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We study luminescence of hexagonal boron nitride (h-BN) by means of non-equilibrium Green’s
functions plus finite-difference electron-phonon coupling. We derive a formula for light emission in
solids in the limit of a weak excitation that includes perturbatively the contribution of electron-
phonon coupling at the first order. This formula is applied to study luminescence in bulk h-BN.
This material has attracted interest due to its strong luminescence in the ultraviolet region of
the electromagnetic spectrum [Watanabe et al., Nature Mat. 3, 404(2004)]. The origin of this
intense luminescence signal has been widely discussed, but only recently a clear signature of phonon
mediated light emission started emerging from the experiments [Cassabois et al., Nature Phot. 10,
262(2016)]. By means of our new theoretical framework we provide a clear and full explanation of
light emission in h-BN.

Introduction. In standard solid state physics text-
books [1] direct band gap semiconductors are considered
efficient light emitters while indirect ones are regarded as
inefficient. Silicon is a typical example: its indirect na-
ture prohibits applications in optoelectronics. This fact
has motivated significant research activity to engineer sil-
icon and transform it into a direct gap semiconductor by
means of defects, nanostructuring, etc. A more recent
and remarkable example of indirect to direct gap tran-
sition is represented by MoS2 nanostructuring [2]. The
luminescence signal increases by four orders of magni-
tude passing from multi-layer to single layer MoS2 with
an associated indirect to direct band gap transition.
Hexagonal boron nitride (h-BN) seems to defy this rule:
it has a large indirect band gap of about 7 eV, but it
has recently attracted much attention from the scientific
community as a very efficient light emitter in the ultra-
violet [3]. An internal quantum yield of ' 45% has been
reported for h-BN, much closer to the ' 50% one of ZnO
(direct band gap) than to the 0.1% one of diamond (indi-
rect band gap) [4]. This goes against the common wisdom
that indirect band gap insulators are bad light emitters
and in fact the strong luminescence signal was initially
attributed to direct exciton recombination [3]. In order to
shed some light on this phenomena different theories were
proposed, including the presence of defects [5] or a dy-
namical Jahn-Teller effect [6]. But only recently, thanks
to more accurate and precise measurements, it has been
shown that luminescence originates from phonon assisted
recombination [7]. This interpretation has also been con-
firmed by studing the isotopic effect [8] and polarization-
resolved photoluminescence measurements [9]. In this
manuscript we develop a new approach to study phonon-

assisted luminescence that treats on the same footing
electron-hole and electron-phonon interactions. We ap-
ply our new methodology to study h-BN luminescence,
a subject that has remained puzzling until recent years.
Since excitons play a crucial role in the optical response
of h-BN, in order to describe luminescence we need a
theory that includes both electron-hole interactions and
electron-phonon scattering.
In the literature two important approaches have been
proposed to study bulk luminescence, one based on non-
equilibrium Green’s functions [10] and another on density
matrix theory [11]. Both these approaches include the ef-
fect of the electron-hole interaction and the formation of
excitons at different levels of approximation. In this work
we follow Hannewald and co-workers [10] who formulate
luminescence in terms of non-equilibrium Green’s func-
tion theory. Inclusion of exciton-phonon coupling is more
involved. Phonon-assisted luminescence has been studied
by Kira and Koch using the polaron picture [12]. Their
approach has the advantage of being non-perturbative
in the electron-phonon coupling while conserving the an-
alytic structure of the zero-phonon response functions.
Another possibility would be to include the electron-
phonon diagrams directly in the Bethe-Salpeter equa-
tion [13, 14], but we discarded this option because of its
complexity.
In recent years a new way has emerged to include the
electron-phonon coupling by means of a finite differences
approach [15]. The approach has several advantages in-
cluding the ability to combine it with any underlying
electronic structure method and to include terms beyond
the lowest order in the electron-phonon interaction [15].
Finite difference methods have been used to study the
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FIG. 1. [Color online] Panel (a) the electronic band structure of h-BN. The red arrow represents the scattering with a phonon between M
and K and the blue one the emission of a photon. Panel (b) the phonon band structure of h-BN. The red vertical line marks the position
of the phonon q-point involved in the luminescence process, see the red arrow in panel (a).

effects of electron-phonon scattering in multiple contexts
including optical absorption [16], topological phase tran-
sitions [17], and superconductivity [18]. In all these stud-
ies electrons were always considered independent parti-
cles. Here, in order to include excitonic effects in the
response functions we combine finite difference electron-
phonon coupling calculations with Green’s function the-
ory and apply this novel method to the study of lumines-
cence spectra.

Light emission from non-equilibrium Green’s functions.
Light absorption and emission can be described by means
of Green’s functions theory. Both these processes are re-
lated to the two-particle polarization functions. The dif-
ferent two-particle correlation functions can be obtained
from the solution of the so-called Bethe-Salpeter equa-
tion (BSE) at equilibrium or out-of-equilibrium [19]. In
the BSE particle-hole pairs are coupled by correlation
effects [20]. In the literature different levels of approxi-
mation for this coupling have been presented, from the
T-matrix [21] that can account for the effects of finite ex-
citonic populations, to the simpler static ladder approx-
imation [19]. In this work we use the latter. The static
ladder approximation has been shown to reproduce well
the optical properties of h-BN at equilibrium [22], and
since we consider very few excited carriers we expect sim-
ilar results to hold also in our case. In this approxima-
tion the particle-hole coupling is composed of two terms,
one deriving from the density fluctuations through the
Hartree potential, called v, and the other one due to the
fluctuations of the screened exchange potential, the so-
called electron-hole interactions W . The last term is nor-
mally considered in a static approximation, and derived
from the COHSEX self-energy [19]. In non-equilibrium

conditions, when part of the carriers has been excited to
the conduction bands, it is possible to write down an out-
of-equilibrium BSE to describe optical absorption. This
approach has been used to investigate excitonic Mott
transitions [23] or transient absorption in pump-probe ex-
periments [10]. The out-of-equilibrium BSE then reads:

[∆εKδK,K′ +
√
fKΞK,K′

√
fK′ ]A

K′

λ = EλA
K
λ , (1)

where K is a general index for {vck}, fK = fvk − fck
are the occupation factors and Eλ and AKλ are the eigen-
values and eigenvectors, namely the exciton energy and
wave-functions. The ∆εK = εQPck − ε

QP
vk are the quasi-

particle energy differences. The kernel is written as
Ξ = i[W − v] [19]. The screened Coulomb potential W
that appears in [Eq. 1] is calculated taking into account
the non-equilibrium electron and hole distributions. In
[Eq. 1] we use the symmetrization via

√
fK , introduced

by Schleife and co-workers [23], to ensure that the Bethe-
Salpeter Hamiltonian remains pseudo–Hermitian even in
the presence of fractional occupations, or Hermitian in
the case of the Tamm-Dancoff approximation.
Notice that the reality of the solution of [Eq. 1] is no
longer guaranteed in stationary excited states. However,
if the excitation is weak, namely the quasi-particle occu-
pations only slightly differ from their equilibrium values,
as in the case studied here, then the solutions continue to
be real [24]. The solution of [Eq. 1] leads to the different
response functions that are related to the absorption or
emission spectra [10].
Following the derivation of Refs. [10, 25], in the limit of
low excitations, within the Tamm-Dancoff approxima-
tion, the luminescence power spectra can be expressed
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FIG. 2. [Color online] Blue continous line: luminescence spectra calculated using [Eq. 4] for bulk h-BN . The vertical lines represent the
position of the iX doublet, that has zero dipole matrix elements. Orange dash-dotted line: experimental results taken Ref. [7]. We choose
the normalization of both spectra in such a way to have an optimal visualization in a single figure.

as:

I(ω) ∝
∑
λ

|Πλ|2f<λ δ(ω − Eλ), (2)

where Eλ are the eigenvalues of the out-of-equilibrium
BSE [Eq. 1], Πλ are the exciton dipole matrix elements,
and f<λ their occupations. For a definition of Πλ, f<λ and
the derivation of [Eq. 2] see Sec. 2 of the Supplementary
Information (SI).
The excitonic occupation f<λ is often approximated with
a Bose-Einstein distribution f<λ ' nB(Eλ, T ) in light
emission [4, 26] while it is equal to one in the absorp-
tion process at equilibrum. As one can see from [Eq. 2],
the luminescence spectra resonates at the same frequen-
cies as the absorption does but excitons are weighted in
a different way.
Notice that in the independent particle approximation,
light emission is described by an equation equivalent to
[Eq. 2] where the sum over excitons is replaced by one
over independent electron-hole pairs.
Scattering with phonons. In order to include the cou-
pling between electrons and phonons, we consider the
electron-phonon interaction at first order in the atomic
displacements:

Ĥel−ph =
1√
Np

∑
k,q
mnν

gmnν(k,q) ĉ†mk+qĉnk(âqν + â†−qν)

(3)

where ĉ†mk/ĉnk (â†−qν/âqν) are the fermionic (bosonic)
creation/annihilation operators with crystal momentum
k (q) and Np is the number of unit cells in the Born-von
Kármán supercell.
The electron-phonon Hamiltonian [Eq. 3] can be treated

in time dependent perturbation theory in the indepen-
dent particle basis [27] or the excitonic one [28]. In
the case of indirect semiconductors the main effect of
[Eq. 3] is to make active the transitions to finite-q ex-
citons, which are otherwise inactive in the optical ab-
sorption/emission processes. The theory of phonon-
assisted indirect optical transitions was developed by
Hall, Bardeen, and Blatt [29], and employed in first-
principles calculations in Ref. [30]. In our work we ex-
tend their approach to light emission by means of time-
dependent perturbation theory in the excitonic basis [28].
We consider the adiabatic limit for the dipole matrix el-
ements, while we retain dynamical effects only in transi-
tion energies. Then we express the first order correction
to the dipole matrix elements as a derivative with respect
to a phonon mode, as shown in Ref. [16], and we get the
final formula for phonon-assisted luminescence as:

IBSE(ω;T ) ∝
∑
µλ

∂2|Πλ|2

∂x2ν
f<λ

[
δ(ω − Eλ − ων)

nB(ων ;T )

2ων
+

+ δ(ω − Eλ + ων)
1 + nB(ων ;T )

2ων

]
, (4)

where nB is the Bose distribution function and xν is the
atomic displacement associated to the phonon mode with
frequency ων . Notice that in [Eq. 4] there should also be
a term describing light emission without phonons, but
in the case of indirect gap insulators this term vanishes.
For more details of the derivation of Eq. (4) see Secs. II
and III in the SI. The two terms in [Eq. 4] describe the
absorption and emission of a phonon respectively. The
first process is less important at low temperatures due to
the low number of available phonons.
In the adiabatic approximation (ων = 0 in the delta func-
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tions) this formula recovers the standard static approx-
imation, similar to the one derived in Ref. [31] for the
dielectric constant. Notice that [Eq. 4], and in general
the HBB theory, do not capture the smooth increase of
the absorption coefficient with temperature, and the con-
current redshift of the absorption onset, but they include
dynamical effects that are crucial to reproduce lumines-
cence spectra.
Eq. 4 is the central formula of this work, and it will be
used in the following to evaluate phonon-assisted lumi-
nescence from first principles.
Computational details. We studied h-BN by means
of Density Functional Theory with the Quantum
Espresso code [32], and Many-Body Perturbation The-
ory with the Yambo code [33]. The lattice parameters

in our simulations are a = 2.5
◦
A and c/a = 2.6 [34].

For the calculation of the density we used a 12× 12× 4
k-points grid, a cutoff of 80 Ry for the wave-functions
and the LDA approximation to the exchange correlation
functional. The same parameters have been used for the
phonon dispersion calculation.
In bulk h-BN the optical response originates from the
two π and two π∗ bands and the gap is indirect be-
tween a point very close to K (valence bands) and M
(conduction bands) [35]. Therefore in the Bethe-Salpeter
equation [Eq. 1] we include only 2 valence and 2 conduc-
tion bands and the corresponding number of bands in the
supercells. A scissor operator of 2.328 eV has been ap-
plied to the Kohn-Sham band structure to reproduce the
correct position of the lowest exciton with momentum
q = M −K [36], also called iX exciton in the literature.
The dielectric constant that enters the electron-hole in-
teraction of [Eq. 1] has been calculated using 40 bands
and a 4 Ha cutoff.
In order to study phonon-assisted emission we build a
nondiagonal supercell [37] such that the K and M points
are mapped to Γ, for more details see Sec. I in the SI. In
this way the phonon modes with momentum q = K−M
are folded to the Γ-point in the supercell. Then the
derivatives with respect to the phonon modes that ap-
pear in [Eq. 4] can be calculated by finite differences [15].
A 3-point formula is used to evaluate the second deriva-
tive, and only the phonon modes compatible with the
q = K − M vector have been included in the calcula-
tions. We introduce a broadening of 0.0045 eV in the
luminescence spectra in order to simulate the experimen-
tal one. Finally we take a density of excited carriers of
n = 1015 cm−3 between K and M [38] to evaluate the
luminescence spectra and consider the emission wave vec-
tor parallel to the c axis.
Results. In Fig. 1, panel (a), we report the electronic
band structure of h-BN calculated at the DFT level, and
in panel (b) the phonon band structure. The maximum
of the valence band is located close to the K point while
the minimum of the conduction bands is at M . This

situation is typical of other layered materials and it is
due to the interlayer interaction that induces a transition
from direct to indirect band gap going from monolayer to
bulk. The inclusion of correlation effects does not change
this picture, as verified by numerical simulations [35] and
experimental measurements [39]. Direct light emission is
forbidden in h-BN due to the indirect band gap, and only
phonon-assisted luminescence is allowed. In the full ex-
citonic dispersion there are two minima (at two q-points
which fall very close to the q = M −K point) and both
can contribute to the luminescence [35]. We here con-
sider the iX exciton for the reasons highlighted below.
Since the top of the valence band falls very close to the
K point of the Brillouin zone, we approximate this point
as the K one. In this way the supercell containing both
K and M is large but still computationally treatable,
and the evaluation of electron-phonon coupling requires
a feasible computational cost. The phonons involved in
the luminescence process are those with a momentum
compatible with the q = K −M vector, being the ones
to contribute to the momentum balance between the bot-
tom of the conduction band and the top of the valence
band. Therefore they fall in the middle of the Brillouin
zone between Γ and K, and are reported in panel (b) of
Fig. 1 with a red line.
In order to study luminescence we first diagonalize the
Bether-Salpeter Hamiltonian in the supercell without in-
cluding electron-phonon coupling, so as to find the posi-
tion of the iX exciton. We found that the iX is formed
by two dark excitons, separated of about 0.01 eV (dashed
lines in Fig. 2). Then we include electron-phonon cou-
pling by means of [Eq. 4]. The two iX excitons are repli-
cated by the different phonon modes and aquire a finite
optical weight as shown in the final spectra in Fig. 2.
Comparison with experiments. In Fig. 2 we report both
the luminescence spectra calculated with our method
and the experimental results from Cassabois and co-
workers [7]. The two spectra compare very well. We cor-
rectly reproduce the position and intensity of the main
peaks. The doublets measured in the luminescence spec-
tra are generated by the LO-TO (LA-TA) splitting along
the Γ − K line. We also report the position of the iX
exciton that is not visible in luminescence, even if in the
experiments there is a small peak probably due to the
presence of impurities. The overtones, visible as lower
intensity redshifted sidebands in experimental lumines-
cence spectra [40] are not reproducible in our calcula-
tions [41]. The splitting of the XTO, XTA and XLA peaks
originates from the choice of supercell and it is related to
the intrinsic exciton structure in our calculations.

In order to estimate the relative intensity of phonon-
assisted luminescence in h-BN, we calculate the ratio be-
tween a hypothetical direct emission in h-BN and the
phonon-mediated one (more details are given in Sec. IV
of the SI). We find the ratio between direct and indi-
rect emission to be IDIR/IIND ' 102, implying that in
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going from bulk to monolayer h-BN the luminescence
will increase, but not as much as in the MoS2 case [2].
Our result is also in agreement with the finding of Schué
and co-workers [38] that measured an increase of the ra-
tio between direct and indirect peaks as the number of
h-BN layers decreases.
Summary and conclusions. In this work we study
phonon-assisted luminescence by means of a new non-
equilibrium Green’s functions based formula plus time-
dependent parturbation theory in the exciton space and
then the electron-phonon coupling matrix elements are
evaluated by a finite differences method. We find that
luminescence in h-BN is dominated by phonon-assisted
transitions and that its intensity is unexpectedly large
when compared with direct transitions.
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