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Abstract 

Microwave-assisted pyrolysis with chemical activation was developed and optimized to 

transform orange peel into activated carbon (AC) desirable for use as a dye adsorbent. The 

orange peel was first carbonized via microwave-assisted pyrolysis to produce a biochar, which 

was then activated and converted into AC via chemical impregnation coupled with microwave-

assisted pyrolysis. The process parameters involved was optimized to maximize the yield of 

AC and its adsorption efficiency on malachite green dye using response surface methodology 

adopting central composite design. The use of microwave-assisted pyrolysis provided a fast 

heating rate and short process time in converting orange peel into AC, recording a heating rate 

of up to 112 oC/min in a process taking about 25 min, representing a method that is potentially 

faster and more energy efficient compared to that shown by the method commonly performed 

using conventional heating source (> 1 hour). The results showed that AC with the highest 

yield (87 wt% of biochar) and optimal adsorption efficiency (28.5 mg of dye / g of AC) can be 

obtained by performing chemical impregnation at an impregnation ratio of 1:1 coupled with 

microwave-assisted pyrolysis under microwave irradiation (heating) for 5 min using 550 W of 

microwave power. The addition of chemical activation with alkali metal hydroxides resulted 

in the production of AC with improved properties. The AC showed a highly porous structure 

containing high content of fixed carbon (83 wt%) and high BET surface area (1350 m2/g). The 

adsorption–desorption isotherm showed a combination of Type I and Type II isotherms, which 

indicates the presence of microporous-mesoporous structure, thus exhibiting a characteristic of 

improved pores accessibility and high adsorption capacity. Combined with the detection of low 

ash (3.2 wt%) and moisture content (5 wt%), the AC shows great promise as a high-grade dye 

adsorbent with high adsorption capacity and potentially increased durability since a low 

moisture content could increase the rate of adsorption of dye contaminants and a high ash 

content could promote undesirable catalytic reactions and reduce the adsorption capacity and 
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reactivation efficiency of AC. The recovery of AC with improved properties and the desirable 

process features (fast heating rate, short process time) suggest the great potential of this method 

as an alternative for the treatment and recovery of fruit peel. 

 

Keywords: Microwave; pyrolysis; activated carbon; optimization; response surface 

methodology; adsorbent 

 

1. Introduction 

Orange represents a fruit with high market demand in the world (Boukroufa et al., 

2015). There were approximately 100 metric tons of oranges being imported into Malaysia in 

2015 to fulfill the demand by the consumers and the fruit processing industries. Consequently, 

a large amount of orange peel has been discarded and dumped to the landfill sites. This results 

in the release of greenhouse gases (e.g. CH4, CO2) that promotes global warming when the 

orange peel undergoes decomposition over time by bacteria in the landfill sites (Lam et al., 

2016b; Lou and Nair, 2009). Hence, efforts should be made to reuse or transform orange peel 

into potentially useful product such as activated carbon instead of simply being disposed by 

landfilling that can bring negative impact to the environment.  

Activated carbon (AC) is a highly porous material that shows excellent performance in 

adsorption process (Demiral and Güngör, 2016). It is widely applied in industry for separation 

of heavy metal, dyes, and organic residues from water and waste water (Bhatnagar et al., 2013; 

Kundu et al., 2015a). It also demonstrates great promise as a catalyst support and heating 

medium in thermochemical applications (Lam et al., 2016c; Lam et al., 2016d). The production 

of AC involves 2 processes - carbonization and activation. These processes are performed 

separately where the feedstock (a biomass or waste material) is first heated and pyrolyzed in a 

reactor at a high temperature (400 – 700 oC) in order to be carbonized to produce a char product, 
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then the char is transferred to another reactor in which physical or chemical activation is 

performed to increase its porosity by heating and pyrolysis at a high temperature ranging 

between 400 °C and 900 °C (Sayğılı et al., 2015). Alternatively, carbonization and activation 

are performed simultaneously in a one-step approach (Kundu et al., 2015a).  

However, both carbonization and activation are commonly performed via pyrolysis 

using conventional heating sources such as electrical oven or furnace, which usually requires 

long process time (1 – 7 hours) (Baccar et al., 2009; Dural et al., 2011; Tay et al., 2009) and 

high process temperature (up to 700 oC) (Ahmad and Alrozi, 2010; Garba and Rahim, 2014), 

resulting in high energy usage and increased production cost. In conventional electric-heated 

pyrolysis, heat is transferred mainly to the material being heated by conduction and convection 

mechanisms. This type of heat transfer could be slow and energy inefficient because the heat 

needs to be transferred from the heating elements (e.g. heating mantle or coil) to the furnace 

chamber, and then to the heat conductor (e.g. the gas present inside the furnace cavity) before 

it is finally received by the surface of the material being heated. This also results in significant 

energy loss and thus more time and energy are required to heat the material to the target 

temperature for pyrolysis to occur.  

Microwave-assisted pyrolysis shows potential as an alternative to overcome the 

limitations shown by pyrolysis using conventional oven or furnace as the heat source. The use 

of microwave as a heat source is well known for its ability to provide fast and selective heating 

mechanism (Lam et al., 2015; Wan Mahari et al., 2016). When microwave radiation is applied 

to a material being heated, the resulting microwave energy can induce dipole rotation in atomic 

scale over a million times per second (Njoku et al., 2014). This creates a frictional force 

between atoms and molecules within the material and in turn generates heat rapidly within the 

whole volume of the material, hence showing ability to generate a rapid and ‘volumetric’ 

heating to heat the material in bulk (Lei et al., 2009; Russell et al., 2012).  
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Furthermore, the microwave energy is targeted only to microwave receptive materials 

(e.g. carbon-based material) and not to gases within the heating chamber or the chamber itself 

(Lam et al., 2016a). This could generate micro-plasma spots throughout the material being 

heated (Menéndez et al., 2007) and promote certain chemical reactions in a way that is not 

possible in conventional processing by selectively heating the reactants and initiating extensive 

pyrolysis cracking at a significantly lower process temperature (Lam et al., 2015). Other 

advantages shown by microwave-assisted pyrolysis compared with conventional electric-

heated pyrolysis techniques include better process control in terms of quick start-up and 

shutdown, a more uniform heat distribution, increased production speeds and decreased 

production costs (Kundu et al., 2015a; Lam et al., 2017; Menéndez et al., 2004). It is thus 

thought that the application of microwave-assisted pyrolysis in the production of AC could 

show favorable features that could lead to an energy-efficient heating process, savings in 

process time, and improved yield of desirable products.  

Despite the advantages shown by microwave pyrolysis, the growth of industrial 

microwave pyrolysis applications is hampered by an apparent lack of the understanding of 

microwave systems, the influence of key process parameters on the desired product, and the 

technical information for designing commercial equipment for these pyrolysis applications. In 

addition, microwave radiation presents an additional hazard over traditional heating methods, 

although this is easily contained within an appropriate Faraday cage. Moreover, using 

microwaves places limits on which materials can be used in the construction of a reactor and 

its design. These limitations present difficulties for microwave pyrolysis processes to be scaled 

up and optimized. 

Chemical activation is performed to increase the porosity of AC via impregnation with 

chemicals followed by pyrolysis at a high temperature. It shows potential as a method that can 

be performed at a lower process temperature (> 450 oC) than that reported by physical 
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activation (> 700 oC) (Mahapatra et al., 2012), and has been reported to produce AC with 

increased surface porosity and less cracked surface (Al-Qodah and Shawabkah, 2009; Williams 

and Reed, 2006). Chemicals such as H3PO4, ZnCl2, NaOH and KOH have been tested for their 

potential to either weaken or break down the chemical bonds between the lignocellulosic 

components present in the biomass used as the feedstock to produce AC (Chen, 2005; Jin et 

al., 2013). This enables the lignocellulosic components to be easily removed and transformed 

into volatiles (e.g. CO2 and CH4) during the subsequent treatment by pyrolysis and which in 

turn increases the formation of pores on the surface of the resulting AC generated as the solid 

product (Sayğılı and Güzel, 2016). In particular, alkali metal hydroxides (e.g. KOH, NaOH) 

have been reported to show ability to enhance pore formation via an intercalation effect caused 

by interaction of K and Na atom with the carbon structure of the AC (Giraldo and Moreno-

Piraján, 2012; Musa et al., 2015; Raymundo-Pinero et al., 2005). It was thus hypothesized that 

chemical activation with alkali metal hydroxides could lead to production of AC with improved 

properties with respect to increased porosity and the resulting surface area.  

The findings above provide the motivation for this study, which is to investigate the use 

of an innovative method incorporating microwave-assisted pyrolysis and chemical activation 

with alkali metal hydroxides to produce AC from orange peel. The method was examined for 

its performance over a range of process parameters (i.e. microwave power, microwave 

irradiation time and chemical impregnation ratio) with emphasis on the process features, the 

yield and composition of the AC obtained, and its adsorption of malachite green (a common 

dye that produces the wastewater in textile industry). This was followed by optimization of the 

process parameters using response surface methodology (RSM) adopting central composite 

design (CCD) to maximize the yield of AC with optimal adsorption efficiency on malachite 

green dye. These evaluations are important to assess the feasibility of developing an improved 

method that is energy-efficient and requires a shorter process time to recycle orange peel, while 
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simultaneously producing a higher yield of AC with better quality and which can be use as dye 

adsorbent to treat wastewater in textile industry. To the best of author’s knowledge, there has 

yet to be any studies reported in the literature on the application of the proposed method to 

produce AC from orange peel. 

 

2. Materials and methods 

2.1. Pre-treatment and preparation of materials  

Orange peel was collected from a local café in Kuala Terengganu, Malaysia. The peels 

were washed with tap water to remove dirt and dried in oven at 110 °C for 24 hours. The dried 

peels were crushed into small pieces with a diameter of < 3cm, then they were stored in glass 

bottles before being subjected to microwave-chemical activation.  

A chemical solution formulated from alkali metal hydroxides was prepared for 

chemical impregnation by dissolving potassium and sodium hydroxides at a weight ratio of 1:1 

in distilled water. Malachite green (MG) dye (Bendosen Laboratory Chemicals, Malaysia) was 

used as adsorbate to test the adsorption efficiency of the activated carbon (AC). A 1 mg/ml of 

MG stock solution was prepared and this was followed by preparation of a series of the dye 

solutions at different diluted concentrations (0 – only distilled water, 0.2, 0.4, 0.6, 0.8 and 1 

mg/ml) using distilled water to produce a standard curve for determination of the concentration 

of dye solution after treatment by AC.  

 

2.2. Procedures on microwave-assisted pyrolysis with chemical activation 

A two-step approach comprising carbonization and chemical activation was performed 

incorporating microwave-assisted pyrolysis to produce AC. The use of two-step approach has 

been reported to produce AC with a higher surface area compared to the use of one-step 

approach (i.e. carbonization and activation are performed simultaneously) (Nasri et al., 2014a; 



8 

 

Nasri et al., 2014b). Fig. 1 demonstrates the schematic diagram of the microwave-assisted 

pyrolysis apparatus. A microwave oven with a frequency of 2.45 GHz (model: Panasonic) was 

modified and used to generate the microwave radiation required as a heating source to perform 

the pyrolysis process. A modified 1 L quartz reactor was used as the pyrolysis reactor. The 

pyrolysis temperature was monitored using a Type-K thermocouple that is in direct contact 

with the feedstock in the reactor during the pyrolysis experiment. The temperature measured 

using thermocouple was also validated with the use of an infrared thermometer, and the results 

of validation showed good precision with low standard deviations shown in the recorded 

temperature (±1-3 °C). N2 purge-gas was flowed through the reactor to maintain an inert 

atmosphere. 

Carbonization was first performed via microwave-assisted pyrolysis to convert orange 

peel into a biochar product. 15 g of orange peel were measured and added into the pyrolysis 

reactor, which was then inserted into the microwave oven. Then, the microwave oven was 

turned on for 20 min at 700 W of microwave power to heat, pyrolyze, and in turn carbonize the 

orange peel under a N2 flow of 0.25 L/min. The temperature versus time profile of the orange 

peel was monitored as an indication of its heating characteristic during the heating and 

pyrolysis process. A yield of about 30 wt% was obtained for the biochar, which was collected 

and further subjected to chemical activation for conversion into activated carbon. 
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Fig. 1. The schematic diagram of the microwave-assisted pyrolysis apparatus. 

 

Chemical activation was then initiated with chemical impregnation as the first step, 

which was performed by soaking the biochar in the prepared alkali metal hydroxides solutions 

for 24 hours. The influence of chemical impregnation was examined over a range of 

impregnation ratio (i.e. weight of biochar : weight of chemicals) ranging from 1:1 to 1:3. The 

biochar was then separated from the chemical solution and then subjected to microwave-

assisted pyrolysis for conversion into AC. The microwave-assisted pyrolysis at this stage was 

examined over a range of microwave power (300 – 700 W) and microwave irradiation time (5 

– 15 minutes) in order for comparison to made with the relevant literature (Junior et al., 2014). 

The temperature versus time profile continued to be monitored during the microwave pyrolysis 

of the biochar. This allows an examination of the heating characteristic that can lead to 

estimation of the heating rate and the total process time achieved by the whole pyrolysis 

operation. The resulting AC was immersed in 0.1 M of HCl and then washed with hot distilled 

water to remove the chemical residues remained within the AC. The AC was dried with an 



10 

 

oven at 110 °C for 24 hours and stored inside a sample vial. The experiments were repeated 

for three times to ensure good reproducibility of the data. 

The yield of AC was calculated using Equation 1 (Mohammed et al., 2015).  

𝑌𝑖𝑒𝑙𝑑 (𝑤𝑡%) =
𝑊𝑓

𝑊𝑖
⁄ ×100                                                                                                            (1) 

Wf is the weight of AC produced (g) and Wi is the weight of biochar (g). The calculation was 

based on the weight of biochar used because the focus of this study was to optimize the process 

parameters involved in maximizing the yield of AC from the biochar originally derived from 

the orange peel. 

 

2.3. Characterization of activated carbon 

The AC produced from orange peel biochar was analysed for their content of carbon 

(C), hydrogen (H), nitrogen (N), and sulphur (S) using a FlashEA 1112 CHNS elemental 

analyser, whereas the content of oxygen (O) was calculated by difference (Jamaluddin et al., 

2013). The proximate content of moisture and volatile matter were determined via a Mettler 

Toledo TGA under pyrolysis (N2) environments by heating the AC from ambient temperature 

to 900 oC at a heating rate of 10 oC/min and with a N2 flow rate of 25 ml/min. The ash content 

was determined by combustion of the AC in a muffle furnace at 950 oC with a holding time of 

10 minutes. The fixed carbon content was estimated by subtracting the contents of moisture, 

volatile matter and ash from the original mass of the sample (Azuara et al., 2013). The AC was 

also analysed using a JEOL JSM-6360LA scanning electron microscope (SEM) to examine 

their surface morphology. The porous characteristics of the AC (i.e. surface area, pore width, 

and total pore volume) were analysed using a Micrometric ASAP 2020 automatic sorption 

analyser; the description of this method is presented in Appendix A.  
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2.4. Adsorption of malachite green by activated carbon 

A lab-scale batch adsorption test was performed using the method adapted and modified 

from Ghaedi et al. (2016). 10 ml of MG with a concentration of 1 mg/ml was prepared as 

adsorbate and inserted into 17 test tubes, respectively. Batch tests were then performed by 

adding 200 mg of AC into each test tubes to examine its efficiency to absorb MG. The test 

tubes were vortexed at 2000 rpm using Vortex Mixer at room temperature for 3 min. It had 

been ascertained from trial experiments that the change of colour of the mixture, which 

indicated the initiation of the adsorption of MG by AC, started in about 1 min and no further 

change of colour was observed after 2 min, thus a contact time of 3 min was selected to allow 

the adsorption process to be completed. The remaining concentration (mg/ml) of MG after 

adsorption by AC was determined using Shimadzu UV-1800 UV-Vis spectrophotometer at a 

wavelength of 617 nm. Adsorption efficiency (mg/g) of AC was calculated using Equation 2. 

𝐴𝑒 =
[(𝐶𝑜 − 𝐶𝑓)×𝑉]

𝑚𝑎𝑐
                                                                                                                          (2) 

Where Ae = adsorption efficiency of AC; Co = initial concentration of MG solution; Cf = final 

concentration of MG solution; V = volume of MG solution; mac = mass of AC used. 

 

2.5. Design and optimization of process parameters via response surface methodology 

(RSM) 

Response surface methodology (RSM) is a robust statistical tool that can evaluate and 

estimate the optimum process parameters based on the experimental data obtained over a range 

of process parameters considered (Huang et al., 2015). In this study, RSM was used to estimate 

the optimal parameters required to maximize the yield of AC with optimal adsorption 

efficiency on MG dye. This was performed along with the use of Central Composite Design 

(CCD) in designing the experiments for the three process parameters involved in the production 

of AC via microwave assisted pyrolysis combined with chemical activation, namely 



12 

 

microwave power (A), microwave irradiation time (B) and chemical impregnation ratio (C). In 

addition, the yield of AC (Y1) and the adsorption value of malachite green (Y2) were selected 

as the responding factors from the AC produced.  

“Minitab 16” software was used to process the CCD approach and conduct regression 

analysis on the experimental outcomes (Mohammed et al., 2015a). Table 1 summarizes the 

three process parameters with their respective ranges chosen. Equation 3 shows the formula to 

calculate the total number of runs required, where n is the number of process parameters used. 

A face-centered CCD consisting of eight factorial points, six axial points and three replicates 

at centre points with a total number of 17 experiments was employed to formulate the optimum 

process condition from the three process parameters. The use of triplicate experiment at centre 

point is to ensure the reproducibility of the data and to determine the experimental error (Auta 

and Hameed, 2011; Kundu et al., 2015a).  

𝑁 = 2𝑛 + 2𝑛 + 𝑛𝑐                                                                                                                                  (3) 

 

Table 1: Process parameters and their coded levels for face-centred CCD. 

Variables/parameters Code Units Coded Variable Levels 

 -1 0 1 

Microwave power A Watt (W) 300 500 700 

Microwave Irradiation Time B Minutes (min) 5 10 15 

Chemical impregnation ratio C - 1:1 1:2 1:3 

 

Face-centered CCD was chosen compared to other types of CCDs (e.g. central 

composite circumscribed (CCC) and central composite inscribed (CCI)) because it required 

only three level of settings for each parameter whereas both CCC and CCI would require five 

level of settings for each parameter. Face-centered CCD was selected with considerations that 
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it is a simpler design to perform and could reduce the prediction error compared to the use of 

CCC and CCI, which deal with more level of settings that could lead to the risk of having 

higher possibility of errors associated with setup and operation (Zhang and Xiaofeng, 2009). 

Therefore, the prediction of optimal process parameters is likely to be more precise compared 

to the use of CCC and CCI. The combinations of the process parameters suggested by the 

Minitab 16 software associated with the responses for each run was shown in appendix (Table 

A.1). 

The data of responses (i.e. yield of AC and its adsorption efficiency on MG dye) were 

used to develop a quadratic model correlated to the process parameters using Equation 4. 

𝑌 = 𝑏𝑜 + ∑ 𝑏𝑖𝑥𝑖

𝑛

𝑖=1

+ (∑ 𝑏𝑖𝑖𝑥𝑖

𝑛

𝑖=1

) + ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

                                                                    (4) 

where Y = predicted response; bo = constant coefficient; bi = linear coefficient; bij = interaction 

coefficient; bii = quadratic coefficient; xi, xj = coded value of process parameters.  

 

3. Results and Discussion 

3.1 Temperature profile and heating performance during carbonization and chemical 

activation by microwave-assisted pyrolysis 

Figure 2 shows the temperature profile during carbonization and chemical activation 

by microwave-assisted pyrolysis. The data presented show typical results for the temperature 

profile obtained in experiments performed under optimized process parameters with low 

standard deviations shown in the temperature reading (±1-6 ºC) for each reference point; the 

results on the optimized process parameters are presented and discussed in Section 3.2.4. It 

should be noted that the temperature profile is limited to the particular configuration of the 

microwave-assisted pyrolysis system used in the experimental apparatus developed for this 

investigation. 
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Fig. 2. Temperature profiles during carbonization and chemical activation by microwave-

assisted pyrolysis at optimized process parameters. 

 

The use of microwave-assisted pyrolysis provided a fast heating process to convert 

orange peel into AC, recording a heating rate of 22 oC/min for carbonization and an even higher 

heating rate of 112 oC/min for chemical activation, both of which higher than the heating rate 

reported by that performed by pyrolysis using conventional oven or furnace as the heat source 

(5 – 10 oC/min) (Le Van and Thi, 2014; Sayğılı et al., 2015). This resulted in a short process 

time required for both carbonization and chemical activation, which were completed in 

approximately 25 min. In contrast, a much longer process time (1 – 7 hours) was reported for 

production of AC via pyrolysis using conventional heating sources (Baccar et al., 2009; Dural 

et al., 2011; Sayğılı and Güzel, 2016; Tay et al., 2009)  

The fast heating rate and short process time corroborates the beneficial role of 

microwave heating in providing a rapid heating mechanism. In particular, the high heating rate 

recorded for chemical activation can be explained by the high microwave absorbency of the 
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biochar that was subjected to chemical activation for conversion into AC. The biochar, being 

a carbonaceous material with a high carbon content (73.7 wt%, Table 3), is considered as a 

good microwave receptor with high capability in absorbing and converting microwave energy 

into thermal energy (Lam et al., 2016d). Thus, it can be rapidly heated to high temperature by 

microwave radiation, hence accounting for the high heating rate. Overall, the fast heating rate 

and short process time achieved by microwave-assisted pyrolysis represent favorable features 

in developing a potentially faster and energy efficient method to produce AC. 

It is also worth to mention that a lower process temperature (< 500 oC) was achieved 

compared to the recent studies reported on the production of AC (< 750 oC) (Meryemoglu et 

al., 2016; Selvaraju and Bakar, 2017). The low process temperature could be attributed to the 

fast heating rate and selective heating mechanism shown by microwave heating, which can 

generate heat rapidly within the volume of the material being heated (orange peel, biochar), 

creating a 'volumetric' heating effect to heat the material in bulk. This in turn created a localized 

reaction hot zone (Lam et al., 2016d; Wan Mahari et al., 2016) that was likely to have promoted 

the carbonization reaction to convert orange peel into biochar, and also the cracking reactions 

during chemical activation that enhanced the removal of the volatile matters from the biochar 

in order for increased pores development within the resulting AC. 

 

3.2. Yield of AC and its adsorption efficiency 

3.2.1 Development of quadratic model for AC yield and adsorption efficiency 

The quadratic models for AC yield (Y1) and adsorption efficiency (Y2) are shown by 

Equation (5) and (6) as below: 

𝑌1 = 76.6 − 3.6𝐴 − 4.5𝐵 − 3.2𝐶 − 3.8𝐴2 − 2.4𝐵2 − 2.1𝐶2 − 5.3𝐴𝐵 − 0.3𝐴𝐶 + 3.3𝐵𝐶  (5) 

𝑌2 = 23.0 − 3.5𝐴 − 1.3𝐵 − 2.9𝐶 − 1.8𝐴2 + 0.1𝐵2 − 0.8𝐶2 − 4.0𝐴𝐵 − 3.2𝐴𝐶 + 0.1𝐵𝐶  (6) 
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The R2 values obtained were 0.81 and 0.93, respectively, indicating that 81% and 93% 

of the total variation were attributed to the process parameters studied. The standard deviation 

for both the quadratic models was recorded at 3.516 and 1.485, respectively. Overall, high R2 

value and low standard deviation were obtained by the quadratic models, indicating their 

reliability to correlate the experimental data obtained for AC yield and adsorption efficiency. 

It was found that AC showed a yield ranging from 56 to 87 wt% and its adsorption efficiency 

was found to be ranging from 7.8 mg/g to 30.2 mg/g (See appendix – Table A.1). 

The normality tests of the residuals derived from AC yield and adsorption efficiency 

are shown in the appendix (Figure A.1). The p-value obtained from the plots were >0.05, 

indicating that both the residuals followed a normal distribution pattern where the plots were 

located near to the regression line. Combined with the mean value that can be assumed as zero 

and the standard deviation value that is almost close to 1 from both plots, this indicates that the 

experimental data obtained were representable and significant.  

 

3.2.2 Effect of two process parameters on AC yield 

Fig. 3 shows the surface plots for the effects of two different process parameters on the 

AC yield. The AC yield is an important parameter to assess the technical feasibility of both the 

microwave-chemical activation approach and the product itself. In general, the yield of AC 

decreased with increasing level of the process parameters. Similar trend was reported in other 

literatures (Kundu et al., 2015b; Xin-Hui et al., 2011). 
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Fig. 3. The surface plots of two process parameters on AC yield. Coded variables (-1, 0, 1) for 

A (microwave power) = 300W, 500W, 700W; B (microwave irradiation time) = 5mins, 

10mins, 15mins; C (chemical impregnation ratio = 1:1, 1:2, 1:3. 

 

3.2.2.1 Effect of microwave power and microwave irradiation time 

It was observed from Fig. 3(A) that the highest AC yield was obtained at a low 

microwave power (300W) and a short irradiation time (5 min). This suggests that both the 

microwave power and the irradiation time were insufficient to heat the biochar (originally 

derived from orange peel) to achieve the desired temperature in order for extensive thermal 

activation to occur and remove the volatile components from the biochar. As a result, some 

volatiles components were remained within the biochar that was then transformed into AC, and 

hence producing an AC with a higher yield.   

In contrast, the lowest yield of AC was recorded at high microwave power and 

irradiation time. The use of high microwave power coupled with a long exposure to microwave 
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irradiation were likely to have provided a higher thermal energy that promoted the 

decomposition and conversion of biochar to produce more volatiles, and thus reducing the 

weight of the biochar that was subsequently transformed into AC; this explains the lower yield 

of AC.  

 

3.2.2.2 Effect of microwave irradiation time and chemical impregnation ratio 

Fig. 3(B) shows the interaction effect between microwave irradiation time and chemical 

impregnation ratio on the AC yield. It was observed that the yield of AC shows no significant 

changes when chemical impregnation ratio is increased from 1 to 3, indicating that a low 

chemical impregnation ratio can be adopted to produce similar amount of AC. In contrast, the 

yield of AC was found to increase from 70 to 85 wt% when the microwave irradiation time 

was decreased from 15 to 5 mins, suggesting microwave irradiation time could be a more 

dominant factor to be considered than chemical impregnation ratio in producing high yield of 

AC. The inverse relation of microwave irradiation time to the AC yield could be explained by 

the increased extent of decomposition caused by a longer exposure to microwave radiation 

(heating) (Xin-Hui et al., 2011). Hence, more volatile matter was released from the biochar that 

was subsequently transformed into AC, leading to the lower yield of AC. 

 

3.2.2.3 Effect of microwave power and chemical impregnation ratio 

Fig. 3(C) shows that the increase of the chemical impregnation ratio at high microwave 

power (700 W) had led to a reduction in the yield of AC. This indicates that the use of a higher 

volume of alkali metal hydroxides solution to soak or impregnate the biochar had an effect on 

aiding the removal of volatile components from the biochar during the subsequent thermal 

activation under high microwave power condition. The higher volume of the prepared 

hydroxides solutions, coupled with the higher thermal energy provided by the higher 
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microwave power, were likely to have facilitated the decomposition of the lignocellulose 

components (e.g. lignin) in the biochar to produce more volatile matters, resulting in the lower 

conversion of biochar into AC.  

 

3.2.3. Effect of two process parameters on the adsorption of malachite green 

Fig. 4 shows the surface plots produced from the interactive effect of two process 

parameters on the adsorption of malachite green by AC. The adsorption efficiency of AC is an 

important parameter to examine its suitability to be used as an adsorbent material. 

 

Fig. 4. The surface plots of two process parameters on adsorption of malachite green by AC. 

Coded variables (-1, 0, 1) for A (microwave power) = 300W, 500W, 700W; B (microwave 

irradiation time) = 5mins, 10mins, 15mins; C (chemical impregnation ratio = 1:1, 1:2, 1:3. 
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3.2.3.1. Effect of microwave power and microwave irradiation time 

Fig. 4(A) shows the interaction between microwave power and irradiation time on the 

adsorption efficiency of AC. It was found that the AC obtained at the longest microwave 

irradiation time (15 min) showed increased adsorption efficiency from 11 to 27 mg/g when a 

lower microwave power was used to produce the AC (i.e. AC of higher adsorption efficiency 

was obtained at lower microwave power). In contrast, no changes were observed for the 

adsorption efficiency of the AC obtained at the short microwave irradiation time (5 min). This 

indicates that increasing the microwave irradiation time combined with the use of a low 

microwave power can produce an AC with higher adsorption efficiency. The increase of 

microwave irradiation time was likely to have heated the biochar to a higher temperature and 

provided a longer residence time that promoted the decomposition and cracking of biochar, 

leading to increased formation of pores on the resulting AC that could in turn provide more 

sites for adsorption of malachite green. On the contrary, the use of short microwave irradiation 

time provided insufficient microwave energy to heat and promote the cracking reactions for 

pores development, and thus presenting no beneficial effects on the adsorption efficiency of 

the AC obtained.   

 

3.2.3.2. Effect of microwave irradiation time and chemical impregnation ratio 

It was observed from Fig. 4(B) that the adsorption efficiency of AC was decreased with 

increasing chemical impregnation ratio at all levels of microwave irradiation time, suggesting 

that a low concentration of alkali metal hydroxides solutions would be sufficient in producing 

AC with high adsorption efficiency for use as an adsorbent. When higher concentration of 

hydroxides solution was used, the pores developed within the AC could be damaged, cracked, 

or filled up by the chemical solution and subsequently lead to the decrease in the adsorption 

efficiency. 
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3.2.3.3. Effect of microwave power and chemical impregnation ratio 

A low adsorption efficiency of only 10 mg/g was recorded at both the highest chemical 

impregnation ratio and microwave power used due to the pores destruction occurred on the AC 

using the highest concentration of alkali metal hydroxides. In addition, the highest microwave 

power was likely to have led to excessive internal heating within the AC that resulted in 

excessive burning of carbon (Foo and Hameed, 2012). As a result, the pores were ruptured and 

this decreased the reactive surface area for adsorption to take place, thus accounting for the low 

adsorption efficiency. 

 

3.2.4. Process optimization and validation 

The optimum values for both responses (AC yield and adsorption efficiency) were 

obtained from different sets of process parameters. It was a challenge to optimize both the 

responses using the same process conditions due to different interest regions of factors. Hence, 

the function of desirability was applied using Minitab 16 software with the intention to 

compromise between these two responding factors. To obtain the optimized set of process 

parameters to produce activated carbon, the target criteria was set as “maximum” for both 

responses while the minimum and maximum values were set higher than the mean values of 

responses. The results from the optimization test conducted by Minitab 16 software is shown 

in appendix (Figure A.2). The optimal process parameters predicted was obtained at 

desirability of 1. Table 2 summarizes the predicted and experimental values of both responses 

obtained at optimal process parameters; the measured values represent the average value 

obtained from experiments performed in triplicates for model validation. 
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Table 2. Model validation from predicted values under the process conditions of 550W, 5 mins, 

and chemical impregnation ratio of 1:1. 

AC yield, Y1 (wt%) Adsorption efficiency, Y2 (mg/g) 

Predicted Measured Predicted Measured 

1st 2nd 3rd Average* 1st 2nd 3rd Average* 

87.6 87.2 86.8 87 87 27.9 27.9 29.1 28.4 28.5 

 

*  Average value obtained from experiments performed in triplicates. 

 

The optimization test estimated that activated carbon with the highest yield and optimal 

adsorption efficiency could be produced by soaking the biochar with the prepared alkali metal 

hydroxides solutions at a chemical impregnation ratio of 1:1, and then subjecting the biochar 

to thermal activation under microwave irradiation (heating) for 5 min using 550 W of 

microwave power. The values predicted from the optimization test were validated by 

performing experiments on microwave-chemical activation of orange peel to produce the AC 

using the values estimated for the optimal process parameters, and this was followed by 

experiments to measure the adsorption efficiency shown by the AC obtained on malachite 

green. The results from these experiments showed that a yield of 87 wt% was measured for the 

AC and it showed an adsorption efficiency of 28.5 mg/g. It was observed that these measured 

values were quite similar to the values predicted from the optimization test with small errors 

of 0.68% and 2.15% for AC yield and adsorption efficiency, respectively.   

 

3.3 Characterization of AC obtained from the optimized process parameters 

3.3.1. Elemental and proximate analysis 

Table 3 shows the results obtained from the elemental and proximate analysis of orange 

peel, and the biochar and AC produced from this study. The results show that carbon and 
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oxygen represented the main elements whereas hydrogen and nitrogen were detected in low 

concentration. Sulphur was not detected probably due to the presence of a very low sulphur 

content that was below the detection limit of the CHNS analyzer. The orange peel, biochar and 

AC were dominated by volatile matter (8.5 – 62.2 wt%) and fixed carbon (34.8 – 83.3 wt%) 

with small amounts of moisture (5.0 – 11.3 wt%) and ash (3.0 – 9.0 wt%). 

 

Table 3. Elemental and proximate contents  

Elemental Content Orange Peel Biochar AC 

Carbon 42.5 73.7 84.0 

Hydrogen 6.0 4.3 1.1 

Nitrogen  0.5 1.0 0.9 

Oxygen a 51.0 21.0 14.0 

Sulphur b 0 0 0 

Proximate Content    

Moisture c 11.3 6.0 5.0 

Volatile Matter 62.2 12.7 8.5 

Fixed Carbon d 34.8 79.3 83.3 

Ash e 3.0 9.0 3.2 

a Determined by mass difference (Jamaluddin et al., 2013). 
b.Sulphur content is not detectable by the minimum detection limit of the CHNS analyser (<0.05 

wt%), and thus it is assumed to be 0 wt% in calculation. 
c Dry basis. 
d Calculated by mass difference (i.e. Fixed carbon = 100 wt% - wt% of moisture - volatile 

matter - ash) (Azuara et al., 2013). 
e Obtained by combustion at 950 oC with 20 mins of holding time. 

 

It was found that the both the carbon and fixed carbon contents of the AC increased 

significantly after the microwave-chemical activation process while the oxygen and volatile 

contents decreased dramatically. This can be attributed to the decomposition and carbonization 

reactions that occurred during the microwave-chemical activation from which the organic 

fractions of biochar such as the cellulose, hemicellulose and lignin originally present in the 
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orange peel were either decomposed to produce light organic molecules (e.g. CO2 and CH4) 

and released as gases (Aguiar et al., 2008), or they were carbonized to produce a carbon-dense 

product.  

 

3.3.2. Surface morphology 

Fig. 5(a), (b) and (c) present the SEM micrographs of the orange peels, biochar and AC 

obtained in this study, respectively. The surface of the orange peel was rough and non-porous 

before carbonization. In contrast, pores were observed on the surface of the biochar and AC 

obtained after being subjected to the microwave-chemical activation process (Fig. 5(b) and 

(c)). This indicates that the microwave-chemical activation had led to the production and 

release of volatile components from the orange peels, and the remaining non-volatile 

components were transformed into biochar with pores of different shapes and sizes observed 

on the surface of the biochar (Fig. 5(b)). After the biochar was further subjected to chemical 

impregnation and thermal activation, it was transformed into AC that showed a highly and 

more uniform porous structure (Fig. 5(c)). The highly porous structure can in turn provide a 

high surface area and more sites for adsorption process to be performed. 

 

Fig. 5. SEM image of (a) orange peel, (b) biochar, (c) AC. 
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3.3.3. N2 adsorption-desorption isotherm and porous characteristics 

Fig. 6 shows the N2 adsorption-desorption isotherms of the AC obtained from the 

optimized process parameters and the resulting data on the porous characteristics of the biochar 

and AC are presented in Table 4. The AC showed a combination of Type I and Type II 

isotherms with a small hysteresis loop according to the IUPAC classification (Sing et al., 1985). 

This type of isotherm is an indication to the presence of a microporous-mesoporous structure 

with the pore width ranging from 2 to 50 nm (Foo and Hameed, 2012). This concurs with the 

pore width estimated for the AC using the BJH method (23 nm; See Table 4). In addition, the 

AC was detected to have micropore and mesopore volumes of 0.38 cm3/g and 0.22 cm3/g, 

respectively, which further corroborates the presence of micropores and mesopores within the 

AC. The AC obtained from the microwave-chemical activation in this study showed a much 

desirable porous characteristic compared to the biochar obtained (Table 4). The AC was found 

to be more porous and contained a much higher surface area (1350 m2/g) dominated by 

micropores and mesopores. 

 

Fig. 6. Nitrogen adsorption-desorption isotherms of AC. 
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Table 4. Porous characteristics of biochar and AC. 

Properties Biochar AC 

BET surface area (m2/g) a 20.8 1350 

Micropore area (m2/g) b 11.6 930 

Total pore volume (cm3/g) c 0.0075 0.60 

Micropore volume (cm3/g) b 0.0058 0.38 

Mesopore volume (cm3/g) d 0.0017 0.22 

Average pore width (nm) c 65 23 

a Multipoint Brunauer, Emmett & Teller (BET) method. 
b t-plot method. 
c Barrett, Jovner & Halenda (BJH) desorption method. 
d Mesopore volume = Total pore volume – Micropore volume (Foo and Hameed, 2012) 

 

3.4. Process features and AC properties compared to other AC production methods in 

the literature 

Table 5 shows the process features and properties of AC demonstrated from 

microwave-assisted pyrolysis with chemical activation compared with commercial AC and AC 

produced by other methods reported in the literature. The process features and properties of 

AC obtained from the optimized parameters in this study was selected for comparison. These 

evaluations are important to assess the technical viability of this microwave-chemical 

activation approach, especially in scaling and optimizing the design and operation to the 

commercial level.  
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Table 5. Product comparison. 

 AC 

(This study) 

AC from literatures  

(Ghaedi and 

Mosallanejad, 

2014; Mahamad et 

al., 2015; Nekouei 

et al., 2016) 

Commercial AC  

(Fidalgo et al., 2008) 

Process Features    

Total process time 25 min 1 – 7 hours > 5 hours 

Process temperature 

(oC) 

460 – 490  450 – 900  1000 – 2000  

Types of activation 

agent 

Mixtures of 

NaOH and 

KOH 

Single agents (e.g. 

KOH, NaOH, CO2, 

steam) 

Steam  

Properties of AC    

Moisture (wt%) 5.0 < 1.5 8.5 

Ash (wt%) 3.2 < 1.5 2.1 

BET surface area 

(m2/g) 

1350 900 – 1271 826 

Total pore volume 

(cm3/g) 

0.60 0.56 0.34 

Production cost of 

ACa (USD/kg) 

Market price of commercial AC (USD/kg) 

This study Zauba.comb Alibaba.comc MarketsandMarketsd 

0.20 1.17 – 2.14  0.62 – 5.63  1.73-2.26 

 

a.Estimated from the cost incurred by the feedstock, chemicals, and electricity used in 

producing the AC. 
b.Market price obtained from https://www.zauba.com/export-COCONUT+SHELL+ACTI 

VATED+CARBON-hs-code.html, accessed on 15 January 2017. 
c.Market price obtained from https://www.alibaba.com/showroom/activated-carbon-

price.html, accessed on 15 January 2017. 
d.Statistics from a market research firm at  http://www.marketsandmarkets.com/Market-

Reports/activated-carbon-362.html, accessed on 4 April 2017. 

 

 

 

https://www.zauba.com/export-COCONUT+SHELL+ACTI%20VATED+CARBON-hs-code.html
https://www.zauba.com/export-COCONUT+SHELL+ACTI%20VATED+CARBON-hs-code.html
https://www.alibaba.com/showroom/activated-carbon-price.html.
https://www.alibaba.com/showroom/activated-carbon-price.html.
http://www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html
http://www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html
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It was observed that microwave-assisted pyrolysis shows advantages in providing a 

faster heating rate (up to 112 °C/min) and shorter process time (25 min) over other AC 

production methods by pyrolysis using conventional oven or furnace as the heat source (heating 

rate: 5–10 oC/min; process time: 1–7 hours). In addition, low process temperature was required 

(460 °C for carbonization, 490 °C for activation) compared to that required by other methods 

adopting conventional pyrolysis (up to 2000 °C for carbonization, 450–900 °C for activation), 

thus presenting a significantly lower energy consumption since a lower thermal energy was 

needed to achieve the temperature for both carbonization and activation. These favourable 

features suggest the great promise of this pyrolysis approach as a faster and energy efficient 

method to produce AC. 

The addition of chemical activation with alkali metal hydroxides also resulted in the 

production of AC with a higher pore volume and a surface area higher or nearly comparable to 

that shown by commercial AC and AC produced by other methods reported in the literature. It 

was likely that the alkali metal hydroxides had weaken and broken down the chemical bonds 

between the lignocellulosic components remained in the biochar (e.g. lignin originally derived 

from orange peel) and this led to increased removal of these components in the form of volatiles 

(e.g. CO2 and CH4) during the subsequent thermal activation by microwave-assisted pyrolysis, 

resulting in increased formation of pores and hence the surface area of the resulting AC. 

In addition, the use of alkali metal hydroxides combining NaOH and KOH as the 

chemical activating agent seemed to have a beneficial effect in increasing the porosity and 

surface area of the AC, possibly due to increased pore formation via an intercalation effect 

caused by interaction of K and Na atom with the carbon structure of the AC (Alau et al., 2010; 

Chowdhury et al., 2011; Gimba et al., 2010; Giraldo and Moreno-Piraján, 2012; Musa et al., 

2015; Raymundo-Pinero et al., 2005). Furthermore, the combination of NaOH and KOH has 

led to production of a pore structure dominated by micropores and mesopores. This represents 
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a desirable feature if the AC is to be used as an adsorbent, since a microporous-mesoporous 

structure could give the adsorbate (e.g. dye pollutant) access to the smaller micropores located 

within the larger mesopores, thus providing greater access to pores and sites in order for 

adsorption to take place. 

The AC was tested for its efficiency as adsorbent on MG dye and it was found to show 

an adsorption efficiency of up to 28.5 mg MG dye / g of AC (Table 6). The AC showed 

improved adsorption efficiency compared to that shown by AC obtained in other studies (< 15 

mg of MG dye / g of AC; Table 6). The higher adsorption efficiency could be derived from the 

high porosity and higher surface area (1350 m2/g) of the AC that provide more sites for 

adsorption of MG to occur compared to that shown by other ACs (<1271 m2/g). The high 

adsorption efficiency is beneficial and indicates the potential of the AC to be used as a dye 

adsorbent. 

 

Table 6. Comparison of adsorption efficiency of AC on MG dye. 

 

Adsorbent Adsorption efficiency 

on Malachite Green 

dye (mg/g) 

BET surface area (m2/g) References 

AC (this study) 28.5 1350  

ZnO Nanorod-loaded 

activated carbon * 

15 Not reported Ghaedi et al. 

(2016) 

Ni(OH)2-NPs-AC * 9 – 15 960 Nekouei et 

al. (2016) 

(Cd(OH)2-NW-AC) * 1 – 2 1271 Ghaedi and 

Mosallanejad 

(2014) 

Groundnut shell 

activated carbon * 

11.4 Not reported Hassan et al. 

(2010) 
 

* The adsorption efficiency was obtained from studies using different contact time. It was 

adapted to show the adsorption efficiency obtained within a contact time of 3 min for 

comparison to be made to the adsorption efficiency of AC obtained in this study. 
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The AC was also detected to have a low moisture and ash content. Low moisture 

content (< 10 wt%) is preferable otherwise the moistures could attach on the surface or block 

the pores on/within the AC and decrease the accessibility and availability of adsorption sites, 

and resulting in decreased durability and lifespan of the AC. Low ash content (< 5 wt%) is 

important to prevent formation of by-products from the undesirable catalytic reactions caused 

by the inorganic minerals present in the ash (Mahamad et al., 2015; Qureshi et al., 2008), which 

can decrease the adsorption capacity and reactivation efficiency of AC. 

The production cost of AC by the microwave-assisted pyrolysis method was estimated 

to allow a simple evaluation of its economic feasibility; this was presented in Table A.2 in 

Appendix. The estimation was based on the cost incurred by the feedstock (orange peel), 

transportation, chemicals (hydroxides and hydrochloric acid), N2 gas, and the electricity used 

by the pyrolysis method in producing the AC. The production cost was estimated to be about 

USD 0.20 / kg of AC, which is comparatively lower than the market price of AC (USD 0.62 – 

5.63 / kg of AC) and the production cost (USD 1.67 / kg of AC) reported by Selvaraju and 

Bakar (2017) (Table 5). This is a good indication of profitability and suggests that the 

microwave-assisted pyrolysis method could be an economically viable approach to produce 

AC, hence the pyrolysis operation could be scaled up for commercial applications. 

 

4. Conclusion 

Microwave-assisted pyrolysis with chemical activation showed desirable process 

features in converting orange peel into AC, providing a fast heating rate (up to 112 oC/min), 

short process time (25 mins), and a low process temperature (460–490 oC). The process 

parameters were optimized from which AC with an optimal yield (87 wt% of biochar) and 

adsorption efficiency (28.5 mg of Malachite green dye / g of activated carbon) was obtained 
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by performing chemical impregnation at an impregnation ratio of 1:1 coupled with thermal 

activation under microwave irradiation (heating) for 5 min using 550 W of microwave power.  

The addition of chemical activation with alkali metal hydroxides generated a highly 

porous and carbon-dense AC with a high surface area (1350 m2/g). The AC showed a 

microporous-mesoporous structure that could improve pores accessibility and adsorption 

capacity of the AC. Combined with a low moisture and ash content, the AC shows great 

promise as a high-grade dye adsorbent with high adsorption capacity. Our results demonstrated 

that microwave-assisted pyrolysis coupled with chemical activation shows exceptional promise 

as a fast and energy efficient method to convert orange peel to produce activated carbon with 

improved properties desirable for use as a dye adsorbent to treat wastewater in textile industry. 
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Appendix A 

A sample with a mass of 0.3 g was subjected to a degassing treatment to remove the moisture 

and contaminants (e.g. dust) present on the sample. This was performed by heating at 150 oC 

under vacuum condition for 8 hours. The sample was then cooled to room temperature and then 

treated with a liquid nitrogen bath. The automatic sorption analysis was then initiated at a 

temperature of 77 K by exposing the sample to N2 gas over a range of pressures. The volume 

of nitrogen adsorbed and desorbed (cm3/g) on the sample at the relative pressure ranging from 

0 to 1 were recorded to plot the N2 adsorption and desorption isotherms. The surface area was 

calculated based on the nitrogen adsorption-desorption isotherm obtained using the multipoint 

Brunauer, Emmett & Teller (BET) method whereas the total pore volume and pore width were 

estimated using the Barette, Jovner & Halenda (BJH) method (Manya, 2012). The micropore 

area and volume were estimated using t-plot method. 
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Table A.1: Summary of experimental design matrix. 

Run 

Order 

Code Parameters Responses 

Microwave 

Power (W) 

Microwave 

Irradiation 

Time (min) 

Impregnation 

Ratio 

Yield 

(wt%) 

Adsorption 

Efficiency 

(mg/g) 

1 1 -1 -1 700 5 1:1 87 30.23 

2 -1 0 0 300 10 1:2 70 26.33 

3 0 0 0 500 10 1:2 80 23.33 

4 -1 1 1 300 15 1:3 77 25.28 

5 0 1 0 500 15 1:2 67 19.49 

6 1 0 0 700 10 1:2 70 15.85 

7 0 -1 0 500 5 1:2 76 26.49 

8 0 0 0 500 10 1:2 79 23.06 

9 0 0 1 500 10 1:3 70 18.19 

10 1 1 1 700 15 1:3 62 7.83 

11 0 0 0 500 10 1:2 82 22.91 

12 1 -1 1 700 5 1:3 70 15.22 

13 1 1 -1 700 15 1:1 56 16.52 

14 -1 -1 -1 300 5 1:1 80 19.00 

15 -1 -1 1 300 5 1:3 74 22.57 

16 0 0 -1 500 10 1:1 82 26.00 

17 -1 1 -1 300 15 1:1 80 27.12 
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Table A.2 Estimated production cost (USD/kg) of the AC. 

 

Components Estimated cost 

(USD/kg) 

Transportation of orange peel  0.07 

Orange peel as feedstock 0.02 

Chemicals (Hydroxides and hydrochloric acid) 

i.e. Hydroxides = USD 0.01, hydrochloric acid = USD 0.01 (Selvaraju 

and Bakar, 2017) 

0.02 

Nitrogen gas  

i.e. USD 3/48L, 1 standard refill of nitrogen gas in Malaysia = 48 L  

0.06 USD/L 

Electrical consumption including carbonization and activation 

i.e. Carbonization (20 mins, 700W) = USD 0.01  

Activation using optimized process conditions (5 mins, 550W) = USD 

0.0023 

*Charges rate of electricity in Malaysia (1 kWh) = USD 0.05  

0.0123 

Total estimated production cost 0.1823 ~ 0.2 
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Fig. A.1 Normality tests of the residuals derived from AC yield and adsorption efficiency.   
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Fig. A.2 Optimization of process parameters by Minitab 16 software. 


