
Conflicting Vascular and Metabolic Impact of the IL-33/sST2 Axis 1 

Raffaele Altara,1,2,3 Rana Ghali,4 Ziad Mallat,5,6 Alessandro Cataliotti,1,2 George W. Booz,7 and 2 

Fouad A. Zouein4,* 3 

1Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, or 4 

2KG Jebsen Center for Cardiac Research, Oslo, Norway 5 

3Department of Pathology, or 7Department of Pharmacology and Toxicology, School of 6 

Medicine, University of Mississippi Medical Center, Jackson, MS, USA 7 

4Department of Pharmacology and Toxicology, American University of Beirut Faculty of 8 

Medicine, Beirut, Lebanon 9 

5Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, 10 

Cambridge CB20 SZ, UK 11 

6Institut National de la Sante et de la Recherche Medicale (Inserm), Unit 970, Paris 12 

Cardiovascular Research Center, 75015 Paris, France 13 

 14 

Running title: Cardiovascular IL-33/sST2 Axis 15 

Key words: Cardiovascular diseases, Th2-associated cytokines, Inflammation, Cardiac 16 

remodeling, Endothelium, Alarmin  17 

 18 

*Address for Correspondence: 19 

Fouad A. Zouein, Ph.D. 20 

Department of Pharmacology and Toxicology 21 

American University of Beirut & Medical Center  22 

Riad El-Solh 1107 2020  23 

Beirut-Lebanon 24 

fz15@aub.edu.lb 25 



1 
 

Abstract 26 

Interleukin 33 (IL-33), which is expressed by several immune cell types, endothelial and 27 

epithelial cells, and fibroblasts, is a cytokine of the IL-1 family that acts both intra- and 28 

extracellularly to either enhance or resolve the inflammatory response.  Intracellular IL-33 acts 29 

in the nucleus as a regulator of transcription. Once released from cells by mechanical stress, 30 

inflammatory cytokines, or necrosis, extracellular IL-33 is proteolytically processed to act in an 31 

autocrine/paracrine manner as an “alarmin” on neighboring or various immune cells expressing 32 

the ST2 receptor. Thus, IL-33 may serve an important role in tissue preservation and repair in 33 

response to injury; however, the actions of IL-33 are dampened by a soluble form of ST2 (sST2) 34 

that acts as a decoy receptor and is produced by endothelial and certain immune cells. 35 

Accumulating evidence supports the conclusion that sST2 is a biomarker of vascular health with 36 

diagnostic and/or prognostic value in various cardiovascular diseases, including coronary artery 37 

disease, myocardial infarction, atherosclerosis, giant-cell arteritis, acute aortic dissection, and 38 

ischemic stroke, as well as obesity and diabetes. Although sST2 levels are positively associated 39 

with cardiovascular disease severity, the assumption that IL-33 is always beneficial is naïve. It is 40 

increasingly appreciated that the pathophysiological importance of IL-33 is highly dependent on 41 

cellular and temporal expression. Although IL-33 is atheroprotective and may prevent obesity 42 

and type 2 diabetes by regulating lipid metabolism, IL-33 appears to drive endothelial 43 

inflammation. Here, we review the current knowledge of the IL-33/ST2/sST2 signaling network 44 

and discuss its pathophysiological and translational implications in cardiovascular diseases. 45 

 46 

 47 

 48 

  49 
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Introduction 50 

Interleukin 33 (IL-33) is a member of the IL-1 family of cytokines, which strongly induces 51 

production of T helper-2 (Th2)-associated cytokines. Although regulation of transcription has 52 

been recently reported as an additional mechanism of IL-33 activity (see Novel signaling), 53 

classically active IL-33 functions as an “alarmin” or stress-response cytokine that engages and 54 

regulates an immune response particularly at barrier sites in the body, where IL-33 is highly 55 

expressed by endothelial or epithelial cells.1   Once released, IL-33 acts in an 56 

autocrine/paracrine manner to activate the ST2L (ST2 gene-like) membrane receptor on nearby 57 

cells, aka IL33R and interleukin 1 receptor like 1 (IL1RL1). A soluble truncated form of ST2L 58 

without the transmembrane and intracellular domains, sST2, is secreted by endothelial and 59 

various immune cells either constitutively or upon stimulation (in some cases by IL-33).2 sST2 is 60 

thought to function as a decoy receptor, thereby attenuating the actions of IL-33.2  61 

Evidence over the last decade has supported the conclusion that the sST2/ST2L/IL-33 62 

triad plays an important role in CVD. IL-33 is postulated to exert for the most part beneficial 63 

actions via ST2L that are related to cardiac repair or attenuation of adverse cardiovascular 64 

remodeling or atherosclerotic plaque progression. In the canonical model, sST2 attenuates the 65 

cellular and beneficial actions of IL-33 in the cardiovascular system. Accumulating evidence has 66 

shown that elevated circulating levels of sST2 have evident prognostic utility for worse outcome 67 

in acute myocardial infarction (MI),3 systemic and pulmonary hypertension,4-6 coronary artery 68 

disease (CAD),7 heart failure,8  and type 2 diabetes.9, 10  Most often, sST2, and not IL-33, was 69 

assessed due to its greater levels and stability.  70 

  New findings reveal that this view of IL-33 as strictly a protective or benign agent in 71 

CVD is over-simplistic. Neither is it established that sST2 is harmful because of its role as decoy 72 

receptor. As we assess in this review article, notwithstanding the evidence supporting the utility 73 

of sST2 as a CVD biomarker, there are gaps in our understanding of the functional significance 74 

of the IL-33/sST2 axis in cardiovascular and metabolic stress. Specifically, the focus of this 75 
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review is on the vascular and metabolic aspects of the sST2/ST2L/IL-33 triad as a diagnostic 76 

and prognostic biomarker of stable CAD, MI, atherosclerosis, stroke, obesity, and type 2 77 

diabetes. Also, we address the complicated question of whether IL-33/ST2 signaling functions 78 

simply as an acute “alarmin” system or contributes to CVD progression under chronic or 79 

dysregulated conditions. In that context, the involvement of various immune cells and novel 80 

intracellular and extracellular signaling mechanisms in the actions of IL-33 are discussed.  81 

 82 

Cellular expression  83 

The membrane receptor for IL-33, ST2L is highly expressed by a wide variety of immune 84 

cells, including Th2 cells, regulatory T cells (Tregs), M2 polarized macrophages, mast cells, 85 

eosinophils, basophils, natural killer (NK) cells, invariant natural killer T (iNKT) cells, and type 2 86 

innate lymphoid cells (ILC2s).2 ST2L is constitutively expressed on cells of the cardiovascular 87 

system, in particular endothelial cells,11  and can also be transiently induced in certain cases in 88 

other immune cell types, such as Th1 and cytotoxic T cells.12 The notable actions of IL-33 on 89 

various immune cells are summarized in Table 1. In general, IL-33 is an important player in both 90 

innate and adaptive immunity as ST2L is expressed on most immune cells. By activating Th2 91 

cells, IL-33 elicits a type 2 immune response, particularly at barrier sites. IL-33 also exerts 92 

protective and anti-inflammatory effects involving Treg and ILC2 (see Mechanistic insights 93 

into the role of IL-33/sST2 in atherosclerosis and Obesity and type 2 diabetes). However, if 94 

exuberant or dysregulated, type 2 inflammation may lead to tissue damage likely through 95 

activation of mast cells or eosinophils, and the development of pathological fibrosis.13 In this 96 

way, IL-33 plays an indirect role in the pathophysiology of several pro-inflammatory and auto-97 

immune diseases including asthma, allergies, arthritis, sepsis, and inflammatory bowel 98 

disease.14  Whether a similar scenario also occurs in CVD is not known, and in fact the immune 99 

cell-specific role of IL-33 in CVD is not yet defined. 100 

 101 
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Table 1. Principal immune cells responsive to IL-33 102 

 103 

In healthy human tissues, IL-33 is mainly expressed by stromal cells, including 104 

endothelial and epithelial cells, and specialized fibroblasts.53  IL-33 is constitutively present in 105 

the nuclei of cardiac fibroblasts, cardiac endothelial cells, cardiomyocytes, and coronary artery 106 

smooth muscle cells of human adults and is released during stress or with necrosis.11 It is 107 

expressed only to a limited extent in mouse endothelial cells.54 IL-33 can also be released from 108 

Immune	
  Cell	
  Type	
   Action	
  
	
  
B	
  Cells	
  

	
  
• Increases	
  circulating	
  IL-­‐10-­‐producing	
  B	
  cells15	
  
• Enhances	
  proliferation	
  capacity	
  of	
  B1	
  B	
  cells	
  and	
  IgM,	
  IL-­‐5,	
  and	
  IL-­‐13	
  production16	
  

Basophils	
   • Promotes	
  secretion	
  of	
  type	
  2	
  cytokines	
  (e.g.	
  IL-­‐4	
  and	
  IL-­‐13)	
  and	
  IL-­‐8	
  in	
  synergy	
  
with	
  IL-­‐3	
  and/or	
  FcεRI-­‐activation,	
  and	
  enhances	
  FcεRI-­‐induced	
  mediator	
  release17	
  	
  

• Prevents	
  sST2	
  release,	
  which	
  is	
  induced	
  by	
  IL-­‐3	
  and	
  C5a	
  or	
  anti-­‐FcεRIα	
  antibody	
  17	
  
Dendritic	
  cells	
  (DC)	
   • Increases	
  surface	
  levels	
  of	
  maturation	
  markers	
  MHC-­‐II,	
  CD40,	
  CD80,	
  CD86,	
  

OX40L,	
  and	
  CCR718-­‐20	
  	
  
• Increases	
  production	
  of	
  pro-­‐allergic	
  cytokines	
  and	
  chemokines	
  IL-­‐4,	
  IL-­‐5,	
  IL-­‐13,	
  
CCL17,	
  TNF-­‐α,	
  and	
  IL-­‐1β19	
  	
  

• IL-­‐33-­‐activated	
  murine	
  DCs	
  required	
  for	
  in	
  vitro	
  and	
  in	
  vivo	
  expansion	
  of	
  ST2+	
  
Tregs	
  due	
  to	
  IL-­‐2	
  production21	
  	
  

• IL-­‐33-­‐activated	
  DCs	
  prime	
  naive	
  lymphocytes	
  to	
  produce	
  the	
  Th2	
  cytokines	
  IL-­‐5	
  
and	
  IL-­‐13,	
  but	
  not	
  IL-­‐4	
  and	
  IFN-­‐γ18,	
  20	
  

Eosinophils	
   • Regulates	
  homeostatic	
  development	
  and	
  activation	
  during	
  disease22	
  	
  
• Enhances	
  adhesion,	
  CD11b	
  expression	
  and	
  survival23	
  	
  
• Induces	
  superoxide	
  anion	
  production,	
  degranulation,	
  and	
  IL-­‐8	
  production24	
  	
  
• Exacerbates	
  eosinophil-­‐mediated	
  airway	
  inflammation	
  (increases	
  IL-­‐13,	
  TGF-­‐β,	
  
CCL3,	
  CCL17,	
  and	
  CCL24)25	
  	
  

• Enhances	
  Siglec-­‐8	
  mediated	
  apoptosis26	
  
ILC2	
   • Promotes	
  type	
  2	
  cytokines	
  production27,	
  28	
  	
  

• Expands	
  in	
  vivo27,	
  29	
  
Invariant	
  natural	
  
killer	
  T	
  
(iNKT)	
  

• Causes	
  expansion	
  and	
  activation30	
  	
  
• Enhances	
  production	
  of	
  several	
  cytokines,	
  including	
  both	
  IL-­‐4	
  and	
  IFN-­‐γ	
  and	
  
induces	
  IFN-­‐γ	
  instead	
  of	
  IL-­‐4	
  upon	
  TCR	
  engagement	
  in	
  cooperation	
  with	
  IL-­‐1230,	
  31	
  	
  

M2	
  polarized	
  
macrophages	
  

• Amplifies	
  the	
  expression	
  of	
  M2	
  markers32,	
  33	
  	
  	
  
• Enhances	
  activation	
  by	
  upregulating	
  LPS	
  receptor	
  components	
  TLR4	
  and	
  MD2,	
  
soluble	
  CD14,	
  and	
  MyD88,	
  thus	
  increasing	
  LPS-­‐induced	
  cytokine	
  production33	
  	
  

Mast	
  cells	
   • Induces	
  production	
  of	
  inflammatory	
  cytokines	
  MCP-­‐1,	
  TNF-­‐α,	
  IL-­‐1,	
  and	
  	
  IL-­‐634	
  
• Enhances	
  IgE-­‐mediated	
  activation34	
  	
  
• Promotes	
  survival35,	
  36	
  
• Promotes	
  mast	
  cell	
  activation	
  and	
  maturation,	
  and	
  induces	
  GM-­‐CSF,	
  IL-­‐5,	
  IL-­‐13,	
  
CXCL8,	
  CCL17,	
  CCL22,	
  and	
  CCL2	
  secretions36,	
  37	
  	
  

• Induces	
  production	
  of	
  various	
  type	
  2	
  cytokines38-­‐40	
  	
  
• Promotes	
  Th17	
  response	
  during	
  airway	
  inflammation41	
  	
  

Natural	
  killer	
  (NK)	
  
cells	
  

• Increases	
  IFN-­‐γ	
  synergistically	
  with	
  IL-­‐1230,	
  31	
  	
  

Regulatory	
  T	
  cells	
  
(Treg)	
  

• Enhances	
  protective	
  ability/increases	
  immunomodulatory	
  function42,	
  43	
  	
  
• Expands/increases	
  directly	
  or	
  via	
  IL-­‐33-­‐induced	
  DC	
  production	
  of	
  IL-­‐221,	
  44-­‐50)	
  	
  

Th2	
  cells	
   • Increases	
  production	
  of	
  type	
  2	
  cytokines	
  IL-­‐5	
  and	
  IL-­‐1351	
  	
  	
  
• Chemoattractant52	
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cells as a consequence of the cleavage of membrane phospholipids by secreted phospholipid 109 

A2 (sPLA2) enzymes, which is relevant to how venoms and inhaled allergens elicit a type 2 110 

immune response55 and likely relevant to atherosclerosis as well. In addition, IL-33 is a 111 

mechanically responsive cytokine secreted by living cells in response to stretch (Fig. 1).56 Pro-112 

inflammatory cytokines such as TNF-α, IFN-γ, and IL-1β increase IL-33 expression.11  113 

In humans, ST2L and sST2 mRNA on the other hand were reported to be expressed at 114 

low levels in cardiomyocytes, cardiac fibroblasts, and vascular smooth muscle cells, but widely 115 

present in endothelial cells of the cardiac vasculature.11 ST2L is prominently expressed by 116 

ILC2s, mast cells, and Tregs expressing the GATA3 transcription factor, as well as by activated 117 

Th2 lymphocytes.2 Levels of ST2L are enhanced by IL-33 in ILC2s and Tregs, but neither 118 

expresses sST2. ST2L is expressed weakly as well by dendritic cells, neutrophils, and 119 

uncommitted macrophages (and enhanced by IL-4/IL-13).2  120 

Taken together these findings would suggest that the primary direction for 121 

communication of the IL-33 alarmin system is from parenchyma or endothelium to the 122 

endothelium and immune cells, with production of sST2 by endothelial cells and certain pro-123 

inflammatory immune cells serving a protective or damping role. Uncertain, however, is how 124 

ST2L expression in cardiovascular cells is affected by disease state.  125 

  126 

Novel signaling  127 

Two modes of action have been identified for IL-33, an extracellular one as a cytokine or 128 

alarmin, and a nuclear one as a regulator of transcription. Pro- and anti-inflammatory actions 129 

have been attributed to both modes of action, which are cell- and context-dependent. IL-33 130 

localizes to the nucleus due to the presence of two bipartite nuclear localization sequences in 131 

the predicted helix-turn-helix structure of the homeodomain-like N-terminus.57 Deubiquitination 132 

of IL-33 has been implicated in its nuclear stability, yet ubiquitination of IL-33 has also been 133 

implicated in its activation of transcription.58, 59 A better understanding of the different 134 
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ubiquitination profiles of IL-33 and their significance is needed.  135 

IL-33 associates with chromatin to ostensibly repress gene expression via protein-136 

protein interactions, involving a short chromatin-binding motif that binds the acidic pocket made 137 

by the histone heterodimer H2A-H2B at the nucleosome surface.60 However, the nuclear actions 138 

of IL-33 are diverse and incompletely understood. Binding of IL-33 to promoter-bound 139 

homeodomain proteins, such as histone methyltransferase SUV39/HI, was implicated in IL-33-140 

mediated suppression of IL-6 and sST2 expression in human atrial endothelial cells.61 IL-33 was 141 

reported to induce transcription of the type 2 inflammatory cytokine IL-13 in HEK293T cells by 142 

binding a conserved noncoding sequence before the transcription initiation site.58 In addition, IL-143 

33 was reported to function as a transcriptional regulator of NF-κB p65 expression in endothelial 144 

cells and participate in the inflammatory response by binding the p65 promoter.62 In contrast, IL-145 

33 was reported to act as a transcriptional repressor of NF-κB in synoviocytes of patients with 146 

rheumatoid arthritis.63 In some cases, IL-33/NF-κB p65 protein–protein interactions may impair 147 

NF-κB DNA binding and thus interfere with NF-κB-dependent transcription.64 Thus, both pro- 148 

and anti-inflammatory actions have been ascribed to nuclear IL-33.65, 66 However, in many cell 149 

types, the role of nuclear IL33 is still unknown.67  150 

IL-33 is constitutively expressed in many non-hematopoietic tissues, but its expression 151 

can be induced in both non-hematopoietic and some hematopoietic cells.2, 60 Th1 and Th2 152 

cytokines were reported to regulate intracellular levels of the precursor or full-length IL-33 in 153 

fibroblasts of healthy human lungs by activating or inhibiting, respectively, its proteasomal 154 

degradation.68 Notably, full-length IL-33 was found to promote inflammation in the lung, but not 155 

a Th2 response, in an ST2-independent fashion.69 Importin-5 (IPO5) was identified as an 156 

intracellular binding partner of full-length IL-33 that protects it from proteasomal degradation, but 157 

IPO5 is not required for nuclear localization of IL-33 and does not control its secretion.70  158 

Full-length IL-33 is released into the extracellular space on cell damage or necrosis, 159 

whereas caspases 3 and 7 cleave and inactivate intracellular IL-33 during apoptosis (Fig. 1).71 160 
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Alternative transcript splicing with deletion of exons 3 and 4 may confer cytoplasmic localization 161 

and facilitate secretion.72 The release of IL-33 from cells in the absence of damage or necrosis 162 

is not well understood, but in bronchial epithelial cells was shown to be under the regulation of 163 

ATP-induced P2 purinergic receptor stimulation and calcium influx.73  164 

Extracellular IL-33 activates the membrane receptor ST2L, which together with the co-165 

receptor IL-1R accessory protein (IL-1RAcP) recruits MYD88, IRAK1, IRAK4, and TRAF6, 166 

followed by activation of multiple signaling pathways, including MAPK1/ERK2 and/or 167 

MAPK3/ERK1, p38α MAPK, JNK1, and NF-κB (Fig. 2).60 An extensive quantitative 168 

phosphoproteomic analysis of IL-33-mediated signaling was recently reported.74 There is 169 

evidence as well that extracellular IL-33 may suppress activation of the p38 MAPK and NF-κB 170 

pathways in the heart 3 days post-MI, but this is likely indirect.75 A number of mechanisms act to 171 

localize and limit both temporally and spatially the actions of extracellular IL-33 so as to make 172 

less likely an uncontrolled Th2 inflammatory response. Unlike most IL-1 family members, IL-33 173 

has a comparatively long pro-peptide sequence of ~110 amino acid residues at the N-terminus. 174 

Contrary to original thinking, IL-33 bioactivation does not seem to be dependent upon 175 

caspase1/inflammasome-mediated processing within the cell, nor is cleavage necessary for 176 

secretion.76, 77 Rather, a number of extracellular proteases are involved in its activation, with the 177 

cleaved sequence targeted within the N-terminal domain or central domain being protease-178 

specific.71 These include proteases that are released by neutrophils and mast cells, such as 179 

neutrophil proteinase 3 (PR3), elastase, and cathepsin G. Moreover, it was recently proposed 180 

that full-length IL-33 functions as a biochemical sensor of the proteolytic activities of a large 181 

variety of environmental aeroallergens.78  182 

While short term exposure enhances the activity of IL-33, longer exposure to some 183 

proteases promotes further degradation and loss of activity by targeting the C-terminus IL-1-like 184 

cytokine domain. Furthermore, IL-33 is also rapidly oxidized within the extracellular milieu 185 

resulting in the formation of two intramolecular disulfide bonds that disrupt the ST2L binding 186 
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site.79  Besides impairing function, IL-33 oxidation might alter its immunoreactivity and confound 187 

assays that rely on antibody detection. Thus, oxidation should be taken into consideration in 188 

measuring IL-33 especially under conditions of heightened inflammation and oxidative stress, as 189 

seen for instance with cigarette smoke, a major CVD risk factor.80, 81      190 

In the canonical model, sST2 functions as a decoy receptor for IL-33, thereby preventing 191 

the cellular actions of IL-33 mediated by interaction with the membrane receptor ST2L (Fig. 2). 192 

However, there are a few intriguing reports that sST2 may have actions of its own on certain 193 

cells. Evidence was reported that sST2 has direct anti-inflammatory actions on macrophages by 194 

downregulating Toll-like receptors. Treatment with an ST2-human IgG fusion protein induced 195 

cellular signaling and down-regulated expression of TLR4 and TLR1 in bone marrow-derived 196 

macrophages.82 In addition, administration of the fusion protein to mice attenuated LPS-197 

mediated mortality and serum levels of IL-6, IL-12, and TNF-α, while an anti-ST2 antibody 198 

worsened the toxic effects of LPS, which are known to be mediated by TLR4. Others reported 199 

that sST2 suppresses LPS-induced IL-6 production in a human monocytic leukemia cell line.83 200 

Evidence (based on an ST2 Fc chimera protein) was also reported to support the conclusion 201 

that sST2 may contribute to adverse aortic remodeling seen in obesity by stimulating VSMCs to 202 

produce collagen type I, fibronectin, and profibrotic factors, as well as increase activities of 203 

MMPs.84 Note, however, that because of the IgG portion of the molecule, sST2-fusion proteins 204 

(unlike sST2) could theoretically undergo dimerization, which might impact on their actions. 205 

 206 

IL-33 and sST2 as biomarkers in coronary artery disease and myocardial infarction  207 

The results of several studies summarized in Table 2 support the conclusion that serum 208 

levels of IL-33 decrease with increasing CVD severity.85-87 The opposite pattern was reported for 209 

either the pro-inflammatory cytokine IL-6 or the extracellular protease matrix metalloproteinase 210 

(MMP)-28,85-87 supporting the proposal that combining their assessment with that of IL-33 might 211 

be useful in gauging the severity of CAD. However, the number of CAD/ACS cases were small 212 
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in these 3 studies (n = 83/40, 103/27, and 70/20). Others did not find a difference in IL-33 213 

between patients with ACS (n = 195) and stable CAD (n = 178), but in this study the highest 214 

quintile of IL-33 predicted mortality (mean follow-up 3.6 years) in patients with STEMI.88 215 

Although the number of participants was larger, it was still relatively small and the number of 216 

patients with adverse clinical events at follow-up was very small (37 deaths). Moreover, serum 217 

IL-33 was undetectable in more than 50% of study participants. Accurate assessment of IL-33 in 218 

human serum is difficult for a number of reasons, including lack of sensitivity and specificity of 219 

available ELISA assays, interference by the presence of sST2, and the use of non-serum 220 

certified kits.89 There is also a necessity to differentiate between oxidized (inactive) and reduced 221 

(active) forms of IL-33, which is now possible through the development of specific ELISAs.79  222 

In contrast, a clear pattern of increasing serum sST2 levels with greater severity of CAD 223 

events has been consistently observed (healthy < stable angina < unstable angina < non-ST 224 

elevation MI (NSTEMI) < STEMI < sudden cardiac death).  Several studies have reported the 225 

prognostic value of sST2 in patients with stable CAD.  In the Ludwigshafen risk and 226 

cardiovascular health study, sST2 did not correlate with the angiographic severity of CAD; 227 

however, on long-term follow-up (median time of 9.8 years), higher levels of sST2 were an 228 

independent predictor on multivariate analysis for all-cause mortality and cardiovascular death 229 

after adjusting for clinical variables (including age, sex, BMI, hypertension, smoking status, and 230 

diabetes) and biomarkers.7 Soluble ST2 within the normal range had prognostic value additive 231 

to NT-proBNP and hs-cTnT, supporting its utility in a multimarker approach. Results of a 2 year 232 

follow-up from the ARTEMIS (international Ambulatory blood pressure Registry: TEleMonitoring 233 

of hypertension and cardiovascular rISk project) study, involving a study population of 1,243 234 

patients and 649 controls, revealed that in multivariate analysis only sST2 and hs-CRP 235 

predicted the primary endpoint of cardiac death or heart failure hospitalization in both diabetic 236 

and nondiabetic patients with CAD.90 Results of the KAROLA study showed that after 237 

multivariable adjustments sST2 levels in a cohort of 1081 stable CAD patients independently 238 
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predicted both short-term (4.5 years) and long-term (12.3 years) risk for total mortality, and 239 

short-term risk for fatal cardiovascular disease-related events, but not non-fatal cardiovascular 240 

events.91   241 

Circulating sST2 levels have diagnostic and prognostic value after STEMI. sST2 levels 242 

measured within 1 day post-MI correlated positively with peak creatinine kinase, an estimate of 243 

the extent of necrosis, and negatively with pre-discharge left ventricular ejection fraction 244 

(LVEF).92, 93 Early sST2 positively correlated with infarct size and expansion, as well as greater 245 

infarct transmurality and endocardial extent, microvascular obstruction, and plasma aldosterone 246 

levels.94 Early values were a significant predictor of cardiovascular death and heart failure over 247 

the following 30 days after STEMI, independent of baseline characteristics or NT-proBNP levels 248 

and, in combination with NT-proBNP, improved risk stratification.93, 95 Interestingly, unlike NT-249 

proBNP, sST2 levels on presentation were not associated with clinical conditions linked to 250 

increased LV wall stress, such as age, hypertension, previous MI, or prior MI; however, higher 251 

levels were associated with diabetes mellitus.93   252 

In a recent report on multimarker risk stratification for STEMI involving upwards of 1258 253 

patients enrolled in the Clopidogrel as Adjunctive Reperfusion Therapy-­‐Thrombolysis in 254 

Myocardial Infarction 28 (CLARITY-­‐TIMI 28) trial, sST2 was a significant predictor of heart 255 

failure or short-­‐term cardiovascular death (out to 30 days) along with two other biomarkers, 256 

troponin T and myeloperoxidase (MPO).96 Soluble ST2 had greater prognostic value than hs-257 

cTnI for 30 day cardiac mortality in both STEMI and NSTEMI patients.97 Another study showed 258 

that elevated sST2 levels with STEMI were associated with increased all-cause mortality up to 1 259 

year and improved risk stratification using a multi-marker approach.98   260 

sST2 levels were reported to be elevated in patients with STEMI and NSTEMI, with 261 

levels markedly higher in those with STEMI. 88 In addition, the highest quintile of sST2 predicted 262 

mortality in patients with STEMI, but not those with NSTEMI. Others reported that elevated 263 

sST2 predicated long-term major adverse event in NSTEMI patients, but did not improve risk 264 
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stratification for established markers.99 In a recent study of 1401 first-ever MI patients involving 265 

mostly (79%) NSTEMI, higher sST2 values were associated with increased risk of death and 266 

heart failure over a 5 year follow-up, independent of other prognostic indicators. In this study, 267 

higher values of sST2 were associated with age, female sex, and hypertension, in addition to 268 

diabetes mellitus.100  Findings of a cross-sectional, population-based study revealed that sST2 269 

also positively correlates with markers of type 2 diabetes and endothelial dysfunction, but not 270 

established cardiovascular risk factors.10 This suggests that activated/stressed vascular 271 

endothelial cells are the source of sST2 in diabetes. While pathology-related increases in 272 

circulating sST2 have clinical value, others reported that sST2 levels in healthy men and women 273 

added little long-term predictive information for cardiovascular events or all-cause mortality.101 274 

Overall, there is strong evidence for the diagnostic and/or prognostic utility of sST2 in 275 

CAD and MI (both STEMI and NSTEMI), particularly in combination with established 276 

biomarkers. Key studies supporting this conclusion are listed in Table 2. The observation that 277 

circulating levels of IL-33 and sST2 exhibit an opposite pattern of change with increasing 278 

severity of CAD event, together with MI preclinical studies (see below), underpins the 279 

conclusion that enhancing cardiovascular activity of IL-33 may be beneficial for limiting 280 

cardiovascular events.   281 

 282 

Table 2. Utility of IL-33 and sST2 as biomarkers for cardiovascular diseases 283 
 284 
Diagnosis	
   Biomarker	
   Outcome/Prognosis	
  

Coronary	
  Artery	
  
Disease	
  (CAD)	
  -­‐	
  
General	
  

IL-­‐33	
  

Serum	
  levels	
  lower	
  in	
  patients	
  with	
  stable	
  angina,	
  and	
  even	
  
lower	
  in	
  patients	
  with	
  acute	
  coronary	
  syndrome	
  (ACS)85	
   
Elevated	
  MMP-­‐28	
  and	
  decreased	
  IL-­‐33	
  in	
  CAD	
  patients	
  
correlate	
  with	
  disease	
  severity	
  86	
  
Differential	
  IL-­‐33	
  and	
  IL-­‐6	
  expression	
  reported	
  for	
  those	
  with	
  
ACS	
  or	
  stable	
  CAD87	
  
No	
  difference	
  in	
  those	
  with	
  ACS	
  vs.	
  stable	
  CAD,	
  although	
  
highest	
  quintile	
  predicted	
  mortality	
  in	
  patients	
  with	
  STEMI	
  88	
  

	
  
	
  

Increased	
  levels	
  in	
  patients	
  with	
  ACS	
  vs.	
  patients	
  with	
  stable	
  
CAD	
  and	
  normal	
  controls	
  88	
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sST2	
   sST2	
  not	
  correlated	
  with	
  stable	
  CAD	
  severity,	
  but	
  higher	
  
levels	
  independent	
  predictor	
  for	
  all-­‐cause	
  mortality	
  and	
  
cardiovascular	
  death	
  7 

Only	
  sST2	
  and	
  hs-­‐CRP	
  predicted	
  cardiac	
  death	
  or	
  heart	
  
failure	
  hospitalization	
  in	
  both	
  diabetics	
  and	
  nondiabetics	
  
with	
  CAD90	
  	
  
Higher	
  levels	
  independently	
  predicted	
  short-­‐	
  and	
  long-­‐term	
  
risks	
  for	
  total	
  mortality,	
  and	
  short-­‐term	
  risk	
  for	
  fatal	
  
cardiovascular	
  events91	
  
Higher	
  levels	
  associated	
  with	
  increased	
  all-­‐cause	
  and	
  
cardiovascular	
  mortality102	
  

STEMI	
   sST2	
  

Levels	
  correlated	
  positively	
  with	
  	
  heart	
  damage92,	
  93	
  	
  
Positively	
  correlated	
  with	
  infarct	
  size	
  and	
  expansion,	
  as	
  well	
  
as	
  greater	
  infarct	
  transmurality	
  and	
  endocardial	
  extent,	
  
microvascular	
  obstruction,	
  and	
  plasma	
  aldosterone	
  94	
  	
  
Early	
  values	
  predict	
  increased	
  mortality	
  and	
  heart	
  failure	
  
over	
  subsequent	
  30	
  days,	
  independent	
  of	
  baseline	
  
characteristics	
  or	
  NT-­‐proBNP	
  levels;	
  improved	
  risk	
  
stratification	
  in	
  combination	
  with	
  NT-­‐proBNP93,	
  95	
  
Predictor	
  of	
  heart	
  failure	
  or	
  short-­‐term	
  cardiovascular	
  death	
  
along	
  with	
  troponin	
  T	
  and	
  MPO96	
  	
  
Greater	
  prognostic	
  value	
  than	
  hs-­‐cTnI	
  for	
  30	
  day	
  cardiac	
  
mortality	
  in	
  both	
  STEMI	
  and	
  NSTEMI	
  patients	
  97	
  	
  
Elevated	
  levels	
  associated	
  with	
  increased	
  all-­‐cause	
  mortality	
  
out	
  to	
  1	
  year	
  and	
  improved	
  risk	
  stratification	
  in	
  multi-­‐marker	
  
approach98	
  	
  

NSTEMI	
   sST2	
  

Elevated	
  sST2	
  predicated	
  long-­‐term	
  major	
  adverse	
  event	
  but	
  
did	
  not	
  improve	
  risk	
  stratification	
  for	
  established	
  markers99	
  
Elevated	
  sST2	
  associated	
  with	
  increased	
  risk	
  of	
  death	
  and	
  
heart	
  failure	
  over	
  next	
  5	
  years,	
  independent	
  of	
  other	
  
prognostic	
  indicators;	
  higher	
  values	
  associated	
  with	
  age,	
  
female	
  sex,	
  hypertension,	
  and	
  diabetes100	
  
Higher	
  levels	
  associated	
  with	
  adverse	
  outcomes	
  at	
  30	
  days	
  
and	
  1	
  year;	
  improved	
  risk	
  stratification	
  in	
  CVD	
  and	
  heart	
  
failure	
  at	
  30	
  days	
  and	
  1	
  year	
  when	
  levels	
  added	
  to	
  
established	
  clinical	
  biomarkers103	
  
Elevated	
  levels	
  predict	
  mortality	
  at	
  1	
  year;	
  independent	
  of	
  
CV	
  comorbidities	
  or	
  risk	
  factors	
  such	
  as	
  age,	
  renal	
  function,	
  
and	
  diabetes104	
  

Stroke	
  

IL-­‐33	
  

Elevated	
  in	
  acute	
  ischemic	
  stroke;	
  lower	
  levels	
  associated	
  
with	
  greater	
  stroke	
  severity	
  and	
  large	
  infarct;	
  levels	
  higher	
  in	
  
patients	
  with	
  favorable	
  outcome;	
  levels	
  independent	
  
predictor	
  for	
  functional	
  outcome105	
  

sST2	
  
Higher	
  sST2	
  at	
  admission	
  associated	
  with	
  all-­‐cause	
  mortality	
  
90	
  days	
  after	
  acute	
  ischemic	
  stroke,	
  but	
  no	
  prognostic	
  value	
  
in	
  multivariate	
  analysis106	
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Atherosclerosis	
  

IL-­‐33	
  

Increased	
  expression	
  in	
  plaques;	
  promotes	
  leukocyte	
  
adhesion	
  to	
  	
  endothelial	
  cells	
  and	
  induces	
  adhesion	
  
molecules	
  and	
  CCL2	
  in	
  endothelial	
  cells	
  107	
  
Induces	
  expression	
  of	
  CXCL1	
  chemokine108	
  

ST2L	
   Similar	
  	
  ST2L	
  expression	
  in	
  atherosclerotic	
  plaques	
  of	
  
asymptomatic	
  and	
  symptomatic	
  patients	
  on	
  T	
  cells	
  and	
  
endothelial	
  cells	
  of	
  neo-­‐angiogenic	
  vessels;	
  more	
  ST2L	
  in	
  
macrophages	
  of	
  symptomatic	
  patients109	
  

sST2	
  

Identified	
  as	
  risk	
  factor	
  for	
  subclinical	
  atherosclerosis;	
  levels	
  
positively	
  correlated	
  with	
  standard	
  atherosclerosis	
  risk	
  
factors	
  110	
  

Diabetes/Obesity	
  

sST2	
  

Blood	
  levels	
  positively	
  associated	
  with	
  hypertension	
  and	
  
diabetes4	
  
Levels	
  correlate	
  with	
  markers	
  of	
  type	
  2	
  diabetes	
  and	
  
endothelial	
  dysfunction,	
  but	
  not	
  established	
  cardiovascular	
  
risk	
  10	
  
Levels	
  elevated	
  with	
  obesity,	
  suggesting	
  attenuation	
  of	
  
beneficial	
  actions	
  of	
  IL-­‐33	
  in	
  obesity	
  111	
  
Higher	
  levels	
  in	
  type	
  2	
  diabetes	
  4,	
  10,	
  112-­‐114	
  
Positive	
  association	
  of	
  levels	
  with	
  risk	
  factors	
  for	
  diabetes	
  
after	
  adjusting	
  for	
  age	
  and	
  sex;	
  highest	
  increases	
  	
  associated	
  
with	
  increased	
  risk	
  for	
  diabetes	
  9	
  
Association	
  of	
  hs-­‐TnT	
  and	
  sST2	
  with	
  cardiovascular	
  and	
  all-­‐
cause	
  mortality	
  during	
  ~5	
  year	
  follow-­‐up	
  among	
  diabetics	
  115	
  
Levels	
  among	
  diabetics	
  increased	
  further	
  by	
  LV	
  diastolic	
  
dysfunction113,	
  116	
  
Association	
  of	
  severe	
  obesity	
  with	
  increased	
  expression	
  in	
  
endothelial	
  cells	
  of	
  human	
  adipose	
  tissue111	
  

Il-­‐33	
  

Levels	
  lower	
  in	
  non-­‐lean	
  vs.	
  lean	
  individuals,	
  and	
  negatively	
  
correlated	
  with	
  BMI	
  and	
  body	
  weight	
  in	
  those	
  lean	
  and	
  
overweight,	
  but	
  not	
  obese;	
  117	
  negatively	
  correlated	
  with	
  
HbA1c	
  in	
  non-­‐diabetic	
  persons,	
  and	
  associated	
  with	
  
protective	
  lipid	
  profile	
  
Severe	
  obesity	
  associated	
  with	
  increased	
  expression	
  in	
  
endothelial	
  cells	
  of	
  human	
  adipose	
  tissue	
  111	
  

 285 

 286 

Pathophysiological role of IL-33/ST2 signaling in preclinical studies of myocardial 287 

infarction  288 

The strong association between increased circulating levels of sST2 and poor prognosis 289 

in patients with MI provides circumstantial evidence for a protective role of IL-33 in the heart 290 
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under stress that is borne out by preclinical studies. Biomechanical strain induces expression of 291 

sST2 and IL-33 in both cardiac myocytes and fibroblasts, with cardiac fibroblasts being more 292 

responsive.118 Similarly, IL-33 was mostly expressed by interstitial cells (likely myofibroblasts) in 293 

pressure overloaded mouse hearts.118 Levels of IL-33 in human adult cardiac myocytes and 294 

fibroblasts are also increased by inflammatory cytokines.11 IL-33 was found to protect neonatal 295 

rat cardiomyocytes from cell hypoxia-induced caspase-3 cleavage and apoptosis, and this was 296 

associated with increased expression of anti-apoptotic proteins (XIAP, cIAP1, survivin, Bcl-xL, 297 

and Bcl-2).119 The addition of sST2 blocked these protective actions of IL-33. Others reported 298 

evidence for the attenuation of ROS generation by IL-33, and the subsequent sequential 299 

activation of PKCβII and JNK, in the protection of neonatal mouse cardiomyocytes from 300 

apoptosis after anoxia/reoxygenation.120  301 

In vivo preclinical evidence also indicates that IL-33 protects the heart from infarction. IL-302 

33 treatment was found to decrease fibrosis, infarct size, and apoptosis after ischemia-303 

reperfusion (I/R) in the rat and improve cardiac function.119 In addition, IL-33 reduced ventricular 304 

dilation, improved contractile function, and increased survival following coronary artery ligation 305 

in wild type, but not in ST2-/- mice.119 IL-33 treatment was associated with a decrease in mast 306 

cell density in the infarct area, as well as an increase in Th2 and decrease in Th1 genes in the 307 

infarct. Many of these beneficial actions of IL-33 are probably secondary effects on the 308 

myocardium, since as discussed IL-33 by itself may have pro-fibrotic actions. In addition, IL33 309 

activates mast cells and a reduction in cardiac mast cells was reported to attenuate myocardial 310 

contractility after MI.121 Thus, the reduction of mast cells in the study of Seki K et al.119 is 311 

probably secondary to general reduction of inflammation and unrelated to improved cardiac 312 

contractility. 313 

Another study on MI (permanent LAD occlusion) in mice also reported similar beneficial 314 

effects of post-treatment with IL-33 on cardiac function and structure, as well as reduced 315 

myocardial macrophage infiltration and inflammatory cytokine production, and suppression of 316 
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p38 MAPK and NF-κB activation.75  However, the exact involvement of p38 MAPK signaling in 317 

the cardioprotective actions of IL-33 is likely a matter of timing and model of injury. Others 318 

recently implicated activation of p38 MAPK in the anti-apoptosis and anti-inflammatory actions 319 

of pre-treatment with IL-33 in protecting the heart, including decreased expression of the 320 

cytokine/alarmin high mobility group box 1 protein (HMGB1), in a rat model of I/R-induced 321 

cardiac injury.122  322 

Diabetes mellitus increases the vulnerability of the heart to I/R-induced injury. This has 323 

been attributed in part to increased PKCβII activity, which is enhanced by diacylglycerol 324 

(DAG).123 Cellular levels of DAG are in turn regulated by DAG kinase (DGK), which catalyzes its 325 

conversion to phosphatidic acid. Diabetes-related exaggerated apoptosis and dysfunction of the 326 

myocardium that is observed with I/R was attributed to increased PKCβII activity due to reduced 327 

expression of DGK-zeta.123 The later was linked to reduced levels of IL-33, which was shown to 328 

induce DGK-zeta expression in the heart and isolated cardiomyocytes. Thus, IL-33 may 329 

negatively regulate PKCβII activity in cardiac myocytes both by attenuating oxidative stress and 330 

by enhancing expression of DGK-zeta. Evidence was reported that the reduced IL-33 levels in 331 

the diabetic heart result from high glucose-induced secretion of HMGB1 from cardiac 332 

myocytes.124 HMGB1 in turn stimulates TLR4 receptors on fibroblasts to reduce their IL-33 333 

production, thereby leading to enhanced collagen production and cardiac fibrosis. However, the 334 

means by which IL-33 suppresses fibrosis in the heart is not known and likely indirect. 335 

Surprisingly, IL-33 was found not to directly inhibit collagen I/III or periostin production by adult 336 

rat cardiac fibroblasts, or their proliferation; rather, IL-33 stimulated expression of cytokines and 337 

chemokines (IL-6 and CCL-2) associated with cardiac inflammation and fibrosis, although the 338 

migratory ability of the cardiac fibroblasts was attenuated.125 Interestingly, in a mouse infarction 339 

model, myocyte-targeted ablation of TGFβ signaling markedly augmented IL-33 expression in 340 

what appeared to be perivascular interstitial cells, but no impact on collagen deposition in the 341 

infarct was seen.126 342 
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In summary, despite the fact that stressed and injured cardiac myocytes may secrete IL-343 

33, they produce factors (e.g., HMGB1) that reduce IL-33 production by cardiac fibroblasts, 344 

which may favor ROS-induced PKCβII/JNK activation, inflammatory cytokine and apoptosis 345 

gene expression. Several rodent studies reported a protective effect of IL-33 supplementation 346 

on the heart, delivered either before or after MI, which is attributable to reduced ROS 347 

production. The cell type(s) mediating the cardioprotective effects of IL-33 is (are) not yet 348 

defined. Paradoxically, Abston et al.  have reported that IL-33 treatment in healthy mice induces 349 

inflammatory cytokines in the heart, and independently induces eosinophilic pericarditis and 350 

impairs heart function.127 Strain differences or dosing regimen cannot explain the discrepant 351 

findings between this study and the ones involving MI, so other factors such as diet, surgical 352 

procedure, pre-existing injury, need to be considered. In any event, the findings of Abston et al. 353 

caution against taking a broad approach in IL-33 delivery for protecting the infarcted heart.    354 

 355 

IL-33/ST2 signaling in the pathophysiology and clinical outcome of stroke 356 

In patients (n = 206) who suffered acute ischemic stroke, serum IL-33 levels were 357 

elevated; however, lower levels were associated with greater stroke severity and large infarction 358 

volume. Levels were higher in patients with a favorable outcome, and IL-33 levels were an 359 

independent predictor for functional outcome.105 On the other hand, higher sST2 at the time of 360 

admission was reported to be associated with all-cause mortality 90 days after acute ischemic 361 

stroke (n = 721), but did not offer prognostic value in multivariate analysis.106  Larger, 362 

adequately powered and well-designed studies across multiple centers with proper controls are 363 

needed to assess the prognostic value of IL-33/sST2 in ischemic stroke.    364 

In preclinical models, treatment with IL-33 was shown to be protective in ischemic 365 

stroke128, 129 and spinal cord injury130 by causing a shift towards the M2 microglial/macrophage 366 

cell phenotype and attenuating inflammation. Expression of IL-33 in oligodendrocytes and 367 

astrocytes increases with ischemic injury in the mouse, along with ST2L expression in microglia 368 



17 
 

and astrocytes. Yang et al.131 provided evidence that the neuroprotective actions of IL-33 in 369 

ischemic stroke are due in part to its stimulation of anti-inflammatory cytokine IL-10 production 370 

by microglia cells.  371 

In summary, despite serum IL-33 being increased in ischemic stroke, an association of 372 

lower IL-33 and higher sST2 with worse outcome was observed. Although based on a single 373 

study, this is consistent with the idea that in ischemic stroke IL-33 has protective actions that are 374 

dampened by sST2 (Table 2), as supported by animal studies. However, by themselves early 375 

serum IL-33 levels may reflect mostly the extent of injury, rather than serving as a measure of 376 

the extent of protection mounted. Paradoxically, its induced target sST2 is likely a gauge of both 377 

extent of injury and blockade of protection. For that reason and technical issues previously 378 

discussed, greater confidence ought to be placed in reported sST2 values in MI and stroke 379 

studies.     380 

 381 

Genetic variants in IL-33 and ST2 genes and relationship with CAD 382 

 A prospective study of 2,991 Framingham Offspring Cohort participants revealed that 383 

much of the variation in sST2 production among individuals is due to genetic factors.132 The 384 

IL1RL1 gene encodes for both the membrane-bound receptor isoform (ST2L) and the soluble 385 

protein (sST2) through alternative promoter activation and splicing.133 Multiple single-nucleotide 386 

polymorphisms (SNPs) within IL1RL1 were found to correlate with sST2 levels in a genome-387 

wide association study, and five missense variants mapping to the intracellular domain of ST2L, 388 

which is not present in sST2, correlated with higher sST2 levels.132 Experiments on cultured cell 389 

lines expressing the intracellular variants attributed the increase in sST2 levels to an autocrine 390 

loop of increased IL-33 induction and enhanced ST2L responsiveness. Briefly, increased sST2 391 

was ascribed to (a) increased induction of IL-33 by ST2L because of enhanced NF-κB and AP1 392 

signaling, which also selectively activated the proximal promoter of IL1RL1 linked to sST2 393 

expression, and (b) a selective increase in ST2L expression due to an increase in endogenous 394 
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IL-1β levels resulting from enhanced constitutive ST2L-mediated inhibition of a 395 

counterregulatory PI3K/AKT/mTOR signaling axis that attenuates IL-1β levels. In light of the 396 

recently reported outcome of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study 397 

(CANTOS), 134, 135 the potential synergistic interplay between IL-1β and IL-33 in vivo merits 398 

investigation.   399 

An earlier study linked two polymorphisms in the distal promoter of IL1RL1 that drives 400 

ST2L expression to enhanced CAD severity, but no sST2 measurements were made.136 401 

Another SNP in IL1RL1 was linked to increased risk for CAD without defining its functional 402 

impact.137 Yet another SNP of IL1RL1 was associated with lower circulating sST2 levels; 403 

however, in affected individuals with CAD or peripheral artery disease, increased sST2 levels 404 

were an independent predictor of all-cause mortality by multivariable Cox regression analysis, 405 

but not for secondary endpoints of CV death, MI, hospitalization for heart failure, stroke, and 406 

amputation.138 Unfortunately, the impact of this SNP on IL-33 levels or ST2L expression was not 407 

determined. An SNP within the promoter region of the IL-33 gene was associated with 408 

increased circulating levels of IL-33 and increased risk for CAD.137 Another IL-33 gene 409 

polymorphism that was linked to decreased IL-33 production was associated with a decreased 410 

risk for developing premature CAD or central obesity.139 Others reported the opposite effect of 411 

this SNP genotype on serum IL-33 levels in patients with rheumatoid arthritis and thus no causal 412 

relationship can be drawn.140 In addition, a direct causal relationship between IL-33 levels and 413 

CAD is not established as neither of the studies on IL-33 gene variants reported values of sST2. 414 

Nonetheless, an SNP in the IL-1RAcP gene was also linked to CAD risk.141  415 

 In summary, limited reports suggest that genetic variants in or around the IL1RL1 gene 416 

are associated with differences in expression levels of both sST2 and ST2L, as well as IL-33. 417 

Polymorphisms in the gene cluster within which IL1RL1 resides have been associated with a 418 

number of immune and inflammatory conditions,132 but more extensive GWAS are needed to 419 
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establish a causal link between IL1RL1 variants and CAD. This is the case for the IL-33 gene as 420 

well. 421 

 422 

Mechanistic insights into the role of IL-33/sST2 in atherosclerosis  423 

 Increased IL-33 expression has been detected in human atherosclerotic plaques, 424 

emphasizing the importance of IL-33 in vascular biology and remodeling (Fig. 3).107 425 

Atherosclerosis is characterized by a chronic arterial wall inflammation that plays a major role in 426 

atheroma formation.142 The presence of oxidized low-density lipoproteins (ox-LDL) in the vessel 427 

induces the production of pro-inflammatory mediators like cytokines and growth factors from 428 

surrounding tissues that further fuel the inflammatory response and atherosclerosis 429 

progression.143 Miller at al. revealed that IL-33 administration to ApoE-/- model of atherosclerosis 430 

in mice, induced a shift from the Th1 pro-atherosclerotic immune response to a Th2 protective 431 

and pro-resolving immune response by significantly increasing Th2 cytokine production (IL-4, IL-432 

5 and IL-13) and decreasing IFNγ levels, a typical Th1 cytokine.144 Th1 to Th2 polarization 433 

resulted in a reduction of aortic atherosclerotic lesions when compared to vehicle-treated 434 

group.144 Of note, atherosclerotic plaque formation and progression is multifactorial and T cell 435 

infiltration can either increase (Th1) inflammation in plaques or decrease (Th2/Treg) it 436 

depending on the dominant phenotype.145 In addition to polarizing effects, IL-33 increased levels 437 

of atheroprotective natural IgM type anti-ox-LDL antibodies suggesting a potential effect on B1 438 

cells. Neutralizing IL-33 effects via sST2 administration to ApoE-/- mice resulted in aortic plaque 439 

expansion when compared to control IgG-treated group. Additionally, blocking IL-5 with a 440 

neutralizing antibody negated the protective effect of IL-33 and dampened the production of ox-441 

LDL antibodies suggesting that IL-5 might have a key role in the atheroprotective effect of IL-442 

33.144 In vitro studies on the other hand, showed that IL-33 atheroprotection might have 443 

occurred via inhibition of macrophage foam cell formation through decreased acetylated LDL 444 

and ox-LDL uptake and enhanced cholesterol efflux.146  Recently, the ability of IL-33 to protect 445 
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macrophage-derived foam cells from cholesterol overload was attributed to the induction of IL-446 

10, which helped IL-33 in an autocrine manner to increase expression of ATP-binding cassette 447 

transporter (ABCA1), potentially promoting cholesterol efflux.147  448 

Multiple lines of evidence support the concept that IL-33 may also be atheroprotective by 449 

engaging ILC2s and activating downstream type 2 immunity, mainly IL-5 and IL-13.148, 149 IL-5 450 

may stimulate B1 cell proliferation and production of atheroprotective natural IgM antibodies 451 

against the phosphorylcholine (PC) head group of oxidized phospholipids within LDL.149-151 452 

Besides inducing the expansion of ILC2s, recent evidence indicates that IL-33 promotes the 453 

egress of ILC2s from the bone marrow and possibly from secondary lymphoid organs,152 which 454 

further lends weight to the idea that administration of IL-33 at pharmacological levels may be 455 

necessary to reveal its role in atherosclerosis. Consistent with this possibility, loss of either 456 

endogenous IL-33 or its receptor ST2 was found to have no impact on development of 457 

atherosclerosis in ApoE-deficient mice.153 Activated ILC2s may also attenuate the progression 458 

of atherosclerosis by producing IL-13, which polarize macrophages towards the “M2” like 459 

phenotype.154 In addition, the actions of ILC2s in regulating adipose tissue homeostasis and 460 

limiting obesity (see Obesity and type 2 diabetes) may be an additional means by which IL-33 461 

exerts atheroprotective effects.   462 

IL-33 may also contribute to an increase in Treg cells, which exert anti-atherogenic 463 

effects by limiting both adaptive and innate immune responses.155-157 This function of IL-33 may 464 

be compromised in atherosclerosis due to both increased serum levels of sST2 and reduced 465 

levels of CD4+ST2+ cells.158 Recent evidence shows that expression of ST2 is also a feature of 466 

a sizable number of tissue-resident Treg cells that are important for tissue repair and promoting 467 

organ homeostasis.159 Their expansion and activation is stimulated by IL-33.159, 160 These ST2+ 468 

Tregs exert anti-inflammatory actions and suppress CD4 T cell proliferation through the release 469 

of IL-10 and TGF-β.161  This pool of Treg cells is especially prominent in visceral adipose tissue, 470 

where Treg cells support metabolic functions and possibly adipocyte differentiation.162, 163 471 
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 Little information is available concerning the expression pattern of the IL-33/ST2L axis 472 

within the atherosclerotic plaque. In an immunohistochemical study on endarterectomy samples, 473 

Marzullo et al.109 observed that ST2L was expressed in atherosclerotic plaques to a similar 474 

extent in asymptomatic and symptomatic patients on both T cells and endothelial cells of neo-475 

angiogenic vessels (much more so than the endothelial cells covering the residual lumen of the 476 

vessel). In contrast, expression of ST2L on macrophages was more remarkable in symptomatic 477 

patients. Based on these observations, the authors hypothesize that the IL-33/ST2L axis drives 478 

plaque development and eventual rupture; however, the sample size in their study was small, 479 

and causality was not studied. Others have recently suggested that IL-33 may contribute to 480 

plaque progression in part by inducing expression of the chemokine CXCL1 (see Vascular 481 

inflammation).108 On the other hand, in patients with primary hypertension, a major risk factor 482 

for atherosclerosis, circulating levels of sST2 were found to be high, whereas IL-33 levels were 483 

low.110 Moreover, sST2 was identified as a risk factor for subclinical atherosclerosis and its 484 

levels were positively correlated with the standard atherosclerosis risk factors, LDL cholesterol, 485 

C-reactive protein (CRP), and carotid intima-media thickness.110   486 

 The overall evidence supports the conclusion that IL-33 has atheroprotective effects. 487 

Several mechanisms may explain these actions. These include a shift in T cell polarization from 488 

Th1 to Th2 and an increase in Treg cells, increased levels of natural IgM anti-ox-LDL 489 

antibodies, inhibition of macrophage foam cell formation, stimulation of ILC2s, and polarization 490 

of macrophages towards the “M2” like phenotype. 491 

  492 

Vascular inflammation 493 

Several studies have reported direct pro-inflammatory effects of IL-33 on endothelial 494 

cells. For instance, IL-33 induces the secretion of the inflammatory cytokines IL-6 and IL-18 495 

from human umbilical vein endothelial cells (HUVECs),164 as well as the expression of 496 

chemoattractants for leukocytes (CXCL1 and CCL2).108 Also, IL-33 promotes the adhesion of 497 
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human leukocytes to human endothelial cells and induces vascular cell adhesion molecule-1, 498 

intercellular adhesion molecule-1, endothelial selectin, and CCL2 mRNA and protein expression 499 

in human coronary artery and umbilical vein endothelial cells in vitro and human explanted 500 

atherosclerotic plaques ex vivo.107 These effects of IL-33 on endothelial cells and immune cells 501 

may explain why increased IL-33 serum levels after coronary stent implantation are associated 502 

with coronary in-stent restenosis,165 as leukocyte activation is a critical step in development of 503 

restenosis after PCI.166 Interestingly, Pollheimer et al.167 observed that the pro-inflammatory 504 

actions of IL-33 on cultured HUVECs was greater in proliferating cells and correlated with ST2L 505 

receptor levels. Their observations are consistent with the previously mentioned findings of 506 

Marzullo et al.109 on endarterectomy samples of human carotid atherosclerotic plaques.  507 

Other studies have demonstrated that IL-33 promotes angiogenesis and vascular 508 

permeability in vitro and in vivo, notably within the context of inflammation.168-173 The pro-509 

inflammatory actions of IL-33 on the vasculature, and endothelial cells in particular, may 510 

contribute to the pathogenesis of giant-cell arteritis (GCA), which is an inflammatory disease of 511 

blood vessels that occurs in the elderly. The exact basis for GSA is uncertain, but ageing-512 

related alterations in the immune system in genetically predisposed individuals seem to be 513 

involved.174 Recently, increased expression of both IL-33 and ST2, chiefly in endothelial cells of 514 

newly formed vessels, was found in GCA arteries.175 IL-33 expression correlated with the 515 

degree of vessel wall inflammation and was reduced in arteries from steroid-treated GCA 516 

patients.  In addition, a positive association was observed between IL-33 and the numbers of 517 

neovessels, suggesting that IL-33 participates in the pathogenesis of angiogenesis-dependent 518 

inflammation in GCA. Although no Th2 cytokines were detectable, expression levels of IL-33 519 

correlated with the presence of M2 macrophages, the latter being reported to promote 520 

angiogenesis in vivo.176 Recently, the rs7025417 polymorphism in the IL-33 gene, which was 521 

noted to be associated with increased IL-33 plasma levels, was identified as a risk factor for 522 
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GCA in a large meta-analysis involving a total of 1,363 biopsy-proven GCA patients and 3,908 523 

healthy controls from four European cohorts.177  524 

 GCA and other inflammatory or infectious conditions increase the risk for having an 525 

acute aortic dissection. Other risk factors include hypertension, smoking, atherosclerosis, and 526 

certain genetic diseases. In a recent large retrospective study with a prospective validation 527 

cohort, sST2 was found to have overall superior diagnostic utility for detecting acute aortic 528 

dissection among emergency room patients with sudden-onset severe chest pain, which is 529 

easily misdiagnosed.178 This finding and those related to GSA and diabetes (see IL-33 and 530 

sST2 as biomarkers in coronary artery disease and myocardial infarction and Obesity 531 

and type 2 diabetes) highlight the utility of IL-33/sST2 as a biomarker of vascular health. 532 

In summary, IL-33 has been implicated in vascular inflammation via upregulation of 533 

adhesion molecules and chemokines for leukocytes. The pro-inflammatory actions of IL-33 on 534 

endothelial cells contribute to the pathogenesis of GCA, and are seemingly more prominent in 535 

angiogenesis. Further studies are needed to establish the role IL-33-induced endothelial 536 

inflammation in restenosis, as well as plague and post-ischemic neoangiogenesis. 537 

  538 

Obesity and type 2 diabetes  539 

 Obesity and its common consequence, type 2 diabetes are major risk factors for 540 

cardiovascular disease that are marked by chronic systemic and vascular inflammation. 179, 180 541 

Obese adipose tissue is characterized by an inflammatory immune environment consisting of 542 

classically activated M1 macrophages, cytotoxic T cells, and pro-inflammatory Th1-type 543 

cytokines (such as, TNF-α and IFN-γ).181 In contrast, lean fat tissue is characterized by an anti-544 

inflammatory environment of alternatively activated M2 macrophages, eosinophils, Th2 cells, 545 

Tregs, and ILC2s, along with anti-inflammatory Th2-type cytokines (such as, IL-4, IL-5, IL-9, and 546 

Il-13). IL-33 was recently shown to regulate white adipose tissue (WAT) homeostasis, a process 547 

that when dysregulated results progressively in the pro-inflammatory state, obesity, insulin 548 
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resistance, and the metabolic syndrome.77 Production of IL-33 by WAT is stimulated by the 549 

sympathetic nervous system, with IL-33 exerting positive reinforcement by inducing the 550 

upregulation of tyrosine hydroxylase, a rate-limiting enzyme in catecholamine biosynthesis.182 551 

Compared to wild type mice fed a high fat diet, ST2 knockout mice fed a high fat diet have a 552 

higher body weight and greater fat mass, along with more impaired insulin secretion and 553 

glucose tolerance.183 The major orchestrators in the actions of IL-33 on adipocyte function and 554 

metabolic homeostasis in both rodents and humans are ILC2s, which may actually be the major 555 

source of the type 2 cytokines in WAT, rather than Th2 cells.184, 185 IL-33 that is released most 556 

likely by adipose tissue endothelial cells, and perhaps adipocytes themselves, maintains ILC2 557 

cells in WAT and stimulates them to initiate a number of actions that limit adiposity by increasing 558 

caloric expenditure.77, 185, 186 The overall process is known as beiging or browning of WAT and 559 

involves upregulation of uncoupling protein 1 (Ucp-1) in adipocytes.77 ILC2 cells were proposed 560 

to recruit eosinophils and M2 macrophages, which support optimal beiging of WAT through the 561 

release of type 2 cytokines. ILC2 cells also produce methionine-enkephalin peptides that 562 

directly act on adipocytes to promote beiging.184 IL-33 may also exert positive regulatory actions 563 

on WAT mass and milieu via the development and maintenance of ST2+ visceral adipose 564 

tissue-Treg cells, which are diminished in obese mice and implicated in preserving insulin 565 

sensitivity and glucose tolerance through dampening actions on pro-inflammatory M1 566 

macrophages and CD8+ T cells.162  On the other hand, while M1 macrophage-driven 567 

inflammation subserves obesity-associated insulin resistance, fat-resident ST2+ Treg cells have 568 

been implicated in promoting age-associated insulin resistance.187 One possible explanation 569 

would be that some degree of inflammation is favorable for adipose tissue remodeling and 570 

metabolic function.    571 

 Serum IL-33 levels are lower in non-lean individuals compared to those who are lean, 572 

and negatively correlated with BMI and body weight in those who are lean and overweight, but 573 

not obese.117 In addition, IL-33 was found to be negatively correlated with HbA1c in non-diabetic 574 
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persons, but not diabetics, and to be associated with a protective lipid profile. On the other 575 

hand, severe obesity is associated with increased expression of both IL-33 and ST2 in 576 

endothelial cells of adipose tissue of both humans and mice, although the significance of this 577 

observation to endothelial function or inflammation is unclear.111 Plasma sST2 levels are also 578 

reported to be elevated with obesity in humans, suggesting an attenuation of the beneficial 579 

actions of IL-33 in obesity.111  Several studies report higher circulating sST2 levels in individuals 580 

with type 2 diabetes.4, 10, 112-114 A recent study reported a positive association between sST2 581 

levels and various risk factors for developing diabetes after adjusting for age and sex and 582 

implicated the highest increases in sST2 with increased risk for developing diabetes.9 Among 583 

diabetic patients, only hs-TnT and sST2 were found to be independently associated with 584 

cardiovascular and all-cause mortality during a ~5 year follow-up.115 Levels of sST2 among 585 

diabetics are increased further by LV diastolic dysfunction.113, 116  586 

In summary, IL-33 has been shown to limit adiposity by increasing caloric expenditure 587 

via ILC2s and prevents insulin resistance and impaired glucose tolerance by taming WAT 588 

inflammation via WAT Tregs. Plasma sST2 levels are increased with obesity and are a risk 589 

factor for development of type 2 diabetes. Increased circulating sST2 in type 2 diabetes may be 590 

reflective of microvascular endothelial inflammation. 591 

 592 

Unresolved issues and future directions 593 

Accumulating evidence supports the conclusion that sST2 is a biomarker of vascular 594 

health with diagnostic and/or prognostic value in various cardiovascular diseases, including 595 

coronary artery disease, myocardial infarction, atherosclerosis, giant-cell arteritis, acute aortic 596 

dissection, and ischemic stroke, as well as obesity and diabetes. However, the role of IL-33 is 597 

more complicated, as this alarmin may have both pro- and anti-inflammatory actions depending 598 

upon which cell type is engaged (Fig. 4). Overall, the actions of IL-33 in vivo are pleiotropic and 599 

must be viewed in pathophysiological context.   600 
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In pursuing the pharmacological potential of IL-33/ST2, it is important to acknowledge 601 

the detrimental versus protective effects of IL33/ST2 signaling. There is a need for additional 602 

experimental studies in various contexts to better comprehend the role of IL33/ST2 signaling. 603 

For example, the cell-specific effects of IL33 in vivo; the impact of the microbiota; the impact of 604 

acute injury (IL33 can be secreted after MI, and atherosclerosis can be accelerated after MI; 605 

does IL33/ST2 signaling play a distinct role in this context?), the interaction with other CV risk 606 

factors (does IL33/ST2 signaling affect atherosclerosis differently in obese or diabetic 607 

conditions?), etc. Additionally, there is a need for GWAS studies to address causality between 608 

IL33/ST2 signaling and CVD. To exploit the translational potential of IL-33/ST2-based therapies, 609 

a better understanding of differences in pharmacology between sST2 and anti-ST2 is needed.188 610 

Also, caution must be exercised in assessing the translational relevance of studies with injection 611 

of recombinant IL33, which might not reflect endogenous levels. Several strategies that aim at 612 

blocking IL33 signaling are nowadays feasible in patients. A few pharmaceutical companies are 613 

developing anti-IL33 mAb, anti-ST2, or sST2, mainly for asthma and COPD. Obviously, these 614 

approaches may lead to potential CV side effects; it might be wise to measure natural IgM anti-615 

oxLDL antibodies in these patients as the levels of those antibodies are inversely associated 616 

with CVD in humans. 617 

It is increasingly appreciated that the pathophysiological importance of IL-33 is highly 618 

dependent on cellular and temporal expression. The actions of IL-33 are likely to be pleiotropic 619 

in a dose-dependent manner, depending as well on which immune cells are activated and for 620 

how long or whether endothelial cells are engaged.  The final outcome would reflect the 621 

contribution of its protective and anti-inflammatory actions mediated by Treg cells, the 622 

inflammatory actions of various recruited immune cell types, and the injury-related response of 623 

stromal/parenchymal cells, all of which are modulated by the dampening actions exerted by 624 

sST2. In many cases, the levels of either ST2 or sST2 are positively affected by IL-33 in a dose-625 

dependent manner. IL-33 may also increase levels of myeloid-derived suppressor cells (MDSC), 626 
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which potently suppress T cell responses.189 Additional in vivo studies involving immune cell 627 

type-specific knockouts and transgenics are desired to better define the role of IL-33/ST2 axis in 628 

various diseases.  629 

The importance of spatiotemporal context in IL-33 signaling is illustrated by the actions 630 

of IL-33 on mast cells in asthma. On the one hand, IL-3 acts on mast cells via ST2 to increase 631 

bronchial hyperresponsiveness in part by boasting FcR-mediated degranulation.190 The 632 

released proteases generate forms of IL-33 with increased biological activity, thus establishing a 633 

positive feedback loop. On the other hand, mast cell sST2, which dampens the actions of IL-634 

33,2  is strongly induced by IL-33, and long-term exposure to IL-33 also induces a mast cell 635 

phenotype with decreased degranulation. Moreover, recent evidence shows that in smaller 636 

peripheral airways IL-33 protects against bronchial hyperresponsiveness by inducing PGE2 637 

formation by mast cells, which has relaxing effects on airway smooth muscle and anti-638 

inflammatory actions on mast cells.191  639 

 While ST2/IL-33 signaling in ILC2s, Tregs, and IL-10 producing B cells protects against 640 

inflammation, IL-33 clearly contributes to pathogenesis as a regulator of a type 2 immune 641 

response in certain settings (e.g., allergic diseases and asthma). Although initially beneficial in 642 

dealing with certain pathogens, chronic, excessive, or dysregulated type 2 immunity may 643 

contribute to tissue damage and fibrosis.13 As an early component of tissue injury and 644 

inflammation, IL-33 plays an important role in tissue repair, but in certain cases, IL-33 may 645 

contribute to excessive acute sterile inflammation and tissue damage. For instance, IL-33 from 646 

liver sinusoidal endothelial cells was found to exacerbate I/R-induced hepatic sterile 647 

inflammation, a contributor to organ damage in liver surgeries, by stimulating neutrophil 648 

extracellular trap formation.192 Moreover, ST2 expression by neutrophils was markedly 649 

increased by IL-33, thereby amplifying its inflammatory actions.  Both the identity of the cell type 650 

engaged and the magnitude of its response will impact on the outcome seen with IL-33.   651 

Unrecognized until recently are the different potencies of the various proteolytic forms of 652 
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extracellular IL-33 that are generated in vivo. Which forms are actually elevated in various 653 

disease conditions is largely unknown. There are great gaps also in our understanding of the 654 

nuclear roles of IL-33 and how these are coordinated with its extracellular actions. The 655 

processes involved in the secretion of IL-33 are also poorly understood. Finally, the potential 656 

actions of sST2 on its own, independent of its role as an IL-33 decoy receptor, need to be better 657 

established. 658 

In conclusion, IL-33 serves as an important local link between tissue injury or metabolic 659 

disturbances and a physiological response of limiting or repairing tissue damage. In CVD, IL-33 660 

exerts beneficial actions that are attenuated by its sST2 decoy receptor, which in many cases is 661 

induced by IL-33 and can serve as a biomarker of tissue stress/damage. IL-33 supplementation 662 

is atheroprotective and may be beneficial in treating MI and ischemic stroke. IL-33 may also 663 

prevent obesity and type 2 diabetes by regulating lipid metabolism. The mechanisms behind 664 

these beneficial actions are not fully defined, but are now known to involve Treg, ILC2 cells, and 665 

type 2 immune responses.  On the other hand, IL-33 appears to drive endothelial inflammation 666 

and angiogenesis, which is relevant to metabolic syndrome, type 2 diabetes, and GSA.  667 

Moreover, as in several pro-inflammatory and auto-immune diseases, exuberant IL-33 signaling 668 

may cause tissue damage due to recruitment/activation of mast cells or eosinophils. Thus, a 669 

cellular or targeted approach is needed to exploit the beneficial therapeutic potential of IL-33 in 670 

CVD.   671 

 672 

673 
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Figure Legends  1310 

Figure 1: Pro-IL-33 Processing:  Pro-IL-33 possesses three major domains including nuclear 1311 

domain, activation domain, and interleukin-1 like cytokine domain. Following expression, pro-IL-1312 

33 may be processed into three major forms: 1) Inactive forms, following cleavage by 1313 

caspases 3 and 7 at interleukin-1 like cytokine domain if the cell undergoes apoptosis, 2) 1314 

Regulator of transcription, following localization to the nucleus due to the presence of two 1315 

bipartite nuclear localization sequences in the nuclear domain, ubiquitination of IL-33 as well as 1316 

its association with chromatin via protein-protein interaction is implicated in its 1317 

activation/repression of transcription, and  3) Active forms, also known as cytokine or alarmin, 1318 

following cleavage by extracellular proteases including cathepsin G and elastase at the 1319 

activation domain after being released extracellularly in response to cellular necrosis or stress. 1320 

CBM; Chromatin Binding Motif, Ub; ubiquitination. 1321 

 1322 

Figure 2: IL-33 Effects Post-Activation and Release: Active IL-33 binds to sST2 and ST2L. 1323 

Upon binding to the decoy receptor sST2, the effects of IL-33 on the cardiovascular system are 1324 

neutralized or diminished, promoting use of sST2 as a prognostic biomarker. Binding to ST2L 1325 

receptor which together with the co-receptor IL-1R accessory protein (IL-1RAcP) recruits 1326 

MYD88, IRAK1, IRAK4, and TRAF6, followed by activation of multiple signaling pathways, 1327 

including ERK1/2, JNK, p38 MAPK, and NF-κB and subsequent activation and regulation of 1328 

transcription. Cytokines secretion, immunomodulation, cell proliferation, activation, and survival 1329 

contribute to observed effects of IL-33 on the cardiovascular system. IL-33 effects, although 1330 

mostly cardioprotective, vary depending on the disease state and cell type. IR; Insulin 1331 

Resistance, WAT; White Adipose Tissue, I/R; Ischemia/Reperfusion, T2D; Type II diabetes, 1332 

CAD; Coronary Artery Diseases; HF; Heart Failure, AS; Aortic Stenosis, ROS; Reactive Oxygen 1333 

Species, IBD; Inflammatory Bowel Disease, COPD; Chronic Obstructive Pulmonary Disease.  1334 

 1335 
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Figure 3: Conflicting actions of IL-33 in atherosclerosis. IL-33 has a number of actions on 1336 

endothelial and immune cells that promote inflammation and atherosclerosis. In contrast, 1337 

evidence indicates that IL-33 can act on T cells, macrophages, and B cells to attenuate plaque 1338 

development and progression. A better understanding of the temporal and spatial/cellular 1339 

factors involved in regulating the actions of IL-33 is needed to reconcile its opposing actions in 1340 

atherosclerosis.  1341 

 1342 

Figure 4: Cell-type specific pro- and anti-inflammatory actions of IL-33.  IL-33 also increases 1343 

generation of sST2 by certain cells, which serves as a decoy receptor. Note that generalized 1344 

responses are highlighted, and in some cases an opposite response may be elicited such as 1345 

mast cell-induced bronchodilation in small airways. See text for additional details. 1346 


