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Bayesian networks elucidate complex genomic
landscapes in cancer
Nicos Angelopoulos 1,3✉, Aikaterini Chatzipli1, Jyoti Nangalia 1, Francesco Maura 2 & Peter J. Campbell 1

Bayesian networks (BNs) are disciplined, explainable Artificial Intelligence models that can

describe structured joint probability spaces. In the context of understanding complex rela-

tions between a number of variables in biological settings, they can be constructed from

observed data and can provide a guiding, graphical tool in exploring such relations. Here we

propose BNs for elucidating the relations between driver events in large cancer genomic

datasets. We present a methodology that is specifically tailored to biologists and clinicians as

they are the main producers of such datasets. We achieve this by using an optimal BN

learning algorithm based on well established likelihood functions and by utilising just two

tuning parameters, both of which are easy to set and have intuitive readings. To enhance

value to clinicians, we introduce (a) the use of heatmaps for families in each network, and (b)

visualising pairwise co-occurrence statistics on the network. For binary data, an optional step

of fitting logic gates can be employed. We show how our methodology enhances pairwise

testing and how biologists and clinicians can use BNs for discussing the main relations among

driver events in large genomic cohorts. We demonstrate the utility of our methodology by

applying it to 5 cancer datasets revealing complex genomic landscapes. Our networks identify

central patterns in all datasets including a central 4-way mutual exclusivity between HDR,

t(4,14), t(11,14) and t(14,16) in myeloma, and a 3-way mutual exclusivity of three major

players: CALR, JAK2 and MPL, in myeloproliferative neoplasms. These analyses demonstrate

that our methodology can play a central role in the study of large genomic cancer datasets.
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Cancer genomes carry, on average, four coding driver
mutations1 and typically a number of larger scale genomic
aberrations such as deletions and translocations. Deci-

phering recurrent patterns in the mutational landscape of each
cancer type can lead to better understanding of the underlying
biology, increase the opportunities for targeted therapeutic
interventions and to better cancer sub-typing in the absence of
phenotypic evidence.

Typically, patterns of mutual exclusivity and co-occurrence are
sought pairwise among driver events in order to further investi-
gate the biology of the disease. Possible biological explanations for
the former are pathway redundancy, such as the mutual exclu-
sivity of mutations on drivers in the RAS pathway (BRAF and
KRAS) in colorectal cancer2 and the RTK/RAS/PI3K pathway in
hepatocellular carcinoma (with 22–37% of patients presenting at
least one alteration)3,4. Alternative biology at play might be in the
form of non-viability of cells with mutations on the exclusively
mutated drivers. Co-occurring events such as mutated VHL and
translocations on both chromosomes 3 and 5 often seen in clear
cell renal cell carcinoma5, pinpoint events which are required in
tandem.

Current approaches to elucidating such relational patterns
concentrate on pairwise testing of events either via novel
algorithms6, or via statistical testing based on established tests,
such as the Fisher’s exact test7. These methods fail to consider
n-way interactions and only look at cohort-wide events. As an
example of the former, consider the scenario were in addition to
BRAF and KRAS, AKT1 might also be an alternative mutation in
the RAS pathway in colorectal cancers. Due to limited statistical
power, AKT1’s mutual exclusivity with BRAF and KRAS might
not be revealed when tested pairwise with each gene separately.
While, when testing the three-way interaction it might be clear
that a mutation in any of the three genes is sufficient to confer a
cancerous advantage to cells. Furthermore, pairwise tests only test
cohort-wide events. What if a certain cancer type (or sub-type)
requires either a mutation on TP53 or a mutation on any of the
three RAS proteins mentioned above in conjunction with a
mutation to a gene downstream of the RAS pathway?

Mutations on oncogenes and tumour suppressor genes along
with more complex genomic events can be viewed as binary
variables across a cohort of patients. Thus a genomic investiga-
tion of a specific cancer type or sub-type can be viewed as a
binary table of data, with rows identifying patients and genomic
features of interest as columns. Data cells take binary values that
indicate whether a specific patient has a known cancerous
mutation in a particular, disease specific, driver gene or more
generally a driver genomic event.

Genomic events to include in such studies depend on the type
of cancer. In AML, for instance, events of interest might include
mutations to NRAS and the deletion of the 5q chromosomal
arm8. In the context of cancer, binary events correspond well to
the idea of driver events each of which might be either present or
absent in a specific sample within the cohort. This is a standard
approach in large cancer genomic cohorts7–12 where cancer
biologists are interested to find patterns of biological interest.

We propose the use of well-studied statistical models for the
discovery of rich structural dependencies from cancer genomic
datasets. Bayesian networks (BNs) are a class of complex statis-
tical models that is central to modern, explainable Artificial
Intelligence (AI) research. A BN is comprised of (a) an acyclic
graph representing the conditional relationships among a set of
variables and (b) a number of probability tables that detail the
dependency relationships between immediate families in the
graph. BNs have been proposed as disciplined models for mod-
elling biological datasets13. They have been applied to the analysis
for signalling data14,15, to the construction of chromatin

interaction models16 and in restricted form, to reconstruct
complex multi-generational pedigrees17. Learning the graph
structure of a BN is a well-researched topic and a state of the art
optimisation software exists that can construct optimal BN
structures from data18. Compared to pairwise methods BNs
provide complex statistical models that intuitively presents the
major relations within these type of data in one model. In con-
trast to neural networks and deep learning methods BNs provide
visual cues to which relations between our variables are
important.

Although a specific algorithm (Gobnilp) is used in this paper, of
course other BN algorithms can be used. Bayesian networks have
also been used in a number of varied cancer and genomic settings.
For example Wang et al. reconstruct regulatory networks using
BNs19, Rodin et al. build networks from flow cytometry data in
the context of cancer immunotherapy20 and Howey et al. use BN
in Mendelian randomization in the context of genetic
epidemiology21. The related literature includes conjunctive
BNs22,23 which were originally introduced in the context of HIV
but also proposed for cancer, direct learning of logic formulae24

and BNs for fitness landscapes25. In contrast to these approaches
we focus on making BN learning approachable to clinicians by
proposing a tight analysis framework, with only two parameters
that are intuitive to set. The BN learning problem is optimally
solved using a well-understood algorithm (Gobnilp). A number of
visual cues are then employed to guide non-experts towards a

Fig. 1 Synthetic experiment for Bayesian networks learning. a The BN
from which data are sampled. b Heatmaps of the sampled data that are
used as input data to the BN learning algorithm. c The BN as learnt by
Gobnilp. d The learned BN is fitted with logic gates on each of the BN
families.
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better understanding of the static relations existing in their
datasets. BNs in the context of cancer progression models are
implemented in TRONCO26. In these publications, interested
readers can find alternative BN learning algorithms and more
information on the nomenclature of BNs and their general use in
computational biology.

A substantial hurdle to the establishment of BNs as a major
analysis tool has been their interpretation, whereas another
hurdle has been the need to select a number of parameters. The
complexity of a connected network can be overwhelming when
compared to pairwise tests. Here, we promote family based
heatmaps as an intuitive localised viewport to the global BN
structure. Heatmaps are a staple in biological data analysis used as
visual means of presenting the raw data. Furthermore, we expand
on the theme of interpretability by exploiting the binary nature of
our datasets. Logic gates can be fitted as an additional, optional
step, to further summarise and highlight the fundamental nature
of BN family relations, by mapping family relations to the well
understood logical operations: AND, OR, XOR and NOT. The use
of an optimal algorithm, with its default parameters, allows us to
reduce the number of parameters that need tuning to two: μ and ϵ
which control the number of variables and density of the network
respectively. Both are easy to set and have intuitive readings.

Results
We apply our proposed methodology to a number of cancer
datasets including haematological (AML, MPN, Myeloma) and
solid tumours (Colon Adenocarcinoma and Glioblastoma).

AML. Acute Myeloid Leukemia (AML) mutational landscape
analysis has previously revealed three very distinct molecular
subgroups of patients reflecting distinct paths of AML evolution
for prognosis stratification and disease classification in a total of
1540 patients from three clinical trials9,27. The structure of driver
mutations allowed the unveiling of non-overlapping subgroups of
patients and their fully genomic classification of AML cancer.
This large and comprehensive AML study identified a number of
gene–gene interactions that were to the best of our knowledge not
previously known. Using the same dataset produced by
Papaemmanuil et al.27 our BN analysis elegantly captured most of
the interactions reported in the study across the 11 genomic
subgroups. This dataset includes mutations and selected copy
number variations.

We use the AML dataset as a central vehicle for following the
various steps of our methodology. Figure 2a presents the BN as
learnt by Gobnilp while the heatmaps for a number of the families
in the learnt BN are in Fig. 2b. Figure 3 shows the BN with edges
coloured according to pairwise Fisher tests and Fig. 4 shows the
gated BN for the same dataset.

The effect of varying μ on the number of variables and network
size is shown in Supplementary Fig. 1. A plot of the variation of
the size of the learnt network size when ϵ ranges from 1 to 20 is in
Supplementary Fig. 3 and the distribution of events across
samples of the AML cohort is shown in Supplementary Figs. 4
and 5. Finally, heatmaps for all the families in the BN learnt for
this dataset are shown in Supplementary Fig. 14.

The AML subgroup identified by Papaemmanuil et al.27 as the
NPM1 mutation genomic group (418 patients, 27%) matches well
with the co-mutation patterns in our network: NPM1, DNMT3A,
FLT3,ITD TET2 and PTPN11. There were 275 (18%) samples with
mutated chromatin and RNA splicing27. The most frequently co-
mutated genes within this subgroup were RUNX1, with SRSF2,
and ASXL1 and STAG2 with TET2, while DNMT3A was mutually
exclusive with STAG2. The BN analysis was also able to identify
interactions with structural variants in the AML study.

The AML subgroup with TP53 mutations and chromosomal
aneuploidy (n= 199, 13%) shows direct co-mutation with the
complex karyotype, TP53, -5/5q arm and +8/8q. Moreover, when
looking at co-mutation patterns in recurrent triplets restricted to
over four observations as reported in the study, NPM1, FLT3 and
DNMT3A co-mutation pattern occurred 130 times being the top
recurrent triplet, was also identified by our analysis. The same
was true for Complex, minus5_5q and TP53 (60), Complex,
mono17_17px_abn17p and minus5_5q (49), and Complex,
mono17_17p_abn17p and TP53 (44).

In comparison to the BN network presented here, the network
that is built from pairwise comparisons across all events based on
Fisher statistic, Supplementary Fig. 12, is much denser and
impossible to interpret. Edges in the Fisher network are drawn
between events for which the Fisher statistic finds a significant
correlation.

MPN. Genomic characterisation of 2035 patients with myelo-
proliferative neoplasms28 was performed by Grinfeld et al.10 in
order to study the potential for diagnosis, risk stratification and
treatment. Analysis on this cohort identified a number of geno-
mic subgroups in myeloproliferative neoplasms, using patterns of
mutually exclusive or co-mutated genes. One of the reported
genomic subgroups was identified by TP53 mutations, co-
occurring with aberrations at chromosome 17p and deletions at
chromosome 5q29. The network our methods constructed for this
dataset is shown in Fig. 5a. The gated BN version of the same
network is presented in Supplementary Fig. 6 and heatmaps for
all families are shown in Supplementary Fig. 15 (within Supple-
mentary Note 6: Familial heatmaps).

TP53 mutations have been shown to be acquired later in
disease but dominate the genomic and clinical features of these
patients regardless of the initial driver of the myeloproliferative
neoplasm. Another subgroup was enriched for patients with
myelofibrosis (odds ratio, 6.5; 95% CI, 4.9–8.7; P < 0.001) and it
was defined by LOH at chromosome 4q, aberrations in
chromosomes 7 and 7q occurring together with mutations in at
least 14 myeloid cancer genes (EZH2, IDH1, IDH2, ASXL1, PHF6,
CUX1, ZRSR2, SRSF2, U2AF1, KRAS, NRAS, GNAS, CBL, Chr7/
7qLOH, Chr4qLOH, RUNX1, STAG2 and BCOR), accounting for
the biggest co-mutation pattern in the Bayesian network.

JAK2 was reported as the most mutated gene in the network,
framed in bold black oval, together with CALR and MPL
mutations showing patterns of mutual exclusivity, confirming the
functional redundancy in their pathological mechanisms. The
three genes (JAK2, CARL and MPL) accounted for 1831 driver
mutations out of the 2906 total driver mutations in the dataset.
Our BN elegantly captures the three-way mutual exclusivity
between these central players.

Mutations in PTPN11, SH2B3, PHF6 and other genes not
connected in the network showed a low number of mutations. For
example, mutations in MLL3 were detected in 20 patients (1.0%)
and were predominantly nonsense or frameshift mainly reported in
patients with acute myeloid leukemia. Our BN highlights a number
of interesting co-occurrence chains, such as: ZRSR2-GNAS-NRAS-
STAG2, EZH2-ASXL1-CBL-C11 and C8-C9-TET2-C4.

Our network super-imposes well over the cluster analysis of the
original paper10. Neighbourhoods of the network connect events
that correspond to single clusters identified by the cluster analysis
in Grinfeld et al.10.

Myeloma. The CoMMpass data were generated as part of the
Multiple Myeloma Research Foundation’s Personalized Medicine
Initiative, (https://themmrf.org/). Based on the Bayesian network
analysis shown in Fig. 6 we were able to identify numerous
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dependencies of driver events in a large series of multiple mye-
lomas enroled within the CoMMpass trial (n= 724). Specifically,
the Bayesian network confirmed the known mutually exclusive
pattern between the IGH translocations, t(11;14)(CCND1;IGH),
t(4;14)(MMSET;IGH) and t(14;16)(IGH;MAF) and hyperdiploid
cytogenetic status, as well as the co-occurrence of 13q deletion
with t(4;14) (MMSET;IGH) and 1q gain30–32. The gated version of
the BN is shown in Supplementary Fig. 7, whereas all familial

heatmaps are given in Supplementary Fig. 16. The relationship
between HDR and the translocations is a strong one and survives
much higher ϵ values which lead to sparser networks (Supple-
mentary Fig. 8). The network identifies mutual exclusivity
between the MAPK pathway genes NRAS and KRAS. In our
dataset, 42% of the samples contain at least one of the two
mutations with only 22 (3%) of the samples containing driver
mutations to both genes.

Fig. 2 Bayesian network learnt for AML patient data. a AML Bayesian network learned with Gobnilp (μ= 60, ϵ= 7). This is the vanilla output of the learning
algorithm. b Family heatmaps. The complex probabilistic relationships within a Bayesian network can be broken to a number of more easily understood units. We
form such units, also called families in BNs, from each node and all nodes from which an arrow points to this single node. We use heatmaps to easily
communicate these relationships. Here a number of family heatmaps from the AML Bayesian network (μ= 60, ϵ= 7) are shown. For example, the first heatmap
shows family NPM1-complex-CEBPA_bi. Blue plots lack of driver event while red shows presence of the event. Patients are plotted on the x-axis. Thus the red
cluster on the bottom left of the top heatmap plots a number of patients that have the CEBPA_bi event but do not have the complex event.
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Furthermore, patterns of co-occurrence were observed between
other events such as between deletions of CDKN2C (delCDKN2C)
and FAM46C (delFAM46C) and between del13q14 and both TRAF3
deletion (delTRAF3) and (4;14)(MMSET;IGH). Interestingly, the
network was also able to identify some potential dependencies of low
frequent driver events such as the mutually exclusive pattern
between MAX mutations and hyperdiploid cytogenetic status.

Finally, as expected, several gene bi-allelic inactivations were
identified, such as del17p13 and TP53 mutation, del13q14 and DIS3,
del17p13 deletion and CYLD mutation and 14q deletion and TRAF3
deletion. Overall, this highlighted the ability of the BN to identify
both simple and complex patterns of abundant and rare driver
events. The dataset analysed here was previously analysed by Maura
et al.11 where a simpler version of our BN was presented and
described.

Colon Adenocarcinoma, TCGA. The Cancer Genome Atlas33

(TCGA) project for the characterisation of human colorectal
cancer originally examined 276 samples. Here we reanalysed
these and additional TCGA data in order to capture colorectal
cancer mutational relationship patterns. The Bayesian network in
Fig. 7 was built by restricting input to known cancer driver genes.
It reveals a number of expected gene relationships, such as the
mutual exclusivity patterns among BRAF, KRAS and NRAS
genes34–36, as well as between TP53 and PIK3CA37–39. Our net-
work highlights the high mutation frequency of TP53 and
APC40,41 presented in black bold ovals (Fig. 7). The gated BN
version of the same network is presented in Supplementary Fig. 9
and heatmaps for all families are shown in Supplementary Fig. 17.

SOX9 was mutated in a mutual exclusivity pattern to TP53
while MAP2K4 significantly co-mutated with PCBP1, ATM and
PTEN. In addition, the analysis showed patterns of ARID1A co-
mutation with TCF7L2, ACVR2A and PIK3R1, as well as co-
mutation of ACVR2A with PTEN, ARID1A, FBXW7 and TCF7L2.
CTNNB1 mutations were mutually exclusive of APC. SMAD2 was
mutated together with CTNNB1 as expected, while due to a
modest number of mutations there was a single connection from
SMAD4 in the network at this granularity (to PIK3CA). SMAD4
was one of the 24 significantly mutated genes in the non-
hypermutated tumours of the TCGA study. The BN analysis
encapsulates the majority of colorectal TCGA while it also
highlights interesting hypotheses of relationships, particularly
among multiple genes, such as the co-occurrence pattern in
family ATM-PTEN-MAP2K4 and the mutual exclusivity patterns
in families RNF43-SOX9-TP53 and CTNNB1-RNF43-APC.

Glioblastoma. We next analysed data generated by the EORTC
Study12. The molecular data were used to build a probabilistic
directed graphical model that maps the co-occurrences and
mutual exclusivity relationships of common glioblastoma driver
genes. The BN, gated BN and familial heatmaps generated by our
methods (μ= 5, ϵ= 1) are shown in Supplementary Figs. 10, 11
and 18 respectively.

Glioblastomas (GBMs) are the most common and most
aggressive subtype of glial brain tumours42,43. Hundred and
eighty-six pairs of primary-recurrent GBM samples of patients
receiving chemo-irradiation with temozolomide were collected and
≈300 cancer genes were sequenced12. The most frequent genetic
changes identified were mutations in TP53, PTEN, EGFR, NF1, RB1

Fig. 3 AML Bayesian network with edges visualised based on Fisher’s exact test. Edges with Fisher’s exact test colours and width. To help convey more
information in a succinct way, we colour edges according to the direction of the exact test result among the two mutational vectors connected by the edge.
Also, the width is proportional to the odds value of the same test. It is worth noting that these quantities are not derived from the network construction
algorithm, but from pairwise testing. Fisher test edges are shown for the AML Bayesian network (μ= 60, ϵ= 7).
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and PIK3CA. Approximately 50% of tumours expressed the EGFR,
EGFRvIII mutation. Our Bayesian network analysis, using mutation
data only, showed expected co-occurrence and mutual exclusivity
patterns of important driver glioma genes44. IDH1 was significantly
co-mutated with ATRX and TP53 while being mutual exclusive with
TERT promoter and PTEN mutations. TP53 also co-occurred with
RB1, while NF1 mutations were significantly exclusive of EGFR.
MMR repair gene MSH6 co-occurred with POLE, which encodes a
sub-unit of DNA polymerase.

In comparison to the BN network presented here the network
that is built from pairwise comparisons across all events based on
Fisher statistic, Supplementary Fig. 13, is much sparser. Edges in

the Fisher network are drawn between events for which the Fisher
statistic finds a significant correlation.

Discussion
We present a methodology based on multi-disciplinary work that
brings a class of explainable models to the analysis of genomic
and other datasets. Although the analyses shown are exclusively
applied to cancer, the methodology is applicable to other diseases.
Both in diseases with complex genomic elements that evolve over
time (such as neurological diseases present predominantly on
aging populations), but also in diseases where a number of non-
genomic clinical variables can be used to build a network of

Fig. 4 Gated Bayesian network for the AML dataset. For each family in a Bayesian network we can fit logic gates that further help interpretation of the
relationships in the network. The best configuration is selected using the Fisher statistic. Here the logic gates enhanced Bayesian network for the AML
dataset (μ= 60, ϵ= 7) is shown.
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dependencies (such as heart disease models based on lab and
imaging variables).

A main objective of this work has been to engage clinicians and
biologists in using BNs directly. BNs are an important tool that
can be regularly used in the analysis of complex multivariate
clinical datasets. In order to make these models more accessible to
experimentalists we have married an optimal BN learning algo-
rithm with a number of interpretation cues. Furthermore, our
results on specific datasets demonstrate the power of the meth-
odology. Crucial to this mission has been the ability to restrict the

number of parameters to two easily understood parameters. Thus
allowing unmediated control to non specialists.

The presented methodology empowers clinicians in a path
from classical pairwise testing towards more complex statistical
models. As the generation of big genomic datasets is becoming
routine, complex models have a positive role to play in unco-
vering the intricate relationships between driver events. The
limiting factor is often that the scientists generating the data have
no previous experience in dealing with such formalisms. This
research brings this important class of models within their grasp.

Fig. 5 Bayesian network for the MPN dataset. a Bayesian network constructed for the MPN dataset (μ= 5, ϵ= 3) along with b the heatmap for the MPL
family. The heatmap plots presence (red) or absence (blue) of driver events for the three members of the family (CALR, JAK2 and MPL) on the y-axis
against patients on the x-axis. The heatmap, thus provides a visual aid in establishing the type of relation between these genes in the dataset. The BN
captures the mutual exclusivity relationship of the three major players accounting for the majority of cases: CALR, JAK2 and MPL.

Fig. 6 Bayesian network for the myeloma dataset. The analysis identified a crucial four-way mutual exclusivity pattern between HDR, t(4,14), t(11,14) and
t(14,16), highlighting the central role of the three translocations and the HDR characteristic in myeloma (μ= 20, ϵ= 3).
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We applied the proposed methodology to five large scale,
cancer genomic datasets to reveal patterns of complex relation-
ships that were either previously unknown or had been char-
acterised in non systematic ways. We have chosen datasets from a
wide variety of cancers to ensure our methods are widely
applicable. Crucially, the selected datasets contain all genomic
aberrations that are considered to play a driving role in the
specific cancer type. Clinicians and biologists that have a detailed
knowledge of specific cancer types, are the target audience of the
proposed methodology. We provide a few parameter settings so
as to avoid reliance on technical statistical knowledge. Further-
more, in all the datasets analysed it was always clear that the BN
families highlighted strong links that can be reported confidently.
Parameters, ϵ and μ, play a supporting role and are about striking
the right balance between sparse and dense networks when
communicating the findings of each study. Our networks, con-
sistently across the cancer types, are able to confirm a number of
well-established interactions while in addition they propose a
number of interactions that warrant further investigation.

Methods
Bayesian networks. The graph structure of a BN provides a way of decomposing
the joint probability of its variables. For the BN in Fig. 1a the structure dictates that:

pðA;B;C;D; EÞ ¼ pðCjA;BÞpðEjC;DÞpðAÞpðBÞpðDÞ ð1Þ

For each conditional relation defined by the structure of a BN, there exists an
associated probability table that assigns a probability distribution over the values of
the dependant variable given each possible combination of its antecedents. For
example, the BN in Fig. 1a defines p(C= 0∣A= 0, B= 0)= 0.8 and
p(C= 1∣A= 0, B= 0)= 0.2. This network can be decomposed into two families:

one for C (A-B-C) and one for E (C-D-E). Although probabilistic in nature, the
example BN encodes 2 logical relations: C ≈ AAND ¬ B and E ≈ CORD.

BN structure learning methods reconstruct the graph part of a BN from data.
Score-based algorithms search the space of possible graphs to find those that score
highly on the given data. Although finding the single best graph is in general an
intractable problem (NP-hard) the use of constraints within an optimisation
framework can routinely solve the size of the problems we are interested in and
which rarely contain more than 50 variables. Specifically, we use throughout, the
Gobnilp software18 for learning the basic BN structure. This software maps the
problem into an integer linear programming formulation which can be tackled by
optimisation programs such as SCIP45. Using this strategy, Gobnilp is able to find
the optimal network explaining the input data. ILP guarantees that if the algorithm
terminates then the optimal solution has been reached. Depending on the size of
the problem ILP might fail to terminate within a reasonable amount of time. For
the size of problems analysed here, this has not been an issue. All our examples can
be reproduced on computers with very modest capabilities (Supplementary Note 1:
Software).

Figure 1 shows the results of a small in silico experiment. 1000 points are
sampled from the joint distribution defined by the BN in Fig. 1a. Using these data
points the BN structure is recovered in full (Fig. 1c). A version of the learned
network with fitted logic gates is shown in Fig. 1d. Figure 2a shows the BN
constructed by running Gobnilp on the AML data set9 as input.

As we (a) do not have intervention experiments to pinpoint causality and
direction of arrows, and (b) we take an approach that is centred around families in
deconstructing the networks, we will not visualise any arrow directions in
subsequent networks. In our networks no special interpretation should be given to
the directionality of edges between family members. In particular, children-parents
relations should be interpreted as correlations and not as causations. The exact
mutational pattern for each family is best visualised by the heatmap of the input
values for the family variables (Fig. 1b). To increase the visual interpretability of the
networks, we colour the edges according to pairwise exact Fisher’s test. It is worth
noting that this information is not derived by, or directly related to, the BN
learning algorithm. Yellow colour is used for edges between mutually exclusive
events (odds ratio <1) and green is used for edges between co-occurring events
(odds ratio >1). Edge widths are drawn in proportion to the value of the odds ratio
for the test. Dotted edges indicate a non-significant corrected p-value for the Fisher
test between these two variables. Figure 3a shows the BN constructed for the AML

Fig. 7 Bayesian network for the colon adenocarcinoma data from TCGA. Highlights include a consistent mutual exclusivity pattern among BRAF, KRAS
and NRAS and a co-occurrence pattern among a number of drivers with a small number of individual mutations (shown linked to ACVR2A). The parameters
used in learning this network were μ= 5 and ϵ= 1.
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cohort with Fisher test controlling the colour, line type of edge and the width of
edges.

To further assist with the interpretation of binary genomic datasets, we propose
an additional, but optional step, of fitting logic gates into each network family.
From all possible combinations, the set of gates that minimises the p-value of the
Fisher test when testing the child vector to the vector resulting from applying the
logic gate to the values of the parents. Figure 4 shows the AML network with fitted
logic gates. We will refer to these logic gates enhanced networks as gated BNs.
Whether specific researchers find the gates of help, depends on many factors,
inclusive of the specifics of the dataset. We thus suggest the optional use of gates
in situations where the interpretation is possible, dependant on the expertise of the
investigating team. Our analysis methodology constitutes of four main steps.

BN learning. A binary or discrete matrix of genomic aberrations is the input to the
Gobnilp software18, which learns the best Bayesian network scored by a specific
likelihood function. Looking for the optimal structure is mapped to an integer
linear programming problem which is then solved using the SCIP optimisation
suite45.

We have used default parameters for the Gobnilp software throughout as we
seek that our methodology is accessible to non-experts. We utilise two simple
parameters for controlling the learning process. The first, μ, is employed prior to
running the BN learning algorithm and is a simple means of controlling the
number of variables to be included in the network learning step. The parameter’s
purpose is to remove any variables that occur too infrequently. For example, a
value of μ= 10 will curtail any genomic event that appears in less than 10 samples.
The rationale is that these variables will not contribute to important parts of the
network. In terms of the workflow of analysing cancer datasets, clinicians would
normally collect from the literature and own knowledge a large panel of driver
events that may be implicated. Parameter μ is an intuitive way by which variables
that do not appear in the dataset under analysis, are removed. For each of the
datasets we analyse in this paper, we report the μ value used. The effect of different
μ values on the number of variables and associated number of edges for the AML
dataset, is discussed in Supplementary Note 2: Parameter selection and is shown in
Supplementary Fig. 1. Its effect on the number of variables for the other datasets is
shown in Supplementary Fig. 2. In machine learning terms μ is not a proper
parameter that is fine-tuned (also known as regularised) during experimentation.
Selecting a value for μ is a much simpler decision typically taken by clinicians at the
beginning of data processing.

The second parameter (ϵ, for edge penalty) controls the sparsity of networks.
Following a Bayesian machine learning framework46 Gobnilp can express the
posterior of a model (M) given data (D) as P(M∣D) ∝ P(M)*P(D∣M) where P(M) is
the prior probability of M and P(D∣M) is the likelihood of the data for the specific
model. The usual agnostic prior is to fit a uniform distribution over P(M), which
means that the model with the maximum posterior probability is the one with the
highest likelihood score. Given edge penalty parameter ϵ, a network (M) with n
number of edges will have a prior value P(M):

PðMÞ / e�n�ϵ ð2Þ
which penalises dense networks. ϵ takes a simple integer value, typical in the range
of 1−20. Its effect on network size (number of edges) for AML dataset is shown in
Supplementary Fig. 3. For each constructed network we report the value of this
parameter.

Both parameters are straightforward to set and have intuitive readings.
Researchers can set these to stringent levels when preparing networks for
publication, whereas when using the networks for searching for validation targets
they can use more permissive values. Gobnilp takes a number of other parameters
that can control for the minimum and maximum number of parents or express
conditional independence constraints. Other technical parameters can control the
function that scores how well a particular BN fits the data.

We have found the generated Bayesian networks to be robust and meaningful.
The latter is attested by the analyses of five well-known datasets as discussed later
in the paper. Robustness of the networks can be an issue with BN learning but in
the datasets we analysed we found this not to be the case. An important factor is
that the number of samples far outweigh the number of variables. In these large
cohort genomic studies where driver events are reasonably well established and
limited in number this will always be the case. Furthermore, in each dataset we will
typically run Gobnilp under a range of ϵ values which controls the density of
networks. Robustness is also attested by the fact that in all cases denser networks
incorporate the vast majority of edges of sparser ones (Supplementary Note 3:
Robustness). For instance, all significant edges (shown as continuous lines) in
Supplementary Fig. 8 which shows the gated BN for myeloma at ϵ= 12 are also
present at the much denser network for the same dataset shown in Fig. 6a (ϵ= 3).
More formally, we found that edges in the most sparse networks are consistently
present in denser networks (99.3%, Supplementary Note 3: Robustness).

Family heatmaps. For each family in the constructed BN a heatmap can be drawn
to guide interpretation. Families in BNs pinpoint multi-way interaction patterns in
the dataset, while heatmaps precisely illustrate the mutational patterns of all par-
ticipants. Heatmaps are trusted visualisations that are well understood by biologists
and clinicians. The heatmaps for the two non trivial families of the example BN of

Fig. 1a are shown in Fig. 1b. Figure 2b shows the most important family heatmaps
for the AML dataset. Finally, a crucial heatmap for the MPN data is shown in
Fig. 5b. This heatmap demonstrates the power of visualising family relationships,
clearly showing the 3-way mutual exclusivity and the extent of coverage of the three
major players: JAK2, CALR and MPL, which together cover the vast majority of
cases.

Each heatmap depicts the data in the cohort that correspond to a single family.
A family is comprised of a single child node and all nodes above it from which
edges are connected to that node (parents). For example, the heatmap in Fig. 5b
shows the source data for family JAK2-CALR-MPL. MPL is the child node and
nodes JAK2 and CALR are the parents. Of course, in BN families there is no
restriction to two parents. Family heatmaps plot family members on the y-axis and
patients on x-axis. The presence of an event is plotted in red while absence is
shown in blue. These heatmaps provide a visual cue to the kind of relationship
between the family members that exists in the primary data. The heatmap in
Fig. 5b clearly shows that there is a three-way mutually exclusive relation between
the three drivers (JAK2,CALR and MPL), as patients that have mutation in one of
them (red blocks), do not have a mutation in the other two drivers (blue sections at
the same x-axis positions).

Fisher edges. Edges in the BNs that we display are coloured according to the odds
ratio of Fisher’s exact test (R function fisher.test()) between the end points of that
particular edge. An odds ratio value of less than 1 indicates a mutual exclusive
pattern (yellow colour) with co-occurrence corresponding to odd ratio values
greater than 1 (green colour). It is worth noting that each edge is coloured
according to the pairwise test and that this is done as to give further visual cues of
the relationships within the dataset. For example, in the family STAG2-NPM1-
DNMT3A of Fig. 3, the edge STAG2-DNMT3A shows a mutual exclusivity between
STAG2 and DNMT3A (odds ratio value of less than 1) whereas edge NMP1-
DNMT3A is coloured as a co-occurrence relation between NPM1 and DNMT3A
(odds ratio value of 1 or more).

We draw edge widths proportional to the absolute value of the odds ratio value
of the test. Edges are drawn as continuous lines if multiple hypothesis corrected (by
default using Benjamini and Hochberg, or any accepted by p.adjust() R function) p-
value of the test is less than 0.05 and as dotted lines if the test was equal or bigger
than 0.05. The edge STAG2-DNMT3A (Fig. 3) is shown as a dotted line as the p-
value is not significant, whereas the edge NMP1-DNMT3A in the same BN is
drawn in continuous pen as the p-value is significant. The width of edges is
proportionate to Fisher odds value for the pair of events connected by the edge.
The width on the legend is calibrated to the value displayed on the same line. In
Fig. 3 the co-occurrence width displayed at the legend corresponds to an odds
value of 4.

Family gates. For each family we fit all possible logic gate configurations choosing
the combination minimising the p-value of the Fisher test between the child values
and the vector resulting from applying the logical formula to the parents’ vectors.
The fitting of logical gates respects the conditional independencies encoded in the
learned Bayesian networks. For instance, for the family complex-NPM1-CEBPA_bi
in Fig. 3, the OR gate is fitted between the edges complex-CEBPA_bi and NPM1-
CEBPA_bi already identified by the BN learning algorithm (gated version is shown
in Fig. 4).

The user can easily choose which gates should be considered from the following:
AND, OR, NOT and XOR. XOR is given a preference over OR when they derive
identical test statistics. By default all gates are considered apart from NOT- which
can be added if required. The software applies straightforward multi-input
simplifications, where ((A AND B) AND C)=D is shown as a 3 input, 1 output
single gate AND(A, B, C)=D.

Statistics and reproducibility. The BN learning results can be reproduced by
running Gobnilp with default parameters apart from those we explicitly set, on the
data provided in Supplementary Data 1: Input datasets.

The only statistical test we utilise is Fisher’s exact test. The test is used to
highlight pairwise relationships in the constructed Bayesian networks. Edges with
significant p value (<0.05) are shown as continuous lines whereas non-significant
edges are shown as dotted lines. The same test is also used to choose between all
possible logic gates. In this case, the gate with the minimal value is selected.

Genomic datasets. Cancer and normal samples were sequenced using a custom-
designed targeted cancer panels as described below for each study. Sequencing was
performed on Illumina HiSeq2000 machine using 75-bp paired-end method with
the target of 1Gb sequence per sample. Mutation analysis was performed using in-
house algorithms developed at the Welcome Sanger Institute. Sequencing reads are
aligned to the NCBI-built human genome using the BWA algorithm to create a
BAM file with Smith-Waterman correction with PCR duplicates removed (http://
broadinstitute.github.io/picard/). Calling of substitutions was done with the
Caveman algorithm47 and insertions/deletions (indels) with Pindel48. All datasets
used here were previously published and all had obtained informed consent.
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AML. We use the dataset of AML patients first introduced in Papaemmanuil
et al.27, which sequenced DNA extracted from peripheral blood granulocytes or
bone marrow mononuclear cells. Patients were drawn from three prospective
multi-location clinical trials of the German-Austrian AML Study Group (AMLSG).
The dataset includes a number of important recurrent alterations including fusion
genes and copy number alterations. Our starting dataset contains the full set of
variables analysed in the primary publications9,27. The AML binary matrix used for
the BN learning reported there contains 1540 rows (samples) and 84 columns
(events/variables). As many variables are exploratory, having low frequency, we
used a stringent μ= 60, which reduced the number of variables from 84 to 28. The
AML BN is shown in Fig. 3 and was built with ϵ= 7.

MPN. The MPN dataset was as reported by Grinfeld et al.10. Briefly, 69 myeloid
driver genes in 2039 patients with myeloproliferative neoplasms were sequenced.
Thirty-three genes had driver mutations in at least five patients, with mutations in
one of JAK2, CALR, or MPL being the only driver event in 45% of the patients. In
addition to driver mutations, we model a small number of high order genomic
events that are known to be important in MPN. The MPN binary matrix that was
used for the BN presented here included 2039 rows and 46 columns. The learnt BN
is in Fig. 5 and the parameters used were μ= 5 and ϵ= 3. The application of μ
removed five-event variables.

Myeloma. The BN learning algorithm was ran on a large multiple myeloma (MM)
series composed by 724 patients from the COMMPASS series, an observational
clinical trial founded by Multiple Myeloma Research Foundation. Only genomic
features with a known driver role have been included11. The final binary matrix
used for learning the network contained 724 rows and 29 columns. The myeloma
BN is shown in Fig. 6 and was built with μ= 20 and ϵ= 3. The parameter value
μ= 20 reduced the number of event variables from 69 to 29.

Colon adenocarcinoma, (COAD), TCGA. To define the mutational spectrum of
colorectal cancer, the TCGA consortium performed exome capture DNA
sequencing on 523 tumour and normal pairs. Sequencing was performed in paired-
end mode with Illumina HiSeq 2000. Illumina sequencing libraries were amplified
by bridge-amplification process using Illumina HiSeq pair read cluster generation
kits (TruSeq PE Cluster Kit v2.5, Illumina) according to the manufacturer’s
recommended protocol. BAM files of the sequenced samples were obtained and
reanalysed using the CGP pipeline at the Sanger Institute. Biospecimens were
collected from newly diagnosed patients with colon or rectum adenocarcinoma
undergoing surgical resection and had received no prior treatment for their disease,
including chemotherapy or radiotherapy. All cases were collected regardless of
surgical stage or histology grade. Cases were staged according to the American
Joint Committee on Cancer (AJCC) staging system. Each frozen tumour sample
had a companion normal tissue possibly from blood/blood components. Our BN
learning dataset contained 523 rows and 22 columns. The BN for the TCGA/
COAD dataset is shown in Fig. 7. It was built with μ= 5 and ϵ= 1. μ= 5 removed
no event variables.

Glioblastoma. Samples from histologically proven glioblastoma patients before
and after receiving chemo-irradiation with temozolomide were collected in the
EORTC network (10 institutions in 6 countries, as reported by Draisma et al.12).
Formalin-fixed paraffin-embedded tissue was processed at the Erasmus MC, Rot-
terdam. The study included samples from primary and recurrent 186 individuals
paired against normal. A total of 300 cancer genes were sequenced12. Here we
concentrated on known driver mutations in driver genes on post treatment sam-
ples. Genes were required to be mutated in a minimum of five samples (μ= 5). Our
BN learning dataset included 179 rows (samples) and 21 columns (genes). Sup-
plementary Fig. 10 shows the BN for the glioblastoma data, built with μ= 5 and
ϵ= 1. The application of μ removed no driver events as it is likely that the dataset
was already cleaned for rare events.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets analysed here were previously published elsewhere. The matrices of genomic
events used as input to BN learning are included in the source code of our software
(Supplementary Note 4: Datasets) and provided as Supplementary Data 1: Input datasets.
The AML dataset is available at the European Genome-Phenome Archive with

accession number EGAS0000100027549. Here we used the version available at https://
github.com/gerstung-lab/AML-multistage. The myeloma primary genomic dataset is
available at the European Genome-Phenome Archive with the accession number
EGAS0000100129950. The glioblastoma primary dataset is available from the same
archive with accession number EGAD0000100459351. The colon adenocarcinoma data is
available from the Genomic Data Commons Portal52. The myeloproliferative neoplasms
dataset was obtained from the corresponding author of the cited paper10. All datasets can
also be requested from the corresponding author.

Code availability
All code and scripts used here are made available as open source at https://github.com/
nicos-angelopoulos/gbn (version 0.2). The code is also available on Zenobo53. Our code
only depends on open source and free for use in academic settings software. Because of
the large number of software dependencies, we also provide a complete operating system
image for the Raspberry pi 4 architecture: https://stoics.org.uk/nicos/sware/gbn/
gbn_image.html. All code can also be requested from the corresponding author.
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