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Summary  

 

Benjamin George Farrar 

Replication, bias, and meta-research in animal cognition research 

 

In this thesis I explore the extent to which researchers of animal cognition should be concerned 

about the reliability of its scientific results and the presence of theoretical biases across research 

programmes. To do so I apply and develop arguments borne in human psychology’s “replication crisis” to 

animal cognition research and assess a range of secondary data analysis methods to detect bias across 

heterogeneous research programmes. After introducing these topics in Chapter 1, Chapter 2 makes the 

argument that areas of animal cognition research likely contain many findings that will struggle to 

replicate in direct replication studies. In Chapter 3, I combine two definitions of replication to outline the 

relationship between replication and theory testing, generalisability, representative sampling, and 

between-group comparisons in animal cognition. Chapter 4 then explores deeper issue in animal cognition 

research, examining how the academic systems that might select for research with low replicability might 

also select for theoretical bias across the research process. I use this argument to suggest that much of 

the vociferous methodological criticism in animal cognition research will be ineffective without 

considering how the academic incentive structure shapes animal cognition research. Chapter 5 then 

beings my attempt to develop methods to detect bias and critically and quantitatively synthesise evidence 

in animal cognition research. In Chapter 5, I led a team examining publication bias and the robustness of 

statistical inference in studies of animal physical cognition. Chapter 6 was a systematic review and a 

quantitative risk-of-bias assessment of the entire corvid social cognition literature. And in Chapter 7, I led 

a team assessing how researchers in animal cognition report and interpret non-significant statistical 

results, as well as the p-value distributions of non-significant results across a manually extracted dataset 

and an automatically extracted dataset from the animal cognition literature. Chapter 8 then reflects on 

the difficulties of synthesising evidence and detecting bias in animal cognition research. In Chapter 9, I 

present survey data of over 200 animal cognition researchers who I questioned on the topics of this thesis. 

Finally, Chapter 10 summarises the findings of this thesis, and discusses potential next steps for research 

in animal cognition.  
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1. Chapter 1: Introduction 
 

In 2017, when I started my PhD, psychological science was in the processes transforming its research 

methods. The so-called “credibility revolution” (Vazire, 2018) was catalysed by the continued failure of 

many landmark psychological findings to replicate (the "replication crisis" Camerer et al., 2018; Open 

Science Collaboration, 2015), and a growing recognition the scientific incentive structures, in some areas, 

actively selected for poor research (Higginson & Munafò, 2016; Smaldino & McElreath, 2016). In response 

to the replication crisis, a swathe of novel methods, analysis practices, editorial policies and infrastructure 

were being developed and implemented, largely focused on improving the robustness of scientific 

research. At that time, science’s replication “crisis” was well established; popular science books had been 

written on the topic (Chambers, 2017), and the replication crisis was even covered on HBO’s Last Week 

Tonight with John Oliver in May 2016 (LastWeekTonight, 2016). However, the reach of the replication 

crisis was not universal, with the topic being near absent from both my undergraduate and postgraduate 

study at the University of Cambridge until 2019, a pattern mirrored in the statistics courses of many UK 

institutions (TARG Meta-Research Group, 2020). The topic was also absent from the mainstream 

discussions in animal cognition research, other than a few key, but often subtle, voices (Beran, 2018; Craig 

& Abramson, 2018; Maes et al., 2016; Schubiger, 2019; Stevens, 2017; Szabó et al., 2017).  

This thesis has three main parts. The first part, comprises of Chapters 2, 3 and 4, are theoretical and 

discuss the role of replication studies (Chapters 2 and 3), and sources of bias (Chapter 4) in animal 

cognition research. In the second part, Chapters 5, 6 and 7 present my attempts to develop methods 

capable of critical evidence synthesis in animal cognition, in physical cognition research (Chapter 5), corvid 

social cognition research (Chapter 6), and in interpreting non-significant findings across animal cognition 

research (Chapter 7). Chapter 8 reflects on the barriers I faced in Chapters 5, 6, 7, and the obstacles to 

critical evidence synthesis in animal cognition in general. The final part, Chapter 9, presents survey data 

on the attitudes of current animal cognition researchers on the topics of this thesis. Chapter then 10 

summarises the thesis and discusses the many ways in which animal cognition research could develop as 

a science. But first, I now give a brief review of the events leading up to the “replication crisis” in human 

psychology and the subsequent credibility revolution it experienced. I then sketch the parallel evolution 

of animal cognition research up until my PhD research.   

1.1. Towards a replication crisis in human psychology  

1.1.1.  Early voices 
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While psychology’s replication crisis was not widely discussed until the early- and mid-2010s 

(Baker, 2016; Chambers, 2013; Gilbert et al., 2016; Nosek & Lakens, 2014; Open Science Collaboration, 

2015; Pashler & Wagenmakers, 2012; Wagenmakers et al., 2011), many of the social, procedural and 

methodological causes of unreliable research had been discussed long before. The two most relevant to 

this thesis are i) the relationship between publication bias and low reliability, and ii) the distance between 

statistical hypotheses and theoretical claims.   

1.1.1.1. Publication bias and low reliability 

In 1959, Sterling reported that only 2.7% of empirical research reports contained non-significant 

findings across four major psychology journals in 1955. Sterling interpreted these data as suggesting that 

many negative results went unpublished, and thus there was a risk of the published literature simply 

containing many Type I errors, i.e., false positives. Sterling suggested that these false positive results could 

be a product of similar study designs being repeatedly used across research groups, with one eventually 

producing a significant result and being published. More formally, Lane and Dunlap (1978) used 

simulations to show that if research results are selected based on their statistical significance, then 

experiments overestimating the true population effect size are more likely to be published than 

experiments that underestimate the true population effect size. I explore this topic and emulate Lane and 

Dunlap’s simulations for examples in comparative psychology as part of Chapter 2.  

1.1.1.2. Statistical hypotheses and theoretical claims 

While publication bias can lead to false positive results populating literatures, many true positive 

results will be published, too. However, just because researchers may correctly reject a statistical null 

hypothesis, this does not mean that the substantive claim that follows is justified. Meehl (1967, 1978, 

1990) routinely highlighted this, noting that many tests of theory in “soft” psychological research were 

plagued by ten “obfuscating” factors making their results “largely uninterpretable” (Meehl, 1990). The 

first two of these were loose derivation chains from theory to predicted observations and problematic 

and untested auxiliary theories (see also Duhem, 1976). These topics are now often discussed in the 

context of psychology’s replication crisis (Borsboom, 2014; Maatman, 2021; Oberauer & Lewandowsky, 

2019; Smaldino, 2017a). Coupled with possible low statistical power to detect theoretically meaningful 

effect sizes, this distance between statistical hypothesis and substantive claims can mean that the 

likelihood of positive statistical results providing meaningful information about the construct of interest 

can be low.  

1.2. The replication crisis  
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The replication crisis is most often associated with psychology, most notably within human social 

psychology. However, concerns about the reliability of scientific output, and often the term 

replication/reproducibility “crisis”, have been raised across fields, from drug development (Begley & Ellis, 

2012) to behaviour analysis (Locey, 2020), sports science (Halperin et al., 2018) and quantum computing 

(Frolov, 2021). In a survey of 1576 researchers across fields including biology, chemistry and physic, 52% 

of participants reported that there was a “significant” crisis in their field (Baker, 2016).  

1.2.1.  The proximate causes of low replicability: Bishop’s four horsemen  

Bishop (2019) highlighted four causes of the replication crisis, at the level of individual studies. 

These were publication bias (Lane & Dunlap, 1978; Sterling, 1959), low power (Button et al., 2013; Cohen, 

1994), p-hacking (Simmons et al., 2011) and HARKing (Hypothesising After Results Are Known; Kerr, 1998). 

Measuring the rates of these research practices across any research programme is important to 

understand the evidential value of bodies of evidence, and I now introduce how researchers in disciplines 

other than animal cognition have attempted to measure them.  

1.2.1.1. Publication bias 

Publication bias is difficult to measure directly because, by definition, it is attempting to measure 

the rate at which studies are not published. This is complicated by the fact that publication bias can 

happen at different stages of the research process and for different reasons. For example, researchers 

can choose not to write up and submit their research for publication, or they might submit research for 

publication, but have it rejected by journals. As mentioned, Sterling (1959) “measured” publication bias 

by contrasting the proportion of published statistically significant results (97.3%) with the proportion of 

published non-significant results (2.7%). More recently,  Fanelli (2010) reported that just over 90% of a 

sample of psychology and psychiatry papers that contained the phrase “test* the hypothes*” supported 

the hypothesis under investigation, and using the same method Scheel et al. (2020) found that 96% of a 

sample of 152 studies from Psychiatry/Psychology reported support for the hypothesis, compared to only 

44% of 71 published registered reports – a publishing format in which the paper is provisionally accepted 

prior to data collection. Survey studies have reinforced these observational studies. For example, a survey 

of 454 pre-clinical animal researchers in the Netherlands found that on average they believed that 50% of 

studies were published (Riet et al., 2012, see Chapter 9 for animal cognition researchers' answers to a 

similar question).  

Finally, funnel plots and p-value distributions can also be examined as potential indicators of 

publication bias (Simonsohn et al., 2014; Sterne et al., 2011). Funnel plots are often presented alongside 
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meta-analyses to assess the risk of publication bias and consist of a scatterplot of a measure of effect size 

against a measure of precision of each individual study. Asymmetric funnel plots could then be an 

indicator of publication bias (Sterne et al., 2011). Similarly, p-value distributions in which there is a drop 

in the number of p-values above compared to below the significance threshold might reflect a publication 

bias against negative results (Lakens, 2015).  

Overall, converging evidence suggests that publication biases have been present across nearly all 

biomedical and psychological fields for much of the past 50 years. In Chapters 5, 6, 7 and 9 of this thesis, 

I develop and implement a range of the techniques mentioned above (proportion of positive reports, a 

survey study and p-value distributions), to provide a preliminary assessment of the degree of publication 

bias across animal cognition research.  

1.2.1.2. Low power 

The second of Bishop’s four horsemen was low power research. Statistical power, in Neyman-

Pearson significance testing, is the long-run probability of rejecting the null hypothesis, given a certain 

assumed effect size exists in the population. For example, a researcher who performs an experiment and 

statistical test with 75% power to detect an effect size of Cohen’s d = 0.5 would correctly reject the null 

hypothesis 75% of the time in the long run, if the true effect size was 0.5.   

Low power research has two downsides. The first is that researchers may make many false 

negative decisions, which could lead the researcher to ignore promising avenues of research (Fiedler et 

al., 2012), or mis-interpret the non-significance finding as evidence in favour of the null hypothesis (Aczel 

et al., 2018; Goodman, 2008, see Chapter 7). The second downside is that, when combined with 

publication bias, low powered research leads to greatly overestimated effect sizes populating the 

literature. This is because a low powered studies must observe very large effect sizes for the result to be 

statistically significant. If the study were replicated, the effect size would regress toward the “true” effect 

size, and this is unlikely to be significant, giving the impression of a “failed” replication (Fiedler & Prager, 

2018). This is explored in Chapter 2 across various scenarios in animal cognition research. 

Identifying likely low-powered research is difficult. Theoretically important effect sizes are rarely 

specified by researchers – and it is unclear how easy they can be derived. However, researchers have 

attempted to assess the likely statistical power of studies for which meta-analyses have been performed 

to estimate the “true” effect size. This estimation can be used to retrospectively assess the power of 

original studies to detect this effect size. Button et al. (2013) and Stanley et al. (2018) used this approach 



5 
 

to show that most individual studies included in meta-analyses across neuroscience (Button et al.) and 

psychology (Stanley et al.) had low power to detect the meta-analytic estimate. For example, the median 

power to detect the meta-analytic effect size in neuroscientific studies was 21%, and across psychological 

disciplines 36%. However, in both studies massive heterogeneity was observed (Nord et al., 2017; Stanley 

et al., 2018). Button et al. observed a “clear bimodal distribution”, with the modal bin of power being 0-

10% (15 meta-analyses), but seven meta-analyses also comprised studies with an average of over 90% 

power. As Nord et al. (2017) summarise, this heterogeneity suggests that while low power might be a 

large issue for many fields of neuroscientific and psychological research, it is not ubiquitous. As a 

microcosm of psychological research more broadly, animal cognition research is likely characterised by 

similar levels of heterogeneity (discussed in Chapters 2, 3, 5, 6, 7 and 8).   

1.2.1.3. p-hacking and HARK-ing 

Bishop’s final two horsemen of irreproducibility were p-hacking and HARK-ing (Hypothesising 

After Results are Known; Kerr, 1998). p-hacking covers a range of analysis practices that might increase 

the chance of a false-positive result. For example, sample sizes or stopping rules and exclusion criteria 

may not be determined before testing begins, and then researchers may have multiple looks at the data 

before deciding when to stop. Researchers may record several different dependent variables, and 

selectively report or interpret those that ‘worked’ (John et al., 2012). Alternatively, they begin testing with 

under-specified hypotheses that could be answered through a vast number of justifiable, and often 

equally valid, analytical pipelines (Silberzahn et al., 2017; Steegen et al., 2016). However, only a subset of 

these pipelines might contain statistically significant p-values. HARK-ing similarly raises the risk of false 

positive results and occurs when researchers present exploratory findings as confirmatory.  

Two methods have been used to quantify the rate of researchers using false positive inflating 

research and analysis practices: self-report surveys and meta-research or secondary data analysis 

projects. Self-report surveys indicate that many researchers report to have used, and suspect that others 

use, so-called “questionable research practices”, i.e., practices that increase the frequency of false 

positivise (Agnoli et al., 2017; Banks et al., 2016; Fiedler & Schwarz, 2016; Fraser et al., 2018; John et al., 

2012). While some of the surveys may have biased the reported results towards higher figures (see Fiedler 

& Schwarz, 2016), the evidence from the various surveys shows that there is a non-trivial usage of these 

practices. The rates of some of these practices can also be investigated through meta-research projects, 

an interdisciplinary approach to evaluating methods, reporting, reproducibility and the evaluation and 

incentives of research (Ioannidis, 2018). Thus far, meta-research and secondary data analysis projects 
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have largely corroborated the findings of these survey studies. To give three examples: Nieuwenhuis et 

al. (2011) found that 79 of 157 (50.3%) of articles interpreting interaction-like effects across the journals 

Science, Nature, Nature Neuroscience, Neuron and The Journal of Neuroscience, did so inappropriately. 

Gibbs and Gibbs (2015) reported articles in anaesthesiology journals frequently interpreted p-values in 

the range 0.05-0.10 as a trend and used to reject the null hypothesis. And in behavioural ecology, Chuard 

et al., (2019) found that significant p-values were underreported for possible confounding variables, even 

if the null hypothesis was true for each case (i.e., articles reported significant confounding effects at less 

than the false positive rate). This suggests that statistically significant confounding variables may have 

been selectively omitted from research reports.  

Nevertheless, p-hacking remains difficult to detect: It is not possible to directly observe 

researchers performing their statistical analysis, and the literature on p-hacking and alpha inflation is 

patchy at best. Most projects focus on specific errors in specific fields (e.g., “trend” interpretation in 

anaesthesiology), and generalising these data to animal cognition might be difficult. In this thesis, I focus 

on one putative error in Chapter 7: interpreting non-significant results as evidence in favour of the null. 

1.2.2.  Are Most Published Research Findings False? 

Ioannidis (2005, p.1) claimed “most research findings are false for most research designs and for 

most fields”. He made this claim by calculating the probability that any given positive result was a true 

positive, under various assumptions about how the research was conducted (the positive predictive value, 

or PPV). Ioannidis’ PPV was influenced by the power of a research design, alpha inflation, and the prior 

probability that a hypothesis was correct. For a study with 0.80 power, a pre-study odds of 50% and little 

bias, the probability a positive result reflects a true positive was 0.85 However, for underpowered 

research with higher bias and lower pre-study odds, the PPV can easily fall below 20%. And if studies are 

not independently replicated, without publication bias, these false positive results will likely persist in the 

literature (Makel et al., 2012; Nissen et al., 2016). Hence, following this argument, for a field to understand 

the likely informativeness of its published findings, some attempts to understand the likely statistical 

power, alpha inflation and plausibility of hypotheses within a field are required. Critically assessing 

Ioannidis’ argument in relation to animal cognition research forms part of Chapter 4 of this thesis, and 

Chapters 5, 6, 7 and 9 provide some information on statistical power, alpha inflation and plausibility of 

null and alternative hypotheses in animal cognition research.  

1.2.3.  Evidence from large-scale replication projects 
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The idea that many published findings may be “false” was given credence by the results of large-scale 

replication projects in psychology. The most impactful of these was the Open Science Collaboration’s 

(OSC) ”Reproducibility Project: Psychology” (Open Science Collaboration, 2015). In this, the OSC 

conducted direct replication studies of 100 published social and cognitive psychology studies. Of the 97 

original statistically significant findings, only 35 replications produced significant effects in the same 

direction as the original study. The replication studies returned, on average, half the effect size as the 

original reports, which forced psychologists to acknowledge that either many published effects in some 

areas of psychological research were not robust and/or that independently replicating true effects could 

be difficult.  

Since then, further large scale-replication attempts have documented replicability issues across 

psychological research, but with large heterogeneity across research areas. In the ManyLabs series 

(Ebersole et al., 2016, 2020; Klein et al., 2014, 2018, 2019), direct replications were performed across 

multiple sites with an median sample size over 43 times larger than the original studies. Only 43 of the 77 

studies (56%) produced statistically significant effects in the same direction as the original. Across all 

studies, the median observed effect size was 21.2% the size of the original (Nosek et al., 2021). Similarly, 

Camerer et al. (2018) performed direct replications with 90% power to detect 75% of the 21 experiments 

published in Nature or Science original study’s effect size, and, if the replication study did not produce a 

significant effect in the same direction as the original, they continued data collection to 90% power to 

detect 50% of the original effect size. Of these studies, only 13 (62%) returned significant results in the 

same direction as the original study, and even within these 13, the average effect size was 71% of the 

original studies.  

1.2.3.1. Heterogeneity 

While replication projects in human psychology have returned replication success rates around 

60%, some projects have found areas of highly reliable research. For example, Zwaan et al. (2018) 

successfully replicated 9 cognitive psychology tasks (Flanker task, Simon task, Motor priming, Spacing 

Effect in learning, False Memory Effect, Serial Position effect, Associative priming, Repetition Priming and 

Shape Simulation). In the successful replications, each study produced a Bayes Factor of over 10,000 in 

support of the theoretical predictions over null effects. In personality psychology, Soto (2019) attempted 

to replicate 78 previously published personality trait-life outcome associations through four samples (all 

Ns in the range 1,505 – 1,559), of which 87% replicated successfully. Finally, Protzko et al. (2020) examined 

the prospective replicability of 16 social-behavioural science experiments using so-called “best practice” 
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methods: high statistical power, preregistration, methodological transparency and both internal and 

independent replications. They found that replication studies returned an average of 97% of the effect 

size as the originals, suggesting their best practice methods were sufficient to produce robust estimates. 

Several factors could explain the variable replication success rate across subfields: 

1.2.3.1.1. Statistical power 

Subfields with higher replication rates might have performed both original studies and replication 

studies with higher power to detect theoretically plausible effect sizes, than fields with lower power. For 

example, cognitive psychology effects such as the Serial Position Effect often manifest visibly within 

individual participants, and so only a small sample is needed for large power. Other tasks, such as the 

Flanker task, use tens or hundreds of trials within individual participants, similarly increasing power (Smith 

& Little, 2018). In contrast, many effects in fields struggling to replicate might have been “discovered” by 

studies vastly under-powered to detect an underlying effect size – meaning the published effect size 

would be overestimated, and even the replication study underpowered to detect any underlying effect 

(Fiedler & Prager, 2018, but see Camerer et al. 2018) 

1.2.3.1.2. Bias in original studies 

If original studies in some research areas are more biased, statistically, than in other areas, their 

findings will be more difficult to replicate. If published findings come from a literature with a large 

publication bias and low powered studies, or there is frequent alpha-inflation, then replication studies will 

often fail.  

1.2.3.1.3. Different levels of effect stability  

If effects vary within and between individuals, and across time, this would place an upper limit on 

our expectation of the rate of replication successes. For example, in contrast to the Stroop effect, which 

may be consistent regardless of participants location, we might expect the effects of behavioural nudge 

recycling behaviour to be more context dependent, and thus more difficult to replicate (Gilbert et al., 

2016).  

1.2.3.1.4. Bias in replication selection 

Another reason for why replication success may seem heterogenous across areas is that targets 

for replication are non-randomly chosen.  Researchers may choose a study to replicate because its findings 

seem implausible, for example the claim of precognition (Bem, 2011) – a physically impossible feat – was 

selected for replication in a study that seemed likely to always produce negative results (Ritchie et al., 
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2012). Similarly, in the large-scale replication studies candidates were non-randomly selected. For 

example, the studies selected by the OSC, and subsequent replication projects, were in part based off 

convenience (Open Science Collaboration, 2015; Klein et al., 2014, 2018). If studies are selected for 

replication based off doubt in the real effect, or off convenience, then it is no surprise that the replication 

rate will be lower than for effects with strong prior beliefs or that are less convenient to perform.  

1.2.3.1.5. Bias in replication studies  

Finally, replication rates might be artificially lowered due to biases or failures in the replication 

studies themselves. There are many ways for negative results to occur other than there being no true 

effect (Mitchell, 2014). For example, if an intervention delivered in person is adapted for online delivery 

in a new sample, this change to the intervention could reduce its salience, or even fail to elicit an effect 

altogether. Because there is no such thing as an identical replication study (see Chapter 3), any change to 

the protocol to an original study could lead to differences in study outcomes.  

Chapter 2 of this thesis discusses these issues in relation to animal cognition research, asking what 

the field should expect from direct replication studies, if they were performed. Chapter 3 then discusses 

how animal cognition researchers might best conceptualise replication as it begins its own process of 

identifying which of its results are reliable and which are not. To set a background to this discussion, I now 

provide a brief comparison of animal cognition research around the 1950s in comparison to the 2000s 

and 2010s, and the role of replication during this (but see Beran et al., 2014 for a more thorough history).  

1.3. Animal cognition research up to the replication crisis 

Animal cognition research is a field that interests many but is rarely and inconsistently defined (Bayne 

et al., 2019). For this thesis, I take animal cognition research to be most similar to what is often labelled 

comparative cognition: a field that covers a wide range of topics, from how animals learn and remember 

to how they make decisions and how they interact with other individuals. By studying a wide number of 

questions in an equally wide range of species, the field broadly aims to understand the mechanisms, 

functions and the evolution of cognition (Beran et al., 2014; Olmstead & Kuhlmeier, 2015; Shettleworth, 

2009). Related fields or definitions include comparative psychology (Call et al., 2017; Papini, 2003), 

cognitive ethology (Allen & Bekoff, 1997), and more distantly, behavioural ecology (Krebs & Davies, 1997) 

and behavioural neuroscience (Commins, 2018).  

1.3.1.  Animal cognition around 1950s 
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In the 1950s, animal cognition research was focused on studies of learning in the lab rat. In “The Snark 

was a Boojum”, Beach (1950) lamented this limited focus of the field on the lab rat: In an analogy based 

on Lewis Carrol’s poem “The hunting of the Snark”, Beach contended that in hunting for the delicious 

Snark, Animal Behaviour, Comparative Psychologists instead found a deadly Boojum, the albino rat; as a 

result, the Comparative Psychologist faded away. Beach calculated the percentage of species and topics 

studied in papers between 1911 and 1948 in the Journal of Animal Behaviour and its successors the Journal 

of Comparative Psychology, later the Journal of Comparative and Physiological Psychology. Beach 

observed a drop in the total number of species tested, from over 20 in 1914-15 to an average of less than 

10 between 1923 and 1948.  Notably, the Norway Rat comprised over 50% of articles in all but one year 

between 1931 and 1948, and during this time the most studied topic was conditioning and learning. While 

Beach was critical of the state of comparative psychology at the time, he also noted the benefits of 

focusing on a small number of questions in a single species: 

“There are many important advantages to be gained when many independent research workers attack 

similar  problems  using  the  same  kinds  of  organisms...  [it  is]  possible to  check  the  accuracy  of  the 

findings,  to  accelerate  the  acquisition  of  new  data,  and  to  formulate  more  valid  and  general 

conclusions than could have been derived if each worker dealt with a different species.” (Beach, 1950, p. 

120) 

Beach and others (e.g. Skinner, 1938) also noted that comparative psychology’s use of the lab rat was 

similar to the model organism approach used in other fields, for example on Drosophila in genetics, or 

Arabidopsis in plant sciences (Krämer, 2015). Such a model organism approach embraces replication, and 

replication failure. For example, in 1967 Murphey claimed to demonstrate instrumental conditioning in 

the fruit fly, Drosophila melanogaster, in a maze apparatus. In this experiment, 30 male flies completed 

50 acquisition and 50 reversal learning trials, in which they had to turn a specific direction in a maze 

apparatus to access a “reinforcement” tube extending upwards (correct response), or an aversive tube 

extending downwards (incorrect response). Murphey (1967) reported statistically significant effects of 

both acquisition learning and reversal learning. This result was exciting, because it offered a potential 

means to easily investigate instrumental learning mechanisms in a well-characterized genetic model. 

Therefore, Yeatman and Hirsch (1971) conducted a replication experiment, in which they attempted to 

match Murphey’s protocol. They built “a replicate of the original maze”, and one of the authors, Yeatman, 

visited Murphey’s laboratory “in order to avoid gross departures from the conditions of the original study” 

(Yeatman & Hirsch, 1971, p. 456). Yeatman and Hirsch found no statistically significant effect of learning 

for the experimental group (or control groups) when following the same analysis plan as Murphey, which 

they interpreted as a failure to replicate the instrumental conditioning of Drosophila.  
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Similar cases of published failed replication are relatively easy to find. For example, in a 6 experiment 

paper, Dworkin and Miller (1986) reported a systematic failure to replicate findings of autonomic 

instrumental conditioning in paralysed rats. Interpreting these replication failures, Dworkin and Miller 

were able to discount the probability that their results were due to inadequate statistical power – 

something animal cognition scientists in the present often struggle to do (e.g., Amodio, Brea, et al., 2021; 

Amodio, Farrar, et al., 2021; Crosby, 2019). However, it would be misleading to state that inadequate 

replication was a non-issue in comparative psychology. In Yeatman and Hirsch’s (1971) article, they 

discussed barriers to replication that would not have been out of place in a psychology journal today. 

Citing Smith (1970), they highlight “seven reasons why studies often are not replicated: (1) lack of funds, 

(2) lack of time, (3) lack of availability of a comparable group of subjects, (4) development of new research 

interests, (5) desire to publish, (6) ego involvement with the data, and (7) the reluctance of some journals 

to publish replication studies. ” (Yeatman & Hirsch, 1971, p. 460).  

1.3.2.  Animal cognition in the 2000s 

Since Beach (1950), and similar critiques (Bitterman, 1960; Shettleworth, 1993), animal cognition 

research is now broader, both in the number of species studied and the number of questions asked (Beran 

et al., 2014; Shettleworth, 2009). Both Beran et al. and Shettleworth, coding data from a variety of animal 

cognition related journals, found that rats were no longer the dominant species tested, with similar 

proportions of apes, monkeys, other mammals, rats and birds now being studies. More recently, a survey 

of the primate cognition literature (Many Primates, Altschul, Beran, Bohn, Caspar, et al., 2019) and the 

bird cognition literature (Lambert et al., 2021) found that between 2015 and 2020, at least 68 different 

primate species and 141 different bird species have been studied using cognitive tests. 

This diversity of species has been matched, somewhat, by an increase in the number of topics 

studied. While learning studies dominated in the 1950s, today’s research spans many domains, notably 

social cognition, physical cognition, memory and mental time travel, and personality and individual 

differences (Beran et al., 2014; Lambert et al., 2021; Shettleworth, 2009). While learning studies still 

feature, there has been somewhat of a bifurcation between animal learning and animal cognition 

research, with the former more often published in outlets such as Behavioural Processes, and the latter 

in journals like Animal Cognition and Journal of Comparative Psychology, amongst others. While learning 

research still often focuses on rats and pigeons, other cognitive studies are more distributed across taxa 

(Lambert et al., 2021). Animal cognition researchers have asked questions as diverse as whether frogs 

recognise conspecific calls (Passos et al., 2021), how otters handle stones (Bandini et al., 2021), and 
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whether pinyon jays and Clark’s nutcrackers are differentially impacted by observers when caching 

(Vernouillet et al., 2021). Clearly, with such a diversity of questions to ask, and species to study them in, 

the probability of close, independent, replication is lower in animal cognition today than when the field 

had a narrower focus (even after considering the general increase in research activity – according to a 

Scopus search, the journals Animal Cognition and Journal of Comparative Psychology collectively 

published less than 100 articles each year between 1999 and 2007, but over 150 in 2018, 2019, and 2020).   

Importantly, however, the diversification of animal cognition research has also increased its 

heterogeneity. In some areas, such as studies of hyena social cognition (Holekamp et al., 2007), cuttlefish 

memory (Jozet-Alves et al., 2013) or vampire bat co-operation (Carter & Wilkinson, 2013), the research is 

dominated by a single group of collaborators. In others, independent groups studying the same taxa 

converge on the same research questions, but often test different species, collaborate together, and 

researchers often move between the groups. This is the case, for example, in corvid social cognition 

research (see Chapter 7). And finally, some research areas do truly have multiple groups studying the 

same questions in the same species, which is the case when there is sufficient interest and sufficient 

opportunity to conduct this research. For example, chimpanzee theory of mind research has a high rate 

of conceptual independent replication (Halina, 2021) because multiple research groups have access to 

captive chimpanzees through collaboration with zoos, and this research area has attracted large amounts 

of funding. Similarly, many research groups have independently asked questions about dog social 

cognition (Aria et al., 2021), most likely because they are a relatively cheap convenience sample, with 

clear questions to ask about the effects of domestication on cognition. This unique structure of animal 

cognition research must be accounted for in any assessment of replication possibility, or risk-of-bias 

assessment, and I discuss these topics in Chapter 4, 7 and 8.   

1.3.3. Top-down animal cognition and the methods wars 

A feature of current animal cognition research is the prevalence of top-down research questions 

across many research programmes. Such top-down questions most often start with a cognitive ability and 

then seek to test or demonstrate this ability in an individual or group. Such research often uses null 

hypothesis significance testing, and leads to a dichotomous claim about some feature of animal cognition, 

such as “Ravens attribute visual access to unseen competitors” (Bugnyar et al., 2016), “Great apes 

anticipate that others will act according to false beliefs” (Krupenye et al., 2016), and “Cuttlefish show 

flexible and future-dependent foraging cognition” (Billard et al., 2020). Such claims depend on the 

reliability of the statistical result, and the validity of the operationalisation, or closeness between the 
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substantive claim and the statistical hypothesis. Animal cognition researchers expend great energy in 

debating the suitability of specific tasks to test certain cognitive abilities, both formally through 

commentaries and discussion in papers (e.g., Amodio et al., 2019; Beran, 2015; Farrar, 2020; Heyes, 2017; 

Vonk, 2018, 2019a, 2019b, 2019b), but also in the uncounted hours spent peer-reviewing papers, across 

multiple journals. And less frequently, researchers write articles critiquing the approaches of entire 

research programmes (e.g., Anderson & Gallup, 2015; Heyes, 2012, 2015; Leavens et al., 2019; Lind, 2018; 

Smith et al., 2014), of specific issues within the field (e.g., Andrews & Huss, 2014; Barker & Povinelli, 2019; 

Beran, 2012; Buckner, 2013; Burghardt et al., 2012), or of the field’s approach as a whole (e.g., Allen, 2014; 

Eaton et al., 2018; Vonk, 2021).  

In animal cognition research, the same data are often interpreted in contrasting ways by scientists 

(Boyle, 2021). When authors make dichotomous claims about the presence or absence of cognitive 

abilities in animals, others will often disagree. Occasionally, researchers label others’ interpretations as 

unduly biased, either in favour of exceptional cognitive abilities in animals (e.g., Hill, 2017; Penn & 

Povinelli, 2013) or equally as being overskeptical (e.g., Fitzpatrick, 2008). In Chapter 4 of this thesis, I form 

my own argument about why there is so much methodological criticism in animal cognition research, but 

little agreed up on progress. I then detail how bias can direct research programmes, but instead of 

focusing on the specifics of interpreting the results of individual experiments, I focus on explaining how 

the academic incentive structure determines how animal cognition research is performed, and why I 

believe this is sufficient to explain why, i) animal cognition research faces a replication crisis, but also, ii) 

why many areas of animal cognition research struggle to make discoveries that convince the “killjoys” and 

skeptics.     

1.4. Overview of thesis 

In this thesis I aim to explore how concerned animal cognition researcher should be about the 

reliability of its scientific results and the presence of theoretical biases across research programmes. In 

Chapter 2, I start by asking what animal cognition research should expect from direct replication studies 

and suggest that areas of animal cognition research likely contain many findings that will struggle to 

replicate. In Chapter 3, I then combine two definitions of replication to outline the relationship between 

replication and theory testing, generalisability, representative sampling, and between-group comparisons 

in animal cognition. Chapter 4 explores deeper issue in animal cognition research, examining how the 

academic systems that might select for research with low replicability might also select for theoretical 

bias across the research process. Following this, I focus on one key general issue facing animal cognition 
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researchers: critical and quantitative evidence synthesis and risk of bias assessments. In Chapter 5, I led a 

team examining publication bias and the robustness of statistical inference in studies of animal physical 

cognition. Chapter 6 provides a systematic review and a quantitative risk-of-bias assessment of corvid 

social cognition literature. And in Chapter 7, I assess how researchers in animal cognition report and 

interpret non-significant statistical results, as well as the p-value distributions of non-significant results 

across a manually extracted dataset and an automatically extracted dataset from the animal cognition 

literature. Chapter 8 then discusses the difficulty animal cognition researchers face when critically 

synthesising evidence and detecting bias, and I highlight this as the major challenge for animal cognition 

research alongside assessing the reliability and validity of individual findings. In Chapter 9, I present survey 

data of over 200 animal cognition researchers who I questioned on the topics of this thesis. Finally, 

Chapter 10 summarises the findings of this thesis, and discusses potential next steps for research in animal 

cognition.  
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2. Chapter 2: A replication crisis in animal cognition?1 
 

In this chapter, I question why animal cognition research has not yet experienced a replication crisis 

and ask what the field might expect if many of its studies were replicated. The chapter focuses on “direct” 

replication studies – studies where an original protocol is followed as closely as possible (D. J. Simons, 

2014), but exactly what a replication study is, and how this relates to theory testing, is discussed in Chapter 

3.  

2.1.  Why has animal cognition not yet experienced a replication crisis? 

The replication crisis of human psychology had many antecedents. Most often cited are the cases 

of Daryl Bem and Diedrick Stapel, the publications of Ioannidis (2005) and Simmons et al., (2011), and the 

Open Science Collaboration’s Reproducibility Project: Psychology (2015). While Ioannidis and Simmons et 

al., and the associated discussion, is directly translatable to animal cognition research, Bem and Stapel are 

cases with no clear homologues in animal cognition. Bem (2011) published a series of nine experiments 

in the American Psychological Association’s Journal of Social and Personality Psychology. These nine 

experiments provided “evidence” in favour of extra-sensory perception, namely precognition — that a 

future event could affect an individual’s cognition before it had occurred. While this is physically 

impossible, it was published in a leading journal as “Experimental evidence for anomalous retroactive 

influences on cognition and affect”. However, Bem had followed all required protocols for making 

scientific claims at the time; he had conducted experiments, performed statistics, and sent these off for 

peer review. The issue for psychologists is that, if evidence for the clearly false precognition can be 

published in this system, how many other incorrect, but more plausible findings, have made it into the 

literature? However, Bem’s case did not just highlight issues with evidential standards in psychology, but 

also with the approach and intentions of researchers in the field, as quotes from Bem himself illustrate: 

“If you looked at all my past experiments, they were always rhetorical devices. I gathered data to 

show how my point would be made. I used data as a point of persuasion, and I never really worried about, 

‘Will this replicate or will this not?’” (Bem, quoted in an interview with Engber, 2017) 

 
1 This chapter contains material published in Farrar, B. G., Boeckle, M. & Clayton, N. S. (2020). Replications in 

comparative cognition: What should we expect and how can we improve? Animal Behavior and Cognition 7 (1), 1-2 
and parts of Farrar, B. G., Krupenye, C., Motes-Rodrigo, A., Tennie, C., Fischer, J., Altschul, D., & Ostojic, L. (2021). 
Replication and Reproducibility in Primate Cognition Research. Book Chapter, Primate Cognitive Studies 
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“Examine [the data] from every angle. Analyze the sexes separately. Make up new composite 

indexes. If a datum suggests a new hypothesis, try to find additional evidence for it elsewhere in the data. 

If you see dim traces of interesting patterns, try to reorganize the data to bring them into bolder relief. If 

there are participants you don’t like, or trials, observers, or interviewers who gave you anomalous results, 

drop them (temporarily). Go on a fishing expedition for something—anything —interesting. No, this is not 

immoral. The rules of scientific and statistical inference that we overlearn in graduate school apply to the 

‘Context of Justification’.” (Bem, 2004, p. 2) 

Bem’s case pointed to deeper incentive issues in the scientific process: if experiments and data 

analysis were mere rhetorical devices for researchers to make big claims, then why should we trust the 

published literature? That researchers might be incentivised to chase claims over evidence was then 

exemplified by the case of Deidrick Stapel, the Dutch researcher who admitted to the long-term 

fabrication of data across dozens of social psychology experiments (Stapel, 2014). The pressure to publish 

in high-impact outlets features prominently in Stapel’s confessions:  

“Get writing, get publishing, otherwise you know where the door is... Everyone knows that they 

have to publish, and everyone knows the hierarchy of the journals that they’re aiming for.” (Stapel, 2014, 

p. 87) 

Accusations of misconduct have occurred in animal cognition research. For example, a committee 

of the Harvard Faculty of Art and Sciences found Marc Hauser "solely responsible" for eight instances of 

research misconduct (Harvard Magazine, 2010), however the details of this misconduct are limited. The 

retraction notice of a paper implicated by this misconduct simply states that:  

“This article has been retracted at the request of the authors. An internal investigation at Harvard 

University of the reported research found that the data do not support the reported findings. The authors 

are therefore retracting this article. M. Hauser accepts responsibility for the error.” (retraction notice to 

Hauser et al., 2002, p.1) 

More recently, data irregularities, including possible duplications, were noticed in the work of 

Jonathan Pruitt, a researcher of spider personality (Bolnick, 2021). While Pruitt denied misconduct 

(Pennisi, 2020), the behavioural ecology community were sceptical that the Pruitt data could have arisen 

by mistakes alone. For example, Niels Dingemanse commented on the Science article covering the Pruitt 

story, stating that: “I and my colleagues find it hard to reconcile Pruitt's data irregularities as mistakes.” 

As of February 2020, seventeen of Pruitt’s papers were either i) in the process of being retracted, (7) ii) 
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requested to be retracted by co-authors (5), or iii) flagged as containing possible data anomalies (5) 

(Viglione, 2020).  

2.1.1.  Why large-scale replication projects are unlikely in animal cognition 

However, the cases of Hauser and Pruitt did not spark the animal cognition research community 

into performing systematic replication projects like those described in human sciences – the projects that 

unequivocally confirmed the “replication crisis”, and perhaps for good reason. Three factors make such a 

study unlikely in animal cognition. First, researchers are unlikely to have access to the species needed to 

perform a replication study. For example, replication projects of cognitive studies in captive Eurasian jays 

are only being performed at the University of Cambridge by trained researchers affiliated with the 

University (Amodio, 2020; Crosby, 2019), because this is the only place to house these animals. Second, 

ethical approval may prove a barrier for some replication studies in animal cognition, as there is likely 

more heterogeneity between ethical approval requirements for animal research between institutions and 

nations, than for human research. Finally, animal experiments are costly, from animal housing and 

husbandry costs to the human costs of often long-term habituation and training protocols. This is in great 

contrast to the large-scale replication projects in human psychology, in which replication targets are often 

selected partly based on the ease of adapting a protocol for online or battery-testing (Klein et al., 2014, 

2018; Open Science Collaboration, 2015) 

2.1.2.  The rate of replication in animal cognition research  

While large-scale or systematic replication projects have not occurred in animal cognition 

research, this does not mean that replications never occur. According to data compiled by the 

ManyPrimates project (2019), 8.7% (50/574) of primate cognition studies published from January 2014 to 

October 2019 were replication studies, which they defined as studies that tested different populations of 

the same species with the same methodology (i.e., direct replications). Notably, less than one percent 

(0.6%, 4/574) of studies were within-paper replications, in which the authors conducted and reported 

replication studies within an individual publication (for examples, see Forss et al., 2019; Krupenye et al., 

2016; Wallace et al., 2017). Similarly, the ManyBirds collaboration found that 42 out of 567 (7.4%) 

surveyed bird cognition studies from 2015 to 2020 were self-defined as replication attempts by the 

authors (Lambert et al., 2021). These data suggest that direct replication is not a routine aspect of primate 

or avian cognition research. However, the rate of replication likely differs between study designs, 

laboratories and individual researchers. Due to this heterogeneity, it is difficult to interpret what these 

“rates” of replication figures mean, other than that clearly direct replication studies likely make up less 
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than 10% of the published literature. However, this does not mean that replications are performed 

uniformly across the literature—it is likely that some research programmes very rarely publish replication 

studies, and some publish them at a rate much greater than 10%.  

When interpreting replication rates, we must also ask what type of study designs are being 

replicated, and why. Logically, tasks that are low cost, quick and adaptable may be more likely to be 

replicated across time and sites than those that are expensive, slow and difficult to adapt. Accordingly, 

tasks using few and simple apparatuses with little training requirements appear to be those that are 

replicated most often. For example, tasks using simple tube apparatuses, such as trap-tube tasks and tube 

tasks for handedness, make up a significant proportion of replication studies in primates. In the tube task, 

which has been replicated several times both within and between species (Chapelain et al., 2011; Hopkins 

et al., 2004; Llorente et al., 2011; Motes Rodrigo et al., 2018; Nelson et al., 2015), a tube with two openings 

and a food reward smeared in the middle is provided to the test subjects in order to assess which hand 

they use to retrieve the food. As such, the task can be applied easily and repeatedly to nearly all testable 

primate groups. 

A positive feedback loop may then exist whereby tasks that are used in replication studies are 

more likely to be subject to further replication attempts. As more and more data become available on 

certain tasks, interpretative frameworks can be built around them and researchers can more easily 

produce a narrative around their data; more comparisons are possible, the results are more easily 

contextualized, and less work may be needed to justify the task design (Latour & Woolgar, 1986). This 

feedback loop may partly explain the frequency at which test-batteries (Herrmann et al., 2010; Schmitt et 

al., 2012), mirror-response studies (Anderson & Gallup, 2011), inhibition tests (MacLean et al., 2014), tests 

of spatial memory with arrays of cups (Many Primates, Altschul, Beran, Bohn, Call, et al., 2019), and 

quantity judgement tests using food sets (Beran, 2001) are replicated. While biases towards replicating 

simpler and more popular tasks may exist, this is not necessarily detrimental for scientific progress. In 

fact, focusing replication attempts on tasks that are easy to perform can be justified from both the 

perspective of productivity and informativeness (see Krasheninnikova et al., 2020, for the case of test 

batteries). Simpler tasks allow researchers to collect more data from more samples of animals, which then 

allow for more comparisons to be made (Beach, 1950). Simpler tasks can also allow for multisite data that 

can probe the representative of heterogeneous populations to be collected (Many Primates, Altschul, 

Beran, Bohn, Call, et al., 2019).  

2.1.3.  What should animal cognition expect from direct replication studies?  
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In light of the replication crisis in human psychology and the unknown rate of replication (and 

replciation success) in animal cognition research, this chapter now focuses on two questions. First, what 

should animal cognition research expect from direct replication studies, like those originally perfomed at 

the onset of the human replication crisis? And second, how can we use this information to understand 

and develop animal cognition as a science? To address these questions, I apply arguments that have been 

made across fields in response to their replication crises or “credibility revolutions” (Gelman & Geurts, 

2017; Vazire, 2018). While the paper focuses on what animal cognition should expect from replication 

studies, and how it can use this knowledge to improve in the future, the arguments can also be applied 

retrospectively to assess the evidential value of published findings. This is important as the established 

scientific system can select for unreliable and misleading research (Higginson & Munafò, 2016; Lazebnik, 

2018; Lilienfeld, 2017; McElreath & Smaldino, 2015; see Chapter 4). 

First, I examine statistical cues to replicability, and specifically ask what can be gained from looking at 

p-values and effect sizes in published findings. Next I ask whether the different research designs employed 

across animal cognition may lead to systematic differences in replicability. Then, I make the case that 

single direct replication studies will be unable to falsify many claims in animal cognition, even if they are 

false, and that because the probability of independent replicaiton is so low for much animal cognition 

research, most findings are practically unfalsifiable. Next I discuss the difficulties that animal cognition will 

face when performing and interpreting the results of replication studies. Across this discussion, I highlight 

the 10 conclusions I made during the beginning of my PhD which provide a platform for the deeper 

disucssions of replication (Chapter 3), bias (Chapter 4) and evidence synthesis (Chapters 5, 6, 7 and 8) that 

occurred later in my research.   

 

2.1.3.1. Statistical cues of replicability: p-values, effect sizes and direct replications 

Some cues about a result’s likely replicability can be found in statistical reports, in the reported p-

values, effect sizes and confidence intervals. However, the statistics presented in published reports are 

unlikely to provide an accurate estimate of an effect size because of a publication bias favouring positive 

results. If papers are selected for publication based on a significance criterion such as p < 0.05, then it is 

more likely that studies overestimating effect sizes will be published than studies that underestimate the 

effects (Cumming, 2008; Fiedler & Prager, 2018; Hedges, 1984; D. M. Lane & Dunlap, 1978; Piper et al., 

2019; Vasishth et al., 2018). In cases where many low powered studies are performed, as we might expect 

in some animal cognition research, effect sizes can be overestimated upwards of 100%, and the likelihood 
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of an exact replication study producing a significant effect in the same direction as the original study can 

be low, as my later simulation studies will show. But first, to illustrate this descriptively, I now discuss 

three hypothetical scenarios of a direct replication study, in which the original study estimated the 

unknown true effect size either exactly, underestimated it or overestimated it. These direct replication 

studies have the same sample size as the original study and sample from the same population.  

Scenario 1 – original study estimated the real effect size exactly 

If an original study estimated the real effect size for that design exactly, then the likelihood of the 

replication study to return a positive result is the power of the statistical test to detect this effect size. 

Therefore, if the original study returned a positive result that was just statistically significant, such as p = 

.049, then the likelihood of an exact replication study returning a positive result is approximately 50%; 

like tossing a coin (Piper et al., 2019). This is because, 50% of the time the replication study will 

overestimate the effect size, resulting in p < .049, whereas 50% of the time it will underestimate the effect 

size, resulting in p > .049, and this is non-significant with an alpha of .05. However, as the p-value of the 

original study decreases, then ceteris paribus, the chances of a positive replication result increase.  

Scenario 2 – original study underestimated the real effect size 

If the original study underestimated the real effect size, then it becomes more likely that a direct 

replication study of equal sample size will return a positive result as the replication study will exceed that 

effect size over 50% of the time. In the example of a just significant result, p = .049, in the original study, 

the likelihood of a positive direct replication with the same sample size is now greater than 50%.  

Scenario 3 – original study overestimated the real effect size 

However, the most likely scenario is that the original study will have overestimated the real effect 

size, particularly for studies that produced p-values just below the alpha level. This scenario is most likely 

for two reasons. First, as publications are selected based on a cut-off point, studies that overestimate 

effect sizes are more likely to be published than studies which underestimate effect sizes (Hedges, 1984). 

For example, if exactly estimating the “true” effect size would have yielded a p-value of .06 in a design, 

then only samples overestimating the effect size would be published. Hence, in direct replication studies, 

the replication p-value would regress to the mean, .06, and the original study would have less than a 50% 

chance of a positive direct replication with the same sample size. Second, the overestimation of published 

effect sizes is further exacerbated if research practices that produce more significant results are used, 

which appear relatively common (Agnoli et al., 2017; Fiedler & Schwarz, 2016; Fraser et al., 2018; Simmons 

et al., 2011; see Chapters 4 an 9). Hence, the default expectation when directly replicating a study with a 
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p-value in the range of .01 < p < .05 is that there is a good possibility that a direct replication study with 

the same sample size will not produce a statistically significant result in the same direction as the original 

study, even if there is a real underlying effect.  

2.1.3.1.1. Simulation study 

Another way to view these ideas is through simulation studies, and to this end I simulated a very 

simple model of animal cognition research.  

2.1.3.1.1.1. Methods 

First, I simulated 40,000 studies, comprising of four sets of 10,000 studies with a power of 80%, 

50%, 20% and 5% (i.e., false positive results only in the 5% group) to detect a known difference between 

two groups of 10 animals. The groups were compared using a one-tailed two-sample t-test and results 

with p < .05 were termed significant and “published.” 

The code for the simulations is available at: https://github.com/BGFarrar/P-value-

simulations/blob/master/CCreplicationsV1.R). Data were simulated from two normal distributions for 

each of the four sets of simulations (Table 1). 

Table 1: Details of the simulation populations. 

Power Population 1 Population 2 

80% X ∼ N(50, 5) X ∼ N(55.78, 5) 

50% X ∼ N(50, 5) X ∼ N(53.82, 5) 

20% X ∼ N(50, 5) X ∼ N(51.87, 5) 

5% X ∼ N(50, 5) X ∼ N(50, 5) 

Note, details of the distributions are in the form X ~ N(µ, σ), where  µ = mean and σ = standard deviation 

of a given behaviour measured in a population. 

The difference between Population 1 and Population 2 was calculated in order to give the desired 

power for a one-tailed two sample t-test with n = 10 per group. 10,000 samples were then taken from 

each population and compared to each other, and the p-values and mean difference between each sample 

recorded. The proportion of p-values under 0.05 was calculated, and the mean difference between 

samples associated with these p-values was compared to the mean difference across all samples to 

calculate the unstandarised effect size inflation. Next, the expected number of exact replication studies 

that produced a significant result in the same direction as the original was calculated by multiplying the 

https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R
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number of significant results from the simulation by the power of test again, and this was performed for 

a range of p-values, as well as overall. 

2.1.3.1.1.2. Restults 

The results of these hypothetical studies are displayed in Table 2, along with a comparison of the 

specified and “published” effect sizes. 

Table 2: The results of 40,000 simulated animal cognition studies by power. The proportion published 
represents the proportion of studies producing p < .05, and the unstandardised effect sizes are the 
mean differences between the groups. 

Power 
Proportion 

Published 

Unstandardised Effect Size 

All Samples Published 
Mean effect size overestimate in 

“published” findings 

80 0.796 5.77 6.53 13% 

50 0.494 3.82 5.56 45% 

20 0.205 1.89 4.88 158% 

5 0.053 0.007 4.45 64486% 

Note, the differences between the all samples effect size and the true population values specified in Table 

1 occur because of sampling variance in the simution, which may be accentuated by rounding.  

In total, 15,471 of the 40,000 simulated studies produced significant results, with approximately 

half of these from the 80% powered designs (Table 2). However, even when running studies with 80% 

power, the average effect size was inflated as only the significant studies were published. As the power 

of the tests decreased, the degree of inflation increased. Next, I derived the expected proportion of direct 

replication studies that would return a significant result if all of the 15,471 published studies from the 

simulation were replicated exactly. Again, these exact replications had equal sample size to the original 

studies, and the results are broken down across different ranges of the published p-values in Table 3. The 

overall expected replication rate of this group of research, conducted with a quarter of studies having 

80%, 50%, 20% and 5% power was 0.60.  
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Table 3: The mathematically derived probability of a successful replication attempt of an original study 
randomly selected from a given range of p-values from the 15,471 "published" simulation studies. 

P-value original 

study 

 

p ≤ 0.01 0.01 < p ≤ 0.02 0.02 < p ≤ 0.03 0.03 < p ≤ 0.04 0.04 < p ≤ 0.05 

Probability of 

successful 

replication 

0.67 0.57 0.52 0.50 0.48 

 

These results show that the expected replication rate of published research from this model can 

be close to 0.5, or even below 0.5, for just significant results. Notably, these results are in the absence of 

any false positive inflating research practices (Fraser et al., 2018; John et al., 2012; Simmons et al., 2011); 

they are solely the consequence of only publishing research with p < 0.05 and performing at least some 

research with relatively low power. However, this simulation does not accurately characterize the field of 

animal cognition: Not all animal cognition research is performed with 80%, 50%, 20% or 5% power, or 

using two-sample t-tests comparing two groups of 10 animals. As such the numbers should not be taken 

as a literal estimate of the replicability of animal cognition research; rather the simulation study shows 

that the research and publication methods used in animal cognition do lead to effect sizes being over-

estimated and a replication success likely to be closer to 50% than 100% for just significant published 

findings. Conversely, experiments reporting very low p-values, with associated effect sizes and confidence 

intervals that are narrow and far from 0 can be good indicators of a reliable statistical effect2. Finally, one 

scenario in which these conclusions might be inappropriate is when considering research using designs 

and test combinations in which the p-value distribution is not uniform or near uniform under the null 

hypothesis, such as with a binomial test and a small number of observations (see Chapters 5, 6 and 7). 

 
2 That is, under conditions of publication bias, many just-significant p-values across a research area is a good 
indicator of bias. If there are no biasing selection effects, however, p-values from bodies of research performing 
Neyman-Pearson null-hypothesis signficance testing should be intetrepted relative to the pre-specified long-run 
error rates, alpha and beta, with beta being calculated in relation to the minimun theoreitcally important effect 
size.  
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Conclusion 1: Animal cognition research should not expect just significant initial findings to replicate 

consistently, and published effect sizes are likely to be overestimated because of a publication bias 

towards positive results 

  The following section now focuses on whether the differences in research methods across animal 

cognition, that were not considered in the simulation study, can allow us to estimate the replicability of 

research in animal cognition. 

2.1.3.2. Replications across animal cognition: What can we expect? 

The simulation study showed that, all else being equal, studies in animal cognition with lower p-

values are more likely to replicate than studies with higher p-values. However, this begs the question: 

which features of animal cognition research lead to effect sizes large enough to be reliably detected, and 

thus produce low p-values and successful replication studies? 

One of the areas in which animal cognition research methods differ markedly is in the number of 

trials they use, for example experiments using touchscreens and short time periods can use hundreds or 

thousands of trials (e.g., Beran, 2006) whereas experiments using more constrained behaviors such as 

food caching usually use considerably fewer trials (Ostojić et al., 2017). Given that sample sizes are often 

small in animal cognition, many “effects” might be too small to detect on a single trial, as the errors 

associated with measuring these behaviors on a single trial are large. Having many trials in within-subjects 

designs can address this issue by enabling more precise estimation and consequently smaller p-values and 

more replicable results to manifest. All things being equal, within-subject designs are more powerful to 

detect effects than between-subject designs with similar resources, and studies with more trials will be 

more likely to detect effects than those with few trials. This tendency of within-subject design with many 

trials to be more replicable is visible in the human replication literature (Open Science Collaboration, 2015; 

Zwaan, Pecher, et al., 2018). Many reliable findings in animal cognition will have harnessed this ability to 

perform repeated tests on individual animals that are often highly trained on the task, although whether 

a certain number of trials are “sufficient” or not will depend on particular features of the task at hand, 

notably the size of the effect and the measurement error.  

Conclusion 2: Studies using within-subject designs with many trials and less-noisy behaviors are more 

likely to produce replicable results than studies with similar resources that use between-subjects 

designs, within-subject designs with few trials, or more-noisy behaviors. 
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To illustrate this point in an applied setting, I performed another simulation based on a real 

experiment. Emery and Bird (2009) reported that seven rooks looked longer at two images of physically 

impossible events than two images of physically possible events. On average, the rooks looked for around 

1000ms at each image, and approximately 200ms longer at the physically impossible events than the 

physically possible ones (data from Emery and Bird, 2009: Experiment 1).  

2.1.3.2.1. Methods 

To investigate the role of trial number and effect size on the replicability of significant results in 

experiments like this, I simulated data for a series of hypothetical experiments, in which seven rooks were 

given either 1, 5 or 100 trials in each condition, and where the average effect size was either 200ms, 

100ms or 50ms. I decided that 200ms is likely quite a large effect, as it was detected in a sample size of 7 

from two trials per condition, and so also included two smaller effects in the simulation. For each design 

I  ran 10,000 simulations to estimate the power of the design and test combination. In the data simulation, 

I  included a fixed main effect of condition, random intercepts and slopes for each individual, and a small 

random intercept for the stimuli. Again the code for the second simulation can be found at: 

https://github.com/BGFarrar/P-value-simulations/blob/master/CCreplicationsV1.R 

The data were simulated using edited code from DeBruine and Barr (2019). Data were simulated 

from the following model: 

𝐿𝑇𝑠𝑖 = 𝛽0 + 𝑆0𝑠 + 𝐼0𝑖 + (𝛽1 + 𝑆1𝑠)𝑋𝑖 + 𝑒𝑠𝑖 

This model is identical to DeBruine & Barr (2019, p. 7), but I swapped LT (Looking Time) for RT 

(Reaction Time). The looking time for subject s on item i, 𝐿𝑇𝑠𝑖, is composed of a population grand mean 

𝛽0, a by-subject random intercept 𝑆0𝑠, a by-item (either physically possible or impossible image) random 

intercept 𝐼0𝑖, a fixed slope 𝛽1, a by-subject random slope 𝑆1𝑠, and a trial-level residual 𝑒𝑠𝑖. 𝑋𝑖  is the 

condition.  

Across all simulations, the following parameters were simulated with the following:  

𝛽0: 1000 

𝑆0𝑠 ~ N(0, 100) 

𝐼0𝑖 ~ N(0, 5) 

𝑆1𝑠 ~ N(0, 40) 



26 
 

𝑒𝑠𝑖: 200 

Subjects were simulated with a correlation between intercepts and slopes of 0.2, meaning that 

subjects with larger looking times showed on average larger looking time differences. Across the 

simulations I varied the main effect of condition and the number of trials in a 3 x 3 design: 

𝛽1 (200, 100, 0) x trials (1, 5, 100) 

10,000 datasets were simulated for each design, and the analyses differed slightly between the 

designs to avoid singular fits. For the single trial designs, the data were analysed using paired  t-tests, and 

for the five and one hundred trial designs, the data were analysed using a mixed effect model with the 

following structure:  

lmer(LookingTime ~ Condition + (1 | subj_id), simulateddata, REML = FALSE)  

Finally, for the five trial conditions, the calculated p-values might be slightly inaccurate as a small 

proportion of simulations still led to singular fits. This may also be something to consider when 

interpreting the analysis of Bird and Emery (Bird & Emery, 2010), which has even more parameters in the 

model.  

2.1.3.2.2. Results 

Figure 1 plots an example of the data from one of each of the designs, and the power for each 

design is presented under each graph. Figure 1 shows that both increasing trial number and studying 

larger effects can lead to large increases in power, even with a constant sample size. When there was only 

1 trial per condition (leftmost panels), the power of the design to detect the whole range of effect sizes 

was low. Notably, this design was prone to producing results in the opposite direction to the true effect 

(see Gelman & Carlin, 2014). For the smallest effect size, 50ms, 32% of single trial experiments led to 

effects estimated in the opposite direction to the true effect, and 13% of the significant results were in 

the opposite direction to the true effect. This design was completely insensitive to individual differences 

in the effect, and the significant results from these studies, if published, would lead to large 

overestimations of the true effect size and exact replication studies often would return non-Signiant 

results, at the rate of 1 – power (as per the results of the earlier simulation). One striking aspect of Figure 

1 is just how misleading visualisations of single trial studies can be. As the uncertainty is never measured 

for each bird in each condition, it cannot be visualised. 
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Figure 1: Graphs showing example data from nine different designs of a looking-time experiment in 
rooks. These designs vary on the underlying effect size (50ms, 100ms, 200ms), and the number of trials 
per condition (1, 5, 100). N=7 for all designs. The power of each design is printed below each graph and 
was calculated by simulating 10,000 studies in each design and calculating the proportion of p-values 
less than 0.05. 

The benefits of increasing trial number are visible when there were 5 trials per condition (middle 

panels). At the largest effect size, the design would nearly always detect the main effect of condition. 

However, this design is still quite insensitive to the real individual differences I included in the simulation, 

and exact replication studies would still only return significant results around 50% of the time for the 

100ms effect. This contrasts with the 100 trials per condition design (rightmost panels), which, in addition 

to detecting even the smallest effect very reliably, was also sensitive to many of the individual differences 

between animals within each study simulation. Studies using such designs in animal cognition can 

produce, and in many areas already do produce, very replicable results. 

However, this benefit of running many trials across participants may not be accessible for some 

areas of animal cognition. This is the case when theoretical constraints restrict experimental designs to 
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using a single test trial, in order to avoid experimental confounds. For example, in some memory tests the 

animals are tested in extinction, to prevent cues from the to-be-remembered items directly influencing 

their searching or responding behavior (Adams & Dickinson, 1981; Clayton & Dickinson, 1998). Such 

studies cannot use many test trials in within-subjects designs because this would invalidate the test itself; 

for example, the animals could learn that no food is provided in the test trials and therefore that there is 

no value in searching for the food. Hence, for some hypotheses in animal cognition, the optimal 

methodological design may not be one that produces highly replicable results, if replicability is measured 

by statistical significance only. Nevertheless, all else being equal, studies employing many trials will 

produce more replicable results than studies using few trials. However, this does not mean that most 

many-trial studies and no few-trial studies will replicate successfully. Further, even if this were true, it 

does not mean that many trial studies are always “better”. As ever, there are trade-offs between likely 

replicability, validity and resource investment. Numerous experiments that use many trials, such as 

reaction time studies in humans, can have participants perform hundreds of trials in minutes, whereas in 

many animal studies this is not possible. The reliability-resource trade-off is just that: a trade-off, and 

researchers should seek to evaluate and improve reliability with this in mind.  

Conclusion 3: Some areas of animal cognition face replicability/validity and replicability/resource trade-

offs 

2.1.3.3. Replications across animal cognition: Small-N, Many Replicates? 

One research area that consistently uses many trials to produce replicable results is so-called 

“small-N research”. Small-N research capitalises on the benefits of using many trials on each individual 

subject, yet rather than seek to estimate population parameters they treat the individual as the replication 

unit (Little & Smith, 2018; Smith & Little, 2018). Each individual is its own experiment, and experiments 

are thus replicated by using more than one individual. Smith and Little explain this approach:  

“We argue that some of the most robust, valuable, and enduring findings in psychology were obtained, 

not using statistical inference on large samples, but using small-N designs in which a large number of 

observations are made on a relatively small number of experimental participants. We argue that, if 

psychology is to be a mature quantitative science, its primary theoretical aim should be to investigate 

systematic, functional relationships as they are manifested at the individual participant level. The 

estimation of population parameters, while not unimportant, is arguably of secondary concern and should 

probably be investigated using more refined techniques for characterizing individual differences than the 

blunt instrument of simple averaging that conventional statistical methods provide.” 
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 Smith & Little, (2018, p. 2084) 

 

The small-N approach is found across psychological research, for example in Ebbinghaus’ 

forgetting curve and many psychophysical experiments. And interesting hypotheses are often tested at 

the individual level in animal cognition - think of studies of number comprehension in Alex the parrot 

(Pepperberg & Gordon, 2005), of fast mapping with Chaser the dog (Kaminski et al., 2004) and of working 

memory in Ai and Ayumu (Inoue & Matsuzawa, 2007). Individual-level data are also widely used in 

comparative psychology. Learning curves, for example, are usually most informative when plotted at the 

individual level, and this is part of the reason why Skinner rejected null-hypothesis significance testing 

(Gigerenzer et al., 2004; Skinner, 1956). Small-N research and individual-level data are particularly 

informative when we can be confident that the results will generalize to at least some more individuals. 

For example, understanding the learning mechanisms of Lab Rat 377 logically will inform us about rat 

learning more generally, and hence a small-N approach might be appropriate here. However, while small-

N research has a formal approach to inference at the individual level (P. L. Smith & Little, 2018), there is 

no formal method of generalizability. In animal cognition, when strong evidence is found at the individual 

level, the question “will it replicate?” asks “how will it generalize to similar individuals who have had 

similar experiences?”. In contrast, group-level animal cognition research, the question “will it replicate?” 

may be more synonymous to “is it a reliable statistical effect in the given population?”, but see Chapter 3 

for a deeper discussion.  

Conclusion 4: Different research approaches may have different meanings by replicability (see 

e.g., Lazic et al., 2018). While these approaches answer different questions, animal cognition can benefit 

from both approaches, and can often employ both simultaneously.  

2.1.3.4. The data are not everything 

Thus far, I have considered only statistical and design features of replicability. However, there is 

much more information about replicability than can be gleaned from reported statistics alone, especially 

if there is a publication bias. When Daryl Bem provided evidence for a physically impossible skill, 

precognition, across nine studies, statistical markers were part of the subsequent refutation (Francis, 

2012; Schimmack, 2012; Wagenmakers et al., 2011). However, it was the sheer implausibility of the effect 

that provided the clearest indicator that it would not replicate (Chambers, 2017). This ability of 

researchers to detect findings that are likely unreliable extends from the physically impossible to more 

plausible research results too. Research using forecasting and prediction markets has shown that groups 
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of experts, on average, can be surprisingly accurate at identifying research that will not replicate (Dreber 

et al., 2015; Forsell et al., 2018) – and there is no reason why this should be any different in animal 

cognition research for the statistical reliability of effects. In animal cognition research, if your belief in 

something is very low, then a just-significant result should not affect this belief greatly. This is not to say 

that researchers should be insensitive to evidence, but they should critically assess whether there is 

sufficient evidence that a given statistical effect is accurate, and whether this statistical effect is strong 

evidence of the authors’ claims. Extra-ordinary claims require extra-ordinary evidence, and this will 

usually not be provided by single studies with just-significant results, or even a set of such studies if this 

set of studies cannot provide an effective risk of bias assessment.  

Conclusion 5: The data aren’t the full story – aggregated expert beliefs about replicability might be 

accurate, whatever they are based on 

2.1.3.5. Difficulty performing and interpreting replication studies in animal cognition 

Given that many research findings might be unreliable in animal cognition, a next step could be to call 

for a suite of systematic, direct replications studies to identify findings that are robust, which would enable 

researchers to perform meaningful meta-analyses on rich datasets with low bias. While there are strong 

reasons to support such claims (e.g. see Beran, 2018; Lambert et al., 2021; Many Primates, Altschul, Beran, 

Bohn, Call, et al., 2019; Stevens, 2017), there are many valid barriers to performing and interpreting 

replication studies in animal cognition that should be considered. These barriers mean that it may not be 

possible to perform truly direct replication studies in most animal cognition research, because:  

• Restricted resources mean that it is not possible to directly replicate some findings 

• Statistical estimates from both original and replication studies will be too noisy to be able to 

detect differences between them with confidence 

• There will be real and often large differences between animal behaviour in original and replication 

studies 

Restricted resources mean that it is not possible to directly replicate some findings 

As animal cognition is a small field represented by many different research questions in many 

different species (Beran et al., 2014; Shettleworth, 2009), when a laboratory stops working on a certain 

species the likelihood of direct replication studies of these results in the near future approaches zero. For 

example, our Animal cognition laboratory in Cambridge performed a series of studies on cache-protection 

strategies in California scrub-jays (Aphelocoma californica) which it no longer houses. Consequently, the 
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possibility of these studies being directly replicated with California scrub-jays in this lab in the coming 

years is very low. Multi-lab collaboration, or independent replication can help, for example there is one 

laboratory that currently publishes on caching in California scrub jays (Clary et al., 2019). However, it is 

unclear to what extent different labs are incentivised to replicate others’ findings in animal cognition, 

especially given their own funding and ethical constraints.   

Conclusion 6: Often, direct replications will not be immediately possible due to a lack of resources and 

researchers should explore collaborative methods to estimate the reliability of their research. 

Statistical estimates from both original and replication studies will be too noisy to be able to detect 

differences between them with confidence 

In order to detect a difference between the results of an original study and its direct replication, 

only looking at the significance of the results is not appropriate. Considering statistically significant 

replications to be the only “successful” replication studies, and all others to be “unsuccessful”, is 

misleading (Gelman, 2018) as it dichotomizes replication attempts as either successful (p < 0.05), or 

unsuccessful (p > 0.05). While a replication study with p = .049 would be considered a success, a replication 

study with p = .051 would be considered a failure. If the sample size of a replication study is not much 

larger than the original study, it is not surprising that many replication studies will not yield significant 

results, even if there is a real effect being studied. In fact, more liberal, and perhaps more appropriate, 

interpretations of large-scale replication studies results provide higher estimates of replicability than 

those first publicized. For example, it is often reported that the Open Science Collaboration (2015) 

produced only 35 positive replication results from 97 positive original findings. However, Etz and 

Vandekerckhove (2016, p. 1) used a Bayesian analysis to suggest that “75% of [replication] studies gave 

qualitatively similar results [to the original studies]”, but also noted that “the majority of the studies (64%) 

did not provide strong evidence for either the null or the alternative hypothesis in either the original or 

the replication.”  Future replication projects in human psychology have attempted to address this concern 

by swamping the sample sizes of the original studies (e.g., Camerer et al., 2016). However, as Morey and 

Lakens note (2016, p. 1), “sample sizes are so small in psychology that often one cannot detect even large 

differences between studies. High-powered replications cannot answer this problem, because the power 

to find differences in results from a previous study is limited by the sample size in the original study”. 

When this concern is translated to animal cognition, and its constraints on sample sizes, it is clear that 

producing replication studies that can assess the veracity of the original claim will be very challenging.  
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Conclusion 7: Animal cognition might not have the resources to produce highly-powered and 

informative replication studies of many claims 

Real and large differences between animal behavior in original and replication studies 

Assuming that some form of direct replication studies are performed, interpreting their results 

becomes even more difficult when the many reasons why a animal cognition replication study might fail 

to produce significant results are considered, even if the original effect was “true”. One example is that 

animal behaviour often has large seasonal and developmental variation. For example, a food-caching 

experiment would fail to replicate outside of caching seasons, and a memory experiment performed on 

young animals might not replicate when the same animals are tested in their old age. Such failures to 

replicate could be due either to the original results being a false positive, or a well-motivated alternative 

hypothesis, like the memory performance of animals decreasing with age. Furthermore, the experiences 

of animals, particularly those that are highly trained on certain apparatuses, can prevent results from 

being easily replicable. This can be either in principle, e.g. some zoos might not be able to house the same 

equipment of laboratories, or in practice, e.g. the same equipment might have different effects in 

different laboratories.     

Conclusion 8: Temporal and developmental variation in animal behavior will influence the likelihood of 

replication success  

Needless to say, when direct replication studies using a new sample from the same population 

can be performed, these will be an effective method of assessing the reliability of an effect. However, in 

animal cognition, it is not feasible to assume new samples can be repeatedly taken from the same 

population – in fact it is often unclear what “populations” we are studying in general. Rather, different 

groups of animals of the same species from different research sites may be best viewed as different 

populations with respect to many cognitive effects. In biomedical research, researchers report differences 

in physiology and behaviour between laboratories, even when they test the exact same strain of animals 

with the exact same protocol Crabbe et al., 1999). These real differences in nominally similar animals 

when exposed to the same treatment means that results are difficult to reproduce between-laboratories 

(Voelkl & Würbel, 2016)3, but also within laboratories when the same animals are tested repeatedly (Karp 

 
3 These differences in behaviour might reflect an adaptive response to many subtle environmental differences 
between sites, and as such “independent replicate studies that fail to reproduce the original findings might not 
necessarily indicate that the original study was poorly done or reported, but rather that the replicate study was 
probing a different region of the norm of reaction.” (Voelkl & Würbel, 2019, p. 3) The reaction norm is a concept 
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et al., 2014). That these differences are present in highly standardized conditions, such as biomedical 

mouse research, raises the likelihood that real and potentially large effects of site and time will reduce 

the replicability of animal cognition research.  

A recent example in animal cognition comes from the ManyPrimates collaboration (Many 

Primates, Altschul, Beran, Bohn, Call, et al., 2019; Many Primates, Altschul, Beran, Bohn, Caspar, et al., 

2019). Here, they collected data on 176 individual primates from 12 species on a delayed response task, 

in which primates had to wait either 0, 15 or 30 seconds before choosing the location where food was 

hidden (Many Primates, Altschul, Beran, Bohn, Call, et al., 2019). While there are notable similarities 

within and between species’ behaviour across sites, some large differences can still be observed. For 

example, the 12 chimpanzees from the Wolfgang Köhler Primate Research Center greatly outperformed 

the 12 chimpanzees from Edinburgh Zoo. If such a between-site difference is present in a relatively simple 

and robust cognitive task, in which inter-individual differences might be expected to be low (Hedge et al., 

2018), this suggests that even larger between site differences could manifest for more noisy behaviours 

in animal cognition replication studies. While in the ManyPrimates data the variation within chimpanzee 

performance was low compared to the variation between species, and some species, e.g. capuchin 

monkeys, were very similar across sites, it was only possible to know this because they did sample 

different groups of animals from the same and different species. In contrast, multi-site studies in animal 

cognition that do not sample from multiple groups of the same species risk confounding or obscuring 

between-species differences in behaviour because they are unable to dissociate the contributions of 

species and site differences to the data. Even when making within-species comparisons, direct replications 

between sites in animal cognition could be seen as similar to cross-cultural studies in humans, and as such 

lie closer to conceptual rather than direct replications. Chapter 3 focuses on this topic. 

Conclusion 9: Site specific differences in behaviors make direct replication studies sampling from new 

populations difficult to interpret, and could confound many between species comparisons  

Overall, it will not be possible for researchers to identify results as “false positives” through a 

limited number of direct replication studies. Often, a researcher wanting to replicate a study will not have 

access to the desired species, and even if they did, they would be unlikely to be able to produce a result 

that they could confidently conclude is statistically different from the original study. Furthermore, our 

default assumption should be that there will be real quantitative differences between the results of 

 
used by Voelkl and Würbel to represent gene x environment interactions acknowledging both plasticity and 
canalization.  
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replication and original studies. This holds both for effects which we might be confident are true positives, 

for example the observed difference between Edinburgh Zoo chimpanzees and Wolfgang Köhler Primate 

Research Center chimpanzees in ManyPrimates, and for effects that we might be uncertain are true, such 

as those supported by a few just significant p-values. Many of the claims that are supported by a few just 

significant results may be practically unfalsifiable – precisely because we would not expect them to 

replicate consistently in similar studies even if there was a true effect. However, this does not mean that 

all findings reflect “true effects” in animal cognition, instead it means that single small replication studies 

will not absolutely falsify a claim (but similarly neither have many original studies proven their claims). 

Instead of focusing on the “presence” or “absence” of an effect in a replication study, a more fruitful 

approach would be to focus on whether there are meaningful differences between original and replication 

(Gelman, 2018; Morey & Lakens, 2016). However, often the estimates from both the original study and 

the replication study will be so imprecise that we often will not have the resources to detect these 

differences. To account for this, animal cognition researchers can focus on expressing the uncertainty 

about their findings, rather than the absolute veracity of a claim or its statistical significance. This should 

act prospectively when interpreting the results of replication studies and new studies, but also 

retrospectively for small studies that have made bold claims on the basis of weak statistical evidence. 

Conclusion 10: Single replication studies are unlikley to absolutely falsify claims. A focus on effect sizes, 

meaningful differences between studies and communicating uncertainty should be a long-term aim for 

animal cognition research.  

2.1.4.  The beginning of a replication crisis in animal cognition? 

Over the last few years, replication has received increasing attention in animal cognition 

research (Beran, 2020; Brecht et al., 2021; Freeberg, 2020; E. Tecwyn, 2021), and the predictions made 

in this chapter were somewhat borne out across published replication studies. To illustrate this, I 

highlight four recent replication “failures” from avian cognition research, two from my own lab using 

caching studies to examine Eurasian jays’ cache protection strategies at the group level (Amodio, Farrar,  

et al., 2021; Crosby, 2019), a study of New Caledonian crow physical cognition (O’Neill et al., 2021), and 

an individual-level research project on mirror recognition (Soler et al., 2020). Table 4 highlights these 

studies, along with the authors’ interpretations.  
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Table 4: Four recent claimed replication failures in avian cognition research 

Replication study Original study/studies Interpretation 

Amodio, Farrar, et al. 
2021 

“Eurasian jays (Garrulus 
glandarius) conceal caches from 

onlookers” 
 

Legg and Clayton, 2014 
 

“Current desires of conspecific 
observers affect cache-protection 
strategies in California scrub-jays 

and Eurasian jays” 
Ostojić et al., 2017 

 

“Experiments 3, 4 and 5 found no 
significant effects in the direction of the 
previously reported effects, questioning 

their robustness…. 
 

…We propose two explanations for why 
our studies were unable to detect 

effects consistent with the previous 
literature, namely low power and the re-

use of a unique bird sample” p.20 of 
accepted manuscript 

Crosby 2019 “Current desires of conspecific 
observers affect cache-protection 
strategies in California scrub-jays 

and Eurasian jays” 
 

Ostojić et al., 2017 

“However, I was unable to replicate the 
results of the original study, which may 
lead to questions about the reliability of 
this effect. As described above, there are 

two possible explanations for the 
inability to find an effect here: (i) the 
replication was a false negative, or (ii) 

the original result was a false positive.” 
p. 107 

 

Soler et al. 2020 “Mirror-Induced Behavior in the 
Magpie (Pica pica): Evidence of 

Self-Recognition” 
 

Prior et al., 2008 
 

“Thus, our replication failed to confirm 
the previous results. Close replications, 
while not disproving an earlier study, 

identify results that should be 
considered with caution.” p. 363 

O’Neill et al. 2020 “New Caledonian crows reason 
about hidden causal agents” 

 
Taylor et al., 2012 

“The low sample size of our replication 
group meant we could not be sure if we 
did not replicate the effect due to low 
power or due to actual differences.” p. 

166 

 

All four replication studies from Table 4 followed the same pattern: an attempt to match the 

methods of a previous study as closely as possible with a similar sized sample to an original study. Each 

original study produced a statistically significant result a large effect sizes. These replication attempts all 

returned non-significant results, and the authors were unable to conclude anything other than that their 

findings question the robustness of the previous findings. This is an appropriate interpretation – the risk 

of false negative results along with the wide confidence intervals around both the original findings and 

replication results mean that the replication studies cannot disprove the original findings. This is where 
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the replication crisis in animal cognition will likely differ from, e.g., human social psychology. In human 

social psychology, it is often possible to generate large sample sizes and have relatively few constraints 

on how tasks can be implemented (e.g., Camerer et al., 2018), i.e., it should be possible for many low-

cost studies to perform replication studies that do not just match original studies, but are unequivocally 

better studies than the originals. In animal cognition, this will often be infeasible (although this may be 

similar to other resource intensive fields with difficult-to-reach populations, such as studies of rare 

diseases Lange (2019)). Hence, the replication “crisis” in animal cognition may not be that many effects 

are demonstrated to be unequivocally false, but the realisation that we have literatures filled with 

research performed under conditions that promote false positive findings (Chapter 4).Well-performed 

replication and extension studies are an important tool to test the generalisability of these published 

research findings, but   this begs the question of what a replication and what a “well-performed” 

replication is in animal cognition. Chapter 3 now attempts to develop a deeper understanding of what a 

replication is, and how this relates to theory testing in animal cognition.  
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3. Chapter 3: Replications, sampling, and theory testing4 

Chapter 2 outlined reasons why animal cognition research might expect a low rate of successful 

replication across many of its studies. In addition to biasing factors, such as publication bias or p-hacking, 

an important consideration was that animal cognition research often involves small and idiosyncratic 

samples, that can vary over time. When a new sample is taken, this sample is sufficiently different from 

the original that we should expect there to be some real differences between the original and replication 

results. However, when researchers make general claims about a group or species’ behaviour, they 

implicitly assume that their samples are representative enough of the group or species of interest. Yet, 

this assumption is rarely tested, and the literature is populated by claims that are produced by single 

laboratories, testing the same animals, at single time points and in closely related experimental designs. 

This could lead to overgeneralised findings that are difficult to replicate (Henrich et al., 2010; Würbel, 

2000; Yarkoni, 2019), but equally, it could be an effective strategy to maximize scientific progress in 

resource-limited fields (Craig & Abramson, 2018; Davies & Gray, 2015; Mook, 1983; Schank & Koehnle, 

2009; Smith & Little, 2018). To explore this issue, this chapter shows how concerns about replicability, 

representativeness, comparison and theory testing and pseudoreplication are all related through the lens 

of sampling. To design the best experiments, researchers should consider all five in relation to their 

sampling plans. The first half of the chapter focuses on sampling and replication, and answers the 

following questions: 

• What is a replication in animal behaviour and cognition research? 

• What is the relationship between replication and theory testing? 

• What makes a species-fair comparison? 

The second half of the chapter then focuses on representativeness and asks how concerned 

researchers should be with the problem of non-representative sampling in animal research. I explore this 

issue through a re-analysis of existing data on animal “self-control” and a simulation study. The simulation 

study shows that for some between-group or between-species comparisons, poorly representative 

samples could lead to false positive rates closer to 50% than 5%, the rate conventionally cited when 

 
4 This chapter contains material published in Farrar, B. G., Voudouris, K., & Clayton, N. S. (2021). Replications, 
Comparisons, Sampling and the Problem of Representativeness in Animal Behavior and Cognition Research. Animal 
Behavior and Cognition, 8 (2), 273-295 
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authors use p < .05 to define statistical significance. Finally, the chapter ends with a discussion of how 

researchers might assess, mitigate and account for the problem of representativeness in animal cognition.  

3.1. Claims, Samples and Replications 

3.1.1.  What are replications in animal research? 

A study is labelled a replication because it is similar in some regards to a previous experiment. For 

example, a replication study may repeat the same experimental protocol as a previous study, except use 

a new sample of animals. However, it is not possible to perform exactly the same study twice, and because 

of this any replication study can also be reframed in terms of a test of generalisation. Even if the same 

experimenters perform the same experiment on the same group of animals, the replication experiment 

is still a test of generalisation across time.  

However, while truly identical replications are impossible, this does not mean the concept of 

replication is obsolete, or redundant with generalisability. When performing replications, scientists are 

not usually interested in what philosophers call absolute identity, but in what they call relative identity 

(Geach, 1973; Lewis, 1993; Noonan & Curtis, 2004; Quine, 1950). They are not interested in whether a 

feature of a replication is exactly the same as an original study, rather they are interested in whether that 

feature can be considered the same, or as coming from the same population, relative to a given theory. 

Idealistically, a theory or claim would specify what can and cannot be considered as coming from the same 

population, i.e., identifying its boundary conditions (e.g., Simons et al., 2017), and thus what a valid test 

of it would sample from. For example, consider the Rescorla-Wagner model, which specifies that gains in 

associative strength are proportional to the prediction error (Rescorla & Wagner, 1972). From the 

perspective of the Rescorla-Wagner model, it does not matter whether the hypothesis is tested with a 

sample of rats or a sample of mice, or pigeons, or monkeys, etc. Providing a valid conditioning procedure 

is followed, all of these species are within the boundary conditions of the Rescorla-Wagner model, and an 

original study making a general claim about the Rescorla-Wagner model by testing rats could therefore 

be replicated in pigeons or in monkeys – the Rescorla-Wagner model makes no distinction. On the 

contrary, the most robust tests of the Rescorla-Wagner model would sample from across all of species 

that the model applies to, rather than just a single species.  

Recently, resampling definitions of replication have been developed (Asendorpf et al., 2013; 

Machery, 2020). These may be the most effective definition of replication in animal cognition research. 

When researchers test a claim, they sample from populations of experimental units (most often animals), 

settings, treatments and measurements (Gómez et al., 2010). For example, when testing the claim that 
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chimpanzees will explore a mark on their forehead when exposed to a mirror, researchers sample from 

the population of chimpanzees available for research, from various settings (laboratories, zoos, wild), with 

a variety of possible treatments (different size mirrors, different types of marks, etc.), and many different 

possible measurements (e.g., an ethogram of self-directed actions). The resampling definition of 

replication states that a replication study is: a study that resamples from the same populations of 

experimental units, treatments, measurements and settings that an original study could have sampled 

from, relative to the claim being tested (Machery, 2020; Nosek & Errington, 2020). This is outlined in Table 

5, adapted from Machery (2020).  

Table 5: A Resampling Account of Replication (Adapted from Machery, 2020) 

An experiment samples from: A replication resamples from: 

A population of experimental units, 

e.g., a population of a species in captivity 

The same population of experimental units 

A population of treatments, 

e.g., experimental conditions 

The same population of treatments 

A population of measurements, 

e.g., definitions of success on a trial 

The same population of measurements 

A population of settings, 

e.g., sites and times 

The same population of settings 

 

According to the resampling approach, a complete replication resamples from the same 

populations of experimental units, treatments, measurements and settings as an original study, relative 

to the theory or claim in question. However, an experiment could also replicate some features of an 

original study but not others (Machery, 2020). This would create an explicit test of generalisability; probing 

whether the claim or theory can be applied successfully outside of some of its pre-specified boundary 

conditions. For example, a researcher would be able to test whether theories built in captive monkeys 

generalise to their wild counterparts by resampling from the same treatments and measurements, but 

from a different population of experimental units (captive monkeys versus wild monkeys).  

To see how the resampling definition can be applied in animal cognition research, I now discuss a 

partial or “conceptual” replication of a study investigating ageing in monkeys (Almeling et al., 2016; Bliss-

Moreau & Baxter, 2019). This is a useful example as, like most experiments in animal cognition, Bliss-
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Moreau and Baxter’s study is not a close replication of the previous study; it was neither conducted in 

identical laboratory settings nor even in the same model species.  

3.1.2.  Case Study:  Do Non-Human Primates Lose Interest in the Non-Social World With Age? 

 In 2016, Almeling and colleagues examined the relationship between the age of monkeys and 

their interest in the social and non-social environment. They tested 116 Barbary macaques housed in a 

large (20 ha) outdoor park in France. Across three non-social novel object interest tasks, Almeling et al. 

reported that older Barbary macaques interacted less with objects compared to younger Barbary 

macaques (n = 88 in these tasks). From this, they made the general claim that nonhuman primates lose 

interest in the non-social world with age. Bliss-Moreau and Baxter (2019) replicated the one of the object 

conditions of Almeling et al. in a larger sample of 243 rhesus macaques. However, these rhesus macaques 

were housed in indoor cages either alone or with a social pair mate, in contrast to the free roaming 

Barbary macaques. Bliss-Moreau and Baxter labeled their study as a “conceptual” replication, because 

they tested a different species in a markedly different setting, used a different, albeit conceptually similar, 

food-baited apparatus. However, relative to the claim that monkeys in general display a loss of interest 

to non-social stimuli with age, the populations sampled by Bliss-Moreau and Baxter do seem to come from 

the same overall populations that Almeling et al.’s claim specifies, i.e., both are tests of the claim that 

interest in the non-social environment declines during ageing in monkeys.  

Bliss-Moreau and Baxter reported no statistically significant effect of age on exploration across 

the first two minutes, which they interpreted as contrary to the results of Almeling et al, and challenging 

“the notion that interest in the ‘non-social world’ declines with age in macaque monkeys, generally” (Bliss-

Moreau & Baxter, 2019, p. 6). This claim seems reasonable: both Almeling et al. and Bliss-Moreau and 

Baxter sampled from within the experimental units, setting, treatment and measurement populations 

implicitly specified by the claim that interest in the non-social world declines with age in macaque 

monkeys. Hence, our confidence in this claim overall should decrease following the negative replication 

results. But can we really say that Bliss-Moreau and Baxter’s experiment replicated Almeling et al.’s? This 

question is difficult, because replications exist on many levels (across experimental units, settings, 

treatments and measurements) and are theory or claim dependent. Moreover, most experiments in 

animal behaviour and cognition do not make a single isolated claim. For example, the following theoretical 

claims could reasonably be inferred from the Almeling et al. paper:  

1) Socially living Barbary macaques lose interest in the non-social environment with age 

2) Barbary macaques lose interest in the non-social environment with age  
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3) Socially living monkeys lose interest in the non-social environment with age 

4) Monkeys lose interest in the non-social environment with age 

When asking how Bliss-Moreau and Baxter’s study is a replication of Almeling et al.’s, we should 

consider not just how the studies relate to each other, but how they relate to each claim we are assessing. 

Ultimately, the goal of a replication study is usually to test a scientific claim, rather than just to match a 

previous study’s methods (Nosek & Errington, 2020). Therefore, when interpreting the results of 

replication studies, researchers should focus on how relevant and diagnostic the data from each study are 

to the claim(s) in question, rather than just how similar they are. The main strength of the resampling 

definition of replication — that a replication study resamples from the same populations that an original 

study could have sampled from, relative to the claim being tested — is that it forces researchers analysing 

replication studies to consider exactly what is being tested and how effective the test is, rather than 

focusing unnecessarily on absolute similarity.  

One barrier to identifying and testing claims is that many theories and claims in animal cognition 

are verbal and vague (Bourjade et al., 2020; Farrar & Ostojic, 2019). This makes it difficult to derive risky 

predictions of the theories, because their vagueness affords them the flexibility to accommodate nearly 

any result (Roberts & Pashler, 2000). This could be remedied by formally modelling theories and 

hypotheses (Farrell & Lewandowsky, 2010; Guest & Martin, 2020). Such models may be key to making 

progress in understanding animal minds (Allen, 2014), and they can be informed by known mechanisms 

driving animal behaviour, such as associative learning (Heyes & Dickinson, 1990; Lind, 2018; Lind et al., 

2019). However, these models need not be preferred, or even contradict, non-associative models 

(Bausman & Halina, 2018; Mercado, 2016; Smith et al., 2016). Just like any other scientific tool, formal 

models need critique from a variety of perspectives, and this is developed in Chapter 4. 

3.2. Species-Fair Comparisons 

The resampling account not only offers a theoretical framework for replications, generalisations 

and theory testing in animal cognition research, but it also offers a framework for analysing between-

species comparisons. Between-species comparisons are just tests of the generalisability of an effect across 

species, and like any other test of generalisation they can be reframed in terms of replication, too. 

Comparing an effect between a group of chimpanzees and a group of bonobos is the same as testing if 

the effect generalises from chimpanzees to bonobos, or replicating a study performed in great apes, albeit 

with two non-random and systematically different samples. Both of these experiments would be  entailed 

by the coarser question of whether great apes (chimpanzees, bonobos and orangutans) show the effect 
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in question. Whether the study in question is best described as a comparison, replication or a test of a 

claim is somewhat moot — it is all three at the same time, relative to claims of different coarseness.   

However, there are clearly times when researchers may wish to focus on comparative claims, and 

this requires sampling from different populations of experimental units, e.g. different breeds, groups or 

species of animals (with the caveat that these could be seen as coming from the same population relative 

to broader claims). For an ideal comparison between two groups of animals, researchers would sample 

from different populations of experimental units, and the same populations of treatments, measurements 

and settings. Again, same here does not mean identical, but the same relative to the claim and 

experimental unit at hand. For example, consider a researcher who wants to compare the relative 

response of dolphins (Hill et al., 2016) to familiar and unfamiliar humans with that of elephants (Polla et 

al., 2018). Clearly, the researcher must sample from different populations of experimental units [dolphins, 

elephants], and a different population of settings [aquatic, non-aquatic]. However, even though the 

settings are different in absolute terms, they are the same relative to the experimental unit; the dolphins 

are tested in water, the elephants on land, and this makes the comparison more valid (Clark & Leavens, 

2019; Leavens et al., 2019; Tomasello & Call, 2008), or a “species-fair” comparisons (Boesch, 2007; 

Brosnan et al., 2013; Eaton et al., 2018).   

 

3.3. The Problem of Representativeness in Animal Research 

A sampling perspective shines light on why many results in animal research may struggle to 

replicate. Animal experiments often sample a small number of animals at a single site, using a single 

apparatus and measurement technique. However, from these small samples come general claims about 

animal behaviour, creating a mismatch between the statistical model and the theoretical claim (Meehl, 

1990; Yarkoni, 2019). The statistical model will usually allow generalisation to the population that the 

experimental units were randomly sampled from, for example the population of animals at a given site, 

(although even then they may not be randomly sampled, see Schubiger et al., (Schubiger et al., 2019), but 

any inferences to the wider population of interest will be overconfident, unless the population of interest 

can be justified as the individual animal (Lazic et al., 2018; Smith & Little, 2018). This is an unavoidable 

consequence of working with difficult to reach populations (Lange, 2019), but it should be accounted for 

when building theories. This is important as animal behaviour does seem to vary across samples, for 

example due to experimenter effects (Beran, 2012; Boesch, 2021; Bohlen et al., 2014; Cibulski et al., 2014; 

Pfungst, 1911; Sorge et al., 2014), genetic variation (Fawcett et al., 2014; Johnson et al., 2015; MacLean 
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et al., 2019), housing conditions (Farmer et al., 2019; Hemmer et al., 2019; Würbel, 2001), diets (Davidson 

et al., 2018; Höttges et al., 2019), and of course learning/developmental histories (Skinner, 1976).  

3.3.1.  Situating the Problem of Representativeness 

If researchers are wary of just how much animal samples can vary due to factors often labelled as 

“noise”, then they might be concerned about the representativeness of the samples they test (or of 

themselves while they are testing, or the site they are testing at). This problem of representativeness has 

been discussed from several different angles across scientific literatures, albeit often with different 

terminologies and little connection between them. However, they share the similar underlying concern 

that researchers’ claims are poorly matched by their sampling strategies and statistical models, and I 

outline these briefly now:  

3.3.2.  Replicability 

First, a lack of representative sampling causes low replicability. Because of small and non-

representative samples of experimental units, settings, treatments and measurements, sampling variation 

will mean that laboratories will struggle to replicate or reproduce the results of previous experiments. 

This argument has featured heavily in rodent phenotyping studies (Crabbe et al., 1999; Kafkafi et al., 2005, 

2017, 2018; Lewejohann et al., 2006; Richter et al., 2009, 2011; Wahlsten et al., 2003; Würbel, 2000). 

3.3.3.  Generalisability and External Validity 

Second, a lack of representative sampling causes problems of generalisability or external validity: 

researchers claims will not often generalise to novel but related settings (Mook, 1983; Yarkoni, 2019).  

3.3.4.  Pseudoreplication 

Third, the lack of representative sampling in animal research is usually due to non-random 

sampling from the population of interest. This leads to pseudoreplication (Hurlbert, 1984; Lazic, 2010; 

Waller et al., 2013), if this non-random sampling is not accounted for in the statistical models, and the 

consequence is that uncertainty intervals will be overly narrow, and the results will struggle to replicate 

in new samples – or generalise to them.  

3.3.5.  Theory Testing 

Fourth, the lack of representative sampling produces weak tests of a theory or claim (Baribault et 

al., 2018; Nosek & Errington, 2020): a test that probes only a small sample space of a theory’s predictions 
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provides less opportunity for weaknesses in the theory or claim to be found, compared to a test which 

covers most of the relevant sample space.  

3.4. The Difficulty of Identifying the Sources of Differences Between Groups and Species 

That animal behaviour differs across space and time makes it difficult to understand whether 

species or group differences in behaviour are really a consequence of theoretically interesting species or 

group differences, or whether they are due to the host of other factors that vary between sites. In reality, 

the observed differences between two groups will be the sum of the group differences in behaviour that 

are of theoretical interest and all other factors that influence animal behaviour and vary between sites.  

When making quantitative between-species and between-group comparisons, they are nearly always 

confounded by site-specific differences in factors that are not the focus of interest. Lazic (2016) 

commented on such a scenario in an introductory textbook for laboratory biology: 

“To make valid inferences, one would need to assume that the effects of [site] are zero. Moreover, 

as this assumption cannot be checked, the researcher can only hope that [site] effects are absent. Such a 

design should be avoided.” (Lazic, 2016, p. 68) 

One may object to this and acknowledge that while there are many variables that differ between 

sites but go unmeasured, the net sum of these effects should be close to zero across sites, i.e., they will 

cancel each other out. However, this would only be the case if there were many variables with small effect 

that were randomly assigned to each site, and this is not what happens. On the contrary, laboratories or 

sites differ markedly from each other on a range of variables with large effects (e.g., housing conditions, 

learning experiences). It is often recognised that animal laboratories are poorly positioned to generate 

representative data of the species in the wild (Boesch, 2021; Calisi & Bentley, 2009), but what if they are 

also poorly positioned to generate representative data of the species in laboratories? Taken to the 

extreme, there may be a laboratory testing a sample that is more representative of a species other than 

its own, for example a sample of lemurs that have parrot-like self-control, or a sample of hand-reared 

wolves that behave more like dolphins when presented with a novel object. To highlight the difficulties of 

making between group or between species inferences across sites, I now present a case study of between 

species comparisons made using the cylinder task, and then present a simulation study of how sampling 

affects comparisons in animal research. 

3.5. Case Study: Between Species Comparisons and the Cylinder Task 
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For this case study I used data from MacLean et al. (2014) to probe the stability of a measurement 

of behavioural inhibition when taking new samples of experimental units at new sites. MacLean et al.’s 

(2014) large-scale study tested the performance of 36 species across 43 sites on two tasks aimed at 

measuring self-control (but rather measured one form of behavioural inhibition: Beran, 2015); the A not 

B task and the cylinder task. The cylinder task was given to 32 species across 38 sites. In this task, animals 

are familiarised with retrieving a piece of food from the centre of an opaque cylinder. After retrieving the 

food from the opaque cylinder in 4 out of 5 consecutive training trials, the animals proceed to testing. In 

testing, the animal is presented with a transparent cylinder with food in the centre. In order to successfully 

retrieve the food, the animal needs to inhibit an initial drive to directly reach for the food and 

subsequently collide with the transparent cylinder, and instead detour to the cylinders ends to access the 

food. Each animal was given 10 trials, and an overall score between 0% (no animals succeeded on any 

trial) and 100% (all animals succeeded on every trial) was computed for each species. Five species 

(orangutans, gorillas, capuchin monkeys, squirrel monkeys and domestic dogs) were tested across two 

sites. Figure 2 displays the between-site variation for these samples, and also includes data from a sample 

of an additional species, the Western scrub-jay, that was tested both in the original experiment and a 

couple of years later at a new site (Stow et al., 2018). Figure 2 displays these data, with the samples 

performing close to ceiling towards the top of the figure and those that did not perform close to ceiling at 

the bottom.  
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Figure 2: Species Differences Between Sites in the Cylinder Task. All data from MacLean et al. (2014), 
except the Manitoba scrub-jay data, which are from Stow et al. (2018).  

For the samples of scrub-jays, squirrel monkeys and domestic dogs, this variability is striking. For 

squirrel monkeys, the median score in Kyoto was 5%, compared with 60% in St Andrews. No individual in 

Kyoto performed above the median in St Andrews, and this demonstrates how some between-site 

differences that cannot be attributed to species identity can have large influences on behaviour. To 

highlight the issues this can pose for inference, consider what would happen if the animals from Kyoto 

were not squirrel monkeys, but Tonkean macaques. Then, it is likely that the difference in performance 

compared to the St Andrews’ squirrel monkeys would likely be interpreted as a species difference – 

“Tonkean macaques are worse at behavioural inhibition than squirrel monkeys”, could be the title of a 

paper reporting these results. In fact, the substantial difference in behaviour between species tested at 

different sites need not imply meaningful species differences at all. If we took new samples for all species 

that MacLean et al. tested, it is possible a completely different ranking of animals would be produced. 
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MacLean et al.’s (2014) overall model gains credibility, however, because of the use of phylogenetic 

models (and also including data from the A-not-B task, another test of behavioural inhibition). 

Incorporating phylogeny and estimating phylogenetic signal when making comparisons, providing there 

is enough data, little bias, and sufficient model checks, can lead to large increases in statistical power 

(Freckleton 2009; see MacLean et al., 2012 also for an overview of other benefits of comparative 

phylogenetic models). However, any individual site comparison of non-ceiling cylinder task performance 

between species, either within the MacLean et al. study, or from other published research, is likely too 

uncertain to produce meaningful estimates at the species level, and this can lead researchers astray when 

making inferences from individual results. Table 6 presents some statements from studies that followed 

MacLean et al.’s procedures using a single sample of a species at a single site, along with the species’ 

cylinder task “score”: 

Table 6: Results and Claims from Samples of Four Species Tested on the Cylinder Task 

Study Group Score Claim 

Ferreira et al., 

2020 

High ranging chickens 24% “High rangers had the worst performance 

of all species tested thus far” (p. 3) 
Low ranging chickens 40% 

Isaksson et al., 

2018 

Great tits 80% “The average performance of our great 

tits was 80%, higher than most animals 

that have been tested and almost in level 

with the performance in corvids and 

apes.” (p. 1, abstract) 

Langbein, 2018 Goats 63% “The results indicated that goats showed 

motor self-regulation at a level 

comparable to or better than that of 

many of the bird and mammal species 

tested to date.” (p. 1, abstract) 

Lucon-Xiccato 

et al., 2017 

Guppies 58% “A performance fully comparable to that 

observed in most birds and mammals” (p. 

1, abstract) 

 

This set of numerical comparisons are factually correct, but what do they mean? The worst 

performing chickens actually scored higher than the Kyoto squirrel monkeys, and if we sampled another 

population of great tits it is possible that their performance would regress close to the mean value of all 

species. Ordaining a species with a single score following a single test on a small sample of animals from 
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a single site with a single apparatus, and then comparing this number between species has no means of 

error control and hides the uncertainty in their estimates. Several of the inferences are reasonable, for 

example we may genuinely believe that chickens will perform poorly on behavioural inhibition tasks, but 

this is primarily constrained by our prior beliefs about chicken cognition.5 For potentially more surprising 

results, such as the high score of great tits, our beliefs are not so constraining, yet neither are the data.  

Moreover, and counter-intuitively, the best estimate of great tit performance on the cylinder task 

is not the 80% reported by Isaksson et al., even though this is the only known data collected with great 

tits on this task. Rather, the best estimate would utilise the information we have about similar animals 

(other birds of a similar size/socio-ecology/phylogeny), that would shrink our estimate of great tit 

performance closer to the mean value for, as an example, all Passeriformes tested to date. Interestingly, 

during the revision process of this article, three further datasets of great tit performance on the cylinder 

task became available. In contrast to the 80% reported by Isaksson, and in line with our prediction of 

regression to the mean, Troisi et al. (2020) recorded a score of 38%, and a sample of 35 tested by Coomes 

et al. (2020) scored 41%. Moreover, in a pilot to one of these studies using a larger tube, a sample of great 

tits scored 0%, suggesting that the size of the tube can heavily modulate individual’s performance (G.L. 

Davidson, personal communication). While there were differences in the experience of Iskasson et al.’s 

birds, who had some previous experience with transparent cylinders, it is not clear that such a difference 

can account for the higher scores of these birds without also considering sampling bias.  

How, then, can we make better inferences from single site samples of data? We could either 

attempt to get a better estimate at this single site, for example by testing great tits on a wide range of 

tube apparatuses. Alternatively, we can also use the data from other species to inform our great tit 

estimate. Because the behaviour of different animals will often be correlated, for example as a function 

of phylogenetic distance, we should allow data from similar species to guide each other’s estimates. 

Ideally, a phylogenetic model would be constructed which incorporates information on the phylogenetic 

distance between species and a model of the trait’s evolution (McElreath, 2016). Other relevant predictor 

variables, such as body size, tube size or body size/tube size ratio, could also be added into these models, 

or they could be investigated in separate meta-regression models. However, for many animal cognition 

questions such models will be difficult to generate, but the general principle holds: when a surprisingly 

 
5 During my viva I had labelled this belief as “arbitrary”. Marta Halina rose the question about what makes a belief 
this like arbitrary, and how can prior beliefs like these be evaluated, especially if they differ across research groups 
or experts. I had no good answer for this, but I think survey studies or Delphi panels to record animal cognition 
researchers’ actual beliefs on certain topics, and how they update, would be an interesting first step.  
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high or surprisingly low estimate of a species behaviour is produced, and most data from similar species 

are less extreme, it is likely that the new estimate is over- or underestimated. Returning to the cylinder 

task, it is clear that non-ceiling results are not very informative about animal cognition if we do not know 

whether the results from any given sample are stable across space or time — before considering issues of 

construct validity (Beran, 2015; Kabadayi et al., 2017, 2018). 

3.6. Programme-wide confounds  

The confounding effects of experimental units, measurements, treatments and settings that I 

have considered so far may not be a priori strong candidates as confounding variables. For example, there 

is no single obvious reason why Manitoba scrub-jays might perform differently to Cambridge scrub-jays 

(but see Stow et al., (2018) for some suggestions). It is also possible that we may never know what they 

are – we won’t be able to gather enough data (Blastland, 2019; Crabbe et al., 1999; Voelkl & Würbel, 

2019). But in some cases, it is possible to pinpoint likely confounders that are near perfectly correlated 

with species, and this can be used to reduce confidence in whole bodies of data. For example, Clark and 

colleagues (Clark et al., 2019; Clark & Leavens, 2019) highlighted how procedural differences in an object 

choice task confound species difference inferences between dogs and non-human primates, i.e., the 

comparisons lack validity because the measurements and settings may be from different relative 

populations between dogs and primates. Clark et al. found that over 99% of non-human primates tested 

on the object choice task were tested with a barrier between the experimenter and participant, whereas 

this was the case for less than 1% of the dogs. When the dogs were tested behind the barrier, their 

performance decreased (Kirchhofer et al., 2012), suggesting that any difference between dogs and 

nonhuman primates is at best overestimated. Similarly, Boesch (Boesch, 2007) and Leavens et al. (2019) 

provide clear arguments appealing to such between species confounds in ape-human comparisons: “all 

direct ape–human comparisons that have reported human superiority in cognitive function have 

universally failed to match the groups on testing environment, test preparation, sampling protocols, and 

test procedures, including those that tested subjects’ comprehension and production of communicative 

gestures” (Leavens et al., 2019, p. 491) Clark et al. and Leavens et al. provide archetypal failures of 

comparison: different experimental units being tested using relatively different apparatuses in relatively 

different settings, across entire research programmes. However, this argument can be made for most 

between-species comparisons in disciplines that compare groups of animals’ performances at different 

sites. For most comparisons, the question is not, “are they confounded?”, but “what are the consequences 

of the (un)known confounding variables?”.  
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3.7. Simulation Study 

To illustrate how between-site variation (a proxy for the sum of setting, treatment and measurement 

variation) can lead to elevated false positive rates and results that struggle to replicate, I now present a 

short simulation study of a replication and a comparison in animal cognition. The simulation and 

visualizations were performed in R 4.0.2 (R Core Team, 2020), using the packages tidyverse (Wickham et 

al., 2019), extrafont 0.17 (Chang, 2017) and scales 1.1.1 (Wickham and Seidel, 2020). The code is available 

at: https://github.com/BGFarrar/Replications-Comparisons-and-Sampling. This section can be skipped if 

the reader is already comfortable with the topic. I simulated a hypothetical within-species replication, 

between two groups of chimpanzees, and a hypothetical between-species replication/comparisons 

between a group of chimpanzees and a group of bonobos. I simulated 100 hypothetical sites of 

chimpanzees, and 100 hypothetical sites of bonobos, with 100 animals at each site. The behaviour of 

animals within a site was correlated, such that animals sampled from the same sites, on average, had 

more similar behaviours than animals sampled from different sites. At each site, I “measured” each 

animal’s behaviour to produce a neophobia and self-control score for each. For both the replication 

simulation and the comparison simulation, four parameters were used to simulate each animal’s 

behaviour: a population grand mean, 𝛽0, a by-location random intercept 𝐿0, a by-subject random intercept 

𝑆0, and a by-individual residual error term 𝑒𝑙𝑠. Subject was nested within location, such that all subjects at 

the same location had the same location effect. Data were simulated using the following formula: 

𝑆𝑐𝑜𝑟𝑒𝑙𝑠 = 𝛽0 + 𝐿0𝑙 + 𝑆0𝑠 + 𝑒𝑙𝑠 

For the replication simulation, 10,000 chimpanzees were simulated with the following settings: 

Neophobia 

𝛽0 = 800 

𝐿0𝑙  ~ N(0, 100) 

𝑆0𝑠 ~ N(0, 100) 

𝑒𝑙𝑠 ~ N(0, 50) 

Self-control 

𝛽0 = 80 

𝐿0𝑙  ~ N(0, 10) 
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𝑆0𝑠 ~ N(0, 10) 

𝑒𝑙𝑠 ~ N(0, 5) 

The panels of Figure 3 display the behaviour of all 10,000 chimpanzees (100 animals x 100 sites) in grey. 

Next, I randomly selected one site to be our first sample. The upper panel of Figure 3 highlights all 100 

chimpanzees from this site. However, in reality we would not usually have access to or test 100 animals 

at a site, instead a primate cognition sample size is usually around 7 (Many Primates, Altschul, Beran, 

Bohn, Caspar, et al., 2019). Therefore, I randomly selected 10 animals, which are highlighted in the lower 

panel of Figure 3.  

 

Figure 3: The Behaviour-Space of a Simulated Population of 10,000 Chimpanzees (grey dots in both 

panels). In purple, the Upper Panel shows 100 hypothetical chimpanzees sampled from a single site, and 

the Lower Panel shows just 10 of these chimpanzees. 
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To create a replication study, I repeated this process, taking another random sample of 10 

chimpanzees from a different site. This sample is plotted in Figure 4 alongside the first sample, creating a 

within-species (or experimental unit) replication, which could also be framed as a between site 

comparison, or a test of generalisability across sites.  

 

Figure 4: A Hypothetical Within-Species Replication, or Between-Site Comparison. Purple points represent 
the same chimpanzees sampled from the first site (Figure 3), and orange sqaures a second sample of 
chimpanzees. 

The second sample of chimpanzees, in orange, had smaller neophobia and larger self-control 

scores than the first sample, in purple. Performing a two-sided Welch’s t test, both differences were 

statistically significant, pneophobia = .0005 and pself-control = 0.04. This reflects the real variation between the 

sites, which were simulated at 28% for neophobia, and 14% for self-control. The samples of just 10 animals 

captured this difference relatively accurately, estimating the group differences as 31% for neophobia and 

14% for self-control. While the two samples provided good estimates of the true between-sample 

differences, the samples were poorly representative of the overall population of chimpanzees. Site 1 

(purple), overestimated neophobia by 14% and self-control by 3%, whereas Site 2 underestimated 

neophobia by 17%, and self-control by 11%.   
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 Having simulated a within-species replication, I proceeded to simulate a typical between-species 

comparison. To achieve this, I randomly sampled from the set of 100 animals at 100 sites, but this time of 

bonobos. All of the parameters determining bonobo behaviour were kept the same as with the 

chimpanzees, except that I set the bonobo neophobia scores to be, on average, just under one standard 

deviation higher than the chimpanzee neophobia scores (specifically, this was set as the species difference 

being 1.5 times larger than the between site standard deviation, such that: 

Neophobiabonobo 

𝛽0 = 950 

𝐿0𝑙  ~ N(0, 100) 

𝑆0𝑠 ~ N(0, 100) 

𝑒𝑙𝑠 ~ N(0, 50) 

The decision to make bonobos more neophobic than chimpanzees was arbitrary, and most empirical data 

supports the opposite conclusion (e.g. Forss et al., 2019). The average self-control scores were kept the 

same between species. Just as with the replication, I simulated all 10,000 chimpanzees and bonobos, and 

selected a site at random from which I sampled 10 chimpanzees, and a random site from which I sampled 

10 bonobos. Figure 5 shows the results: the entire population of 10,000 chimpanzees in light blue and 

10,000 bonobos in grey, and the samples are highlighted.  
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Figure 5: A Comparison Between Hypothetical Samples of Chimpanzees and Bonobos Populations of 
10,000 chimpanzees (light blue) and 10,000 bonobos (grey) sampled from 100 simulated sites. Samples 
of 10 chimpanzees and 10 bonobos from a single site are overlaid for chimpanzees (blue) and bonobos 
(dark grey). 

 The samples in Figure 5 captured the direction of the population difference in neophobia scores, 

which were statistically significantly larger in the bonobo sample than the chimpanzees, pneophobia = .0004. 

However, the magnitude of this effect was overestimated by 41%. For self-control, where no population 

differences were simulated, the samples produced a statistically significant difference between 

chimpanzees and bonobos (pself-control < .00001), incorrectly estimating a species difference of over 40%. 

This highlights how even when a statistically significant difference is observed between species at 

different sites, it does not mean that the difference should be attributed to species identity alone. To 

explore this further, I investigated how often my comparison would return a statistically significant 

difference between the neophobia scores and self-control scores of the chimpanzee and bonobo samples. 

Because my simulation specified that there were no true differences between the species in self-control, 

this can provide the base-rate of false positive results, under the assumption that statistically significant 

results would be taken as evidence for a species difference. I simulated 100,000 comparisons between 

samples of 10 chimpanzees and 10 bonobos, each taken from a new site.   
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Across the 100,000 simulated comparisons the small sample design detected a true difference 

between chimpanzees and bonobos in neophobia 66% of the time with alpha = .05, which looks quite 

promising. However, the 100,000 simulations also detected a difference between the chimpanzees and 

bonobos on the self-control measure 49% of the time, in which there were no species differences 

specified.  

Figure 6 (upper panel) plots the p-value distributions of the two comparisons, and the similarity 

between these distributions shows that observing a statistically significant difference between two 

samples, even if p << .05, is not necessarily strong evidence of an overall species difference. Figure 6 (lower 

panel) displays the degree of over- and under-estimation of the neophobia effect size across all samples. 

Strikingly, in 32% of comparisons the effect size was overestimated or underestimated by over 100%.  
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Figure 6: p-value Distributions and Effect Size Overestimation from Two Simulated Comparisons. Upper 
panel: p-value density distributions of two-sample t-tests from 100,000 comparisons between 10 
hypothetical chimpanzees and 10 hypothetical bonobos, sampled at different sites. Lower panel: The 
density distribution of effect size overestimation for the 100,000 comparisons of neophobia behaviour. 
No data are shown for self-control as the set difference was 0, therefore it was not possible to calculate 
the % overestimation. 

3.8. Strong and Weak Comparisons 

Poorly representative sampling leads to weak comparisons, and these comparisons are 

particularly troublesome when: 
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• There is a large ratio of within-species variation to between-species variation (MacLean 

et al., 2012), and absolute species differences are small. Such a scenario will mean the 

direction and magnitude of differences between samples will be volatile. 

• Experimental units are not tested across samples of the same relative settings, 

measurements and treatments, and because of this measurement techniques 

systematically differ between research programmes. For example, when a single 

population of experimental units is repeatedly sampled, or the same researchers and 

research groups perform most of the research, with the same experimental designs (Clark 

& Leavens, 2019; Ioannidis, 2012b). This could lead to highly replicable – within narrow 

boundary conditions - differences between samples being recorded, but these differences 

being a consequence of specific local features (often confounders) rather than general 

species differences.  

In contrast, strong between-group comparisons should fulfil the following three criteria:     

1) The results are consistent within experimental units across times, experimenters, treatments 

and measurements within the claims’ boundary conditions. 

2) The samples of experimental units being compared are tested from within the same relative 

populations of settings, treatments and measurements relative to the claim. 

3) The between-group differences can be replicated when resampling from the target 

populations of experimental units. 

3.9. Improving Sampling in Animal Research 

There are several methods researchers can use to assess and model the effects of biased sampling on 

the reliability and generalisability of their research findings:  

3.9.1.  Experimental Design 

3.9.1.1. Increasing Heterogeneity 

Increasing heterogeneity is a direct method of increasing the representativeness of a sample to a 

target population. By sampling more diversely from within the populations specified by a theory or claim, 

researchers can better estimate the population parameters of interest (Milcu et al., 2018; Voelkl et al., 

2018, 2020; von Kortzfleisch et al., 2020). This could involve sampling from multiple sites, such as in large 

collaborative studies (Crabbe et al., 1999; Culina, Adriaensen, et al., 2020; Lambert et al., 2021; Many 

Primates, Altschul, Beran, Bohn, Caspar, et al., 2019), but also by using multiple different experimenters 

and varying the conditions and treatments within sites (Baribault et al., 2018; Richter et al., 2010; Wurbel, 
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2002). As an example, Rössler et al., (2020) compared the ability of a sample of wild-caught Goffin’s 

cockatoos and a sample of laboratory-housed Goffin’s cockatoos to physically manipulate an apparatus 

to access a reward. However, rather than presenting the cockatoos with a single apparatus, they were 

tested in an area with a total of 20 apparatuses. Because Rössler et al. sampled from a diverse range of 

treatments, we can be confident that - at least for these samples of cockatoos – the results are robust 

across variations in treatment. An ideal experiment might generate diverse samples across all feasible 

factors – sites, treatments, experiments, times of day, measurements etc., which will increase the 

replicability and generalisability of the results (Würbel, 2000), however, it is high-cost (Davies & Gray, 

2015; Mook, 1983; Schank & Koehnle, 2009). 

3.9.1.2. Increasing Homogeneity and Control 

In contrast to increasing heterogeneity, a lower-cost approach is to increase standardization and 

control. For example, performing experiments with blinded experimenters only is more homogeneous 

than performing experiments with a mixture of blinded and non-blinded experimenters. From the re-

sampling perspective, blinded and unblinded experimenters come from different populations, and most 

theories in animal cognition make predictions that are independent of experimenter bias (i.e., do not 

predict that experimenter effects are essential for their predictions to be true). Similarly, homogeneity 

can be useful when a theory is most effectively tested within a subset of the populations that it might 

apply to. For example, animals are often trained before being tested when researchers attempt to isolate 

individual psychological mechanisms, such as learning. Such researchers are not usually interested in 

measuring variability due to neophobia or novel-object exploration, and so animals are familiarised with 

and trained on the task set-up before being tested to avoid including this “noise” in the dataset. The 

training pulls all individuals towards their theoretical maximum, increasing statistical power and the 

relevance of the collected data to the theory in question (Schank & Koehnle, 2009; Smith & Little, 2018), 

and this can increase the validity of between-group comparisons when the groups have markedly different 

learning histories (Leavens et al., 2019). 

3.10. When Does Representativeness Matter? 

The resampling account highlights how for effective and reliable research, researchers should 

sample effectively from across their populations of interest. A representative sample is a sample with 

characteristics that closely resemble the target population’s. Immediately, one might assume that to 

generate the most representative samples requires a greater number of individuals, which for many 

animal cognition studies might involve increasing a sample size from around 8 (Farrar et al., 2020; Many 
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Primates et al., 2019) to around 15 (or whatever the maximum number the researchers can access is). 

However, increasing the number of animals in tests is likely the least effective method of increasing 

representativeness in animal cognition research. This is because, i) samples at a single site are usually so 

unique that increasing the number tested at that site likely only increases “representativeness” by a 

minimal amount, but more importantly, ii) individual animals are often the biological unit of interest for 

animal cognition studies, and not the average response of a sample. Psychological effects happen at the 

level of the individual (Craig & Abramson, 2018), and robust evidence should be sought primarily at the 

individual level by default (Smith & Little, 2018), unless there is both, i) clear justification why group 

parameters (beyond checking that an individual isn’t a clear outlier) have important theoretical meaning, 

and ii) that it is feasible to perform reliable research on these larger groups given the resource constraints 

animal cognition scientists face. One exception to this, covered in Chapter 2, are cases where animals 

cannot be exposed to multiple trials for test validity purposes, and here many animals are required to 

compensate for the fact that statistical power cannot be increased by trial number. Even when it might 

be desirable to estimate some form of group parameter, for example to generate statistical power that 

couldn’t be achieved within individuals because of design constraints, it is important to remember that 

the relationship between this group (often of ‘BIZARRE or ‘WEIRD’ animals, see Leavens et al., 2010, and 

Webster and Rutz, 2020) and the “target” population, if a target population can even be specified.      

3.11. Barriers to effective sampling 

Concerns about replicability and representativeness have surfaced often in animal behaviour and 

cognition research, at a variety of levels (Beach, 1950; Beran, 2012; Bitterman, 1960; Boesch, 2012, 2021; 

Brosnan et al., 2013; Clark et al., 2019; Dacey, 2020; Eaton et al., 2018; Janmaat, 2019; Leavens et al., 

2019; Schubiger et al., 2019; Stevens, 2017; Szabó et al., 2017; van Wilgenburg & Elgar, 2013). However, 

it is unclear whether any real progress has been made towards understanding the prevalence and 

consequences of low representativeness in these fields, and I suggest that there are four main reasons 

why, which are theoretical, practical, motivational and educational (see also Farrar & Ostojić, 2020). These 

are discussed in (Farrar et al., 2021) in detail, but coalesce with larger barriers to progress in animal 

cognition research that I discuss throughout this thesis in Chapters 4, 8 and 10. In the following chapter, I 

specifically discuss how academic incentives affect each stage of the research process in animal cognition, 

including the sampling processes highlighted in this chapter.  
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4. Chapter 4: How academic incentives can affect animal 

cognition research6 

Chapters 2 and 3 focused on replication in animal cognition research, making the case that areas 

of animal cognition research likely contains many difficult to replicate findings. I focused on the proximate 

causes of low replicability – publication bias, p-hacking, sampling variance, etc. Chapter 4 now makes an 

argument about the ultimate cause of this low replicability: an academic incentive structure that selects 

research and researchers based on their ability to produce many impactful findings. However, because of 

the low evidential standards in the field, many of these impactful findings are likely unreliable and have 

low validity. I argue that decades of research under these conditions has made it near impossible to 

evaluate the strength of evidence supporting many of the claims produced by the field’s empirical 

research, because the published information is biased, and the information needed to critically assess 

research programmes (such as the number of unpublished findings) is usually not available. Throughout 

the chapter I link this argument to other debates more frequently observed in the animal cognition 

literature, in particular the frequent methodological debates that continue to dominate the animal 

cognition literature.  

4.1. The academic incentive structure 

While a genuine desire to understand animal minds is likely one factor driving research into animal 

cognition, day-to-day academic incentives likely play as important a role in determining how animal 

cognition research is performed. By the time most contemporary animal cognition research was being 

conducted (which I loosely defines as research after Premack and Woodruff’s 1978 “Does the chimpanzee 

have a theory of mind paper) science was in the process of being heavily metricised, commercialised and 

increasingly competitive (for more historical accounts see: Latour, 1987; Latour & Woolgar, 1986; 

Lazebnik, 2018; Ravetz, 1996; Stengers, 2000; Stengers & Muecke, 2018, and for evidence see Alberts, 

2013; Campbell, 2008; Edwards & Roy, 2017; Elliott, 2014; Fong & Wilhite, 2017; Lane, 2010; Seppelt et 

al., 2018; Simons, 2008). In order to judge which scientists were worthy of jobs and grants within and 

between disciplines, measures of the quality and quantity of a researcher’s scientific work and proposals 

were required. Particularly important to hiring and grant committees appeared to be measures of the 

quantity and impact of scientists works, such as the H-index, number of publications and journal impact 

 
6 This chapter contains material published as a pre-print in Farrar, B. G., & Ostojić, L. (2019). The illusion of science 
in comparative cognition. PsyArXiv. 
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factor, and the quality and ambition of research proposals, assessed by peer-review. Chapman et al. 

(2019) provide a detailed discussion about how metrics have been used to evaluate biological scientists, 

and some possible consequences of this. Specifically, they outline how metrics such as the H-index and 

journal impact factor have been integrated explicitly into grant and job selection committees, using the 

example of the Brazilian National Research Council, and also cite evidence of authorship and citation 

manipulation by researchers and journals (Fong & Wilhite, 2017).  

 While explicit criteria for high impact publications have been included by job selection committees 

and grant requirements (Chapman et al., 2019), such explicit requirements may be becoming less visible 

due to initiatives such as the San Francisco Declaration on Research Assessment (DORA - 

https://sfdora.org/) – signers of which, including the University of Cambridge and the UKRI, pledge not to 

use journal-based metrics as measures of individual research article or researcher quality. However, 

survey studies suggest that the pressure to publish, and publish in certain journals, is still perceived by 

researchers. Frias-Navarro et al. (2021) asked a sample of Spanish psychologists about their perceived 

pressure to publish in high-impact journals and perception of competitiveness in university academic 

activity on a 0 (no pressure/no competition) to 10 (very strong pressure/competition) Likert-scale 

response. The modal response for both questions was 10, and the median was 9. These findings are in 

line with earlier surveys: In  2009 van Dalen & Henkens (2012) reported that that over 70% of demography 

researchers in the USA, UK, Canada and Australia agreed that the pressure to publish was high, and in 

2019 a cross-sectional study of Dutch researchers (Haven et al., 2019) found a consistent negative attitude 

towards the pressure to publish across disciplines and ranks. Although formal data on publication pressure 

are scarce, they point to a continued perceived need to produce many impactful findings (and see Chapter 

9 for my own survey of animal cognition researchers, many of whom noted similar pressures).  

These pressures are exemplified by the misconduct cases discussed in Chapter 2, for example those 

of Diedrick Stapel and Marc Hauser, however the consequences of consistent pressures to publish extend 

much farther than the occasional case of clear research misconduct. Two simulation studies show the 

logical consequences of an incentive structure that promotes high output novel findings. First, in “The 

Natural Selection of Bad Science”, Smaldino and McElreath (2016) presented an evolutionary model of 

science. The authors simulated laboratories that varied based on their research practices, for example by 

having different likelihoods of investigating novel hypotheses and different false positive rates. 

Periodically, some laboratories were selected to “reproduce”, generating progeny that inherited the lab’s 

research methods, and some old laboratories “died”. The results of this simulation showed that selection 
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for high output promoted high false discovery rates and poorer methods. Second, Higginson & Munafò 

(2016) produced another evolutionary model aimed at understanding how researchers should spend their 

resources in order to maximise the “career value” of their publications. The optimal strategy was to 

perform many small-scale studies aimed at finding novel results, with between 10% and 40% statistical 

power to detect these effects.  

Here, I explore how I think such an incentive structure influences animal cognition research, in 

particular research that attempts to make claims about the presence or absence of certain “higher” 

cognitive abilities in animals. I first make the case that the demand for continued high impact publications 

has created an incentive to confirm exceptional cognitive abilities in animals, and that this manifests as a 

theoretical bias within research labs with animals towards certain results (and equally sustained the 

presence of skeptics, often without access to these animals, countering these claims). These results are 

then readily generated by either false-positive research findings, or findings that lack validity. However, 

importantly, the main claim of this argument is not that all bold claims are false or invalid in animal 

cognition research, but that the current process of generating these claims means that it is often not 

possible to determine which are strong and which are not from the published literature alone.  

4.2. Confirming animal intelligence and constructing clever animals 

The primary research methods used in animal cognition research are confirmatory hypothesis 

tests (Gelman, 2014; Meehl, 1967; Rozeboom, 1960). When a researcher rejects the null hypothesis in 

favour of the alternative hypothesis this leads researchers to claim evidence for the alternative hypothesis 

and the substantive theory it was derived from. By contrast, when the null hypothesis is not rejected, 

these null results are often labeled as difficult to interpret and are often not published (see Chapter 8 for 

a study of how animal cognition researchers interpret negative results). This asymmetry allows (well-

meaning) animal cognition researchers to construct hypotheses with the only real possibility of eventually 

confirming them. In theory, if a researcher wanted to confirm the presence of cognitive ability X in species 

Y, all that is required is to repeatedly test this and publish only the positive, theory-confirming results 

(Ioannidis, 2005; Nissen et al., 2016).  

Animal cognition research may be biased further because the direction of confirmation, for many 

research programmes, is primarily focused on confirming the presence of more and more exceptional 
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cognitive abilities in animals.7 This directional bias is present before data collection begins, and it can be 

seen already when researchers design their hypotheses (Klayman & Ha, 1987; Loehle, 1987; Nickerson, 

1998; Wason, 1960, 1968). When designing a study, comparative researchers appear biased toward 

imagining only behaviour(s) that would be consistent with an animal having the target cognitive ability. 

Hypotheses tests are then built around this identified behaviour A, the nominated indicator of cognitive 

ability X, and an experiment is designed with the following null and alternative hypotheses: 

H0: Does not display behaviour A 

H1: Displays behaviour A 

Then, if H0 can be rejected following the experiment and analysis, researchers proceed to infer H1 and 

corroborate the substantive claim and cognitive theory motivating it. Conversely, if H0 is not rejected, 

generally no firm claims are made with respect to the cognitive theory and various alternative hypotheses 

may be discussed, ranging from less exceptional cognitive theories, to lack of statistical power and failures 

of the experimental method and/or auxiliary assumptions (a prominent theme that appeared in animal 

cognition researchers’ responses to my survey, Chapter 9). There are a vast number of plausible, but 

untested, post-hoc reasons why a study could have “failed”. For example, what if the animals were not 

paying attention? What if the study design was too insensitive to detect a real effect? What if the animals 

were not motivated to engage with the task? When these reasons are considered, it becomes clear that 

in many animal cognition studies, only the positive result counts. The exceptional cognitive theories are 

seldom subjected to risky or severe tests because of the distance between the theoretical claim presented 

and the statistical hypothesis it is tested by, and by the relative ease of explaining away “negative” results 

(Mayo, 2018; Meehl, 1990; Popper, 1962). In such a system, buttressed by publication bias, the eventual 

“confirmation” of more exceptional cognitive abilities in animals is almost inevitable.  

An incentive structure that prizes publication and impact over scientific rigor, has clear negative 

effects throughout animal cognition research, regardless of the “direction” of the bias that manifests. 

However, the potential for academic incentives to bias animal cognition research is most clearly illustrated 

by the case of research programmes engaging in top-down drive searching for evidence that certain 

animals are more intelligent than previously assumed. Such a research programme is glamorous – in terms 

 
7 Although in the case of animal-human comparisons there appears a similar incentive, in some cases, to claim 
“higher” cognitive abilities in humans at earlier and earlier ages (e.g., see recent replication failures across 
developmental psychology, e.g., Poulin-Dubois et al., 2018 and Oostenbroek et al. 2016, and also Buckner 2013 
and Bard & Leavens, 2014). 
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of attracting media attention and high impact publications – and can inexorably produce more and more 

data suggesting their animals possess certain abilities. However, the evidence they generate may not be 

best explained by the cognitive abilities of the animals in question, but rather are best explained by the 

nature of the results being set before the experiments are performed, and then the actual research acts 

more as a negotiation as to how the conclusion will be reached, not whether it will be reached. For 

example, consider you are running a hypothetical research programme that takes the following course: 

1. Find a novel study species, or a novel research question 

2. Find a way to reliably produce data with your species 

3. Operationalize intelligence in a way that is easy to test in your species, or find existing task that 

you can adapt 

4. Run many studies with high false positive rates and/or overinterpret true positive results; don’t 

publish negative results 

5. Make impactful claims, but add in some caveats to deflect criticism 

6. “Chain” (Barrett, 2015) your species to the one above it on animal cognition’s scala naturae   

7. Fit an evolutionary account of the evolution of intelligence to your species  

8. Generate funding and from this groundbreaking research, repeat steps 4-7, switching research 

questions in response to diminishing returns. 

9. Use publication bias and the difficulty interpreting negative results to protect the core claims of 

the research programmes, and increase tolerance to negative results once the animal has been 

proven clever 

Such a research programme would produce a published literature of primarily positive results in 

favour of certain cognitive abilities in your species and is fully compatible with known research methods 

and analysis practices across science from the past decades. A minimal requirement for animal cognition 

research programmes that make such claims should therefore be to demonstrate how the output of their 

research programmes are inconsistent with Steps 1-9 above. Without such evidence it is reasonable for 

researchers to not subscribe to the conclusions of these research programmes. For me, this proof would 

require: i) a retrospective re-evaluation of the evidential strength of published findings, including 

quantitative risk of bias assessments and systematic reviews (see Chapters 5, 6, 7, and 8); ii) replication 

studies of key, but statistically uncertain, findings (Field et al., 2019; Isager et al., 2021); and iii) test 

development, validation and triangulation using best practice and transparent methodology, including 

study registration.   
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In the next sections of this chapter, I outline why the onus should be on the researchers making bold 

claims about animal cognition to provide more evidence for these claims, because of the likelihood that, 

i) the literature contains many false positive results, ii) the current ineffectiveness of interpreting negative 

results, and iii) the current ineffectiveness of methodological criticism. I then argue that current scientific 

practices in these areas of animal cognition research generate the illusion of a scientific process, where 

well-meaning researchers following the textbook scientific method can consistently produce inaccurate 

conclusions about animal minds. I link this to discussions about the validity of tasks designed to test animal 

cognition, and then end by discussing the features of animal cognition research that exacerbate and 

sustain the current (ineffective) research practices.    

4.3. False positive results 

By themselves, confirmatory research methods might not lead to a greatly misleading literature, even 

when the direction of this confirmation is biased. However, when these confirmatory research methods 

are combined with a high rate of false discovery and a publication bias hiding (at least a large proportion 

of) negative results from the literature, then the literature can end up containing few identifiably 

meaningful reports. In this section, I put forward reasons as to why the rate of false discovery is likely high 

in animal cognition, such that the results of any given paper might be invalid. 

The case that animal cognition research contains many statistically false positive findings can be made 

by analogy based on two overlapping observations in related fields that were highlighted in the 

Introduction and in Chapters 2 and 3. I briefly recap these and then present the small amount of direct 

evidence in animal cognition research itself.  

4.3.1. Indirect evidence 

4.3.1.1.  Animal cognition research uses similar research and analysis methods to those 

used in related fields with a known high number of false positives, as shown by the 

results of large-scale replication studies 

As highlighted in Chapter 1, large-scale replication studies across human psychology around 60% of 

replication studies have returned a significant result in the same direction as the original study. While 

there are several definitions of a successful replication (e.g. Etz & Vandekerckhove, 2016; Patil, Peng, & 

Leek, 2016), replication success appears low specifically in those fields that share similar properties with 

animal cognition, such as infant studies: small sample sizes and noisy. This replication rate of around 60% 

could provide an anchor for estimating replication rates of studies in animal cognition. However, as 

discussed earlier in the thesis, these large-scale internet/paper-based studies have limited generalisability 
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to animal cognition. More noteworthy for animal cognition research, however, should be the fact that 

non-verbal studies of infant theory-of-mind (Poulin-Dubois et al., 2018), behavioural assays of laboratory 

mice (Crabbe et al., 1999), and the blocking effect all have struggled to replicate (Maes et al., 2016). In 

lieu of evidence to the contrary, we should not expect the replicability of animal cognition research to be 

stronger than in these fields (after accounting for known markers of replicability such as trial number and 

p-values, see Chapter 2). 

4.3.1.2.  Surveys of researchers in related disciplines suggest that analytical practices that 

increase false positive results are used at non-negligible rates, a notion reinforced by 

systematic studies of analysis and reporting practices across the fields  

Self-report surveys indicate that many researchers report to have used, and suspect that others use, 

so-called “questionable research practices”, which elevate the rate at which positive evidence can be 

presented (Fiedler & Schwarz, 2016; Fraser et al., 2018; John et al., 2012). While some of the surveys may 

have biased the reported results towards higher figures (see Fiedler & Schwarz, 2016), the evidence from 

the various surveys shows that there is a non-trivial usage of these practices. The rates of some of these 

practices can also be investigated through meta-research projects, an interdisciplinary approach to 

evaluating methods, reporting, reproducibility and the evaluation and incentives of research (Ioannidis, 

2018; Ioannidis et al., 2015). Thus far, meta-research projects and secondary data analysis projects have 

largely corroborated the findings of survey projects across fields (e.g., Chuard et al., 2019; Gibbs & Gibbs, 

2015; Head et al., 2015; Nieuwenhuis et al., 2011; Sena et al., 2010). 

4.4. Direct evidence 

4.4.1.  Failed replications 

Because animal cognition research has not targeted systematic replication studies, little is known 

about the ‘rate’ of successful replication in animal cognition, and, as outlined in Chapter 2, such rates are 

likely uninformative due to the level of heterogeneity in the field, and, as outlined in Chapter 3, it is 

difficult to define exactly what should be considered a replication because of the theoretical openness of 

the field (Boyle, 2021). Nevertheless, failed replications are accruing in the field, as the examples of 

Amodio et al. (2021), Crosby (2019), O’Neill et al. (2021) and Soler et al. (2020) highlighted in Chapter 2 

demonstrate. Perhaps most significantly, however, is that studies which we should have high a priori 

confidence in are sometimes struggling to replicate. Two examples are Amodio et al.’s failure to replicate 

Legg and Clayton (2014), and Maes et al.'s (2016) consistent failure to elicit the blocking effect with mice. 

Both original effects were foundational, and ones that are likely true statistical effects at the population 
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level, e.g., very few people would doubt the existence of the blocking effect in general. Similarly, Legg and 

Clayton’s claim that Eurasian jays prefer to cache behind opaque objects than transparent ones when 

observed by potential pilferers is a logical discovery: If cache protection strategies do exist in corvids (e.g., 

Bugnyar & Kotrschal, 2002; Clary & Kelly, 2011; Dally et al., 2006; Emery et al., 2004; Emery & Clayton, 

2001), this is one of the most likely to exist. 

4.4.2.  Heterogenous repeatability  

One area in which measures of sampling variance have often been considered in animal cognition 

is the repeatability of certain behaviours within individuals, such as approaching novel objects. These 

studies have yielded largely consistent results: behavioural pre-dispositions, such as novel object 

approach, are repeatable within individuals, but not necessarily with large effect sizes. Larger studies and 

meta-analyses do report statistically significant, but weak, repeatability , but with considerable between 

study heterogeneity for behaviours such as novel object approach and discrimination and reversal 

learning (Cauchoix et al., 2018; Takola et al., 2021). In smaller-scale studies, this leads to non-significant 

repeatability estimates (e.g., Vernouillet & Kelly, 2020), and occasionally stronger evidence of near-zero 

repeatability of behavioural traits (such as lateralisation in detour tests in fish (Roche et al., 2020)). This 

low magnitude of repeatability within individuals should cap researchers’ expectations of replication rates 

from studies using experimental designs. However, in itself, and combined with the failed replications 

mentioned earlier, the low repeatability of some behaviours does not mean the animal cognition 

literature is populated with false positive or overestimated results – just that animal behaviour is more 

variable than claims in the literature might imply. Next, I review the thin evidence that many of the results 

are likely false positive or overestimated.      

4.4.3.  Publication bias and low power 

As discussed in Chapter 2, a combination of publication bias and low power leads to a literature 

of overestimated results. However, there has been little formal assessment of either in animal cognition 

research – although evidence of publication bias is presented in Chapters 5, 6, 7 and 9 of this thesis. Again, 

in the absence of direct evidence we should expect animal cognition research to reflect human 

psychological research, which is affected by both low power and publication bias (Button et al., 2013; 

Fanelli, 2012; Scheel et al., 2020), although with heterogeneity between research fields (Nord et al., 2017). 

Most of this heterogeneity likely lies in trial number, as animal cognition studies routinely have sample 

sizes of less than 10 animals (Farrar et al., 2020; Lambert et al., 2021; Many Primates, Altschul, Beran, 

Bohn, Caspar, et al., 2019). For the low-sample few-trials studies in animal cognition, there is a threefold 
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cost to low power. First, researchers risk wasting resources performing studies that will produce very 

uncertain data. Second, published positive results will overestimate effect sizes (Chapter 2). Third, the 

likelihood that positive results are a consequence of confounds in study design increases if the 

confounding effects, such as dominance, side biases, satiety, training effects and experimenter effects, 

have larger effect sizes than theoretically interesting effects, and researchers sometimes do not detect 

confounds in their designs.  

4.4.4.  Observations of probable false-positive inflating research practices 

In addition to low power combined with publication bias, overestimated or false-positive findings are 

more likely to enter the literature if false positive inflating research practices are used. These practices 

are difficult to observe directly or study systematically; for example, the selective reporting of analyses is, 

by definition, unobservable form the paper alone. However, several researchers have documented cases 

where error rates may have been artificially inflated. For example, van der Vaart & Hemelrijk (2014, pp. 

345–346) described how researchers in primate theory of mind research may subset their data until 

significant results were obtained and researchers in corvid theory of mind may select outcome variables 

based on their significance. Similarly, Ghirlanda (2017) noted that the statistical significance of an effect 

in squirrel monkey artificial grammar learning depended on the exclusion of certain data points and the 

weakly justified dichotomisation of an continuous variable. Further evidence of inflater false positive rates 

come from Waller et al., (2013) who reported that 38% of 551 primate communication studies analysed 

psuedoreplicated data as if they were genuine replicates. To these observations of possible error inflation, 

many more examples can be observed in the animal cognition literatures (I include the following examples 

to illustrate this not because they are likely to be false positives or especially egregious, rather they have 

been selected because the errors are either transparent and not severe, and where possible I have chosen 

examples from researchers I know personally): Researchers infer the absence of an effect based on non-

significant results (see Chapter 7); analyse psuedoreplicated data as if it were independent (Tornick et al., 

2016 Experiments 1 and 2; Yocom & Boysen, 2011 Experiment 1), selectively interpret the results of 

statistical tests (Brosnan & de Waal, 2003 cited in Wynne, 2004); drop data points to achieve statistical 

significance (in this case transparently in Cheke & Clayton, 2012); infer that there is a difference between 

two groups without performing the appropriate tests (e.g. Emery & Clayton, 2001 lack of a formal 

comparison between inexperienced and experienced jays; Krupenye et al., 2017 lack of a formal 

comparison with the new control condition and the conditions of Krupenye et al. 2016) or fail to pick up 

on errors in analyses that produce spurious significant results (see correction to Canteloup & Meunier, 
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2017). Systematic studies would be needed to estimate the exact prevalence of each of these practices or 

mistakes – although these are labour intensive and could likely focus on a single error only (see Chapter 

7). However, I believe that collectively, the direct and indirect evidence suggests that inflated error rates 

are frequent in animal cognition – they are very hard to control without effective pre-registration (see 

e.g., Lazic, 2021 for the case of multiple comparison corrections) – and a more reasonable estimate of the 

false positive “rate” would be closer to .10 or even .15 than .05.   

Moreover, experimenter bias further increases the possibility of false positive results in animal 

studies. For example, across 79 studies of aggression in ants, van Wilgenburg and Elgar (2013) reported a 

large difference between results when observers were reported to have been blinded to the experimental 

conditions or not. Converging experimental evidence was reported by Tuyttens et al., (2014), who found 

differences in the scoring of pig, cattle and hen behaviour depending on the conditions the coders 

believed the animals to be in. Compounding this, the overall rate of blinding in animal behaviour 

experiments appears to be low (Burghardt et al., 2012, see Chapter 6 for a longer discussion).  

4.5. The inability to assess evidence of absence 

While researchers might generate general evidence “supporting” certain cognitive abilities in animals 

at a rate above the nominal 5% false positive rate, there exists an asymmetry in which researchers rarely 

produce general evidence against the same cognitive abilities in animals. Currently, when researchers do 

claim that an animal likely does not have a certain cognitive trait, this is either based on the continued 

absence of evidence of the ability in the literature, or because the results of a single study appear to refute 

the presence of the ability in that species. The former method is not sufficient as the relative lack of 

supporting evidence in the literature is dependent on a host of information unavailable to outside 

researchers, such as the intensity of research and the amount of unpublished work. The latter, that a 

single study effectively refutes the presence of the ability in the species, is also rare. There are many 

plausible reasons why animals might fail to show behaviour consistent with an ability in a single 

experiment (Mitchell, 2014), from a failure to detect a real effect due to low power, a lack of motivation, 

a failure of experimental design or implementation, to the housing or rearing conditions simply not 

allowing the ability to manifest in those animals, even though they were theoretically capable (Boesch, 

2021). Hence, researchers wanting to assess the evidence of absence of abilities in animals face an 

impossible task. Because of publication bias, they likely are aware of only a small proportion of the total 

negative-result studies, and within these negative studies they must assess the likelihood of several 

plausible hypotheses that are equally compatible with the published findings. This is in stark contrast to 
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claims of evidence supporting certain cognitive abilities in animals, which are often made from single 

studies with a significant result, but little test validation.  

Occasionally researchers do attempt to provide evidence against the presence of more exceptional 

cognitive abilities in animals. For example, Suddendorf and Collier-Baker (2009) conducted a mirror-mark 

test in which gibbons did not use a mirror to locate hidden marks above their brow. Crucially, they also 

provided evidence that if the gibbons were capable of self-recognition, it would have been unlikely that 

the gibbons would not have used the mirror to locate the marks. They did this by conducting additional 

tests, demonstrating that the gibbons were strongly motivated to retrieve edible marks from their own 

bodies and mirror surfaces. From this, Suddendorf and Collier-Baker made the reasonable prediction that 

if the gibbons, in general, recognised themselves in the mirror then most of the gibbons would have 

retrieved the mark from their foreheads. In contrast, 0 of 17 gibbons retrieved the mark. 

Although this inference was warranted, it was not formalised. Instead, Suddendorf and Collier-Baker’s 

inference was supported by accepting a null hypothesis, technically a statistical fallacy. However, there is 

a formal analysis that could have been performed to formally reject the claim that gibbons recognise 

themselves in the mirror. By ensuring that the gibbons were highly motivated and capable of retrieving 

the mark, Suddendorf and Collier-Baker had, statistically speaking, demonstrated that only large effect 

sizes were consistent with the hypothesis that gibbons recognise themselves in the mirror. Equivalence 

tests could then be used to reject the presence of effect sizes of theoretical interest from this study, a 

topic discussed in Chapter 7’s exploration of how animal cognition researchers interpret negative results.   

4.6. Interim Summary: The Illusion of Science and Methodological Criticism 

Thus far, I have argued that many literatures claiming to support certain cognitive abilities in animals 

are compatible with research programmes generating many false positive results, or true positives with 

little validity. Such research practices have been promoted by an academic incentive structure selecting 

research that produces many, novel and positive findings over scientific rigour (Higginson & Munafò, 

2016; Smaldino & McElreath, 2016). Of course, the literatures are also compatible with the animals having 

the cognitive abilities in question, too – the message of this chapter is that currently the research required 

to distinguish between these two possibilities, replication studies and systematic meta-studies and meta-

analyses, are seldom being conducted, and when they are conducted, they are invariably difficult to 

interpret (with some exceptions in some subfields, see Chapter 8). If, the argument in this chapter is 

correct, the question becomes what has prevented greater explicit recognition of the directional biases 

and confirmatory research practices across areas of animal cognition? In my view, this is because the 
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current scientific training and processes create the illusion of a scientific process that will inevitably 

produce cumulatively stronger findings and converge on the “truth” (Bloor, 1974), without this necessarily 

being the case: Researchers generate hypotheses, operationalise variables, construct detailed study plans, 

perform statistical analyses, submit findings to respected journals and undergo peer review, and embrace 

a culture of methodological and conceptual criticism. But none of these stages are necessary or sufficient 

for scientific progress, and biases can accumulate across each stage (Meehl, 1990; Munafò et al., 2017). 

Researchers are often blind to these biases through their own training, often statistics and using null 

hypothesis significance testing (Gelman, 2014; Gigerenzer, 1998a, 1998b, 2004; Gigerenzer et al., 2004; 

Lambdin, 2012; McShane et al., 2019; McShane & Gal, 2016), but also in how science works (Forrt, 2019; 

Gelman, 2014; Koroshetz et al., 2020; Stengers & Muecke, 2018). These training biases are compounded 

by a host of psychological biases that further blind researchers to problematic research practices: 

confirmation bias (Nickerson, 1998), survivorship bias (Smaldino & McElreath, 2016), pluralistic ignorance 

and social norms, the sunk-cost fallacy, motivated ignorance, motivated reasoning, status quo bias, status 

and authority bias (see Jussim et al., 2019 for an overview).  

However, one may object to this line of argument and argue that animal cognition research 

effectively elicits criticism of its methods and findings. Criticism and nuances of operationalisations and 

task designs are omnipresent in the literature (e.g., Anderson & Gallup, 2015; Heyes, 2015; Lind, 2018; 

Povinelli, 2020; Povinelli & Vonk, 2004; Redshaw et al., 2017; Suddendorf & Corballis, 2008; Vonk, 2019), 

and perhaps this strong methodological criticism combats the issues of confirmatory research 

practices and directional bias. However, when this criticism is, a) primarily methodological, and 

b) focused on the individual study, the criticism can become ineffective in the long-term, even if 

it is scientifically valid, because it can promote incremental changes to a flawed process. That is, 

it promotes the illusion of a cumulative scientific process, where researchers respond to criticism 

iteratively with “improved” methods, where in reality the same errors of directional confirmation 

are repeated. Rather than being a feature of a rigorous scientific process, the prevalence of so 

much methodological criticism can be viewed as a symptom of a poorly functioning scientific 

system, one that focuses superficially on task design over a greater focus on test development, 

theory, measurement and construct validity (Allen, 2014; Borsboom, 2006, 2014; Eronen & 

Bringmann, 2021; Farrell & Lewandowsky, 2010; Flake & Fried, 2019; Michell, 1997). A full 
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discussion of these issues in animal cognition research is overdue and beyond the scope of this 

thesis but is touched upon again briefly in the discussion of modelling in Chapter 10.  

4.7. Not just clever animals, not just top-down research  

The argument in this chapter has been centered around research programmes that have inexorably 

produced evidence “supporting” the presence of complex cognitive abilities in animals, which often use a 

top-down approach that has been criticised elsewhere, too (de Waal & Ferrari, 2010; Eaton et al., 2018; 

Vonk, 2021). However, much of the argument can be applied to research not aiming to prove complex 

abilities in animals too, whether this be over-emphasizing human exceptionalism or confirming the 

presence of cognitive abilities in infants at earlier and earlier stages. Critics and skeptics are under the 

same academic incentives to produce many impactful papers too, and this can result in oversold criticism, 

too. In many ways, the economy of animal cognition rests on a symbiosis between the “killjoys” and 

“romantics” (Shettleworth, 2010; Starzak & Gray, 2021), in which each area necessary for the others 

academic survival. It is also important to distinguish between incentives that act at the level of the 

research programme, and those at the level of the individual study. While research programmes might 

still be geared towards certain findings in order to appear attractive to funders (Lilienfeld, 2017), the 

recent shift in academic incentives away from sensationalism, such as an increase in the number of venues 

accepting or soliciting negative results, might promote biases in the opposite direction, e.g., 

overinterpretation of negative findings (Aczel et al., 2018). As the pressure to publish is still felt by 

researchers and barriers to publication are being reduced (e.g., through accepting negative results, 

replication studies, and journals such as the Frontiers and MDPI groups with “collaborative” peer review), 

there is a danger of more low-quality research being published, irrespective of the outcome. While 

removing publication barriers is important for evidence synthesis because there are many ways for false 

negatives to occur, researchers must be wary of seeking and overinterpreting negative results (Aczel et 

al., 2018).  

4.8. Key Sustaining Features: Ambiguity and the Small Structure of Animal Cognition 

Two key features of animal cognition research help to sustain the current pattern of research criticised 

in this Chapter. These are ambiguity and the small and siloed structure of the field, which I now discuss in 

turn. 

4.8.1.  Ambiguity 
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“It is impossible to say that technical literature always errs on the side of caution; it also errs on the side 

of audacity; or rather it does not err, it zigzags through obstacles” (Latour, 2003, pg. 55) 

When researchers claim support for a hypothesis based on a statistical test, they implicitly claim that 

the statistical hypothesis is a close and valid test of the substantive theory, too (Duhem, 1976; Meehl, 

1990). However, in animal cognition there is usually a large distance between the statistical and 

substantive hypotheses – the data frequently underdetermine theory (Boyle, 2021). It is this distance that 

is the locus of most methodological criticism in the field. Insofar as animal cognition attempts to test for 

human-like cognitive capacities in animals (Heyes, 2019), this distance can always be found (Hempel, 

1958; Hennefield et al., 2018; Povinelli & Henley, 2020).  

Part of the issue stems from the inherent ambiguity in the verbal hypotheses and definitions that are 

derived from theory.8 Across psychology, such verbal models are open to many available and justifiable 

interpretations (Smaldino, 2016, 2017b), and the disagreements that arise from this are common in 

animal cognition (see Hampton, 2019; Hennefield, Hwang, & Povinelli, 2019; Heyes, 2019). The flexibility 

afforded by underspecified definitions permits results that ‘cognition optimists’ would perceive as novel 

and groundbreaking, whilst ‘cognition pessimists’ can equally well use the same results to invalidate the 

test and/or discuss the lack of evidence for the exceptional theory.  

Perhaps more paradoxically, definitional ambiguity also allows the same researchers to flexibly adjust 

their substantive claims depending on whether they are refuting criticism or selling the results. As this 

topic is an underexplored area that is open to interpretation, I will use examples from research by the lab 

I am a member of. First, as Penn and Povinelli (2007) highlighted in their critique, Dally, Emery and Clayton 

(2006) “acknowledge, that scrub jays' ability to keep track of which competitors have observed which 

cache sites ‘need not require a humanlike ‘theory of mind’ in terms of unobservable mental states”. 

However, their title, “Food-caching western scrub-jays keep track of who was watching when”, lends itself 

to more exceptional cognitive interpretations for those who want it, and it is these more exceptional 

claims that forms the basis of later claims of the potential for higher cognitive abilities in corvids (Clayton, 

Dally, & Emery, 2007). Another example comes from Ostojić, Shaw, Cheke, & Clayton (2013). While the 

 
8 Although the verbal vs formal/mathematical model debate in the psychological reform movement oversimplifies 
the issue. The same concerns, to different degrees, can be raised at any science using ordinary language, which is 
all scientific disciplines to an extent. Many thanks to Marta Halina for this point. Psychologists should be wary that 
just because an idea or verbal model has been translated into a more formal model, these models may have some 
of the ambiguity of their verbal ancestors built-in (although the process of formalising the model might make this 
more explicit). The utility of more formal models in everyday comparative cognition research is an interesting area 
for future research.   
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authors of this study do believe that the results of this study present a “crucial first step in demonstrating 

state-attribution” (p. 4127) and mean that “Eurasian jays’ food-sharing behaviour represents a useful 

paradigm within which to investigate whether these birds, and more generally nonhuman animals, might 

be capable of desire-attribution” (p. 4127 and Ostojić, personal communication), the claims of the study 

do lend themselves to be reported as evidence for state-attribution (e.g. Keefner 2016).  

When more formal analyses have been performed, conceptual flexibility or ambiguity has often been 

foregrounded. For example, in research into animal gestures Bourjade et al. (2020, p. 821) concluded that 

“the concept of gesture suffers from several conceptual weaknesses that are; (i) various degrees of 

semantic ambiguity, (ii) several unacknowledged assumptions, and (iii) inappropriate classifications of 

what a gesture is and is not, from one study to another”. Similarly, when Colbourne et al. (2021) applied 

a more neurocognitively appropriate definition of tooling (Fragaszy & Mangalam, 2018) to the tool use 

literature – an area Colbourne et al. highlighted the conceptual looseness in – the number of reports that 

qualified as tooling lay much smaller than the number of claims of “tool use” in the literature (also see 

Bastos et al. (2021) for a discussion on less ambiguous criteria for testing tooling).  

Finally, it is notable that many different claims are implicitly or explicitly made in a single paper, 

as was highlighted in Chapter 3’s analysis of the different claims that could be extracted and can be 

extracted from a single paper, in Almeling et al. (2016):  

5) Socially living Barbary macaques lose interest in the non-social environment with age 

6) Barbary macaques lose interest in the non-social environment with age  

7) Socially living monkeys lose interest in the non-social environment with age 

8) Monkeys lose interest in the non-social environment with age 

While ambiguity has been criticised repeatedly in science’s reform movement (Farrell & 

Lewandowsky, 2010; Guest & Martin, 2020; Smaldino, 2016, 2017b; Tunç et al., 2021), an alternative 

perspective is that the caveats in papers, rather than being tools to deflect criticism, reflect genuine 

uncertainty on the part of the researchers, something to be expected in a discipline like animal cognition 

(Boyle, 2021). The caveating present in the body of an article might then be lost in the abstracts and titles 

due to journal requirements on word counts, and subsequently lost in future citations and attempts at 

synthesis. This can be exacerbated by memory constraints, i.e., readers (and the authors) might not 

remember the caveats in all of the articles they have read, and further exacerbated by the lack of methods 
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to synthesise very uncertain data effectively, especially when this uncertainty is only conveyed verbally in 

articles.  

4.8.2. Small Structure  

As stated earlier, many of the issues discussed in this paper are not exclusive to animal cognition 

and have in some form or other been discussed by different researchers in different fields. However, this 

chapter argues that the extent of these issues appears to be very severe in animal cognition. One of the 

reasons for this is the field’s small size – in which often only a few researchers or a single group study a 

particular question in a particular species or family. In 1950 Beach lamented the limited focus of 

comparative psychology on learning mechanisms in the lab rat, suggesting that the lack of more 

comparative work (more species, and more questions) limited the progress the field was making.  Now 

the situation is markedly different; animal cognition is no-longer over-specialised sensu Beach and boasts 

a wide range of research questions across many different species (Beran et al., 2014; Shettleworth, 2009; 

Vonk, 2016). However, Beach (p. 120) caveated the call for more species and more questions, highlighting 

that when many researchers and groups work on the same problems it becomes “possible to check the 

accuracy of the findings, to accelerate the acquisition of new data, and to formulate more valid and 

general conclusions than could have been derived if each worker dealt with a different species.”  

It is clear that Beach’s warning rings true in many areas of animal cognition research today. 

Although not formally quantified (but see Chapter 7 for corvid social cognition), the research field is 

heavily siloed for many species-topic combinations, with little truly independent replication (Lambert et 

al., 2021; Many Primates et al., 2019; Chapter 7). This is compounded by the inevitability that 

“independent” groups will end up having shared group members – for example PhD students in one lab 

who then take up positions in others. Even when groups are “independent”, they might often share a 

common incentive (e.g., proving that group X have cognitive ability Y) that reduces this supposed 

independence. Of course, the field is heterogeneous in this manner, with easy to access or easy to house 

animals likely having more independent groups studying them, such as dogs (Aria et al., 2021) or pigeons 

(Lambert et al., 2021), and fields with historical interest that have attracted more funding, too – such as 

primate social cognition (Halina, 2021).    

When independent criticism does occur for the siloed research fields, this often comes from those 

not directly involved in data collection on that species. In these cases, there is a clear asymmetry between 

those who have access to the species in question and those who can criticise it. The critics can outline 

weaknesses in current data, and outline what convincing data would look like, but for many species, they 
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cannot collect it themselves. The groups that control the resources that are necessary to ask questions 

also control the answers that can be made. While skeptics require consent and collaboration to severely 

test claims, researchers can readily produce theory-confirming data without the consent of or 

collaboration with a skeptic. This is analogous to how tobacco companies could refute the link between 

smoking and cancer, not by performing clearly flawed studies, but by selecting which studies to fund and 

how to disseminate the answers (O’Connor & Weatherall, 2020).  

The final issue with the small nature of the field is that the number of questions that can be asked 

far exceeds the amount of resources that researchers have to answer them. In response to diminishing 

returns in one area, for example due to exhausting easy-to-perform experiments, experimental resources 

can be refocused onto a new topic, which can be exacerbated by the relatively short turn over times of 

PhD students and employees on short-term contracts. This might be a cost-effective way of performing 

science if the ratio of true positive results to false positives was high, but if, as argued throughout this 

thesis, research methods that readily produce false positive results are being used, the field can create 

the illusion of productivity as lots of “discoveries” are published, without actually verifying these findings. 

In other words, when a research programme begins to degenerate (Lakatos, 1970), researchers are 

incentivised not to find the sources of this degeneration and self-correct (Ioannidis, 2012a; Rohrer et al., 

2018; Vazire & Holcombe, 2021), but simply to switch research questions. This may be in contrast to more 

theory-driven veins of animal cognition research (e.g., Ghirlanda et al., 2017 in sequence learning) or 

scientific research (e.g., the ATLAS Collaboration 2021 in the search for supersymmetry in high energy 

particle physics), where strong predictions and models make it clear when certain predictions are being 

tested and when they are not (but see Smith et al. (2012) for an alternative perspective on the use of 

associative modelling).  

In summary, when a research field is small and siloed, reliability and validity issues can be 

exemplified – especially due to the limited potential for independent replication. Clearly, a balancing act 

is required to account for both the difficulties of performing strong science with limited resources, whilst 

also maintaining the diversity that Beach and others pined for during the dominance of the lab rat (Beach, 

1950; Bitterman, 1960). A first step would be to complete demographic surveys of the field, identifying 

the areas of animal cognition research that are most siloed and those with more independent research, 

which can then feed into risk-of-bias assessments for specific research programmes. Chapter 7 presents 

an early attempt of this for the field of corvid social cognition.  

4.9. Summary and Pushing Back  
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In this chapter, I have argued that the academic incentive structure promotes misleading research in 

animal cognition, specifically focusing on the case of top-down research aimed at providing evidence for 

certain cognitive abilities in certain species - whilst noting that much of the critique applies throughout 

animal cognition research as a whole. The chapter claimed that, on the whole, animal cognition uses 

confirmatory research methods that are biased towards confirming the presence of more exceptional 

cognitive abilities in animals. When the directionally biased confirmatory methods are combined with 

false positive inflating research practices and publication bias, the literature can become filled with 

misleading results, and this is likely the situation in much animal cognition research. There are two-

counter arguments to these positions that I now address. The first is that there is a lack of evidence 

demonstrating that animal cognition research does produce false positive results and as such we should 

not question the literature until this evidence emerges – which I counter. The second is that animal 

cognition research is simply too heterogenous for arguments like those made in this chapter to be easily 

interpreted and deployed – which I accept.  

4.9.1. On the lack of evidence 

The first objection to the arguments presented in this chapter so far is that little formal and direct 

evidence has been provided in animal cognition research that, i) there is a publication bias, ii) rates of 

false positive results are elevated and iii) confirmatory research methods are often used. In the absence 

of this direct evidence, should we continue with the status quo until studies have sought to evaluate these 

practices? Personally, I think not: the indirect evidence (through analogy with other fields) and knowledge 

gained through informal discussions are overwhelming, such that the default position should be that 

animal cognition research is equally or more affected (due to the small size issues) to the nearest other 

discipline that has investigated these issues (likely some combination of human psychology and 

biomedical fields). In other words, the onus should be on those maintaining the claims in the published 

literature to provide evidence that their claims are not the product of publication bias and false positives, 

rather than on the skeptic to demonstrate that they are. This can be achieved prospectively through mass 

transparency and “best practice” methods in future studies, including pre-registration and publishing null 

findings, and retrospectively through systematic review projects, meta-analyses and risk of bias 

assessments. However, such research projects are labour intensive, and it is unlikely that a systematic 

review and risk of bias assessment will be conducted for each vein of animal cognition research a person 

is interested in. In lieu of these projects, scientists must look to the indirect signs of reliability and validity 
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they can find (see Chapter 2), but in the absence of finding positive evidence about the reliability and/or 

validity of a finding, there is no requirement to believe it.  

4.9.2. On heterogeneity 

A more convincing counterargument to this chapter is to point to the mass heterogeneity of research 

methods employed across animal cognition, even in research programmes that produce evidence in 

favour of certain cognitive abilities in animals. And some areas of animal cognition research do have the 

hallmarks of strong replicability and validity (see Chapter 2). While questionable research practices may 

be used and the rate of replication may be low on average, this does not mean that any given study itself 

contains misleading evidence. The rate of questionable research practices likely varies not just between 

individuals, laboratories, research areas, but also within them, and this means that identifying areas of 

problematic research can become incredibly difficult. Just because a certain study on cognitive ability X in 

species Y was p-hacked, this does not mean that all other studies of X in species Y were, too. Even if a 

meta-analysis finds convincing evidence of publication bias within a certain area of study, this does not 

automatically mean that all individual studies in that area are biased. However, identifying the studies 

that are at low risk of bias can be difficult, if not impossible, for an outsider from the published literature 

alone. Again, the same prospective and retrospective strategies are needed to tackle the issue of 

heterogeneity, “best-practice” studies with full transparency, and systematic review projects, meta-

analyses and risk of bias assessments. Chapters 5, 6, 7 and 8 focus on this latter issue. Chapter 5 presents 

a first attempt at assessing publication bias and statistical inferences in the animal physical cognition 

literature. Chapter 6 presents a systematic review and quantitative risk-of-bias assessment across nearly 

the entire corvid social cognition literature, and Chapter 7 specifically focuses on the interpretation of 

non-significant statistical results across animal cognition research. Chapter 8 acts as a collective discussion 

for these three chapters on the lessons I learned conducting secondary data analyses, evidence synthesis 

and bias detection across difference elements of the animal cognition literatures. 
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5. Chapter 5: Publication bias and statistical inference in 

animal physical cognition research9 

This chapter marks the start of three empirical chapters aiming to describe, synthesize and assess 

risk of bias in evidence in animal cognition research. Because of the heterogeneity of the discipline, each 

chapter uses a different sampling strategy to target different elements of the literature. Chapter 5 samples 

a small section of a diverse literature on animal physical cognition, Chapter 6 aimed to sample all 

interventional studies in a narrower field, corvid social cognition, and Chapter 7 aimed to sample a specific 

occurrence (non-significant results from null hypothesis significance tests), from across 20 different 

journals publishing animal cognition research. As a first attempt at bias detection, this chapter aimed to 

provide a preliminary assessment of statistical design and inference, publication bias and reliability in a 

sample of animal physical cognition experiments, each issues that have been foregrounded in the 

replication crisis and reform movement of psychology (e.g., statistical inferences: Aczel et al., 2018; 

McShane et al., 2019; Smith & Little, 2018; publication bias: Fanelli, 2012; Scheel et al., 2020; replication: 

Open Science Collaboration, 2015; Zwaan et al., 2018). 

5.1. Statistical Design and Inference 

5.1.1. Sample Size and Statistical Biological Unit of Interest 

My first aim was to evaluate the statistical design of the experiments in our sample of animal 

physical cognition research, specifically the sample size and the biological unit of interest. Small samples 

can lead to two problems. First, small sample sizes are often cited as a cause of statistical designs with 

low statistical power (e.g., Button et al., 2013), leading to overestimated effect sizes that are difficult to 

replicate and a distortion of the truth concerning the literature (Cumming, 2008; Fiedler & Prager, 2018; 

Hedges, 1984; Chapter 2). Second, small samples may poorly represent the researcher’s overall target 

population, leading to over-generalized claims (Henrich et al., 2010; Hurlbert, 1984; Chapter 3). However, 

research with small sample sizes has been used effectively throughout the history of comparative 

psychology. When experiments use many trials within each individual animal, their statistical tests can 

achieve high power to detect theoretically interesting effect sizes. This often occurs when researchers 

focus on the individual animal as the biological unit of interest, rather than the group (Smith & Little, 

2018). In animal cognition research, the individual may be the most meaningful unit of analysis (Craig & 

 
9 This chapter contains material published in Farrar, B. G., Altschul, D. M., Fischer, J., van der Mescht, J., Placì, S., 
Troisi, C. A., ... Clayton, N. S., & Ostojić, L. (2020). Trialling meta-research in comparative cognition: Claims and 
statistical inference in animal physical cognition. Animal Behavior and Cognition, 7(3), 419. 



80 
 

Abramson, 2018): if an animal understands properties of the physical world, effects will manifest within 

this individual, but not necessarily at the level of the group. For example, when learning the trap tube task 

in Povinelli’s “Folk Physics for Apes”, Megan the chimpanzee was correct on 80/100 trials, (p = 

.000000000135), no other chimpanzee performed significantly above chance (Povinelli, 2000). As a result 

of these inter-individual differences, it would have made little sense to focus exclusively on the group. 

Although the group response is interesting, the most informative analyses will also examine effects at the 

level of the individual (for example by performing tests within each animal, or by building models with 

both group and individual effects). The first aim of the project was therefore to characterize the biological 

unit of interest (individual or group, or both) of the statistical analyses in each paper and the sample size 

that the researchers tested. This approach provided a basic description of the statistical designs used in 

our sample. 

5.1.2. Publication Bias and Statistical Reliability 

My second aim was to collect data on three indicators of statistical reliability and publication bias, 

namely, i) the prevalence of positive claims, which can be an indirect measure of publication bias, ii) the 

distribution of reported p-values, which can give clues to the overall strength of evidence that researchers 

are generating against null hypotheses, and, iii) the proportion of animals “passing” any given test, which 

can indicate the robustness of statistical conclusions across individuals. These three measures provide 

data about the reliability of research findings in physical cognition; if the literature has a large publication 

bias, or contain many just-significant p-values (i.e., around the alpha =  .05 threshold), it will likely hold 

that these findings are difficult to replicate. Similarly, when only a small proportion of animals pass any 

given test of physical cognition, replication studies may “fail” because they miss these individuals in their 

samples. 

5.1.3.  Prevalence of Positive Claims 

Publication bias leads to a literature filled with overestimated effect sizes (Hedges, 1984; Sterling, 

1959), and facilitates the canonization of false facts (Nissen et al., 2016). To assess the severity of 

publication bias across scientific fields, researchers have investigated whether the literature contains an 

“excess” of positive results. This assumes that if a literature is filled exclusively with positive results, there 

is likely a number of unpublished negative findings, too. In one such study, Fanelli (2010) reported that 

just over 90% of a sample of psychology and psychiatry papers that contained the phrase “test* the 

hypothes*” reported support for the hypothesis under investigation, suggesting that many studies that 

did not support certain hypotheses were unpublished. However, the presence of publication bias in 
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comparative psychology has largely been unstudied, which I aimed to examine in animal physical cognition 

research. However, the most often employed tests for publication bias seemed unsuitable for work in the 

physical cognition literature. Studies such as Fanelli’s are subject to strong sampling biases (restricting 

analyses to articles that contain the phrase “test* the hypothes*, of which there may also be too few in 

smaller literatures), or tests such as asymmetry tests of funnel plots in meta-analyses. This would require 

identifying a body of research that it makes sense to group together, for example testing the same 

hypothesis. Because of the heterogeneity of animal physical cognition research (with many different 

species, task designs and questions being used), this was deemed inappropriate. Hence, two strategies 

were used. The first, I developed a method that focused on researchers conclusions – whether they 

claimed their experiment demonstrated some physical ability in animals or not, and the second used p-

value distributions.   

5.1.4.  P-value Distributions and Evidential Strength 

p-value distributions offer a window into the statistical reliability of a research field. First, if a set 

of studies have power to detect a predicted effect size, which turns out to be approximately true, the p-

value distribution from across these studies will be right-skewed, i.e., there will be more p-values in the 

interval 0 to .01, than in the interval .01 to .02, and more in this interval than between .02 and .03, and so 

forth. In contrast, the p-value distribution of a body of research examining false effects will be uniformly 

distributed, for most tests (Simonsohn et al., 2014). Comparing the shape of a research body’s p-value 

distribution to the shape of p-value distributions expected under different conditions therefore provides 

some information about the strength of evidence against null hypotheses (Lakens, 2017a; Simonsohn et 

al., 2014). Second, p-value distributions can offer a perspective on publication bias and false-positive 

inflating analysis practices. If the number of p-values reported just below .05 is disproportionally higher 

in the literature than the number of p-values reported just above .05, this suggests that either some p-

values have been coerced into falling below the significance threshold, or that effects above the 

significance threshold have not been published. I therefore recorded the p-values supporting the main 

claims in our sample of physical cognition research to provide data on the strength of evidence against 

null hypotheses across this body of research. 

5.1.5.  Proportion of Animals “Passing” a Test 

Finally, I coded the number of animals reported to have “passed” each test of physical cognition, 

if such a test was performed. This number provides information on how generalizable certain individual-
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level effects are within the original sample, which may help to calibrate researchers’ expectations about 

the likelihood of replicating effects in new samples.   

5.2. Method 

The working introduction and methods for this paper were deposited before data collection at 

https://osf.io/3d9vh, and the final dataset and coding materials are available at https://osf.io/wkpeq/. 

5.2.1. Paper Inclusion 

This project attempted to code information from 200 published experiments in animal physical 

cognition studies. This sample size was decided based on a subjective cost-benefit analysis – extracting 

information from enough experiments to get a good coverage of animal physical cognition research, whilst 

recognising the study was exploratory and aimed develop novel methods. Papers were identified using a 

keyword search in Scopus. Papers with titles, abstracts and/or keywords containing the following 

keywords: "folk physics" OR "physical cognition" were searched, returning 167 results on 26th November 

2019. An error in an earlier search meant we had expected over 600 results from this search, and after 

realising that the search returned only 167 results, I performed a further search for “trap-tube” OR “trap 

tube” OR “trap table” OR “trap-table”, which returned a further 58 results. Papers were listed by 

‘relevance,’ and the titles and abstracts of each paper were then screened for whether they fit my 

inclusion criterion: being a study of physical cognition in captive animals, which also included animals kept 

in captivity transiently for testing. For multi-experiment papers and papers with many different 

conditions, two experiments or conditions were randomly selected for coding, using the function ‘sample’ 

in R 3.6.3. This procedure was decided to give greater representation to common designs used in animal 

physical cognition studies, while minimising the extent my analysis would be biased by overweighting 

certain studies. 

Of the 167 papers from the first search, 60 were coded as fitting the inclusion criterion. An extra 

12 non-duplicate experiments from the trap-tube/trap-table search fitted the criterion and were added 

to the sample. A second screen of the full papers then led to 9 more studies being excluded: 7 for 

containing experiments outside of physical cognition or being developmental or personality studies, 1 for 

inability to access the paper, and 1 for the paper not being written in English. Of the remaining 63 papers, 

53 involved multiple physical cognition experiments, from which I randomly selected two experiments to 

be coded. This produced a total sample of 116 experiments from 63 papers. The 63 papers were published 

between 1994 and 2019, across 19 different journals. The journals with the largest number of papers in 
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my sample were Animal Cognition (20), the Journal of Comparative Psychology (10), and Animal Behaviour 

(7). A complete reference list of the papers and journals included in this project can be found in the 

References. There were 45 different species represented across the 63 physical cognition papers that we 

coded (Figure 7), with chimpanzees (8), New Caledonian crows (8), dogs (7), orangutans (6) and keas (6) 

being the most common.  

 

Figure 7: The number of papers investigating each species in our sample of physical cognition papers, 
e.g., there were 8 papers that included chimpanzees in the sample, and two papers including goats. If a 
species was in more than one paper, this number is given in brackets after the species. 

The 63 papers contained different physical cognition tasks. Specifically: 14 papers used variants 

of the trap-tube task; 13 examined other forms of tool use, for example testing the ability to select and 

use tools based on their properties or functionality; 11 examined animals’ responses in means-end, 

contact and string pulling tasks; 9 papers examined animals’ understanding about hidden objects, for 

example using object permanence, object-tracking and object choice tasks; 5 papers tested animals 

abilities to gain access to food; 3 papers used the physical tests from the Primate Cognition Test Battery; 

3 papers used support problems; 2 papers examined how birds choose nest building material; 1 paper 

tested dogs’ understanding of solidity; 1 paper  investigated tool manufacturing in crows; and 1 paper 

investigated both means-end understanding and tool use in lemurs.  

Importantly, this sample is weakly representative of physical cognition research as a whole, and 

more closely aligned with research identified as “folk physics” - focusing on how animals manipulate 

objects to gain access to rewards, whether they respond to features of the environment such as 

connectivity and gravity or distinguish between functional and non-functional tools. Because of my search 

criteria, trap-tube and tool use studies are over-represented in my sample, some task formats are only 
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represented once (e.g., water raising tasks), and some are not represented (e.g., violation of expectation 

tasks). The sample does not include experiments on spatial cognition, or numerical cognition.  

5.2.2. Coding Protocol 

Two individuals coded each paper according to the protocol detailed below. An early version of 

the protocol was piloted on the first experiments of Povinelli’s “Folk Physics for Apes” (no experiments 

from Povinelli’s book were included in the analysis), and a second protocol was piloted on four non-

physical cognition studies. For each paper, the following features were coded: 

1. The main claim of the paper, coded from the abstract of each paper 

Coders were asked to copy and paste the sentence(s), from the abstract, containing the main 

claim the authors made from each paper. 

 

2. Whether this claim was “positive”, “negative” or “inconclusive” 

Coders were asked to decide whether each claim was “positive”, “negative” or “inconclusive”. I 

defined positive claims as asserting the presence of a more exceptional ability in the animal, a novel effect, 

or the animal “passing” a test, negative claims as asserting the absence of a more exceptional ability in 

the animal, or the animal “failing” a test, and all other claims were labelled inconclusive. In addition to 

these definitions, coders were provided with more information about what would constitute a positive 

claim, namely “whether the paper was claiming that the animals are ‘clever’ or passed some criterion of 

physical cognition.” Alternatively, a positive claim could be a negative result in a control condition e.g., 

“the animal’s performance could not be explained only by a simple rule”), and an inconclusive claim could 

involve a positive result in a control condition, e.g., “although the animal passed the test, its performance 

could be fully explained by a simple rule as shown in the control condition”).  

 

3. The text of the primary group-level statistical inference made supporting the main claim, 

if applicable 

From the results section, or statistical analysis, coders copied the text of the group inference. 

Coders were asked to include the analysis that they thought was most central to the overall claim of the 

article, and to include any test statistics and p-values if they were present. 
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4. The text of the primary individual-level statistical inference made supporting the main 

claim, if applicable. If multiple individual-level inferences were made supporting the main 

claim, we coded the first one presented.  

Similarly, coders were asked to copy the text of the individual inference, if present, from the 

results section or statistical analysis. Coders were asked to include the analysis that they thought was 

most central to the overall claim of the article, and to include any test statistics and p-values if they were 

present. If there were multiple individual-level inferences supporting a main claim, e.g., three animals 

passed a test, coders were asked to copy the first presented (that still supported the main claim).   

5. The sample size 

Coders were asked to report the number of animals recruited for the test. 

6. The number of animals “passing” a test, if applicable 

This was performed only for experiments that had an individual-level statement, coders recorded 

how many animals “passed” the test in question.  

From the reported group-level and individual-level inferences, I then extracted the exact p-values 

from the texts of the group- and individual-level statistical inferences that were coded. For 44 experiments 

where non-exact values were reported, e.g., p < .05, we calculated them from the reported test statistics, 

if sufficient information was available. In four cases where an inequality was reported at a very low level, 

yet I did not have sufficient information to code the exact p-value, e.g. p < .00001 (N = 2) and p < .001 (N 

= 2), I included these as equalities in my analysis. We additionally planned to assess how researchers 

interpreted non-significant p-values; however, I decided that the number of non-significant p-values (16) 

was insufficient for any robust analysis.  

5.2.3. Coding and Reliability 

Coders were trained on four pilot studies, and any disagreement in this coding phase was used to 

refine the protocol. All 116 experiments of my final sample were double coded: I coded all of the 

experiments, and CT, DA, JF and JvdM acted as second coders. Where there was disagreement between 

the double-coded items, this was resolved by a third coder by reference to the same coding protocol (AV, 

LO and SP).10 For all disagreements, the third coder’s decision was used in the final dataset, and in the 

three cases where the third coder’s decision disagreed with both the first and second coder, the third 

 
10 CT: Camille Troisi ; DA: Drew Altschul; JF : Julia Fischer; JvdM: Jolene van der Mescht; AV: Alizée Vernouillet; LO: 
Ljerka Ostojić; SP: Sarah Placì 
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coder’s choice was retained after discussion with BGF. For the three variables that were coded by copying 

and pasting text, these were coded as agreeing if there was substantial overlap between the content of 

both coders, decided by BGF. This changed from the criteria I archived in our working methods, which was 

that the coders agreed if 50% of the text overlapped. I changed this criterion as the coders often varied in 

how much text they included, despite focusing on the same claim or inference.  

5.3. Analyses 

I first present descriptive data and visualisations of the following information: the distribution of 

species and groups from my sample, the sample sizes across the experiments, the frequency of positive 

and negative claims, the frequency of group-level and individual-level inferences, and p-value 

distributions for both group-level and individual-level inferences. I then use these data to explore the 

types of claims and strength of statistical inferences present in the animal physical cognition literature. I 

do the latter by qualitatively comparing the p-value distributions of the group-level and individual-level 

data with simulated distributions from researchers studying only true statistical effects with 80% power, 

20% power, or studying zero true effects, i.e., 5% power. For these distributions, data were simulated 

from two normal distributions for each of the three sets of simulations. Population 1 had a mean of 50 

and standard deviation of 5 for each, whereas Population 2 had a standard deviation of 5 for all different 

powers, but the means varied as follows: 80% power simulation, mean = 52.02; 20% power simulation, 

mean = 50.81; 5% power, mean = 50.  

The difference between Population 1 and Population 2 was calculated to give the desired power 

for a two-tailed two sample t-test with n = 50 per group. 100,000 samples were then taken from each 

Population and compared to each other, and the p-values under .05 were plotted in Figures 11 and 12 

alongside the p-values we sampled from the physical cognition literature. I made only qualitative 

conclusions from these data due to their non-independence and uncertainty about the theoretical p-value 

distributions under the different hypothetical scenarios (80% power, 20% power and 5% power). This 

uncertainty is commented on in the Discussion, as seeing the data first can help understand the limitations 

of the analysis. 

5.4. Results 

5.4.1. Coding Reliability 

The first two coders agreed on 56 out of 63 (89%) claims from each paper’s abstract, Cohen’s 𝛫 = 

.89, and agreed on 38 of 63 (60%) of their levels, i.e., whether the claims were positive, negative or 

inconclusive. This agreement rate was slightly lower than anticipated; however, all but two of the 
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disagreements occurred when one of the coders labelled a claim “inconclusive” and the other labelled it 

as either “positive” or “negative.” Accounting for the ordinal structure of the data, in which a 

disagreement between “positive” and “negative” is more severe than a disagreement between “positive” 

or “negative” and “inconclusive”, Cohen’s 𝛫weighted = .47. Coders agreed on 45 of 75 (60%) group-level 

inferences, Cohen’s 𝛫 = .60, and 63 of 93 (68%) individual-level inferences, Cohen’s 𝛫 =.68. Sample sizes 

were coded equally in 103 of 116 experiments, Cohen’s 𝛫 = .89, and the number of animals passing each 

test was agreed in 56 of 94, Cohen’s 𝛫 = .59. All disagreements were then resolved by a third coder to 

produce the dataset for the analysis. 

The inter-rater agreements for the group-level inferences, individual-level inferences, and claim 

levels were lower than anticipated. For the group-level and individual-level inferences, we performed my 

p-distribution analyses twice. My primary analysis was performed on the inferences that both coders 

agreed with, or that the third coder decided on in cases of disagreement. My robustness analysis used the 

inferences that both coders agreed on, and the inference that the third coder did not select in cases of 

disagreement (unless one of the original coders made a clear error, i.e., sometimes a coder would label 

an individual-level statistical test as a group inference, which BGF excluded from the robustness analyses). 

Perhaps more concerning was the lower inter-rater agreement for the claim level (60%). The following 

four reasons could explain this: i) my definitions being ambiguous and hence some claims being difficult 

to fit to them, ii) individual coders have response biases, iii) agreement on what the definitions mean but 

genuine disagreement on how to characterise the papers, and iv) typographical errors.  

To investigate this further, I asked the original coders to recode all 63 claims (the claims in which 

both original coders agreed, or the claim which was decided by the third coder). Six coders (BGF, AV, CAT, 

JvdM, LO, SP) completed the re-coding. Between these six coders, the 15 inter-rater agreements, i.e., all 

possible pairings of coders, were, in percent: 51, 62, 64, 67, 68, 68, 68, 68, 68, 70, 71, 73, 76, 76 and 84. 

On average (median = 68%) this is slightly higher than the original 60%, and higher than chance (33%). 

This slightly higher agreement is likely due to the coders all having the same claim sentences to code, 

whereas in the original protocol, main claims were coded differently in 11% of cases. From this round of 

coding, I labelled the claims as positive, negative, and inconclusive if most of the coders (4 or more out of 

6) chose one of the three categories. Claims in which at least 3 coders chose inconclusive and 3 or less 

chose positive or negative were labelled as inconclusive. Figure 8 visualises the inter-rater agreement; the 

63 claims are presented sequentially along the x-axis, such that one column displays each coder’s decision 

for that claim. The red dashed line in Figure 8 shows how these claims were separated (negative leftmost, 
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inconclusive centre, positive rightmost). My original coding (n = 2 coders and a third coder for 

disagreements) produced 14 negative, 10 inconclusive and 39 positive claims, and the second coding (n = 

6 coders) produced 11 negative, 15 inconclusive and 37 positive claims. The overall agreement, concerning 

the final classification of claims of “positive”, “negative” or “inconclusive”, between the two rounds was 

86%.  

 

Figure 8: Inter-rater agreement when all 63 claims were re-coded by 6 coders using the original coding criteria. The 
63 papers are presented sequentially along the x-axis and each coder’s decision is presented on the y-axis (Positive, 
Inconclusive, Negative). Papers with most negative ratings are presented on the left-hand side, and papers with the 
most positive ratings are presented on the right. The red dashed lines indicate what category a particular paper was 
coded as when all the coders’ responses were taken into account: papers were coded as ‘Negative’ (leftmost) or 
‘Positive’ (rightmost) when at least 4 coders coded it as falling into that category, and papers were coded as 
‘Inconclusive’ (centre) when the number of coders coding the paper as either positive/negative or inconclusive was 
equally split, (i.e., 3 coders in each category).  

Figure 8 shows that most of the coders agreed on most of the claims, and when they did not, the 

disagreements centered on whether a claim should be labelled as inconclusive or positive, or inconclusive 

or negative. This suggests that a more continuous measure of claim levels might be useful in future 

research. Individual response biases also played a role: Coders One and Five (blue circles, green squares), 

preferred to code claims as more positive, whereas Coders Two and Four (blue triangles, blue crosses) 
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were more likely to respond with inconclusive rather than positive. While there was a good inter-rater 

agreement for many claims, there were some that split opinion across the six coders, which was likely due 

to ambiguity in the original definitions of “positive”, “negative” and “inconclusive” claims, as well as these 

not being natural categories for “claims”. To assess the effects of vague definitions on the findings, I 

provided the same 6 coders with more specific definitions and example sentences, and again asked them 

to recode the 63 claims. For this round, which occurred one to two weeks after the previous round, the 

instructions given to the coders were as follows: 

“Positive and negative claims will make a general statement about the cognitive abilities, processes or 

behaviour displayed by the animals. Specifically: 

Positive claims will include, but are not limited to, general statements about animals: having a certain 

cognitive ability; being able to pass a test; any claimed discovery of the processes animals use when 

passing a test (excluding “lower-order” processes); or confirmation of a general hypothesis. For example: 

Our results suggest that…  

 The animals understand physical causality 

 The animals understood the causal structure of the task 

 The animals are readily capable of passing the task 

 Domestication has improved physical cognition in the animals 

The animals used X process to complete the task (where X process is not better categorized by 

the definitions for negative or inconclusive) 

Negative claims will include general statements about the physical cognitive inability of animals, or their 

inability to pass a task and this not being caveated by an alternative explanation (such cases – where the 

inability is caveated – will typically be “inconclusive” and covered in a different category), or general 

evidence against a hypothesis. For example: 

Our results suggest that… 

 The animals do not understand physical causality 

 The animals did not understand the causal structure of the task 

 The animals might not be capable of passing the task 
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 Suggesting that domestication has not improved physical cognition 

 

Inconclusive claims will either not make strong epistemic statements but point to task specific confounds 

or task specific alternative explanations, OR they will report/refer to mixed evidence, i.e., some positive 

and some negative results OR a failure to confirm or disconfirm a hypothesis. For example: 

 Even though the animals passed the test, this likely did not require a causal understanding 

 Even though the animals passed the test, they likely achieved this through a simple rule 

The animals may have understood some, but not all, of the physical properties of the task, and 

this was inconsistent between individuals 
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 Using the specific definitions, inter-rater agreement was comparable to the original definitions 

used: 54, 56, 65, 65, 67, 67, 68, 70, 71, 71, 73, 73, 79, 86. However, the new definitions produced fewer 

positive (28) or negative (6) claims, and more inconclusive (29) claims (Figure 9). The overall agreement, 

concerning the final classification of claims of “positive,” “negative” or “inconclusive,” between this 

second round and the original coding 70%. This discrepancy is largely accounted for by the increase in 

inconclusive claims under the new definitions. Interestingly, coders’ response biases were somewhat 

consistent across the two sets of definitions: Coders One and Five were again more likely to code claims 

as positive than the others, and Coder Two more likely to respond with inconclusive rather than positive.  

 

Figure 9: Inter-rater agreement when all 63 claims were re-coded by 6 coders using more specific coding 
definitions. The 63 papers are presented sequentially along the x-axis and each coder’s decision is presented on 
the y-axis (Positive, Inconclusive, Negative).  

 

Even though I was unable to increase the inter-rater agreement by providing more specific 

definitions, across the two rounds of coding, a relatively clear pattern emerged: some claims were clearly 

positive, some clearly negative and many intermediate. The intermediate claims, which I labelled 

“inconclusive” appeared continuously distributed. Some inconclusive claims were more “negative,” and 
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others were more “positive,” and coders tended to agree when this was the case. Examples of these claims 

are presented in Table 7. Next, I present the results of my analyses.  

Table 7: Examples of how claims were coded from our papers across two rounds of coding by 6 
individuals. 

Claim level category Example  

Positive “The results indicate that kea are capable of assessing the spatial means–end 

relationships of this problem spontaneously and in a way that is comparable with 

primates.” (Auersperg et al., 2009) 

 

“Our results showed that tool-use training enhances mean performance in the physical 

cognition domain, i.e. the understanding of spatial relations, numerosity and 

causality.” (Tia et al., 2018) 

Positive (Original 

Definitions); 

Inconclusive (Revised 

Definitions) 

“Our subjects attended to at least two of the three tool features, although, as 

expected, the location of the hook was of paramount importance” (St Clair & Rutz, 

2013) 

Inconclusive “These data are consistent with the idea that apes may possess some specific causal 

knowledge of traps but may lack the ability to establish analogical relations between 

functional equivalent tasks.” (Martin-Ordas et al., 2008) 

 

“Both species [dogs and wolves] succeeded the visible displacement tasks but failed 

the invisible displacement problem” (Fiset & Plourde, 2013) 
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Negative (Original 

Definitions); 

Inconclusive (Revised 

Definitions) 

“Bonobos did not demonstrate an understanding of contact but showed more 

individual variation, attending to the positions of the food, disk, and stick.” (Helme et 

al., 2006) 

Negative “With the trap-tube task, we assessed whether the monkeys understood the cause-

effect relation between their behavior and the outcome. The performances of the 4 

subjects indicate that they did not take into account the effects of their actions on the 

reward.” (Visalberghi & Limongelli, 1994) 

 

“Nevertheless, all 28 subjects failed to solve this task spontaneously, and showed no 

evidence of learning across 50 trials. Our results therefore call into question the earlier 

suggestion that dogs have, or can acquire, an understanding of the solidity principle.” 

(Müller et al., 2014) 

 

5.4.2. Sample sizes and biological units of interest 

In our sample, the sample sizes ranged from 1 to 56, with a median of seven individuals (Figure 

10). Eight of the experiments testing fewer than five individuals were transfer tasks. There was some 

evidence of species-specific differences in sample sizes, for example all corvid studies had a sample size 

of fewer than 10 individuals, whereas studies with canines and non-great ape primates sometimes had 

larger samples, for example over 50% of canine studies tested > 25 animals. Across the 116 experiments, 

40 experiments included both group- and individual-level inferences in support of their claims, 28 used 

only group-level inferences and 48 only individual-level inferences. 
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Figure 10: The distribution of the total sample sizes from each experiment of our sample of physical 
cognition experiments. NB: data points are not independent as some of the sample sizes are from 
experiments from the same papers, and some of the papers are from the same laboratories that tested 
the same sets of captive animals. The group “Parrots and Corvids” comes from a single paper that 
studied both groups. 

 

5.4.3. Claims 

From our two coding rounds in which six individuals coded each claim, I found that between 28 and 

37 of the 63 papers (44 - 59%) made positive claims. Between 6 and 11 (10 - 17%) papers made negative 

claims, and between 15 and 29 (24 - 46%) papers made inconclusive claims (for the definitions used for 

each claim, see the methods section, and for examples see Table 7). Table 8 shows how these figures vary 

across groups, and although our sample size is small, corvids and great apes have the largest proportion 

of positive claims. 

Table 8: The number of each type of claim (positive, negative or inconclusive) made in the sample of 
physical cognition papers, by study group. The first value comes from the first round of coding using the 
original definitions (n = 6 coders), and the second value from the second round of coding using the 
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tighter definitions (n = 6 coders). The group “Parrots and Corvids” comes from a single paper that 
studied both groups. 

Group Positive Negative Inconclusive 

Great Apes 7; 4 1; 0 4; 8 

Primates 

excluding great apes 

4; 4 1; 1 2; 2 

Canines 4; 2 1; 1 2; 4 

Mammals 

excl. primates and canines  

3; 2 1; 0 1; 3 

Corvids 12; 9 0; 0 3; 6 

Parrots 4; 4 4; 2 1; 3 

Parrots and corvids 0; 0 0; 0 1; 1 

Birds  

excluding corvids & parrots 

3; 3 3; 2 1; 2 

 

5.4.4. P-values 

From the 68 group-level inferences, I had sufficient information to extract 58 exact p-values, of 

which 46 were < .05. From the 88 individual-level inferences, I had sufficient information to extract 49 

exact p-values, of which 41 were < .05. The density distributions of these significant p-values are plotted 

in Figure 11, alongside simulated distributions from research with 80% power to detect a true effect (“80% 

power simulation”, uppermost plot), research with 20% power to detect a true effect (“20% power 

simulation”, second from top), research where all null hypotheses were true (“False positive simulation”, 

third from top).  

Both the group- and individual-level statistical inferences have the largest density of p-values 

between 0 and .01, providing evidence of correct rejections of H0. This pattern is clear for the individual-

level inferences, which is consistent with research performed at relatively high power. Similar 

distributions, albeit with slightly larger p-values for the individual inferences, were observed when I re-
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performed the robustness analysis using the data from the second coder, when they disagreed with the 

primary and third coders, and are plotted in Figure 12.  

 

 

Figure 11: Raincloud plot of significant p-values resulting from simulated research with H1 always 
correct and research performed with 80% power (uppermost plot), 20% power (second panel from top), 
and H0 always correct (third from top), the group-level inferences from our sample of physical cognition 
research (N=46, fourth panel from top) and the individual-level inferences from our sample of physical 
cognition research (N=41, bottom panel). The simulations and their density distributions contain 
100,000 p-values each, however for clarity a random sample of 200 raindrops are presented underneath 
the density plot.  
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Figure 12: Raincloud plot of significant p-values resulting from simulated research with H1 always 
correct and research performed with 80% power (uppermost plot), 20% power (second panel from top), 
and H0 always correct (third from top), the alternative group-level inferences from our sample of 
physical cognition research (N=45, fourth panel from top) and the alternative individual-level inferences 
from our sample of physical cognition research (N=43, bottom panel). The simulations and their density 
distributions contain 100,000 p-values each, however for clarity a random sample of 200 raindrops are 
presented underneath the density plot. 
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I performed two further exploratory analyses with the group-level p-values. The upper panel of 

Figure 13 displays the p-values as a function of sample size, with a red dashed line at p = .05, and the area 

.01 < p < .05 shaded. This graph provides weak evidence for larger sample sizes to produce smaller p-

values, however some very small p-values were still reported from studies with small sample sizes. The 

lower panel of Figure 13 is a histogram of the frequency of different p-values across the range 0 – .50. The 

number of p-values drops appreciably just above .05, suggesting that either some results just above this 

threshold are unpublished or that the p-value has been deflated to below the threshold. 

 

Figure 13: The distribution of group p-values from our sample as a function of sample size (upper panel), and 

frequency (lower panel). On the upper panel, the x-axis gives the sample size and the y-axis the size of the 
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reported p-value. The red dashed line denotes a p-value of .05 and the grey shaded denotes the area in which p-

values fall between .01 and .05. The lower panel shows a histogram of the frequency of different p-values across 

the range of 0 – .50 (only 2 p-values fell between .50 and 1 so I excluded this range for clarity). The red dashed line 

denotes a p-value of .05.  

5.4.5. Animals “Passing” Each Test 

Of the 88 experiments making individual-level inferences, we were able to code the number of 

individuals who “passed” the experimental test from 87 experiments. In 15 experiments, zero individuals 

passed the test. In the remaining 72 experiments in which individuals passed the test, the maximum 

number of individuals passing a test was 17 and the median was 3. The number of individuals passing each 

test, and the corresponding original sample size are plotted in Figure 14 (top panel). The proportion of 

animals passing the experimental tests varied substantially between experiments, from 0 individuals in 15 

experiments to 1 (all individuals) in 25 experiments. The median proportion of animals passing an 

experimental test was 0.6 (bottom panel). 
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5.5. Discussion 

In this study, I collected data on the types of claims and statistical inferences used in a sample of 

physical cognition papers. Our sample contained some, but far from all, task formats used in animal 

physical cognition research: 14 variants of the trap tube task, 13 other tool use tasks, 11 means-end, 

contact and sting pulling tasks, 9 object choice, object tracking and object permanence tasks, 5 access 

tasks, 3 studies used the physical tests from the Primate Cognition Test Battery, 3 support problems, 2 

examined how birds choose nest building material, 1 paper tested dogs’ understanding of solidity, 1 

investigated tool manufacturing in crows and 1 investigated both means-end understanding and tool use 

in lemurs. Moreover, these tasks were not randomly sampled. As I used the search terms “physical 

cognition,” “folk physics” and “trap-tube” variations, specific findings or authors may be overrepresented 

– for example, some authors may be more likely to use the phrase “folk physics” than others, and some 

not included at all (although no author was represented more than five times across the sample). Because 

of these sampling biases, the exact numbers for many of the measures are unlikely to be accurate 

representations of the field as a whole; however, the data provide patterns that are relevant to some 

general features of the literature.  

5.5.1. Statistical Design and Inference  

5.5.1.1. Sample Sizes and Biological Units of Interest 

In line with previous reports of sample sizes in animal cognition research and comparative 

psychology (Craig & Abramson, 2018; Many Primates et al., 2019), I found that many experiments tested 

fewer than 10 animals, with a median of 7. However, I found sample sizes of greater than 20 for several 

species, for example, Kittler et al. (2018) tested 57 lemurs of three different species, Duranton et al. (2015) 

tested 47 dogs, and Joly et al. (2017) tested a total of 39 macaques of four different species. The sample 

also did not include some experiments with very large sample sizes, such as Herrmann et al. (2007) who 

tested 107 chimpanzees and 32 orangutans on the Primate Cognition Test Battery, because the abstract, 

title or keywords of the paper did not include the terms “physical cognition,” “folk physics” or “trap-tube.” 

Across the 116 experiments, 40 experiments included both group- and individual-level inferences 

in support of their claims, 28 used only group-level inferences and 48 only individual-level inferences. 

Hence, most experiments (88) focused, at least in part, on individual animals’ performances, consistent 

with suggestions that this is the appropriate level of analysis for many psychological theories (Barlow & 

Nock, 2009; Skinner, 1956; Smith & Little, 2018). However, focusing on the individual animal does not 

Figure 1: The number of animals passing each experimental test, and the corresponding original 

sample size from our sample of physical cognition research (top panel). The proportion of 

animals passing the test in each experiment from our sample of physical cognition research 

(bottom panel).  
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always resolve problems with small sample sizes. If only a small proportion of individuals will “pass” a test 

of physical cognition, then studies with small sample sizes risk missing such individuals altogether. I found 

that, in 13 experiments, between 1% and 25% of the sample passed the test at hand (Figure 14), showing 

that small sample sizes can still be a concern, even if researchers focus their statistical analyses on the 

individual. 

5.5.1.2. Publication Bias and Statistical Reliability 

Depending on the definition of positive, inconclusive, and negative claims, between 44% and 59% 

of the sample made positive claims, between 24% and 46% made inconclusive claims, and between 10% 

and 17% made negative claims. There was therefore no universal bias towards clearly positive claims in 

our sample and, given that our sample represented a host of major animal cognition journals, this finding 

might generalize to animal cognition research. However, I also found a noticeable drop in p-values just 

above the significance threshold for group-level inferences, which is, by definition, a marker of publication 

bias. Taken together, this suggests that, while it has been possible to publish negative and inconclusive 

results in physical cognition research, publication bias may still be an issue for the field. Importantly, the 

presence of publication bias likely interacts with researchers and research groups, with some being more 

likely to publish negative findings than others. Any literature-wide analysis, like the present study, does 

not account for this interaction, and therefore may miss patterns of publication bias. However, a large 

proportion of positive and inconclusive claims, such as with corvids and great apes in our sample, does 

not mean that publication bias is present; it is also consistent with the animals genuinely performing well 

on most tasks.  

Rather than providing strong evidence about publication bias and statistical reliability in physical 

cognition research, our descriptive analysis illustrates one type of method that could provide such data in 

the future. In our sample, the p-value distribution from the individual-level inferences was consistent with 

relatively high-powered tests at the individual-level. This was less of the case for the group-level 

inferences, which appeared more consistent with a mixture of high and low-powered tests and suggests 

that some effect sizes may be overestimated, and hence difficult to replicate (Farrar et al., 2020; Hedges, 

1984). I could not perform formal p-curve analyses with our data because p-curve analyses, to be effective, 

require i) independent data points; whereas I included multiple experiments from the same studies, and 

ii) the same hypothesis to be tested; whereas our sample included many different tests in many different 

species.  



102 
 

5.5.2.  Methodological Concerns and Future Research into Statistical Reliability and Publication 

Bias in Comparative Cognition 

My analysis indicates that even though negative and inconclusive reports have been published in 

animal physical cognition research, publication bias likely still influences the validity of the published 

literature. However, more importantly, the challenges we faced in the current study highlight general 

problems that studies attempting to quantify publication biases and statistical reliability in animal 

cognition will face. 

5.5.2.1. Sampling and Level of Analysis 

The generalisability of my findings is limited by our sampling method - a keyword search for terms 

sometimes used by researchers studying physical cognition (“physical cognition” and “folk physics”), 

which I biased further through adding the search term “trap tube.” Future research may wish to generate 

more comprehensive search terms to cover the population of studies in a research area (Chapter 6) or 

take a random sample of articles from across animal behaviour and animal cognition journals (Chapter 7).  

5.5.2.2. Definitions and Reliability 

The inter-rater reliabilities of our measures were low, specifically when researchers assessed the 

level of a claim, which I attempted to categorize as positive, inconclusive, or negative, and the text of the 

main statistical inferences supporting these claims. Currently, it is unclear to us what “good” inter-rater 

reliability scores will be for our questions, and while it should be possible to increase the inter-rater 

reliability through greater training and feedback for coders, or through more prescriptive definitions, I 

believe if such measures were used to generate near 100% inter-rater reliabilities, this would reduce the 

measures’ validities (Penders et al., 2019).  

5.6. Summary and Next Steps 

In this chapter, I analysed 116 animal physical cognition experiments from 63 published journal 

articles. Sample sizes were small on average (median = 7), but some studies with larger sample sizes were 

also observed. Depending on the definitions I used to categorize positive, inconclusive, and negative 

claims, between 44% and 59% of our sample made positive claims, between 24% and 46% made 

inconclusive claims, and between 10% and 17% made negative claims. These data suggest that there was 

no universal bias towards positive results in our sample. Nevertheless, there was a drop in the frequency 

of p-values reported above the significance level, suggesting the publication bias is still an issue in the 

field. Our p-distribution analysis suggests that researchers are often finding true statistical effects at the 

individual-level; however, some published group-level effects in animal physical cognition research may 
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be overestimated. In the following chapter, I extended on the methods developed in this chapter to 

perform a systematic review and risk-of-bias assessment across nearly the entire corvid social cognition 

literature.  
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6. Chapter 6: A systematic review to assess risk-of-bias in 

studies of corvid social cognition 

Corvids are suggested to be “one of the most intelligent groups of animals on the planet” (Taylor, 

2014, p. 361). A swathe of data have been published in support of this claim, from field observations 

(Goodwin, 1956), to neuroanatomy and neural activation data (Balakhonov & Rose, 2017; Emery & 

Clayton, 2004; Kirschhock et al., 2021; Lefebvre et al., 2004; Nieder et al., 2020; Olkowicz et al., 2016), 

arguments based on evolutionary theory (Clayton et al., 2007; Emery & Clayton, 2004; Emery et al., 2007), 

and, most prominently, behavioural experiments (detailed in the following paragraph). Collectively, these 

data are often used to claim that corvids might be capable of sophisticated cognition, including second-

order reasoning, and that these abilities rival those of the great apes (Clayton, 2012; Emery & Clayton, 

2004; Taylor, 2014).  

Corvids are claimed to be particularly intelligent in social cognition (Clayton et al., 2007; Emery et 

al., 2007). Corvids have an enlarged nidopallium caudolaterale (Olkowicz et al., 2016), analogous to the 

mammalian pre-frontal cortex, and social structures that are often complex and competitive, and require 

high-quality relationships to be maintained. Because of this, corvids are oft cited as having both the neural 

scaffolding and historical evolutionary pressures that would lead to complex social cognition being 

selected for (Emery, 2006; Emery & Clayton, 2004, 2008). This claim has been explored intensively with 

captive corvid species across several labs worldwide. For example, corvid cache protection and pilfering 

strategies might require flexible cognition to maximize access to food resources, both when protecting 

their own caches from others and pilfering the caches of others (Bugnyar & Heinrich, 2006; Dally, Clayton, 

et al., 2006). And, in co-operative scenarios, pair-bonded male Eurasian jays might be able to adjust their 

food sharing behaviour in-line with their partner’s desires and choices (Crosby et al., 2020; Ostojić et al., 

2013). Many of these findings have been motivated by the concept of theory of mind. For example, corvid 

social behaviour has been suggested to involve visual perspective taking (Bugnyar et al., 2016), experience 

projection (Emery & Clayton, 2001), knowledge attribution (Bugnyar, 2011; Dally, Emery, et al., 2006), and 

desire attribution (Ostojić et al., 2013). Elsewhere, corvids have been claimed to perform transitive 

inference to predict the dominance of others (Paz-y-Miño, Bond, Kamil, & Balda, 2004), spontaneously 

co-operate on tasks (Massen et al., 2015), display emotional contagion (Adriaense et al., 2019), and 

display elements of mirror-self recognition (Clary & Kelly, 2016).  
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However, given the concerns raised so far in this thesis about how scientific research and 

publication practices can promote overestimated and overgeneralised findings (Gelman & Carlin, 2014; 

Higginson & Munafò, 2016; Ioannidis, 2005; Nissen et al., 2016; Smaldino & McElreath, 2016; Yarkoni, 

2019), and given recent null findings and replication failures of studies of corvid social cognition (Amodio, 

Brea, et al., 2021; Amodio, Farrar,  et al., 2021; Brecht et al., 2018; Crosby, 2019), a systematic and critical 

review of corvid social cognition research is due. However, rather than summarising the results of previous 

studies, this systematic review aims to search and map the landscape of the corvid social cognition 

literature and then apply the methods developed in Chapter 5 to build a preliminary risk-of-bias 

assessment for the field. Thus, the review has the following objectives: 

1) To describe the demographics of corvid social cognition research: Where are studies 

performed, on which species and on which topics? 

2) To outline the sample sizes used in corvid social cognition research and how or whether they 

were justified 

3) To collect the claims papers on corvid social cognition make and categorise these as each 

other positive, negative or inconclusive (sensu Chapter 5), as an indirect measure of 

publication bias 

4) To collect and investigate the p-values distributions of the focal hypothesis tests for each 

paper, as an indirect measure of evidence strength and publication bias 

5) To extract the frequency of direct replication, experimental blinding and inter-observer 

reliability calculation across the field 

6) To extract the frequency of accessible data and code across the field 

 

6.1. Methods 

6.1.1. Eligibility criteria 

Articles were included in the review if they fit all of the following criteria:  

1. Article Type: Original research article, published in an academic journal or book 

2. Language: English language 

3. Species: Paper has at least one study on corvids and this study is on social cognition 

4. Intervention: Researchers performed a manipulation or intervention in the environment, i.e., not 

passive observations 
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5. Topic: Social cognition, defined as the study of how corvids acquire, store or process social 

information, or information that researchers have provided to copy some element of a social 

scenario. The primary focus of at least one part of the paper should be cognitive rather than 

behavioural, although it is recognised that there is no clear distinction 

 

6.1.2. Information sources 

Scopus was searched between the 7th and 15th April 2021. No other databases were searched, 

meaning that two non-Scopus-indexed journals that could have published articles on corvid social 

cognition, Animal Behavior and Cognition and International Journal of Comparative Psychology, were not 

represented in this search.  

6.1.3. Search Strategies 

To define social cognition, LO, solicited key words associated with the study of social cognition from 

all collaborators on this project and several further experts in the field. Using these key words to search 

Scopus, I identified a total of 7,835 papers (see Table 1 of the Appendix for the exact terms and search).  

6.1.4. Selection Process 

6.1.4.1.  First screen 

While on Scopus, I performed the first screen of papers by deselecting papers that were clearly 

off topic for export based on their titles and abstracts. These included studies from different disciplines 

or not on corvids. A total of 909 candidate papers were exported for the second screen.  

6.1.4.2.  Second screen 

The second screen comprised of a calibration phase (25% of articles) and a double-blind phase 

(75%) and based on the titles, abstracts and – if required - full texts of the articles. Two coders (BGF and 

LO) rated whether each article contained at least one study fulfilling our inclusion criteria. In the 

calibration phase, LO was not blind to my answers, and in the double-blind stage LO was. I then reviewed 

any disagreements and made a decision as to whether to include or exclude the article, or – in a case of 

uncertainty - entered it into the third screen. 

6.1.4.3.  Third screen 
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Articles over which there was uncertainty in the second screen were entered into the third screen. 

Here, 7 coders voted whether each paper fit the inclusion criteria or not. The majority vote was taken as 

the final decision in each case.  

6.1.4.4.  Extraction and quality control 

During data extraction and quality control, coders had the opportunity to flag articles or studies that 

were included as not fitting the inclusion criteria. These decisions were reviewed by myself or ME after 

quality control.  

6.1.5. Data Extraction 

Twelve coders with expertise in animal cognition, and often corvid social cognition research, 

participated in data extraction (myself, AB, AV, CT, CW, EGP, EL, JA, KB, LO, ME, SP)11. I added a topic area 

to each paper, and coders were asked to indicate topics with which they were most familiar. Coders were 

then non-randomly assigned 1/12 of the papers according to their topics of expertise. Each coder either 

had participated in the physical cognition project of Chapter 5, or was trained on several papers of the 

same project. During this training, and during an additional pilot phase, a coding manual was developed 

for use during the extraction process. This manual, available at https://osf.io/3aznq/, detailed how the 

data items would be extracted for every social cognition study in each of the selected articles. These data 

items are detailed in Table 9. 

Table 9: Data items extracted in the review 

Category Data Item Data Extracted 
Extracted 

per 

Demographics Laboratory The surname of the principal 

investigator of the laboratory most 

closely associated with the 

laboratory 

Article 

Country The country in which the research 

was conducted 

Article 

 
11 AB: Amalia Bastos; AV: Alizée Vernouillet; CT: Camille Troisi; CW; Claudia Wascher; EGP: Elias Garcia-Pelegrin: EL; 
Ed Legg; JA: Sarah PlacìSP: ; Mahmoud ElsherifME: ; ć; LO: Ljerka Ostoji; KB: Katharina BrechtJessie Adriaense  
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Sample Species The common and Latin names of 

the species tested 

Study 

Sample Size The number of animals recruited 

for the study 

Study 

Sample Size 

Justification 

Whether the total sample size was 

justified, and if so, what the 

justification was 

Study 

Claims Title Claim The title of the article if the title 

could be construed as a claim 

Article 

Title Claim Level Whether the title claim was 

positive, negative or inconclusive1 

Article 

Abstract Claim The main theoretical claim of the 

article in the abstract 

Article 

Abstract Claim Level Whether the abstract claim was 

positive, negative or inconclusive1 

Article 

Result Result Text The text of the result that most 

closely matched the main claim in 

the abstract 

Study 

p-value The p-value from the result text 

most closely related to the article’s 

main claim 

Study 

Design Replication Whether the study was a direct 

replication, and whether this was in 

the same species or a different 

species to the original study 

Study 

Direct Interaction Whether the experimenter was 

directly interacting with the animals 

during the study, where direct 

interaction was defined as any 

possibility of the experimenter 

producing Clever-Hans-like effects 

Study 
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Experimental Blinding Whether the experimenter was 

blinded to the conditions when 

performing the study 

Study 

Measurement How the behaviour was measured Study 

Inter Observer 

Reliability (IOR) 

Whether any inter-observer 

reliability was calculated 

Study 

IOR Blinding Whether the second coder was 

blinded to the hypotheses, 

conditions or results of the first 

coder when coding 

Study 

Data and Code 

Accessibility 

Open Data Whether data were fully (all raw 

data necessary to reproduce the 

analyses), partially (some raw data 

available, but not enough to 

reproduce the analyses) or not 

available 

Study 

Open Code Whether any code that would be 

able to reproduce the analysis was 

shared 

Study 

Citations Web of Science 

Citations 

Scopus automatically extracted the 

number of citations per Web of 

Science 

Article 

1The definitions for positive, negative or inconclusive claims were adapted from Chapter 5: Positive: “a 

claim that suggests the presence of an ability in the animal(s), a (novel) effect, the animal(s) “passed” a 

test or a claim of a discovery about the similarities or differences between two groups of animals’ 

cognition.”; Negative: “a claim that suggests the absence of an ability in the animal(s), the absence of 

novel effect, or that the animal(s) “failed” a test, and that this failure was due to the animals not having 

the required cognitive or behavioural abilities.”; Inconclusive: “a claim that does not strongly suggest that 

the animal(s) have or do not have a certain ability or that an effect does or does not exist. Instead, it will 

point to inconsistencies in its results, confounding factors or any other explanations for the animals’ 

performances, which means the data is not diagnostic for the ability in question. This also includes mixed 

evidence about a claim.” 
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6.1.6. Double blind extraction 

I double-blind coded 38 articles (25%). These studies were randomly selected from those coded by 

the other coders using the function ‘sample’ in R, such that 4 articles from 10 other coders were double-

blind extracted. Two of the 40 studies were identified as not fitting the inclusion criteria and thus 

excluded.  

6.1.7. Quality control 

128 (84%) of articles further went through a non-blind quality control procedure. Here, a second 

coder reviewed the data extracted from each article. If the quality controller identified a mistake, they 

classified this as a major disagreement, and if the quality controller disagreed but was uncertain, for 

example in the case of borderline claims, they classified this as a minor disagreement. Quality controllers 

were not required to go back to the main text to verify each statement, rather they checked whether, for 

example, the extracted result made sense given the extracted claim. However, for seven of the data items 

(Abstract Claim, Direct Interaction, Experimental Blinding, IOR, IOR blinding, Open Data and Open Code), 

quality controllers did return to the full text to ensure no relevant information was missed. Myself and 

ME then reviewed all disagreements highlighted during quality control (50% of articles each) and made a 

final decision on what entered the final dataset, returning to the original article if necessary. Finally, LO – 

one of the most experienced team members - performed the quality control checks for all laboratory and 

country decisions in the dataset. 

6.1.8. Analysis 

All data are presented descriptively and visualised where appropriate. 

6.2. Results 

6.2.1. Study inclusion 

The Scopus search produced 7835 articles, of which 909 were retained following the first title/abstract 

screen. Next, 478 duplicates were removed, and of the remaining 431 articles, 266 were excluded during 

the second screen. During the initial, non-blind stage of the second screen (25% of articles), agreement 

between myself and LO was 94.4%. For the remaining 75% of articles, myself and LO agreed on 88.8% of 

inclusion decisions, giving an overall agreement rate of 90.4%. Twelve articles were entered into the third 

screen, in which seven of the coders voted on whether or not an article should be included for further 

extraction. Of these, a further eight articles were excluded, and four more articles were excluded during 
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data extraction due to not being an interventional study. These data are presented in Figure 15. The total 

number of articles on social cognition in corvids where the authors made any intervention was 153, some 

of which contained multiple studies, such that there was a total of 226 different studies.   

Figure 15: A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRIMSA) diagram of the 
screening process 

6.2.2.  Double-blind data extraction and quality control 

The inter-rater agreement for the double-blind coding and quality control are detailed in Table 10 and 

Table 11, respectively. For most measures, inter-rater agreement was good, with the following exceptions. 

In the double-blind coding, coders only extracted 56% of the same sentences for the result text 

corresponding to the main claim of the article (and because of this only agreed on 62% of p-values as 

these were usually within the result text). This is likely due to several potential results mapping onto the 

main claim of the paper, of which the extractors had to choose one. However, in quality control, the 

quality controllers agreed with 95% of the extracted results, suggesting that in most cases original coders 

were choosing justifiable results given the article’s main claim. Inter-rater agreement was also low for the 

direct interaction and inter-observer reliability blinding items, both in the double-blind and the quality 
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control stages, which reflects a surprising level of ambiguity in how interaction and blinding are reported 

in papers.  

Table 10: Inter-rater agreement following double blind extraction 

Data Item N agree N disagree % agree 

Laboratory 43 7 86 

Country 46 4 92 

Species 47 3 94 

Sample Size 36 14 72 

Justification of Sample 

Size 

47 3 94 

Title Claim 29 9 76 

Title Claim Level 14 2 88 

Abstract Claim 29 9 76 

Abstract Claim Level 29 9 76 

Result Text 28 22 56 

p-value 31 19 62 

Replication 42 8 84 

Direct Interaction 33 17 66 

Experimental Blinding 

(if agreed on Direct 

Interaction) 

7 0 100 

Measurement 46 4 92 

Inter Observer 

Reliability (IOR) 

44 6 88 

IOR Blinding 12 5 71 

Open Data 43 7 86 

Open Code 49 1 98 

 

Table 11: Number of items verified or commented on during quality control 

Data Item N verified (%) Minor comments Major comments 
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Species 197 (99%) 1 0 

Sample Size 176 (89%) 15 7 

Sample Size 

Justification 

188 (95%) 7 4 

Title Claim 118 (92%) 6 2 

Title Claim Level 117 (91%) 9 5 

Abstract Claim 110 (86%) 13 4 

Abstract Claim Level 117 (91%) 7 76 

Result Text 188 (95%) 8 2 

p-value 184 (93%) 9 5 

Replication 182 (92%) 13 2 

Direct Interaction 162 (82%) 22 14 

Experimental Blinding  173 (87%) 13 12 

Measurement 174 (88%) 14 10 

Inter Observer 

Reliability (IOR) 

190 (96%) 4 4 

IOR Blinding 189 (95%) 5 4 

Open Data 188 (95%) 9 1 

Open Code 193 (97%) 1 4 

 

6.2.3. Demographics 

6.2.3.1.1. Laboratory 

Forty-seven different laboratory groups were identified across sixteen different countries Figure 

16. However, during quality control, LO and I discussed doubts about the utility of the laboratory data, as 

multi-lab collaborations and shared authorships made these data difficult to interpret. They are therefore 

not presented systematically, although the data are used occasionally in the species and topics discussion.  
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Figure 16: The distribution of interventional studies of corvid social cognition  

 

6.2.3.1.2. Species and topics 

A total of 22 different species were tested across the 153 articles, 16% of all 136 recognised corvid 

species (Table 12). Ravens were the most often represented species, tested in over 1/3rd of articles, and 

California scrub-jays and Western jackdaws were also tested in over 1/6th of all articles. For many topics 

and species combinations, a single research group was either the only research group studying them or 

had published over three-quarters of all research. Because of the uncertainty around the laboratory data, 

this is only a tentative conclusion, but the example of the laboratory I performed this research in is given 

for illustrative purposes: The Comparative Cognition Lab at the University of Cambridge published 18 of 

20 papers on cache protection, perspective taking or theory of mind in California scrub-jays, and all 9 of 

such studies in Eurasian jays. The topics detailed in Table 12 are non-definitive and used for basic 

description only.  
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Table 12: The species represented in our dataset of interventional studies on corvid social cognition. N 
studies refers to the number times a species was represented in the sample, and Topics details which 
topics were studies in them, with the number in brackets being the number of studies within that 
species and topic.  

Species 
N 

studies 
Topics 

California scrub jay 

Aphelocoma californica 

25 Social response to death (5) 

Cache-protection, perspective taking or theory of mind (20) 

Florida scrub jay 

Aphelocoma coerulescens 

4 Social learning (2) 

Cache-protection, perspective taking or theory of mind (2) 

Transvolcanic jay 

Aphelocoma ultramarina 

1 Individual recognition (1) 

White-throated magpie-jay 

Calocitta formosa 

1 Social learning (1) 

American crow 

Corvus brachyrhynchos 

8 Social learning (5) 

Individual recognition (1) 

Cache-protection, perspective taking or theory of mind (2) 

Common raven 

Corvus corax 

54 Affiliation (2) 

Cooperation or prosociality (12) 

Communication (5) 

Contagion (3) 

Individual recognition (1) 

Relationship recognition (1) 

Social learning (6) 

Cache-protection, perspective taking or theory of mind (23) 

Hooded crow 

Corvus cornix 

3 Mirror response (2) 

Transitive inference (1) 

Carrion crow 

Corvus corone 

12 Communication (1) 

Individual recognition (5) 

Transitive inference (1) 

Cooperation or prosociality (4) 

Mirror response (1) 



116 
 

Rook 

Corvus frugilegus 

10 Cooperation or prosociality (3) 

Contagion (3) 

Individual recognition (2) 

Cache-protection, perspective taking or theory of mind (2) 

Large-billed crow 

Corvus macrorhynchos 

6 Individual recognition (4) 

Mirror response (1) 

Social learning (1) 

Western jackdaw 

Corvus monedula 

25 Cooperation or prosociality (3) 

Communication (1) 

Individual recognition (3) 

Mirror response (2) 

Relationship recognition (1) 

Social learning (7) 

Cache-protection, perspective taking or theory of mind (3) 

Transitive inference (5) 

New Caledonian crow 

Corvus moneduloides 

11 Cooperation or prosociality (5) 

Mirror response (2) 

Social learning (4) 

House crow 

Corvus splendens 

1 Mirror response (1) 

Blue jay 

Cyanocitta cristata 

5 Cooperation or prosociality (2) 

Individual recognition (2) 

Social cue use (1) 

Azure-winged magpie 

Cyanopica cyanus 

6 Mirror response (4) 

Cooperation or prosociality (2) 

Eurasian jay 

Garrulus glandarius 

11 Social learning (2) 

Cache-protection, perspective taking or theory of mind (9) 

 

Pinyon jay 

Gymnorhinus cyanocephalus 

10 Cooperation or prosociality (3) 

Social bonding (2) 

Cache-protection, perspective taking or theory of mind (3) 

Transitive inference (2) 



117 
 

Clark's nutcracker 

Nucifraga columbiana 

10 Cooperation or prosociality (1) 

Mirror response (4) 

Cache-protection, perspective taking or theory of mind (5) 

Siberian jay 

Perisoreus infaustus 

1 Social learning (1) 

Eurasian magpie 

Pica pica 

4 Individual recognition (2) 

Mirror response (2) 

Multi-species 

Aphelocoma wollweberi 

Aphelocoma californica 

Cyanopica cyanus 

Cyanopica cyana 

Corvus monedula 

Corvus frugilegus 

Corvus corone 

Corvus corax 

Corvus macrorhynchos 

Corvus moneduloides 

Corvus corone 

Corvus corax 

Gymnorhinus cyanocephalus 

Nucifraga columbiana 

Perisoreus infaustus 

18 Cooperation or prosociality (4) 

Mirror response (2) 

Social interaction and attention (2) 

Social learning (8) 

Transitive inference (2) 

 

6.2.4. Sample size 

6.2.4.1.1. Sample size 

The median sample size across all experiments was 9 (min: 2, mean: 13.75, max: 167). 

6.2.4.1.2. Sample size justification 

The sample size decision was coded as justified in only 14 (6%) of experiments. Of these, eight were 

justified by the constraints researchers faced, e.g., testing all available animals, and for the other six, 

statistical power was mentioned.  

6.2.5. Claims 

6.2.5.1.1. Title claim level 
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Ninety-two of the 153 articles (60%) had titles that coders interpreted as claims. Of these, 74 

(80%) were coded as positive, 7 as inconclusive (8%), and 11 as negative (12%). 

6.2.5.1.2. Abstract claim level and citations 

Of the 153 articles, the abstracts main claim was coded as positive in 118 (77%), inconclusive in 19 

(12%), and negative in 24 (16%) cases. Figure plots the number of citations each article received by year 

of publication and by claim type. Year of publication was a strong predictor of citation count (F(1, 158) = 

58.8, p < .0001), whereas there was no statistically significant relationship between claim type and citation 

number after controlling for year (F(2, 158) = 1.81, p = 0.17). Nevertheless, in each year, the most cited 

paper had a positive claim, and all papers with over 50 citations had positive claims. It seems likely that 

positive claims are cited more frequently than negative claims, but I lacked the sensitivity in our sample 

to detect this.  

Figure 17: Citation number of articles by year and claim type 

6.2.6. Evidence 
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6.2.6.1. P-values 

One-hundred and thirty-four of the 223 experiments reported results with exact p-values. The 

distribution of these are plotted in Figure 18. There is a clear decrease in the number of p-values just 

above 0.05 compared to those that are just below, with a ratio of 5.25:1 of p-values from 0.03-0.05:0.05-

0.07 (see Chapter 7 for a longer discussion on interpreting this drop in p-value density). A further 63 

experiments reported p-values as inequalities, and these are plotted in Figure 19. 

Figure 18: p-value distribution of the exact p-value most related to an article’s main claim across 134 
studies of corvid social cognition. 
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Figure 19: p-value distribution of the p-values most related to an article’s main claim across 223 studies 
of corvid social cognition: Left panel, p-values reported as the inequality <; central panel, exact p-values; 
right panel, p-values reported as the inequality >. 

 

 

6.2.6.2. Sub-group analyses 

I had originally planned to perform sub-group analyses of the p-value distributions by topic area. 

However, upon exploring the data for the theory of mind/cache protection topic (Figure 20) – the largest 

subgroup - it was evident that the number of studies per subgroup was too small to facilitate a meaningful 

analysis.  
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Figure 20: p-value distribution of the p-values most related to an article’s main claim across 52 studies of 
corvid social cognition. For clarity, 12 p-values larger than 0.1 were not plotted. Left panel, p-values 
reported as an inequality ‘<’; central panel, exact p-values; right panel, p-values reported as an equality 
‘>’. 

6.2.7. Design 

6.2.7.1. Replication 

Of the 226 studies, 56 were identified as replications (25%). Thirty-six of these (16% of the total 

sample), were replications with a different species, in which the same paradigm has been used in a 

different species, and 20 (9% of total sample), were within-species replications, i.e., true “direct” 

replications. Figure 21 plots the rate of replication across years.  
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Figure 21: The rate of direct replication studies in corvid social cognition research 

6.2.7.2. Experimental Blinding 

Experimenters directly interacted with animals in a manner that could produce experimenter 

effects, if blinding was not used, in at least 81 studies (36%). Experimenters did not directly interact with 

animals during data collection in 98 studies (43%). Surprisingly, for the remaining 47 (21%) studies, 

methods were insufficiently described such that it was unclear to three experts (the original coder, quality 

controller and final reviewer) whether or not the experimenter was in direct interaction with the animals 

or not, in a manner that could bias the results.  

When experimenters were in direct interaction with the animals, they were reported as blinded 

in only 9 of the 81 studies (1%). When it was coded as unclear whether the experimenters were in direct 

interaction, they were reported as blinded in only 7 of the 47 studies (15%). 

6.2.7.3. Inter-observer reliability 
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The following methods were used to score behaviour: coding off video recordings (104 studies, 

46%); direct observations (28 studies, 12%), indirect observations (17 studies, 8%); automatic observation 

(e.g., touchscreen, 14 studies, 6%); and mixed approaches (35 studies, 15%). Again, it was unclear to three 

experts what measurement technique was used in 27 (12%) of the coded studies.  

A second observer was used, and inter-observer reliability (IOR) calculated, for 83 studies (37%). 

These second observers were reported as blinded in any fashion for 35 studies (40% of all studies that 

calculated IOR). More specifically, 14 studies (17%) reported that their second observer was blinded to 

the hypotheses of the study, 10 (12%) that their second observer was blinded to the conditions they were 

viewing, and only 2 (2%) that the second observer was blinded to the results of the first observer.  

6.2.8. Data and code accessibility 

6.2.8.1. Open data 

Full data were openly accessible for 29 studies (13%), and some raw data – but not enough to 

reproduce the analyses – were available for a further 18 (8%) of studies. Data were inaccessible for the 

remaining 75% of studies. Figure 22 plots the data availability of the coded studies by publication year.  

 

Figure 22: Data availability of corvid social cognition studies across publication year.  
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6.2.8.2. Open code 

Analysis code was openly available for 15 (7%) of studies.  

6.3. Discussion 

This study provides a preliminary map and risk-of-bias assessment of interventional studies of 

corvid social cognition. Studies across the field may be considered at high risk-of-bias because of, i) the 

siloed nature of the field, ii) small sample sizes (but see Smith and Little (2018)), iii) positive claims 

dominating the literature but a p-value distribution indicating many negative results have not been 

published, and iv) the lack of reported blinding procedures for both experimenters and second observers. 

Moreover, the computational reproducibility and robustness of analysis strategies in the field can rarely 

be assessed due to historically low rates of data and code sharing. I now discuss each of these in turn.  

While the analysis was not formalised, our study provides some evidence to support the notion 

that the research field is siloed – often with a single group publishing the majority of papers on a single 

species-topic combination, although there are exceptions. Sample sizes in corvid social cognition research, 

with a median of 9, are consistent with those reported elsewhere in animal cognition research (Chapter 

5; Many Primates et al., 2019). Notably, sample sizes were rarely justified, with only 2.7% of papers 

discussing statistical power when detailing their sample. This is concerning as it suggests researchers have 

not been formally considering the risk of false negative results when designing studies, something that 

might be especially common with small sample research if many trials are not used (Chapter 2).  

This study provides good evidence of a publication bias against negative results in corvid social 

cognition research. According to our coding scheme, the literature primarily consists of positive claims 

(80% of title claims and 77% of abstract claims), which was coupled with a clear drop in p-values above 

the 0.05 threshold (Figure 19). It seems most likely that there are three components to the corvid social 

cognition literature, i) clear true positive results with a high a priori likelihood (associated with the smallest 

p-values), ii) uncertain results at high risk of effect size overestimation (associated with p-values just under 

0.05), and iii) a considerable number of unpublished negative results.  

Within-species direct replication studies (9% of all studies) occurred at a rate slightly higher than 

those found for human psychology (1.6% pre-2012 Makel et al., 2012) but near identical to primate 

cognition research between 2014 and 2019 (8.7%, Many Primates et al., 2019). While this does not 

constitute habitual replication (nor is habitual direct replication an efficient long-term strategy, especially 

if publication bias can be minimized (Coles et al., 2018; Field et al., 2019; Halina, 2021; Isager et al., 2021)), 
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at least some replication studies have been published in the field. Nevertheless, the recent replication 

failures of (Amodio et al., 2021; Crosby, 2019) highlight the continued short-term need for direct 

replication studies of previously published findings in corvid social cognition research.  

Concerningly, the rate of articles reporting that their experimenters during data collection (12.5%) 

and second coders (16%) during observation were blinded was low, and difficult for us to extract. Blinding 

has consistently been recognised as key to minimising bias in animal experiments (Beran, 2012; Holman 

et al., 2015; Tuyttens et al., 2014, 2016), but rarely reported: Burghardt et al., (2012) reported that less 

than 10% of animal behaviour articles from five journals reported either experimenter or inter-rater 

blinding, and Kardish et al., (2015) reported a blinding rate of 13.3% in ecology, evolution and behaviour. 

While our figures were low and are extremely concerning, they might slightly underestimate the actual 

rate of blinding due to errors in reporting. In line with this, when second coders were reported as blinded, 

it was rarely made explicit what they were blinded to – whether this was the hypotheses, conditions, or 

results of the first coder. Similarly, it is possible that some authors may not report blinding as they assume 

that readers would infer appropriate and common blinding procedures have been followed – however, 

such a lack of reporting would make it difficult to reproduce or critically assess the studies in question. 

Reporting guidelines, such as the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines 

(Sert et al., 2020), could facilitate stronger reporting of blinding procedures in animal cognition research. 

 Of similar concern was the low rate of data and code availability in the field, which sets a 

theoretical maximum for computational reproducibility without contacting the original authors. That data 

and code sharing was low across all years is unsurprising given data sharing mandates are relatively new 

and this finding is in-line with previous research from other fields (e.g., Culina et al., 2020; Minocher et 

al., 2020). Nevertheless, the conclusion remains that most analyses in corvid social cognition cannot be 

readily reproduced, and the data are unavailable for large meta-synthesis projects. Retrospectively, 

researchers could seek to archive past data, and prospectively make datasets and code openly available 

as far as ethically possible.    

While this study highlights general concerns with the current state of the corvid social cognition 

literature, it does not mean that any individual study has been identified as biased. Studies must be 

assessed on an individual basis, something that is especially important given the level of heterogeneity in 

the field. For example, it makes no sense to decrease our confidence in a report of transitive inference in 

Siberian jays, just because an independent study of theory-of-mind in carrion crows did not use a blinding 

procedure (hypothetical examples). However, overall, this study does highlight the continued need for 
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caution when interpreting findings in corvid social cognition research. Biasing factors, such as publication 

bias and experimenter effects have not been clearly avoided, and truly independent research seems rare 

for most species-topic combinations (see Chapter 4). Finally, this study highlights four key areas in which 

corvid social cognition research can improve in the future: i) replication of uncertain findings, ii) publishing 

of non-significant results, iii) implementing of blinding procedures, and iv) improved reporting of blinding 

procedures.  

The current Chapter (on corvid social cognition) and Chapter 5 (on physical cognition) extracted a 

range of data to describe and investigate specific subfields of animal cognition research. Next, in Chapter 

7, I will provide a wider investigation of a single issue in animal cognition research, namely on how 

researchers report and interpret non-significant findings and is the final Chapter of secondary data 

analysis in this thesis. 
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7. Chapter 7: Reporting and interpreting statistically non-significant 

results in animal cognition research 
 

Null hypothesis significance testing (NHST) is the primary method of statistical analysis in animal 

cognition research, although the lack of a reference for this truism highlights the scarcity of descriptive 

research in the areas of this thesis in animal cognition. However, when NHST produces results that are 

not statistically significant, these are often difficult to interpret. If researchers test null hypotheses (i.e., 

there are no differences between a group or conditions), a non-significant result could result from a lack 

of any effect in the population (i.e., a true negative), or a failure to detect some true difference (i.e., a 

false negative). Researchers who design studies with high statistical power to detect effect sizes of 

theoretical interest aim to minimise the probability of these false negative errors. For example, a 

statistical power of 90% to detect a given effect size means that, in the long run, the researcher would 

correctly reject the null hypothesis 90% of the time, if the pre-specified effect size were correct. 

However, how negative results are reported and interpreted following the NHST logic, has been 

criticised on several grounds (Gigerenzer et al., 2004; Lambdin, 2012). The most prominent criticism is 

that researchers often misreport or misinterpret non-significant results as showing that there was no 

effect in the specific sample tested, or in the population at large (Aczel et al., 2018; Fidler et al., 2006; 

Hoekstra et al., 2006), even when these null hypotheses might be implausible (Cohen, 1994; Gelman & 

Carlin, 2014). In this chapter, I explore how researchers have reported and interpreted non-significant 

results in animal cognition and related fields, using a manually extracted dataset of negative claims 

following NHST from over 200 articles (Study 1). In Study 2, I further examined the p-value distribution 

of these negative results to assess if they deviated from a uniform distribution and various simulated 

distributions, and extended this study of p-value distributions to a larger and automatically extracted 

dataset of animal cognition results (Hartgerink, 2016). 

7.1. Null hypothesis significance testing and p-values 

When using NHST, researchers attempt to reject a statistical model (the null hypothesis) with their 

data while controlling the rate at which they will make false-positive decisions in the long-term (Neyman 

& Pearson, 1933). Most often, this statistical null is that there is absolutely no difference between two 

groups or conditions (for example a mean difference of 0 for a t-test; ‘nil’ hypothesis; Cohen, 1994), or in 

the case of a one-tailed test, that the difference will not be zero or that it will not be in a certain direction, 

i.e., researchers make a directional prediction for their alternative hypothesis. A statistical test then 
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produces a p-value, i.e., the probability of observing the researcher’s data or more extreme data if the 

null hypothesis and all its assumptions were true, Pr(d(X) ≥ d(x0); H0), shortened hereafter to P(D|H). If 

the p-value is lower than a pre-specified threshold (the α level), the statistical null hypothesis is rejected 

in favour of an alternative hypothesis (Neyman & Pearson, 1933), whereas if the p-value is larger than the 

pre-specified threshold, the statistical null hypothesis should not be rejected. However, how researchers 

should behave towards their null and alternative hypotheses following a non-significant result has been a 

continued locus of criticism of NHST in science.  

When performing NHST, researchers can make statements about the long-run error probabilities 

of their test procedures. For example, with an α level of .05 and if no α-inflating research practices were 

used (Simmons et al. 2011), they can say that in the long run they would not reject H0 more than 5% of 

the time, if H0 were true. Similarly, if the design had 90% power to detect their smallest effect size of 

interest, in the long run they would only fail to reject H0 10% of the time, if the smallest effect size did 

exist in the population.  

7.2. Accepting the null: How much of an error? 

Formally, it is an error to conclude that there is evidence in favour of the null following a non-

significant result. The arbitrary nature of the α level highlights this: say we calculate a p-value of 0.08 

with an α level of .05. By not rejecting H0 in this instance, we can say that in the long run we would not 

reject H0 more than 5% of the time, if it were true, when performing this procedure. However, if we had 

chosen an α level of .10 instead, we should have rejected H0. Clearly, then, the p-value when using NHST 

is not a direct indication of the strength of evidence for or against H0, but must be interpreted relative to 

error rates. However, despite the p-value not being the probability of the null hypothesis being true, 

survey studies suggest researchers do interpret p-values in such a way (e.g. Goodman, 2008). Moreover, 

scientists often misreport non-significant results as evidence of absence of a difference between groups 

of conditions or evidence of no effect when this inference is not necessarily warranted. For example, 

Hoekstra et al., (2006) reported that 41% of articles containing non-significant results in 1994-5 in 

Psychonomic Bulletin & Review interpreted the non-significant results as “evidence of no effect”, a 

figure which rose to 60% in 2002-4. Similarly, Fidler et al. (2006) found that 63% of articles in 2000-1 in 

Conservation Biology and Biological Conservation reported non-significant findings as “evidence of no 

effect”. More recently, Aczel et al., (2018) found that 72% of non-significant results were reported as 

“no effect” in the abstracts of 2015 articles in Psychonomic Bulletin & Review, Journal of Experimental 

Psychology: General, and Psychological Science. Such an error might be especially important in animal 
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cognition research, in which a combination of small sample sizes and low trial number may limit the 

ability of researchers to design studies with high statistical power to detect the minimum effect size of 

theoretical interest, and who also sometimes ask all or nothing questions about whether certain animals 

have certain cognitive abilities or not.  

While accepting the null is an error, just how severe an error it is requires discussing. In their 

survey of 86 Psychonomic Bulletin & Review Hoekstra et al. (2006, p. 1036) reported that: “We found the 

serious mistake of accepting the null hypothesis and claiming no effect in 60% (CI: 53%, 66%) of the articles 

that reported statistically nonsignificant results” (emphasis added). And interpreting a non-significant 

result as if there were no differences between conditions ranks at number 2 of Goodman’s (2008) “Dirty 

Dozen” p-value misconceptions. However, just because a researcher might report the results of 

significance tests incorrectly, this does not mean that they themselves, or their readers, necessarily 

interpreted the significance test incorrectly. In their 1933 paper, Neyman-Pearson often talked about 

accepting H0 following a result that was not statistically significant (Neyman & Pearson, 1933). In fact, as 

Mayo (2018, p. 135) writes, Neyman used the term acceptance as shorthand, and even preferred the 

phrase “No evidence against [the null hypothesis] is found” to “Do not reject [the null hypothesis]” 

(Neyman, 1976, postscript, p. 749). If scientists equate phrases such as “there were no differences 

between conditions (p > 0.05)” or “therefore we accept H0” with “there was no statistically significant 

difference between the conditions” or “therefore we do no reject H0”, then the “serious mistake” of 

accepting the null becomes an issue of precision in language, rather than an egregious error. This is 

exemplified in cases where the observed experimental data are clearly more in-line with the null 

hypothesis than the experimenters’ hypothesis of interest. For example, consider a researcher 

comparing10,000 wild and 10,000 hand reared birds’ latencies to approach a novel object (with 99% 

power to detect a pre-specified effect size of interest of 2 seconds), and observed a difference of 0.02 

seconds. This difference may even be statistically significant, but the effect size is clearly more compatible 

with the null hypothesis of 0 difference than the researchers minimum effect size of interest. Here, saying 

“there was no difference between the latency of wild and hand reared birds to approach the novel object 

(p > .05)”, although literally incorrect, does not seem to be an error of great consequence.  

7.3. Exploring non-significant result reporting and interpretation in animal cognition 

Understanding how animal cognition researchers have reported and interpreted non-significant 

findings is an important step to, i) identify how often negative conclusions in animal cognition might be a 

result of NHST misreporting or misinterpretation, and ii) highlighting areas in which animal cognition 
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researchers can improve their statistical inferences and reporting to maximise the information they 

extract from negative results, and communicate this clearly. In this Chapter, I designed and led a project 

which explored how researchers in fields related to animal cognition report and interpret non-significant 

results, building on the methods used in similar studies in psychology and conservation biology (Study 1; 

Aczel et al., 2018; Fidler et al., 2006; Hoekstra et al., 2006). During this project, we were also able to extract 

the p-values associated with the negative results in our sample, which provided an opportunity to examine 

the distribution of this p-value and compare it to various hypothetical distributions. This comparison was 

performed in Study 2, and builds a picture of the properties of studies that are producing negative results 

in animal cognition research. To complement this analysis, I made use of a larger, automatically extracted 

dataset of animal cognition p-values (Hartgerink, 2016), which also enabled data on publication bias to be 

assessed. 

7.4. Study 1: Reporting and interpreting non-significant results in animal cognition 

In order to investigate how animal cognition researchers report negative results, we (the project 

team) manually extracted text and data of non-significant results from 18 journals in animal cognition, 

behaviour and welfare, one pre-print server, and from articles recommended by PCI: Animal Science in 

Study 1. We extracted data from articles reporting non-significant findings in their titles, abstracts and 

results section and classified how the authors interpreted them. Our classification was descriptive and 

aimed to characterise the different ways in which researchers reported the results of non-significant 

findings, and how these were translated into claims about theories and populations. Specifically, for 

negative results in the abstract or results section about the specific sample tested in the study, we 

classified the negative result text into 3 categories: 1) “Non-significant or literally correct” interpretations 

that either reported that there was no significant difference between two conditions, or words to that 

effect, or reported a correct directional statement; 2) “No effect” interpretations that stated there was 

no a difference within the sample, when in fact there was — it was just not significant in the analysis; 3) 

“Ambiguous” interpretations that were statements about the results that neither suggest that samples 

were the same, nor that there was no significant difference. Similarly, for claims about the population in 

the abstracts or titles, I had three related categories: : 1) “Justified”: A statement that commented on 

statistical power, uses equivalence tests or otherwise justifies why a non-significant result suggests that 

there is no theoretically important difference in the population, or that the study provides no strong 

evidence of a difference, 2) “Caveated, ambiguous or similar”: An interpretation of the non-significant 

results as suggesting/indicating etc. that X and Y do not differ in the population, or showing that they are 
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similar or 3) “No effect”: An interpretation of the non-significant result as showing that X and Y do not 

differ in the population. 

7.4.1. Methods 

7.4.1.1.  Sample 

We extracted data from a total of 20 sources, comprising 18 peer-reviewed journals, one pre-

print server, and articles recommended through Peer Communities In. The 20 sources are detailed in 

Table 13. 

Table 13: Sources of articles containing negative results in their abstracts from outlets searched back in 
time from March 2021.  

Source N articles 

Animal Behaviour 13 

Animal Behavior and Cognition 14 

Animal Cognition 17 

Animals 15 

Applied Animal Behaviour Science 15 

Behaviour 14 

Behavioural Processes 15 

Ethology 16 

Frontiers in Psychology: Comparative 

Psychology 
14 

Frontiers in Veterinary Science: Animal 

Behaviour and Welfare 
15 

International Journal of Comparative 

Psychology 
13 

Journal of Applied Animal Welfare Science 15 

Journal of Comparative Psychology 15 

Journal of Ethology 15 

Journal of Experimental Psychology: Animal 

Learning and Cognition 
16 

Journal of Zoo and Aquarium Research 15 
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Learning and Behavior 15 

PeerJ: Animal Behaviour 15 

bioRxiv: Animal Behaviour and Cognition 14 

PCI: Animal Science 2 

 

7.4.2.  Data extraction and Classification 

Myself, AV, KB, EGP, LoN, PL, SF, EL, ME and LO12 performed the coding and were each assigned 

2 journals. Coders worked back through the sources from the most recent articles available in March 2021, 

until they had identified 15 articles containing negative statements in the titles or abstracts that 

corresponded to non-significant results from null-hypothesis significance tests in the article, or until all 

articles in that source had been viewed. If coders were uncertain about whether an article should be 

included, they continued until they had 15 that they were confident with, explaining why three journals 

had 16 or 17 articles extracted. Each coder screened the abstracts of each article of their assigned journals 

and identified any negative statements about either i) the specific sample tested in that study or ii) a wider 

population. If a negative statement was present, the coder then recorded the paper’s information (title, 

first author, journal and year) and the negative statement. For papers with multiple negative statements 

for either the sample or the population, the coder recorded the negative statement that they thought was 

most clearly related to the paper’s main claim, such that each paper had a maximum of one negative 

sample statement and one negative population statement. Next, the coder verified that the paper 

reported the results of NHST. If verified, the coder then extracted the text of the NHST that corresponded 

to the abstract claim from the results section of the manuscript, including the associated p-value. If there 

was more than one corresponding statistical test within an experiment, coders extracted the test result 

that they thought was most relevant to the claim. If the abstract claim was equally supported by multiple 

experiments, coders extracted the information from the first experiment presented. 

After the title, abstract claims (sample and population), result text and p-value had been 

extracted, the coder categorised how each negative statement was reported. Through piloting, discussion, 

from looking at the previous studies (Aczel et al., 2018; Fidler et al., 2006; Hoekstra et al., 2006), and 

discussion with a previous author (Aczel, personal communication), I developed three categories. For the 

 
12 AV: Alizée Vernouillet; KB: Katharina Brecht; EGP: Elias Garcia-Pelegrin; LoN: Laurie O’Neill; PL: Poppy Lambert; 
SF: Shannon Francis; EL; Ed Legg; ME: Mahmoud Elsherif; LO: Ljerka Ostojić 
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sample claims and result text, these were: 1) “Non-significant or literally correct” interpretations that 

either reported that there was no significant difference between two conditions, or words to that effect, 

or reported a correct directional statement; 2) “No effect” interpretations that stated there was not a 

difference within the sample, when in fact there was — it was just not significant in the analysis; 3) 

“Ambiguous, Similar or small effect size” interpretations that were statements about the results that 

neither suggest that samples were the same, nor that there was no significant difference between them 

(which were later split into “Ambiguous” and “similar or small effect size”). In addition to these 

descriptions, I developed a table of hypothetical statements that are detailed in Table 14, that were 

available to the coders during the project. 

Similarly, the title, if it contained a negative statement, and population claims from the abstracts 

were categorised into three categories: 1) “Justified”: A statement that commented on statistical power, 

use of equivalence tests or otherwise a justification why a non-significant result suggests that there is no 

theoretically important difference in the population, or that the study provides no strong evidence of a 

difference, 2) “Justified, caveated or ambiguous”: An interpretation of the non-significant results as 

suggesting/indicating etc. that X and Y do not differ in the population, or showing that they are similar, 

and 3) “No effect”: An interpretation of the non-significant result as showing that X and Y do not differ in 

the population. In addition to these descriptions, I developed a table of hypothetical statements that are 

detailed in Table 15. The exact coding manual used is available at https://osf.io/gdp6f/. 

Table 14: Example categorisation of sample-level claims 

Category 

Non-significant or 

literally correct 

 

No Effect 

 

Ambiguous, Similar, or 

small effect size 

 

Description Reports that there was 

no significant 

difference between 

two conditions, or 

words to that effect. 

A statement that there 

was not a difference 

within the sample, 

when in fact there was 

– it was just not 

significant in their 

analysis. 

A statement about the 

results that neither 

suggests they were 

the same, nor that 

there was no 

significant difference. 
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Examples There was no 

significant/detectable 

difference between X 

and Y. 

We did not detect a 

difference between X 

and Y (or any other 

statement implying 

failing to find a signal 

within noise). 

We did not find a 

significant effect.  

X was not significantly 

related to Y.  

X did not perform 

significantly above 

chance.  

X performed 

significantly above 

chance, but Y did not.  

There were no 

significant differences 

between X and Y’s 

performance.  

X did not do A more in 

condition Y than 

condition Z (and this is 

genuinely true in the 

data – see Note).  

There was no 

difference between X 

and Y.  

There was no effect. 

There was no evidence 

of an effect. 

There was no 

relationship between 

X and Y. 

We did not 

find/observe/see a 

difference between X 

and Y. 

We did not find an 

effect. 

We found no evidence 

of an effect. 

X performed at chance 

levels. 

X performed above 

chance, but Y did not 

(if Y > chance, but not 

significantly). 

X and Y performed 

equally. 

X did not do A more in 

condition Y than 

condition Z (but this is 

not true in the data). 

We did not 

find/observe/see a 

relationship between 

X and Y. 

We did not observe X 

performing above 

chance. 

 X and Y were similar. 

  

There was no 

large/clear difference 

between X and Y. 

  

There was no large 

effect of X on Y 
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We found that X 

performed above 

chance, but Y did not. 

. 

Table 15: Example categorisation of population-level or title claims 

Category 
Justified 

 

Caveated, Ambiguous 

or Similar 

 

No Effect 

 

Description Comments on 

statistical power, uses 

equivalence tests or 

otherwise justifies why 

a non-significant result 

suggests that there is 

no theoretically 

important difference 

in the population, or 

that the study 

provides no strong 

evidence of a 

difference. 

Interprets the non-

significant results as 

suggesting/indicating 

etc. that X and Y do 

not differ in the 

population, or are 

similar. 

Interprets the non-

significant result as 

showing that X and Y 

do not differ in the 

population. 

 

Examples Because the test was 

high-powered to 

detect a meaningful 

difference, this non-

significant result 

suggests that A is not 

related to Y in a 

theoretically 

important way. 

 

In addition to being 

not statistically 

different to each 

…Suggesting that X is 

not related to Y. 

 

…Indicating that X is 

not related to Y. 

 

…Suggesting/indicating 

that there is no 

difference between X 

and Y. 

 

… Meaning that X is 

not related to Y. 

… Showing that X is 

not related to Y. 

There is no difference 

between X and Y. 

X and Y do not differ. 

X and Y are similar. 

X and Y are the same 

(show the same effect, 

etc). 
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other, X and Y were 

also statistically 

equivalent (if a 

frequentist 

equivalence or non-

inferiority test was 

performed), 

suggesting that X is 

not meaningfully 

related to Y. 

 

 

Any statement about 

the test likely being 

low powered and this 

making it difficult to 

interpret what the 

results mean at the 

population level. 

Suggesting that X has 

not changed Y. 

 

Our results provide no 

strong evidence that X 

and Y are different. 

 

Suggesting that X and 

Y are similar. 

 

 

 

X does not change Y. 

Our results provide no 

evidence that X and Y 

are different. 

 

 

7.4.3.  Reliability and Quality Control 

Twenty-four articles (8.5%) were double-blind coded in order to assess the likely reliability of our 

coding scheme, and all articles underwent a quality control procedure involving a second coder to identify 

any mistakes or inconsistencies. 

7.4.3.1. Double blind extraction 

BGF independently coded 24 articles, namely the first four articles from six randomly chosen 

journals, blind to the results of the original coders. From this, I computed inter-rate agreement for each 

variable that was extracted (Title Population Claim Level; Title Sample Claim Level; Abstract Sample Claim 

Text; Abstract Sample Claim Level; Abstract Population Claim Text; Abstract Population Claim Level; Result 

Text; Result Level; p-value). 

7.4.3.2. Quality control 

All articles underwent quality control. Here, a second coder reviewed the data extracted from 

each article. The quality controller verified 1) whether a negative claim from the title/abstract have been 
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extracted, 2) that any negative claim extracted was really a negative claim, 3) whether the result that was 

extracted corresponded to the claim that was extracted, and 4) whether they agreed with the 

classification of each claim. If the quality controller identified a mistake, they classified this as a major 

disagreement, whereas if the quality controller disagreed but was uncertain about this judgment, for 

example in the case of borderline claims, they classified this as a minor disagreement. BGF reviewed all 

disagreements and made a final decision on what entered the final dataset, returning to the original article 

if necessary.  

7.4.4.  Analysis 

My primary analysis was descriptive. I present the percentage of claims in each category across 

the titles, abstract population claims, abstract sample claims, and result texts. To illustrate the types of 

claims placed in each category, I provide examples in tables. In addition, every categorisation can also be 

viewed in the open dataset. I used a Chi-squared test to compare whether, if a “no effect” interpretation 

was made in the results, it was more likely that a “no effect” interpretation would also be made in the 

abstract, compared to when a correct interpretation was made in the results 

7.5. Study 1 Results 

I extracted data from 302 articles. Of these, 18 were excluded due to their identified claim having 

no corresponding negative result of a NHST (e.g., if only descriptive statistics were used, or only a Bayesian 

analysis performed) and one was excluded due to excessive ambiguity in how the results were described. 

This left a final sample of 283 articles for analysis. 

7.5.1.  Reliability and Quality Control 

7.5.1.1.  Double Blind Coding 

For 24 articles (8.5% of the total sample), two authors (BGF and the author originally assigned to 

the journal) extracted all the data independently of each other. Only 5 of the article titles were identified 

as containing negative statements by either of the two coders, and from this, the two coders agreed on 

only 1 out of 5 (20%) of the articles about whether the title statement was about the tested sample or the 

population. Following discussion with the whole group, we agreed that it was often ambiguous whether 

the titles of articles were referring to the specific sample tested or a wider population, and so we decided 

to combine these measures and have no sub-group analysis for the title claim, deviating from our original 

plan. When considering the category (justified; caveated, similar or ambiguous; no effect) of the title 

claim, the two coders agreed on two out of six papers (33%). Three of the four disagreements occurred 
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when one coder did not interpret the title as a negative claim, e.g. as in “Evidence that novel flavors 

unconditionally suppress weight gain in the absence of flavor-calorie associations” (Seitz et al., 2020), and 

one where a coder appeared to have made an error. From discussion within the group, it was evident that 

these ambiguous cases — where the statements were not clearly written as negative statistical results, 

but more described some theoretical conclusion — proved the largest source of difficulty during the whole 

coding procedure, and this affected the reliability of the title claims and population claims from the 

abstract.  

 The coders identified 24 sample claims from the abstracts of the papers, from which they coded 

the same claim on 22 out of 24 occasions (91.6%). Of these 22 claims, the two coders agreed on 19 of 

their levels (86.3%). In contrast, the coders identified only eight population claims from the abstracts of 

articles, from which they agreed on three occasions (37.5%), and of these three, agreed on two of their 

levels (66.7%). From the results, coders recorded the same result for 16 of the 22 (72.7%) abstract claims 

they coded the same, and of these 16, agreed on 13 of their levels (81.3%), and extracted the exact same 

p-value for 10 of these 13 (76.9%).  

 In sum, the double-blind coding demonstrated good inter-rater consistency for how the abstract 

sample claims and associated results and p-values were extracted, even before our quality control 

procedures had been implemented. In contrast, inter-rater consistency was low for the title claims and 

population claims from the abstracts. This matched our subjective experience of the coding procedure, 

where we experienced many cases of population claims as vague and about a theoretical hypothesis that 

did not closely correspond to any particular negative result from the article. In contrast, the negative 

sample claims are often easily mapped onto a particular negative result in the text.  

7.5.1.2.  Quality Control 

Each article was checked by a quality controller. The initial coders identified 67 possible negative 

statements in the titles of papers, and the quality controller agreed with the classification of 39 (58%) of 

these statements, had a minor disagreement with six statements (9%), and a major disagreement with 

22 statements (33%). Of note, 16 of these 22 major disagreements came from a single repeated error in 

which an individual coder coded ‘ambiguous’ for titles containing no negative statement. In the abstract, 

coders identified 281 negative statements about the specific sample tested in the paper. Of these, the 

quality controllers agreed with the classification of 250 (89%), had minor comments about 16 (6%), and 

major disagreements with 15 (5%). Coders identified a much smaller number of negative inferences 
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about populations in the articles and disagreed more frequently: Of the 82 identified statements, the 

quality controllers agreed with the classification of 44 (53%), had minor comments about 18 (22%) and 

major disagreements with 20 (24%). Regarding the result texts from the article bodies, coders identified 

282 results, of which the quality controller agreed with the classification and extracted p-value for 252 

(89%), had minor comments for 13 (5%), and major disagreements for 17 (6%).  

 The quality control process allowed us to i) identify any clear errors in the data extraction process, 

ii) highlight borderline cases where our coding scheme could not clearly categorise certain statements, 

and iii) assess the robustness of the coding procedure. In line with the results from the double-blind 

coding, the quality control process demonstrated a high inter-rater agreement and consistency with 

identifying and classifying negative sample statements from abstracts, and the corresponding results and 

p-values from the main text, yet greater inconsistency in deciding, i) whether titles and population 

statements were truly “negative” in the sense of being the result of a non-significant NHST, and ii) whether 

the authors were claiming the absence of an effect from these negative results. This inconsistency 

occurred mainly because many titles and population statements referred not to a certain statistical result 

but made a vague theoretical statement. An example of the former would be ‘Dogs did not bark more in 

condition A than condition B’, whereas an example of the latter would be ‘Our results suggest that dogs 

display similar levels of anxiety when faced with unfamiliar conspecifics and heterospecifics’, where 

anxiety was not clearly defined in the article. 

7.5.2. Title Claims 

Forty-four titles contained negative statements resulting from non-significant results of null-

hypothesis significance tests. Of these, 37 (84%) interpreted the non-significant result as evidence of no 

effect, whereas seven (16%) made caveated claims or claims about two groups or conditions being 

‘similar’. Table 16 provides examples of these claims. 
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Table 16: Examples of “No Effect” and “Caveated or Similar” claims in the titles of papers following non-
significant NHST. 

No Effect 

N = 37 (84%) 

 
“Home range use in the West Australian seahorse Hippocampus subelongatus is influenced by sex 
and partner’s home range but not by body size or paired status”  
Kvarnemo et al., 2021 

 
“Delays to food-predictive stimuli do not affect suboptimal choice in rats.”  
Cunningham & Shahan, 2020 

 
“Common Marmosets (Callithrix jacchus) Evaluate Third-Party Social Interactions of Human Actors 
But Japanese Monkeys (Macaca fuscata) Do Not”  
Kawai et al., 2019 
 

Caveated, Ambiguous, or Similar 

N = 7 (16%) 

 
“Limited Evidence of Number-Space Mapping in Rhesus Monkeys (Macaca mulatta) and Capuchin 
Monkeys (Sapajus apella)” 
 Beran et al., 2019 

 
“Little Difference in Milk Fatty Acid and Terpene Composition Among Three Contrasting Dairy 
Breeds When Grazing a Biodiverse Mountain Pasture”  
Koczura et al., 2021 

 
“The Equipment Used in the SF6 Technique to Estimate Methane Emissions Has No Major Effect 
on Dairy Cow Behavior” 
Pereira et al., 2021 
 

 

7.5.3. Abstract Claims 

7.5.3.1.  Abstract Sample Claims 

We extracted 278 negative claims about a sample result. Of these, 174 (63%) claimed evidence of 

no effect, 71 (26%) made formally correct statements that there were no statistically significant 

differences between groups or conditions, 17 (6%) made claims about an effect being ‘similar’ between 

groups or conditions, or described a small effect size, and 16 (6%) were ambiguous. Table 17 provides 

examples of these claims. 
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Table 17: Examples of “No Effect”, “Similar or small effect size”, “Non-Significant” or “Ambiguous” 
claims about the sample in the abstracts of papers following non-significant NHST. 

No Effect 

N = 174, 63% 

 
“Levels of individuals sitting with their back to the window was unaffected by visitor number or 
noise.”  
Hashmi & Sullivan, 2020  

 
“The groups did not differ in their ability to follow human signals” 
Lazarowski et al., 2020 
 

Similar or small effect size 

N = 17, 6% 

 
“Pair members demonstrated comparable responses towards a male ‘intruder’, as latency to 
respond and proximity scores were very similar between pair members in the majority of pairs 
examined”  
DeVries et al., 2020 

 
“We found that individuals called back to sympatric and allopatric calls within similar amounts of 
time,”  
Wu et al., 2021 
 

Non-significant 

N = 71, 26% 
 

“Nutcrackers… did not significantly change their caching behaviour when observed by a pinyon 
jay.” 
Vernouillet et al., 2021 
 

“No significant correlations between degree of laterality and behavioral interest in the stimuli 
were found” 
Lilley et al., 2020 

Ambiguous 

N = 16 (6%) 

 
“We also found no conclusive evidence that either the visual or the vibratory sensory modalities 
are critical for prey capture.” 
Meza et al., 2021 

 
“No systematic variations on space allocation were observed in neither experiment” 
Ribes-Iñesta et al., 2020 
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7.5.3.2.  Abstract Population Claims 

We extracted 63 negative claims about a population that followed on from the negative result 

within a sample. Of these, 45 (71%) were caveated and 18 claimed that there was no effect (29%). Table 

18 provides examples of these claims. 

Table 18: Examples of “No Effect” and “Caveated, Ambiguous or Similar” claims about populations in the 
abstracts of papers following non-significant NHST. 

No Effect 

N = 18 (29%) 

 
“Partial rewarding does not improve training efficacy”  
Cimarelli et al., 2021 
 

“Our findings show that H. horridum does not respond to hypoxic environments” 
Guadarrama et al., 2020 

 
“Oviposition site choice is not by-product of escape response“ 
Kawaguchi & Kuriwada, 2020 
 

Caveated, Ambiguous, or Similar 

N = 45 (71%) 

 
“These results suggest capuchin monkeys do not engage in indirect reciprocity“ 
Schino et al., 2021 

 
“These results suggest that shoal composition may not be an important driver of shoal choice in 
this system”  
Paijmans et al., 2021 

 
“…suggesting that size is not a determinant factor for feral horse society.” 
Pinto & Hirata, 2020 
 

 

7.5.4. Result Text 

In the results sections, 276 non-significant results of NHST were coded. Of these, 140 (52%) were 

reported as not significant, 113 (41%) as if there was no effect, 12 (4%) were reported as groups or 

conditions being similar, 10 (4%) were coded as ambiguous, and one (0.4%) reported a “trend” in the 

opposite direction to the prediction. Several of the ambiguous codes were due to authors’ use of “main 

effect” when interpreting ANOVA terms, where we thought that saying there was “no main effect of X” 

was different enough to saying “no effect of X” to not be included in the ”No Effect” category, although 
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this highlights the somewhat arbitrariness of our categories. Table 19 provides examples of the different 

types of result reporting.  

Table 19: Examples of “No Effect”, “Similar or Small Effect Size”, and “Non-Significant” claims in the results sections 
of papers following non-significant NHST. 

No Effect 

N = 113 (41%) 

 
During farrowing, No Effect of the treatments was seen on the percentage of time spent (3.22 % 
vs. 1.90 %, P = 0.372) on the nest-building behaviour”  
Aparecida Martins et al., 2021 

 
“There were no differences between treatments in the frequency or duration of birds flying 
between walls”  
Stevens et al., 2021  
 

Similar or small effect size 

N = 12 (4%) 

 
 “The average time yaks spent grazing was similar among shrub coverage groups (P = 0.663)” 
Yang et al., 2021 

 
“The number of sessions required to reach criterion didn’t reliably differ between groups” 
O’Donoghue et al., 2020 
 

Non-significant 

N = 140 (52%) 
 

"Comparing the pooled data of all crows, no significant increase in the number of mark-directed 
behaviors during the mirror mark condition was found compared with the no-mirror sham 
condition."  
Brecht et al., 2020 
 

“There was no significant effect of removal type on changes in display strength in either dominant 
males or subordinate males.”  
Piefke et al., 2021 

Ambiguous 

N = 10 (4%) 

 
“As can be seen in Figure 1D, there was no difference in response rates after R and NR trials 
across days for rats under reward uncertainty.” [where in Figure 1D the bars on the graph look 
almost identical) 
Anselme & Robinson, 2019 

 
“It showed that there was a significant main effect of session, but no main effect of CS” 
Harris & Bouton, 2020 
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Notably, if a “No Effect” interpretation was made in the results, it was more likely that a no effect 

interpretation would also be made in the abstract, compared to when a non-significant interpretation was 

made in the results (χ2(1, N = 211) = 21.65, p < .0001). Limiting the data to just those with “non-significant” 

or “no effect” responses in the abstract and results, of the 92 “no effect” statements in the results, 80 

(87%) of the corresponding sample statements were interpreted as no effect. In contrast, of the 119 non-

significant statements in the results, only 67 (56%) of the corresponding sample statements were 

interpreted as there being no effect. Nevertheless, no effect interpretations in the abstracts were 

absolutely the most likely for both no effect and non-significant results statements. 

7.6. Study 1 Discussion 

Study 1 extracted and categorised how animal cognition researchers reported the results of non-

significant null hypothesis significance tests in 253 articles between 2019 and 2021. Across titles, abstracts 

and results, researchers often reported non-significant results with the “no effect” phrasing that has often 

been labelled as erroneous (titles 84%; abstract sample results 63%; result text 41%). However, reporting 

these results as “not statistically significant” was also common – most often in the results section (titles 

16%; abstract sample results 26%; result text 52%). The other, albeit less frequent, method of reporting 

non-significant results was to comment on the similarity between two groups or conditions (abstract 

sample results 6%; result text 4%).  

Overall, these results demonstrate considerable heterogeneity in how animal cognition researchers 

report non-significant results, something that was also observed within categories (i.e., how researchers 

phrased the “No Effect” or “Non-Significant” interpretations, although this was not directly assessed). 

Moreover, they suggest that negative results are at risk of misreporting and misinterpretation in animal 

cognition publications. It remains a question, however, what the consequences of such misreporting 

might be, i.e., how readers of scientific articles interpret “No Effect” statements, and this could be studied 

through analysing how these studies are cited, in other publications but also in media reports and student 

essays. It is likely that many scientists write “No Effect” with the assumption that it would be read as “No 

Significant Effect”, and even if they did not, readers of articles may interpret “No Effect” as “No Significant 

Effect” anyway.  

Possibly encouragingly, when researchers extended no effect statements from the sample to the 

population, they routinely opted for qualifies to caveat inference to the populations (e.g., …these results 
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suggest that there is no effect at the population level). Again, however, more research is needed to 

understand how such statements are interpreted and implemented by scientists and the wider 

community. The caveating of population statements likely reflects the lack of a formal strategy being used 

to interpret negative results, such as equivalence tests or Bayes factors. Although beyond the scope of 

the current Chapter, Lakens (2017) provides a detailed tutorial for equivalence testing in psychological 

research, and Rose et al., (2018) in animal behaviour, and Rouder et al. (2009) provide an introduction to 

Bayes Factors.   

Notably, my coding team found it difficult to identify and classify negative population statements in 

the abstracts of articles. This likely reflects the distance between the theoretical claims researchers wish 

to test and the actual statistical hypotheses that are tested, i.e., rarely can a theoretical prediction about 

an animal’s cognition be reduced to a single decisions between a null and alternative hypothesis in a null 

hypothesis significance test. 

Finally, we found that “No Effect” interpretations were more common in abstracts and titles than they 

were in the result text. That is, authors who have written out “non-significant” interpretations in the 

results nevertheless wrote “no effect” interpretations in the abstracts and titles. This could be due to two 

factors: word limits and incentives to make bolder claims, the former of which should be considered by 

journal editorial boards when setting policy.   

Next, in Study 2, I furthered the exploration of negative results in animal cognition by generating the 

p-value distribution of all the negative results that we extracted as part of Study 1, and complemented 

this with an analysis of an open database of text-mined NHST results (Hartgerink, 2016) 

7.7. Study 2: p-value distributions of manually and automatically extracted negative results in animal 

cognition 

During the data-extraction process of Study 1, I extracted the p-values corresponding to the negative 

statements in animal cognition paper’s abstracts. The distribution of these p-values can provide 

information on how often and how extreme the evidence against null hypotheses is produced across the 

cohort of studies that data was extracted. For example, if all studies tested against null hypotheses that 

were really true, the p-value distribution would follow a uniform distribution (Simonsohn et al., 2014). In 

contrast, if all studies tested against a null hypothesis that was false, the p-value distribution would 

exponentially decay, the rate of which would be determined by the power of the studies to detect the 

true effect size. To examine this, I therefore compared our observed p-value distribution from the 
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manually extracted data to five other distributions. First, I compared the distributions to a uniform 

distribution – the distribution that would be expected if the null hypothesis was true across every study. 

Next, I compared our observed distribution to four simulated distributions. These simulated distributions 

consisted of research where the alternative hypothesis was correct 80% of the time, and studies had 

either 10%, 33%, 50% or 80% power to detect the simulated effect size. 

To further this analysis, I used an open dataset of NHST results by Hartgerink (2016) that were 

machine-extracted by StatCheck. StatCheck is an R package (Nuijten & Epskamp, 2015) with a web 

interface (http://statcheck.io/) that extracts and analyses APA-style conforming results from NHST tests. 

Most often, StatCheck has been used to check the consistency between p-values reported in papers, and 

those automatically re-calculated by StatCheck. StatCheck achieves this by computing p-values from the 

machine-identified and machine-read test statistics and degrees of freedom (Nuijten et al., 2016; Nuijten 

& Polanin, 2020). However, pertinent to the current paper, Hartgerink (2016) openly archived 688,112 

NHST results that had been extracted and analysed by StatCheck from 322 psychology journals. Three of 

these 322 journals were animal cognition journals, and ones that we had manually extracted data from in 

Study 1: Animal Cognition, Learning and Behavior, and Journal of Comparative Psychology. In total, 

Hartgerink archived 14,217 results from these three journals, containing 4,758 negative results, which I 

explored in this study. I explored three features of the StatCheck-extracted data, which were as follows. 

First, and similar to the manually extracted dataset, I compared the p-value distribution of all non-

significant results to that expected by i) a uniform distribution where H0 was true for 100% of studies, and 

ii) four simulated distributions with H1 true for 80%   of studies, which had either 10, 33, 50 or 80% power 

to detect the simulated effect size. Second, as the StatCheck dataset also included significant p-values, I 

examined the distribution of p-values around the conventional significance level of .05, as a possible 

indicator of publication bias. I again used the simulated distributions as a comparison, and a drop in 

published p-values just above .05 would indicate some form of publication bias – either not reporting 

some non-significant p-values, or at least not highlighting them in text. Finally, I examined the frequency 

of StatCheck identified “decision errors” across the three animal cognition journals. StatCheck labels a 

result a decision error if the re-calculated p-value is on the opposite side of .05 to the p-value reported in 

the article, and hence would lead to a different inference under the standard NHST paradigm with an α 

level of .05. 

7.8. Study 2 Methods 

7.8.1. Extracting animal cognition data from the StatCheck Dataset 
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I imported the Hartgerink (2016) dataset into R 4.0.2 and filtered the dataset by the journal column, 

extracting the data for “Animal Cognition”, “Journal of Comparative Psychology” and “Learning and 

Behavior”, using the filter function from ‘dplyr’ in the ‘tidyverse’ (Wickham et al.,2019). This dataset 

contained 14,217 p-values, 859 from Animal Cognition from 2003 to 2016, 11059 from Journal of 

Comparative Psychology from 1985 to 2016, and 2299 from Learning and Behavior between 2010 and 

2015. Of these 14,217 p-values, 4,758 (34%) were calculated by StatCheck as > .05. 

7.8.2. p-value distributions: manually extracted data 

For the p-value analysis, I plotted the distribution of p-values and used a two-sided Kolmogrov-

Smirnov test to compare this distribution to the uniform distribution that would be expected if H0 was 

correct in every case. The two-sided Kolmogrov-Smirnov test tests whether the cumulative density 

function (CDF) of a distribution is equal to that of another, in this case the observed distribution and a 

uniform distribution across the interval .05-1.0. Because p-values in the interval .05-0.10 are often taken 

as “trend” or “marginal” evidence, and thus may be under considerably different publication biases to p-

values in the interval .10-1.0, I performed a second Kolmogrov-Smirnov test comparing our observed 

distribution with a uniform distribution in the interval 0.10-1.0. Next, I compared the observed 

distribution to four simulated distributions. These simulated distributions were mixture distributions that 

assumed that a body of research was conducted where 80% of the time the alternative hypothesis was 

correct and studied with either 10%, 33%, 50% or 80% power to detect the simulated effect size. The 

simulations were performed by taking two samples from two normal distributions, with a different mean 

when H1 was correct, and the same standard deviation. These were compared using a two-sided t-test, 

and the p-values collected across all simulations. Ten thousand simulations were performed to construct 

each distribution, and then the distributions were compared qualitatively, by looking at the proportion of 

p-values across bins of .05.  

7.8.3. p-value distributions: StatCheck data 

For the manually extracted data, I plotted the p-value distribution of all non-significant statistical test 

results, defined as p-values in the interval .05 < p <= 1, using StatCheck’s calculated p-values, and 

compared this to a uniform distribution using a two sided one-sample Kolmogrov-Smirnov test. However, 

because p-values less than .10 are often interpreted as evidence in favour of an effect, and therefore may 

be under a publication bias (with p-values interpreted as evidence in favour of an effect more likely to be 

published than those that are not interpreted as supporting an effect), I also plotted the p-value 
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distribution for the interval .10 < p <= 1, and again compared this to a uniform distribution. In addition to 

the Kolmogrov-Smirnov test, I compared the observed distributions to three other simulated p-value 

distributions across a body of research where 80% of the time H1 was true, but with either 33%, 50% or 

80% power. The simulations were performed as in study one, but with a new seed, and ten thousand 

simulations. Second, I also examined how the distribution of calculated p-values changed across the 

significance threshold. To do this, I visualised the p-value distribution from .01 to .15, and compared the 

ratio of p-values in each bin of .01, focusing on the ratio of p-values in the interval .04 < p < .05, and the 

interval .05 < p < .06. 

7.8.4. Significance threshold and publication bias 

Finally, I visualised how the p-value distributions changed shape around the significance threshold, 

which I assumed to be .05 for all papers. Specifically, as an indicator of publication bias, I compared the 

ratio of p-values in bins of .01 either side of the significant threshold (see e.g., Lakens, 2015). 

7.9. Study 2 Results 

7.9.1. p-value distributions: manual data 

In total, 202 of the 283 papers reported exact p-values, with the other 81 reporting either 

inequalities or not reporting the p-values at all. Of these 202 p-values, four were below .05 and non-

significant due to a lower α level. The distribution of the 198 non-significant p-values in the interval .05–

1 is displayed in Figure 23. This distribution significantly differs from a uniform distribution (two-sided 

Kolmogrov-Smirnov test, D = 0.12, p = .0087).  
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Figure 23: Histogram showing the distribution of non-significant p-values from result sections of 198 
articles in animal cognition and related fields, with a density distribution overlaid in pink. The dotted line 
shows the average density. 

Figure 24 contrasts Figure 23 with the four simulated distributions of bodies of research 

performed where 80% of alternative hypotheses were correct, and studies had either 10, 33, 50 or 80% 

power to detect the true effect size of H1 when it was true. Notably, p-values in the interval from .05 to 

.10 were underrepresented in the manually extracted data, making up only 5.6% of observations 

compared to 8.2% (10% power simulation), 15% (33% power simulation), 19% (50% power simulation), 

and 20% (80% power simulation). Similarly, very high p-values (.95-1.0) were overrepresented in our 

manual dataset (7.6% of observations, compared to 4.3%, 3.2%, 2.4% and 3.4% for the 10, 33, 50 and 80% 

power simulations respectively), which likely reflects either the use of multiple correction procedures, or 

small sample non-parametric statistics that produce non-uniform distributions under the null hypothesis.  
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Figure 24: The observed p-value distribution of 198 p-values > .05, which were manually extracted from 
results corresponding to negative claims present in the abstracts of animal cognition articles, compared 
to 3 simulated distributions where 80% of alternative hypotheses were correct, with studies performed 
at either 10%, 33%, 50% or 80% statistical power. 

7.9.2. StatCheck Data: Quality Assessment 

During data exploration, I noticed numerous errors in StatCheck’s calculations of one-tailed p-

values, for example calculating a p-value that was two times greater, rather than two times smaller, for a 

one-tailed test compared to the corresponding two-tailed test. For this reason, I excluded all 417 detected 

one-tailed tests from all subsequently reported analyses.  

7.9.3. p-value distributions: StatCheck data 

The p-value distribution for all 4,577 non-significant results in the three animal cognition journals is 

displayed in Figure 25. The distribution was significantly different from a uniform distribution (two-sided 

one sample Kolmogrov-Smirnov test, D = 0.23, p < .0001), and this significant difference was also observed 
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when I restricted the analysis for all 3,815 non-significant results in the interval .10 < p <= 1 for the three 

animal cognition journals (two-sided one-sample Kolmogrov-Smirnov test, D = 0.16, p <.0001). 

 

Figure 25: Histogram of the observed p-value distribution of 4577 p-values > .05 automatically extracted from Animal 
Cognition, Learning and Behavior, and Journal of Comparative Psychology by StatCheck, with a density distribution 
overlaid in pink. The dotted line plots the average density.  

Figure 26 contrasts this distribution with the four simulated distributions of bodies of research 

performed where 80% of alternative hypotheses were correct, and studies had either 10, 33, 50 or 80% 

power to detect the true effect size of H1 when it was true. In contrast to our manually extracted data, p-

values in the interval .05-.10 were not overrepresented in the automatically extracted data compared to 

the simulations. In the StatCheck extracted literature data, 18% of non-significant findings were in the 

interval .05-.10, compared to 8.0% (10% power simulation), 16% (33% power simulation), 19% (50% 

power simulation), and 21% (80% power simulation). However, the ratio of p-values in the interval .95-

1.0 compared to .90-.95 was higher in the literature dataset 1.65:1, compared to the 1.02:1, 0.88:1, 1:1 

and 0.81:1 observed in the 10, 33, 50 and 80% power simulations, respectively.  
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Figure 26: The p-value distribution of 4577 p-values > .05 automatically extracted from Animal Cognition, Learning 
and Behavior, and Journal of Comparative Psychology by StatCheck, compared to 3 simulated distributions where 
80% of alternative hypotheses were correct, with studies performed at either 10%, 33%, 50% or 80% power.  

7.9.4. Significance threshold 

I next examined how the p-value distributions of the StatCheck literature data contrasted with 

the four simulations around the conventional significance threshold, p =.05. Figure 27 displays these p-

value distributions for the interval from .01 to .15, and the corresponding binned data are presented in 

Table 20. Of note, the ratio of p-values in the interval .04-.05 and .05-.06 was higher in the literature data, 

2.07:1, than in any of the simulations: 1.13:1 (10% power simulation); 1.12:1 (33% power simulation); 1.25 

(50% power simulation); 1.21 (80% power simulation).  

 

Figure 27: The p-value distribution of 3,956 p-values in the interval .01 < p < .15 automatically extracted 
from Animal Cognition, Learning and Behavior, and Journal of Comparative Psychology by StatCheck, 
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compared to four simulated distributions where 80% of alternative hypotheses were correct, with studies 
performed at either 10%, 33%, 50% or 80% power. 

 

Table 20: The p-value distribution of 3,956 p-values in the interval .01 < p < .15 automatically extracted 
from Animal Cognition, Learning and Behavior, and Journal of Comparative Psychology by StatCheck, 
compared to four simulated distributions where 80% of alternative hypotheses were correct, with studies 
performed at either 10%, 33%, 50% or 80% power. 

Interval 
Literature 10% power 33% power 50% power 80% power 

Raw Prop Raw Prop Raw Prop Raw Prop Raw Prop 

0.01-0.02 975 0.25 816 0.103 2185 0.16 3051 0.19 3571 0.27 

0.02-0.03 680 0.17 665 0.084 1690 0.12 2117 0.13 2144 0.16 

0.03-0.04 558 0.14 670 0.084 1353 0.096 1695 0.11 1476 0.11 

0.04-0.05 492 0.12 640 0.081 1185 0.084 1397 0.089 1043 0.080 

0.05-0.06 230 0.058 572 0.072 1050 0.075 1127 0.071 863 0.066 

0.06-0.07 198 0.050 515 0.065 980 0.070 1045 0.066 726 0.055 

0.07-0.08 140 0.035 559 0.070 855 0.061 910 0.058 596 0.045 

0.08-0.09 133 0.034 530 0.067 813 0.058 888 0.056 499 0.038 

0.09-0.10 108 0.027 515 0.065 740 0.053 703 0.045 473 0.036 

0.10-0.11 95 0.024 518 0.065 757 0.054 656 0.042 385 0.029 

0.11-0.12 94 0.024 493 0.062 650 0.046 597 0.038 357 0.027 

0.12-0.13 92 0.023 485 0.061 616 0.044 564 0.036 357 0.027 

0.13-0.14 90 0.023 471 0.059 631 0.045 539 0.034 322 0.025 

0.14-0.15 76 0.019 490 0.062 564 0.040 491 0.031 299 0.023 

 

7.10. Study 2 Discussion 

The data from Study 2 provide some information on statistical power, non-significant result reporting 

and publication bias in animal cognition. First, the manually extracted p-value distribution differed from 

a uniform distribution for two reasons: the cumulative frequency was greater in the observed distribution 
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for smaller p-values (p < .3), and also greater for large p-values (p > .95). The larger density of smaller p-

values is consistent with lower powered research in which the null hypothesis was incorrect, but the 

results did not reach statistical significance. And the density of very large p-values is consistent with 

researchers applying corrections that might increase p-values, such as Bonferroni corrections.  

The same pattern was also observed in the StatCheck data, which can be somewhat explained the 

same two processes. However, any discussion of the StatCheck data must be taken in context with how 

the data were generated. StatCheck automatically extracts test statistics, degrees of freedom and p-values 

in results written in the text of articles in APA format. P-values in tables and figures are not extracted. 

Therefore, if researchers are more likely to report lower p-values within the main text body than higher 

p-values, this could also account for the larger density of p-values in the first half of the distribution. 

Hence, without further investigation, the StatCheck data cannot speak to the relative contribution of 

reporting biases vs false negative results in determining the shape of the observed p-value distribution.  

 

An interesting contrast between the manually and automatically extracted p-value distributions is 

that, unlike in the manual distribution, p-values in the range .05 to .10 were much more common than p-

values in the range .10 to .15 in the Statcheck distribution. This is likely because we extracted results that 

researchers had interpreted as negative for the manual dataset, but p-values in the range .05-0.1 are often 

interpreted as “trends” or “marginally significant”. In contrast, the Statcheck dataset automatically 

extracted all p-values in this range, i.e., irrespective of the authors interpretation of them. 

 

Finally, the Statcheck distribution provides some further evidence of publication, or at least reporting, 

biases in animal cognition. Figure 2727 contains the characteristic drop in p-values just above the 

significance threshold that is incompatible with any simulated form of research without publication or 

reporting bias. However, again two sources likely contribute to this drop: genuine publication bias in which 

p-values above .05 are less likely to be reported in papers than p-values about .05, and less severe 

reporting biases, in which p-values above .05 are less likely to be explicitly reported in the text body of an 

article than p-values below .05. Non-significant results reported in tables, or not in APA format would not 

have been extracted by Statcheck. For example, phrases such as “There was a significant effect of X (t3,6 = 

2.56, p < .05), but no other variable, would only have the had the significant effect extracted. Hence, the 

Statcheck data are unable to provide strong evidence of the specific cause of the drop in p-values above 

0.05. 
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7.11. Summary 

This Chapter explored negative result reporting and interpretation in animal cognition. In line with 

previous studies in other disciplines (Aczel et al., 2018; Fidler et al., 2006), non-significant results were 

often reported as if there were no differences observed in the sample, and this was the case in the titles, 

abstracts and result sections of papers, although it was most frequent in the titles and abstracts. Because 

of the distance between statistical hypotheses and theoretical claims, and uncertainty around how no 

difference statements are interpreted, the consequences of this putative error are uncertain. 

Nevertheless, these results suggest that researchers should pay close attention to the evidence used to 

support claims of absence of effects in the animal cognition literature, and prospectively seek to, i) report 

non-significant results clearly, and ii) use more formal methods of assessing the evidence against 

theoretical predictions. The p-value distribution analysis furthered concerns raised earlier in the thesis 

that false negative results could be prevalent in animal cognition research and provided some evidence 

of publication and reporting biases against non-significant results, also. Chapter 8 provides a general 

discussion of Chapters 5, 6 and 7, and specially comments on the importance but difficulty of secondary 

data analysis and evidence synthesis projects in animal cognition research.  
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8. Chapter 8: Barriers to effective evidence synthesis in animal 

cognition research 

Evidence synthesis – the qualitative or quantitative summary and analysis of previous research – 

is important for cumulative scientific progress (Kousta, 2021), and in this short chapter, I reflect on some 

of the difficulties in performing effective evidence synthesis of animal cognition research, collating the 

difficulties I encountered across the synthesis projects of Chapters 5, 6 and 7. I do so by contrasting 

evidence synthesis in animal cognition with evidence synthesis in medical research. First, I present how 

evidence synthesis occurs in medical research – a field that often has both the quantity and homogeneity 

of evidence to perform relatively high-quality systematic reviews and meta-analyses. I next outline six 

barriers that prevent such effective evidence synthesis across many topics in animal cognition. I conclude 

by stating that the presence of these barriers should, i) motivate more high-quality and cautious 

systematic reviews and meta-analyses in animal cognition research, and ii) limit the certainty with which 

animal cognition researchers present general findings from their research programmes.  

8.1. Evidence synthesis in medical research 

Systematic reviews and meta-analyses of high-quality randomised controlled trials (RCTs) sit atop of 

the hierarchy of evidence in medical research (Guyatt et al., 1995). A systematic review aims to synthesise 

scientific evidence relevant to a certain pre-specified objective. To do so, the review will select studies 

based on specific eligibility criteria and searches of specific information sources, which determines the 

scope of the review (Page et al., 2021). Data relevant to the review’s objectives are then extracted from 

these studies and subsequently analysed, either descriptively, or via meta-analysis. To probe the 

robustness of these analyses, sub-group analyses, meta-regression and heterogeneity tests may be used. 

Of particular importance is screening studies for risk-of-bias, from which low quality or high risk-of-bias 

primary studies can be excluded from the summary statistics and meta-analytic estimates (Farrah et al., 

2019).  While researcher degrees of freedom at each stage of systematic reviews and meta-analyses can 

limit their authority (Stegenga, 2011), high-quality, registered and transparent systematic reviews and 

meta-analysis are often recognised as crucial pieces of evidence in scientific research (Cook et al., 1997).     

 In medical research, high-quality evidence synthesis is facilitated by large amounts of targeted 

infrastructure and training materials. For example, the PRIMSA guidelines provide a workflow for 

conducting and reporting systematic reviews (Page et al., 2021), and various organisations offer checklists 

for risk-of-bias assessments of RCTs, such as the Cochrane Collaboration (Sterne et al., 2019) and the 
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National Institute for Health and Care Excellence (NICE, 2012). Such checklists can be so useful in medical 

research because of the similarity of many double-blind, placebo controlled RCTs, independent of the 

specific drug or illness being studied. For example, biases such as ineffective randomization or non-

random attrition can be assessed across every RCT by a skilled coder.  

Nevertheless, even with such infrastructure, medical systematic reviews and meta-analyses are 

often criticised. For example, Stegenga (2011) questioned meta-analyses de facto position as the platinum 

standard of evidence in medicine because of the subjectivity of decisions at each stage of a meta-analysis. 

And if low quality studies cannot be effectively identified and excluded from meta-analytic estimates, the 

bias from these studies will also manifest in the meta-analysis. For example, Lawrence et al., (2021) 

highlighted how flawed trials of ivermectin for the treatment or prophylaxis of COVID-19 were given over 

10% of the weighting in two meta-analyses assessing ivermectin’s efficacy. 

8.2. Evidence synthesis in animal cognition research  

In contrast to medical research, systematic reviews and meta-analyses are not yet normal practice in 

animal cognition research. Now, I highlight six barriers to effective evidence synthesis in animal cognition 

that researchers should consider when writing reviews.   

8.3. Six barriers to effective synthesis in animal cognition 

8.3.1.  Identifying relevant studies 

In medical reviews, systematic reviews of treatments can often identify most relevant studies 

through key-word searches, often using different iterations of disease/treatment names and study 

designs (e.g., searching for “randomised controlled trail”, “clinical trial”, “Phase III trial”, etc.). In contrast, 

systematic reviews in animal cognition face difficulty in defining, i) the topic area being studied, and ii) 

identifying studies belonging to this topic area. In Chapter 6, for example, I had to develop a key-word 

search of “social cognition” from key words that experts in the field associated with the topic. Simply 

searching for “social cognition” and “animal” would have had extremely low specificity and sensitivity (i.e., 

missed many relevant articles and included many irrelevant articles). This could have been remedied by 

narrowing the scope of the review, e.g., to a particular paradigm. However, such a process, i) requires the 

paradigm to have been consistently named in the past, and ii) would miss many studies relevant to the 

cognitive ability in question that did not use the specific paradigm.  

Another alternative would be to conduct hand searches of journals or contact experienced senior 

colleagues, but this still requires subjective expert judgements on which studies to include and/or access 
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to these experts. Moreover, as much animal cognition research is published in non-specialist journals 

without designated animal cognition sections, hand searches may be too resource intensive to be viable.    

8.3.2.  Study design heterogeneity 

Heterogeneity is a major barrier of quantitative evidence synthesis in animal cognition. As 

outlined in Chapter 3, many studies in animal cognition sample single instances of treatments, 

measurements and settings, and a small number of experimental units. When synthesising data from 

across such these studies, researchers should consider whether the studies they have identified are 

homogeneous enough for average summary statistics, or meta-analytic estimates, to be meaningful. This 

should be judged on a case-by-case basis, and can be facilitated by performing sub-group analyses. 

Notably, this critique also seems to ring true for small-scale RCTs, that might sample a single treatment in 

a single setting (RCTs often measure several outcome variables, however). However, in the case of RCTs, 

we may often have a greater mechanistic understanding of how a drug or an indication works (e.g., Jones 

et al. 2021), and hence which methodological differences may be effect-modifying.  

8.3.3.  A small number of studies 

The problems with study heterogeneity are exacerbated with a small number of studies, because 

the degree of heterogeneity becomes difficult or impossible to detect. Moreover, just as statistical 

analyses of individual experiments, too small a sample of studies will preclude informative meta-analysis 

or phylogenetic models, i.e., they will produce wide or indefinable confidence intervals. Importantly, the 

number of studies on any given topic in animal cognition within an individual species or group will 

normally be low, with exceptions for particularly popular tasks or species.  

8.3.4.  Reporting heterogeneity and low data availability 

Even when there are enough studies on a certain topic, differences in how the methods and 

results of these studies are reported can be a barrier to effective evidence synthesis. In Chapter 6, my 

coders – experts in animal cognition research - had difficulty identifying whether experimenters or second 

observers were blinded during the studies, and even difficulty identifying how the behaviours were 

measured. Thus, even if the raw number of studies is large in a systematic review project, the amount of 

useable data may be lower for many outcomes. If this attrition is non-random enough, this will also bias 

the results of the review project. Moreover, reporting heterogeneity can prevent effective quantitative 

synthesis of results. For example, if effect sizes are not reported alongside statistical tests, and these 

cannot be computed from the summary statistics and no raw data are available, this can reduce the data 
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available for meta-analysis. This type of issue was seen across Chapters 5, 6 and 7, in which papers that 

did not report exact p-values reduced the data available for the p-value distribution analyses. 

8.3.5.  Publication bias and lack of study registration  

Insofar as the aim of synthesis projects is to assess all available evidence on a certain topic, 

publication bias is a major issue for synthesis projects in animal cognition. As the extent of publication 

bias is unknown for most topic areas in animal cognition, attempting to measure publication bias should 

be a feature of all systematic reviews in animal cognition research. However, there is no fool-proof 

method to detect this. In this thesis I used two methods, assessing the nature of the claims published in 

the literature and the p-value distributions of hypothesis tests, and part of Chapter 9 presents a final 

measurement attempt through self-report surveys. These could be complemented by statistical tests such 

as Egger’s regression test on funnel plots, but these tests suffer from low power at small sample sizes and 

can give significant results even in the absence of publication bias (Sterne et al., 2011).  

8.3.6.  Difficulty of assessing individual study risk of bias 

Perhaps the largest barrier to effective evidence synthesis in animal cognition is the relative difficulty 

of identifying studies at high risk of bias. Because of the relative homogeneity of double-blind placebo-

controlled RCT research, known biasing factors are well understood and often well reported, with 

checklists designed for this purpose (Sterne et al., 2019; NICE 2012). In contrast, checklists have limited 

utility in assessing the quality of animal cognition studies – because, in addition to issues of randomisation 

and blinding, tests of animal cognition are usually poorly validated (see Chapter 4). To assess the quality 

of any individual study would therefore require an in-depth post-publication peer review of the study, 

and even with this there is no guarantee that high-risk-of bias (or confound) studies will be identified. 

Such projects, although labour intensive, are possible: for example in cognitive psychology, Vater et al. 

(2021) performed a critical systematic review of the Neurotracker perceptual-cognitive training tool in 

which all 16 studies fitting their minimum quality criteria had some level of review performed. 

8.4. Examples of evidence synthesis in animal cognition  

The six barriers presented above aside, systematic review and meta-analysis projects have strong 

potential to improve evidence assessment, communication, and scientific thinking in animal cognition 

research. I now give examples on how some of these barriers have been overcome in pieces of evidence 

synthesis.  

8.4.1.  Reviews based on specific paradigms 
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Reviews of specific paradigms go someway to mitigating the effects on heterogeneity on meta-

analyses. For example, Clark et al. (2019) performed a meta-analysis focusing on the object choice task, a 

task in which researchers test animals’ ability to respond to directional cues, such as eye gaze or pointing, 

to an object. They used a keyword search of the literature on object-choice task performance, and, in 

response to a lack of data on some species, focused their analysis on canines and primates. In addition to 

the keyword search, they searched the references of published articles and their own knowledge to 

include other, relevant studies – highlighting the difficulty of conducting thorough keyword searches in 

animal cognition. Through the review and meta-analysis, they were able to show how task designs 

systematically varied between the two groups – notably regarding the presence (primates) or absence 

(canines) of a barrier, and a greater inter-object distance for canines. These data raise the possibility that 

the previously claimed superiority of dogs at the object choice task might be due to methodological, rather 

than taxonomic, differences (see also Clark & Leavens, 2019). For a similar example of a meta-analysis of 

a specific paradigm, see Qu and Kwok's (2020) meta-analysis of animal uncertainty monitoring, focusing 

on the “opt-out” task. 

8.4.2.  Reviews based on general questions 

Reviews of larger areas of animal cognition research will likely encounter large amounts of 

difficult-to-explain heterogeneity. For example, in the meta-analysis on the link between personality 

measures and learning ability, Dougherty and Guillette (2018) found a high level of between-study 

heterogeneity, which several proposed moderator variables could not effectively account for. From their 

meta-analysis, Dougherty and Guillette reported an overall mean effect size that was not significantly 

different from zero (r = 0.098), but the modulus of the mean effect size |r| was 0.268, and significantly 

different from zero. These data seem consistent with Dougherty and Guillette’s claim of a “small but 

significant” relationship between variation in personality and variation in learning across species in the 

absolute scale, but with a variable direction.  However, whether this can be teased apart from sampling 

error across the individual studies is an open question and highlights the interpretation difficulties that 

high heterogeneity brings. 

8.5. Summary: More systematic reviews and meta-analyses are necessary to understand evidential 

quality in animal cognition research 

Overall, systematic evidence synthesis is a difficult process in animal cognition. Researchers must 

balance the need to isolate homogenous enough bodies of data so that they are meaningful when 

aggregated, while keeping these data relative to the original aim of the review. Nevertheless, animal 
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cognition research stands to gain a lot from systematic review and secondary data analysis projects.  While 

the conclusions of these studies will contain many caveats, as were necessary in Chapters 5, 6 and 7, these 

studies can help to: i) focus critique at the level of research programmes; ii) help assess the risk-of-bias; 

and iii) understand and communicate the limits and uncertainty of the data that animal cognition research 

produces.  
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9. Chapter 9: Attitudes toward bias, replicability and scientific 

practice: A survey study13 

 

Throughout this thesis I have raised concerns about replication, bias and incentives in animal 

cognition research, as well as our ability to detect and study this.  While these issues are sometimes 

discussed in animal cognition, these debates are often performed by a minority of stakeholders in animal 

cognition research—often between those who claim discoveries of “higher” processes in animals and their 

corresponding ‘killjoys’ or skeptics, accompanied by a meta-commentary from a small number of 

interested researchers and philosophers (for example Allen, 2014; Anderson & Gallup, 2015; Barrett, 

2015; Craig & Abramson, 2018; Despret et al., 2016; Eaton et al., 2018; Farrar & Ostojic, 2019; Heyes, 

2015; Leavens et al., 2019; Penn & Povinelli, 2013; Povinelli, 2020). But how effectively these debates are 

reaching animal cognition researchers in general, and how they are received, has garnered little attention. 

Survey studies can address this by directly asking researchers their opinions on key debates in the 

field, how their own research practices are shaped by these debates, and what they feel is incentivised in 

academia. For example, survey studies have quantified the negative effects on researchers’ mental health 

due to academia’s “publish or perish” culture (Haven et al., 2019), and researchers often report that 

scientific incentives are misaligned with their scientific ideals. For example, ecology researchers reported 

that while they thought replication studies were a crucial use of resources, they experienced difficulty 

obtaining funding for them and, even if they were performed, they perceived barriers to publishing them 

(H. Fraser et al., 2020). More directly, researchers have self-reported using false-positive inflating research 

practices at non-negligible rates (Agnoli et al., 2017; Fiedler & Schwarz, 2016; H. Fraser et al., 2018; John 

et al., 2012), and also measured editor and reviewer biases against replication studies (Neuliep & Crandall, 

1990, 1993).  

In the current study, I invited 1001 researchers who have published in animal cognition journals 

in the last three years to answer a range of questions about bias and research practices in animal cognition 

research. The survey consisted of five blocks of questions, broadly covering, i) bias, ii) publication 

practices, iii) statistics, iv) replication, and v) how researchers derive their own beliefs about animal 

 
13 This chapter contains material published in Farrar B.G., Ostojić L., Clayton N.S. (2021) The hidden side of animal 
cognition research: Scientists’ attitudes toward bias, replicability and scientific practice. PLoS ONE 16(8): e0256607 
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cognition. These topics were based around the issues raised in this thesis, and informed by wider debates 

in animal cognition and scientific reform more generally.  

The survey had three aims, namely, i) to survey the extent to which researchers are concerned 

about certain research and publication practices in the field, ii) to collect direct evidence of the rates of 

these practices from researchers themselves, practices that may otherwise be difficult to observe, and iii) 

to provide researchers with the opportunity to voice any concerns or opinions they have about how 

animal cognition research operates. These data may impact the field in three ways. Firstly, they can help 

researchers critically evaluate the evidential strength of published findings, given how frequently 

researchers estimate certain biases to be present. Secondly, they can facilitate debates on the 

effectiveness of the scientific process in animal cognition and engage researchers and students in these 

debates. Finally, they can help to identify barriers to effective scientific research of animal cognition that 

can inform policy making in journals, funding bodies and hiring committees, as well as decision making by 

individual animal cognition researchers.  

9.1. Methods 

9.1.1. Sample 

I invited all researchers who are a first, last or corresponding author on any type of article published 

in the past three years (i.e., 2018-2020 inclusive) from the following six animal cognition journals to 

complete our survey: Animal Cognition, Animal Behavior and Cognition, Journal of Comparative 

Psychology, International Journal of Comparative Psychology, Journal of Experimental Psychology: Animal 

Learning and Cognition, Frontiers in Psychology: Comparative Psychology. I viewed every article from 

these journals between 2018 and 2020, and extracted the email addresses of the first, last and 

corresponding authors. If these email addresses were not provided in the article, BGF conducted a 

keyword-based web search to try to find one for the author in question. In total, 1161 authors were 

identified and email addresses for 1004 of these could be located from the articles or web searches. Of 

these, three email addresses were those of my research team on this project, leaving a final sample of 

1001. Emails were sent to these 1001 researchers in January 2021. Sixty-four emails returned errors, and 

BGF conducted further web searchers to identity alternative emails for these researchers, of which 32 

were obtained and the survey invite emailed to. Of the 969 successfully sent emails, 210 completed 

surveys were returned (response rate = 21.6%). 
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Researchers completed a questionnaire hosted on Qualtrics. The study protocol was approved by the 

University of Cambridge’s Psychology Research Ethics Committee (PRE.2020.096). The survey was piloted 

on several volunteers from the Comparative Cognition Laboratory at the University of Cambridge. The full 

survey is detailed below, and the anonymized survey data and analysis code are available at osf.io/6j7kp.  

9.1.2. Survey 

The exact survey is presented in Figures 28 to 32. The five blocks covered topics as follows: The Bias 

block asked researchers about experimenter bias and objectivity in their own work, and about the role 

bias might play in shaping the results and theories in animal cognition research more broadly. The final 

topic of the bias block was Morgan’s canon—the notion that animal behaviour should not be interpreted 

in terms of “higher” psychological processes if it can be fairly interpreted in terms of “lower” processes—

with researchers answering whether they agreed that “Morgan's canon is important to use when 

interpreting the results of animal cognition research”. The Publication block first asked to what extent 

researchers thought that they themselves, and other researchers, make appropriate claims when 

submitting research for publication. Second, as a direct measure of publication bias, I asked researchers 

which proportion of their own studies has been published, or will be published for ongoing studies, as well 

as the reasons why some of their studies go unpublished. The Statistics block then measured researchers’ 

confidence in their own statistical analyses, and their ability to judge the validity of other analyses. Next, 

it asked researchers to estimate the prevalence of “questionable research practices”, which may increase 

the likelihood of spurious findings in their own and in others’ research. The Replication block first focused 

on attitudes towards replication studies; how important are replications, and are replications performed 

often enough in their own area of research and others? Second, it asked researchers about whether they 

believe their own area of research, or other areas of research in animal cognition, would experience a 

‘replication crisis’ if multiple replication studies were attempted, and how many of these replication 

studies they would predict to be ‘successful’. Finally, the Belief block asked researchers a range of 

questions about how they decide what to believe about animals’ cognition. I asked researchers about the 

role that scientific experiments and day-to-day experience play in shaping these beliefs, as well as how 

often they agree with the conclusions presented in scientific papers.  
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Figure 28: The Publications Questions 
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Figure 28 (cont’d): The Publications Questions 
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Figure 29: The Bias Questions 
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Figure 2 (cont’d): The Bias Questions 
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Figure 30: The Replicability Questions 
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Figure 30 (cont’d): The Replicability Questions 
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Figure 31: The Statistics Questions  
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Figure 31 (cont’d): The Statistics Questions 
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Figure 32: The Belief Questions 
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Figure 32 (cont’d): The Belief Questions 
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9.1.3. Analysis 

Throughout the results, I provide direct quotes of participants’ answers to the free-text responses. 

These quotes were taken from participants who, at the end of the survey, opted in for their free-text 

answers to be shared openly and were screened for any identifying information. If a free-text response 

contained clearly identifying information, it was excluded from the open dataset. All the free-text answers 

for which I received consent to share, and which did not contain identifying information are openly 

available at osf.io/6j7kp. In addition to directly quoting participants’ free-text answers, of which only a 

minority could be included in the report, I also categorized their free-text responses based on the common 

themes that they included within each block. First, I read through all responses and identified common 

themes in participants’ responses. I then marked whether each response fit each category or not. If a 

response matched more than one category, this was still recorded, i.e., a single response could in principle 

fit all the categories. A second author (LO) was given the category descriptions and, blind to the first 

coder’s decisions, also marked whether each response fit each category or not. Of BGF’s 481 decisions to 

label a response with a category, LO independently agreed with 402 (83.6%) of them. In addition, LO made 

103 classifications that BGF had not originally and suggested four further category labels, three of which 

were retained. Each disagreement was resolved by discussion between LO and I, with the most 

disagreements either being an error from one of the two coders originally, or cases where both coders 

agreed that the statement was ambiguous, i.e., there were no cases of disagreement that could not be 

resolved through discussion. The category-based analyses are presented for the Publication, Statistics, 

Replication and Belief blocks. For the Bias block, I chose to split the results of the open-ended question 

(“Do you have any other comments about bias in animal cognition research?”) into two tables, as 

participants’ free-text responses were split between providing examples of biases in animal cognition 

research and elaborating on their Likert-type responses to the question about Morgan’s canon. In addition 

to the category based-analysis, I also present some quotes in-text that I feel highlighted an important 

topic that our category-based analysis might have missed. Where some themes occurred across blocks of 

topics but were not necessarily directly related to the topic in question, I present these in a 

“miscellaneous” section, although this was not performed systematically.   

9.2. Results 

9.2.1. Demographics 
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From 1001 invitations, I received 210 completed surveys (response rate = 21.6%). The sample of 

researchers had published a median of 17 papers on topics in animal cognition (IQR: 8 – 50) and had been 

active in the field for a median of 14 years (IQR: 8 – 25). Table 21 displays these demographics.  

Table 21: The number of papers published and years active in animal cognition of the 210 researchers 
completing the survey.  

Number of papers 0 1-5 6-10 11-25 25-75 > 75 

% 0.4 17.6 22.8 19.5 24.8 14.8 

N 1 37 48 41 52 31 

Years active 0 1-3 3-7 8-15 15-25 >25 

% 0.4 2.3 18.1 28.1 21.4 20.5 

N 1 5 38 59 45 43 

One response for years active was left blank and therefore excluded. The one researcher who reported 0 for papers 
published and years active later described publishing in at least one of our target articles, suggesting that the 0 
responses may have been in error. 

9.2.2. Bias 

I asked researchers about bias in their own experiments, and their perceptions of bias across the field. 

Researchers frequently reported either sometimes (39.7% of respondents) or often (38.8%) hoping for 

one result over another when performing research, and researchers were split between either being 

rarely concerned (36.5%) or sometimes concerned (30.3%) that they might bias the results of their studies 

towards a certain conclusion. Nevertheless, they reported that they could often (45.8%) or always (38.4%) 

detach from any biases to perform objectively fair tests of animal cognition (Figure 33). 
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Figure 33: Animal cognition researchers’ self-reported concern about bias in their own studies (N = 210). 

Percentages may not add to 100% due to a small number of NA responses. 

In terms of bias across the field, researchers were split between agreeing (29.6%), disagreeing 

(23.8%) and neither agreeing nor disagreeing (36.4%) that the results and theories in their own area of 

animal cognition are strongly affected by researchers’ biases. Responses were similar when researchers 

were asked to consider bias in other areas of animal cognition, but more researchers agreed that the 

results and theories are strongly affected by researchers’ biases (agree: 36.0%; neither agree nor disagree: 

39.0%; disagree 14.5%). Researchers were split between agreeing (34.0%), disagreeing (22.3%) or neither 
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agreeing or disagreeing (30.6%) that if they knew the topic and the authors, they would be able to guess 

the conclusions of a study without reading it (Figure 34). Notably, most respondents tended to avoid the 

extreme responses—no more than 10.5% of respondents chose the strongly agree or strongly disagree 

for these questions on bias. 

 

Figure 34: Animal cognition researchers’ self-reported concern about bias in animal cognition research (N 

= 210).  

I received 68 free-text responses concerning bias in the field, many of which elaborated on the 

question about Morgan’s canon. However, researchers reported a diverse range of attitudes towards bias 
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in the field. While most researchers reported they could detach from their own biases readily on the 

Likert-measure, perhaps through using measures such as blinding, other researchers expressed skepticism 

about the ability to perform research objectively:  

“As to the first three questions on my own bias - it is NEVER possible to detach yourself from your own 

biases. You can only try your best and take as many steps as possible to control for this, which I do… As to 

hoping for one result over another - as negative results are unpublishable, any sane scientist will hope for 

positive results. Our careers, and often our livelihoods, rely on getting positive results and publishing them. 

Too much is at stake to pretend that there is no bias.” 

Researchers indicated several different forms of bias that might affect animal cognition research, 

ranging from anthropomorphism and confirming “higher” abilities in animals, to excessive skepticism. 

Table 22 presents a selection of these reported biases.



 

Table 22: Animal cognition researchers’ beliefs about bias in animal cognition research 

Do you have any other comments 
about bias in animal cognition 
research? 

N Exemplars  

Provided an example of bias  31 “Bias is of two kinds: (a) bias against animals in 
comparison with humans (pro-human bias) and (b) bias to 
interpret animal behaviour as evidence for complex 
cognition (pro-animal bias). Both kinds of bias undermine 
the legitimacy of animal cognition research.” 
 

Suggested that bias is 
predominantly in how the data 
are interpreted 

30  
“The bias I typically see is a bias to produce a narrative 
that goes beyond the data, I am not sure whether that 
bias goes into the design/approach that produces the 
data.  I almost never have concerns that design/data 
might be unethically tweaked (i.e., conscious bias).” 
 

Suggested that bias is inherent to 
many study designs 

29 “It is often in the selection of the behavioral markers that 
the biases are most strongly evident, so the biases are 
well-entrenched well before data analysis. Given the 
modern trend to only provide heuristic descriptions of 
what was measured and reliance on inter-observer 
reliability to justify those measurements means that the 
rationale used for the selection process is usually hidden 
from the reader. This makes it difficult to identify the 
implicit biases in the study.” 

 

9.2.3. Morgan’s canon, simplicity and parsimony 

I next asked researchers about the role of Morgan’s canon. Most researchers agreed somewhat 

(38.6%) or strongly (31.9%) that Morgan’s canon is important to consider when interpreting the results of 

animal cognition research (Figure 35). However, researchers often elaborated on these answers in the 

free text responses, revealing a more nuanced perspective of the use of Morgan’s canon, which are 

detailed in Table 23. 
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Figure 35: Animal cognition researchers’ endorsement of Morgan’s canon (N = 210).  

 



Table 23: Animal cognition researchers’ attitudes towards Morgan’s canon as a tool in animal cognition 
research. 

Do you have any other comments 
about bias in animal cognition 
research? 
Answers that referenced 
Morgan’s canon 

N Exemplars  

Caveated or criticized the use of 
Morgan’s Canon  

16 “In my opinion, Morgan's canon often leads to more bias 
rather than less. As scientists, it is important to have an 
open mind in both directions. E.g. looking at the 
evolutionary tree of a species when interpreting its 
behaviour is often more conclusive that Morgan's canon.” 
 
“I think that biases on the cognitive processes underlying 
certain behaviours can go both ways. One could overstate 
the complexity, as much as one could underestimate it. 
That is why in general I do not consider Morgan's canon 
to be always useful: to use it best, we would need to have 
a clear understanding of what process "stand lower in the 
scale of psychological evolution" without pre-existing 
biases.” 
 

Suggested that parsimony is 
important when interpreting 
data 

30  
“In terms of Morgan's canon, it is not dissimilar to 
parsimony in phylogenetics or Occam's razor in normal 
scientific inquiry.  Showing skepticism in cause does not 
suggest that more complicated cognitive explanations 
exist, but the onus is on the researcher to demonstrate.” 
 
“While Morgan's canon is useful as a philosophical tool, I 
do think that it often conflicts with parsimony arguments 
made from phylogeny, so in practice I feel it often does 
not help per se.” 
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9.2.4. Publication 

I asked researchers whether they believe themselves and others to make appropriate claims when 

submitting research for publication, and how many of their studies end up being published. When 

submitting papers for publication, 86.0% of researchers reported that they make appropriate claims given 

their data, while only a small number stated that they overclaim (7.7%) or underclaim (5.8%). In contrast, 

our sample was split between believing that other researchers were likely to make stronger claims than 

warranted by their data (56%), and believing that others make appropriate claims (43%, Figure 36). 

Researchers reported that their own claims usually stayed the same (69.0%) or became weaker (21.0%) 

after peer review. A minority of researchers reported that their claims increased in strength (9.0%). When 

asked how many of their studies had, or for ongoing studies, will, end in publication, the median response 

was 80% (IQR: 70% - 90%, Figure 37Figure 37). However, there was a large spread in responses, with 23 

respondents saying 50% or fewer of their studies have been published, and 17 reporting that they have 

published all of their studies. 



 

Figure 36: Animal cognition researchers’ beliefs about overclaiming and underclaiming when submitting 
research articles for publication, N = 210.  
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I received 144 free-text responses from researchers explaining why certain studies of theirs had 

not been published. The responses suggested several different causes of publication bias in the field. Some 

researchers reported self-filtering studies they deemed of little importance:  

“I have a few studies that are just not adequate to publish, in terms of experimental design, subject 

size, or no informative findings (and I'm including null results as potentially informative). These 

are my own issues, not that of the publication process.” 

Another reported cause of self-driven publication bias was a lack of incentives to publish all 

research, either due to time constraints or perceptions of how publishing all work would affect funding 

opportunities: 

“My position is dependent on grant funding, this contingency is coercive to publishing only the 

studies that strengthen the grant.” 

Although not one of our identified themes, sixteen researchers (11% of free-text responses) also 

reported that publication bias was enforced by journals, reviewers and editors: 

Figure 37: Animal cognition researchers’ self-reported proportion of studies that they have 
run and then published, by their-self reported number of years in the field. N = 208.  
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“Consistent rejection across journals, which typically reported that the findings were not 

"attractive enough" (e.g., replications, inconclusive results, etc.)” 

Through the categorisation analysis, the most common themes we identified were articles not 

being published for containing inconclusive results (31), design limitations (30), negative results (29), 

insufficient resources for publication (29) and too few data (28). In Table 24, I highlight quotes from each 

of the 10 themes we identified in the responses. Next, Table 25 highlights several quotes from the open-

ended free-text question about publication practices in animal cognition.   
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Table 24: Animal cognition researchers’ explanations for why some of their studies go unpublished. 

Why was your animal cognition 
study not published? 

N Exemplars  

Inconclusive results 31  
“The results were not so clear to discuss something.” 

Design limitation 30  
“Something about experiment was faulty so didn't bother 
submitting. Or, something was pointed out in peer review 
that made the study seem not worth trying to publish.” 

Negative or uninteresting results 29 “It was just too difficult to get "negative results" past 
referees.” 
 

Lack of resources 29 “Mostly [due to] time to write the studies up.  I have too 
many on my "to do" list” 
 

Too few data 28 “Not enough data for reliable conclusions” 

Unreliable data 17  
“Because the design was weak, the experimenter 
unexperienced… I just wasn't sure whether to trust the 
data and I did not want to publish any potential false 
positive/negative findings” 
 

Reviewer bias 13  
“Theoretical rivals killed the publication because the 
outcomes didn't fit with their theory” 
 

Irrelevant data 8  
“The data were incomprehensible, and it appeared the 
animals failed to learn anything related to the task.” 
 

Training failure 5  
“I often decide not to publish studies if the animals were 
unable to train to the basic level required to complete the 
study” 
 

Replication studies 2 “Non-significant results or that only previously published 
outcomes were replicated” 
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Table 25: Animal cognition researchers’ opinions on publication practices in the field. 

Do you have any other comments 
about publication in animal 
cognition? 
 

N Exemplars  

Highlighted the difficulty of 
getting negative results 
published 

15  
“It is next to impossible to publish negative results in 
animal cognition.” 

Highlighted the difficulty of 
interpreting negative results  

7  
“Studies with negative results often needs additional 
controls to show it is a true negative; most often animal 
cognition studies are initially designed to control for that 
a potentially positive result is a true positive. There are 
many more ways for something to be negative than to be 
positive, therefor particular care must be given when 
publishing such data (negative or no results can often be 
the result of a bad design).” 

Highlighted an excessive focus on 
publishing “exciting” or “novel” 
results 

7 “There are still strong incentives towards publishing 
"wow!" findings showcasing supposedly "clever" or 
"human-like" abilities.” 

Lack of time to publish everything  3 “I just have not had time to publish them.” 
 

Other/Other barriers to 
publishing in animal cognition 

15 “There is a constant pull of the wishful thinking. If we let 
this go on unchecked, it will eventually converge on what 
people already think is true and/or what they wish were 
true.” 
 

 

9.2.5. Statistics 

I asked researchers about their confidence in their own statistical analyses, their ability to assess 

others’ analyses, and the rate of questionable research practices in the field. Researchers strongly or 

somewhat agreed that when they perform a statistical analysis, they know it is appropriate and valid 

(strongly agree: 53.2%, somewhat agree 42.9%), and that they could explain why this was the case to 

another researcher (strongly agree: 59.5%, somewhat agree 36.6%, Figure 38). When reading or reviewing 

others’ research, our sample reported that they could often (59.8%), sometimes (23.4%) or always (12.4%) 

assess the validity of the analysis. A minority of researchers reported that they could rarely (3.8%), or 

never (0.5%) assess the validity of the analysis. When asked how often they themselves or other 

researchers performed questionable research practices (QRPs), which may induce false positive findings, 
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researchers reported that they themselves rarely (41.1%), never (31.2%), or sometimes (20.3%) 

conducted QRPs. However, researchers thought that others either sometimes (52.7%), often (27.9%), or 

rarely (18.4%) did so (Figure  39). I received 66 free-text responses about the use of statistics in the field, 

from which we identified 13 general themes. These themes are highlighted in Table 26.

Figure 38: Animal cognition researchers’ self-reported confidence in their own statistical analyses, N = 

210. 
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Figure 39: Animal cognition researchers’ self-reported use of questionable research practices, and their 

estimated use of questionable research practices (QRPs) by other researchers in the field.  

 

Table 26. Animal cognition researchers’ comments about the use of statistics in the field. Four themes 
with a smaller number of responses are not shown (pre-registraion as a named solution (3), Bayesian 
statistics as a named solution (3), QRPs being less of a problem in animal cognition research (2), and the 
dangers of dichotomising research at p = 0.05 (2).  

Do you have any comments 
about statistics in animal 
cognition? 

N Exemplars 

Lack of training 15 “I think that a lot of statistical mispractice also stems from 
missing knowledge/proficiency regarding statistical 
software and/or methods/tests. The majority of animal 
cognition researchers have a very sparse statistical 
education and are therefore self-taught. This can be a huge 
potential for errors.” 
 

Complex statistics as a barrier 11 “The increasing use of highly complex stats (e.g. Bayesian 
GLIM modelling) doesn't always help. I'm doubtful if most 
users can work out which variables are being treated as 

fixed effects in their analyses, for instances, and which of 
them should be. I certainly can't!” 
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Do you have any comments 
about statistics in animal 
cognition? 

N Exemplars 

 
“This comment goes beyond animal cognition, but basically 

you need a second PhD in statistics to handle analyses 
these days. I think we are all doing our best, but there is 

only so much we can teach ourselves about statistics when 
we are also bogged down with our actual research, 

teaching, grants, etc.” 
 

A problem of low power or 
small sample research 

9  
“Depending on the species, many problems stem from 
smaller sample sizes being treated in the same way as 

large samples.” 
 

Incentive structure promotes 
questionable research practices 

9 “I also think current publishing requirements and standards 
are much to blame for these practices. Papers need to be 
short and concise, and it is more difficult to write a nice 

story when unexpected findings were not predicted. 
Journals also want the newer, exciting results more often 

than a simple, non-significant story. This doesn't mean 
these practices are acceptable or should be done, but not 

everyone can/will fight for ethical scientific standards when 
an easier solution is highly rewarded.” 

 

Questionable research practices 
not necessarily bad 

8 “Sometimes it does happen that you conduct a study with 
very different intentions than the result you get. In 

hindsight it would have been a reasonable prediction, and 
framing it as such can help make a paper clearer.” “In some 

cases I don’t think there is anything wrong with this but 
there is a fine line.” 

 

Discussed solutions 7 “I worry about trendy "bandwagons" and fashions. Rather 
than prescribing particular approaches (e.g. we should all 

be Bayesians now) statistics should be reported clearly, 
transparently and in detail (e.g. I have no issue with people 

reporting p values if they want to, as long as they report 
effect sizes, associated errors and confidence intervals and 

visual representations of raw data).” 

An anecdote of QRPs 6  
“I have occasionally heard researchers pushing for 
collecting additional data to boost a trend, but it is 
difficult to estimate how common this practice is.” 

 

Individual-level statistics 
important 

5 “At times, the search for population statistics obscures the 
attempts to understand individual variation. In other 
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Do you have any comments 
about statistics in animal 
cognition? 

N Exemplars 

words, trying to forge a coherent analysis of many small NS 
may be more fruitful than statistics based on one large N.” 

 

Collaborating with statisticians 5 “I find myself not so knowledgeable about new statistical 
techniques, so use a statistician.” 

 

 

 

9.2.6. Replication 

I asked researchers what proportion of replication studies they expect would be successful in their 

area of research, and to what extent their own and other areas of animal cognition would experience a 

replication crisis, if many of its studies were replicated. If 100 typical studies in their research area were 

replicated, researchers believed that 65% (IQR: 50% - 75%) would replicate successfully if the replication 

study tested a new sample of the same size with the same protocol as the original study. If these 

replication studies used sample sizes of 1000, researchers estimated that 72% would replicate successfully 

(IQR: 50% - 82%, Figure 40). 
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Figure 40: Animal cognition researchers’ predictions of replication success in their field, Nsame sample size = 

207, Nlarge sample = 205.  

 

Predominantly, researchers somewhat agreed (34.0%) or somewhat disagreed (30.1%) that their 

area of animal cognition research would experience a replication crisis if attempts to replicate most of its 

studies were conducted, and they either somewhat (43.7%) or strongly (29.3%) agreed that some other 

areas of animal cognition research would experience a replication crisis. Researchers tended to somewhat 

agree (38.0%), or neither agree nor disagree (31.2%) that they could identify which animal cognition 

studies would successfully replicate and which would not (Figure 41). When asked about the importance 

and prevalence of replication studies, researchers disagreed (50.7%) or strongly disagreed (20.1%) that 

enough replication studies were performed in their area of animal cognition research. These proprtions 

were matched when researchers were asked to consider replications in animal cognition research in 

general (disagree: 55.5%, strongly disagree: 23.6%). The vast majority of researchers agreed (34.8%) or 

strongly agreed (54.8%) that it is important that replication studies are performed in animal cognition 
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research (Figure 42).  I received 64 free-text responses about replication in the field, with researchers 

most often highlighting various complexities and nuances of replication in animal cognition research Table 

27.  

 

Figure 41: Animal cognition researchers’ perceptions of a replication crisis in the discipline, and their 

ability to identity studies that would not replicate, N = 210.  



 

Figure 42: Animal cognition researchers’ perceptions of the frequency and importance of replication 

studies in the discipline, N = 210.  

 



Table 27: Animal cognition researchers’ beliefs about replication in animal cognition research 

Do you have any comments 
about replication in animal 
cognition? 

N Quotes 

Complexity of replication 27 “As results appear to be heavily influenced by all sorts of 
things - history and experiences of the animals, 
particularities of the facility, particularities of the group 
structure and (sub-)culture of the animals, the experiment 
paradigm details, reward distribution, training protocol... - 
replication is horribly difficult.” 
 

Lack of Incentives 16 “Journals are more and more looking for novel ideas and 
results, and unfortunately replication studies are seen as 
unimportant, unless they shockingly dismiss some big 
ideas.” 
 
“Like other areas of research, the current publishing system 
values novelty and I believe this to be a major limitation that 
has discouraged replication in cognition research.” 
 
“Funding to conduct replication studies is more difficult to 
obtain, than for novel studies” 
 

Importance of converging 
evidence 

8 “The term "replication" is not entirely straightforward. A 
strong replication is not always using the same protocol or 
the same stats and arrive at the same conclusion. I believe 
that a well-replicated result is something that shows to be 
correct when using a variety of methods and approaches 
and still arrive at a very similar conclusion. I think that this is 
true for several areas in animal cognition.” 
 
“I think interpretation is a bigger issue than replication. 
Even under describing the methods (sometimes many 
important details are omitted) is a bigger issue. 
I DO think replication is important, but as we look across 
experiments, even though they are not exact replications, I 
think we can see the trends in what is likely a real effect and 
what may be something that could not be replicated. We 
should be training students how to look for these trends 
though.” 
 
“Depends very much on the topic, and what is meant by 
replication. In controversial areas, such as episodic memory 
in animals, there has been numerous attempts to 
demonstrate or refute, but often with different species. This 
involves attempts to replicate a phenomenon, but not 
necessarily a particular study.” 
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Do you have any comments 
about replication in animal 
cognition? 

N Quotes 

 

Issues with bias and validity 
more problematic than 
replicability issues 

7 “At least in my subfield of animal cognition the replicability 
of studies might actually be viewed as a negative because 
the assumptions and interpretations of the studies are 
fundamentally flawed. So the studies replicate, but 
researchers take those replications as additional evidence 
for the validity of their paradigm when it is not.” 
 

Between area heterogeneity in 
replicability 

5 “Confidence in my own area of research has to do with the 
common practice of "embedded replications" of successful 
previous work in my work.  My lack of confidence in some 
other cases has to do with demonstrations with sparse 
background literature/experimentation to back it up.” 
 

Legal or ethical barriers to 
replication 

3 “One problem with replication in the context of animal work 
is the clash with the ethical pressure to minimise animal 
use.” 

 

9.2.7. Belief 

When reading papers in their own area of research, and other areas of animal cognition research, our 

sample reported often or sometimes agreeing with the authors’ conclusions (own area: often: 58.4%, 

sometimes: 38.3%; other area: often: 58.5%, sometimes: 36.2%,  

Figure 43). Researchers somewhat and strongly agreed that their beliefs about animals’ cognition are 

affected by both scientific experiments (strongly agree: 55.7%, somewhat agree: 34.3%) and their day-to-

day experience with animals (strongly agree: 31.9%, somewhat agree: 34.3%). When asked to choose 

between scientific experiments and experience with a slider response (with science at one extreme and 

experience at the other), researchers tended to say their beliefs were more driven by science, although a 

range of responses were observed (median: 31, IQR:  19 – 51, where 0 is exclusively based on science, and 

100 exclusively based on experience, Figure 44). I received 42 free-text responses about beliefs in animal 

cognition, from which we identified 5 common themes. Table 28 outlines these themes and provides 

example quotes, and, although it did not fit one of my themes, I highlight another interesting quote below:  

“I think you can almost always find a scientific paper to confirm your beliefs, and can find a way of 

justifying paying attention to that one, and ignoring one that might give different results. I don't mean this 

cynically -- but humans are very good at piecing together a plausible seeming story with limited evidence! 
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(We're good storytellers, and it can take a lot of evidence to dissuade someone from a good story!)”  

 

Figure 43: Animal cognition researchers’ tendency to agree with the conclusions of papers in their own 

and other areas of research. N = 210.  

 

 



199 
 

 

 

Figure 44: Animal cognition researchers’ reports of the role of science and daily experience in 

shaping their beliefs about animals’ cognition. N = 210.  

 

Table 28: Animal cognition researchers’ beliefs about the role of science and day-to-day experience 
in shaping their beliefs about the cognition of animals. 

Do you have any comments 
about belief in animal 
cognition? 

N Quotes 

Experience acts as a source of 
scientific hypotheses 

11 “Observations and experiences may give you hints about 
possible study questions. They leave you with 
impressions of animals' mind that require further digging 
into. Science, however, is absolutely vital to yield actual 
knowledge.” 
 

Bias in scientific results 
prevents them impacting 
beliefs  

10 “I am hesitant to say that the results of scientific 
experiments affects my beliefs about animal cognition. 
This is mainly because I know that many studies are 
poorly executed, and it is the norm to make huge claims 
with no or limited data to back it up. Certain authors 
make careers out of their great skills at hyperbole, and I 
find this ethically unacceptable. On the other hand, there 
are authors that perform good science and don't make 
exaggerated claims. These studies I take seriously, and 
the work of such authors does indeed have the potential 
to affect my beliefs about animal cognition.” 
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Do you have any comments 
about belief in animal 
cognition? 

N Quotes 

 

Science can answer questions 
experience can’t 

9 “There are a lot of species studied...so even experts in 
the field could only obtain knowledge about that species 
by reading papers (for the most part).” 
 

The role of science and 
experience shaping belief 
varies depending on the topic 

7 “There are deep questions and shallow questions.  Deep 
questions, like whether a crow has consciousness, can 
only be answered by a scientific theory of the concept.  
Shallow questions, like whether a dog has a memory of 
where a bone was buried, can be answered with 
empirical observations.” 
 

Experience with animals can 
be valid data in itself, and/or 
necessary for producing valid 
data 

5 “What exists in the literature is relatively limited 
compared to the richness of experiences that working 
with animals regularly offers.  Individual experiences, 
even if one-offs, can be very provocative indicators of 
cognitive potentials.” 
 
“The definition of "cognition" is fuzzy and not recognized 
as "fuzzy," most students are taught to "operationalize" 
and to "standardize" their data, before they know 
enough about the natural behavior of the animals to be 
able to perform those types of procedures appropriately 
and it is in these procedures that bias inevitably and 
unwittingly enters into their research.” 

 

 

9.2.8. Miscellaneous 

Throughout the survey, five themes emerged across our survey blocks that our within-block 

coding did not identify. As such these themes were not those systematically extracted, but themes we 

believed came up across blocks and wanted to highlight. These were the role of theory in animal 

cognition, the need for an individual-level focus in research, academic incentives, the large amount of 

heterogeneity across animal cognition research, and the uncertainty surrounding the causes and 

implications of negative results. I provide representative quotes for each in Table 29. The most notable 

of these was a number of researchers who noted how their responses to individual questions would 

depend on who or what they were considering – something the Likert-type responses could not 

capture. For example, an individual may believe that on the whole most areas of animal cognition 

research are relatively unaffected by questionable research practices, but that they might be more 

common in certain sub-fields or research groups.  
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Table 29: Further topics commented on by animal cognition researchers that were not explicitly 
included in the survey.  

Area Quote 

Theory “In my view a far bigger problem is poor theorizing 
[compared with replication]. A lack of formal theory (as 
exists in evolutionary biology) combined with "scala 
naturae" thinking, a lack of consideration of natural 
history and incentives to show that your study animal is 
"clever" or human-like are major problems for the field.” 
 

Individual-level research  “It is unfortunate that Single-Case experimental designs 
(single subject, single-organism, etc) are not used more 
often, which are known to (a) highlight replication and 
reproducibility, (b) avoid many hypothesis-testing issues 
(including, but not limited to those listed above), and (c) 
avoid many group-design limitations for behavioral 
research.” 
 

Negative results “I usually never finish a study which I realize was 
misconstrued when I see the first behaviors of the 
animals. Oftentimes it is easy to arm chair-design a study 
which turns out to be impossible for practical and other 
reasons. This is not saying that I have not published 
finished studies with negative result. However, studies 
with negative results often needs additional controls to 
show it is a true negative; most often animal cognition 
studies are initially designed to control for that a 
potentially positive result is a true positive. There are 
many more ways for something to be negative than to 
be positive, therefor particular care must be given when 
publishing such data (negative or no results can often be 
the result of a bad design).” 
 

Incentives “In my opinion, the drive to publish 'exciting results' is 
driven by the expectations of funding bodies, and the 
general competitiveness of the academic system, that 
expect people to constantly produce ground-breaking 
new research. Not all research is or can be ground-
breaking, but is a necessary part of research progress, 
such as proposals for methodological improvements. 
Such research deserves more support from the research 
community. Shifting the weight in expectations on 
researchers might reduce peoples' need to over-interpret 
borderline p values and report 'impactful' findings where 
there is really little to none.” 
 

Heterogeneity “I don't agree with the question about my belief about 
other researchers tending to make weak or strong claims 
given their data. The answer should have been one of 
choosing the percent that I believe make stronger claims 
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Area Quote 

than warranted. Most researchers (70%) I believe make 
appropriate claims, but some (30%) do make stronger 
claims than warranted.” 
 

 

9.3. Discussion 

This survey provides a picture of animal cognition researchers’ beliefs about bias and scientific 

practice. From 1001 invitations, I received 210 completed surveys, from which I analysed data on a 

range of controversial topics and possible biases in animal cognition research. While it is likely that 

there was a self-selection bias in who completed our surveys, with researchers who have stronger 

feelings about bias in the field presumably being most likely to complete our survey, 210 completed 

surveys reflects a large number of recently active animal cognition researchers. Before discussing the 

individual survey topics, I want to outline what I believe data from surveys like these are useful for 

and what they are not. Specifically, I do not believe that these data are highly accurate quantitative 

estimates or representative data of what all animal cognition researchers’ believe or how they behave. 

Rather, they must be interpreted considering the likely sampling biases in who participated in the 

survey and how their answers were limited by the way the questions were asked.  Specifically, the 

strongest sampling bias is likely that the researchers who completed the survey, and especially those 

providing detailed free-text responses. These individuals are likely those who have thought most 

about some of the issues presented in the survey, and are potentially the most concerned about some 

of these issues (e.g., reliability) than researchers who did not complete the survey. This might mean 

that some of the quantitative estimates, e.g., perceptions of a replication crisis, might overestimate 

the “average” response of animal cognition researchers to this question, but equally might 

underestimate the concern about bias within their own results – if these researchers are more likely 

to e.g., adopt blinding strategies. Moreover, it is likely the manner in which the questions were 

phrased had some unavoidable influence and priming effects on the participants – while no attempts 

were deliberately made to bias participant answers in a particular direction, it should be appreciated 

that different phrasings of the questions would likely return slightly different responses (Fiedler & 

Schwarz, 2016). Nevertheless, each individual response that I received reflects the opinion of a 

particular animal cognition researcher, and thus are inherently meaningful pieces of data, with 

detailed full-text responses available at osf.io/6j7kp.  

9.3.1. Bias 
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Overall, researchers were wary of bias across animal cognition research. Researchers often 

agreed, or neither agreed nor disagreed, that the results and theories across animal cognition are 

strongly affected by researchers’ biases. For example, some researchers’ qualitative responses 

suggested that they believe bias not to be uniform across the field, instead reporting that certain 

topics and researchers may be more likely to be affected by bias than others. Similar to other survey 

studies of scientific bias, participants were generally more concerned about bias in others’ research 

than their own (Fraser et al., 2018; John et al., 2012), although there were exceptions, often being 

both very conscious about the possibility of bias in their own and others’ work. This was especially 

pronounced for experimenter bias, where researchers did not appear especially concerned that they 

might be biasing their own results, and were, on average, confident they could perform fair tests of 

animal cognition. This somewhat conflicts with primary data suggesting that experimenter effects can 

have a large influence on animal behaviour, and that blinding procedures are rarely reported (Bohlen 

et al., 2014; Lit et al., 2011; see discussion of blinding in Chapter 6). This confidence in avoiding 

experimenter effects might reflect an overrepresentation of researchers in our survey who take steps 

such as blinding to minimise these effects in their research, or who believe their experiments should 

be unaffected (e.g., by not being in contact with animals during testing due to using touchscreen 

apparatus). However, I also received some strong responses from researchers who fervently believed 

that researchers always hope for particular results and thus should always be concerned that they 

might be biasing their results, and several researchers noted how bias can be embedded in research 

programmes even before data collection begins. 

My survey results also provide direct evidence of publication bias in animal cognition research, 

self-reported by active researchers in the field. The median percentage of studies researchers 

reported publishing was 80%, although over 10% researchers reported publishing less than 50% of 

their studies. These figures may underestimate the prevalence of publication bias both within my 

sample and in animal cognition more generally. Within my sample, the figures may be an 

underestimate as published findings are likely easier to recall for participants while they were 

completing the survey (i.e., an availability bias (Tversky & Kahneman, 1973)). In animal cognition more 

broadly, the figures may be an underestimate if my participants were more likely to publish negative 

results than the average animal cognition researcher. While researchers reported a journal or 

reviewer enforced publication bias against negative results or against results not in line with 

“preferred” theories, many researchers also reported not attempting to publish studies with difficult 

to interpret results, or those that had flaws in the experimental design or were otherwise perceived 

to be low quality. Notably, this decision not to publish was often the researcher’s own, with a lack of 

time or incentives often cited as the limiting factor. Combining participants’ quantitative and 
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qualitative responses suggests that across most areas of animal cognition research, many studies have 

been performed but not published, which is in line with the statistical markers I presented in Chapters 

5, 6 and 7. 

9.3.2. Morgan’s canon 

Over 70% of the sample somewhat or strongly agreed that Morgan’s canon is important to use 

when interpreting the results of animal cognition experiments. Superficially, this contrasts with a large 

body of literature criticising the canon on the grounds that there is no reason to privilege “simpler” or 

“lower” explanations of animal cognition over more “complicated” or “higher” explanations (Andrews, 

2020; Bausman & Halina, 2018; Buckner, 2013; Sober, 2005). However, participants qualitative 

responses revealed a more nuanced picture: Many of those who also provided free-text responses, a) 

recognised the inherent ambiguity and multiple interpretations of Morgan’s canon, and, b) cautioned 

against a blind application of Morgan’s canon. Of those who defended the canon, most defended a 

particular principle associated with it (e.g., parsimony and phylogeny), rather than the canon itself.  

Evidently, Morgan’s canon and related concepts elicit a plurality of opinions. Because of the variety of 

interpretations and justifications for invoking the canon, or e.g., parsimony, arguments should not 

likely be evaluated based on the authority of these principles alone – because researchers might 

understand them differently. Rather, researchers should strive to make the assumptions and 

justifications for favouring one hypothesis over another explicitly – something that could be achieved 

through formal modelling (although, see “Theory and modelling” section in discussion).  

9.3.3. Replication 

Over 70% of the sample agreed or strongly agreed that some areas of animal cognition could 

experience a replication crisis, and, in my sample, slightly more researchers agreed (44.7%) than 

disagreed (38.4%) that their own area of research would experience a replication crisis, if attempts to 

replicate its studies were performed. This suggests a large degree of skepticism about the robustness 

of research findings in some areas of animal cognition research, or of the ability of replication studies 

to repeatedly identify certain effects. However, such skepticism is common across sciences, with 52% 

of 1576 researchers surveyed across fields including biology, chemistry and physics, reporting that 

there was a “significant” reproducibility crisis in their field.  

Researchers near unanimously agreed that replications were important, and not performed 

frequently enough (Figure 42), mirroring the view of ecology and evolution researchers (H. Fraser et 

al., 2020).  And A smaller number of researchers noted that replication studies may be less important 

than seeking convergent evidence of phenomena. These views echo wider discussions about the role 
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of direct and conceptual replications in psychology, with conceptual replications being essential to 

provide robust evidence of general psychological effects (see e.g., Crandall & Sherman, 2016).  

9.3.4. Belief 

Researchers reported that their beliefs about animal cognition are influenced by both the results 

of scientific experiments and their own personal experience with animals. Typically, researchers 

viewed science and experience as synergistic, with experience often cited as the source of scientific 

hypotheses, and necessary for designing good experiments. A smaller number of researchers also 

endorsed every-day knowledge as a valid source of data that could be seen as equally strong as some 

scientific data (Fraser et al., 2017), although researchers often noted that the role of science and 

experience depended on the question at hand – there are some, often trivial, questions that can be 

answered readily through experience, yet many researchers reported that some knowledge can only 

be accessed through systematic scientific study. Finally, researchers noted that for many species that 

they have no experience, rely on the scientific literature to form their beliefs, which requires them to 

trust the findings of their colleagues.  

9.3.5. Miscellaneous 

While my survey focused on five blocks of questions that I was particularly interested in at that 

stage of my PhD, oftentimes researchers’ free-text responses went beyond these questions and 

highlighted specific issues that were not directly solicited by the survey. For example, a researcher 

offering reservations about the press coverage of animal cognition research, or species biases in what 

is tested and interpreted, as well as biases based on the location of where research is conducted. We 

encourage the reader to view the full database of open-text responses to make the most use of these 

low-frequency data from this survey (osf.io/6j7kp). However, there were five themes that I 

interpreted that went beyond my initial survey aims.  These were theory, individual-level research, 

incentives, heterogeneity and interpreting negative results, and these are discussed in the “Ways 

Forward for Animal Cognition Research” section of Chapter 10.  

9.4. Summary 

This survey provided a snapshot of animal cognition scientists’ beliefs about bias, replicability and 

practices in animal cognition research. Animal cognition scientists predicted replicability issues in the 

field and were generally wary of a range of biases affecting the research process, although more so in 

others’ work than their own. The data give credence to the arguments made in Chapters 2, 3 and 4 of 

this thesis – that areas animal cognition research may contain many results that will struggle to 

replicate, and be heavily influenced by theoretical biases, in part due to academic incentives. The also 
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survey provided direct evidence for a publication bias affecting the field, in-line with findings from 

Chapters 5, 6 and 7: researchers self-reported publishing a median of 80% of their studies, however, 

there was a considerable variation in their responses. Publication bias seemed to be against negative, 

difficult to interpret or poorly designed research, and was both reported as self-enforced (i.e., the 

article was never written or submitted), and journal enforced. Researchers also perceived a journal- 

and reviewer-enforced publication bias against results contra to established theories and reviewers’ 

preferences. On the whole, participants displayed a range of opinions concerning bias and 

replicability, largely mirroring the debates of the wider scientific community when considering 

reliability of scientific results. These views included advocating for incentive reform and replications, 

and improving statistical inference, but also stressing the importance of developing theory and 

seeking converging evidence for theories.  
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10. Chapter 10: Discussion 

10.1. Overview of thesis findings  

This thesis started by introducing the replication crisis (Chapter 1) and asking why animal 

cognition research had not yet experienced these issues (Chapter 2). Answering this question led me 

to explore what exactly constitutes a replication and how this relates to theory testing, applied to 

animal cognition research (Chapter 3). However, I found that low replicability might be just one 

symptom of deeper scientific and incentive issues in animal cognition (Chapter 4), and I then 

developed methods to quantitatively assess a range of biases and critically synthesise evidence in 

animal cognition research (Chapters 5 to 9). As such, the thesis provided four general contributions to 

the study of animal cognition. First, it performed a long overdue integration of the replication crisis 

literature and animal cognition research, concluding that many areas of animal cognition research 

likely contain many difficult to replicate findings (Chapters 1, 2, 3 and 4). Second, it made a novel 

argument about the nature and causes of certain biases in animal cognition research, especially in 

areas claiming evidence of higher-order cognition in animals (Chapter 4). Third, it developed, 

implemented, and critiqued secondary data analysis techniques capable of critically synthesising 

evidence and assessing research practices in animal cognition research (Chapters 5, 6, 7 and 8). And 

fourth, it surveyed researchers’ opinions on the topics of this thesis, making public an important, but 

often tacit, knowledge-base on bias in animal cognition research (Chapter 9).  

In addition to these four general contributions, the thesis made three specific contributions. 

First, Chapter 5 mapped the types of statistical inferences used in animal physical cognition research 

and provided some evidence of publication bias through a novel claim categorisation method – having 

many coders assess whether claims were “positive” or not. Second, Chapter 6 mapped and critically 

assessed the near entirety of corvid social cognition literature. It again found evidence of publication 

bias, and a concerningly low levels of reported experimenter blinding14, and data and code availability. 

And third, Chapter 7 described and assessed how researchers make inferences from results that are 

not statistically significant – an issue which my survey sample repeatedly highlighted as a challenge 

for animal cognition research (Chapter 9).    

10.2. Is animal cognition research in a replication crisis?  

In Chapter 2, I outlined why I thought many areas of animal cognition research likely contain many 

difficult to replicate findings, but also how some areas – typically those employing many trial designs 

 
14 Of course there are some tasks for which blinding might be difficult to achieve, e.g. object choice tasks in 
which an animal is required to respond to another agent’s cue (blinding could be achieved by using a naïve or 
asocial agent, but this might change the fundamental nature of the task).  
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– are likely more robust. This argument was made at the start of my PhD, and over the course of the 

PhD, the predictions have largely borne out. Some replication failures have been published (e.g. in 

avian cognition Amodio et al., 2021; Crosby, 2019; O’Neill et al., 2021; Soler et al., 2020), alongside an 

increasing number of newly published negative results (e.g., Amodio, Brea, et al., 2021; Brecht et al., 

2018). Per the predictions of Chapter 2, these negative results and replication failures have struggled 

to pinpoint the cause of these negative results to low power, idiosyncratic samples or false positive 

original findings. Encouragingly, the field is displaying increasing attention and caution about 

replication across the literature, through: special issues on the topic (Brecht et al., 2021); specific 

articles about replication (Beran, 2018; Boyle, 2021; Dacey, 2020; Halina, 2021; Khan & Wascher, 

2021; Shaw et al., 2021; Stevens, 2017; Tecwyn, 2021); general articles about animal cognition 

research (Bastos & Taylor, 2020; Krasheninnikova et al., 2020; Schubiger et al., 2020); in reviews of 

individual research topics (Colbourne et al., 2021); in PhD theses (Amodio, 2020; Crosby, 2019; 

Schubiger, 2019); and within individual experiments (Bohn et al., 2021; Szabó et al., 2017). 

Nevertheless, the question of whether animal cognition research is in a replication crisis has not 

been resolved, and nor should it have been. The field is too heterogenous to be labelled as such. While 

it could be viewed a “crisis” in the sense that most areas have not demonstrated their reliability, the 

reality is we still know very little about the robustness of many areas of animal cognition research. 

Replication, and up-to-date critical systematic reviews, are needed for each individual research area 

within animal cognition that we wish to understand the quality of evidence for. However, performing 

and interpreting these replication studies and reviews is not straightforward (see Chapters 2, 3, 5, 6 

and 8), and likely resource intensive, which may be especially problematic for areas of animal 

cognition research facing reduced funding. 

10.3. Bias, incentives, and animal cognition research 

In Chapter 4, I argued that academic incentives have selected for poor research practices across 

much of animal cognition research. Combined with normalised research and publication practices that 

produce many false positive or overstated results, many claims in animal cognition can be traced back 

to these incentives, and not the actual cognitive abilities of the animals. I argued that this bias most 

clearly manifests in researchers using null-significance hypothesis tests to claim the presence of 

complex cognitive abilities in animals. Such research programme may have their overarching 

conclusions set before data collection begins, and the research acts as a negotiation as to how these 

conclusions will be reached, and not whether. However, I also noted how the same incentives likely 

affect animal cognition research throughout – including the skeptics.  
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My argument relied predominantly on indirect evidence and by analogies. This was largely 

because of the paucity of data on replication, statistical power and false positive rates in animal 

cognition research itself. Such a lack of data likely limits the ability of my argument to convince those 

skeptical of it, although many respondents of the survey study in Chapter 9 shared similar 

reservations. Gathering evidence capable of assessing factors such as publication bias, statistical 

power and replicability will be key to assessing where the argument in Chapter 4 applies and where it 

does not. In the interim, it is up to individual researchers to decide what they believe about the likely 

strength of different areas of animal cognition research. To take the example of research programmes 

that have consistently produced evidence supporting the presence of more and more complex 

cognitive abilities in their study species. My opinion is that because, a) there are clear incentives to 

produce such findings, and b) biasing factors such as publication bias and alpha inflation have been 

normalised parts of scientific research, the onus of evidence should be on these research programme 

to demonstrate that their results are reliable and valid. This either requires a suite of registered, “best-

practice” direct and conceptual replication studies, or strong retrospective secondary data analysis to 

explain why the published literature is at low risk of biasing factors. 

In Chapters 5, 6 and 7, I attempted to develop such methods capable of detecting publication bias 

and assessing evidential strength in animal cognition research. None of the findings of these Chapters 

were inconsistent with the argument I made in Chapter 4, and they would have likely produced 

different results if the areas of animal cognition research I focused on (animal physical cognition 

research and corvid social cognition research) contained exclusively reliable research. Further 

developing and implementing such secondary data analysis projects should be a goal for individual 

research themes within animal cognition, and the likely utility of and barriers to this were discussed 

in Chapter 8.  

10.4. Ways forward for animal cognition research 

While many findings might be unreliable in animal cognition research, the field may be too 

resource (and incentive) constrained to replicate all its key findings. In addition, widespread 

disagreement about the validity of previous research also questions the utility of replicating it. For the 

remainder of the discussion, I therefore focus on how the lessons of this thesis can be used to 

prospectively increase the quality of research in animal cognition.  

10.4.1. Overcoming low power  

Low power is an issue across some, but not all, animal cognition research (Chapter 2). For areas 

of animal cognition that do not know whether low power is an issue, they should prioritise calculating 
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the statistical power of their most common designs to detect theoretically interesting effect sizes. 

Resources are now available for conducting power analyses, and for specifying effect sizes of interest 

(e.g., Lakens, 2021). If low power is deemed to be an issue, researchers could consider increasing 

training and trail number in their studies, or recruiting more animals: 

10.4.1.1.  Increase training and the number of trials 

Increasing trial number is likely the most efficient method of increasing power in animal 

cognition experiences (see Rouder & Haaf, 2018 for a discussing of increasing trail number vs sample 

size). Moreover, given that psychological effects usually occur within individual animals (e.g., learning 

occurs within an individual animal, causal reasoning would occur within an individual animal; Craig & 

Abramson, 2018; Skinner, 1956) a clear case can be made that researchers should design their 

experiments with the statistical power to detect meaningful effects within individual animals (Smith 

& Little, 2018). This has the twofold benefit of increasing the reliability of research findings (high 

power at the individual level entails high power at the group level), but also of being able to quantify 

and describe meaningful individual differences in behaviour. Similarly, increasing the amount of 

training animals receive, such that they are familiar and comfortable with apparatuses and testing 

procedures before the critical test will reduce the amount of “noise” in a dataset. The training pulls all 

individuals towards their theoretical maximum, increasing statistical power and the relevance of the 

collected data to the theory in question (Schank & Koehnle, 2009; Smith & Little, 2018), and can 

increase the validity of between-group comparisons when the groups have markedly different 

learning histories (Leavens et al., 2019). 

10.4.1.2.  Recruit more animals 

Some designs cannot easily employ extra trials or increased training, for example those that 

rely on an animal’s first exposure to a stimulus. Here, researchers should consider increasing the 

number of animals they recruit. Pre-study power analyses can help the researcher understand what 

sample sizes would be needed to detect certain effect sizes. Unfortunately there may only be minimal 

benefits of increasing sample sizes by 5 or so animals, which might be the most that can be recruited 

at any site (alternative approaches would be to increase the salience of treatments/interventions). 

Multi-laboratory studies hold some promise to resolve these issues, such as the ManyPrimates, 

ManyBirds and ManyDogs collaborations (Lambert et al., 2021; Many Primates, Altschul, Beran, Bohn, 

Call, et al., 2019; Many Primates, Altschul, Beran, Bohn, Caspar, et al., 2019; ManyPrimates et al., 

2021). In principle, these are the types of studies that can be capable of quantifying meaningful 

between-species differences in behaviour, and the ManyPrimates collaboration is currently a strong 

example of how to perform such a project. However, multi-laboratory collaborations in animal 
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cognition research should also be wary of, i) overinterpreting “species differences” in behaviour, if 

single species are only represented at single sites (Chapter 3), and, ii) the increasing difficulty of 

independent criticism of their projects as collaborator number increases (Danchev et al., 2019). 

10.4.2. Overcoming publication bias  

There is no good reason for publication bias to continue to exist in animal cognition research. A 

field with publication bias against negative results risks becoming dominated by over-estimated and 

false effects (Chapter 2) and a need for close replication studies. Without publication bias, the field 

may instead focus on performing more conceptual replication and stronger tests of theory (see e.g. 

Halina, 2021, for a discussion about replication in comparative psychology and the effects of 

publication bias).  

Fortunately, there are a range of low-barrier options to publish without biases against certain 

results in animal cognition. Venues such as Animal Behavior and Cognition frequently publish peer-

reviewed negative results with open access and no author processing charges (e.g., in the latest issue 

at the time of writing: Eckert et al., 2021; Troisi et al., 2021; Wilson et al., 2021). And pre-prints offer 

a zero-barrier option to researchers who wish to publish any findings, which may be suitable for 

archiving experimental failures that researchers would not otherwise submit to journals. Finally, the 

registered report journal format offers pre-data collection peer-review and in-principle acceptance of 

articles independent of which results manifest – which has the added benefit of being able to improve 

study design before data collection begins (Chambers, 2013; Motes-Rodrigo et al., 2021; Tysall et al., 

2020; Vonk & Krause, 2018).  

 While scientific incentives might still discourage some researchers from publishing some negative 

results (see Chapter 9, and section “overcoming perverse incentives” in this chapter), there are now 

minimal venue-based barriers for willing researchers to publish negative results. A longer-term goal 

for animal cognition research may be to emulate research areas with public registration of studies – 

which is the norm in clinical trials research (e.g.  https://clinicaltrials.gov/) and soon to be law in the 

EU (Rasendriya, 2021). Such registration would allow the full extent and consequences of publication 

bias to be traced – although other publication-related biases, such as citation biases, could remain.  

10.4.3. Overcoming ambiguity through theory and modelling 

Chapter 4 highlighted how ambiguity is a major barrier to evidence assessment in animal 

cognition. Without knowing what, exactly, a researcher or article is claiming, assessing the strength of 

these claims are difficult to assess. One method that has been proposed to overcome these issues is 

through using “stronger theory” and/or formal models (Allen, 2014). 
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A main source of ambiguity in animal cognition is testing vague, verbal hypotheses that are 

only loosely connected to the data the experimenters collect (Chapter 4, Chapter 9). Data from these 

hypothesis tests can be interpreted in almost any way an individual chooses. In contrast, formal 

theories, be they logical, computational or mathematical, can have a string of benefits. For example, 

they might increase the precision and communication of hypotheses, make clear predictions, and offer 

the ability to simulate effects (see Farrell & Lewandowsky, 2010; Guest & Martin, 2020; Maatman, 

2021 for discussion). In animal cognition research, evolutionary theory (Vonk & Shackelford, 2012), 

and learning theory (Dickinson, 2012; Skinner, 1976), are two possible sources of strong theory to 

ground research programmes in, and tools and tutorials for using theories like this in study design and 

analysis are increasingly available (Cinar et al., 2020; Jonsson et al., 2021).  

Nevertheless, the extent to which formal models can effectively be generated for all research 

lines of interest is unclear, and nor do they guarantee easy to interpret results (Smith et al., 2012, 

2016). This uncertainty can be illustrated by the example of animal theory of mind research. Whether 

animals represent others’ mental states animals is an interesting question, and some strong modelling 

and associated empirical work on theory-of-mind in animals has been performed (e.g., Thom & 

Clayton, 2013; van der Vaart et al., 2012; van der Vaart & Hemelrijk, 2014). However, such models 

have not become mainstream in the study of theory of mind in animals. I believe this is because such 

models are i) asymmetric, ii) specific, and iii) require expertise. They are asymmetric as the models are 

often built upon abilities often seen as alternative hypotheses by researchers (e.g., associative 

learning, stress), they are specific to individual cases (e.g., corvid re-caching), and require expertise 

that many animal cognition researchers may not have the time to develop in the current academic 

climate. To what extent animal cognition researchers wish to use modelling returns to Beach’s (1950) 

original dilemma – how can animal cognition best focus its limited resources? Is it on a range of 

questions with little independent validation and surface level experiments, on a few questions with 

intensive research, or some mixture or middle ground? Here, there is no clear solution, and the 

outcome will likely be driven by wider scientific incentives.  

10.4.4. Overcoming perverse incentives 

Changing scientific incentives requires action at the level of the individual and laboratory (Yarkoni, 

2018), organization (Nosek et al., 2012) and even society (Amann, 2003; Lazebnik, 2018; Stengers, 

2000; Stengers & Muecke, 2018). Psychology’s reform movement has ensured that the knowledge, 

training and infrastructure for researchers to perform more reliable research are now widely available 

– whether that be in the form of articles, online training courses and tutorials (Herrera-Bennett et al., 

2020), journal clubs (Orben, 2019), novel publication outlets and formats (Chambers, 2013; Vonk & 
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Krause, 2018),  or wider infrastructure, such as that provided by the Centre for Open Science 

(www.cos.io). Nevertheless, if scientific incentive and funding structures continue to select for 

compelling narratives, oversold findings, and ground-breaking results researchers may continue to be 

disadvantaged by being more rigorous with their work (Higginson & Munafò, 2016; Smaldino & 

McElreath, 2016). Hence, top-down initiatives will be crucial in changing the scientific method of 

biological and psychological researchers – animal cognition researchers included. Such initiatives are 

gaining traction, such as the Declaration on Research Assessment (DORA: https://sfdora.org/), and 

funding mandates for data sharing (e.g., BBSRC 2007). Evidently, animal cognition researchers can only 

play a small role in such policy-making, and the role individual researchers can play in improving 

research practices and incentives in animal cognition will vary between personal circumstances.   

10.4.5. Recalibrating aims, expectations, and questions 

The window of possible replication crisis in animal cognition research provides an opportunity to 

better understand the field as a science, including its aims and expectations. All else being equal, 

demands to improve reliability and validity require more resources to be focused on fewer topics, and 

stakeholders in animal cognition research must consider whether this is desirable or not. Is it better 

to gather lots of data on a single topic, which might lead to strong answers about the nature of animal 

minds (but again it might not), or is it better to produce surface-level data on a wider range of topics, 

in the knowledge that this will rarely produce consensus answers about animal minds, but 

nevertheless data that can facilitate discussion between interested parties? Heterogeneity aside, I 

believe the latter scenario is probable if animal cognition continues with business-as-usual, but with 

the reduction of publication bias and increased statistical power. The former scenario – generating 

more belief constraining evidence – would require more formal modelling, more causal analysis and 

more test development (Fiedler et al., 2021; Flake & Fried, 2019; Rohrer, 2018). The heterogeneity of 

animal cognition research, however, means that different areas of the field might settle on a different 

balance of these approaches. Indeed, effective scientific research is likely present across some areas 

of animal cognition research, but for an outsider pinpointing which areas is currently difficult (Chapter 

4).  

Importantly, animal cognition researchers may wish to focus on greater uncertainty 

communication regarding their results. When I started this PhD the degree to which data 

undetermined claims and theories in animal cognition (Boyle, 2021) was not clear to me from the 

published literature. The continued publication of general claims from single or few experiment 

studies, and synthesis of this research without considering factors such as publication bias, suggests 

that this is still an issue. This is especially the case when the results of animal cognition research filters 
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into popular media: the science of animal cognition that the public consumes looks very different to 

the science of animal cognition performed in the laboratory and the field. Whether this is a desirable 

or even a somewhat necessary situation for animal cognition research to be in is a question worth 

debating in the literature.  

Finally, a promising alternative is to shift more of animal cognition’s research effort away from 

hypothesis testing of cognitive theories (see Scheel et al., 2021), and instead increase the amount of 

descriptive and exploratory research. Such descriptive research may then lead to hypothesis testing 

with a tighter derivational chain between statistical model and substantive claim. Such data could 

provide the basis for interesting behaviours to be identified, and subsequent cognitive theories to be 

proposed and tested. But importantly, the results of these tests should be contextualised relative to 

the body of descriptive work that had been conducted prior to it. This stands in contrast to the current 

landscape of top-down motivated research trends seen today (de Waal & Ferrari, 2010; Eaton et al., 

2018; Vonk, 2021). But, if animal cognition research wants to retain the diversity of species and topics 

Beach (1950) pined for, alongside having confidence in the data it produces, then well-collected and 

well-reported descriptive research could be an informative and crucial step before complex cognitive 

hypotheses are tested.  

10.5. Concluding remarks 

Understanding animal minds, that are in principle unobservable, is a challenging task. If conducted 

within a scientific incentive structure that selects for ambitious claims and against rigorous science, 

the task risks being insurmountable. This thesis has reflected my attempts to grapple with these issues 

in animal cognition research, a process that left me with little confidence in much of the published 

literature on animal cognition, especially in the case of research programmes claiming to demonstrate 

higher-order cognition in animals. Importantly, this lack of confidence is not a disbelief in the cognitive 

abilities of animals themselves – I am largely agnostic to most of these questions – but is a disbelief in 

the strength of evidence that is portrayed across the literature. Whichever path animal cognition 

research takes in the future, Beach’s (1950) trade-off between rigour and breadth will be a constant 

point of debate. While conducting this debate, animal cognition researchers should strive to conduct 

their research in a manner that facilitates transparent, cumulative, and critical evidence synthesis, and 

one that avoids the pitfalls of academic systems and journalism that promote sensationalism.  
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Appendix B – Search Table for Systematic Review of Chapter 7 

Table A30: Search terms used for the Scopus search of the corvid social cognition literature  

Date of Scopus 
Search 

Keywords Details 
N 

returned 
N 

selected 

07/04/2021 Social cognition 

TS=(Social cognition) AND TS=(corvid* OR crow* 
OR rook* OR jay* OR magpie* OR raven* OR jack
daw* OR nutcracker* OR chough*) - Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

361 78 

07/04/2021 

social intelligence OR 
social brain OR 

"relationship quality" 
OR machiavellian 

TS = (social intelligence OR social brain OR 
"relationship quality" OR Machiavellian) AND 

TS=(corvid* OR "crow" OR "crows" OR rook* OR 
jay* OR magpie* OR raven* OR jackdaw* OR 

nutcracker* OR chough*) Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

233 48 

07/04/2021 
collaborat* OR 

cooperat* OR co-
operat* 

TS = (collaborat* OR cooperat* OR co-operat*) 
AND TS=(corvid* OR "crow" OR "crows" OR rook* 
OR jay* OR magpie* OR raven* OR jackdaw* OR 

nutcracker* OR chough*) Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

755 112 

08/04/2021 
reciproc* OR altruis* 

OR spite* 

TS = (reciproc* OR altruis* OR spite*) AND 
TS=(corvid* OR "crow" OR "crows" OR rook* OR 

jay* OR magpie* OR raven* OR jackdaw* OR 
nutcracker* OR chough*) Indexes=SCI-

EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

258 32 

08/04/2021 

inequit* OR "other 
regarding" OR "other-

regarding" OR 
prosocial* OR fair* 

TS = (inequit* OR "other regarding" OR "other-
regarding" OR prosocial* OR fair*) AND 

TS=(corvid* OR "crow" OR "crows" OR rook* OR 
jay* OR magpie* OR raven* OR jackdaw* OR 

nutcracker* OR chough*) Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

281 20 

08/04/2021 
hierarch* OR dominan* 

OR subordinat* 

TS = (hierarch* OR dominan* OR subordinat*) 
AND TS=(corvid* OR "crow" OR "crows" OR rook* 
OR jay* OR magpie* OR raven* OR jackdaw* OR 

nutcracker* OR chough*) Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

961 84 

09/04/2021 

transitive inference OR 
"self recognition" OR 
"self-recognition" OR 
"self awareness" OR 
"self-awareness" OR 
mirror response OR 
mirror recognition 

TS = ("transitive inference" OR "self recognition" 
OR "self-recognition" OR "self awareness" OR 

"self-awareness" OR mirror response OR mirror 
recognition) AND TS=(corvid* OR "crow" OR 

"crows" OR rook* OR jay* OR magpie* OR raven* 
OR jackdaw* OR nutcracker* OR chough*) 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, 
CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, 

IC Timespan=All years  

97 34 

09/04/2021 

empath* OR "emotional 
contagion" OR "affect 

sharing" OR social 
categorisation OR social 
categorization OR social 

discrimination OR 
conspecific 

categorisation OR social 
categorization OR social 

TS = (empath* OR "emotional contagion" OR 
"affect sharing" OR social categorisation OR social 

categorization OR social discrimination OR 
conspecific categorisation OR social 

categorization OR social discrimination OR 
individual recognition) AND TS=(corvid* OR 

"crow" OR "crows" OR rook* OR jay* OR magpie* 
OR raven* OR jackdaw* OR nutcracker* OR 

chough*) Indexes=SCI-EXPANDED, SSCI, A&HCI, 

226 43 



265 
 

discrimination OR 
individual recognition 

CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-
EXPANDED, IC Timespan=All years  

09/04/2021 

"social learning" OR 
"socially learn" OR 
"learn socially" OR 

imitat* OR emulat* OR 
observational learning 

OR observational 
cognition OR "stimulus 

enhancement" OR 
"local enhancement" 

TS = ("social learning" OR "socially learn" OR 
"learn socially" OR imitat* OR emulat* OR 

observational learning OR observational cognition 
OR "stimulus enhancement" OR "local 

enhancement") AND TS=(corvid* OR "crow" OR 
"crows" OR rook* OR jay* OR magpie* OR raven* 

OR jackdaw* OR nutcracker* OR chough*) 
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, 

CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, 
IC Timespan=All years  

241 61 

09/04/2021 

theory of mind OR 
mental state attribution 

OR mental-state 
attribution OR mental 
state-attribution OR 

knowledge attribution 
OR attribute knowledge 
OR ascribe knowledge 
OR perspective taking 

OR take perspective OR 
perspective 

understanding OR 
understand perspective 

TS = (theory of mind OR mental state attribution 
OR mental-state attribution OR mental state-

attribution OR knowledge attribution OR attribute 
knowledge OR ascribe knowledge OR perspective 

taking OR take perspective OR perspective 
understanding OR understand perspective) AND 
TS=(corvid* OR "crow" OR "crows" OR rook* OR 

jay* OR magpie* OR raven* OR jackdaw* OR 
nutcracker* OR chough*) Indexes=SCI-

EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

263 16 

09/04/2021 

gaze following OR 
follow gaze OR 

communicat* OR 
gestur* OR "face 

inversion" OR "goal-
directed" OR "goal 

directed" OR intention* 
OR "joint attention" OR 
"shared attention" OR 

decept* 

TS = (gaze following OR follow gaze OR 
communicat* OR gestur* OR "face inversion" OR 
"goal-directed" OR "goal directed" OR intention* 

OR "joint attention" OR "shared attention" OR 
decept* ) AND TS=(corvid* OR "crow" OR "crows" 

OR rook* OR jay* OR magpie* OR raven* OR 
jackdaw* OR nutcracker* OR chough*) 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, 
CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, 

IC Timespan=All years  

847 51 

12/04/20211 

other* AND (belief* OR 
desire* OR perspective* 

OR know* OR see 

TS = (other* AND (belief* OR desire* OR 
perspective* OR know* OR see) ) AND 

TS=(corvid* OR "crow" OR "crows" OR rook* OR 
jay* OR magpie* OR raven* OR jackdaw* OR 

nutcracker* OR chough*) Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 
BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All 

years  

1357 60 

14/04/2021 

targeted helping OR 
instrumental helping OR 

social facilitation OR 
"self-other" OR "self 

other" OR mentalizing 
OR mentalising OR 

"social referencing" OR 
reputation 

TS = (targeted helping OR instrumental helping 
OR social facilitation OR "self-other" OR "self 

other" OR mentalizing OR mentalising OR "social 
referencing" OR reputation) AND TS=(corvid* OR 
"crow" OR "crows" OR rook* OR jay* OR magpie* 

OR raven* OR jackdaw* OR nutcracker* OR 
chough*) Indexes=SCI-EXPANDED, SSCI, A&HCI, 
CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-

EXPANDED, IC Timespan=All years  

81 4 

14/04/20211 

compet* OR agress* OR 
social comparison OR 
"image scoring" OR 

"third party" OR "third-
party" OR "social bond" 
OR social relationship 

OR social interaction OR 
delay of gratification OR 

self control OR self-
control OR temporal 

discounting OR alliance 
form* OR conciliation 
OR reconciliation OR 
mentalizing OR cross-

modal OR tit-for-tat OR 
prisoner's dilemma OR 

"MC-PC" OR loose string 
OR object choice OR 

TS = (compet* OR agress* OR social comparison 
OR "image scoring" OR "third party" OR "third-

party" OR "social bond" OR social relationship OR 
social interaction OR delay of gratification OR self 
control OR self-control OR temporal discounting 

OR alliance form* OR conciliation OR 
reconciliation OR mentalizing OR cross-modal OR 
tit-for-tat OR prisoner's dilemma OR "MC-PC" OR 
loose string OR object choice OR object-choice OR 

social cue use) AND TS=(corvid* OR "crow" OR 
"crows" OR rook* OR jay* OR magpie* OR raven* 

OR jackdaw* OR nutcracker* OR chough*) 
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, 

CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, 
IC Timespan=All years 

1725 127 
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object-choice OR social 
cue use 

15/04/2021 
playback OR politics OR 

social support OR 
affiliat* 

TS = (playback OR politics OR social support OR 
affiliat*) AND TS=(corvid* OR "crow" OR "crows" 

OR rook* OR jay* OR magpie* OR raven* OR 
jackdaw* OR nutcracker* OR chough*) Indexes: 
SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, 

BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC. 
Timespan=All years  

736 48 

15/04/2021 

TS = (conspecific  OR 
other)  AND TS=(desire  

OR knowledge  OR 
belief  OR perspective  

OR intent*  OR 
recogni*OR remember  

OR memory) 

TS = (conspecific  OR other)  AND TS=(desire  OR 
knowledge  OR belief  OR perspective  OR intent*  

OR recogni*OR remember  OR memory)  AND 
TS=(corvid*  OR "crow"  OR "crows"  OR rook*  
OR jay*  OR magpie*  OR raven*  OR jackdaw*  

OR nutcracker*  OR chough*) Indexes: SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, 

BKCI-SSH, ESCI, CCR-EXPANDED, IC. 
Timespan=All years  

832 55 

15/04/2021 

TS = (fission-fusion  OR 
fission fusion  OR social 

intelligence  OR 
relationship quality) 

TS = (fission-fusion  OR fission fusion  OR social 
intelligence  OR relationship quality)  AND 

TS=(corvid*  OR "crow"  OR "crows"  OR rook*  
OR jay*  OR magpie*  OR raven*  OR jackdaw*  

OR nutcracker*  OR chough*) Timespan: All years. 
Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, 

CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, 
IC. 

Timespan=All years 

306 36 

1Due to the large number of search results, a journal-based filter was applied to these searches to remove clearly irrelevant studies. The 

filter was as follows: Refined by: [excluding] WEB OF SCIENCE CATEGORIES: ( MANAGEMENT OR ENGINEERING MECHANICAL OR OPTICS 

OR LITERATURE OR COMPUTER SCIENCE INFORMATION SYSTEMS OR PHYSICS ATOMIC MOLECULAR CHEMICAL OR CELL BIOLOGY OR 

PSYCHOLOGY EDUCATIONAL OR ENERGY FUELS OR RELIGION OR GEOGRAPHY PHYSICAL OR TOXICOLOGY OR COMPUTER SCIENCE 

ARTIFICIAL INTELLIGENCE OR PHILOSOPHY OR ASIAN STUDIES OR ENVIRONMENTAL SCIENCES OR RADIOLOGY NUCLEAR MEDICINE 

MEDICAL IMAGING OR ENGINEERING MULTIDISCIPLINARY OR BIODIVERSITY CONSERVATION OR PSYCHIATRY OR ENTOMOLOGY OR 

GEOGRAPHY OR ENGINEERING ELECTRICAL ELECTRONIC OR SOCIAL SCIENCES INTERDISCIPLINARY OR LANGUAGE LINGUISTICS OR HISTORY 

PHILOSOPHY OF SCIENCE OR MATHEMATICS APPLIED OR MEDICINE GENERAL INTERNAL OR PHYSIOLOGY OR EDUCATION EDUCATIONAL 

RESEARCH OR PHARMACOLOGY PHARMACY OR TROPICAL MEDICINE OR GEOSCIENCES MULTIDISCIPLINARY OR PHYSICS APPLIED OR 

BIOTECHNOLOGY APPLIED MICROBIOLOGY OR VIROLOGY OR DERMATOLOGY OR LAW OR IMMUNOLOGY OR ENDOCRINOLOGY 

METABOLISM OR VETERINARY SCIENCES OR LINGUISTICS OR HOSPITALITY LEISURE SPORT TOURISM OR COMPUTER SCIENCE 

INTERDISCIPLINARY APPLICATIONS OR OPERATIONS RESEARCH MANAGEMENT SCIENCE OR MATHEMATICAL COMPUTATIONAL BIOLOGY 

OR GENETICS HEREDITY OR TELECOMMUNICATIONS OR MEDICINE RESEARCH EXPERIMENTAL OR MARINE FRESHWATER BIOLOGY OR 

COMPUTER SCIENCE THEORY METHODS OR NUTRITION DIETETICS OR ENVIRONMENTAL STUDIES OR OCEANOGRAPHY OR BIOCHEMISTRY 

MOLECULAR BIOLOGY OR FORESTRY OR PATHOLOGY OR PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH OR HEALTH CARE SCIENCES 

SERVICES OR POLITICAL SCIENCE OR GASTROENTEROLOGY HEPATOLOGY OR HUMANITIES MULTIDISCIPLINARY OR ANTHROPOLOGY OR 

MATERIALS SCIENCE MULTIDISCIPLINARY OR URBAN STUDIES OR PLANT SCIENCES OR PALEONTOLOGY OR AGRONOMY OR HISTORY OR 

WATER RESOURCES OR COMPUTER SCIENCE SOFTWARE ENGINEERING OR PARASITOLOGY OR AGRICULTURE DAIRY ANIMAL SCIENCE OR 

CONSTRUCTION BUILDING TECHNOLOGY OR CLINICAL NEUROLOGY OR BUSINESS OR FISHERIES OR PHYSICS MULTIDISCIPLINARY OR 

COMMUNICATION OR GEOCHEMISTRY GEOPHYSICS OR SURGERY OR ENGINEERING CIVIL OR MECHANICS OR ARCHAEOLOGY OR 

ENGINEERING INDUSTRIAL OR ONCOLOGY OR INFECTIOUS DISEASES ) 

 


