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Abstract

We develop a theoretical model based on efficient bargaining, where both log outside
productivity and log productivity in the current job follow a random walk. This setting
allows the application of real option theory. We derive the efficient worker-firm separation
rule. We show that wage data from completed job spells are uninformative about the true
tenure profile. The model is estimated on the PSID. It fits the observed distribution of job
tenures well. Selection of favourable random walks can account for the concavity in tenure
profiles. About 80% of the estimated wage returns to tenure is due to selectivity in the
realized outside productivities.
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1 Introduction

A large empirical literature has looked at wage returns to job tenure, see Farber (1999) for a

survey. The conclusions of this research still diverge, despite analyzing data from the same

countries (mainly the USA) or even the same longitudinal datasets (mostly the PSID), see, e.g.,

Altonji and Shakotko (1987), Abraham and Farber (1987), Altonji and Williams (1997, 2005),

Abowd et al (1999); Topel (1991), Dustmann and Meghir (2005), Buchinsky et al (2010). Here,

we propose a new direction for this line of research. From a theoretical point of view, large

"true" returns to tenure are problematic. Why would a worker separate when she loses her

tenure profile by doing so? Hence, separation is likely to be induced by the firm, what we call a

layoff. But why would the worker and the firm prefer separation above renegotiation? Although

some models offer explanations for this, the size of the reported wage returns to tenure remains

puzzling.

This paper addresses explicitly whether the data is consistent with efficient separations,

by modelling simultaneously the evolution of wages and the distribution of job tenures. The

model explains the correlation between wages and job tenure from the random evolution of

both the job’s inside productivity and the outside productivity, i.e. the productivity in the best

alternative job. Separation occurs when the value of the inside productivity falls below the

outside productivity. By some form of bargaining, log wages are a linear combination of the

in- and outside log productivity. Then, wages and tenure are correlated because only those

jobs survive for which the inside productivity remains above the outside productivity. There is

no such thing as "the return to tenure" in this model. In some jobs wages go up because the

inside productivity evolves favorably. In other jobs wages go down for mutatis mutandis the

same reason. However, these jobs are gradually eliminated from the stock of ongoing job spells

because there are no options left for mutually gainful renegotiation.

We assume both log inside and outside productivities to follow Brownian motions. Since
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log wage is a linear combination of them, it also follows a random walk. The evolution of an

individual’s log wage is indeed reasonably described by a random walk with transitory shocks,

see, e.g., Abowd and Card (1989), or Meghir and Pistaferri (2004). What we call the return to

tenure is then the difference between the drifts of the log wage and of the log outside productivity.

Starting a job requires an irreversible specific investment, which is lost upon separation. The

combination of irreversibility and productivity following a random walk implies that we can

apply the theory of real options, see, e.g., Dixit (1989) and Dixit and Pyndick (1994), compare

Teulings and Van der Ende (2000). The predicted hazard rates of this model are well in line

with the empirical distribution of job exits. From the distribution of job tenures we are able to

estimate the surplus of the inside over the outside productivity, and the drift of this surplus. We

obtain a positive drift, indicating that some 10% of all jobs will end only by retirement. We use

these results to compute the evolution of the expected surplus, conditioning on both the date of

job start and of job termination, an empirical strategy explored earlier by Abraham and Farber

(1987). Our model predicts this variable to be correlated to the evolution of wages.

We obtain the following results. First, a closed form expression is computed for the expected

surplus in completed job spells. We show this not to depend on the drift of the surplus. The

evolution of wages in completed spells is thus uninformative on the return to tenure in this

model, since the effect of the drift is exactly offset by the selection due to the elimination of bad

matches. This is an unexpected conclusion, given that so many studies have tried to identify

the return to tenure from this type of data. Second, we show that our model can easily explain

the observed concavity in the tenure profile from the selection effect. Selection is much more

important than the drift. Third, we show that the selection effect is driven by the selectivity

in the outside, as opposed to the inside, productivity. Workers switch jobs mainly when the

outside productivity is high, not so much when the inside productivity is low. Selectivity in the

outside option accounts for 50 to 80% of the tenure profile. This source of selectivity usually
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receives little attention in the literature on wage-tenure profiles, though it figures in models of

equilibrium on-the-job-search, e.g., Burdett and Mortensen (1998). In this search literature,

closest to us are "persistent earnings dynamics" studies by Postel-Vinay and Turon (2010) and

Low et al (2010); unlike them, our wage process does not require nesting within models of search,

or classic ARMA decomposition. Finally, our estimation results suggest downward rigidity in

wages, as discussed, e.g., by Beaudry and DiNardo (1991). This downward rigidity does not fit

the efficient bargaining hypothesis. Our estimates also provide evidence of excess variance in

wages for job movers, implying failure of our Walrasian market assumption for outside offers.

The paper is structured as follows: the model is discussed in Section 2, the identification

and the estimation are set out in Section 3, and the empirical analysis is presented in Section 4.

2 The Random Productivity Growth Model

2.1 Model Assumption

Consider a labor market in continuous time, where both workers and firms are risk neutral. We

focus on a single cohort of homogeneous workers. We normalize our measure of time t such that

it is also equal to the workers’ experience. There is no disutility of effort, so that the workers’

utility depends on their expected lifetime income only. Each firm offers a single job, of which

the job specific productivity Pt evolves according to a geometric Brownian motion with drift.

At the moment a worker is hired for a vacant job, a specific investment has to be made which is

partly paid by the firm and partly by the worker, and which is irreversibly lost upon separation

between the worker and the firm. However, the firm retains the option value on the vacancy:

it can hire a new worker at any future time, provided that the cost of the specific investment

is paid again. The investment is verifiable. There is no search cost involved from either party

in finding a new job: an unemployed worker can just pick the most attractive vacancy that is
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available at that time, at zero cost. Let Rt be the return on this vacancy, net of the cost of

investment; Rt is exogenous in this model. Like Pt, it evolves according to a geometric Brownian

motion with drift. Both workers and firms are perfectly informed about the current values of

Pt and Rt, but their future evolution is unknown. The value of the specific investments for a

job starting at time t is RtI. One can think of I as the cost of investment measured in units of

labor time and of Rt as the price of one unit at time t. Using lower cases to denote the logs of

the corresponding upper cases, the law of motion of pt and rt, for t > s, is characterized by a

bivariate normal distribution:






pt − ps

rt − rs




 ∼ N

[
(t− s)µ, (t− s)Σ

]

where:

µ =






µp

µr




 ,Σ =






σ2p σpr

σpr σ2r




 (1)

Since µr is the drift in the log outside option of the worker, it can be interpreted as the sum of

the return to experience and the secular growth in real wages due to technological progress. The

worker and the firm bargain over the surplus of the productivity of the job above the shadow

price of a worker, Pt −Rt. This bargaining is efficient: as long as there is a surplus, the worker

and the firm will agree on a sharing rule. In the empirical application in Sections 3 and 4, I and

µp will be allowed to depend on personal characteristics. For the derivation of the model this

dependence on personal characteristics can be ignored.

2.2 Value of a Job and a Vacancy

Three assumptions made above greatly simplify the analysis. (i) The risk neutrality of both

players implies that the allocation of risk is irrelevant: only expected values matter. (ii) The
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verifiability of investment implies that there are no hold up problems: the distribution of future

surplusses Pt−Rt, t > s, is irrelevant for the timing of the investment decision, since the cost of

the specific investment RsI can always be shared between the worker and the firm according to

their share in future surplusses. Hence, the investment decision will maximize the joint expected

surplus of the worker and the firm. (iii) Efficient bargaining implies that separation decisions

will also maximize the joint expected surplus. Hence, separation occurs at mutual consent when

there are no gains from trade left. Quits and layoffs are therefore observationally equivalent,

as in McLaughlin (1991). For convenience, we shall refer to a separation as the firm firing the

worker, though it can be both a quit or a layoff. Given these assumptions, wage setting and

separation decisions can be analyzed separately: in the spirit of the Coase theorem, hiring and

firing decisions maximize the joint expected surplus, regardless of its distribution.

First, we analyze hiring and firing. Since hiring requires an irreversible investment, while

firing is an irreversible disinvestment, both can be analysed using real option theory, see, e.g.,

Dixit and Pindyck (1994). The easiest way to analyze this problem is to assume that workers

always get paid their shadow price Rt. Then, hiring and firing simply maximize the expected

value of the firm. Let V (pt, rt) and J (pt, rt) be the expected present value of a vacancy and

respectively of a job, as functions of pt and rt. Applying Ito’s lemma, the Bellman equations for

both value functions read, compare Dixit and Pindyck (1994: pp.140-141):

ρJ = exp(pt)− exp(rt) + µpJp + µrJr +
1

2
σ2pJpp + σprJpr +

1

2
σ2rJrr (2)

ρV = µpVp + µrVr +
1

2
σ2pVpp + σprVpr +

1

2
σ2rVrr

where we leave out the arguments of J (·) and V (·) for convenience, and where ρ denotes the

interest rate. The term exp(pt) − exp(rt) in the first equation is the value of current output

minus the wage of the worker; the other terms capture the wealth effects due to changes in the
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state variables pt and rt: the first order derivatives capture the effect of the drift in both state

variables, the second order derivatives capture the effect of their variance. For optimal hiring

and firing, value matching and smooth pasting conditions should be satisfied:

J (pS , rS) = V (pS , rS) + exp(rS)I, V (pT , rT ) = J (pT , rT ) (3)

Jp (pS , rS) = Vp (pS , rS) , Vp (pT , rT ) = Jp (pT , rT )

where S is the moment of hiring and T is the moment of firing. The first two conditions are

the value matching conditions for hiring and firing respectively, the second pair of conditions

are the smooth pasting conditions for pt; the smooth pasting conditions for rt are redundant.

Value matching conditions impose value equality at the moment of hiring and firing; on top of

that, smooth pasting conditions impose that slight variations in pt should not affect the value

equality, since hiring and firing decisions are irreversible. Hence, a decision maker should not

regret her decision after slight variations in pt. The above conditions and the Bellman equations

(2) jointly determine J (·) and V (·).

Define bt ≡ pt−rt; bt is the log relative surplus Pt/Rt. By (1), bt−bs ∼ N
[
(t− s)µ, (t− s)σ2

]
,

with

µ ≡ µp − µr, σ2 ≡ σ2p + σ2r − 2σpr (4)

Proposition 1 The value functions J (·) and V (·) can be written as J (pt, rt) = exp (rt) j (pt − rt)

and V (pt, rt) = exp (rt) v (pt − rt), where j (·) and v (·) satisfy:

(
ρ− µr −

1

2
σ2r

)
j = exp (bt)− 1 +

(
µ+ σpr − σ2r

)
j′ +

1

2
σ2j′′ (5)

(
ρ− µr −

1

2
σ2r

)
v =

(
µ+ σpr − σ2r

)
v′ +

1

2
σ2v′′

leaving out the argument of j (·) and v (·) for convenience.
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Proof: The definition of j (·) and v (·) implies Jp = exp (rt) j
′, Jpp = exp (rt) j

′′, Jr =

exp (rt) (j − j′) , Jrr = exp (rt) (j − 2j′ + j′′), and Jpr = exp (rt) (j
′ − j′′) , and likewise for V (·).

The proposition follows directly from substitution of these expressions in equation (2) and (3).�

The factor ρ− µr − 1
2σ

2
r is a modified discount rate, which accounts for the fact that future

revenues are discounted at rate ρ, but increase in expectation at rate µr +
1
2σ

2
r due to the drift

and the variance of Rt. The hiring and separation rules depend therefore purely on bt: a vacancy

should be filled at the first time t that bt = bS, a worker should be fired from the job at the

first time t that bt = bT . This proposition characterizes the decision problem of the firm by

two second order differential equations, four boundary conditions and two decision parameters,

bS and bT , see Dixit and Pindyck (1994; ch. 5.1-5.2), to whom we refer for the subsequent

arguments. The two differential equations have an analytical solution. These solutions yield

four constants of integration. Two of these constants have to be zero due to transversality

conditions. The constants of integration reflect the option value for the firm of hiring and firing

a worker. The option value of hiring converges to zero when bt → 0, while the option value

of firing converges to zero when bt → ∞. These constraints can only be satisfied by setting

two constants of integration equal to zero. Hence, the four boundary conditions determine four

unknown parameters: bS , bT , and the two remaining constants of integration. One can prove

bT < 0 < bS . Hence, at the moment of hiring, PS > RS because the firm has to recoup the cost

of investment and because the investment is irreversible, so that the firm loses the option value

of delaying hires, while in the meantime bt might fall below bS at a later point in time. Similarly,

at the moment of firing, PT < RT because the firm accepts some losses before firing the worker,

since by doing so it loses the option value of firing the worker at a later point in time.
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2.3 Job Tenure Distribution

The duration of a job spell is a stochastic variable, equal to the time it takes the random

variable bt to travel down from bS to bT . The standard deviation of bt is unidentified in this

model because, for any time t, we observe only whether the spell is still incomplete, implying

bt − bT > 0 ever since the start of the job spell. We can therefore normalize all parameters by

σ. For each job spell, we define τ ≡ t−S, with τ ≥ 0, and respectively Θ ≡ T −S, with Θ > 0;

τ is the incomplete tenure, while Θ is the completed tenure of that job spell. Define:

Ωτ ≡
bt − bT

σ
, Ω ≡ bS − bT

σ
> 0, π ≡ µ

σ
(6)

Thus Ωτ is a Brownian motion with drift π and unit variance per unit time. By construction,

Ω0 = Ω and ΩΘ = 0. Ω can be shown to be an implicit function of the model’s structural

parameters, I ≡ H
(
Ω, µ,Σ

)
, withHΩ (·) > 0. Hence, we treat the parameter Ω as the parameter

of interest. If desired, the underlying structural parameter I can be recovered via the function

H
(
Ω, µ,Σ

)
.

The completed job spell Θ is determined by the time it takes Ωτ to pass the barrier Ωτ = 0

for the first time. This process satisfies the "First Passage Time" distribution, which has been

applied previously by Lancaster (1972) for modelling strike durations, and by Whitmore (1979)

for job spells. The unconditional density of Ωτ = ω reads:

1√
τ
φ

(
ω −Ω− πτ√

τ

)

where φ(·) is the standard normal PDF. However, a job spell is completed if and only if Ωt has

not been negative for any t ∈ [0, τ ]. Hence, we are interested in the density of Ωτ conditional on

Ωt > 0, ∀t ∈ [0, τ ]. For this conditioning, we can apply the Reflection Principle, first discussed
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by Feller (1968): there is a one-to-one correspondence between trajectories of Ωτ from Ω to

ω which have crossed the barrier Ωτ = 0 at least once, and trajectories of Ωτ from −Ω to ω.

These trajectories should therefore be subtracted to obtain the conditional density of Ωτ . Define:

g (ω, τ) ≡ Pr(Ωτ = ω ∧Θ > τ). It satisfies, see, e.g., Kijima (2003, p.185-187):

g (ω, τ) =
1√
τ

[
φ

(
ω −Ω− πτ√

τ

)
− e−2Ωπφ

(
ω +Ω− πτ√

τ

)]
(7)

where φ(.) is the standard normal density function. The first term in square brackets is the

unconditional density; the second is the effect of the conditioning. By the Reflection Principle,

the latter is the density of trajectories of Ωτ from −Ω to ω. The factor e−2Ωπ corrects for

the differential effect of the drift on the density for upward and downward trajectories. By

integrating out ω we get the cumulative distribution of jobs surviving at τ , F (τ) = Pr(Θ > τ):

F (τ) ≡ Φ

(
Ω+ πτ√

τ

)
− e−2ΩπΦ

(−Ω+ πτ√
τ

)
(8)

where Φ(.) is the standard normal CDF. This expression is identical to Whitmore (1979: eq. 2).

The distribution of Θ is therefore fully specified by two parameters, the initial distance from

the separation threshold Ω, and the drift π. Hence, Ω and π can be identified from data on

job tenures, while the parameter σ cannot. The corresponding density function is minus the

derivative of F (τ) with respect to τ :

f(τ) =
Ω

τ
√
τ
φ

(
Ω+ πτ√

τ

)
(9)

where we use φ
(
Ω+πτ√

τ

)
= e−2Ωπφ

(
−Ω+πτ√

τ

)
. The exit rate f(τ)/F (τ) can be shown to be hump

shaped, starting from 0, reaching a peak at τ∗, 0 < τ∗ < 2
3Ω

2, and afterwards either declining

monotonically to 0 for a positive drift π > 0, or to 1/2π2 for π < 0. Farber (1994) and Horowitz
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and Lee (2002) have documented this hump shaped pattern using NLSY data. A positive drift

π > 0 implies that some fraction of the started jobs will never end. This fraction is equal to the

survivor function (8) evaluated at τ →∞, hence to 1− e−2Ωπ.

In Figure 1, we plot the exit rates for the pairs Ω = e−1.20 ≃ 0.30, π = 0.14, and respectively

Ω = e−1.24 ≃ 0.29, π = 0.23, which are the two estimates for Ω and π for the mean values of

the observed and unobserved worker characteristics, see Section 3, Table 2. In both cases the

peak is reached at τ ≃ 0.04 years. Since π > 0, the hazard rate converges to zero and a positive

fraction of the jobs, about 10%, will never end.

0.5 1 1.5 2

t

1

2

3

4

5

Hazard Rate

surplus : 0.30 , drift : 0.14

surplus : 0.29 , drift : 0.23

Figure 1: Predicted Job Hazards

2.4 Tenure Profile in Wages

2.4.1 Sharing Rule of Surpluses and Wages

We extend this model with an explicit sharing rule of surpluses during the course of the job

spell. Ideally, we would derive this sharing rule from an explicit bargaining game, such as Nash

bargaining. For the sake of convenience, we use a simpler approach, imposing the log linearity of

the sharing rule a priori, and deriving the intercept of that rule from the assumption of efficient
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bargaining. According to this rule, the worker’s log wage wt satisfies:

wt = rt + β
(
bt − bT

)
+ ut = rt + σΩτ + ut (10)

where σ ≡ βσ. We assume ut is an i.i.d. random variable distributedN
(
0, σ2u

)
: this specification

of wages as following a random walk, Ωτ , with a transitory shock MA(1), ut, is broadly consistent

with a large number of studies on the dynamics of wages, see, e.g., MaCurdy (1982), Abowd and

Card (1989), Topel and Ward (1992), and Meghir and Pistaferri (2004). The parameter β can be

interpreted as the worker’s bargaining power. If β = 0, the wage is equal to the worker’s outside

productivity Rt, while if β = 1, the wage is her inside productivity Pt. The transitory error can

be interpreted as either measurement error in wages, see, e.g., Meghir and Pistaferri (2004), or

as short run fluctuations that do not affect the long run payoff of the specific investment I in

the current job. In either interpretation, these shocks do not affect the optimizing behavior of

agents regarding job change.

2.4.2 Selectivity in Tenure Profiles

Equation (10) implies that log wages within a job follow a Brownian motion with drift µr +

σπ; µr is the sum of the return to experience and the secular growth of real wages due to

technological progress; σπ is the deterministic part of the tenure profile. Were the realizations

of Ωτ independent of the completed job tenure Θ, σπ could be estimated easily. However, in

completed job spells, Ωτ is correlated to Θ for three reasons: (i) Ω0 = Ω, (ii) ΩΘ = 0, and (iii)

Ωt > 0,∀t, 0 ≤ t < Θ. For the sake of brevity, we refer to this information set as A (Θ). Mutatis

mutandis, the same applies to incomplete spells. Let Ψ be the incomplete tenure at the last

date for which data are available. Again, there are three pieces of information: (i) Ω0 = Ω, (ii)

Θ > Ψ, and hence (iii) Ωt > 0,∀t, 0 ≤ t ≤ Ψ. We refer to this second information set as B (Ψ).
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Proposition 2 Let m (τ) ≡ Θ−τ
Θ . E[Ωτ |A (Θ)] and its derivatives satisfy:

E [Ωτ |A (Θ)] = 2
√
m (τ) τφ

(√
m (τ) /τΩ

)
−
( τ
Ω
+m (τ)Ω

)[
1− 2Φ

(√
m (τ ) /τΩ

)]

lim
τ→0

dE [Ωτ |A (Θ)]

dτ
=

1

Ω
− Ω

Θ
, lim

τ→Θ

dE [Ωτ |A (Θ)]

dτ
= −∞,

d2E [Ωτ |A (Θ)]

dτ2
< 0

Proof See Appendix.�

This proposition implies that E[Ωτ |A (Θ)] does not depend on the tenure profile in wages,

σπ; see also Van der Ende (1997). Hence, conditional on the model that we specified, the

evolution of wages in completed job spells does not provide any information whatsoever on the

tenure profile in wages. Given the many papers that have tried to estimate tenure profiles from

data on completed job spells, this is a very surprising conclusion. The intuition for this result

is that an increase in σπ has two offsetting effects on ∆E[Ωτ |A (Θ)]. On the one hand, it raises

the deterministic part of the tenure profile, so that the change in the unconditional expectation

∆E[Ωτ ] goes up. On the other hand, it makes separation a less likely event, so that the condition

A (Θ) becomes more informative: the higher is σπ, the more unfavourable the evolution of the

non-deterministic part of ∆Ωτ must have been to warrant a separation. Hence, the deterministic

part of the tenure profile does affect the job separation rate, but it does not affect the evolution

of wages, conditional on the moment of separation Θ.

The conclusion above depends crucially on the assumption of efficient bargaining. Ignoring

the impact of temporary shocks ut, this assumption dictates that the evolution of wages over a

job spell satisfies

(wS − rS)− (wT − rT ) = σΩ

see equation (10). The difference between the starting and the terminal value of this log relative

wage is equal to the worker’s share in the surplus due the specific investment in the job, σΩ.

Hence, irrespective of the steepness of the tenure profile σπ, or the job spell length Θ, log relative
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wages decline by σΩ over the duration of a completed job spell. However, π can be estimated

from the tenure distribution. Efficient bargaining implies that this distribution is informative

on the tenure profile, since under efficient bargaining a higher tenure profile means that jobs

will survive longer. From this perspective, data on the tenure distribution are more informative

on the return to tenure than data on wages.

The second relationship of Proposition 2 says that the initial slope of E[Ωτ |A (Θ)] is negative

for short spells, Θ < Ω2, even when the drift is positive, π > 0. For these spells, E[Ωτ |A (Θ)]must

decline immediately for ΩΘ = 0. The third expression shows that the expected surplus declines

infinitely fast just before separation. This is consistent with empirical evidence by Jacobson,

LaLonde and Sullivan (1993) on the decline in relative wages in the period just before firing.

The final expression shows that the second derivative is always negative. Hence, E[Ωτ |A (Θ)]

is concave in τ ; it is monotonically decreasing for short spells Θ < Ω2 and it is hump-shaped

for longer spells. Contrary to the case of completed spells, there is no explicit expression for

E[Ωτ |B (Ψ)]. Hence, we use numerical integration in this case, see the Appendix.

Figure 2 plots the evolution of E[Ωτ |·] for Ω = 0.30 and π = 0.14, for both completed spells

(continuous lines) and incomplete spells (dashed lines), with durations Θ and respectively Ψ in

{0.1, 2, 5, 10}. Moreover, the straight line shows the drift: Ω+ πτ . With respect to completed

spells, E[Ωτ |A (Θ)] is monotonically decreasing for Θ ≤ 0.1 year, and concave for larger Θ. The

top of the profile is increasing in Θ, showing the importance of conditioning on the eventual

tenure. With respect to incomplete spells, E[Ωτ |B (Ψ)] is increasing in Ψ. The reason is that

higher values of Ψ imply greater selectivity, since Θ > Ψ. Trajectories are strongly concave,

indicating that selection plays an important role. This can explain the observed concavity of

tenure profiles in log wages: the underlying profile might be linear, with the observed concavity

simply due to selection. The trajectories for both completed and incomplete spells are far above

the deterministic part, except for the final year(s) before separation: selection dominates.
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Expected Surplus

Figure 2: Expected surplus in completed and incomplete spells

The same analysis can be done for the second moment of Ωτ . Expressions for Var[∆Ωτ |A (Θ)]

and Var[∆Ωτ |B (Ψ)] can be found in the Appendix. In the absence of condition A (Θ), Var[∆Ωτ ]

would be equal to unity, see definition (6). However, conditions A (Θ) and B (Ψ) introduce

selectivity in the trajectories of the random walk.

2 4 6 8 10
t

0.3

0.4

0.5

0.6

0.7

Variance Surplus

10
5
3
2

Figure 3: Variance surplus in completed spells

This selectivity reduces the variance, as shown in Figure 3. The variance is low initially,

because the positive constraint Ωτ over the course of a job spell is quite informative, and Ω0

is small. The same argument applies towards the end of completed spells, since ΩΘ = 0 by

construction. For longer spells, the variance converges to unity in the middle part of the spell.
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2.5 A Reinterpretation of the Wage Equation

The implications of our analysis on the selectivity in tenure profiles surface most clearly when

we rewrite equation (10), benefitting from a decomposition of the random variables [∆pt,∆rt]

into two orthogonal components [∆bt,∆zt]. We normalize ∆zt such that its marginal effect on

∆rt and ∆pt is equal to unity:

∆rt = ∆zt − γ∆bt

∆pt = ∆zt + γ∆bt

where ∆zt˜N
(
µz, σ

2
z

)
and where γ ≡ 1− γ, with:

µz = µr + γµp, σ2z = σ−2
(
σ2pσ

2
r − σ2pr

)
, γ = σ−2

(
σ2r − σpr

)
(11)

This decomposition satisfies the constraint ∆pt −∆rt = ∆bt imposed by equation (4).

Since separation decisions are determined by the evolution of bt, and since ∆bt and ∆zt are

uncorrelated, selectivity affects ∆bt, but not ∆zt. Combining these definitions with equation

(10) yields:

∆wt = ∆zt + γβ∆bt +∆ut = ∆zt + γσ∆Ωτ +∆ut (12)

The parameter γ is a reflection of the correlation between the match surplus and the reservation

wage. In the one extreme case, γ = 0, we can write ∆pt = ∆rt + ∆bt, where the right-hand

side variables are uncorrelated. Then ∆rt reflects the evolution of the general human capital

of the worker, which evolves independently of the value of the specific capital in the present

job, ∆bt. Hence, the duration of the actual job is fully determined by its own (mis)fortune.

Though the distinction between quits and layoffs makes little sense in this model, separations

look like layoffs in this case: the firm fires the worker since she is no longer productive. In the
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opposite extreme case, γ = 1, we can write ∆rt = ∆pt−∆bt, again with uncorrelated right-hand

side variables. Now ∆pt reflects the evolution of the general human capital of the worker; ∆bt

reflects the specific evolution of outside opportunities, e.g. new technologies emerging in other

firms. Separations look like quits in this case: the worker quits because she can get a better job

elsewhere. In this case, the selectivity of job relocation is not so much that of the type "only

good jobs survive outside offers", but more of the type "only good outside offers kill the job".

3 Estimation Methodology

3.1 Identification

The model has in total eight structural parameters: 2 drift parameters µ, 3 (co)variances Σ,

the initial surplus Ω, the worker’s bargaining power β, and the variance of the transitory shock

σ2u. As shown in Section 2.3, the distribution of completed job tenures is fully determined

by two parameters, π and Ω, while wages are characterized by five parameters, σ, γ, µz, σz,

and σu. Hence, one can never hope to identify more than seven parameters, two from the

tenure distribution, and five from wages. The model is therefore identified up to one degree of

freedom. Equation (12) reveals why this is the case. Only the product σ ≡ βσ shows up, not

its components β and σ. Data on either the cost of necessary investment I or the productivity

pt would resolve this underidentification, offering direct information on σ. Then, β could be

established as σ/σ. However, neither type of data is available here.

We assume Ω and µp to depend on personal characteristics. We allow for both observed

and unobserved characteristics. As observable we enter experience at the moment of job start

S, measured in deviation from its sample mean. Since we have longitudinal data with multiple

job spells per individual, we can account for random worker effects; eΩ and eπ are normally

distributed, uncorrelated, random worker effects with zero mean and standard deviations σΩ
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and σπ respectively. We apply an exponential specification for Ω since this parameter is positive

by definition:

Ω = exp (ω0 + ω1S + eΩ) (13)

π = π0 + π1S + eπ

µz = µ0 + γσ (π1S + eπ)

Since experience at job start S enters the analysis in deviation from its mean across jobs, the

intercepts ω0, π0, and µ0 can be interpreted as the mean value for lnΩ, π, and µz respectively.

Our estimation strategy uses the recursive feature of our model. The parameters ω0,1, π0,1, σΩ

and σπ are estimable from job spell data. Estimates of these parameters are then used to

calculate conditional expectations and variances of the change in surplus∆Ωτ , in both completed

and incomplete job spells. The resulting expressions are subsequently employed in the analysis

of wage dynamics. Below, we first show how ω0,1, π0,1, σΩ and σπ can be estimated by maximum

likelihood from the tenure distribution; next, we derive a set of moment conditions for estimating

µ0, σ
2
z, σ, γ, and σ2u from the evolution of wages.

3.2 Maximum Likelihood Estimation of ω0,1 and π0,1

The contribution to the log likelihood function for an individual reads:

logL = ln

∫ ∫
J∏

j=1
F (Ψj)

1−dj · f(Θj)djdΦ
(
eΩ
σΩ

)
dΦ

(
eπ
σπ

)
(14)

where j is the jth job spell, and where dj is a dummy variable, taking the value dj = 1 if

the job spell is completed and dj = 0 otherwise. There are two reasons why we need to make

amendments to this likelihood function.

First, we could restrict the estimation to job spells starting within the observation range
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of our dataset. However, then we would not consider any of the jobs started before they were

first reported in the data; by construction, this would limit the maximum completed tenure

to the maximum time span, 17 years, covered by our PSID sample, cf. Section 4. Since long

tenures contain relevant information, we want to include also the spells ongoing at the start of

the sample. Since we observe these spells only conditional on the fact that they have lasted till

the start of the sample period, we correct the initial likelihood function for this conditioning:

logL = ln

∫ ∫
F (τ 1)

−1
J∏

j=1
F (Ψj)

1−dj · f(Θj)djdΦ(
eΩ
σΩ

)dΦ(
eπ
σπ

) (15)

where τ1 is the tenure in the job at the start of its observation in the PSID (for which j = 1).

Second, since the PSID stock samples data at yearly intervals, job spells completed in less

than a year are underreported. We know the elapsed tenure in months at the first moment

a job spell is observed, by a retrospective question, but do not know whether there has been

another job spell between the job observed a year ago and the current job. Since the hazard

rate implied by our model is hump shaped, with the hump likely to be within the first year, cf.

Farber (1994), we are likely to overestimate Ω and π, as we miss part of the short tenures in

our data. One solution to this problem is to apply a similar conditioning as in equation (15),

where τ j is the initial tenure at the first moment the job is observed. However, this approach

does not use the distribution of τ j ’s itself. We can use this distribution if we are prepared to

make the additional assumption that the starting date of job spells is distributed uniformly over

the first year. Then, the density q (·) of initial dates of spells that started throughout the year

and are still incomplete at the end of the year satisfies: q (τ) = F (τ) /
∫ 1
0 F (x)dx. The total

contribution to the likelihood of a spell with initial tenure τ and completed tenure Θ is thus:

f (Θ)

F (τ)
q (τ) =

f (Θ)
∫ 1
0 F (x) dx
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Hence, the final log likelihood, accounting both for the jobs started before their first reporting

in the PSID and for the underreporting of spells shorter than a year due to the stock sampling

scheme of the data, can be written:

logL = ln

∫ ∫
J∏

j=1

F (Ψj)
1−dj · f(Θj)dj

F (τ1)I(j=1)
(∫ 1
0 F (x)dx

)I(j �=1)dΦ
(
eΩ
σΩ

)
dΦ

(
eπ
σπ

)
(16)

where I (y) is the indicator function, taking value 1 if y is true and 0 otherwise. We estimate the

log-likelihood function in (16) by Simulated Maximum Likelihood (SML). We report estimates

for two samples, a "small" one including only jobs starting within the observation range of our

PSID extract, and a "large" one including also the jobs ongoing at the start of the dataset.

3.3 Moment Conditions for Wage Dynamics

Using the maximum likelihood estimates of the parameters ω0,1, π0,1, σΩ and σπ, we can calculate

the conditional expectations and variances of ∆Ωτ . These expressions are then used for the

estimation of the parameters σ, γ, µ0, σz, and σu by a method of moments, using data on wage

changes. The conditions for the first two moments can be derived by substitution of equation

(13) in equation (12), and taking the expectation and the variance. This yields the following

system of equations:

∆wt = µ0 + γσπ1S + γσE∆Ωτ + εt (17)

wt −w∗t−1 = µ0 + γσπ1S + γσE∆Ω∗Θ + σΩ0 + ζt

∆w2t = σ2z + 2σ2u + (γσ)2Var∆Ωτ + (µ0 + γσπ1S + γσE∆Ωτ )
2 + ηt

(
wt −w∗t−1

)2
= σ2z + 2σ2u + (γσ)2Var∆Ω∗Θ + (µ0 + γσπS + γσE∆Ω∗Θ + σΩ0)

2 + νt

∆wt∆wt−1 = −σ2u + (µ0 + γσπ1S + γσE∆Ωτ ) (µ0 + γσπ1S + γσE∆Ωτ−1) + υt
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where εt, ζt, ηt, νt, and υt are i.i.d. errors, where superscript ∗ indicates the log wage

or respectively change in surplus just before separation from the previous job, and where

E∆Ωτ ≡ E[∆Ωτ |A (Θ) , B (Ψ)], and Var∆Ωτ ≡ Var[∆Ωτ |A (Θ) , B (Ψ)]. We impose no con-

straints upon the covariance matrix of these five error terms. In the third and fourth lines we

use Var[∆wt] =E
[
∆w2t

]
−E[∆wt]

2, where we substitute E[∆wt] with the deterministic part of

the right hand side in the first, and respectively the second equation. The first two equations are

the conditions for the first moment, for within and between job spell wage changes, respectively.

The second pair of equations are the conditions for the second moment, again for within and be-

tween job spell wage changes. The final moment condition is the covariance between subsequent

wage changes due to the transitory shocks ut.

The system of equations (17) is characterized by additive disturbances and nonlinear cross-

equation restrictions in the parameters. It can be estimated by Feasible Generalized Non-linear

Least Squares (FGNLS). Since we use ω0,1, π0,1, σΩ and σπ as estimated by Simulated Maximum

Likelihood (SML) in the first step analysis, c.f. section 3.2, in this second step we need to correct

the standard errors of the FGNLS estimates for the estimation error introduced by the SML.

We follow the methodology outlined by, e.g., Murphy and Topel (1985). Details on the FGNLS

estimation and on the adjustment of the standard errors of the FGNLS estimates are relegated

to our web appendix.

4 Empirical Analysis

4.1 Data

We use as data a PSID extract of 18 waves, covering the years 1975 through 1992. Our model

does not work well when employed people consider other alternatives than switching to another

job, such as retirement, leaving the labor force, or taking up full time education. The availability
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of these other alternatives yields two problems. First, we do not observe the reservation wage at

the point of separation when people do not accept another job. Second, with only one alternative

to the present job, the decision problem is simply whether a particular indicator switches signs.

With more alternatives, that choice process becomes far more complicated. Therefore we restrict

the sample to people who do not switch in and out the labor force regularly, and for whom

retirement is not a relevant option: white male heads of household, with more than 12 years of

education, and less than 60 years of age. Furthermore, we restrict the sample to those individuals

that were employed, temporarily laid off, or unemployed at the time of the survey. We exclude

people from Alaska or Hawaii. Finally, we discard all observations on unionized jobs. Through

these initial data selection procedures we discard in total 10351 observations from the original

dataset used by Altonji and Williams (1999).

For the analysis of wage dynamics, observations for which wages are missing (2404 obs.)

or topcoded (254 obs.) are deleted, as well as observations for which |∆wt| > 0.50 (276 obs.).

This leaves a total of 8082 observations on within-job wage changes, and 462 observations on

between-job wage changes. Wages are deflated by the implicit price deflator, using 1982 as base

year, as in Altonji and Williams (1999).

Table 1: Summary statistics
Variable Mean Std. Dev. Min. Max. Observations

logwage(1) 2.42 0.52 0.17 4.82 13660
tenure (years) 6.67 7.42 0.08 43.69 15504
experience (years) 14.58 9.21 0.12 43.69 16179

Dataset for Estimating the Tenure Distribution Parameters(2)

Number of individuals 2421
Total number job spells 4681
- started before the observation range 1512
- started within the observation range 3169
Completed job spells 1712
- started before the observation range 372
- started within the observation range 1340
Incomplete job spells 2969
- started before the observation range 1140
- started within the observation range 1829
(1)reported average hourly wage, deflated using the implicit price deflator with 1982 base year
(2)subset of the data summarized in the top panel, keeping one observation for each job spell
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Table 1 presents summary statistics of the data. Tenure and experience measures are con-

structed by Altonji and Williams (1999). Observations with missing wage information are in-

cluded in the tenure distribution analysis. One can distinguish four types of job spells. Apart

from the distinction between completed and incomplete spells (right censoring), one can also

make a distinction between spells that start before the time span covered by our data and spells

that start afterwards. The lower half of the summary statistics table informs on the number of

spells for each of these four types.

4.2 The Parameters of the Tenure Distribution

Estimation results for the tenure distribution analysis, see equation (16) and parameter specifi-

cation (13), are presented in Table 2. Theoretically, the results for the "large sample", including

the jobs ongoing at the start date of the PSID sample, and for the "small sample", excluding

those jobs, should be identical. Both job exit hazards look indeed almost identical for the es-

timated mean values of lnΩ and π, see again Figure 1, with the peak in the hazard somewhat

lower for the large sample. Inspecting the estimates in Table 2 yields the same conclusion.

Table 2: SML estimates tenure distribution parameters equation (16)

Small Sample(1) Large Sample(2)

Variable π lnΩ π lnΩ

Intercept 0.226∗∗ -1.243 ∗∗ 0.141∗∗ -1.197∗∗

(t-val) (9.60) (-14.22) (83.96) (-73.50)
Initial experience 0.0088∗∗ -0.0057 0.012∗∗ 0.0025
(t-val) (2.95) (-0.57) (53.57) (1.38)
Random worker effects σ 0.309∗∗ 0.0022 5.76E-07 3.66E-05
(t-val) (5.77) (1.76E-03) (3.34E-04) (2.89E-03)

Observations (job spells) 3169 4681

Significance levels: † : 10% ∗ : 5% ∗∗ : 1% . Statistical t-values in parentheses under
estimated coefficients.
(1)Small sample= sample of job spells starting within the observation range of the PSID sample
(2)Large sample= sample of all job spells, including those ongoing at the PSID sample start

All covariates are taken in deviations from their means over jobs
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The intercepts and the coefficients for experience at job start are very similar for both

samples. The positive effect of experience on the drift is consistent with the idea that workers

start their career with some initial job hopping, before settling down in a job that fits their

comparative advantages best. The intercept for π is positive and large for both samples. In

both cases, there are hardly observations for which π is negative. This implies that a fraction

of the job spells will last until the retirement of the worker. The fraction of jobs that never end

is about 10%, computed for the mean values of lnΩ and π.

An interesting observation is that while we find unobserved random worker effects for the

small sample, we do not find any for the large sample. The same result is found for a slightly

different specification of the model, see Teulings and Van der Ende (2000), or for slightly different

samples or specifications that we estimated, but do not report in the paper (i.e., including

unionized jobs, or including education as an explanatory variable). The main difference between

the samples is that the large one contains more long job spells, since it includes ongoing spells

at the start of the PSID extract. As pointed out earlier, estimates for the two samples should

be identical; since this is not the case, we suspect some form of misspecification of the empirical

model. Given that some prior studies have estimated considerable unobserved heterogeneity

in the PSID, see Browning et al (2010), this misspecification must be related to the sample

containing the long job spells. What form of misspecification of the hazard rate for long job

durations might explain our result? Part of the jobs last till retirement. Since our model does

not describe the outside option of leaving the market due to retirement, and we therefore exclude

workers above 60, a share of the jobs will never end according to this model. This explains why

we find the drift to be positive. As discussed in section 2.3, a positive drift implies the hazard

rate to be steadily declining to 0. Heterogeneity in the drift would strenghten this decline. Due

to selection, the sample of surviving job spells will be increasingly made up of workers with a

high drift. Hence, the hazard rate will decline more rapidly when there is heterogeneity in the
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drift than when there is not. The data do not support this rapid decline in the hazard, hence

the estimated zero variance of the random worker effect.

From this perspective, it is pertinent to compare our model with Jovanovic’s (1979) Bayesian

learning model, where the firm learns about the productivity of a match by subsequent real-

izations of its output. That model has a stochastic structure similar to the model considered

here. New information about the quality of a match is orthogonal to the previously collected

information. However, as times goes by, the quality of the firm’s information set improves and

new information will have a smaller impact. Hence, the hazard rate in learning models declines

much faster than in our model. The data strongly reject this rapid decline. Our model comes

a long way in explaining the slow decline in the hazard rate for long job spells. However, the

absence of unobserved heterogeneity in the drift suggests that the actual decline is even slower

than our model predicts.

Since the long spells started before the first wave of our PSID sample contain crucial infor-

mation, we focus on the results for Ω and π obtained from the full sample of job spells for the

subsequent wage dynamics analysis.

4.3 Wage Dynamics

The FGNLS estimation results of system (17) are reported in Table 3. The equations in (17)

impose a linear experience profile. However, the model can be easily extended with a concave

experience profile, since this affects rt and pt equally. We do so throughout the subsequent

analysis. As stated in Section 3.3, since we make use of the earlier estimated tenure distribution

parameters, we need to correct the variances of the FGNLS estimates for the error introduced

by the SML estimation. This two-step correction in the spirit of, e.g., Murphy and Topel (1985),

has absolutely no effects on the standard errors for any of our reported estimations (adjusted

variance-covariances are identical to the unadjusted ones up to 10 decimal digits).
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Estimates for a number of subsamples are reported in different horizontal panels. The

first panel uses all available data. All coefficients are significant and have the expected sign.

The coefficients on experience (t and t2) point to a standard concave experience profile. The

coefficient γ is estimated to be 0.792, relatively close to unity, implying that the correlation

between ∆pt and ∆bt is low. Separations look more like quits: they are driven more by random

positive shocks to the outside productivity than by negative shocks to the inside productivity.

Hence, the correlation of ∆Ωt with ∆wt is low, leading to a high estimated value of γ. Part of

the reason for the low correlation might be downward rigidity in wages; if so, the declining part

of the wage profile for a complete spell, cf. Figure 2, will not be realized.

Table 3: FGNLS estimates system (17)

µ0 γ σ̄2 σu
2 σz

2 t t2 Avg Nobs

1: All Stayers+ Movers

coef 0.069∗∗ 0.729∗∗ 0.0012† 0.0046∗∗ 0.011∗∗ -0.0056∗∗ 9.80E-05∗∗ 4575
(t-val) (12.11) (4.25) (1.75) (14.90) (14.74) (-9.02) (6.53)

2: Incomplete and Positive Completed Surplus Change Spells for Stayers + Movers

coef 0.066∗∗ 0.512† 0.0014† 0.0046∗∗ 0.010∗∗ -0.0057∗∗ 9.90E-05∗∗ 3957
(t-val) (9.19) (1.64) (1.79) (14.12) (12.65) (-8.83) (6.17)

3: As panel 2 above, but using -Max(Ωτ
∗) as regressor for job movers

coef 0.067∗∗ 0.547∗ 0.0015† 0.0046∗∗ 0.010∗∗ -0.0057∗∗ 9.90E-05∗∗ 3957
(t-val) (9.66) (2.03) (1.87) (14.12) (12.81) (-8.40) (6.20)

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Statistical t-values in parentheses under estimated coefficients.
We allow for a concave experience (t, t2) profile in all equations of system (17).

We investigate this issue by leaving out all observations for which ∆Ωτ is negative, i.e.

roughly the second half of all completed spells. This second set of estimates are reported in

panel 2 of Table 3. They are virtually the same, except for γ, which is now estimated to be

0.512, though not statistically significant. The downward rigidity in wages implies a large fall in

wages at the moment of separation. Hence, we further enter, with a negative sign, the maximum

of Ωτ in the previous job, −Max(Ω∗τ ), as regressor in the equation for job movers, instead of the

decline in the surplus in the last year before separation, E∆Ω∗Θ. We expect its coefficient to be
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γσ. The estimation results for this model are reported in panel 3. Once again, the estimation

results are virtually the same as in panel 2 of the table, except that the standard errors of all

coefficients become somewhat smaller; γ is also significant in this specification. The difference

in the estimated value of γ in panels 1 and 3 suggests that downward rigidity plays indeed a

role. Later on, we present a Wald test of this hypothesis.

The ranges of estimates obtained for the main parameters, γ = {0.51, 0.73}, and σ = 0.04,

enable us to compute the ’true’ return to tenure, σπ = 0.04×0.14 = 0.56% (taking the estimated

mean value of π = 0.14 from Table 2 above). However, the high values of γ imply that most

of the return to tenure, between 50% and 75%, takes the form of the log reservation wage rt

having a negative drift, instead of the inside wage wt having a positive drift, see equation (12).

The return to tenure measured as the rise in log productivity in the current job pt, is thus even

smaller, between γσπ = (1− 0.73)× 0.04× 0.14 = 0.15% and (1− 0.51)× 0.04× 0.14 = 0.27%.

Apart from this true return to tenure (linear by assumption), there is also a return to tenure

due to the selectivity in the evolution of bt in surviving jobs. Complete spells yield a hump

shaped pattern for Ωτ , while incomplete spells yield an increasing concave pattern for Ωτ , see

Figure 2. When there is downward rigidity, the hump shape for complete spells is reduced to

an increasing concave pattern, too. Hence, the concavity in the tenure profiles can be fully

explained by selectivity.

In the course of the life cycle, workers with the same level of experience t end up with different

elapsed tenure lengths, depending on their history of job mobility. The existence of a tenure

profile in wages implies that these differences translate into wage inequality. Since the tenure

profile can be decomposed in a deterministic part, γσπΨ, and a random part, γσΩτ , one can ask

what is the contribution of these two factors to expected wage growth and wage inequality. We

address this issue using the estimated parameter values π = 0.14 and Ω = 0.30, respectively γ =

0.60 (about the middle of the interval 0.51-0.73) and σ = 0.04. We do this decomposition for t =
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10, 20, 30 years of experience, using a recursive computation for identical persons, starting with 0

years of experience, and characterized by the tenure CDF given by (8). With respect to expected

log wage growth, the contribution of the deterministic component γσπE[Ψ|t] is 1.68%, 3.31%,

and 4.94% for t = 10, 20, 30 respectively. The contribution of the expected value of the random

component γσEΨ [E [Ωτ |B (Ψ)] |t] is 3.55%, 5.39%, and 6.94% respectively. Hence, the random

component has a larger effect on log wage growth, in particular for low levels of experience.

At higher levels of experience, job change becomes an unlikely event anyway and hence the

contribution of selectivity converges to a fixed number. With respect to wage inequality, the

contribution of the deterministic component is (γσπ)2Var[Ψ|t] and the stochastic component is

(γσ)2EΨ [Var [∆Ωτ |B (Ψ)] |t]. In this case, given the long experience lengths considered, both

the deterministic and the random component have almost identical overall contributions to

wage variance for these experience levels; however, the random component has a much larger

contribution to the wage inequality, about 20 times larger, compared to the deterministic one.

The deterministic components for 10, 20 and 30 years are 5.08e-06, 5.35e-06 and 5.37e-06, with

the corresponding stochastic components at 1.11e-04, 1.20e-04 and respectively 1.21e-04.

The estimation results in Table 3 use all available information on first and second moments

of wage changes, simultaneously. A specification test is to estimate the model separately for

relevant subsets of the data, e.g. job stayers versus job movers, complete versus incomplete

spells, or first versus second moments, and verify whether the coefficient estimates are the same.

Before reporting formal nested hypotheses tests, linear regression estimates for such data subsets

can already be informative. Table 4 displays OLS estimates for the first moments, i.e. the first

two equations of system (17). The regressions in columns D and G, complete spells with an

increasing surplus (∆Ωτ ≥ 0) and respectively job movers, are badly identified due to a low

number of observations. The other columns reveal some common patterns. First, the intercept

and the experience profile are virtually the same in all regressions. Second, the coefficient of γσ
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is negative, though never statistically significant, while it is expected to be positive. This term

captures the earlier result from the tenure distribution analysis that the drift in the surplus Ωt

depends positively on experience at job start S, equivalent to stating that jobs starting at later

age last longer. Given that γ > 0, the model predicts that workers are able to capture part of

the surplus increase, and hence, that the tenure profile in jobs starting at higher ages should be

steeper. The data reject this implication.

Table 4: OLS estimates 1st moments (first 2 equations) of system (17)

A B C D E F G
µ0 0.059∗∗ 0.061∗∗ 0.043∗∗ -0.021 0.050∗∗ 0.046∗∗ -8.593

(t-val) (9.00) (4.12) (3.34) (-0.36) (2.65) (4.19) (-0.97)
γσ̄ -0.013 -0.071 -0.054 -0.529 -0.011 -0.048 0.497

(t-val) (-0.57) (-0.10) (-1.60) (-1.51) (-0.14) (-1.56) (1.07)

(1-γ)2σ̄2 6.40E-05∗ 6.40E-05 9.61E-04∗ 0.0045† 4E-06 8.41E-04† 0.0031
(t-val) (2.37) (1.53) (2.14) (1.96) (0.27) (2.34) (0.58)

σ̄
2 857.43

(t-val) (1.00)
t -5.01E-03∗∗ -5.25E-03∗∗ -4.39E-03∗∗ -2.92E-03 -4.64E-02∗ -4.57E-03∗∗ 0.039

(t-val) (-7.17) (-3.00) (-4.99) (-0.06) (-2.31) (-5.58) (0.76)
t2 9.19E-05∗∗ 1.08E-04∗ 8.33E-05∗∗ 1.44E-04 9.44E-05† 8.62E-05∗∗ -8.23E-05

(t-val) (5.6) (2.23) (4.42) (1.29) (1.73) (4.78) (-0.32)
Nobs 8082 1572 6510 435 1137 6945 462

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Statistical t-values in parentheses under estimated coefficients.
Columns A to F correspond to the 1st moment eq. for job stayers (1st eq. of system 17), where A- All Stayers,
B- Completed Spells, C- Incomplete Spells, D- Completed Positive Surplus Change Spells, E- Completed Negative
Surplus Change, F- Incomplete plus Completed Positive Surplus Change; Column G corresponds to the 1st moment
eq for job movers (2nd eq of system 17).

We allow for a concave experience (t, t2) profile in each estimated equation.

Table 5 presents linear regression results for the 2nd moments, i.e. the last three equations of

system (17). The estimates invoke three observations. First, contrary to the predictions of our

model, the estimates for (γσ)2 are negative. The model predicts a hump shape in the variance

of ∆wt over the course of a job spell, with low variances in the beginning and the end of a

job. The data tell the opposite. Thus, while the model accurately captures the concavity in the

tenure profile in the first moment of ∆wt, in particular when accounting for downward rigidity

in wages, it does not capture the pattern in its second moment. Second, the variance σ2z + σ2u
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is a factor four times higher for job movers than for job stayers. This suggest that the labour

market is not a Walrasian market with a continuum of outside offers available at any time,

where workers who want to change jobs can just the pick the best option out of this continuum.

Outside offers come along randomly, so that there are large jumps in the wage profile at the

moment of job change. Third, within the group of job stayers, the variance does not seem to

be constant across subgroups either; it is the largest for the incomplete spells and the smallest

for the complete spells with a declining surplus (∆Ωτ < 0), whereas the complete spells with

an increasing surplus fall somewhere in between. The low variance for complete spells with a

declining surplus fits the notion of downward wage rigidity. When wages are rigid, one would

not expect a whole lot of variance.

Table 5: OLS estimates 2nd moments (last 3 equations) of system (17)

A B C D E F G H I

(1-γ)2σ̄2 -0.0081∗∗ -0.010† -0.025∗∗ -0.016 -0.010∗ -0.019∗∗ -0.089
(t-val) (-3.28) (-1.88) (-4.55) (-1.16) (-1.82) (-4.42) (-0.53)

σz
2+2σu

2 0.027∗∗ 0.025∗∗ 0.042∗∗ 0.032∗∗ 0.025∗∗ 0.036∗∗ 0.156∗∗

(t-val) (12.28) (8.33) (8.49) (3.51) (7.73) (9.60) (2.98)
σu

2 0.0042∗∗ 0.0043∗∗

(t-val) (14.01) (13.28)
Nobs 8082 1572 6510 435 1137 6945 462 5789 4972

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Statistical t-values in parentheses under estimated coefficients.
Columns A to F correspond to the 2nd moment for job stayers (3rd eq. of system 17), where A- All Stayers,
B- Completed Spells, C- Incomplete Spells, D- Completed Positive Surplus Change Spells, E- Completed Negative
Surplus Change, F- Incomplete plus Completed Positive Surplus Change; Column G corresponds to the 2nd moment
for job movers (4th eq. of system 17); Columns H to I correspond to the covariance moment (last eq. of system 17),
with H using All Stayers and I using the Incomplete plus Positive Completed Surplus Change Spells.

We use the residuals computed from corresponding 1st moments of system (17), upgraded with concave experience
profiles, as dependent variables in all 2nd moment equations.

Table 6 presents formal Wald tests for the above hypotheses, reporting χ2 statistics and

associated p-values for tests of equality of estimates across nested model specifications for the

system (17). All tests start from the full model (using the whole number of observations, on

both stayers and movers), except for horizontal panel 6 which presents nested hypotheses tests

for the subsample of job stayers. Panel 1 presents three Wald tests for the null hypotheses
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{γs = γm}, {σ2s = σ2m}, and the joint null {γs = γm and σ2s = σ2m}, where s indexes stayers and

m movers. The null {γs = γm} cannot be rejected, but the null
{
σ2s = σ2m

}
can. Hence, the joint

null {γs = γm and σ
2
s = σ2m} is also rejected. This suggests that there is excess wage variance for

job movers. Hence, our assumption of a Walrasian market for outside job offers is not respected

in the data. Panel 2 presents a Wald test for {γneg = γrest}, where γneg is estimated only for

the completed job spells with a negative surplus change, ∆Ωτ < 0, while γrest is estimated on

the rest of the sample. We fail to reject the null of γ being the same for the negative job spells

and for the rest of the observations.

Table 6: Nested hypotheses tests for subset estimates system (17)

1: γs=γm, σ̄s
2=σ̄m

2

Wald γs=γm χ2=0.37 (Prob>χ2=0.54)
Wald σ̄s

2=σ̄m
2

χ
2=5.60∗(Prob>χ2=0.018)

Joint Wald γs=γm and σ̄s
2=σ̄m

2 χ2=5.80†(Prob>χ2=0.055)

2: γneg=γrest
Wald γneg=γrest χ2=1.64 (Prob>χ2=0.20)

3: γdrift=γnondrift
Wald γdrift=γnondrift χ2=31.43∗∗(Prob>χ2<.0001)

4: γfirst=γsecond
Wald γfirst=γsecond χ2=0.45 (Prob>χ2=0.50)

5: σz,s
2=σz,m

2

Wald σz,s
2=σz,m

2 χ2=37.45∗∗(Prob>χ2<.0001)

6: σz,s,inc
2=σz,s,neg

2, σz,s,inc
2=σz,s,pos

2, σz,s,neg
2=σz,s,pos

2

Wald σz,s,inc
2=σz,s,neg

2
χ
2=2.08 (Prob>χ2=0.149)

Wald σz,s,inc
2=σz,s,pos

2
χ
2=0.04 (Prob>χ2=0.833)

Wald σz,s,neg
2=σz,s,pos

2
χ
2=1.82 (Prob>χ2=0.177)

Joint Wald σz,s,inc
2=σz,s,neg

2 and σz,s,inc
2=σz,s,pos

2
χ
2=2.17 (Prob>χ2=0.338)

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Statistical p-values in parentheses.
Detailed description for each hypothesis test can be found in the text; "m" indexes movers, "s" stayers, "inc" incomplete job
spells, "pos" ("neg") completed positive (negative) surplus change job spells. The test in panel 4 is de facto implemented
as H0:k12=k2, where k1=1-γfirst and k2=(1-γsecond)

2, since, as k2 is estimated negative in the corresponding linear
regression, γsecond cannot take a real value in that particular specification.

All specifications allow for concave experience (t, t2) profiles.

Panel 3 presents the Wald test of {γdrift = γnondrift}, where γdrift is estimated from the drift

term in the first moment equations, while γnondrift is estimated from all other instances where

it appears in the system (17). As expected from earlier remarks, we strongly reject this null.

Panel 4 presents the Wald test of {γfirst = γsec ond}. This restriction cannot be rejected. Panel
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5 displays the result of the Wald for {σ2z,s = σ2z,m}, i.e. testing for equality of the variance of the

permanent shocks, σ2z, across movers and stayers. This null is clearly rejected. Given our result

from panel 5, we now start from a model where we allow for different σ2z,s and σ2z,m: in panel

6 we test in subsamples of job stayers only the following null hypotheses: {σ2z,s,inc = σ2z,s,neg},

{σ2z,s,pos = σ2z,s,neg}, {σ2z,s,inc = σ2z,s,pos}, and respectively the joint {σ2z,s,inc = σ2z,s,neg and

σ2z,s,inc = σ2z,s,pos}, where inc indexes incomplete job spells, neg completed job spells with

∆Ωτ < 0, as above, and pos completed job spells with ∆Ωτ ≥ 0 These tests show that once

we account for the differences in σ2z between movers and stayers, there are no further statistical

differences between the estimates for subsamples of stayers: indeed, we cannot reject any of the

null hypotheses from panel 6 of table 6.

Table 7: FGNLS estimates system (17), with different wage variances
for stayers and movers

µ0 γ σ̄s
2 σ̄m

2 σu
2 σz

2 t t2 Avg Nobs

1: All Stayers+ Movers
coef 0.071∗∗ 0.812∗∗ 0.0018∗∗ 0.301∗∗ 0.0046∗∗ 0.011∗∗ -0.0057∗∗ 9.9E-05∗∗ 4575

(t-val) (13.94) (36.61) (3.17) (2.78) (14.90) (14.82) (-9.48) (6.66)

2: Incomplete and Positive Completed Surplus Change Spells for Stayers + Movers
coef 0.073∗∗ 0.811∗∗ 0.0024∗∗ 0.291∗∗ 0.0046∗∗ 0.010∗∗ -5.96E-03∗∗ 1.03E-04∗∗ 3957

(t-val) (13.39) (35.83) (2.54) (2.73) (14.13) (13.59) (-9.18) (6.52)

3: As panel 2 above, but using -Max(Ωτ
∗) as regressor for job movers

coef 0.074∗∗ 0.852∗∗ 0.0021∗ 0.150∗∗ 0.0046∗∗ 0.010∗∗ -0.0059∗∗ 1.03E-04∗∗ 3957
(t-val) (13.35) (35.94) (2.28) (3.15) (14.13) (13.69) (-9.11) (6.50)

Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Statistical t-values in parentheses under estimated coefficients.
We allow for a concave experience (t, t2) profile in all equations of system (17).

Once we allow movers and stayers to possibly have different wage variances, the new FGNLS

estimates reported in Table 7 show that movers have indeed a much higher wage variance at job

separation; our favorite specification in panel 3 suggests σm ≃ 8.4σs. In this case, γ is estimated

in a much narrower range, between 0.81 and 0.85, with all the other parameter estimates close

to the values from Table 3. We repeat the previous calculation of the return to tenure, this

time with σs = 0.04, and γ = 0.8. We obtain a return which is exactly the same as computed
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before, σsπ = 0.04 × 0.14 = 0.56%, again mostly due to the fall in the outside option. The

drift in pt accounts now for only γσsπ = (1− 0.8)× 0.56% = 0.11%. Hence, once we adjust our

empirical model to allow for downward rigidity of wages and for the non-Walrasian market for

job switches, about 80% of the wage returns to tenure is due to selectivity on the outside wages.

A Conditional Expectation and Variance of Ωτ

A.1 Completed Spells

For the subsequent derivations, it is useful to add the parameter for initial surplus, Ω, as an argu-

ment to the survival function of job tenures in equations (8) and (9), thus F (τ,Ω) and f (τ,Ω).

Let h (ω, τ,Θ,Ω) be the density of Ωτ = ω for 0 < τ < Θ conditional on A (Θ). Comparing

this density to g (ω, τ), there is one additional condition: ΩΘ = 0. Hence, h (ω, τ,Θ,Ω) can be

calculated by applying Bayes’s rule. Since Ωτ is a martingale, the distribution of Θ conditional

on Ωτ = ω is equal to the distribution of Θ − τ conditional on Ω0 = ω. Hence, its density is

f (Θ− τ, ω). Then h (ω, τ,Θ,Ω) can be calculated from f (·) and g (·), by Bayes’s rule:

h(ω, τ,Θ,Ω) =
f(Θ− τ, ω)g (ω, τ)∫∞

0 f(Θ− τ, x)g (x, τ) dx

Substitution of equation (7) in the above yields:

h(ω, τ,Θ,Ω) =
ω

Ωm
√
mτ

[
φ

(
ω −mΩ√

mτ

)
− φ

(
ω +mΩ√

mτ

)]

where m ≡ (Θ− τ) /Θ. Hence, E(Ωτ |A (Θ)) satisfies:
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E(Ωτ |A (Θ)) =

∫ ∞

0
ωh(ω, τ,Θ,Ω)dω

=

∫ ∞

0

ω2

Ωm
√
mτ

[
φ

(
ω −mΩ√

mτ

)
− φ

(
ω +mΩ√

mτ

)]
dω

= 2
√
mτφ

(√
m

τ
Ω

)
−
( τ
Ω
+mΩ

)[
1− 2Φ

(√
m

τ
Ω

)]

For the calculation of the second moment of a first differential of Ωτ , E
[
∆Ω2τ |A (Θ)

]
, we

apply the joint density of Ωτ−1 = ω and Ωτ = ω + χ, for 1 ≤ τ ≤ /Θ, conditional on A (Θ):

h(ω + χ, 1,Θ− τ + 1, ω) · h(ω, τ − 1,Θ,Ω)

The second moment of ∆Ωτ is thus given by:

E
[
∆Ω2τ |A (Θ)

]
=

∫ ∞

0

∫ ∞

−ω
χ2h(ω + χ, 1,Θ− τ + 1, ω)dχ · h(ω, τ − 1,Θ,Ω)dω

We use numerical integration for the evaluation of the integral above. The variance is subse-

quently derived by the standard expression Var[∆Ωτ |A (Θ)] =E
[
∆Ω2τ |A (Θ)

]
−E[∆Ωτ |A (Θ)]2.

A.2 Incomplete Spells

Let h∗(ω, τ,Ψ,Ω) be the density of Ωτ = ω conditional on B (Ψ). Application of the Bayes rule

yields:

h∗(ω, τ,Ψ,Ω) =
F (Ψ− τ, ω)g (ω, τ)

∫∞
0 F (Ψ− τ, x)g (x, τ) dx

Hence, E(Ωτ |B (Ψ)) satisfies:

E [Ωτ |B (Ψ)] =

∫ ∞

0
ωh∗(ω, τ,Ψ,Ω)dω =

∫∞
0 ωF (Ψ− τ, ω)g (ω, τ)dω
∫∞
0 F (Ψ− τ, ω)g (ω, τ)dω
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where F (Ψ − τ, ω) is given by equation (8). This expression is evaluated numerically, since it

does not have an analytical solution.

The variance of ∆Ωτ = Ωτ −Ωτ−1, for 1 ≤ τ ≤ Ψ, conditional on B (Ψ) is then derived from

the first and second moments of ∆Ωτ , analogous to the completed spells case discussed above.
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