FSS are measured via the acquisition of

two sets of orthogonally polarised spectra taken at a range of electric fields.

For each set of spectra, the experimental set up shown in figure 3.4b in

section 3.3.1 is used to allow polarised PL spectroscopy. The emission from

one decay path is selected by fixing the orientation of HWP1, and a series of

PL spectra are recorded at a range of electric fields via incrementally varying

the applied bias voltage to the device. The correct orientation of HWP1 is

determined via a measurement of θ0 using the method detailed in section

3.4. The process is then repeated with the angle of HWP1 adjusted to select

emission from the other decay path.

Each set of spectra is analysed, and the emission energy of each of the

|X2〉 → |X1〉 and |X1〉 → |0〉 transitions is extracted by fitting Lorentzian

peaks to the corresponding emission lines. The difference in energy between

corresponding transitions in the two orthogonally polarised data sets is |s|,
and thus the variation in FSS as a function of electric field is obtained.

Figure 4.2 shows the fitted emission energy, along with the extracted FSS,

as a function of electric field for an example QD. Note that this method

is only suitable for |s| larger than ∼ 10µeV, as for smaller values of FSS

the resolution of the system is too large to allow accurate measurements.

Also, when the system is near the anticrossing θ0 rotates and so the fixed

orientation of HWP1 will no longer select emission from just one decay path.

However, this method is significantly faster than the technique in section 3.4
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Figure 4.2: Measurement of FSS shift via orthogonally polarised data sets. (a)
Emission energy of the neutral transitions, as a function of electric field, for both
decay paths. (b) FSS as a function of electric field.

and, whilst not appropriate for measuring small values of FSS or the rotation

of θ0, it is well suited for measuring the large scale changes in |s| over a wide

variation in electric field.

4.3.2 FSS tuning rate

Away from the minimum value, s0, the magnitude of the FSS exhibits a linear

change with electric field, with a gradient labeled γ. By inspection of equation

4.2 it can be seen that this implies βα = ββ and that γ is governed by the

difference in the permanent z dipole moment of the two exciton eigenstates,

such that γ = pα − pβ.

This behaviour can be explained by considering the origin of both the

Stark shift parameters, which have been investigated by a number of theo-

retical studies such as [18, 42, 43]. Due to QD shape, built-in strain field,

and Indium composition distribution, confined electrons are localised with a

different mean z-position to that of confined holes. This leads to a permanent

z dipole moment (p), which is proportional to the overlap integral between

the electron and hole wavefunctions[44]. In-plane anisotropy of the QD con-

finement potential causes the spatial distribution of the confined wavefunc-
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tions to be dependent on their orientation within the QD. This results in

the overlap integral between confined electron and holes being dependent

on the orientation of the exciton wavefunction. Thus the two orthogonally

orientated exciton eigenstates have different values of p, as observed. The

polarisability of the eigenstate wavefunction is not strongly affected by the

in-plane anisotropy as it is influenced mainly by the height of the confinement

potential, which is the same for both eigenstates[45].
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Figure 4.3: FSS, s, as a function of electric field for five QDs from wafer W0194.
The FSS varies linearly, and although s is different for each QD the rate of change
of s with respect to electric field is the same.

Due to the random nature of the growth process most QD parameters,

such as the FSS at zero electric field, neutral transition emission energy,

energy difference between the two neutral transitions, and the Stark shift

coefficients (p, β), are typically different for each QD. However, the value of

γ is observed to be similar for QDs in a given wafer and independent of the

other parameters given above. This indicates that the in-plane anisotropy

is dependent on the MBE conditions during the growth of the QDs, and

suggests that γ may be influenced by engineering different QD shape and

strain field via modification of these conditions.

Figure 4.3 shows the FSS as a function of electric field for several QDs

from a particular wafer, labeled W0194, in which the QDs were grown to
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have emission from the neutral transitions at around 940 nm. For these QDs

γ = −0.285± 0.019 µeV kV−1 cm. Shifts in the FSS on the order of 100µeV

have been achieved using changes in electric field of ∼ 500 kV cm−1 for QDs

in this wafer.

4.3.3 Effects of QD growth conditions on FSS tuning

rate

The effects of different growth conditions on the rate of tuning of the FSS has

been qualitatively demonstrated via a study of QDs grown to have different

structural and optical properties. This has been achieved by studying QDs

in two other wafers, labeled W0462 and W0590. Wafer W0462 contains QDs

which are grown to have emission from neutral transitions around 880 nm.

To achieve the desired reduction in emission wavelength these QDs are grown

smaller than those in wafer W0194 by reducing the time for which the QD

material is deposited. This decreases the confinement lengthscale leading

to a larger separation between energy levels and thus transitions between

states emit photons with shorter wavelength. In addition, the smaller size of

these QDs leads to an alteration in the in-plane anisotropy. Wafer W0590

has the same p-i-n wafer structure as the other wafers, but the QD layer

is embedded inside a layer of Al0.3Ga0.7As instead of GaAs. The increased

lattice mismatch between AlGaAs and InAs leads to an increase in the inter-

layer strain, resulting in an alteration of the strain field anisotropy. Thus,

both these variations in the growth conditions should affect the rate at which

the FSS is tuned by altering the difference between the permanent z dipole

moments of the two eigenstates.

Figure 4.4 shows |s| as a function of electric field for QDs in these two

wafers. The QDs in wafer W0462 have γ = −0.198 ± 0.024 µeV kV−1 cm,

with the FSS of these QDs varying more slowly with electric field than

those in wafer W0194. The QDs in wafer W0590 have γ = −0.306 ± 0.035

µeV kV−1 cm, and therefore the rate at which the FSS changes with elec-

tric field is greater than that for QDs in wafer W0194. These results are

consistent with the hypothesis that the difference between pα and pβ, which
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Figure 4.4: FSS as a function of electric field for QDs in two different wafers.
(a)-(b) FSS as a function of electric field for QDs in wafers W0462 (left) and
W0590 (right), both graphs are plotted with the same y-axis scale to allow direct
comparison of the tuning gradients.

is dependent on the in-plane anisotropy of the electron and hole wavefunc-

tions, is responsible for the rate at which FSS is varied by changes in electric

field. It also demonstrates that this parameter can be manipulated via care-

ful selection of the QD growth conditions. However, more work is needed

to explore the quantitative relationship between the factors affecting the

anisotropy and their effects on γ. The remaining results presented in this

chapter are obtained from QDs in wafer W0194.

4.4 Coupling of the exciton states

As the method presented in this work allows the FSS to be tuned over such a

large range, the sign of the FSS can be inverted for many of the QDs studied.

Using the method discussed in section 3.4 it is possible to accurately measure

to |s| ∼ 1µeV. This allows detailed study of the FSS as its sign is inverted,

as well as investigation of the polarisation orientation (θ0) when |s| ∼ s0[41].

In contrast with previous work, in which the two neutral exciton eigen-
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states are independent and the FSS is observed to cross through zero[32, 34,

35, 36, 37], when the eigenstates are tuned close to each other an anticrossing

is observed. This results in a minimum value, s0, below which the FSS can

not be reduced. The value of s0, and the electric field at which it occurs, F0,

are different for each QD. In addition, the orientation of the axes of linear

polarisation, θ0, of the photons emitted from the two neutral biexciton decay

paths exhibits a rotation of ∼ 90◦ as the system traverses the anticrossing.

Figure 4.5 shows |s| and θ0 as a function of electric field in the region of the

anticrossing for three QDs.
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Figure 4.5: FSS and orientation of the polarisation axes as a function of electric
field. (a)-(b) Magnitude of FSS (|s|) and orientation of the linear polarisation
basis (θ0) as a function of electric field for three QDs with s0 of 25.5 µeV (red),
12.0 µeV (green), and 3.0 µeV (blue). Note that the electric field has been offset
by F0 to aid comparison. Grey lines indicated the expected results for the case of
s0 = 0. Solid coloured lines are fits to the data using the model detailed below.

Far from the anticrossing |s| varies linearly with F , as discussed in the

section above. Also, the polarisation axes are aligned with the [110] and
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[11̄0] crystalline directions such that θ0 is 0◦ for one decay path and 90◦ for

the other. Note that which decay path results in emission with polarisation

aligned to the [110] direction, and thus the sign of s, depends which side of

the anticrossing the system is measured.

4.4.1 Coherent coupling model

The observed behaviour is well described by a coherent coupling model of

the same form as that used to describe coupled harmonic oscillators[46],

strong light-matter coupling[47], and anticrossings in the states of molecular

systems[48]. The Schrödinger equation for the system has the form

E

α
β

 =

 Eα s0/2

s0/2 Eα − γ(F − F0)

α
β

 (4.3)

where the state vector (α, β) gives the components of the two basis states

such that the state of the system is given by

Ψ(F ) = α|Xα
1 〉+ β|Xβ

1 〉. (4.4)

The eigenstates of the system are the symmetric and antisymmetric co-

herent superposition states

Ψ+ = cos θ0|Xα
1 〉+ sin θ0|Xβ

1 〉

Ψ− = sin θ0|Xα
1 〉 − cos θ0|Xβ

1 〉
(4.5)

which have corresponding energy eigenvalues, E±, and θ0 given by

E± = Eα −
γ(F − F0)

2
± 1

2

√
γ2(F − F0)2 + s2

0 (4.6)

θ0 = ± tan−1

[
s0

γ(F − F0)± (E− − E+)

]
(4.7)

Finally, |s| is calculated from the difference between the two energy eigen-

56



4.4. COUPLING OF THE EXCITON STATES

values to yield

|s| =
√
γ2 (F − F0)2 + s2

0. (4.8)

Fits to the experimental data using equations 4.8 and 4.7 show good

agreement and are shown in figure 4.5 as solid coloured lines. This model

has two degenerate solutions for the evolution of θ0 with varying electric field,

with both clockwise and anticlockwise rotation possible.

4.4.2 Anticrossing ensemble

Data from an investigation into the anticrossings of an ensemble of 22 QDs

is shown in figure 4.6. Figure 4.6a shows θ0 at |s| � s0 for the ensemble,

this is extracted from fitting equation 4.7 to the data. The tendency for the

polarisation basis to be aligned with the [110] crystalline axis is clear and

is independent of the value of s0. The source of the scatter is not known,

however it is likely due to variations in QD shape or local fields around the

QDs caused by imperfections in the semiconductor environment. It should

be noted that this alignment has previously been observed[49] in InAs QDs

grown in a single deposition and immediately overgrown in GaAs, as used

in this work. However, it is not seen in reports on QDs grown using the

“partially capped island” technique[50].

In the model detailed above clockwise and anticlockwise rotation of θ0,

as the anticrossing is traversed, are degenerate. However, in practice each

QD is only ever seen to have rotation in one direction. Of the QDs studied

in this work, 9 showed rotation in one direction and 13 in the other which is

consistent with the ensemble having no preferred direction of rotation. The

cause of the direction of preference for individual QDs is not known, but

could be due to local defects or fields in the semiconductor environment near

to each QD.

The strength of the coupling between the exciton is defined by s0. In

order to identify factors which affect the coupling, the relationship between

s0 and several other QD parameters has been investigated, including the

binding energy, defined as the mean difference in energy between the |X1〉 →
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Figure 4.6: QD ensemble study. (a) Orientation of the eigenstates, θ0, far from
the anticrossing as a function of s0. (b),(c) s0 as a function of binding energy and
exciton emission energy at the anticrossing. (d) s0 as a function of the electric
field at the anticrossing, F0. (e) histogram of s0 for the ensemble.
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|0〉 and |X2〉 → |X1〉 transition, at F0 (figure 4.6b); the exciton emission

energy, defined as the mean energy of the |X1〉 → |0〉 transition, at F0 (figure

4.6c); and the value of electric field needed to minimise the FSS, F0 (figure

4.6d). Any relationship linking these parameters is not significant relative to

the scatter of the values throughout the ensemble. Note that the apparent

structure of the points in their distribution along the x-axis is an artifact of

the range of emission energy and the spread of |s| for different QDs. Only

those QDs which emit from the neutral transitions with wavelengths between

∼ 930-945 nm were studied, as this corresponds with the cavity mode of the

planar structure. In addition, the anticrossing can not be observed in all

QDs, as emission from those with a large value of |s| at zero electric field

is quenched before the minimum is reached. Variation of the MBE growth

conditions during QD deposition can create samples with a lower mean |s| at

zero electric field, as seen in [49]. Such a sample would allow the anticrossing

to be observed in a larger proportion of the QDs.

Figure 4.6e shows a histogram of s0 for the ensemble, the data is fit with

an exponential function as a guide however more data points are required

to confirm the distribution. Small values of s0 are more common than large

values and several of the QDs have s0 < 1µeV, which is below the small-

est linewidths that have been reported in similar QDs[51] making this work

attractive for the production of entangled photon pairs.

4.5 Entangled photon pair emission

Entangled photon pairs have been observed from a QD which, in the ab-

sence of an applied electric field, has |s| > 50µeV [41]. This magnitude of

FSS is too large for entanglement between the two neutral biexciton cascade

photons to be observed (see section 2.8). However, with the application of

F0 = −240 kV cm−1 the FSS is minimised to s0 = 1.4µeV, which is well

below that required to observe entangled photon pair emission[52, 53, 54]

with standard APDs. In this section an analysis of second-order pair corre-

lation measurements recorded by Anthony Bennett and Mark Stevenson, in
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which the two photons from the neutral biexciton cascade are observed to be

entangled, is presented.

4.5.1 Measurement of entanglement

Second-order pair correlation measurements are used to observe entangle-

ment between the two photons emitted by the neutral biexciton cascade.

Recall from section 3.3.5 that the second-order pair correlation function

g
(2)
P1,P2(τ) =

〈I1(t)I2(t+ τ)〉
〈I1(t)〉〈I2(t+ τ)〉

, (4.9)

is proportional to the probability that the resulting two-photon state is

|P1 P2〉. For example, g
(2)
α,α(τ) is proportional to the probability that the

photons emitted by the neutral biexciton cascade are in state |αα〉, corre-

sponding to the transitions |X2〉 → |Xα
1 〉 → |0〉.

Measurement of entanglement between the two photons is made using

three pairs of co- and cross-polarised second-order pair correlation functions:

One in the linear basis parallel to the orientation of the eigenstates, {α, β};
one in the linear basis at 45◦ to the eigenstates, labeled {α45, β45}; and one

in the left and right circularly polarised basis, labeled as {L,R}.
The use of such measurements to observe entanglement can be understood

by considering the expected results of the second-order pair correlations in

the three bases. Consider the two-photon wavefunction in the idealised case

of |s| = 0, as seen in equation 2.17. This is the maximally entangled Bell

state given by

|Ψ+〉 =
1√
2

(|αα〉+ |ββ〉) , (4.10)

which can be expressed in each of the three polarisation bases as

|Ψ+〉 =
1√
2

(|αα〉+ |ββ〉) =
1√
2

(|α45α45〉+ |β45β45〉) =
1√
2

(|RL〉+ |LR〉) .

(4.11)

Second-order pair correlation measurements of this wavefunction will show

that co-polarised photon pairs are emitted in the {α, β} and {α45, β45} bases.
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Thus, for values of τ corresponding to both photons being emitted from the

same cascade event, peaks are expected in g
(2)
α,α(τ) and g

(2)
α45,α45(τ) but not

in g
(2)
α,β(τ) or g

(2)
α45,β45

(τ). The measurements in the {L,R} basis will show

cross-polarised photon pairs are emitted, and thus g
(2)
R,L(τ) will show a peak

which is not present in g
(2)
R,R(τ).
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Figure 4.7: Second-order pair correlations for the same QD when |s| = 1.5µeV
(a) and when |s| = 10µeV (b). This is achieved by varying the vertical electric field
as described in the main text. Red (blue) lines show co-polarised (cross-polarised)
measurements. The legends indicate the polarisation (P1, P2) of the photons used
to trigger the state and stop inputs. The data has been normalised to the average

value of g
(2)
P1,P2(τ) for |τ | � 0 for clarity.

Contrast this with the case of a QD with very large |s| which, as explained

in section 2.8, appears to emit classically correlated photon pairs. The two-

photon wavefunction of the photon pairs emitted from such a QD have equal
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probability of being detected in state |αα〉 or |ββ〉, which expressed in terms

of the other polarisation bases gives the following:

|αα〉 = 1
2

(|α45α45〉+ |α45β45〉+ |β45α45〉+ |β45β45〉)

|αα〉 = 1
2

(|RR〉+ |RL〉+ |LR〉+ |LL〉)

|ββ〉 = 1
2

(|β45α45〉 − |α45β45〉 − |β45α45〉+ |β45β45〉)

|ββ〉 = 1
2

(−|RR〉+ |RL〉+ |LR〉 − |LL〉) .

(4.12)

Second-order pair correlation measurements of these wavefunctions will yield

very different results to those of the entangled case. Measurements in the

{α, β} basis will detect co-polarised photon pairs as in the case of the en-

tangled wavefunction. However, measurements in the {α45, β45} and {R,L}
bases will show a statistical mix of both co- and cross-polarised pairs, with

peaks observed in in all four of the correlations.

Figures 4.7a and 4.7b show the second-order pair correlation measure-

ments for the QD when |s| = s0 = 1.4µeV and when |s| = 10µeV, re-

spectively. This is achieved by varying the electric field. For the case of

|s| = 1.4µeV there is an increased probability of detecting co-polarised pho-

tons and a reduced probability of detecting cross-polarised photons in both

the linear bases, whilst the opposite is true in the circular basis. This is

the expected result from equation 4.11. However, when |s| is increased to

the larger value of |s| = 10µeV the entanglement can no longer be resolved

by the temporal resolution of the detectors and the system appears to emit

classically correlated photon pairs, which are better described by equation

4.12.

4.5.2 Fidelity of entanglement

The fidelity of the emitted two-photon state to the Bell state given in equation

4.11 can be quantitatively assessed using the degree of polarisation correla-

tion, denoted C{α,β}, C{α45,β45}, and C{R,L} for each of the three polarisation

bases described above. The degree of polarisation correlation ranges from −1

to 1 and quantifies the probability of the neutral biexciton cascade emitting
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Figure 4.8: Degree of polarisation correlation in the three polarisation bases
used to asses the entanglement of photon pairs emitted by the neutral biexciton
cascade. (a) Data for when |s| = 1.4µeV. (b) Data for when |s| = 10µeV.

either co- or cross-polarised photon pairs. A value of C{i,j} = 0 corresponds

to the polarisation of the two photons being completely uncorrelated, as

would be the case if the polarisation of each of the photons was random and

independent. Negative values of C{i,j} correspond to an increased probability

of cross-polarised emission, with C{i,j} = −1 corresponding to the two pho-

tons always being cross-polarised. For positive values of C{i,j}, there is an

increased probability of the two photons being co-polarised, with C{i,j} = +1

indicating that the emission is always co-polarised.

The degree of polarisation correlation in a given polarisation basis is cal-

culated from the corresponding pair of second-order pair correlation mea-
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surements, and is given by

C{i,j} =
g2
i,i(τ)− g2

i,j(τ)

g2
i,i(τ) + g2

i,j(τ)
(4.13)

Where g2
i,i(τ) is the co-polarised pair correlation measurement and g2

i,j(τ) is

the cross-polarised pair correlation measurement. The degree of polarisation

correlation calculated from the pair correlations presented above is shown for

the three basis states in figure 4.8.

As can be seen from equation 4.11, the ideal entangled state has C{α,β} =

C{α45,β45} = 1 and C{R,L} = −1. As discussed in [54], the fidelity to the Bell

state given by equation 2.17 is

f+ =
1

4

(
C{α,β} + C{α45,β45} − C{R,L} + 1

)
(4.14)

with uncorrelated emission resulting in f+ = 0.25 and polarisation correlated

pairs, as described by equation 4.12, yielding f+ = 0.5. Values of f+ above

0.5 indicate entanglement between the two photons.
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Figure 4.9: Fidelity of the emitted state to the Bell state |Ψ+〉 for a QD tuned
to two different values of |s| as indicated in the legend. The classical threshold is
indicated with a dashed horizontal line.
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Figure 4.9 shows the fidelity of the emitted two-photon state as a function

of the two values of |s|. When |s| = 1.4µeV the fidelity is significantly larger

than 0.5, clearly showing entanglement between the photons. However, when

|s| = 10µeV the fidelity drops to under 0.5, as the entanglement can no longer

be detected.

4.6 Conclusion

A vertical electric field has been used to tune the fine structure splitting of

QDs in diode devices fabricated from three different wafers, allowing |s| to

be tuned over a wide range on the order of 100µeV. The rate of the shift in

|s| has been observed to be linear, with all QDs in a given wafer shifting at

a similar rate. Furthermore, it has been qualitatively shown that the rate

of the shift can be manipulated via alteration of the conditions during MBE

growth.

When the sign of s is inverted, the two exciton eigenstates are observed

to go through an anticrossing. This behaviour is well described by a simple

coherent coupling model. The coherent coupling of the eigenstates imposes

a minimum |s| = s0, below which the magnitude of the FSS can not be

reduced. In addition, hybridization of the exciton states induces rotation in

the orientation of the eigenstates, which is manifested by a corresponding

rotation in the axes of linear polarisation of the photons emitted from the

neutral biexciton cascade. Entangled pair emission has been observed from

a QD with s0 = 1.4µeV and control of the fidelity demonstrated.

Possible extensions to this work include conducting a detailed study of the

effects of the MBE growth conditions on the tuning rate of |s| or investigating

the origin of the coupling between the eigenstates and the factors which

influence the value of s0.
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Chapter 5

Control of the neutral exciton

fine-structure via simultaneous

application of electric and

magnetic fields

5.1 Introduction

The effects of magnetic field on the neutral exciton states in single QDs have

been the subject of much research[33, 15, 32]. As discussed in section 2.8, it

is desirable to be able to reduce the fine-structure splitting (FSS, s) of the

exciton state (|X1〉). It has been shown that the application of a magnetic

field can be used to tune the value of the FSS, allowing a reduction in |s|.
For example, in references [32, 33] a magnetic field applied in the plane of the

sample, perpendicular to the growth direction, is used to vary the FSS via

manipulation of the coupling between the bright (m=±1) and dark (m=±2)

exciton states. Thus the application of a magnetic field offers the potential

of an additional tuning mechanism which can be used in conjunction with

the vertical electric field method detailed in chapter 4.

Recall that although the application of vertical electric field allows a very

large tuning range, coherent coupling between the two exciton eigenstates
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imposes a minimum value, s0, below which the FSS can not be reduced.

However, recent experimental and theoretical work has explored the pos-

sibility of reducing s0 via the use of two independent tuning mechanisms

simultaneously[55, 56]. It has been proposed that the application of two

orthogonal strain fields[55] can reduce s0 to below 0.1µeV in typical In-

GaAs/GaAs QDs. Of particular relevance to the work presented in this

chapter is that of Trotta et al.[56], who tune the FSS of single QDs using

the simultaneous application of a vertical electric field and manipulation of

the strain field in the plane of the QDs. These two tuning mechanisms allow

them not only to vary |s|, but also to vary s0. Consequently, they are able to

eliminate the FSS entirely from all QDs in their study. However, using their

method it is only possible to eliminate the FSS at one unique combination of

electric and strain fields; thus the range of emission energies over which there

is a high degree of entanglement between the emitted photon pairs is severely

restricted. The work presented in this chapter overcomes this limitation, via

the use of a tuning mechanism which allows the energy of emission at the

point of maximum entanglement to be varied over a wide range.

In this chapter the effects on the FSS of simultaneous application of a

magnetic field in conjunction with a vertical electric field are investigated.

Firstly, the known effects of magnetic field on the energy splitting of the

neutral exciton states are introduced and discussed. Two different magnetic

field orientations are considered: Faraday geometry, where the field is orien-

tated parallel with the sample growth direction; and Voigt geometry, where

the field is orientated perpendicular to the growth direction. Measurements

in each of these geometries are then presented. Faraday geometry is used to

investigate the effects of electric field on the Zeeman splitting between the

two exciton eigenstates (|Xα,β
1 〉). Voigt geometry measurements, in which the

FSS is tuned by simultaneous application of both an electric and magnetic

field, are then presented and discussed. Finally, a scheme for the emission of

wavelength-tunable entangled photon pairs is proposed.

67



5.2. FINE-STRUCTURE OF THE NEUTRAL EXCITON STATES IN
MAGNETIC FIELD

5.2 Fine-structure of the neutral exciton states

in magnetic field

The effects of magnetic field on the neutral exciton states are investigated

using the same diode devices as studied in the previous chapter, details of

which can be found in section 3.2.1. In order to apply a magnetic field

the devices are mounted in a cryostat which is inserted into the bore of a

superconducting magnet. The bore allows optical access to the samples and

thus the devices can be studied using the techniques described in chapter 3.
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Figure 5.1: Geometry of Faraday and Voigt configurations. In both configura-
tions optical access is achieved down the axis of the magnet bore. The orientation
of the magnetic field, BF or BV , is indicated with a blue arrow and that of the
electric field, F , is shown with a green arrow.

Two different magnetic field orientations have been studied by changing

the cold finger on which the sample is mounted. A magnetic field parallel

with the growth direction is applied by mounting the sample horizontally on

a standard flat cold finger, this configuration is known as Faraday geometry

and is shown in figure 5.1a. To apply a magnetic field perpendicular to the

growth direction the sample is mounted vertically on a modified cold finger

as shown in figure 5.1b, this configuration is known as Voigt geometry. When

mounted in the Voigt configuration a 45◦ mirror is placed on the modified
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cold finger in order to allow optical access to the sample surface.

In the Faraday configuration the electric and magnetic fields are parallel

with each other and the optical axis. In the Voigt configuration the sample

is rotated by 90◦ so that the electric and magnetic fields are perpendicular

to each other. Thus the electric field remains parallel with the optical axis,

however the magnetic field is perpendicular to the optical axis.

The behaviour of the exciton states is different for each of the two mag-

netic field orientations. A detailed analysis of the effects of both orientations

of magnetic field on the neutral and charged exciton states of single QDs can

be found in [15]. However, a brief overview of the effects on the bright exciton

states of relevance to the work in this thesis is included in this section.

5.2.1 Faraday geometry

A Faraday geometry magnetic field, BF , both alters the energy levels of the

neutral exciton states and induces hybridization of the bright states. This

hybridization causes photons emitted by transitions involving the neutral

states to have circular polarisation. The Zeeman splitting between the two

eigenstates results in an increase in the energy difference between the two

exciton eigenstates. This leads to an energy splitting in the circular basis,

s{R,L}, which sums in quadrature with the FSS at zero magnetic field. The

total energy splitting between the two neutral eigenstates in a Faraday field

is given by

s (BF ) =

√
s (0)2 +

(
g⊥XµBBF

)2
=
√
s2
{α,β} + s2

{R,L}, (5.1)

where s (0) ≡ s{α,β} is the FSS in the absence of a magnetic field, which is the

splitting in the linear eigenstate basis as described in section 2.6.2; g⊥X is the

component of the effective exciton g-factor which is parallel to the magnetic

field. Where the effective exciton g-factor is given by the sum of the g-factors

of the constituent electron and hole such that |gX | = |ge| + |gh|; µB is the

Bohr magneton; and g⊥XµBBF ≡ s{R,L} is the splitting in the circular basis

due to the magnetic field.
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Figure 5.2: Effects of a Faraday magnetic field. (a) Energy of the neutral exciton
states as a function of Faraday field magnitude. (b) Energy splitting between the
neutral states as a function of Faraday field magnitude.

Figure 5.2 shows the typical behaviour of the neutral exciton energy levels,

and the energy difference between them, as a function of an applied Faraday

field. As can be seen by inspection of equation 5.1, the FSS is initially

proportional to B2
F for small BF , however at larger fields where s{α,β} �

s{R,L} the FSS increases linearly with BF with a gradient of |g⊥X |µB.

Note that the extra circular component of the splitting due to a Fara-

day field serves only to increase the total FSS. Therefore, Faraday geometry

is not appropriate for further study of the anticrossings presented in sec-

tion 4.4 or for tuning the FSS to allow the observation of entangled photon

pairs. However, measurements in this geometry are still of interest for fully

characterising the behaviour of the neutral states under the application of

simultaneous electric and magnetic fields.

5.2.2 Voigt geometry

A Voigt geometry magnetic field does not induce hybridization of the bright

states and so preserves the linear polarisation of photons emitted from the

neutral transitions. In this geometry, the magnetic field causes hybridization
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between the bright and dark states, which has two interesting effects. Tran-

sitions involving the dark states are able to couple to photons, leading to two

extra spectral lines in the neutral QD emission. However, for the QDs used

for this work the intensity of these lines is very low and they are not studied

in detail. Furthermore, the mixing of the bright and dark states adds an

additional component to the FSS. Unlike in the case of a Faraday field, this

component is in the linear eigenstate basis and so effectively acts to vary the

magnitude of the FSS. Thus a Voigt magnetic field can be used to tune s

in a similar manner to the vertical electric field method detailed in chapter

4. Hence the Voigt configuration allows the simultaneous application of two

independent FSS tuning mechanisms.

The FSS in the presence of a Voigt magnetic field, BV , is well approxi-

mated by

s (BV ) = s (0) + κB2
V , (5.2)

where κ, which differs between QDs, is a parameter which depends on the

in-plane anisotropy of the QD and the g-factors of the confined carriers which

make up the exciton. This approximation assumes that BV is small and that

higher order terms in BV can be neglected.

Equation 5.2 has been observed to well describe QDs similar to those

studied in this thesis, at the field magnitudes available, in a study presented

in reference [32]. In this study it is found that the Voigt field can either

increase or reduce the magnitude of the FSS depending on the relative signs

of s (0) and κ. If these two parameters have the same sign then |s| is increased

however if the parameters have different sign |s| is reduced, as can be seen

from equation 5.2. Both s (0) and κ are dependent on the QD in-plane

anisotropy and so vary between QDs.

Figure 5.3 shows the energy of the neutral exciton states, along with the

FSS, as a function of BV . This figure shows the behaviour when s (0) > 0

and κ > 0 so |s| is increased. For all of the QDs studied in this work κ

is observed to have positive sign, however s (0) can be tuned by varying an

applied electric field as described in section 4.3.
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Figure 5.3: Effects of a Voigt magnetic field if s (0) and κ both have positive
sign. (a) Energy levels of the neutral exciton states as a function of Voigt field
magnitude. (b) Fine-structure splitting as a function of Voigt field magnitude.

5.3 Faraday g-factor as a function of electric

field

A magnetic field interacts with the spin of the exciton state via the Zeeman

effect, the strength and nature of which are determined by the product of the

magnetic field with the g-factor tensor of the qubit. The effects of electric field

on the g-factor of confined carriers have been the subject of much research [57,

58, 59, 60, 61], motivated by the desire to influence the Zeeman interaction

without requiring variation of the magnetic field. In Faraday geometry the

energy splitting between the exciton eigenstates is dominated by the Zeeman

component. In this section, the behaviour of the out-of-plane exciton g-

factor, g⊥X , is investigated as a function of electric field.

The sample is mounted in Faraday geometry, as shown in figure 5.1a,

and cooled to ∼ 5 K to allow photoluminescence (PL) spectroscopy mea-

surements of the QD emission as a function of electric and magnetic field.

In this configuration the electric and magnetic fields are both parallel with

the growth direction of the sample. A continuous wave laser operating at

850 nm is used to excite the sample via the above-band regime described in
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section 2.5. Low excitation power is used to avoid polarisation of the nuclear

field via hyperfine interaction between the nuclei and the optically created

carriers. The PL measurements are acquired using modified versions of the

experimental arrangements shown in 3.4b-c, in which a quarter-waveplate is

inserted in front of the sample. As the splitting due to the Zeeman interaction

is in the circular basis, the quarter-waveplate allows selection of the decay

path from which emitted photons are mapped onto the linear polarisation

which is transmitted through the polarisation optics into the spectrometer.

As shown in equation 5.1, the Zeeman splitting is given by

s{R,L} = g⊥XµBBF , (5.3)

and so varies linearly with BF with a gradient of g⊥XµB. At the magnetic field

magnitudes studied in this work the Zeeman splitting is large enough to be

easily resolved by the spectrometer. Therefore, the quarter-waveplate is set to

allow emission from both decay paths into the spectrometer simultaneously.

The Zeeman splitting is then extracted by fitting Lorentzian functions to

each of the peaks in the emission spectra.

Figure 5.4a shows the emission from the two neutral transitions, |X2〉 →
|X1〉 and |X1〉 → |0〉, in the absence of a magnetic field and with a magnetic

field of BF = 1 T. The Zeeman splitting as a function of BF is shown in figure

5.4b, along with a linear fit to the data from which the effective exciton g-

factor, g⊥X , is extracted.

The value of g⊥X as a function of electric field is shown in figure 5.5. The

g-factor is observed to be remarkably robust to changes in the applied electric

field, with g⊥X = 3.22±0.15 across the entire range of over 200 kV cm−1. This

is in contrast to the recent study by Jovanov et al.[61], in which the effective

g-factor is observed to vary 250% over a range of a few tens of kV cm−1.

Jovanov et al. used larger, lower Indium content QDs in which the carriers

are subjected to a weaker confinement potential than the QDs studied in this

thesis. QD shape and Indium concentration have been shown to be important

factors in determining the g-factors of confined carriers[62, 63]. In addition,

the increased confinement potential of the QDs studied in this thesis results
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Figure 5.4: Effects of Zeeman splitting. (a) PL spectra of the neutral emission
from an example QD at magnetic fields of BF = 0 T and BF = 1 T, the Zeeman
splitting can clearly be resolved. The peaks are labeled according to the initial state
of the corresponding transition. (b) Zeeman splitting as a function of BF . The
black line is a linear fit from which an effective exciton g-factor of g⊥X = 3.19±0.01
is extracted

in less redistribution of the confined carriers’ wavefunctions in response to

an electric field. This qualitatively explain the difference between the results

observed here and those of Jovanov et al., however further work is required

before any firm conclusions can be made.

5.4 Magnetic and electric tuning of the fine-

structure splitting

The effects of the simultaneous application of electric and magnetic fields

on the FSS can be investigated when the sample is mounted in the Voigt

geometry configuration shown in figure 5.1. In this configuration both the

magnetic field, BV , and electric field, F , tune the FSS in the linear basis.

Recall from section 4.4 that the behaviour of the FSS is well described by a

coherent coupling model. In this model the FSS as a function of electric field
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Figure 5.5: Effective exciton g-factor as a function of electric field. Values ob-
tained from fits to the |X1〉 → |0〉 transition are shown in red, and those from the
|X2〉 → |X1〉 transition are shown in blue. The solid black line is a linear fit to the
data.

is given by

|s| =
√
γ2 (F − F0)2 + s2

0, (5.4)

where γ is the rate at which s varies with electric field in the absence of

coupling effects, F0 is the electric field required to minimise |s|, and s0 is

the minimum value to which |s| can be tuned. In this section the effects of

simultaneous application of a Voigt magnetic field with the electric field are

investigated.

As in chapter 4, the FSS as a function of electric field is measured using

the technique described in section 3.4, with the bias applied to the sample

used to set the electric field for each measurement. This procedure is repeated

for a range of different values of BV in order to investigate the effects of a

Voigt magnetic field. Figure 5.6a shows several measurements of |s| as a

function of electric field, each measured with a different value of BV , for

an example QD. The anticrossing behaviour observed in the absence of a

magnetic field persists when a Voigt field is applied. Each data set is fit with
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Figure 5.6: Effects of electric and Voigt magnetic field on the fine-structure
splitting. (a) Magnitude of FSS as a function of electric field for five different
values of BV . (b)-(c) Minimum FSS (s0) and tuning rate of s with electric field
(γ) as a function of Voigt magnetic field. These values are extracted from the fits
shown in (a), the length of the error bars correspond to one standard error from
the fit. Dashed horizontal lines indicate the mean of all five data points.

equation 4.8 from the model detailed in section 4.4.

Several interesting observations can be made from these measurements.

Figures 5.6b-c show the values of s0 and γ, which are extracted from the fits

to the data in figure 5.6a, as a function of BV . The values of these parameters

are independent of the applied Voigt magnetic field, within the measurement

resolution. Recall from section 4.3 that γ is given by the difference in per-

manent z dipole moment between the two exciton eigenstates. Thus figure

5.6c implies that this difference is not changed by the application of a Voigt

magnetic field. The fact that s0 does not vary with BV indicates that the

strength of the coupling between the two exciton eigenstates is not affected

by a Voigt magnetic field. This result is sensible because it is known that a

Voigt magnetic field does not induce mixing between the two bright exciton

states.

Interestingly, the value of F0 is dependent on the Voigt magnetic field.

This dependence manifests itself as an increasing translation along the x-axis

of the data sets shown in figure 5.6a as BV is increased. This behaviour can
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be explained by considering the additional contribution to the FSS induced

by the Voigt magnetic field, along with the observation that the coupling

strength is independent of this field. As the Voigt magnetic field adds an

additional component of κB2
V to the FSS the magnitude of F required to

minimise s is increased. The value of F0 is thus dependent on BV and is

given by

F0 (BV ) = F0 (0)− κ

γ
B2
V . (5.5)

Where F0 (0) is the value of F0 in the absence of a magnetic field and the

second term in this equation is the change in electric field required to remove

the extra FSS induced by BV . Figure 5.7a shows F0 as a function of BV . The

data points are extracted figure 5.6a. The solid line shows a fit of equation

5.5 to the data, with a value of κ = 0.45± 0.02 µeV T−2.
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Figure 5.7: Effects of Voigt magnetic field on F0 and |s|. (a) The electric field
at which |s| is minimised, F0, as a function of Voigt magnetic field, BV . The data
points are extracted from fits to the data in figure 5.6. The solid line is a fit using
equation 5.5. (b)-(d) |s| as a function of BV for three different fixed electric fields.

The behaviour of |s| as a function of simultaneous electric and Voigt

magnetic field is found by substitution of equation 5.5 into equation 5.4.
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This gives

|s (F,BV ) | =

√
γ2

(
F −

(
F0 (BV = 0)− κ

γ
B2
V

))2

+ s2
0, (5.6)

which reduces to equation 5.2 in the limit of fixed F and s0 = 0.

Figures 5.7(b)-(d) show |s| as a function of BV for three different values

of F . The solid lines are calculated for each electric field using equation

5.6, with the values of γ, κ, s0, and F0 extracted from the data in figure

5.6. When F = −250 kV cm−1, as in figure 5.7b, s (BV = 0) has positive

sign. Thus as s is increased by the Voigt magnetic field |s| is also increased.

However, when F = −376 kV cm−1, as in figure 5.7d, s (BV = 0) is negative.

At this field the increase in s due to the Voigt magnetic field results in a

reduction of |s|. Figure 5.7c shows an example of an electric field where BV

inverts the sign of s, note that s does not pass through zero as |s| can not

be reduced below s0 ' 2.0.

5.5 Towards wavelength-tunable entangled emis-

sion

As shown in section 4.5, entanglement between the two photons emitted from

the neutral biexciton cascade can be observed when |s| is tuned to be close to

zero. In this section measurements of a QD with s0 ∼ 0.6µeV are presented.

This value of s0 is below the threshold required to generate entangled pho-

ton pairs. Furthermore, with the application of a Voigt magnetic field, the

electric field at which |s| = s0 can be varied. Thus the energy of the emitted

photons when |s| = s0 is varied, allowing the creation of a source which emits

entangled photon pairs with tunable emission energy.

Figure 5.8a shows the emission from the neutral biexciton cascade of the

QD as a function of energy and electric field when BV = 0. The parabolic

Stark-shift of the emission with increasing |F | is clearly visible. Figure 5.8b

shows |s| as a function of electric field for six different values of BV , along

with fits to the data using equation 5.6. As seen above in figure 5.8, and
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Figure 5.8: Emission energy and fine-structure splitting as a function of electric
and magnetic field. (a) Emission intensity as a function of energy and electric field
when BV = 0. The two neutral emission peaks are labeled with the initial state of
the corresponding transition. (b) FSS as a function of electric field for six different
values of Voigt magnetic field. Solid lines are fits with equation 5.6.

quantified by equation 5.5, the data sets translate along the x-axis as BV

is increased. However, the value of s0 remains constant, as can be seen in

figure 5.9a. Thus, this QD can emit photon pairs with a high fidelity to the

maximally entangled Bell state, |Ψ+〉, at a range of electric fields, providing

that BV is set to the appropriate value.

Recall from section 4.3 that the Stark shift in the emission energy of a

given QD transition is dependent on the permanent z dipole moment and

polarisability, denoted p and β respectively, of the states involved and is given

by

E = E0 − pF + βF 2. (5.7)

The fidelity to |Ψ+〉 of the two-photon state emitted by the neutral biexci-

ton cascade is maximised when |s| = s0. Therefore, maximal entanglement

between the two photons is observed when F = F0. Figure 5.9b shows the

energy of photons emitted from the two neutral transitions at F = F0 for

several different values of BV . Over the 5 T range of BV available in this

work, the |X2〉 → |X1〉 and |X1〉 → |0〉 transitions show a tuning range of
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Figure 5.9: Data showing the potential to create a tunable-energy entangled
pair source. (a) Minimum fine-structure splitting as a function of Voigt magnetic
field. (b) Emission energy of the |X2〉 → |X1〉 (red spheres) and |X1〉 → |0〉 (blue
spheres) at F = F0 as a function of Voigt magnetic field. Solid lines show fits as
described in the main text.

1.9 meV and 2.1 meV, respectively.

The emission energy of each transition when F = F0 can be calculated

as a function of BV via substitution of equation 5.5 into equation 5.7 to give

E = E0 − p
(
F0(BV = 0)− κ

γ
B2
V

)
+ β

(
(F0(BV = 0)− κ

γ
B2
V

)2

. (5.8)

The solid lines in figure 5.9b show fits to the data using this equation, with

the Stark shift parameters extracted from figure 5.8a and the values of E0,

F0(BV = 0), and γ extracted from the data in figure 5.8b. These fits yield

κ = 0.52± 0.2 µeV T−2 for this QD.

The tuning range over which the energy of the entangled photons can be

varied is restricted by two parameters: the maximum electric field that can be

applied without quenching the optical activity of the QD; and the maximum

available magnitude of BV which can be applied. In the work presented in

this thesis, the tuning range is limited by the latter, as the maximum field

strength that could be generated was BV = 5 T. However, it is interesting

to consider the maximum tuning range which would be possible if larger BV
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Figure 5.10: Calculation of the maximum energy tuning range for the QD studied
in this section. (a) Electric field required to minimise |s|, and thus maximise the
fidelity of entanglement of the two-photon state emitted by the neutral biexciton
cascade, as a function of BV . (b) Energy by which the emission from the two
neutral transitions is tuned as a function of BV .

Optical emission of the devices studied in this work is typically quenched

when |F | > 500 kV cm−1. Figure 5.10a shows the calculated value of F0

as a function of BV , using equation 5.5, for the QD studied in this section.

From this it can be seen that a magnetic field of up to BV = 12 T can

be applied before |F0| becomes large enough to quench the emission. Figure

5.10b shows the energy by which the entangled emission is tuned as a function

of BV , which is found by calculating E (BV ) − E(0) using equation 5.8.

The maximum tuning range, which is achievable with a magnet capable of

applying 12 T, is 30.1 meV and 33.8 meV for the |X2〉 → |X1〉 and |X1〉 → |0〉
transitions, respectively.

Thus, the application of a magnetic field in the plane of the sample, in

conjunction with an electric field in the growth direction, is a promising

technique for the generation of energy-tunable entangled photon pairs. The

key to this tuning mechanism is the fact that s0, which varies between QDs, is

independent of the applied Voigt magnetic field. However, whilst this allows

the fidelity to the |Ψ+〉 state to be constant across a large energy range,
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the value of the fidelity is determined by the value of s0. As a result, this

method requires the selection of special QDs which have appropriately small

values of s0. However, the two recent studies which use the simultaneous

application of two different tuning methods[55, 56] both report the ability

to reduce or eliminate s0. These studies achieve manipulation of s0 via the

application of strain fields to the QDs, but they do not demonstrate the

ability to significantly tune the emission energy when |s| = s0. This raises

the possibility that combining an applied strain field with the electric and

magnetic fields used in this chapter could allow control of s0, whilst also

enabling the energy of emission when |s| = s0 to be tuned. This approach

has the potential to remove the requirement of searching through many QDs

in order to identify those with suitable values of s0, and as such could allow

any typical InGaAs QD to be used as an energy-tunable entangled photon

pair emitter.

5.6 Conclusion

The effects of simultaneous application of electric and magnetic fields on the

energy structure of the bright neutral transitions has been investigated. Mea-

surements in two different magnetic field geometries have been conducted.

Faraday geometry measurements have allowed investigation of the out-of-

plane g-factor of the exciton; and Voigt geometry measurements have been

used to investigate the effects of magnetic field on the FSS of the exciton

state.

The out-of-plane g-factor has been shown to be independent of an elec-

tric field applied parallel to the growth direction, in contrast to previous

experimental and theoretical studies of other QDs with different composi-

tion. However, only the g-factor component which is parallel to the sample

growth direction has been studied. A promising extension to this work would

be to investigate the in-plane g-factor as a function of electric field.

The effects of a Voigt geometry magnetic field on the FSS tuning mecha-

nism demonstrated in the previous chapter have been presented. The Voigt
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magnetic field is found to affect only the value of the electric field at which the

FSS is minimised, and not the strength of the coupling between the exciton

states, or the rate at which the FSS is tuned by the electric field. This al-

lows the combination of simultaneous electric and magnetic fields to be used

to tune the energy of the neutral emission at which the FSS is minimised.

Thus, if this tuning technique is applied to a QD with sufficiently small s0,

it is possible to create an energy-tunable entangled photon pair source. An

interesting extension to this work would be to incorporate an additional tun-

ing mechanism via mounting the sample on a piezo-electric layer to facilitate

the application of a strain field. This extra tuning parameter would perhaps

allow the value of s0 to be varied via altering the coupling strength between

the two bright neutral exciton eigenstates.

83



Chapter 6

Effects of nuclear field

fluctuations and dynamic

electric field on the exciton

eigenstates in single quantum

dots

6.1 Introduction

The previous chapters have concentrated on the neutral biexciton cascade

and the generation of entangled photon pairs from QD emitters. This chap-

ter focuses on the temporal properties of the exciton state. This state is of

interest because a single exciton stored within a QD provides a viable spin

system for use as a solid-state qubit. Also, the evolution of the exciton state

is governed by the energy difference between the two eigenstates, allowing

further examination of the fine-structure splitting via time resolved measure-

ments of the |X1〉 → |0〉 transition. Thus, the effects on the stored exciton of

the fluctuating nuclear field[64], and of a dynamically varied vertical electric

field[20], can be investigated.

Single spins in semiconductor materials have generated significant interest
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due to their potential applications in the fields of quantum computing and

spintronics[65, 66, 67, 68, 69]. Carriers confined inside QDs interact with

their environment via, amongst other effects, hyperfine interaction with the

nuclear magnetic field of the lattice atoms[70]. These interactions can lead

to reduction in solid-state qubit coherence times, however they also enable

methods for qubit manipulation[71]. This has motivated much research into

controlling the nuclear field, most notably via optical pumping of the nuclei

into particular spin states[72, 73].

In addition, the optically active nature of the QDs studied here allows

for an interface between photonic and solid-state qubits, with potential ap-

plications in hybrid quantum computing schemes[74]. Such a scheme would

allow the advantages of each qubit system to be combined. Photons, with

fast propagation speeds and long coherence times, are well suited for the

transmission of quantum information[75, 76]; whilst solid-state qubits are

usually more convenient to manipulate due to their stronger interaction with

external fields and their environment.

In this chapter the exciton spin-state is initialised via a spin-preserving

quasi-resonant excitation scheme and then manipulated by application of a

dynamic electric field. The effect of the fluctuating nuclear field on the exci-

ton state is investigated and shown to influence both the initialisation, and

the subsequent evolution, of the exciton’s spin. A phase-shift gate, capable

of performing a single qubit rotation on photonic qubits, is demonstrated.

6.2 Temporal evolution of exciton superposi-

tion states

The temporal properties of the exciton state have been studied in several

different QDs. One QD with an exceptionally small s0 of ∼ 0.4µeV is studied

in detail, as the subtle effects of the nuclear magnetic field become more

apparent at small |s|. This QD is embedded inside a P-I-N diode, as described

in section 3.2. The diode has lateral dimensions of 35×60 µm, which is

smaller than the 360×360 µm devices studied in the previous chapters. The
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reduced capacitance of the smaller area device leads to a faster response to

changes in the applied electric field. This is beneficial for studying the system

under the dynamic conditions explored in this chapter.

6.2.1 State initialisation

α
1X

θ
φ

Excite

Measure

β
1X

Figure 6.1: Diagram showing the orientation of the excitation and measurement
axes, relative to the exciton eigenstates, for the case of excitation in the linear
polarisation bases. The angle θ determines the state which is initialised and angle
φ selects the state to be measured.

The QD is initialised into the |X1〉 state using the quasi-resonant exci-

tation scheme described in section 2.5, which drives only the |0〉 → |X1〉
transition. The phonon-assisted excitation regime maps the polarisation of

the excitation photon onto the spin of the resulting exciton[77, 20]. This

allows the QD to be initialised into either of the |Xα,β
1 〉 eigenstates or into a

superposition state. Consider an excitation photon with linear polarisation

orientated at an angle θ to the exciton eigenstates as shown in figure 6.1.

The projection of such a photon into the eigenstate basis ({α, β}) is given by

|Ψin〉 = cos θ|α〉+ sin θ|β〉, (6.1)
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and the corresponding wavefunction of the resulting exciton is

|ΨX1(t)〉 = cos θ|Xα
1 〉 exp

(
−iEαt
h̄

)
+ sin θ|Xβ

1 〉 exp

(
−iEβt
h̄

)
. (6.2)

Thus via variation of the linear polarisation of the excitation photon, θ, it

is possible to initialise the exciton into any superposition of the two spin

eigenstates in the linear bases.

6.2.2 Temporal measurements of fine-structure split-

ting

It is useful to consider the initialisation process described above as a direct

mapping between the polarisation of the photon represented on the Poincaré

sphere and the spin of the exciton represented on the Bloch sphere. This

mapping is depicted in figure 6.2 with the eigenstate axis of the Bloch sphere

orientated vertically. Using this analogy, and considering only excitation with

a linearly polarised photon as in the example above, the spin-state is created

in the plane of the linear bases states. The projection onto the eigenstate

axis is determined by θ, as shown in figure 6.2a.

Whilst the exciton remains in the QD it evolves according to equation

6.2. If θ = mπ
2
, where m is an integer, an eigenstate is initialised and the

system is stationary. For other values of θ a superposition state is created

and a phase difference accumulates between the two eigenstate components

at a rate of
Eα−Eβ

h̄
. This causes a precession, with angular frequency s

h̄
, of

the spin-state around the eigenstate axis of the Bloch sphere.

As can be seen from figure 6.2b, the projection of the spin-state into each

of the superposition bases ({α45, β45} and {R,L}) varies sinusoidally as the

state precesses. When the exciton radiatively decays its spin at that time is

mapped onto the polarisation of the emitted photon, as shown in figure 6.2c.

The resulting intensity of the emission measured along a linear polarisation

axis at an angle φ to the eigenstates, as shown in figure 6.1, is given by

φ〈Ψout|Ψout〉φ =

[
aθ,φ + bθ,φ cos

(
st

h̄

)]
exp

(
− t

τr

)
, (6.3)
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inΨ ( )tX1
Ψ φoutΨ

Excitation photon
Exciton precesses

around exigenstate axis Emitted photon

(a) (b) (c)

2φ

Figure 6.2: Visual representation of the photon → exciton → photon process.
The linear polarisation of the excitation photon maps onto the spin state of the
created exciton. The exciton then precesses around the eigenstate axis. The spin
state of the exciton when it recombines is mapped onto the polarisation of the
emitted photon, which is measured along a polarisation axis defined by angle φ.

where τr is the radiative decay time of the |X1〉 state. The parameters aθ,φ

and bθ,φ, which are constant for a given combination of θ and φ, are given by

aθ,φ = cos2(θ) cos2(φ) + sin2(θ) sin2(φ)

bθ,φ = 2 cos(θ) sin(θ) cos(φ) sin(φ).
(6.4)

Polarised time-resolved spectroscopy, as detailed in section 3.3, will thus

yield a signal which varies sinusoidally with an envelope defined by the ra-

diative lifetime of the exciton within the QD. The amplitude and visibility

of the oscillations are given by bθ,φ and | bθ,φ
aθ,φ
| respectively. Maximum visibil-

ity is observed when both exciting and measuring a maximum superposition

state, i.e. when θ and φ are both equal to an odd integer multiple of π
4
,

which corresponds to measuring the system in the {α45, β45} basis. From the

intensity oscillations it is possible to extract |s|, this is achieved by fitting

the data with equation 6.3 as shown in figure 6.3a. Figure 6.3b shows |s| as a

function of electric field measured using this time-resolved technique, along

with the corresponding values obtained from the spectral method detailed in
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section 3.4. The two measurement methods are in good agreement.
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Figure 6.3: Temporal measurements of the fine structure splitting. (a) Polarisa-
tion resolved time-resolved PL measurements for two different values of |s|. The
exciton state is initialised into a maximum superposition state and the resulting
emission is polarisation filtered to select emission from the same superposition
state. Red spheres are data points and the blacks line are the fits, described in
the main text, from which |s| can be extracted. (b) Fine structure splitting as
a function of electric field measured in the spectral domain (green spheres) and
extracted from fits to the time-resolved PL data (purple spheres). The solid line
is a fit to the data using equation 4.8.

Note that although the above discussion considers the example of initial-

isation and measurement in the linear bases, it is also possible to perform

the same measurements in the circularly polarised basis. Circularly polarised

photons initialise the exciton into either state |XL〉 or |XR〉. Polarised time-

resolved spectroscopy measurements in the circular basis are proportional to

the projection of the spin-state onto the circular axis of the Bloch sphere.

Thus, oscillating behaviour, as in the linear case explain above, is observed

as the spin-state precesses around the eigenstate axis.

6.3 Fluctuating nuclear field

For this work, the nuclei field is modeled as an effective magnetic field with

varying magnitude, described by a normal distribution, and a randomly vary-

89



6.3. FLUCTUATING NUCLEAR FIELD

ing orientation. Although this method of analysis neglects the quantum na-

ture of the interaction, it is sufficient to explain the effects observed in this

study. This is because the exciton interacts with a bath of thousands of

nuclei, the resultant field of which approximates the simple model used here.

As detailed in section 5.2, magnetic field induces an additional splitting

between the exciton eigenstates. The fluctuating nuclear magnetic field thus

adds a time-varying component to the fine-structure splitting. It is con-

venient to consider the Faraday and Voigt components of the nuclear field

separately. Recall that the Faraday component, BF , introduces a splitting

in the circular basis, s{R,L} = g⊥XµBBF , such that

s =
√
s2
{α,β} + s2

{R,L}, (6.5)

where s{α,β} is the splitting in the eigenstate basis, which is observed via the

polarised PL spectroscopy measurements (see section 3.4) throughout the

previous chapters. The extra circular component of the splitting also leads

to a rotation in the orientation of the eigenstates (θ0 from section 2.7) which,

as described in section 4.4, is dependent on |s|.
Recall also that the Voigt component, BV , introduces an additional linear

splitting with a magnitude that is well approximated by κB2
V . As the in-plane

g-factor of the exciton is much lower than that for out-of-plane magnetic

fields, κ is small, of the order 1µeV T−2[52, 32, 15]. This results in the

contribution to s{α,β} due to BV being negligible at the small field magnitudes

generated by the nuclei. The remainder of this section concentrates on the

effects of the Faraday component.

From equation 6.5 it can be seen that the circular splitting can only in-

crease the total fine-structure splitting. The spectral measurement technique

used in the previous chapter can observe only the projection of the splitting

into the linear basis. Thus, in principle, the temporal measurements of |s|
should yield a larger value than those measured spectrally. However, the ori-

entation of BF is random and fluctuates over a timescale of milliseconds[78],

whilst the measurements are typically integrated over several minutes. The

time-averaged s{R,L} is thus much smaller than gX‖µBBF , and in practice the
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difference between the spectral and temporal measurements of |s| is smaller

than the measurement noise, as shown in figure 6.3.

6.3.1 Free induction decay

The effect of fluctuations in s{R,L} can be observed in the evolution of the

degree of polarisation of the emission as a function of vertical electric field.

The degree of polarisation is analysed in the two linear bases, {α, β} and

{α45β45}, and the circular basis, {R,L}, in a similar manner to section 4.5.

The degree of polarisation in a basis {i, j} is given by

C{i,j}(t) =
Ii,i(t)− Ii,j(t)
Ii,i(t) + Ii,j(t)

, (6.6)

where Ii,i(t) and Ii,j(t) are the intensity of the co- and cross-polarised time-

resolved spectroscopy measurements, respectively.
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Figure 6.4: Degree of polarisation. (a) Degree of polarisation as a function
of time for the same QD at two different values of electric field. Top pane has
|s| = 3.7µeV, bottom pane has |s| = s0 = 0.4µeV. (b) Magnitude of the initial
degree of polarisation as a function of vertical electric field, offset by the field
required to tune the QD to |s| = s0.

Figure 6.4a shows the degree of polarisation as a function of time, mea-

sured in each of the three bases, for the same QD at two different electric
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fields and thus different |s|. In the top pane |s| = 3.7µeV, which as can

be seen from figure 6.3b is far from the anticrossing; in the bottom pane

|s| = s0 = 0.4µeV. At both electric fields the {α, β} basis, which is aligned

with the exciton eigenstates, maintains a high degree of polarisation through-

out the measurement. This is expected as the eigenstates do not evolve in

time. However, the two superposition bases show different behaviour at each

electric field.

Far from the anticrossing, the degree of polarisation measured in the

superposition bases oscillates in time. This is due to the precession of the

exciton state around the eigenstate axis on the Bloch sphere, which results

in a sinusoidal variation in the projection of the spin state onto each of the

superposition bases. The data is well described by a function of the form

∝ sin
(
|s|(t−t0)

h̄

)
exp

(
−t
τFID

)
, where t0 gives the phase of the oscillations and

τFID describes the decay time of the oscillations as discussed below. Fits with

this function are shown as solid lines in the top pane of figure 6.4.

At the anticrossing these oscillations can not be observed. This is be-

cause for small |s| the period of the oscillations is increased and becomes

comparable to τFID, causing the system to behave as an overdamped oscilla-

tor. Exponential fits, shown as solid lines in the bottom pane, are in good

agreement with the data.

Two other differences between the behaviour of the system at the two

electric fields are also apparent. The timescale over which the degree of

polarisation decays (τFID) is shorter when |s| = 0.4µeV than when |s| =

3.7µeV. In addition, the initial degree of polarisation, C{i,j}(0), for each of

the measurement bases is different at the two values of |s|. Figure 6.4b

shows |C{i,j}(t = 0)|, for the three measurement bases, as a function of

electric field offset by the field required to tune |s| to s0. The degree of

polarisation with which the eigenstate basis can be initialised shows a dip

at the anticrossing, however that of the two superposition bases shows an

increase in this region. These observations can be explained by considering

the effects of the fluctuating circular splitting (s{R,L}), which are analogous

to phenomena observed in nuclear magnetic resonance measurements[79, 80]

as described below.
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NMR measurements probe an ensemble of spins as they precess around

an applied magnetic field. The signal obtained from measuring the projec-

tion of the spins along a direction perpendicular to the applied magnetic

field displays oscillations which decay away in a process called“free induction

decay” (FID). The decay in the transverse plane, which is the component

most relevant to the work presented here, is referred to as “T2” decay. This

component of the decay is caused by the different spins precessing at different

rates due to spin-spin interaction and environmental factors, such as local

variation in the magnetic field or susceptibility.

In this work, a single spin state is initialised many times and the resulting

emission when the exciton decays is integrated over several minutes to build

up the measurement. The timescale of the radiative decay of the exciton is on

the order of nanoseconds, however the nuclear field fluctuations occur over a

timescale of milliseconds. This means that, although approximately constant

whilst each individual exciton is stored in the QD, the value of BF fluctuates

throughout the timescale of the measurement. The value of BF alters |s| and

θ0 and thus it affects both the rate and orientation of the precession of the

exciton state around the Bloch sphere. This leads to a temporal averaging

of many spin precession rates over each measurement, resulting in effects

similar to the spatial averaging in NMR measurements[64]. Both the initial

degree of polarisation and the subsequent evolution observed in figure 6.4

can be qualitatively explained by considering these effects.

Initialisation of an eigenstate requires good alignment between the polar-

isation of the excitation photon and the eigenstate orientation. Far from the

anticrossing the orientation of the eigenstates is not significantly affected by

fluctuations in |s| (see section 4.4). Therefore the initial degree of polarisa-

tion in the {α, β} basis is maximised away from the anticrossing. Conversely,

at |s| = s0 the orientation of the eigenstates is most sensitive to fluctuations

in |s|, resulting in a reduction of the degree of polarisation with which the

{α, β} basis can be initialised as observed.

The superposition states are less sensitive to the orientation of the exci-

tation photon. However, as they precess around the eigenstate axis of the

Bloch sphere they are sensitive to the temporal jitter in the excitation time
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caused by the finite linewidth of the transition. The effects of the temporal

jitter are less apparent at smaller values of |s| due to the reduced rate of pre-

cession. Therefore, the degree of polarisation with which the superposition

states can be initialised is maximised at |s| = s0 as observed.
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Figure 6.5: Free induction decay of the degree of polarisation as a function of
electric field and |s|. (a) FID time as a function of electric field for two QDs with
different values of s0. Dashed horizontal lines indicate the FID time due to random
spin scattering which is independent of the value of |s|. (b) The FID times from
(a) are plotted as a function of |s|.

Figure 6.5 shows the free induction decay time, τFID, of the linear super-

position state as a function of electric field, and as a function of |s|, for two

QDs with different values of s0. Interestingly, τFID has contributions from

two different mechanisms. When |s| is larger than ∼ 4µeV, τFID ∼ 3 ns.

This suggests that for |s| in this region the effect of the fluctuating circular

splitting is negligible compared to random spin-scattering between the two

eigenstates (which is analogous to the T ∗2 decay time in NMR). However for

smaller values of |s|, the contribution from the nuclear field is more signifi-

cant and dominates the decay time, leading to a reduction in τFID near the

anticrossing for QDs with small enough s0 for this to become observable.

Within experimental, error τFID as a function of |s| is the same for both QDs

which suggests that it is independent of the coupling strength between the
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two eigenstates. The origin of this effect can be explained by considering the

contribution which s{R,L} makes to the total fine structure splitting. As can

be seen from equation 5.1, the circular splitting sums in quadrature with the

linear splitting (s{α,β}). The linear splitting is not dependent on the fluctu-

ating nuclear field so when s{α,β} is large, which is the case for |s| far from s0,

the fluctuations in s{R,L} do not cause significant changes in |s|. Conversely,

when s{α,β} is small, the fluctuations in s{R,L} cause large relative changes in

|s|, which results in large fluctuations in the trajectory that the exciton takes

as it precesses around the Bloch sphere. Consequently, when |s| is small the

increased fluctuations in the measured trajectory cause the observed FID

time to be reduced. A detailed numerical model offering a more quantitative

explanation of these observations can be found in [64]. Note that the effects

described in this section are due to the temporal integration of many trajec-

tories around the Bloch sphere and would not be present in a “single-shot”

measurement of the exciton state.

6.4 Dynamic manipulation of exciton states

In addition to the random fluctuations due to the effects of the nuclear field,

|s| can also be controllably varied in time by the application of a time-varying

vertical electric field. Recall from equation 6.2 that the two eigenstate com-

ponents of a superposition develop a phase difference at a rate of s
h̄
. Thus,

the total phase difference accumulated is given by

Θ =

∫ t

0

s(t)

h̄
dt (6.7)

and so can be controlled by varying s, allowing the implementation of a

phase-shift gate.

This is achieved by applying a dc electric field to tune |s| to ∼ 5µeV and

initialising the exciton in a maximum superposition state which proceeds to

precess around the the Bloch sphere. An additional 500 ps Gaussian-shaped

electric field pulse is then applied 250 ps after the initialisation via a signal
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Figure 6.6: The projection of the exciton wavefunction onto a linear measurement
axis as a function of time. In the bottom curve a gate pulse is applied, indicated by
the grey box. The oscillation frequency is increased during this pulse and a phase
difference, relative to the un-gated curve shown above, develops. A horizontal
arrow indicates the induced phase offset due to the gate.

generator which is synchronised to the laser clock signal. Whilst this gate

pulse is applied |s| is increased and so the state precesses at a faster rate.

This results in the accumulation of a phase difference relative to if the gate

pulse were not applied, as shown schematically in figure 6.6.

6.4.1 Single qubit rotation

The above method for dynamically varying |s| allows a controlled phase-shift

to be applied to the exciton state whilst it is stored in the QD. This phase

shift is transferred to the emitted photon when the exciton recombines, thus

a single qubit rotation is performed whilst the qubit is stored in the QD.

As can be seen from equation 6.7, the induced phase shift is proportional

to the area of the gate pulse. Figure 6.7a shows the induced phase shift as a

function of the gate amplitude for a fixed pulse width of 500 ps as described

above. At a gate amplitude of ∼ 1.6 V a π phase-shift is observed. Figure

6.7b shows the intensity of co- and cross-polarised time-resolved spectroscopy

measurements with and without a π phase shift. The intensity drops during
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Figure 6.7: Phase-shift gate allowing single qubit rotations. (a) Phase shift as a
function of gate amplitude. (b) co- and cross-polarised time-resolved spectroscopy
measurements without (top) and with (bottom) an induced π phase shift. (c)
Time-resolved spectroscopy measurements as a function of gate amplitude, the co-
and cross-polarised data is coloured red and blue respectively.
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the gate as the emission is Stark shifted out of the measured spectral range.

After the gate the induced phase shift is clearly visible. Time-resolved spec-

troscopy measurements as a function of gate amplitude are shown for co- and

cross-polarised emission in figure 6.7c.

This phase shift gate operates far from the anticrossing in the regime

where the orientation of the eigenstates is not sensitive to variations in |s|.
This allows the rate of precession about a fixed axis to be manipulated, fa-

cilitating a controlled rotation of the qubit as demonstrated. An alternate

method of qubit control in which the eigenstate orientation and |s| are ma-

nipulated is possible when operating close to |s| = s0. In addition to a phase

rotation of a superposition state, this method also allows mapping between

the eigenstates. Details of this method can be found in [20].

6.5 Conclusion

The temporal evolution of the exciton state has been investigated, and the

effect of the fluctuating field has been observed in time-resolved spectroscopy

measurements in a manner analogous to FID in NMR measurements. The

ability to initialise an exciton into an eigenstate or superposition state de-

pends on |s|, with the fidelity of initialisation highest at |s| � s0 for eigen-

states but highest for superpositions at |s| = s0. This work is also relevant to

the generation of entangled photon pairs from the neutral biexciton cascade

discussed in chapters 4 and 5, where the exciton state is prepared by the

decay of the biexciton state rather than directly initialised as in this chapter.

The temporal measurements presented here stress that even for large values

of |s| entanglement may still be observed. This is possible as long as the re-

sulting evolution of the exciton state can be resolved and τFID is not shorter

than the radiative lifetime of the exciton state. Thus as τFID is reduced for

|s| <∼ 4µeV, it may not always be beneficial to minimise the fine-structure

splitting.

A hybrid phase shift gate, capable of performing single qubit rotations,

has been demonstrated via dynamic manipulation of |s| with a pulsed vertical
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electric field. Improvements to this gate could be achieved by using diode

devices with smaller areas to decrease the time taken to respond to changes

in the applied electric field, allowing more operations to be performed within

the radiative lifetime of the stored exciton. In addition, scaling of this hybrid

photonic-spin scheme could be achieved in the near future via the use of site-

positioned QDs[81] and multiple local gates.
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Chapter 7

Controlled-NOT gate operating

with single photons

7.1 Introduction

The neutral exciton state has been studied in detail throughout this thesis.

This chapter presents a demonstration of a basic optical quantum computing

component using photons emitted from the |X1〉 → |0〉 transition.

Photonic quantum computing schemes require non-classical light sources

to initialise the system into the correct input state. The error-rate of state

initialisation has significant consequences on the scalability of a computing

scheme. If the probability of correctly initialising a qubit is Pi then the

probability of correctly initialising N qubits is PN
i . Clearly if Pi < 1 this

introduces an error with a probability which rapidly grows as the number

of qubits in the input state is increased. Thus, deterministic input state

preparation is an important prerequisite for scalability. For example, the

promising scheme for linear optics quantum computing proposed by Knill,

Laflamme, and Milburn[82] requires single photon sources capable of sup-

plying on-demand photons into well-defined optical modes. More recently,

there have been several proposed protocols to reduce the resource overhead

required to build an optical computer via the use of many-qubit entangled

input states known as cluster states[83, 84, 85]. Although the use of such
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cluster states simplifies the operations required to implement computing pro-

cesses, the creation of these states still requires the ability to initialise photons

on-demand in well-defined states.

There has been much experimental progress on few-qubit gates using

probabilistic sources, such as optically pumped parametric down-conversion

crystals[86, 87, 88, 89]. However, these sources are governed by Poissonian

statistics which introduces an inherent error-rate due to multi-photon emis-

sion, precluding systems of many gates.

There exists a range of possible triggered single photons sources, includ-

ing molecules[90, 91], trapped ions[92], and colour centers in diamond[93, 94].

The work presented here uses a single semiconductor QD[95]. The use of

QDs is particularly promising as they can be integrated directly with semi-

conductor waveguide devices and take advantage of well developed industrial

semiconductor processing technologies.

In this chapter, an all-semiconductor photonic controlled-NOT (CNOT)

gate, operating with single photons, is presented. This work is the first

demonstration of an optical two-qubit gate operating with a QD single photon

source. In addition, the light-source, gate circuitry, and detectors are all

realised with semiconductor technology. As such, this work represents a

significant advancement towards the creation of a fully integrated system for

scalable optical quantum computing.

First the gate operation, and its implementation using optical waveguide

circuitry, is introduced. The emission properties of the photon source are then

presented. The gate operation is analysed and the main factors affecting the

performance are discussed. Feasible improvements, which in the near future

will allow further development of this solid-state optical quantum computing

platform, are also discussed.

7.2 The CNOT gate

The CNOT gate is the simplest two-qubit gate and an important building

block for quantum computing. When combined with single qubit opera-
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tions, which in optical computing can be achieved simply by passing photons

through waveplates to induce phase rotations, the CNOT gate allows map-

ping between any two states in the available Hilbert space. Multiple CNOT

gates can construct a universal gate capable of performing any quantum op-

eration.

7.2.1 NOT operation

In contrast to bits, qubits can be in superposition states, which have a mix-

ture of components from each of the possible basis states. In this work, the

qubits have two possible basis states, |0〉 and |1〉, so the quantum state of

each qubit is given by

Ψ = α|0〉+ β|1〉 ≡

α
β

 (7.1)

with α∗α+β∗β = 1. The NOT operation interchanges the places of the basis

state components such that

NOT{α|0〉+ β|1〉} = α|1〉+ β|0〉. (7.2)

The NOT operation can be represented in matrix form, where X denotes the

NOT operator , as

XΨ =

0 1

1 0

α
β

 =

β
α

 . (7.3)

7.2.2 CNOT operation

The CNOT gate requires a two-qubit input state comprised of a control

and target qubit, denoted ΨC and ΨT respectively, and performs the NOT

operation on ΨT conditional on the value of ΨC . To investigate the effects
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of the quantum CNOT operation, consider the two input qubits,

ΨC = αC |0〉+ βC |1〉

ΨT = αT |0〉+ βT |1〉.
(7.4)

The two-qubit input state for the CNOT gate can then be written as

|ΨCΨT 〉 = αCαT |0〉|0〉+ αCβT |0〉|1〉+ βCαT |1〉|0〉+ βCβT |1〉|1〉. (7.5)

It is useful to recast the input state in terms of the two-qubit basis states,

|00〉, |01〉, |10〉, |11〉. The input state is then given by

Ψin = a|00〉+ b|01〉+ c|10〉+ d|11〉 ≡


a

b

c

d

 , (7.6)

where a = αCαT , b = αCβT , c = βCαT , and d = βCβT . The action of the

CNOT operation can then be represented in matrix form, with C denoting

the CNOT operator, as

CΨin ≡


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




a

b

c

d

 =


a

b

d

c

 . (7.7)

In principle, the CNOT gate can operate on any superposition state, however

the simplest way of characterising the gate operation is with the logical basis

states:

Ψin = |ΨCΨT 〉 = |00〉, |01〉, |10〉, |11〉. (7.8)

Substitution of these states into equation 7.7 shows that the effect of the

CNOT gate is to flip the state of ΨT if ΨC = 1 and leave the state unchanged
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if ΨC = 0.

For an ideal CNOT gate the truth table is the same as the operation

matrix, C, as each input maps to only one output. For an experimentally

realised CNOT gate the truth table can be obtained by measuring the prob-

ability of each output state for each of the four input states. Due to gate

errors, it is possible that each input state can map to more than one output

state, so each truth table element must be normalised by the total intensity

of all the output states corresponding to the same input state.

7.3 CNOT operation with a waveguide net-

work

The CNOT circuitry is a direct implementation of that proposed by Ralph

et al.[96]. A detailed explanation of the operation of the waveguide network

can be found in reference [96], however an outline of the operating principles

is included here to aid understanding of the experimental results.

7.3.1 Optical circuitry

The optical circuitry is realised using a silica-on-silicon waveguide, shown in

figure 7.1a. The waveguides are designed by Dave Ellis and manufactured

by a commercial company. Light is guided along the optical modes created

by a refractive index contrast between different doping concentrations in the

silica layer. The circuit uses directional couplers to perform the function of

beamsplitters. Directional couplers bring two optical modes close together

such that evanescent coupling occurs between them. The coupling strength

and time are controlled by the spacing between the modes and the length of

the coupler. By careful selection of these properties a directional coupler can

act as a beamsplitter, such that light entering from an input is split between

the two outputs with a known ratio. The network presented in this chapter

consists of 1
2

and 1
3

couplers, as shown schematically in figure 7.1b where each

coupler is labeled with its effective reflectivity.
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(a) (b)

Figure 7.1: Optical circuitry. (a) Photograph of the waveguide chip, intense
illumination allows the waveguides to be seen. (b) Schematic diagram of waveguide
network, the path inputs and outputs are labeled with the corresponding state and
the couplers are labeled with their reflectivity.

In addition, isolated test couplers, nominally identical to those which

make up the network, are fabricated adjacent to the CNOT circuitry. These

allow the coupling ratios, which depend on the physical dimensions of the

coupler and are thus defined during fabrication, to be experimentally verified.

Measurements of the coupler reflectivities were performed by Dave Ellis. For

each of the two kinds of coupler, laser light was coupled into an input and the

relative intensity of the two outputs measured to find the effective reflectivity.

At the source wavelength, the coupling ratios in the network used for this

work are R1/3 = 0.345 and R1/2 = 0.495.

7.3.2 Operating principle

The waveguide network functions with path-encoded qubits, where the state

of the qubit is mapped onto the path it takes through the waveguide. As

shown in figure 7.1b, each qubit has two input and two output paths labeled

Ci and Ti for the control and target qubits respectively. The subscripts (i =

0 or 1) indicate the basis state of the qubit to which the paths correspond.

Here we consider only inputs composed from logical basis states, given in

equation 7.8, where each qubit has a single photon in one path and zero

photons in the other. For example, to input the state |ΨCΨT 〉 = |00〉 two

photons must simultaneously enter the waveguide with one in path C0 and
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one in path T0.

The two 1
2

couplers form a Mach-Zehnder interferometer (MZI), the 1
3

coupler in the upper MZI arm allows interaction between the two qubits,

and the other two 1
3

couplers serve to balance the output intensities. The

gate relies on single photon interference through the MZI and two-photon

interference between the two qubit photons.

The MZI is balanced such that a single target photon, in the absence of

any interaction with the control qubit, exits the waveguide in the same state

that it enters. Two photon interference between the control and target qubits

in the upper arm of the MZI has the effect of a π phase shift, resulting in the

target qubit swapping modes and leaving the MZI in the opposite state to

which it entered. Thus, the NOT operation is performed on ΨT if ΨC = 1,

and the target state is unchanged if ΨC = 0, as required.

The CNOT gate operates in the coincidence basis, such that only events

where photons are simultaneously detected in both a target and control out-

put path are considered. This is achieved in practice via time resolved cor-

relation measurements between control and target output paths, where co-

incidence events are recorded as a function of the time interval, τ , between

the two photons. The gate operation is fully assessed with 16 correlation

measurements, as for each of the 4 input states there are 4 possible output

states.

7.3.3 Expected correlations

The time-averaged output intensity into each of the coincidence states can

be calculated from the individual intensities expected from each output path.

The individual intensities at each output path are calculated for each input

state by considering all possible trajectories the two photons can take as they

traverse the waveguide. Table 7.1 shows the probability of a photon exiting

in each output path for every input path pair.

The time-averaged probability of a correlation event between any two

outputs is then calculated from the product of the individual output proba-

bilities. Table 7.2 shows the probability of measuring a correlation between
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Output Path

C0 C1 T0 T1

In
p
u
t

P
at

h
s C0, T0

1
3

1
3

1
3

0

C0, T1
1
3

1
3

0 1
3

C1, T0 0 2
3

2
3

1
3

C1, T1 0 2
3

1
3

2
3

Table 7.1: Probability of a photon being in a given output path for each of the
four input path pairs required to encode the four logical input states.

the four possible output path pairs for each of the input path pairs.

Output Paths

C0, T0 C0, T1 C1, T0 C1, T1

In
p
u
t

P
at

h
s C0, T0

1
9

0 1
9

0

C0, T1 0 1
9

0 1
9

C1, T0 0 0 4
9

2
9

C1, T1 0 0 2
9

4
9

Table 7.2: Probability of a coincidence event between the output path pairs, with
any value of τ , for each of the input path pairs.

Only those events in which |τ | is within a 1.95 ns window centered on zero

are used to assess the gate operation, as these events correspond to when two

photons from the same excitation cycle enter the waveguide simultaneously.

The probability of a coincidence event in this window between output pairs

for each input pair is shown in table 7.3. By comparison between table 7.3

and the CNOT operation matrix in equation 7.7, it can be seen that the

waveguide network implements the CNOT operation with a probability of 1
9
.

7.3.4 Experimental operation

So far the operation of an ideal CNOT gate has been discussed, however

in reality experimental imperfections introduce errors which affect the gate

operation. The most significant sources of error are the visibility of single-

photon interference, V (1), the visibility of two-photon interference, V (2), and
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Output Paths

C0, T0 C0, T1 C1, T0 C1, T1

In
p
u
t

P
at

h
s C0, T0

1
9

0 0 0

C0, T1 0 1
9

0 0

C1, T0 0 0 0 1
9

C1, T1 0 0 1
9

0

Table 7.3: Probability of a coincidence event, involving two photons from the
same input state, in each output pair for every input pair.

the non-ideal coupler ratios inside the waveguide network. Whilst multi-

photon emission from the QD is also a potential source of error, the prob-

ability of a multi-photon emission event from the emitter used in this work

is so low (see 7.4.3) that it can be neglected. In addition, as the gate is

measured in the coincidence basis, emitter and detector inefficiencies do not

cause errors but serve only to reduce the rate at which correlation events are

accumulated. In this subsection the effects of imperfect single-photon and

two-photon interference on the gate operation are discussed.

Single-photon interference is a consequence of wave-particle duality. When

a single photon encounters a beamsplitter it does not exit from a single out-

put, as would be expected for a particle. It instead exits from both outputs

simultaneously in a superposition between the two possible output paths,

as would be expected for a wave. However, if the output from which the

photon leaves is measured, for example by coupling each output into one of

two APDs, the photon will only ever be detected in one exit path at any one

time; the act of measuring the outcome from the beamsplitter collapses the

superposition wavefunction into one of the eigenstate paths. The MZI in the

waveguide network uses this property of single photons to ensure their cor-

rect trajectory through the optical circuitry. The single target photon enters

the first 1
2

coupler and leaves in a superposition between the two arms of the

MZI. At the second 1
2

coupler the two paths are combined and interference

occurs between the two portions of the superposition wavefunction. If the

two arms of the MZI are phase-matched then destructive interference occurs

between the portions of the wavefunctions which would lead to the photon
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changing path, and constructive interference occurs between the portions of

the wavefunctions which result in the photon leaving in the same path. For

example, if the photon is initially in input path T0 the interference between

the portions of the wavefunction in each MZI arm results in the photon al-

ways leaving the MZI in the T0 output path. The operation of the MZI is

characterised by V (1), which is the probability that photons entering the MZI

leave in the same path which they entered. The value of V (1) is largely due to

how well phase-matched the two arms of the MZI are and is thus a property

of the waveguide, which is defined during fabrication. If V (1) < 1 then the

operation of the MZI is non-ideal, meaning that target photons can leave

from the wrong path due to incorrect single-photon interference.

Two-photon interference can occur if two indistinguishable photons meet

at a beamsplitter. In the absence of any interference effects there are four pos-

sible outcomes, two with the photons leaving from the same output and two

with the photons leaving from different outputs. However, if the wavefunc-

tions of the two photons are indistinguishable then destructive interference

occurs between the two outcomes which result in photons leaving from dif-

ferent outputs and the two photons will always leave the beamsplitter from

the same output. The two-photon interference process which occurs at the
1
3

coupler in the upper arm of the MZI is characterised by V (2); if V (2) = 1

then the photons always leave in the same path, if V (2) = 0 then there is no

interference and the probability that the photons leave in the same path is

reduced to 1
2
. The value of V (2) is a property of both the waveguide and the

emitter, as it depends on both the spatial overlap of the photons inside the

waveguide and on the indistinguishability of the photons. As the interfer-

ence takes place inside a directional coupler, it is the temporal properties and

distinguishability of the photons which imposes the limit on V (2). The inter-

action of the exciton with the solid-state environment leads to decoherence,

limiting the degree of indistinguishability of the emitted photons. If V (2) < 1

then interaction between the control and target qubits is not guaranteed,

which causes errors when the input control qubit has state ΨC = 1.

When these parameters are taken into account the CNOT matrix opera-
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tor, C, given in equation 7.7 becomes

C =


V (1) 1− V (1) 0 0

1− V (1) V (1) 0 0

0 0 2(1− V (2)) + (1− V (1)) V (1)

0 0 V (1) 2(1− V (2)) + (1− V (1))


(7.9)

and the corresponding truth table for the CNOT gate is given in table 7.4

Output State

|00〉 |01〉 |10〉 |11〉

In
p
u
t

S
ta

te |00〉 V (1) 1− V (1) 0 0

|01〉 1− V (1) V (1) 0 0

|10〉 0 0 2(1−V (2))+(1−V (1))

2(1−V (2))+1
V (1)

2(1−V (2))+1

|11〉 0 0 V (1)

2(1−V (2))+1

2(1−V (2))+(1−V (1))

2(1−V (2))+1

Table 7.4: Truth table for waveguide implemented CNOT gate, taking into ac-
count the visibility of single photon and two-photon interference.

To understand the origins of equation 7.9 it is necessary to consider the

combined effects of V (1) and V (2). In order to do this it is useful to consider

matrix C as four 2×2 submatrices. The top right and bottom left submatrices

are trivial, as the CNOT operation does not change the state of the control

qubit. All elements of the top right submatrix are zero, as when ΨC = |0〉
there are no coincidences involving ΨC = |1〉. Similarly for the bottom left

submatrix; no coincidences involving ΨC = |0〉 occur when ΨC = |1〉.
The top left submatrix depends only on V (1), as for these elements ΨC =

|0〉 and the two qubit photons do not interfere with each other. The on-

diagonal elements of the top left submatrix correspond to cases where the

target qubit is unchanged by the gate. This happens so long as the target

qubit correctly exits the MZI, which occurs with probability V (1). The off-

diagonal elements of the top left submatrix correspond to cases where the

target photon leaves the MZI from the incorrect path, which occurs with

probability 1− V (1).
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The bottom right submatrix depends on both V (1) and V (2). The on

diagonal elements have contributions from two mechanisms. Cases where

two-photon interference results in both photons merging into the same path

reduce the value of these elements. When two-photon interference does not

occur, which happens with probability (1 − V (2)) the resulting error con-

tributes to these elements. In addition, events when the target qubit ends up

in the wrong output path due to imperfect single-photon interference, which

occurs with probability 1 − V (1), also contribute to these elements. The off

diagonal elements rely on the target qubit leaving the MZI in the correct

path and so are given by V (1).

7.4 Photon source

The photon source is a single InAs QD embedded inside a 1.5 µm diameter

pillar microcavity. QDs are well suited as single photon emitters due to

their discrete energy level structure and easy integration with semiconductor

optical cavities. In the work presented here, the photons are emitted by the

|X1〉 → |0〉 transition. Embedding the QD inside a microcavity yields two

advantages. Purcell enhancement[21] reduces the radiative lifetime, relative

to the coherence time, of excitons within the QD. This increases the degree

of indistinguishability of the emitted photons leading to an increase in V (2),

which as can be seen from table 7.4 improves the performance of the gate. In

addition, collimation of the emission due to coupling between the transition

and the fundamental cavity mode significantly increases collection efficiency.

The planar structure of the microcavity, grown via molecular beam epi-

taxy, consists of 17 (25) periods of GaAs/AlGaAs distributed Bragg reflector

above (below) a one-wavelength thick GaAs cavity centered on a layer of

self-assembled InAs quantum dots. Reactive ion etching was used to define

pillars, examples of which can be seen in Figure 7.2.
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(a) (b)

Figure 7.2: SEM images of micropillar cavities. (a) Section of an array of pillars,
scale bar is 20µm. (b) Single SEM pillar of the nominal size used in the CNOT
measurement, scale bar is 1.5µm.

7.4.1 Initialisation of the two-photon input state

The pillar is cooled to a temperature of ∼ 5 K by a continuous flow of liquid

helium. The QD is optically pumped by a 1364meV pulsed mode-locked laser

operating with a repetition frequency of 80Mhz, which drives the |0〉 → |X1〉
transition via the quasi-resonant excitation scheme described in section 2.5.

To ensure indistinguishability of the emitted photons, polarisation filtering

is used to select emission from just one of the exciton eigenstates. The quasi-

resonant excitation scheme maps the polarisation of the excitation photon

onto the spin of the resulting exciton, as discussed in section 6.2. This allows

selective excitation of a single eigenstate, increasing the internal efficiency

of the source relative to other excitation schemes that excite both of the

eigenstates.

The CNOT input state requires two photons, one for each of the con-

trol and target qubits, both of which are emitted from the same QD. The

experimental configuration used to achieve this is shown in figure 7.3. An

unbalanced Michelson interferometer is used to split each pulse from the

pump laser into two pulses separated by 1.95ns. Thus each repetition of the

laser excites the QD twice in quick succession. The resulting QD emission
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Figure 7.3: Configuration used to generate the two-photon input state.

is spectrally filtered to select photons from the |X1〉 → |0〉 transition, which

are coupled into a 1
2

fiber beamsplitter. A 1.95 ns delay is placed in one of

the beamsplitter output ports. If the first photon takes the delayed path

and second the un-delayed path the two photons leave the output ports si-

multaneously, as required for the CNOT input state. This method has a 1
4

probability of creating the desired state, however in principle two synchro-

nised single photon sources could allow deterministic state preparation.

7.4.2 Source characterisation

In order to benefit from the improved indistinguishability and increased col-

lection efficiency associated with embedding the emitter inside a cavity, the

exciton transition of the QD must be coupled to the HE11 cavity mode.

This requires the wavelength of the emission and the position of the QD to

match that of the mode. The self-assembled Stranski-Krastanov growth of

the quantum dots allows no lateral control of the QD position and results in

an ensemble of QD sizes and thus emission wavelengths. In addition to being

coupled to the HE11 mode, the exciton transition must emit at a wavelength

within the range for which the optical circuitry is designed. For a given pla-

nar structure, the wavelength of the HE11 mode depends on the diameter of
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the pillar. To increase the yield of samples with appropriately coupled quan-

tum dots, and to accommodate processing variations in the pillar diameter,

each device consists of 800 pillars with nominal design diameters of 1.00 –

2.75 µm.
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Figure 7.4: The pillars are characterised using PL spectroscopy. (a) PL emission
from a large unpatterned area of the sample shows the planar cavity. The planar
cavity cut-off wavelength, labeled λplanar, gives the wavelength of vertical emission.
(b)µ-PL spectrum from a single pillar microcavity with a diameter of 1.5µm. The
HE11 mode, which collimates the vertical emission, is labeled. The blueshift, λB,
of the HE11 mode relative to the vertical emission from the planar cavity is due to
the lateral confinement provided by the pillar walls and is dependent on the pillar
diameter.(c) Q-factor as a function of pillar diameter for the pillars used in this
work.

The pillars are characterised using µ-PL measurements, from which the

wavelength of the HE11 mode, λ11, can be measured. Figure 7.4 shows µ-

PL measurements from an unetched planar region of the wafer and from a

microcavity with diameter ∼ 1.5µm. The wavelength of the vertical emission

from the planar cavity, λplanar, is higher than λ11 due to a blueshift of the

mode caused by the lateral confinement of the microcavity. The blueshift,

given by λB = λplanar − λ11, can be used to calculate the actual diameter of
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a pillar from

D =

√
18.7

λB
, (7.10)

where D is the diameter in µm and λB is in units of nm. This relationship has

been empirically demonstrated by David Unitt[97] , and is consistent with

SEM measurements. The actual diameter of the microcavities is typically

smaller than the nominal design diameter due to lateral etching which occurs

as the pillars are defined. The pillar used in this chapter had a nominal design

diameter of 2.5 µm, however SEM images of the pillar yield a diameter of

∼ 1.5 µm due to lateral etching effects. This measured diameter is consistent

with the measured blueshift of 7.685 nm, which from equation 7.10 gives a

diameter of 1.56 µm.

The quality factor, Q, is given by

Q =
λ11

∆λ
, (7.11)

where ∆λ is the full width at half maximum of the HE11 mode, and can be

measured experimentally by fitting the HE11 mode with a Lorentzian peak.

Figure 7.4c shows Q, averaged over several randomly chosen pillars of each

nominal size, as a function of diameter for the sample used in this work.

The pillar used in this work had a diameter of 1.5 µm and a quality factor

of Q ∼ 9000. This pillar was selected for its exceptionally high quality factor

which, as can be seen from figure 7.4c, was significantly higher than average

for its diameter. The pillar contains a QD with a |X1〉 → |0〉 transition that

emits at a wavelength of 931 nm, which is resonant with the HE11 cavity mode

of the pillar. Time resolved spectroscopy of the transition, shown in figure

7.5a, shows that the radiative lifetime of excitons within the QD is τR = 106

ps. A measurement of the transition linewidth using etalon spectroscopy

is shown in figure 7.5b. From the width of a Lorentzian fit to the data a

coherence time of τC = 148 ps is extracted.
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Figure 7.5: Measurements of radiative lifetime and coherence time. (a) Emission
intensity of the exciton transition as a function of time. The solid black line is
a double exponential fit to the data, from which a radiative lifetime of τR = 106
ps is extracted. (b) Emission intensity of the exciton transition as a function of
energy, measured using a piezo controlled etalon. The energy is offset by the mean
emission energy. The black solid line shows a Lorentzian fit to the data, from
which a coherence time of τC = 148 ps is extracted.
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7.4.3 Indistinguishable single photon emission

The photon source must meet two requirements: (1) single photon emission is

necessary, as multiple photons simultaneously entering the control or target

paths prevents correct gate operation; (2) the two input photons must have

a high degree of indistinguishability in order to maximise the two-photon

interference between the target and control qubits.

As described in section 3.3.5, measurements of the source’s 2nd-order au-

tocorrelation function, g(2)(τ), were used to confirm the single photon nature

of the emission. Figure 7.6b shows g(2)(τ) for the pillar used in this work

when the QD is excited directly by a pulsed laser operating at 80 MHz. This

measurement yields g(2)(0) = 0.013 ± 0.004, indicating that under standard

pulsed excitation there is a significant suppression of multi-photon emission.

Figure 7.6d shows g(2)(τ) when the pillar is excited twice in quick succession

under the conditions described in section 7.4.1. From this measurement it is

possible to obtain the probability of multi-photon emission in either of the

two emission events required to create the CNOT input state, g. The residual

between the data and a double Lorentzian fit to the peaks at τ = ±1.95 nm

yields g = 0.0063±0.0005, confirming the single photon nature of the photon

source under CNOT operation conditions. Both of these measurements were

performed using a 1
2

waveguide coupler nominally identical to those inside

the CNOT circuitry.

The visibility of two-photon interference, V (2), is measured using a Hong-

Ou-Mandel[98] (HOM) interferometer, implemented using a 50/50 fibre beam-

splitter and a 1
2

waveguide coupler as shown in figure 7.7a. As the spatial

overlap of the paths inside the waveguide coupler is excellent, the value of

V (2) is limited by the distinguishability of the photons. This is dependent on

the ratio τC/τR and thus an inherent property of the source under a given

excitation regime. Figure 7.7b shows the HOM correlation. The cluster of

five peaks centered at τ = 0, labeled A-E, correspond to events where both

detected photons are from the same excitation cycle. The peaks within each

cluster are separated by τp = 1.95 ns, which is the time interval between the

two photons emitted each excitation cycle. If the first photon takes the un-
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Figure 7.6: Confirmation of single photon emission. (a)-(b) Pulsed second-order
autocorrelation measurement yields a g(2)(0) = 0.013 ± 0.004. (c)-(d) Pulsed au-
tocorrelation measurement under the excitation conditions for CNOT state prepa-
ration yields a probability of multi-photon emission in either emission event of
g = 0.0063± 0.0005.
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delayed path and the second takes the delayed path they arrive at the APDs

separated by 2τp, resulting in peaks A and E. If both photons take the same

path into the waveguide they arrive at the APDs separated by τp, resulting

in peaks B and D. If both photons enter the waveguide simultaneously they

can interfere at the 1
3

coupler in the upper MZI arm. Two-photon interfer-

ence causes both photons to leave the coupler in the same output path[98],

preventing a photon being simultaneously detected at each APD if V (2) = 1.

The relative area of peak C compared to that of peaks B and D is used to

calculate V (2) = 1, via

V (2) = 1− ΩC

1
2

(ΩB + ΩD)
(7.12)

where Ωi corresponds to the area of peak i. A value of V (2) = 0.72± 0.05 is

obtained for the pillar used in this work. This is comparable with the highest

V (2) reported for single photon semiconductor sources.

7.5 Demonstration of an optical CNOT gate

7.5.1 Experimental configuration

The waveguide is mounted into a coupling rig to allow fibre arrays to be butt-

coupled to the input and output paths, with single-mode fiber used to couple

into the waveguide and multi-mode fiber used to collect from the waveguide

outputs. The two-photons for the input state are created as described in

section 7.4.1. One photon is coupled into a target input path and the other

is coupled into a control input path, which allows any of the basis state

inputs given in equation 7.8 to be realised. A diagram of the experimental

configuration is shown in figure 7.8.

For each input state, four time-resolved correlation measurements are

acquired simultaneously between control and target output paths, one for

each of the possible basis states. Analysis of these correlation measurements

allows the operation of the CNOT gate to be assessed.

119



7.5. DEMONSTRATION OF AN OPTICAL CNOT GATE

-40 -30 -20 -10 0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

 

 

C
or

re
la

tio
n 

co
un

ts
 (

a.
u.

)

Time delay, τ (ns)

(a)

(b)

A

B

C

D

E

Figure 7.7: Measurement of photon indistinguishability. (a) Hong-Ou-Mandel
interferometer implemented with a 50/50 fibre beamsplitter and a 1

2 directional
coupler. A delay fibre is inserted before one of the waveguide inputs to allow
consecutive photons to meet and interfere at the coupler. (b) A pulsed two-photon
interference measurement, under the excitation conditions used for the CNOT
input state preparation. The number of counts in each of the labeled peaks,
integrated over the central 600 ps of each peak, are A = 170, B = 354, C = 100,
D = 375, E = 183. This gives a visibility of two-photon interference of V (2) =
0.72± 0.05.
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Figure 7.8: Experimental configuration for measurement of the CNOT gate. An
unbalanced Michelson interferometer and a delay line allow the creation of the
two-photon input state. The input state is selected by setting the path that each
of the photons is coupled into. Each waveguide output is coupled into an APD
via multi-mode fibre, this allows time-resolved correlation measurements to be
acquired.

7.5.2 Correlation measurements

The experimentally obtained correlation measurements are shown in figure

7.9. From the relative areas of the peaks in the 〈00|00〉 and 〈00|01〉 correla-

tions a visibility of single-photon interference of V (1) = 0.97 is extracted. The

〈10|10〉 and 〈11|11〉 correlations show two photon interference measurements

similar to the Hong-Ou-Mandel measurement shown in figure 7.7, however

the suppression of the central τ = 0 peak is determined not only by the value

of V (2) but also by other properties of the waveguide network, specifically

the non-ideal coupler reflectivies and non-unity value of V (1). To extract the

value of V (2) within the waveguide network the expected correlation mea-

surements are modeled. The predicted form of the correlation curves, which

were calculated by Adrian Chan, are shown in figure 7.9 as solid black lines.

These curves were calculated via consideration of all the possible paths that

the photons can take through the waveguide network, with the probability

of each path adjusted to account for the experimentally determined coupler

reflectivities and single-photon interference visibility. The width of the peaks

are obtained via a convolution with the combined detector response function
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Figure 7.9: Correlation measurements used to assess the function of the CNOT
gate. Each pane shows the measurement for a single input and output combi-
nation. Measured data is shown as filled red bars. The solid black curves show
the predicted form of the correlations calculated as described in the main text.
The peaks centered at τ = 0 correspond to events when two photons entered the
waveguide simultaneously and are used to construct the truth table.

of the two detectors involved in each correlation. For the 〈10|10〉 and 〈11|11〉
correlations the peaks at τ = 0, which depend on two-photon interference

effects, are calculated using a wavepacket overlap approach similar to that

of Legero et al.[99, 51], in which the temporal properties of the photons and

the waveguide imperfections are considered. The data agrees well with pre-

dicted curves calculated with the measured values of V (1), R1/3, and R1/2,

and with a value for two-photon interference visibility of V (2) = 0.67, which

is consistent with the value obtained using an isolated 1
2

coupler (see figure

7.7).
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Figure 7.10: Truth tables (a) for an ideal CNOT gate, (b) calculated from the
predicted correlation curves, for the CNOT gate realised experimentally, (c) for
the measured CNOT gate operation.

7.5.3 Success probability

A truth table for the CNOT gate is constructed from the correlation mea-

surements using the coincidence peaks (centered at τ = 0), as those peaks

correspond to events when the input state is correctly prepared. Figure 7.10

shows the measured truth table, along with a predicted truth table calculated

using the experimentally realised values of V (1) and V (2), and the truth table

of an ideal CNOT gate.

Each element of the measured truth table is given by the area of the

coincidence peak in the corresponding correlation measurement, normalised

by the total area of the coincidence peaks in all the correlation measurements

for the same input state. As seen at the end of section 7.2.2, after this

normalisation the elements give the probability of mapping between each

input and output state. The success probability for an input state is given
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by the truth table element in the associated row which corresponds to the

correct output state.
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Figure 7.11: Success probability as a function of two-photon interference vis-
ibility for an ideal CNOT network (solid lines) and the experimentally realised
network (dashed lines). The input states with ΨC = 1 are shown in green, those
for input states with ΨC = 0 are shown in red. The average values across all
inputs are shown in blue. The experimentally achieved values are plotted as black
squares, with the errorbar length determined by Poissonian counting errors.

The predicted truth table is calculated from table 7.4. Note that this

method of analysis neglects the effects of non-ideal coupler reflectivies. It

is possible to include these effects by constructing the predicted truth table

from the calculated curves shown in figure 7.9. This was done by Adrian

Chan and the results vary by less than 1% from those obtained using the

simpler analysis presented here.

Figure 7.11 shows the success probability as a function of V (2) for the case

of an ideal CNOT waveguide (solid lines) and the experimentally realised

waveguide with V (1) = 0.97 (dashed lines). The experimentally achieved

success probabilities are shown as black squares and are in good agreement

with the calculated values. When the truth table is calculated from the area

of the entire coincidence peak, integrated over a window of 1.95 ns, the success

probability averaged over all inputs is 71%. Taking a narrower window of

0.6 ns increases the average success probability to 75% whilst preserving 60%

124



7.6. CONCLUSION

of the coincidence counts. In principle, performing the measurement using

detectors with faster response times could further improve the measured

success rate. However, it is clear that the key to improving the performance

of the gate is to increase the value of V (2). The main factor limiting V (2)

in this work is the degree of photon indistinguishability, which is largely

determined by the ratio of the radiative decay time and coherence time,

τC/τR, of the exciton within the QD.

The quasi-resonant excitation scheme used for this work results in residual

decoherence caused by the interaction of the exciton with the solid-state

environment. However, the use of coherent Raman excitation schemes[100,

101] can potentially lead to increased coherence time. In addition, recent

resonance fluorescence measurements[102] have been shown to transfer the

coherence properties of the excitation laser to the exciton photon, leading to

coherence times which approach that of the driving laser.

7.6 Conclusion

An optical CNOT gate operating with single photons from an optically

pumped QD has been demonstrated. The photon source has been char-

acterised to confirm single photon emission and assess the degree of indistin-

guishability between the emitted photons. The gate performance has been

analysed, revealing the visibility of two-photon interference to be the main

limiting factor. This work is a demonstration of key principles required to de-

velop a scalable platform for optical quantum computing. True single photon

sources based on semiconductor materials offer the potential of deterministic

state preparation in a miniturised package well suited for scaling with current

fabrication techniques. The feasibility of such a scheme has been shown. The

challenge is now to improve the efficiency of the photon sources and detectors

and to increase the integration between the required components.

Extensions of this work include using multiple synchronised single pho-

ton sources to enable deterministic preparation of multi-photon input states.

Also feasible with current technology is to modify the waveguide to accept

125



7.6. CONCLUSION

superposition input states. This could be achieved with the addition of extra

Mach-Zehnder interferometers on the control and target inputs. The two out-

put paths of each interferometer would become the two input paths for each

of the control and target qubits. Variation of the phase difference between

the arms of each interferometer would then allow control of the superposition

states which traverse the gate.
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Chapter 8

Conclusion

This thesis describes work towards the development of components for optical

quantum computing using single semiconductor QDs. The neutral transitions

have been studied in particular detail, both as a means to generate and

interact with non-classical light states and in order to explore the potential

of confined excitons as solid-state qubits.

Single QDs have been studied in two different device structures: diodes,

which allow the application of large electric fields; and pillar microcavities,

which enhance the temporal and coherence properties of the emitted photons

via coupling between the neutral transitions and the cavity mode.

Methods of manipulating the energy structure of the neutral states in-

volving the application of electric and magnetic fields have been investigated.

This has resulted in a method for reducing the fine-structure splitting in QDs

in order to allow entanglement between the two photons emitted from the

neutral biexciton cascade to observed. In addition, a technique for the cre-

ation of an energy-tunable entangled photon emitter has been proposed and

shown to be feasible with current technology.

The temporal properties of the neutral exciton state have also been in-

vestigated. This has allowed the implementation of a solid-state phase gate,

via the application of a dynamic electric field to controllably vary the fine-

structure splitting (FSS, s).

Finally, the neutral exciton transition has been used to generate indistin-
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guishable single photons for use in an all-semiconductor photonic two-qubit

gate. This represents an important step towards a fully integrated photonic

quantum computing platform.

8.1 Summary of results

8.1.1 Emission of entangled photon pairs

Much of this thesis is concerned with the neutral biexciton cascade, as the

two photons emitted by this process form an entangled photon pair. In the

absence of any FSS these two photons are emitted into a Bell state, which is

independent of time and so well suited to many applications which require

a known input state, such as photonic logic circuits. However, finite FSS

introduces a time evolving phase between the two entangled states. This

necessitates the ability to temporally resolve the state in order to use the

entanglement as a resource. The rate of the phase evolution is proportional

to the magnitude of the FSS and for |s| larger than a few µeV it becomes

difficult to resolve. Therefore it is desirable to be able to reduce the value of

|s|.
An electric field, applied parallel to the sample growth direction, has been

used to tune the value of |s|. The planar structure of the diodes is designed

to allow a large range of electric field to be applied whilst preserving the

optical activity of the QDs. This allows |s| to be varied over a wide range on

the order of hundreds of µeV using this technique. Remarkably, all QDs in a

given wafer are observed to have the same rate of change of |s| with electric

field.

As |s| is reduced, coherent coupling between the two exciton eigenstates

results in the observation of an anticrossing as the states are inverted. This

imposes a lower limit, s0, below which the FSS can not be reduced using

this tuning method. The value of s0 varies between QDs. One QD, which

has |s| > 50 µeV in the absence of an electric field, has been tuned to have

|s| = s0 = 1.4 µeV. Entangled photon pairs have been observed from this

QD, with the fidelity of the emitted two-photon state to the ideal Bell state
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found to be dependent on |s| as expected.

The effects of an applied magnetic field on the FSS have also been ex-

plored. It is found that a magnetic field does not affect the value of s0, but

does change the electric field required to tune a QD to |s| = s0. Conse-

quently, the energy of emission from the neutral transitions when |s| = s0

is dependent on the magnitude of the magnetic field. This allows the po-

tential creation of an energy-tuneable source of entangled photon pairs via

simultaneous application of electric and magnetic fields. Calculations show

that such a source could have a tuning range of several tens of meV with the

application of a modest magnetic field on the order of 10 T.

8.1.2 Control of the exciton state

The neutral exciton state is of interest to the work in this thesis due to the

potential of confined excitons to provide an optically accessible spin system

for use as a solid-state qubit. The coherent mapping between the polarisa-

tion of a photon and the spin state of the created exciton has been used in

order to initialise such a qubit. This is interesting as it demonstrates the po-

tential to use the interaction between photonic qubits and nanostructures as

a bridge between optical and solid-state quantum computing schemes. Such

an interface has applications in the creation of a hybrid computation regime,

in which the benefits of each qubit system can be combined so as to mitigate

some of the drawbacks of each individual mode of computation.

The exciton state has been studied as a function of time, allowing the

fluctuating nuclear field to be probed. The nuclear field was found to influ-

ence the rate at which the spin state of a confined exciton processes around

the Bloch sphere, via the addition of a time-fluctuating component to the

FSS.

Dynamic manipulation of the FSS was achieved via the application of a

time varying electric field. This has been used as a method to implement

a controlled phase rotation of the exciton state, which is then transferred

to the emitted photon when the exciton radiatively decays. Thus a phase

shift has been applied to a photonic qubit, by first writing the qubit state
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to the spin of an exciton and then performing the rotation operation in the

solid-state before the exciton recombines.

8.1.3 Demonstration of an integrated photonic logic

circuit

A single QD embedded inside a pillar microcavity has been used as an on-

demand single photon source to generate the input state for an integrated

photonic controlled-NOT gate. The neutral exciton transition was used to

emitted single photons, whilst the coupling of this transition to the cavity

mode of the pillar increased the indistinguishability of the emitted photons.

This work is the first demonstration of a two-qubit gate using on-demand

single photons, and as such is currently the closest to the seminal proposal

for linear optical quantum computing by Knill, Laflamme, and Milburn[82].

In addition, all the components for this gate are realised using semiconductor

technology. As such this work represents a significant step towards a scalable

quantum computing platform in the solid-state.

8.2 Future work

The work in this thesis has developed several components which have appli-

cations in the field of quantum computing. Much work remains, however,

before a viable large scale optical quantum computation scheme can be im-

plemented.

Following on from this thesis, it would be interesting to extend the FSS

tuning method to include a third tuning mechanism in addition to the electric

and magnetic fields considered here. A promising mechanism would be a

piezo induced strain field, as recent studies have reported that variation of the

strain field can result in the elimination of the coupling between the exciton

eigenstates and thus allow |s| to be tuned to zero. As well as increasing

the degree of useable entanglement between the two photons emitted by the

neutral biexciton cascade, the ability to tune any QD to |s| = 0 would remove

the requirement to “cherry pick” QDs with small s0 for use in quantum
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optics applications. This increase in device yield would be an important

step towards the scaling up of methods which require QDs for the creation

non-classical light states.

Another possible avenue for further research would be to further investi-

gate the g-factors of the carriers within a QD as a function of electric field.

In particular, the component that lies in the plane of the sample has not been

investigated in this thesis. In principle, this component can be measured via

probing the emission from the charged exciton states.

Finally, there are several ways in which the two-qubit photonic gate pre-

sented in this work could be developed to enhance its performance. The

photon source and detector could be integrated directly into the waveguide

circuitry, which would allow further miniturisation of the system. Also, in

the work presented here a single QD is used to provide both photons for

the two-photon input state, which is achieved with a probability of 1
4
. An

interesting extension would be to incorporate two synchronised single pho-

ton sources, which would allow deterministic initialisation of the input state.

Such deterministic input state generation is required in order to efficiently

operate circuits consisting of many gates, thus this would be an important

step closer to the creation of a scalable optical quantum computer.
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