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Abstract

We identify an error in Proposition 3 by Erdil and Kumano (2019). We then

recover the result by replacing the substitutability condition on priority structures

with a new condition which we call bridging. We further show that the priorities

in both applications in Erdil and Kumano (2019) satisfy the bridging property,

which in turn ensures that their Propositions 5 and 6 are still valid.

1 Introduction

Partly motivated by diversity goals in school choice, Erdil and Kumano (2019) introduce

a model where schools compare alternative cohorts of student intake according to some

distributional metric (possibly a measure of diversity). Importantly, to maintain gener-

ality and flexibility, they allow such comparisons to have ties between many alternatives,

and show how substitutable priorities with ties can capture these comparisons (i.e., pri-

ority rankings over sets of students). They introduce a modified deferred acceptance
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procedure (MDA) to show that a stable (i.e., one that respects priorities) assignment

exists.

In general, there are multiple stable assignments, and some assignments might serve

students better than other assignments in the sense of Pareto dominance. A stable

assignment is called constrained efficient if no other stable assignment Pareto dominates

it (from the students’ perspective). Noting that the outcome of MDA is not necessarily

constrained efficient, they explore the possibility of recovering constrained efficiency by

using a construction which they call potentially stable improvement cycle (PSIC). They

claim, in their Proposition 3, that given acceptant and substitutable school priorities, if

a stable assignment does not admit a PSIC, then it is constrained efficient. They then

rely on this sufficiency claim to establish an algorithm to compute a constrained efficient

assignment in two distinct classes of applications; namely assignment with distributional

constraints and admissions by a committee.

We illustrate, by way of counterexample, that their Proposition 3 is not correct.

Since they rely on this proposition to establish the relevant results for their applications

(Propositions 5 and 6, and Corollaries 1 and 2), failure of the proposition leads to a gap

in the proofs of these latter results.

To complete that gap and recover these results, we introduce a new technical con-

dition on priorities: the bridging property. This allows us to revise the statement of

Proposition 3 as follows. Given acceptant priorities which satisfy the bridging property,

if a stable assignment does not admit a PSIC, then it is constrained efficient. We then

show that priorities in both classes of applications satisfy the bridging property. Hence,

we verify that Propositions 5 and 6, and Corollaries 1 and 2 in Erdil and Kumano (2019)

are still valid. We also show that bridging is a necessary condition for Proposition 3 to

hold: if bridging is not satisfied for at least one school’s priorities, then it is possible for

a stable assignment to be constrained inefficient even though it does not admit a PSIC.

2 Model

Let N and X be a set of students and a set of schools, respectively. There are qx seats

at school x, for x ∈ X. Each student can be assigned to at most one school. Students

have strict preferences over the set of schools and being unassigned. Formally, student

i’s preferences are denoted by a linear order Ri over X ∪ {i}, where i stands for staying

unassigned. Pi denotes the strict part of Ri.
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Each school x is endowed with its own priorities over subsets of the set of students,

which are captured by an admission rule, Ax : 2N → 22N . Given a school x facing a

set S of applicants, each S ′ ∈ Ax(S) is considered to be of highest priority among all

possible subsets of S, and is called an admissible subset of S. A priority structure

A is a vector of admission rules: (Ax)x∈X . Given an admission rule Ax, we define its

rejection rule Rx : 2N → 22N as follows,

Rx(S) = {S ′′ ⊆ S | S ′′ = S \ S ′ for some S ′ ∈ Ax(S)}.

Each S ′′ ∈ Rx(S) is called a rejectable subset of S.

Ax is admission monotonic (AM) if given any S, T ⊆ N with S ⊆ T and T ′ ∈
Ax(T ), we have T ′∩S ⊆ S ′ for some S ′ ∈ Ax(S). Ax is rejection monotonic (RM) if

given any S, T ⊆ N with S ⊆ T and S ′′ ∈ Rx(S), we have S ′′ ⊆ T ′′ for some T ′′ ∈ Rx(T ).

An admission rule is called substitutable if it is both admission monotonic and rejection

monotonic. Moreover, we say a priority structureA is substitutable ifAx is substitutable

for all x ∈ X. A is called acceptant if for each x ∈ X, for each S ⊆ N , and for each

S ′ ∈ Ax(S), we have |S ′| = min{|S|, qx}.
An assignment is a function µ : N → X ∪N such that µ(i) ∈ X ∪{i} for all i ∈ N

and |µ−1(x)| ≤ qx for all x ∈ X. We say µ is stable (i.e., respects priorities) if

• ∀i ∈ N , µ(i)Rii, and

• ∀x ∈ X and ∀S ⊆ N such that µ−1(x) ⊆ S ⊆ {i ∈ N | xRiµ(i)}, we have

µ−1(x) ∈ Ax(S).

An assignment µ′ Pareto dominates another assignment µ if µ′(i)Riµ(i) for all i ∈ N ,

and µ′(j)Pjµ(j) for some j ∈ N . An assignment is constrained efficient if it is stable

and is not Pareto dominated by any other stable assignment.

Erdil and Kumano (2019) show, via the modified deferred acceptance process (MDA),

that if priority structure A is substitutable, then there exists a stable assignment. MDA

is in fact a family of algorithms, because it does not specify how choices are made (i.e.,

how ties are broken) when Ax is not singleton valued. Depending on tie-breaking, the

outcome of the MDA might be constrained inefficient. Their Proposition 3 claimed to

identify a sufficiency condition on a given stable assignment to verify its constrained

efficiency. We discuss this claim next.
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3 Counterexample

Define the set of students who envy j at assignment µ as:

Eµj = {i ∈ N | µ(j)Piµ(i)}.

Define the set of students who can replace student j at µ as

Eµ
j =

{
i ∈ Eµj

∣∣ {i} ∪ [µ−1(µ(j)) \ {j}] ∈ Aµ(j)(Eµj ∪ [µ−1(µ(j)) \ {j}])
}
.

A potentially-stable improvement cycle (PSIC) consists of n ≥ 2 distinct

students enumerated as i0, i1, . . . , in−1, in = i0 so that i` ∈ Eµ
i`+1

for all ` = 0, . . . , n− 1.

Erdil and Kumano (2019) claimed the following.

Proposition 3 (Original) Given an acceptant and substitutable priority structure, if a

stable assignment does not admit a PSIC, then it is constrained efficient.

We show by way of example that the above statement is not correct.

Counterexample. Let N = {1, 2, . . . , 5} and X = {x, y, z}. Let

R1 R2 R3 R4 R5

z z x y z

x y z z x

y x y x y

School capacities are given by qx = qy = 1 and qz = 2.

The admission rules for schools x and y specify every student as admissible. That

is, given any set S 6= ∅ of applicants, Ax(S) = Ay(S) = { {i} | i ∈ S}. It is automatic

to verify that both Ax and Ay are acceptant and substitutable.

The admission rule for z admits all applicants if there are no more than two appli-

cants, that is, Az(S) = {S} if |S| ≤ 2. When there are more than two applicants, all

admissible subsets are of size two. Moreover Az satisfies the following: given any S with

|S| ≥ 3, a subset S ′ with |S ′| = 2 is not admissible if and only if

(i) 1 ∈ S ′ and 2 ∈ S \ S ′, or

(ii) 3 ∈ S ′, 4 /∈ S ′ and 5 ∈ S \ S ′.
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Az is clearly acceptant. We will now verify that it satisfies both AM and RM, and

thus conclude that it is substitutable.

[AM] If |S| ≤ 2, then {S} ∈ Az (S) and thus T ′∩S ⊆ S ∈ Az (S) is trivial. Hence, we

assume |S| ≥ 3. Since T ′ ∈ Az (T ), |T ′| ≤ 2 and thus |T ′ ∩ S| ≤ 2. First, if |T ′ ∩ S| = 0,

then T ′ ∩ S = ∅ ⊆ S ′ ∈ Az (S). Second, suppose |T ′ ∩ S| = 1. Let {i} = T ′ ∩ S. By (i)

and (ii), if i = 2, 4 or 5, then {i, j} ∈ Az (S) for any j ∈ S \ {i}. Then, first, suppose

i = 1. By (i), if 2 ∈ S, then {1, 2} ∈ Az (S), and otherwise, then {1, j} ∈ Az (S) for any

j ∈ S \ {1}. Next, suppose i = 3. By (ii), if 5 ∈ S, then {3, 5} ∈ Az (S), and otherwise,

then {3, j} ∈ Az (S) for any j ∈ S \ {3}. Thus, in this case, T ′ ∩ S = {i} ⊆ S ′ for

some S ′ ∈ Az (S). Third, suppose |T ′ ∩ S| = 2. Then, |T ′| = 2 and thus T ′ ∩ S = T ′.

Therefore, showing T ′ ∈ Az (S) is sufficient. Since T ′ ∈ Az (T ) and (i) is satisfied,

1 /∈ T ′ or 2 /∈ T \ T ′ is satisfied. Further, since T ′ ∈ Az (T ) and (ii) is satisfied, 3 /∈ T ′,
or 4 ∈ T ′ or 5 /∈ T \ T ′ is satisfied. Then, since S ⊆ T , 2 /∈ T \ T ′ and 5 /∈ T \ T ′ imply

2 /∈ S \ T ′ and 5 /∈ S \ T ′, respectively. Thus, we have both 1 /∈ T ′ or 2 /∈ S \ T ′ and

3 /∈ T ′, or 4 ∈ T ′ or 5 /∈ S \ T ′ are satisfied. Therefore, T ′ ∈ Az (S).

[RM] If |S| ≤ 2, then Rz (S) = ∅. Moreover, if |S| = |T | , then S = T . Thus, we

assume 3 ≤ |S| < |T |. Suppose |S| = 3 and |T | = 4. In this case, |S ′′| = 1 for any

S ′′ ∈ Rz (S). By (i) and (ii), if there is T ′′′ /∈ Rz (T ), then 2 ∈ T ′′′ or 5 ∈ T ′′′. First,

if 2 ∈ T ′′′, then 1 ∈ T . In this case, since |T | = 4, T \ {1, 2} ∈ Az (T ). Thus, {1, 2} ∈
Rz (T ). Second, if 5 ∈ T ′′′, then 3 ∈ T . In this case, since |T | = 4, T \ {3, 5} ∈ Az (T )

and thus {3, 5} ∈ Rz (T ). Hence, if |S| = 3 and |T | = 4, then for any S ′′ ∈ Rz (S), there

is T ′′ ∈ Rz (T ) satisfying S ′′ ⊆ T ′′. Finally, suppose |S| = 4 and |T | = 5. Then, for all

S ′′ ∈ Rz (S) and all T ′′ ∈ Rz (T ), |S ′′| = 2 and |T ′′| = 3. As stated earlier, T ′′′ /∈ Rz (T )

implies 2 ∈ T ′′′ or 5 ∈ T ′′′. Moreover, since {1, 2} , {3, 4} and {3, 5} are in Az (T ), for

any S ′′ ⊆ S with |S ′′| = 2, there is some T ′′ ∈ Az (T ) such that S ′′ ⊆ T ′′.

Now consider the following two assignments:

µ =

(
1 2 3 4

x y z z

)
ν =

(
1 2 3 4

z z x y

)
They are both stable, and ν Pareto dominates µ. Therefore µ is not a constrained

efficient assignment.

However, note that in any PSIC for µ, 1 cannot be involved, because 1 /∈ Eµ
3 ∪ Eµ

4

by 2 ∈ {1, 2, 3, 5} ∩ {1, 2, 4, 5}. Therefore, since 3 can only improve his assignment by
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receiving x = µ(1), she cannot be involved in a PSIC either. Finally, since {2, 3} /∈
Az({1, 2, 3, 5}), we have 2 /∈ Eµ

4 , and therefore 2 and 4 cannot form a PSIC. Hence, µ

does not admit a PSIC, contradicting the conclusion of Proposition 3. ♦

Let us now briefly illustrate where the proof in Erdil and Kumano (2019) fails.

Suppose µ and ν are two stable assignments such that ν Pareto dominates µ. Fix some

i ∈ N such that µ (i) 6= ν (i) and let µ (i) = x. Let

D′x = {j ∈ N | xPjµ (j) and µ (j) 6= ν (j)} .

Erdil and Kumano (2019) state that there is i′ ∈ D′x such that

{i′} ∪
(
µ−1 (x) \ {i}

)
∈ Ax ({j ∈ N | xRjµ (j)} \ {i}) .

This is not correct. In fact, in the example above, µ(4) 6= ν(4) = z, D′z = {1, 2},
{j ∈ N |zRjµ(j)} \ {4} = {1, 2, 3, 5}, and µ−1(z) \ {4} = {3}. However, from condition

(ii) of the description ofAz, neither {1}∪{3} nor {2}∪{3} is included inAz({1, 2, 3, 5}).

4 Corrected results

Definition 1. We say Ax satisfies bridging if the following holds. If T ⊆ S with

|T | ≥ qx, A ∈ Ax(S), B ∈ Ax(T ) and (T ∩A) ⊆ B, then for each i ∈ A\B, there exists

i′ ∈ (B \ A) ∪ ((S \ T ) \ A) such that

(A \ {i}) ∪ {i′} ∈ Ax(S \ {i}).

Now we state the corrected result.

Proposition 3 (Corrected) Given an acceptant priority structure A, assume Ax satisfies

bridging for each x. If a stable assignment does not admit a PSIC, then it is constrained

efficient.

Proof. We will show that if both µ and ν are stable, and if ν Pareto dominates µ, then

µ must admit a PSIC. From this, it will follow that if µ does not admit a PSIC, then it

must be constrained efficient.

Setting N ′ = {j ∈ N | µ(j) 6= ν(j)}, let i ∈ N ′ and µ(i) = x.

Let

Dµ
x = {j ∈ N | xPjµ(j)} and Dν

x = {j ∈ N | xPjν(j)},
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ST

A

B

T ∩ A = B ∩ A i

Figure 1: Given i ∈ A\B, there must exist i′ ∈ (B\A)∪((S\T )\A) such that (A\{i})∪{i′} ∈
Ax(S \ {i}). That is, such i′ must be in the dotted area above.

and

D′x = {j ∈ N ′ | xPjµ(j)} and D′′x = {j ∈ N \N ′ | xPjµ(j)}.
Lastly, denoting by t the disjoint union of sets, set

D̄x = D′x tD′′x t µ−1(x) = Dµ
x t µ−1(x).

In order to make it clear how we use the bridging property, let us use the notation

of the definition and set

S = D̄x T = Dν
x t ν−1(x) A = µ−1(x) B = ν−1(x).

For the bridging property to apply, we need to verify the relevant conditions on the

sets S, T,A and B.

First, we will show that |T | ≥ qx. SinceA is acceptant and µ is stable, µ must be non-

wasteful, that is, if there exist a student j and school y such that yPjµ(j), then |µ−1(y)| =
qy. Hence the reshuffling lemma (Erdil, 2014) implies that any Pareto improvement

over µ can be expressed as a set of students reshuffling their seats assigned under µ.

Hence, |µ−1(x)| = |ν−1(x)|. Moreover, since i ∈ N ′, she is part of an improvement,

and therefore she must receive someone else’s seat, whereas her seat must be reassigned

to another student in N ′. In other words we have µ(i) ∈ ν(N ′). In particular, there

exists a student in N ′ who prefers µ(i) to their match under µ. Since µ is non-wasteful,

we must have |µ−1(x)| = qx, and therefore |ν−1(x)| = qx. Thus, we conclude that

|T | = |Dν
x t ν−1(x)| ≥ qx.
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Second, ν Pareto dominates µ, so those students who prefer x to their match under ν,

also do so under µ. Therefore Dν
x = {j ∈ N | xPjν(j)} ⊆ Dµ

x . Moreover, if j ∈ ν−1(x),

then either j ∈ µ−1(x) or j ∈ D′x. And finally, since µ(i) = x and i ∈ N ′, we know that

i 6∈ ν−1(x), and ν(i)Pix. Therefore i 6∈ Dν
x. Thus Dν

x t ν−1(x) ⊆ Dµ
x ∪ ν−1(x) ⊆ D̄x,

which verifies T ⊆ S.

Third, stability of µ implies µ−1(x) ∈ Ax(D̄x), which verifies A ∈ Ax(S).

Fourth, stability of ν implies ν−1(x) ∈ Ax(Dν
x t ν−1(x)), which verifies B ∈ Ax(T ).

Finally, (T ∩A) ⊆ B, for otherwise, there is a j in T ∩A = (Dν
x t ν−1(x)) ∩ µ−1(x),

but not in B = ν−1(x). That means µ(j) = xPjν(j), which contradicts with ν Pareto

dominating µ.

Now, since i ∈ µ−1(x) \ ν−1(x), i.e., i ∈ A \ B, the bridging property implies there

must exist

i′ ∈ (B\A) ∪ ((S\T )\A)

such that

(µ−1(x) \ {i}) ∪ {i′} ∈ Ax(S \ {i}).

Since S \ {i} = Eµi ∪ (µ−1(x) \ {i}) and i′ ∈ Eµi , we conclude that i′ ∈ Eµ
i .

Note that B \ A = {j | ν(j) = xPjµ(j)} ⊆ D′x. Also observe that

D′′x = {j | µ(j) = ν(j) and xPjµ(j)} ⊆ Dν
x ∪ ν−1(x) ∪ µ−1(x) = T ∪ A

and therefore (S \ T ) \ A = S \ (T ∪ A) ⊆ S \D′′x = D′x t µ−1(x).

Thus,

(B\A) ∪ ((S\T )\A) ⊆ D′x

which, in turn, implies i′ ∈ D′x, and in particular i′ ∈ N ′.
Now construct a directed graph with N ′ being its set of vertices. For every i ∈ N ′,

the above argument shows that there exists i′ ∈ N ′ such that i′ ∈ Eµ
i , so draw a directed

edge i′ → i. Since this is a finite graph with every vertex having an incoming edge, there

must be a cycle. By construction, this is a PSIC. �

The following remark shows that the bridging property is also necessary for the

conclusion of Proposition 3 to remain valid.

Remark. Suppose Ax is acceptant, but violates the bridging property. Then there exists

a problem where there exists a stable matching which does not admit a PSIC even though

it is not constrained efficient, and all schools but x have strict responsive priorities.
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Proof. Ax violating the bridging property means there exists T ⊆ S with |T | ≥ qx,

A ∈ Ax(S), B ∈ Ax(T ), (T ∩ A) ⊆ B, and i ∈ A \ B such that for all i′ ∈ (B \ A) ∪
((S \ T ) \ A), we have

(A \ {i}) ∪ {i′} 6∈ Ax(S \ {i}).

Let (S \ T ) \ A = {1, 2, . . . , n}. Now consider n + 1 schools y, z1, . . . , zn such that

qy = |A \B|, and qzk = 1 for all k ∈ {1, . . . , n}. Let these schools have strict responsive

priorities, where their rankings over individual students satisfy:

j �y i �y j′ for all j ∈ B \ A, and for all j′ ∈ A \ {i}
1 �z1 i �z1 n

k �zk k − 1 �zk j′ for all k ∈ {2, . . . , n}
Setting zn+1 = z1, let students’ preferences be:

j ∈ A \ (B ∪ {i}) j ∈ A ∩B j ∈ B \ A j ∈ T \B k ∈ (S \ T ) \ A
Pi Pj Pj Pj Pj Pk

y y x x x zk+1

z1 x j y j x

x j j zk

i k

Now consider the following two matchings µ and ν:

i A \ (B ∪ {i}) A ∩B B \ A T \B k ∈ (S \ T ) \ A
µ x x x y ∅ zk

ν y y x x ∅ zk+1

Note that both µ and ν are stable, and ν Pareto dominates µ. Therefore µ is not

constrained efficient.

To explore whether µ admits a PSIC or not, we need to identify which agent can

unilaterally replace which other agent without violating stability.

First note that Eµi = (B \ A) ∪ (T \ B) ∪ ((S \ T ) \ A) and Eµi ∪ µ−1(x) = S. By

definition, Eµ
i ⊆ Eµi .

We know Ax is acceptant, and we have assumed for all i′ ∈ (B \ A) ∪ ((S \ T ) \ A)

that we have

(A \ {i}) ∪ {i′} 6∈ Ax(S \ {i}).

Therefore Eµ
i ⊆ T \B.
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We also have, for all j ∈ B \ A, Eµ
j = {i}, Eµ

1 = {i}, and for all k ∈ {2, . . . , n},
Eµ
k = {k− 1}. This exhausts all possibilities as to who can replace whom, and no cycle

can therefore be formed. Hence, µ does not admit a PSIC. �

4.1 The two applications in Erdil and Kumano (2019)

Erdil and Kumano (2019) discuss two classes of applications after Proposition 3, and in

these settings, characterize constrained efficiency of an assignment by its not admitting

any PSIC (Propositions 5 and 6). However, the “if” part of the proofs of these two

statements relies on the conclusion of the original Proposition 3. Below, we recover

their Propositions 5 and 6 by showing that priority structures in both applications

satisfy the bridging property.

4.1.1 Assignment with distributional constraints

Suppose students are sorted into different types, and for each type, each school re-

serves some of its seats for students of that type. When some of those reserves cannot

be filled with students of the intended types, admission choice evenly distributes the

remaining seats as evenly as possible across types of remaining students. Formally,

let T = {τ1, . . . , τm} be the set of types, and τ : N → T be a function such that

τ(i) indicates student i’s type. School x has qx seats and its own vector of reserves

qx = (qτ1x , . . . , q
τm
x ), where

∑m
k=1 q

τk
x ≤ qx.

Given a school x with a reserve vector qx, we define the distance ed(qx, S) between

qx and set S of students as

ed(qx, S) =
∑
τ∈T

(|Sτ | − qτx)2.

We say an admission rule Ax evenly distributes (ED) surplus seats if there exists

a reflexive and transitive order %x on subsets of N which is consistent with Ax and

satisfies the following property: for every S, S ′ such that |S| = |S ′| = qx,

ed(qx, S) ≤ ed(qx, S
′) ⇔ S %x S

′.

Each school x has its own exogenous priority ranking %exox . We say that Ax is ED-

constrained responsive (EDCR) to %exo if there exists a reflexive and transitive

order %x on subsets of N which is consistent with Ax and satisfies:
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(i) whenever |S| = |S ′| = qx, we have ed(qx, S) < ed(qx, S
′) ⇒ S �x S ′, and

(ii) whenever |S ∪ {s′}| = |S ∪ {s′′}| = qx and ed(qx, S ∪ {s′}) = ed(qx, S ∪ {s′′}),

S ∪ {s′} %x S ∪ {s′′} ⇔ s′ %exox s′′.

Claim 1. If an acceptant admission rule Ax satisfies EDCR, then it also satisfies bridg-

ing.

Proof. Suppose T ⊆ S with |T | ≥ qx, A ∈ Ax(S) and B ∈ Ax(T ). Let i ∈ A \ B.

We need to show that there exists i′ ∈ (B \A)∪ ((S \T )\A) such that (A\{i})∪{i′} ∈
Ax(S \ {i}).

Proposition 4 of Erdil and Kumano (2019) implies that Ax is substitutable. Since

Ax is also acceptant, we know that there exists j ∈ S \ A such that

(A \ {i}) ∪ {j} ∈ Ax(S \ {i})

If such a j is not in T \ (A∪B), then it is necessarily in (B \A)∪ ((S \ T ) \A), and

hence we are done.

Now, suppose j ∈ T \ (A ∪B) and (A \ {i}) ∪ {j} ∈ Ax(S \ {i}).

Case 1. There exists i′ ∈ B \ A such that τ(j) = τ(i′) or there is no over-subscribed

type in B.

If there is no over-subscribed type in B, B’s distance from the target is zero, because

Ax is acceptant, |T | ≥ qx, and B ∈ Ax(T ). So must be the distance of (A\{i})∪{j} and

A since they are both chosen from larger sets. Then, |Bτ(j)| = |((A \ {i}) ∪ {j})τ(j)| =
|Aτ(j)| = q

τ(j)
x . So τ(i) = τ(j), and since i ∈ A \ B, there must be an i′ ∈ B \ A with

τ(i′) = τ(j).

In either case, we must have i′ %exox j, since otherwise we would have (B \ {i′}) ∪
{j} �x B, a contradiction with B ∈ Ax(T ) (because (B \ {i′}) ∪ {j} ⊆ T .)

Now, i′ %exox j and τ(j) = τ(i′) imply (A \ {i})∪ {i′} %x (A \ {i})∪ {j}, and we are

done.

Case 2. There is no i′ ∈ B \A such that τ(i′) = τ(j) and there must be over-subscribed

types in B.

We will first establish four facts.

1. τ(j) surplus in B is b ≥ 0, and τ(j) surplus in (A \ {i}) ∪ {j} is at least b+ 1.
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Since there is no i′ ∈ B \A with τ(i′) = τ(j), all type-τ(j) elements of B are also

in A. All elements of A∩B are automatically in A. And since i /∈ B, all type-τ(j)

elements of B are also in A \ {i}.
In B, type-τ(j) must be weakly over-subscribed, since otherwise replacing an over-

subscribed type student j′ ∈ B ⊆ T with j would yield (B \ {j′}) ∪ {j} �x B,

contradicting with B ∈ Ax(T ). So let type-τ(j) surplus in B be b ≥ 0.

Type-τ(j) surplus in A \ {i} is at least b because all type-τ(j) elements of B are

in A \ {i}. Thus type-τ(j) surplus in (A \ {i}) ∪ {j} is at least b+ 1.

2. If there is no i′ ∈ B\A such that (A\{i})∪{i′} ∈ Ax(S\{i}), then over-subscribed

types in B \A with surplus b+ 1 in B have surplus b+ 1 in A \ {i}, and remaining

over-subscribed types in B \ A have surplus b both in B and in A \ {i}.
For every type in B, the surplus is less than or equal to b+ 1, since otherwise we

could replace a student of type with surplus of b + 2 or more with j (whose type

is of surplus b in B) to get a qx-element set in T higher ranked than B.

Therefore, for every type in A, the surplus is less than or equal to b+ 1. (Since a

surplus vector with entries less than or equal to b+ 1 can be achieved by B when

choosing from a smaller set T .)

Each type in B \A must be of surplus b or b+ 1 in A \ {i}, since otherwise we can

take a student j′ in B \ A whose type is of surplus less than or equal to b − 1 in

A\{i}, and replace j in (A\{i})∪{j} with j′ to get (A\{i})∪{j′} �x (A\{i})∪{j}
due to type τ(j) being of surplus at least b+ 1 in (A \ {i}) ∪ {j}.
If there is a type in B \A of surplus b+ 1 in B, then all such students have weakly

higher %exo-priority than j, since otherwise we could replace one of those students

with lower %exo-priority with j to keep the surplus vector equidistant from the

target, but achieve a higher %exo-priority cohort. So, now, for every j′ in B \A so

that type τ(j′)-surplus in B is b+ 1, we must have j′ %exox j.

If type τ(j′)-surplus in A \ {i} is less than or equal to b, we can replace j in

(A\{i})∪{j} with j′, and we’d get (A\{i})∪{j′} %x (A\{i})∪{j} ∈ Ax(S\{i}).
And we’d be done.

3. For those types in B but not in B \ A, all such students of B are in B ∩ A, and

hence they are necessarily in A \ {i}. In particular, for all such types τ , we have

|Bτ | ≤ |(A \ {i})τ |.
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4. Deficit of each type in B (if any) is weakly less than the deficit of that type in

(A\{i})∪{j} (if any) since (A\{i})∪{j} is a chosen cohort from a larger set, i.e.,

for those types with |Bτ | ≤ qτx, we must have |Bτ | ≤ min{|((A \ {i})∪ {j})τ |, qτx}.

Since |B| = |(A \ {i})∪{j}|, the above facts 1–4 imply that there must be a type in

B \ A for which the type-surplus in (A \ {i}) ∪ {j} is less than b.

Taking a student j′ of one such type in B \A and replacing j in (A \ {i})∪{j} with

j′, we change the surplus distribution to reduce the distance from the target, and hence

(A \ {i}) ∪ {j′} �x (A \ {i}) ∪ {j}, contradicting (A \ {i}) ∪ {j} ∈ Ax(A \ {i}). �

Thus we recover Proposition 5 and Corollary 1 of Erdil and Kumano (2019) via the

corrected Proposition 3.1

4.1.2 Admissions by a committee

Suppose a school has q seats to fill. Let H be its set of referees, each of whom has a

linear order over the set of students. A function π : {1, . . . , q} → H determines the

order in which the referees will take turns to make admission decisions one student at a

time. The admission correspondence AH is constructed in the following fashion:

AH(S) = {Aπ(S) | π ∈ Π }

where Π is the set of all functions π : {1, . . . , q} → H, and each Aπ is such that for any

given S ⊆ N with |S| > q,

• let i1 be the highest ranked student in S according to π(1), and

• for each k = 2, . . . , q, let ik be the highest ranked student in S \ {i1, . . . , ik−1}
according to π(k),

and Aπ(S) = {i1, . . . , iq}.

Claim 2. AH satisfies bridging.

Proof. Given T ⊆ S with |T | ≥ q, let A ∈ A(S) and B ∈ A(T ). Suppose i ∈ A \ B
and k ∈ B \ A.

1In a model of assignment with distributional constraints, Kitahara and Okumura (2020) generalize

Proposition 5 to a more general setting.

13



Let π and π′ be the sequences of referees such that

A = Aπ(S) and B = Aπ′
(T ).

Suppose i is selected by referee π(`). Define another sequence of refeeres π′′ so that

π′′(1) = π(1), . . . , π′′(`− 1) = π(`− 1), π′′(`) = π(`+ 1), . . . , π′′(q − 1) = π(q),

and π′′(q) = h, where h is the first referee in π′ who chooses student k from T .

The construction of π′′ ensures that A \ {i} ⊆ Aπ′′
(S \ {i}).

By acceptance, there exists j ∈ S \ A such that

(A \ {i}) ∪ {j} = Aπ′′
(S \ {i}).

j is picked by referee h and since k is in S \ {i}, not in A \ {i}, it must be that h ranks

j at least as high as k.

In order to verify the bridging property, it suffices to show that j /∈ (S \A)∩ (T \B).

Suppose, for a contradiction, that j ∈ (S \A)∩ (T \B). That is suppose j ∈ T \ (A∪B).

We know that referee h ranks k above j, because in the sequence of referees π′′ picking

from T , k is picked by referee h, whereas j is not picked at all despite being in T . That

contradicts with h ranking j at least as high as k. �

Now we recover Proposition 6 and Corollary 2 of Erdil and Kumano (2019) via the

corrected Proposition 3.
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