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Abstract

An overlap between the general relativist and particle physicist views of Einstein gravity is

uncovered. Noether’s 1918 paper developed Hilbert’s and Klein’s reflections on the conservation

laws. Energy-momentum is just a term proportional to the field equations and a “curl” term with

identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper”

conservation laws imply a generally covariant action.

Later and independently, particle physicists derived the nonlinear Einstein equations as-

suming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with

universal coupling: all energy-momentum including gravity’s serves as a source for gravity.

Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a

term proportional to the field equations and a symmetric curl, which implies the coalescence of

the flat background geometry and the gravitational potential into an effective curved geometry.

The flat metric, though useful in Rosenfeld’s stress-energy definition, disappears from the field

equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian

assertion in Rosenfeld-tinged form.

The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl

and terms proportional to the field equations, so the flat metric is only a convenient mathematical

trick without ontological commitment. Neither generalized relativity of motion, nor the identity

of gravity and inertia, nor substantive general covariance is assumed. The more compelling

criterion of lacking ghosts yields substantive general covariance as an output. Hence the particle

physics derivation, though logically impressive, is neither as novel nor as ontologically laden as

it has seemed.

keywords: conservation laws; General Relativity; Noether’s theorems; energy-momentum tensor;

particle physics; Belinfante-Rosenfeld equivalence

1 Introduction

It is often held that there is a great gulf fixed between the views of gravitation held by general

relativists and those held by particle physicists. Carlo Rovelli has commented on the resultant

effects on quantum gravity research programs.
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The divide is particularly macroscopic between the covariant line of research on the

one hand and the canonical/sum over histories on the other. This divide has re-

mained through over 70 years of research in quantum gravity. The separation cannot be

stronger.. . . Partially, the divide reflects the different understanding of the world that

the particle physics community on the one hand and the relativity community on the

other hand, have. The two communities have made repeated and sincere efforts to talk

to each other and understanding each other. But the divide remains, and, with the

divide, the feeling, on both sides, that the other side is incapable of appreciating some-

thing basic and essential. . . . Both sides expect that the point of the other will turn out,

at the end of the day, to be not very relevant.. . . Hopefully, the recent successes of both

lines will force the two sides, finally, to face the problems that the other side considers

prioritary. . . (Rovelli, 2002).

The following anecdote gives some background about the history of (non-)interaction between

the general relativity and particle physics communities:

The advent of supergravity [footnote suppressed] made relativists and particle physicists

meet. For many this was quite a new experience since very different languages were

used in the two communities. Only Stanley Deser was part of both camps. The particle

physicists had been brought up to consider perturbation series while relativists usually

ignored such issues. They knew all about geometry instead, a subject particle physicists

knew very little about. (Brink, 2006, p. 40)

Unfortunately the pocket of convergence between the two communities in physics, though by now

expanded well beyond Deser (and perhaps allowing for hyperbole), is still rather small.

If one can show that the gulf is not as large as it seemed, might it be easier to imagine quan-

tum gravity programs that also split the difference? This paper will not aim to say much about

quantum gravity, but it will show that a certain part of the difference between general relativists’

and particle physicists’ views is illusory, because a key part of particle physicists’ 1939-73 “spin 2”

derivation of Einstein’s equations from flat space-time is basically Noether’s 1918 converse Hilber-

tian assertion. Hilbert and later Klein had found that the conserved energy-momentum in General

Relativity consists of a term proportional to the Einstein tensor and hence having a value of 0

using the Euler-Lagrange equations (vanishing on-shell, one says) and a term with automatically

vanishing divergence (a “curl”). They worked with the most straightforwardly derivable expressions

for gravitational energy-momentum: pseudo-tensors and what one now calls the Noether operator

(Hilbert, 2007; Klein, 1917; Klein, 1918; Pais, 1982; Olver, 1993; Rowe, 1999; Rowe, 2002; Brad-

ing and Brown, 2003). Noether also proved a converse to the “Hilbertian assertion,” along with

converses to the two theorems associated with her name (Noether, 1918).

Noether formulated the Hilbertian assertion and its converse as follows:

If [action] I admits of the displacement group, then the energy relationships become

improper if and only if I is invariant with respect to an infinite group containing

the displacement group as subgroup. [footnote suppressed] (Noether, 1918, emphasis

added)

The “only if” clause, the converse to which I call attention, offers the possibility of arriving at

general covariance from improper conservation laws. Such conservation laws consist only of terms
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vanishing by the field equations and terms with identically vanishing divergence (“curls”)—just

the kinds of things that separate the metrical and canonical stress-energy tensors (Belinfante-

Rosenfeld equivalence), and just the kinds of things that one is often said to be free to modify to

taste. Hence one could modify the stress-energy for vacuum General Relativity to be identically

0 by that reasoning if one wished. One need not agree that there is anything improper about

‘improper’ conservation laws (Pitts, 2010) to use the familiar term.

During the 1920s-50s, the luster of General Relativity faded among physicists (Eisenstaedt, 1986;

Eisenstaedt, 1989; van Dongen, 2010; Schutz, 2012), even if the popular image of Einstein was

undiminished. General Relativity was mathematical, hardly empirical, and tied to protracted

fruitless speculation about unified field theories. Relativistic quantum mechanics and (at times) field

theory were flourishing, by contrast. In such a context it made sense, if one was not ignoring General

Relativity, to try to subsume it into the flourishing framework of particle physics. Apart from

questions of quantization, this project succeeded. In 1939 Fierz and Pauli noticed that the linearized

vacuum Einstein equations were just the equations for a particle/field of spin 2 and mass 0 (Pauli

and Fierz, 1939; Fierz and Pauli, 1939; Fierz, 1940). Even Nathan Rosen, long-time collaborator

with Einstein, appeared to be defecting in 1939: he proposed to reduce the conceptual distance

between General Relativity and other field theories by introducing a flat background geometry and

wondered aloud whether the nonlinearities of Einstein’s equations could be derived (Rosen, 1940).

Einstein did not like such ideas when Rosen proposed them (Einstein, 1939).1 Neither did he like

it when his assistant Robert Kraichnan was in the process of executing such a derivation (Feynman

et al., 1995, p. xiv). (Bryce DeWitt, who transcended the GR vs. particle physics divide to an

unusual degree, did like Kraichnan’s ideas (Feynman et al., 1995, xiv) (Seligman, 1949).)

One might see Einstein as predicting failure for such projects, if success would be arriving at the

1915 field equations without having to know them already: “. . . it would be practically impossible

for anybody to hit on the gravitational equations” without the “exceedingly strong restrictions on

the theoretical possibilities” imposed by “the principle of general relativity” (Einstein, 1954). Is the

principle of general relativity really needed? As will appear below, (substantive) general covariance

does play a key role, albeit as a lemma rather than a premise, but generalized relativity of motion

does not play any role2. Such a derivation of Einstein’s equations was successfully carried out in the

1950s-70s at the classical level. What this derivation implies about space-time and gravity is less

clear, however. Feynman has some remarks that could be construed as conventionalist (Feynman

et al., 1995, pp. 112, 113), shrinking the gulf between the initial flat geometry and the final effective

curved geometry because the most convenient geometry can shift more easily than can the true

geometry. A complete story ought to take into account a notion of causality suitable for quantum

gravity (Butterfield and Isham, 2001, sect. 3.3.2) (Pitts and Schieve, 2002; Pitts and Schieve, 2004),

but such issues will not be considered here. There is no hint that substantive general covariance

is fed in and therefore easily recovered as has been claimed (Padmanabhan, 2008); formal general

covariance is (inessentially) assumed, while substantive general covariance is concluded, a quite

1I thank Dennis Lehmkuhl of the Einstein Papers Project at Caltech for bringing this correspondence to my

attention.
2The concept of general covariance has become problematic especially in the last decade (Pitts, 2006; Giulini,

2007; Pooley, 2010; Belot, 2011). For present purposes I am ignoring that problem. Anderson thought that this

criterion was equivalent to his preferred criterion of the absence of geometric objects that are the same (up to gauge

equivalence) in all models (Anderson, 1967, pp. 88, 89), but it isn’t.
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different notion (Bergmann, 1957; Anderson, 1967; Stachel, 1993).

The task of this paper is to show that this derivation of Einstein’s equations, though quite

compelling, is partly less novel and is not ontologically laden with flat space-time geometry than it

has seemed. Uncovering areas of overlap between general relativist and particle physics views might

lead to further rapprochement. A previous paper invoked the particle physics tradition as a foil

for Einstein’s 1913-15 physical strategy, which used somewhat similar ingredients including a key

role for conservation laws and an analogy to Maxwell’s electromagnetism (Pitts, 2016a). There the

thrust was how much light particle physics sheds on the processes of discovery and justification for

Einstein’s equations. Here the direction of benefit is partly reversed: particle physicists could have

arrived at Einstein’s equations much earlier if they had made use of Noether’s converse Hilbertian

assertion. The derivation is also seen to be more ecumenical than one would have expected. Both of

these works are thus early efforts at relating particle physics and the history of General Relativity.

2 Noether’s Converse “Hilbertian Assertion” about ‘Improper’

Conservation Laws

While Noether’s work did not quickly get the explicit recognition that it deserved beyond initial

endorsement by Klein (Kosmann-Schwarzbach, 2011), by now it is deservedly a standard topic in

the philosophy of physics (Brading and Castellani, 2003). Besides Noether’s first theorem deriving

conserved currents from rigid symmetries (finitely many parameters) of the Lagrangian, and her

second theorem deriving identities among the Euler-Lagrange equations, there are additional results

of interest in Noether’s paper. These include, among other things (Petrov and Lompay, 2013),

many often neglected converse results, a proof of Hilbert’s claim about the ‘improper’ form of

general relativistic energy-momentum conservation (the Hilbertian assertion), and, crucially for

present purposes, a proof of the converse Hilbertian assertion: improper conservation laws imply a

(substantively) generally covariant action.

Noether’s converses results seem to attract little attention even in works devoted to Noether’s

theorems. There is an older literature that paid some attention to converses (Fletcher, 1960; Dass,

1966; Boyer, 1967; Palmieri and Vitale, 1970; Candotti et al., 1970; Candotti et al., 1972b; Candotti

et al., 1972a; Rosen, 1972; Carinena et al., 1989; Ferrario and Passerini, 1990). The fact that such

works are most readily found before Noether’s paper became widely available again (in terms of

physical copies and language) due to a published English translation in 1971 (Noether, 1918) is

likely no coincidence. Such works might well be based on second-hand reports (Hill, 1951) that did

not capture the full content of Noether’s paper (Olver, 1993), including Noether’s own emphasis

on the converses. Accord to Peter Olver, after 1922

the next significant reference to Noether’s paper is in a review article by the physicist

Hill, [(Hill, 1951)], in which the special case of Noether’s theorem discussed in this

chapter was presented, with implications that this was all Noether had actually proved

on the subject. Unfortunately, the next twenty years saw a succession of innumerable

papers either re-deriving the basic Noether theorem 4.29 or purporting to generalize it,

while in reality only reproving Noether’s original result or special cases thereof. The

mathematical physics literature to this day abounds with such papers, and it would be

senseless to list them here. (Olver, 1993, p. 282)

4



Among modern and philosophical works, there are apparently few that emphasize converses. One

is Katherine Brading’s dissertation (Brading, 2001, pp. 70-74), which emphasizes Noether’s proof of

the converse of her first theorem and uses it to undermine other authors’ privileging of symmetries

over conservation laws. Likewise Harvey Brown and Peter Holland doubt that symmetries explain

conservation laws, emphasize the converse, and include counterexamples to ideas that one might

loosely have associated with Noether’s first theorem (Brown and Holland, 2004).

If others have neglected Noether’s converses, at least she thought them of special importance:

her own intent in writing her article had been “to state in a rigorous fashion the signifi-

cance of the principle and, above all, to state the converse . . . ” (Kosmann-Schwarzbach,

2011, p. 52).

So she wrote in a referee report on a paper that covered similar ground to her own paper’s but did

not prove converses.

The converse Hilbertian assertion is perhaps the most neglected of all; it is difficult to recall any

attention being paid to it at all. Perhaps it has seemed to be mathematical act of supererogation

that would not benefit the working physicist. What reason, after all, could one have for believing

in improper conservation laws without already believing in Einstein’s equations? Even Kosmann-

Schwarzbach’s book’s discussion of the Hilbertian assertion is not very interested in the converse

Hilbertian assertion (pp. 63, 64). Emphasis is placed rather on the rigor added to what Hilbert had

conjectured and the improper nature of the conservation laws as disanalogous to those following

from rigid symmetries along the lines of Noether’s first theorem (with antecedents in Lagrange and

others (Kastrup, 1987; Pitts, 2016a)).

Can one use the converse Hilbertian assertion to derive Einstein’s equations? To my knowledge

deriving Einstein’s equations via improper conservation laws has never been attempted outside

the particle physics tradition. The logical equivalence of the gravitational field equations and

the conservation laws has been noted (Anderson, 1967; Pitts, 2010), but that is still not enough.

Such a derivation, to be sensible, would require some independent reason to believe in improper

conservation laws. Such independent reasons are not plentiful. In the particle physics tradition

such a derivation was achieved 60 years ago (Kraichnan, 1955), but how it worked could use some

clarification (Pitts and Schieve, 2001), especially to motivate the linear gauge freedom by avoiding

ghosts (Pauli and Fierz, 1939; Fierz and Pauli, 1939; Nachtmann et al., 1968; Nachtmann et al.,

1969; van Nieuwenhuizen, 1973). Even with that clarification the connection to the Noether was

not made.

3 Particle Physics Spin 2 Derivation(s)

Particle physicists have shown Einstein’s equations are what one naturally arrives for a local inter-

acting massless spin-2 field, with good explanations for the detailed nonlinearity, general covariance,

etc. from nuts-and-bolts principles of (at least) Poincaré-covariant field theory. (Poincaré symme-

try does not exclude a larger symmetry, as is especially clear from a Kleinian subtractive as opposed

to Riemannian additive picture of geometry (Norton, 1999).3) In 1939 it became possible to situate

3The Kleinian picture assumes initially that coordinates are quantitatively meaningful for lengths, volumes, etc.

and then proceeds to strip them of meanings by larger symmetry groups. The Riemannian picture assumes that
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Einstein’s theory vis-a-vis the full range of relativistic wave equations and Lorentz group repre-

sentations: Pauli and Fierz recognized the equation for a massless spin 2 field as the source-free

linearized Einstein equations (Fierz, 1939; Pauli and Fierz, 1939; Fierz and Pauli, 1939). That same

year Rosen wondered about deriving General Relativity’s nonlinearities from an initially special rel-

ativistic starting point (Rosen, 1940). Work by Kraichnan, Gupta, Feynman, Weinberg, Deser et al.

eventually filled in the gaps, showing that, on pain of instability, Einstein’s theory is basically the

only option (eliminative induction, philosophers would say), with contributions by many authors,

not all with the same intentions (Weyl, 1944; Papapetrou, 1948; Gupta, 1954; Kraichnan, 1955;

Thirring, 1961; Halpern, 1963b; Halpern, 1963a; Feynman et al., 1995; Wyss, 1965; Ogievetsky

and Polubarinov, 1965; Weinberg, 1965; Nachtmann et al., 1968; Deser, 1970; van Nieuwenhuizen,

1973; Boulware and Deser, 1975; Pitts and Schieve, 2001; Boulanger and Esole, 2002). One could

also consider massive spin 2 gravity if it works (Pauli and Fierz, 1939; Fierz and Pauli, 1939;

Ogievetsky and Polubarinov, 1965; Freund et al., 1969), an issue apparently settled negatively

in 1970-72 but reopened recently and now very active (Hinterbichler, 2012; de Rham, 2014). To

recall a punchy expression by Peter van Nieuwenhuizen, “general relativity follows from special

relativity by excluding ghosts” (van Nieuwenhuizen, 1973). Even apart from the empirical fact of

light bending (which van Nieuwenhuizen mentions) needed to refute scalar theories, the claim is

slightly exaggerated (Pitts and Schieve, 2001; Maheshwari, 1972; de Rham et al., 2011; Hassan

and Rosen, 2011), but the point remains that it is difficult to avoid negative energy instability

without strong resemblance to Einstein’s equations. Having negative-energy and positive-energy

degrees of freedom interact seems likely to imply instability. And yet due to relativity’s − + ++

geometry, negative-energy degrees of freedom tend to crop up regularly if one is not careful (Fierz

and Pauli, 1939; Wentzel, 1949; van Nieuwenhuizen, 1973). For a vector potential, if the spatial

components have positive energy, then the temporal component will have negative energy unless

one engineers it away, as occurs in Maxwell’s theory. Ghosts are almost always considered fatal

(except in certain contexts where they are introduced as a technical tool). What is to keep nothing

from turning spontaneously into something and anti-something? What is possible soon becomes

necessary in quantum mechanics; even energy conservation, supposed to exclude perpetual motion

machines of the first kind, fails to stop the catastrophe. Negative energy degrees of freedom were

tacitly assumed not to exist in 19th century formulations of energy conservation, it would seem.

Lagrange considered whether positive energy was required for stability; he showed that bad things

could happen if the potential were indefinite (Lagrange, 1811). It did not occur to him to enter-

tain negative kinetic energy, however, something hardly conceivable apart from relativity and the

de-materialization of matter into fields in the 20th century. Lagrange showed that positive energy

was stable with a separable potential (Lagrange, 1811); the separability requirement was removed

by Dirichlet (Dirichlet, 1846; Morrison, 1998). According to Boulanger and Esole,

[i]t is well appreciated that general relativity is the unique way to consistently deform

the Pauli-Fierz action
∫
L2 for a free massless spin-2 field under the assumption of

locality, Poincaré invariance, preservation of the number of gauge symmetries and the

number of derivatives in L2 [references suppressed] (Boulanger and Esole, 2002).

coordinates are quantitatively meaningless and then adds structures to define additional concepts such as volume,

angle, length, etc.
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Derivations based on the canonical energy-momentum tensor or some relative thereof (Gupta,

1954) perhaps do not savor as strongly of flat space-time as do derivations with a flat metric tensor.

This impression might be a mistake due to failure to notice the extra gauge group that makes the

flat metric less significant than the tensor notion suggests (Grishchuk et al., 1984). The canonical

tensor’s advantage (if such it is) of not savoring as strongly of flat space-time is to some degree

offset by the gruelingly explicit character of the derivation. This explicitness not only makes it

harder to arrive at Einstein’s theory (the massless case), but also makes it difficult to generalize the

results to include a graviton rest mass(es). When efforts have been made to add a mass term using

a canonical-based Belinfante energy-momentum, the result has been considered unique (Freund and

Nambu, 1968; Freund et al., 1969). By contrast the Rosenfeld metric stress-energy approach used

by Kraichnan has been generalized to show tremendous flexibility. Instead of a unique result for the

tensor and scalar cases, the tensor case has grown to two one-parameter families (Pitts and Schieve,

2007), to four one-parameter families (Pitts, 2011b), to an arbitrary mass term with practically any

algebraic self-interaction (Pitts, 2016b). The scalar case likewise has been generalized from one case

to a one-parameter family. This one-parameter family is analogous to a tensorial 2-parameter family

because the covariance-contravariance parameter (a continuum with perhaps one hole (Ogievetsky

and Polubarinov, 1965)) and the density weight parameter cover the same ground; a 1×1 matrix is

its own determinant. Doubtless the scalar case could be generalized analogously to ((Pitts, 2016b))

to admit an arbitrary series (from cubic order onward) of mass plus self-interaction terms.

One can easily read spin 2 derivations of Einstein’s equations (Gupta, 1954; Kraichnan, 1955;

Feynman et al., 1995; Deser, 1970) without having a clear idea how they work. When a canonical

definition of stress-energy is used (improved by Belinfante symmetrization) as in Gupta’s work, one

can get lost in the explicit details, missing the forest for the trees. When Rosenfeld’s flat metric

definition is used, the effect is more abstract and magical, along with the greater urge to wonder

what the flat geometry means. One can clarify Kraichnan’s derivation (Pitts and Schieve, 2001),

partly by drawing on Deser’s use of a variational principle for free fields (Deser, 1970) and van

Nieuwenhuizen’s ghost elimination (van Nieuwenhuizen, 1973). Kraichnan used a bimetric change

of variables from a gravitational potential and flat metric to an effective curved metric (the sum of

the flat metric and curved metric) and flat metric, and showed that the flat metric disappears from

the field equations. The split of the stress-energy tensor into a curl and a piece vanishing on-shell

to derive Einstein’s equations is a key step (Pitts and Schieve, 2001). This fact is what allows one

to recognize in effect Noether’s converse Hilbertian assertion. A connection to Noether’s converse

Hilbertian assertion has had to wait, however, to my knowledge.

Given this link to Noether’s theorem and the Belinfante-Rosenfeld relation between canonical

and metrical stress-energy, one could envisage a parallel derivation of Einstein’s theory without

the flat metric tensor, albeit much less convenient. It is not coincidental that universal coupling

derivations for massive scalar gravity using the canonical tensor have led only to a single theory

(Freund and Nambu, 1968), because one needs to use the freedom to add a curl to the canonical

tensor to accommodate second derivatives except in one case (Pitts, 2011a). The ideal might be to

use the Belinfante-Rosenfeld equivalence the identity to permit using the Rosenfeld definition for

calculations and the Belinfante tensor (or it plus terms vanishing on-shell) for conceptual purposes.
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4 Aristotle on Inferring from Improper Conservation Laws to Ein-

stein’s Equations

One can take the leisurely pace of the linkage between Noether’s proof of the converse Hilbertian

assertion and the spin 2 derivations as an indicator of the depth of the tragic split between general

relativists and particle physicists, which this current paper aims to reduce somewhat. Hilbert was

insightful in taking improper conservation laws as characteristic of General Relativity, a comment

that might be taken to suggest a derivation. Noether’s proof of the converse Hilbertian assertion

could be taken providing the core of a derivation of Einstein’s equations. There is, however, an

obvious problem, of a sort discussed by Aristotle in the Posterior Analytics.

The remainder of Posterior Analytics I is largely concerned with two tasks: spelling

out the nature of demonstration and demonstrative science and answering an impor-

tant challenge to its very possibility. Aristotle first tells us that a demonstration is a

deduction in which the premises are:

1. true

2. primary (prota)

3. immediate (amesa, “without a middle”)

4. better known or more familiar (gnôrimôtera) than the conclusion

5. prior to the conclusion

6. causes (aitia) of the conclusion

. . . The fourth condition shows that the knower of a demonstration must be in some

better epistemic condition towards [the premises]. . . . (Smith, 2015, emphasis in the

original)

This fragment of Aristotle’s theory of demonstration has an insight that one would presumably

wish to retain: if the premises are initially less plausible than the conclusion, then the argument is

not very good.

In 1918 General Relativity was probably not known, but it was certainly seriously entertained.

Improper conservation laws were entertained only as a consequence of General Relativity. Hence

there was little prospect for regarding improper conservation laws as better known than or prior

to Einstein’s equations. Particle physics changed that situation, partly by supplying a taxonomy

in which one could fit General Relativity (massless spin 0) and easily conceive a rival theory

(massive spin 2, at least prima facie), thus making General Relativity less well known than it

must have seemed after the 1919 bending of light success. Shouldn’t one be open to rival theories

that made the same prediction? Evidently some people were (Brush, 1989). Particle physics also

systematically implemented positive energy (avoiding ghosts) as a criterion of theory construction

and theory choice (Pauli and Fierz, 1939; van Nieuwenhuizen, 1973) and showed how a massless

spin 2 field satisfying the linearized Einstein equations is both a very natural path and one of very

few paths to avoid ghosts with a symmetric rank 2 tensor potential. Indeed other plausible paths

(unimodular/traceless massless spin 2/GR (Unruh, 1989), GR plus something like a scalar field

(Pitts and Schieve, 2001; Álvarez et al., 2006), and massive gravity (Maheshwari, 1972; de Rham
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et al., 2011)) are quite close to Einstein’s equations. In massive spin 2 gravity, Einstein’s equations

had at least one a priori and empirically plausible rival (Ogievetsky and Polubarinov, 1965; Freund

et al., 1969). Unless stability can be achieved in some other way, the positive energy requirement

seems non-negotiable and, in turn, makes the linearization of Einstein’s equations difficult to avoid,

apart perhaps from a graviton mass term. The principle of universal coupling, which is another key

part of the particle physics derivations, in fact was a part of Einstein’s 1913-15 physical strategy

as expressed in the Entwurf with Grossmann:

These equations satisfy a requirement that, in our opinion, must be imposed on a relativ-

ity theory of gravitation; that is to say, they show that the tensor θµν of the gravitational

field acts as a field generator in the same way as the tensor Θµν of the material processes.

An exceptional position of gravitational energy in comparison with all other kinds of

energies would lead to untenable consequences. (Einstein and Grossmann, 1996)

While ghost avoidance leaves nonlinearities quite unspecified as long as they aren’t too strong,

universal coupling provides a close link between the linearized and exact nonlinear Einstein equa-

tions. Improper conservation laws follow (Pitts and Schieve, 2001): the stress-energy tensor is a

piece vanishing on-shell and a curl. Thus it became possible to regard improper conservation laws

as better known than Einstein’s equations. Almost as van Nieuwenhuizen said, “general relativity

follows from special relativity by excluding ghosts” (van Nieuwenhuizen, 1973). Aristotle’s prior-

ity clause can be satisfied at least in the counterfactual history of how physics presumably would

have progressed without Einstein (Feynman et al., 1995; Ohanian, 2008). It isn’t clear why sci-

ence should be forever held captive to historical accidents, so that is good enough. Hence particle

physics makes it plausible to argue for Einstein’s equations using Noether’s converse Hilbertian

assumption, positive energy, etc.

What about the principle(s) of equivalence? Sometimes universal coupling is associated with

the strong equivalence principle (Feynman et al., 1995, p. xiv). But universal coupling also leads

to massive gravities (Freund et al., 1969; Pitts and Schieve, 2007; Pitts, 2011b; Pitts, 2016b), for

which there is a clear distinction between gravity and inertia. The identity of gravity and inertia

is another strong meaning sometimes associated with the principle of equivalence (Friedman, 2001,

pp. 37-39, 81). Avoiding multiply ambiguous terms like the principle of equivalence, one can

safely say that the identity of gravity and inertia is not assumed in the particle physics derivation

(massless or massive), and that such identity is clearly false at the end of the derivation in the

massive case.

5 (No) Ontology of Particle Physics Derivations

It is not terribly obvious what the ontology suggested by the spin-2 derivations of Einstein’s equa-

tions is. One often enough reads that the derivation shows that Einstein’s theory is rendered

just another field theory in Minkowski space-time, within special relativity, or similar expressions.

Such conclusions are especially tempting if one uses a flat metric tensor (in the sense of having

a nontrivial transformation rule under general coordinate transformations), not simply a matrix

diag(−1, 1, 1, 1).Eventually it is concluded that the flat background metric is “unobservable,” which

usually is supposed to mean or at least to imply that it doesn’t really exist, perhaps (Thirring,

9



1961). But how does coalescence of the flat geometry and the gravitational potential make the flat

geometry cease to exist? One key issue pertains to whether one thinks in terms of Riemannian addi-

tive or Kleinian subtractive pictures of geometry (Norton, 1999). General relativists, historians and

philosophers since the late 1970s have tended to default to a Riemannian additive picture, according

to which Special Relativity is about an enormously impressive crystalline object, Minkowski Space-

Time (or even Spacetime), which controls everything. Particle physicists include toward a Kleinian

subtractive picture, so that relativity is rather about having the Poincaré covariance group, which

is certainly compatible with having an even larger covariance group. Among philosophers, calling

Minkowski space-time a “glorious nonentity” is reminiscent of Klein’s subtractive strategy (Brown

and Pooley, 2006). Both Riemannian additive and Kleinian subtractive strategies are sometimes

useful and illuminating.

While some of the mathematics of the spin-2 derivations of Einstein’s equations has a special

relativistic feel—consider the title of Kraichnan’s classic paper “Special-Relativistic Derivation of

Generally Covariant Gravitation Theory”—an additional gauge group emerges. The emergence

of an additional gauge group deprives of physical meaning the precise quantitative relationship

between the effective curved metric and the/a flat background metric, making the flat space-

time(s) elusive (Grishchuk et al., 1984; Norton, 1994; Pinto-Neto and Trajtenberg, 2000), a point

made early in little-known work by William Band (Band, 1942b; Band, 1942a) and conceded but

still insufficiently attended by Nathan Rosen in his application to gravitational energy localization

(Rosen, 1963). Which flat metric underlies the effective curved geometry? None in particular,

one might say. It is plausible that such a neo-traditionalist ontology is confusing to many, is (or

would have been) attractive to some such as Lotze (Lotze, 1879, pp. 248, 249) (see also (Torretti,

1978, pp. 288, 299, 408)), perhaps Poincaré (Poincaré, 1902), and Logunov (Logunov, 1998), and

unattractive to others. But the fact remains that the derivation of Einstein’s equations is quite

compelling, much better than the competition involving Principles. If one aspires to take the flat

background seriously, then causality, ironically, requires reintroducing gauge freedom (Pitts and

Schieve, 2007) (partly akin to privileging the Stueckelberg form of massive electromagnetism with

gauge compensation fields (Ruegg and Ruiz-Altaba, 2004) over the primordial non-gauge form,

and then restricting the gauge freedom with inequalities). Hence some of the innovative features

of General Relativity are obligatory anyway.

One could reduce the ontological confusion by getting rid of the flat metric tensor (or should one

say, tensors, in light of the extra gauge group) in favor of the numerical matrix diag(−1, 1, 1, 1),

such as one finds in some of this work already (Gupta, 1954; Ogievetsky and Polubarinov, 1965).

Much of the value of using a flat metric tensor(s) pertains to defining the stress-energy tensor.

The Rosenfeld stress-energy tensor is defined using a flat background metric, but one momentarily

relaxes flatness to take a variational derivative, and then restores flatness again (Rosenfeld, 1940;

Kraichnan, 1955; Anderson, 1967; Deser, 1970; Gotay and Marsden, 1992; Pitts and Schieve, 2001),

getting much of the benefit of Hilbert’s definition without requiring the existence of the gravitational

field. This definition is enormously convenient, but can cause confusion, both mathematical and

conceptual. That the Rosenfeld stress-energy tensor is just a trick has been urged in the context

of Deser’s spin-2 derivation:

. . .Tµν is the stress-tensor of the linear action of equation (4). It is very simply com-

puted in the usual (Rosenfeld) way as the variational derivative of IL with respect to
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an auxiliary contravariant metric density ψµν, upon writing IL in ‘generally covari-

ant form’, IL(η → ψ), with respect to this metric. Note that this does not presuppose

any geometrical notions, being merely a mathematical shortcut in finding the symmetric

stress-tensor of IL. We could also obtain it by the (equivalent) (Belinfante) prescription

of introducing local Lorentz transformations. (Deser, 1970)

By the Belinfante-Rosenfeld equivalence theorem, one can replace the Rosenfeld stress-energy

tensor with the canonical tensor + certain terms with identically vanishing divergence + certain

terms proportional to some field equations. Actually calculating the amended canonical tensor

might be unpleasant, but one could use the Belinfante-Rosenfeld equivalence theorem in the other

direction so that the Rosenfeld stress-energy tensor is just a calculating trick. All conceptual work

is done by the Belinfante modified canonical tensor (or it plus terms vanishing on-shell), but the

calculations are done using Rosenfeld’s trick. Thus one evades an objection (Padmanabhan, 2008)

that has been made to spin-2 derivations of Einstein’s equations; others have been addressed (Pitts

and Schieve, 2007). One could avoid the additional gauge group, the topological limitations implied

in introducing a flat metric (Ashtekar and Geroch, 1974), and most ontological connotations of a flat

geometry(s) by using the matrix diag(−1, 1, 1, 1) instead of a flat background metric. This signature

matrix is also intimately involved in nonlinear realizations of the ‘group’ (using the term loosely) of

general coordinate transformations (Ogievetsky and Polubarinov, 1965; Pitts, 2012), which permit

spinors in coordinates without a tetrad. While one cannot take a variational derivative with respect

to this numerical matrix, one does not need to do so, using the Belinfante-Rosenfeld equivalence

as described above. Conceptual matters are handled using the modified canonical tensor, while

calculations can be handled with Rosenfeld’s trick. To implement this project, one can insert

the Belinfante-Rosenfeld equivalence theorem into some suitable spin-2 derivation that uses the

Rosenfeld tensor, preferably a version sufficiently flexible to display the previously unrecognized

full generality of spin-2 derivations in cases where the graviton mass is not 0 (Pitts, 2016b). Thus

one overcomes a traditional weakness in spin-2 derivations using the canonical tensor, namely,

arriving at only one theory and even that with much gritty detailed calculation (Freund and Nambu,

1968; Freund et al., 1969); such generality would otherwise likely appear fiendishly difficult and/or

unnatural. The canonical tensor and modifications thereof have the additional virtues (compared

to the Rosenfeld metric stress-energy tensor) of being directly related to the translation symmetries

that induces conservation and of being nontrivial (at least off-shell) even in topological (metric-free)

field theories (Burgess, 2002).

6 Conclusion

It appears, then, that the particle physics derivation of Einstein’s equations should be quite attrac-

tive to everyone. It involves principles that one could hardly avoid on pain of explosive instability.

It avoids principles (including generalized relativity of motion or the identity of gravity and inertia)

that could easily be false, though there is no harm if one finds them plausible. On the other hand

the derivation is surprisingly innocent metaphysically, involving no ontological commitment to a

flat space-time metric tensor. Perhaps it should be more generally embraced, even by general rela-

tivists, rather than viewed as the special property of particle physicists. Given that a core idea in

the particle physics derivation is Noether’s converse Hilbertian assertion, general relativists already

11



do have priority on part of the derivation. This surprising convergence might set an example for

additional fruitful work overcoming the general relativist vs. particle physicist divide.

7 Appendix

The way that the split of the conserved stress-energy complex into a piece proportional to the

gravitational field equations and a piece with automatically vanishing divergence plays a role in

the spin 2 derivation of Einstein’s equations is worth recalling. This derivation (Pitts and Schieve,

2001) is based largely on that of Kraichnan (Kraichnan, 1955) (Feynman et al., 1995, pp. xiii, xiv)

but with a number of improvements. The basic variables in this approach are the gravitational

potential γµν and the flat metric ηµν, along with (bosonic) matter fields u that can be any kind of

geometric object fields, though indices are suppressed. Gravity is assumed to have some free field

equations derived from a (presumably quadratic) action Sf [γµν, ηµν].

In an effort to avoid negative-energy degrees of freedom, one can require that Sf change only by

a boundary term under the infinitesimal gauge transformation

γµν → γµν + ∂µξν + ∂νξµ, (1)

ξν being an arbitrary covector field. ∂µ is the flat covariant derivative built from the flat metric

ηµν. (This condition is a bit stronger than necessary if the action does not imply higher derivatives

in the field equations, but can be too weak if there are higher derivatives. It is a good place to

start, however.) In the special case that the Lagrangian density is a linear combination of terms

quadratic in first derivatives of the γµν, and free of algebraic and higher-derivative dependence on

γµν, the requirement of gauge invariance uniquely fixes coefficients of the terms in the free field

action up to a boundary term, giving linearized vacuum general relativity (Ohanian and Ruffini,

1994; Hakim, 1999). For any Sf invariant in this sense under (1), the free field equation is identically

divergenceless:

∂µ

δSf

δγµν
= 0. (2)

This is the free field generalized Bianchi identity.

As Einstein said in 1913, if a source is introduced, it is reasonable to have all stress-energy, for

both gravity and matter fields u, serve as a source in the same way (Einstein and Grossmann,

1996). Using the Rosenfeld stress-energy tensor from varying the (unknown) full action S with

respect to ηµν (with γµν and u constant), one seeks the field equations from the (unknown) full

action S for gravity:

δS

δγµν

=
δSf

δγµν

− λ
δS

δηµν

, (3)

where it turns out eventually that λ = −
√

32πG. This stress-energy tensor includes gravitational

stress-energy; at this stage one doesn’t know that an extra gauge group emerges and that the

gravitational energy-momentum has the peculiar properties that it has in General Relativity. (In

a non-Rosenfeld form of such a derivation, one would not yet know that the gravitational energy-

momentum is only a pseudo-tensor rather than a tensor. One could derive the linear analog of that

12



fact if one takes the free field Lagrangian density to be quadratic in first derivatives of γµν, however

(Fierz, 1939).)

One is free to make a change of variables in S from γµν and ηµν to gµν and ηµν , where

gµν = ηµν − λγµν. (4)

No assumption is made that gµν has chronogeometric significance; it emerges later as a result that

gµν is the only quantity that could be an observable metric. Equating coefficients of the variations

gives

δS

δηµν
|γ =

δS

δηµν
|g +

δS

δgµν
(5)

and

δS

δγµν
= −λ δS

δgµν
. (6)

Putting these two results together gives

λ
δS

δηµν

|γ = λ
δS

δηµν

|g − δS

δγµν

. (7)

Equation (7) splits the Rosenfeld stress-energy tensor into one piece that vanishes when gravity

is on-shell and one piece that does not. That is one of the two types of terms that the converse

Hilbertian assumptions allows. Using this result in (3) gives

λ
δS

δηµν
|g =

δSf

δγµν
, (8)

which says that the free field Euler-Lagrange derivative must equal (up to a constant factor) that

part of the total stress tensor that does not vanish when the gravitational field equations hold.

Using the linearized Bianchi identity (2), one derives

∂µ
δS

δηµν
|g = 0, (9)

which says that the part of the stress tensor not proportional to the gravitational field equations has

identically vanishing divergence (on either index), i.e., is a (symmetric) “curl” (Anderson, 1967).

This is the other type of term allowed by the converse Hilbertian assertion. And there is nothing

left of the stress-energy tensor: those two terms, a piece proportional to the gravitational field

equations and a piece with identically vanishing divergence, are the whole thing. The quantity
δS

δηµν
|g, being symmetrical and having identically vanishing divergence on either index, is of the

form

δS

δηµν
|g =

1

2
∂ρ∂σ(M[µρ][σν] + M[νρ][σµ]) + b

√−ηηµν (10)

(Wald, 1984) (pp. 89, 429) (Kraichnan, 1955; Pitts and Schieve, 2001), where Mµρσν is a tensor

density of weight 1 and b is a constant. This result follows from the converse of Poincaré’s lemma

13



in Minkowski spacetime. One can gather all dependence on ηµν (with gµν independent) into one

term, writing

S = S1[gµν ,��ηµν, u] + S2[gµν, ηµν, u]. (11)

If

S2 =
1

2

∫
d4xRµνρσ(η)Mµνρσ(ηµν, gµν, u) +

∫
d4xαµ,µ +2b

∫
d4x

√−η, (12)

then δS2

δηµν
|g has just the desired form, while S2 does not affect the Euler-Lagrange equations (Kraich-

nan, 1955; Pitts and Schieve, 2001). (
∫
d4xαµ,µ is any boundary term that one likes.) Thus the

Euler-Lagrange equations arise entirely from S = S1[gµν,��ηµν, u]: the flat metric and the gravita-

tional potential have merged, so the flat metric alone is unobservable and the only candidate for a

metric is gµν .

Thus the stress-energy tensor turns out to be just a term proportional to the Euler-Lagrangian

equations and a term with identically vanishing divergence, and then one arrives at an action with

Euler-Lagrange equations involving only a curved metric and matter fields, not a separate flat

metric. Thus besides the (here trivial) formal general covariance, one has an additional gauge

freedom to alter the flat metric tensor while leaving the curved metric and matter fields alone, or,

alternately, to alter the curved metric and matter fields by what looks like a coordinate transfor-

mation while leaving the flat metric alone (Grishchuk et al., 1984; Norton, 1994; Pinto-Neto and

Trajtenberg, 2000; Pitts and Schieve, 2001). If one fixes the coordinates to be Cartesian, then one

has ηµν = diag(−1, 1, 1, 1) and the additional gauge freedom looks like a coordinate transformation

in single-metric General Relativity (at least for transformations connected to the identity). One

thus de-Rosenfeldizes the result and arrives at what one usually considers a substantively generally

covariant action S1[gµν , u], as in the converse Hilbertian assertion. Thus the spin 2 derivation is,

apart from the well-motivated and crucial elimination of ghosts, largely the converse Hilbertian

assertion all over again with a glossy Rosenfeldized form using ηµν and a symmetric curl term. One

can show that λ = −
√

32πG by, e.g., requiring proper normalization of the (Γ − Γ-like) bimetric

General Relativity Lagrangian density of Rosen (Rosen, 1940).

Universal coupling turns out to deform the free field gauge invariance into a nonlinear gauge

invariance. (If one took a theory that had the linear gauge freedom but no nonlinear gauge freedom,

it would have to violate universal coupling in order to escape the derivation above. A paper by

Wald is also relevant (Wald, 1986).) Chan and Frønsdal provide a helpful summary.

The apparently miraculous success of the original Gupta program has been convincingly

explained by the analysis of Thirring [reference to (Thirring, 1961; Thirring, 1959)] and

others. Namely, the structure of the full, nonlinear and non-Abelian gauge algebra of

general relativity stands revealed upon completion of the first stage of Gupta’s program.

The geometric interpretation is immediate, and the full nonlinear action follows from it.

The essence of Gupta’s method is to notice that the invariance of the free Lagrangian

is equivalent to a degeneracy of the free wave operators (linearized Bianchi identities)

and that this degeneracy leads to strong constraints on the form of interactions. This in

turn implies the existence of a deformed invariance group of the perturbed (interacting)

Lagrangian. (Chan and Frønsdal, 1996)
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That preservation of gauge symmetry is an important resource for avoiding ghosts at the nonlinear

level. It is possible to have nonlinear ghosts without linear ghosts (Boulware and Deser, 1972), a

fact much discussed, and in some cases circumvented, in massive gravity (de Rham et al., 2011;

Hassan and Rosen, 2012). Another way to have nonlinear ghosts without linear ghosts would be

to take, say, General Relativity, expand it perturbatively (which gives an infinite series except

in the case of two fractionally weighted choices of fields (DeWitt, 1967)), and then truncate the

series at any finite order. For all but the first few choices, such a theory will satisfy our empirical

evidence for the weak principle of equivalence, but the theory will be bimetric (Blanchet, 1992).

Thus it will have no gauge freedom and so will have six field degrees of freedom, not two as in

GR. One of them will be a ghost due to the indefinite kinetic term of GR (Wald, 1984) and

any approximation thereof. Whereas a single-metric imagination renders one unable to conceive

of such theories, particle physics enables one to conceive and refute them. A few authors have

suggested that one can live with ghosts in certain cases (Hawking and Hertog, 2002). Perhaps

so. But that is a difficult road, especially under quantization where the threat of spontaneous

production of arbitrarily many positive-and negative-energy quanta arises, so one needs to provide

a detailed story for why such a theory is stable. In short, mere empirical evidence is too weak to

rule out infinitely many theories, almost empirically equivalent to GR, that likely are unstable due

to nonlinear ghosts. The no-ghost condition does important work to motivate Einstein’s equations

at both linear and distinctively again at nonlinear orders, work that mere empirical evidence can

never do. Again the superiority of the spin 2 derivation over principles of equivalence and the like

appears. Norton has noted that Einstein’s argumentation is often leaky and that one is well advised

to seek eliminative inductions (Norton, 1995). The spin 2 derivation provides them.

This spin 2 derivation admits some generalizations, such as covariant or contravariant metrics

of (nearly) arbitrary density weight (Kraichnan, 1955; Kraichnan, 1956; Pitts and Schieve, 2007),

an orthonormal (co)tetrad (of almost any density weight), thus facilitating spinors (Deser, 1980;

Pitts, 2011b), and nonlinear field redefinitions (Pitts, 2016b). While these derivations don’t yield

anything new for massless spin-2 gravity, they yield an enormous variety for massive spin 2 gravity

if one requires only the kinetic term (the part with derivatives) to have gauge symmetry to try to

avoid ghosts. Whether the theories are viable requires additional investigation beyond these criteria

because they might have ghosts, tachyons, a bad massless limit, or some other pathology. Massive

theories, if viable, violate both the principle of generalized relativity and the identification of gravity

with inertia. One can also weaken the universal coupling condition to cover only the traceless part

and leave an extra scalar (density) degree of freedom in the theory (Pitts and Schieve, 2001), thus

arriving at scalar-tensor theories with the cosmological constant as a constant of integration.

One could also consider global topological issues. Flat metric tensors do make some demands on

topology (Ashtekar and Geroch, 1974). But these demands are no stronger than spinors require,

because “every flat space-time has spinor structure.” (Geroch, 1970)
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Lagrange, J.-L. (1811). Mécanique Analytique, volume 1. Courcier, Paris, revised edition. Google

Books.

Logunov, A. A. (1998). The Relativistic Theory of Gravitation. Nova Science, Commack, N.Y.
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[physics.hist-ph].

Seligman, C. B. (1949). I. The Theory of Gravitational Interactions. II. The Interaction of Gravi-

tation with Light. PhD thesis, Harvard University.

Smith, R. (2015). Aristotle’s logic. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy.

Summer 2015 edition. http://plato.stanford.edu/archives/sum2015/entries/aristotle-logic/.

Stachel, J. (1993). The meaning of general covariance: The hole story. In Earman, J., Janis, A. I.,

Massey, G. J., and Rescher, N., editors, Philosophical Problems of the Internal and External
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