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Sung Yeon Han 

 

Abstract 
 
Major depressive disorder (MDD) is a highly prevalent and disabling condition with a complex 

pathophysiology that has not been fully elucidated to date. While the socioeconomic burden of 

the disease is significant, many individuals remain undiagnosed or misdiagnosed. This is 

largely because the current diagnostic approach that relies on clinical evaluations of signs and 

symptoms can be subjective, and time and resources tend to be rather limited in primary care 

where the majority seek help for depression. Therefore, there is a significant and pressing need 

for an objective, reliable and readily accessible diagnostic test to enable earlier and more 

accurate diagnosis of MDD. In particular, as individuals experiencing subthreshold levels of 

depressive symptoms have an increased risk of developing MDD, it would be clinically 

relevant for such a diagnostic test to be able to identify depressed patients and/or individuals 

with high risks of incident MDD among symptomatic individuals. 

 

This thesis sought to develop risk prediction models that could potentially be utilised within a 

clinical setting to facilitate earlier and more accurate diagnosis of MDD. Such models were 

used to obtain probability estimates of the investigated individuals having or developing MDD 

based on their blood-based proteomic profiles and other characteristics, including 

sociodemographic and lifestyle factors. A targeted mass spectrometry approach was used to 

measure the abundances of a panel of peptides representing proteins, many of which have been 

previously associated with psychiatric disorders. Biomarkers were investigated in serum 

samples, which are widely used for blood-based biomarker discovery, as well as in dried blood 

spot samples, which are relatively novel in the field and carry several advantages. Importantly, 

this thesis focused on adopting appropriate statistical methods to ensure that the diagnostic 

predictions made by the models were accurate and reproducible, by addressing problems of 
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model overfitting and model selection uncertainty. A particularly significant aspect of this was 

the development and application of a multimodel-based approach combining feature extraction 

and model averaging, which resulted in improved model predictive performance and 

generalisability. 

 

Diagnostic prediction models based on serum proteomic, sociodemographic/lifestyle and 

clinical data were shown to be able to differentiate between subthreshold symptomatic 

individuals who developed and did not develop MDD. Additionally, diagnostic prediction 

models based on dried blood spot proteomic and digital mental health assessment data were 

shown to be able to identify currently depressed patients without an existing MDD diagnosis 

as well as currently not depressed patients with an existing MDD diagnosis among 

subthreshold symptomatic individuals. These results clearly demonstrate the potential of such 

prediction models to be used as an aid to the diagnosis of MDD in clinical practice, especially 

within the primary care setting. Moreover, MDD was found to be associated with several 

blood-based proteomic biomarkers, which mainly represented an immune/inflammatory 

profile, as well as with various other patient features, most notably body mass index and 

childhood trauma. Although further investigations are needed, these associations reveal 

disturbances in the stress response pathways involving the hypothalamic-pituitary-adrenal axis 

in the pathophysiology of depression. 
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Chapter 1      Introduction 
 

1.1. Major depressive disorder 
 

1.1.1. Burden and challenges 
Major depressive disorder (MDD; also referred to as depression) is a complex, heterogeneous 

and burdensome disorder, which is characterised by recurrent (one or more) episodes of low 

mood and energy levels over a prolonged period. Other symptoms include loss of interest or 

pleasure; changes in weight or appetite; sleeping problems; feelings of worthlessness or guilt; 

concentration or decision-making difficulties; recurrent thoughts of death or suicide; 

psychomotor agitation or retardation [1]. MDD is the most common psychiatric disorder, with 

more than 300 million people affected worldwide (around 4% of the global population) [2]. It 

has a lifetime prevalence of 16% [3], affecting approximately one in five women and one in 

eight men during their lifetime [4], and a 12-month prevalence of 6% [5]. 

 

MDD is a highly disabling condition that can cause the affected individuals to suffer from 

considerably reduced quality of life and functional impairment at work, school and in the 

family [6]. It also has various negative consequences for physical health, as the risks of heart 

disease, hypertension, stroke, diabetes, Alzheimer’s disease, cancer and obesity are increased 

in those with MDD compared to those without MDD [7]. Depression increases the risk of all-

cause mortality by 60-80%, and is a major contributor to deaths by suicide [8]–[10]. A meta-

review estimated that the risk of suicide is almost 20-fold higher in MDD patients compared 

with the general population [10]. The World Health Organization (WHO) predicts that by 2030, 

MDD will become the most debilitating disorder worldwide (overtaking cardiovascular disease) 

[11], and the largest contributor to the global burden of disease, accounting for 7.5% of all 

disability-adjusted life-years (DALYs; years of healthy life lost due to disability and premature 

mortality) [2]. In addition, the direct and indirect economic costs relating to MDD are 

substantial. The total annual costs of MDD in Europe have been estimated at €92 billion (26% 

direct healthcare costs, 15% direct non-medical costs, 59% indirect costs) [12]. 

 

Despite the significant psychological, social and economic burden of depression, many people 
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remain undiagnosed or misdiagnosed, and therefore untreated or inadequately treated [13]. 

This is not least as the aetiological and pathophysiological mechanisms which underpin the 

disease remain to be fully elucidated, but also as the translation of research findings into clinical 

practice is challenging [14], [15]. Effective clinical mangement of depression is hindered by 

several factors, including: the subjective nature of diagnosis; ‘trial-and-error’ approach to drug 

treatment selection; heterogeneous clinical presentation (symptomatology), disease course and 

treatment response; high comorbidity and overlapping symptoms with other mental disorders; 

inconsistent research findings; lack of a clear molecular understanding of disease; lack of 

adequate animal models; lack of resources and health-care providers; and social stigma 

associated with mental disorders. 

 

1.1.2. Diagnosis 
Currently, the diagnosis of MDD is based on the clinical evaluation of self-reported symptoms 

by a psychiatrist or other healthcare professional. The diagnostic criteria, including the number 

and duration of symptoms required, are outlined in formal classification systems, such as the 

Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) [1] and the 

International Statistical Classification of Diseases and Related Health Problems, 11th Revision 

(ICD-11) [16]. For instance, according to the DSM-5, a diagnosis of MDD requires an 

individual to present with at least five out of nine depressive symptoms, including at least one 

core symptom of depressed mood or anhedonia (loss of interest or pleasure); the symptoms 

need to be present most of the day, nearly every day, for at least two weeks, and represent a 

change from previous functioning [1]. These criteria are summarised in Table 1.1. To date, no 

objective tests exist for the diagnosis of MDD (or any other psychiatric disorder) due to the 

limited biological understanding of the disease. 

 

The majority of care for depression is delivered by general practitioners (GPs) within the 

primary care setting. However, clinical evaluations by GPs are usually time-constrained 

(between five and seven minutes on average, which are likely to be insufficient to reveal mental 

health problems [14]), and can also be subjective as their compliance with the formal diagnostic 

framework can vary depending on their respective clinical experience. Consequently, under-, 

over-, or misdiagnosis of depression are common problems in primary care. Based on a meta-

analysis of over 50,000 patients, only about 47% of MDD patients are correctly identified by 

GPs, while 19% of non-depressed individuals are incorrectly identified [17]. Under-diagnosis 
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can be detrimental to the course and outcome of the illness, as patients are likely to receive no 

or inappropriate treatment, often for several years [18]. Fewer than 50% of those affected in 

the world and fewer than 10% in some countries, especially low-income countries, receive 

effective treatment such as pharmacotherapy or psychotherapy [11], [19]. Moreover, under-

diagnosis could also arise from the difficulties associated with recognising depression in 

patients who present mainly with somatic symptoms, such as lack of energy and general aches 

and pains, which is the case for approximately two thirds of patients with depression in primary 

care [20], [21]. As GPs may become more focused on investigating a potential underlying 

organic condition in such patients, their mental health problems could consequently be 

overlooked. Additionally, the patients themselves may also resist a diagnosis of depression due 

to the belief that their symptoms could be related to physical causes, which is particularly 

problematic in certain cultures that associate mental illnesses with stigma, discrimination and 

social exclusion [14]. On the other hand, over-diagnosis (misidentification) of MDD can lead 

to over-treatment [17]. In particular, inappropriate treatment with antidepressants may be 

burdensome, associated with an unnecessary risk of side effects, as well as potentially 

stigmatising [22], [23]. A study of over 5,000 participants with clinician-identified depression 

in the community found that while the majority of the participants were being prescribed and 

using psychiatric medications, only around 40% met the DSM-IV criteria for experiencing a 

major depressive episode (MDE) in the past 12 months when assessed using a structured 

interview [24]. 

 

In order to improve the diagnostic reliability, clinical research (and post-mortem) studies often 

use the WHO World Mental Health Composite Interview Diagnostic Instrument (CIDI) to 

determine the diagnoses of psychiatric disorders [25]. The CIDI is a fully structured, 

comprehensive and standardised diagnostic interview which is designed to be used by trained 

lay interviewers to assess mental disorders in accordance with the DSM-IV and ICD-10 criteria. 

Diagnoses generated by the CIDI generally show good concordance with those based on 

clinician-administered structured diagnostic interviews [26], [27]. Although CIDI was 

originally intended to be used in psychiatric epidemiological studies, it is also widely used in 

the clinic as well as in research [28].  
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Table 1.1. DSM-5 criteria for the diagnosis of MDD. 
Note that criteria A-C represent a MDE. Abbreviations: DSM (Diagnostic and Statistical Manual of 

Mental Disorders); MDE (major depressive episode); MDD (major depressive disorder). 

 

A. Five (or more) of the following symptoms have been present during the same two-week 

period and represent a change from previous functioning, and at least one of the symptoms 

is either (1) or (2). 

1) Depressed mood most of the day, nearly every day 

2) Markedly diminished interest or pleasure in all, or almost all, activities most of the day, 

nearly every day 

3) Significant weight loss or gain, or decrease or increase in appetite nearly every day 

4) Insomnia or hypersomnia nearly every day 

5) Psychomotor agitation or retardation nearly every day 

6) Fatigue or loss of energy nearly every day 

7) Feelings of worthlessness or excessive or inappropriate guilt nearly every day 

8) Diminished ability to think or concentrate, or indecisiveness, nearly every day 

9) Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation without 

a specific plan, or a suicide attempt or a specific plan for committing suicide 

B. The symptoms cause clinically significant distress or impairment in social, occupational, or 

other important areas of functioning. 

C. The episode is not attributable to the physiological effects of a substance or to another 

medical condition. 

D. The occurrence of the MDE is not better explained by schizoaffective disorder, 

schizophrenia, schizophreniform disorder, delusional disorder, or other specified and 

unspecified schizophrenia spectrum and other psychotic disorders. 

E. There has never been a manic episode or a hypomanic episode. 

 

 

1.1.3. Disease course 
The average age of MDD onset is around 25 years in both men and women, and the risk of 

MDD generally decreases with age after early adulthood [5], [29]. Women have a two-fold 

increased risk of developing MDD after puberty than men, which reflects the gender difference 

in the disease prevalence [30]. 

 

The course of MDD is variable, such that in the general population, 50% of MDD patients 
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recover within three months (i.e., the average duration of a MDE is three months), 63% within 

six months, and 76% within 12 months [31]. Psychiatric comorbidities are common in MDD, 

with 59% of patients with lifetime MDD having anxiety disorders [32], 44% having personality 

disorders [33], and 14% having substance use disorders [34]. The presence of psychiatric 

comorbidities leads to greater disease severity, less favourable disease course, and increased 

costs of MDD care [35]. Duration of current episode, symptom severity, and childhood trauma 

are also associated with lower recovery rates of MDD [1], [35], [36].  

 

Moreover, MDD is a highly recurrent disorder. There is a 50% chance that individuals 

experience at least one more episode following their first episode, and the chance of further 

relapse increases to 70% and 90% following the second and third episodes, respectively [37]. 

The persistence of depressive symptoms during remission is a strong predictor of recurrence 

[1]. In addition, early onset depression (before the age of 20) significantly increases the risk of 

recurrence [38]. 

 

1.1.4. Treatment 
Antidepressant medications are currently the first-line treatment for MDD. There are many 

types of antidepressants, including selective serotonin reuptake inhibitors, serotonin and 

noradrenaline reuptake inhibitors, tricyclic antidepressants (TCAs), monoamine oxidase 

inhibitors (MAOIs), and atypical antidepressants. Although there are over 25 antidepressants 

that have been approved by the Food and Drugs Administration (FDA) for the treatment of 

MDD, the overall effectiveness of antidepressant treatment has been suboptimal [39], [40]. A 

large meta-analysis of 182 clinical trials reported that the average response rate for 

antidepressants is only 54% (37% for placebo response) [41]. Such variable response to 

antidepressants is due to not only individual differences in drug metabolism and drug 

therapeutic efficacy, but also the disease heterogeneity of MDD and the existence of patient 

subgroups [42]. In the absence of biological evidence to aid in selecting among existing 

medications, the process of finding an effective treatment for a given patient is largely by ‘trial-

and-error’, whereby various drugs of the same or different class are tested until symptom 

remission is achieved [42]. The Sequenced Treatment Alternatives to Relieve Depression 

(STAR*D) study, which investigated more than 400 MDD patients, showed that only one-third 

of MDD patients achieved remission after an initial 12-week antidepressant treatment trial, and 

one-third required up to four consecutive antidepressant treatment trials to achieve remission, 
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whereas the remaining one-third did not achieve remission even after four trials [43]. This trial-

and-error process of drug treatment selection can take up to two years, or even longer, until the 

patient recovers [44]. A prolonged treatment period increases the duration of depressive 

episodes and healthcare costs, and can lead to poorer outcomes [40]. The importance of early 

intervention in MDD is highlighted by the evidence of an inverse relationship between the 

duration of episode and treatment outcome [45], [46]. In addition, antidepressant treatment can 

lead to a range of unpleasant side effects, including nausea, increased appetite, weight gain, 

insomnia and fatigue, and increase the risk of suicidal thoughts and acts, particularly in 

adolescents and young adults [47]. 

 

Psychological and psychosocial interventions are also effective in treating MDD and can be 

used as an alternative to or in combination with pharmacotherapy. The most common types of 

psychotherapy for MDD are cognitive-behavioural therapy, behavioural activation therapy, 

psychodynamic therapy, interpersonal therapy, and problem-solving therapy [48]. There is 

growing evidence that combined treatment with psychotherapy and antidepressant medication 

can be more effective in relieving symptoms of depression than treatment with medication 

alone, and also enable better adherence to medication [49], [50]. It is usually recommended 

that patients experiencing mild depressive episodes are initially treated with psychotherapy, 

whereas those experiencing moderate and severe depressive episodes are treated with 

medication or a combination of medication and psychotherapy [51], [52]. The choice of 

intervention strategy, that is, pharmacotherapy, psychotherapy, or a combination of both, is 

made by GPs or clinicians following the consideration of several factors, including symptom 

profile, disease severity, patient preference, prior treatment history, and family treatment 

history [53]. Individuals with depression usually desire outcomes beyond symptom remission, 

which include a return to normal functioning and positive mental health [54]. 

 

1.1.5. Subthreshold depression 
In recent years, the notion of subthreshold depression has received increased attention [47], 

[55]–[62]. This aims to recognise those individuals experiencing depressive symptoms that do 

not fulfil the full diagnostic criteria for MDD with respect to the number, severity and/or 

duration of symptoms (i.e., fewer than five symptoms and/or duration of symptoms for less 

than two weeks and/or lack of a core symptom based on the DSM-5), and are consequently 

overlooked by the current checklist diagnostic approach. The UK National Institute for Health 
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and Care Excellence (NICE) has recently updated their guideline to define ‘subthreshold 

depressive symptoms’ as ‘at least one key symptom of depression but with insufficient other 

symptoms and/or functional impairment to meet the criteria for full diagnosis’ [52].  

 

However, as an officially agreed definition of subthreshold depression has not yet been 

established, this condition has been labelled by a range of terminology across different studies, 

including subsyndromal depression, subclinical depression and minor depression. While the 

operational definitions used across the studies also vary in relation to the number and duration 

of symptoms required, most studies have defined subthreshold depression as experiencing two 

or more depressive symptoms, including at least one of depressed mood or anhedonia, which 

are the core symptoms of depression according to the DSM-5 criteria, for a minimum duration 

of two weeks [58]. Moreover, the reported prevalence rates of subthreshold depression range 

between 2.9% and 9.9% in primary care setting, and between 1.4% and 17.2% in community 

(general population) setting [63]–[66]. Nevertheless, studies have collectively shown that the 

presence of subthreshold depressive symptoms is associated with increased functional and 

social impairment, reduced quality of life, and increased utilisation of health services and 

economic costs [58], [60], [64], [67], [68]. The clinical relevance of subthreshold depression 

is also demonstrated by the similarities in demographic and clinical characteristics that are 

observed between those with depressive disorders and those with subthreshold depression, 

including the gender difference in the prevalence, the percentage of family history of 

depression, and the pattern of medical and psychiatric comorbidity [69]. A systematic review 

of the definitions, prevalence rates and factors associated with subthreshold depression can be 

found in Rodríguez et al. (2012) [58]. 

 

Longitudinal studies have investigated the progression of subthreshold depression into a full-

blown depressive disorder, and the reported rates of individuals with subthreshold depression 

developing MDD in the general population range between 3.8% and 18.9% [55], [67], [70]–

[73]. Across the studies, stricter definitions of subthreshold depression and longer follow-up 

periods were generally associated with higher rates of MDD reported at follow-up [62]. 

Importantly, subthreshold depression has been identified as a risk factor for incident MDD, 

such that those with subthreshold depression are more likely to develop MDD in the future 

compared to those without depressive symptoms [55], [72], [74], [75]. According to a 

systematic review of prospective studies, the relative risk of MDD among individuals with 

subthreshold depression is higher in general medical populations and in high-risk groups than 
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in the general population [67]. Additionally, a recent meta-analysis of 16 longitudinal studies 

revealed that the risk of developing MDD is approximately two times greater in individuals 

with subthreshold depression relative to non-depressed individuals, with subgroup analyses 

showing similar estimates of relative risk across different age groups (youth, adults and the 

elderly) as well as sample types (general community and primary care) [76]. Various risk 

factors have been identified for the development of MDD among those with subthreshold 

depression, including emotional neglect during childhood, lower perceived social support, 

suicidal ideation, sleeping difficulties, having recurrent short episodes of depression, the 

presence of an anxiety disorder, a substance use disorder or a chronic physical disorder, and 

lower mental or physical functioning [62], [73], [77]. The identification of recurrent short 

episodes of depression lasting at least three days, rather than at least one episode lasting at least 

two weeks, as a significant risk factor for MDD may be especially relevant considering that 

many previous studies on subthreshold depression have required a minimum symptom duration 

of two weeks, which means that those with recurrent short episodes of depression who are 

particularly at risk of developing MDD would have been disregarded [62]. 

 

Furthermore, there is growing evidence that proactively treating subthreshold individuals with 

indicated preventive interventions can help to prevent or delay the onset of MDD [78]–[80]. A 

meta-analysis of 32 randomised controlled trials found that preventive psychological 

interventions led to a 21% reduction in the incidence of MDD compared with controls, clearly 

demonstrating the feasibility of prevention of MDD onset [78]. Effective prevention strategies 

include reducing depressive symptoms before they fulfil the full diagnostic criteria for MDD, 

as well as increasing social support [48]. While it is estimated that current interventions only 

reduce about one-third of the disease burden associated with MDD [81], preventing or delaying 

its onset may contribute to the further reduction of the disease burden. However, as many 

individuals with subthreshold depression naturally recover and no longer report depressive 

symptoms at follow-up [62], [72], it is vital to ensure that those presenting with normal, self-

remitting depressive symptoms are not given unnecessary interventions, which could not only 

be burdensome and potentially stigmatising [22], [23], but also result in a misallocation of 

scarce resources [82]. Hence, these findings highlight the clinical importance of identifying 

subthreshold symptomatic individuals who have particularly high risks of progressing to full-

blown MDD, and thereby would benefit most from indicated preventive measures in primary 

care settings. 
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In addition, the notion of subthreshold depression is consistent with the view that depressive 

disorders exist along a dimensional contiuum of symptomatic severity rather than as distinct 

disease entities [83]–[86]. According to this view, which is also referred to as the spectrum 

view of depression, major depression and no depressive symptoms would lie at either ends of 

the spectrum and subthreshold depression would lie in between the two. Whereas the 

importance of subthreshold conditions is typically underestimated in a categorical approach to 

the classification of mental disorders as their impact on the lives of the affected individuals are 

overlooked, the presence of an arbitrary threshold is eliminated in such a dimensional approach, 

which consequently allows for a better identification of milder conditions of the disorders [58]. 

A study that investigated different categories of depressive disorders, namely MDD with seven 

to nine symptoms, MDD with five or six symptoms, subthreshold depression (two to four 

symptoms, including at least one key symptom), one key symptom, and no symptoms, found 

that more severe depression was associated with greater functional disability and healthcare 

utilisation [77]. In addition, the risk of developing MDD was found to be higher in those with 

subthreshold depression than in those with one key symptom, and lowest in those with no 

depressive symptoms [77]. Therefore, these findings support the spectrum view of depression, 

although it would still be important to consider qualitative differences between major 

depression and subthreshold depression [87]. 

 

1.1.6. Disease heterogeneity 
The aetiology and clinical presentation of MDD are complex and heterogeneous. Based on the 

current symptoms-based approach to diagnosis, there are 1,497 unique combinations of 

symptoms that fulfil the diagnostic criteria for MDD under the DSM-5 [88]. Additionally, two 

individuals both diagnosed with MDD could have no symptoms in common [89], and such 

heterogeneity explains why the same treatment strategy yields variable outcomes in patients. 

Moreover, symptoms of MDD are often present in other mental disorders, mainly persistent 

depressive disorder (previously known as dysthymia), bipolar disorder (BD) and schizophrenia, 

which can hinder correct diagnosis [1], [48]. Hence, the establishment of strict boundaries 

between distinct diagnostic categories of mental disorders is challenging, as they often share 

overlapping symptoms as well as common genetic predispositions [90]. This is further 

complicated by the fact that the categorisation based on clinical observations of signs and 

symptoms does not align well with findings from clinical neuroscience and genetics, 

suggesting that it may not accurately reflect the underlying aetiological and pathophysiological 
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mechanisms of mental disorders [91]–[93]. As such, the Research Domain Criteria project, 

launched by the US National Institute of Mental Health, aims to improve the clinical 

management of mental disorders by incorporating physiological data into future classification 

schemes [93]. Relatedly, a long-standing debate in the field of psychiatry is that, rather than 

classifying mental disorders as distinct disease entities in a traditional categorical approach, it 

may be more appropriate to conceptualise them in a dimensional approach [91], [94]. 

 

1.1.7. Digital healthcare 
In light of the considerable burden of mental disorders, the unmet need for effective clinical 

management, and the lack of adequate healthcare services [13], there is an increased interest in 

fostering technological advances to develop novel digital tools that can potentially improve 

psychiatric care [95]. Digital tools, in the form of web- or smartphone-based applications, 

enable increased capacity for data collection, user accessibility, as well as cost-efficiency [96]. 

For instance, digital adaptations of existing self-reported questionnaires are increasingly 

employed for the assessment of mental disorders, including depression [97]. While the 

transformation of established instruments into the digital format could potentially affect the 

reliability and validity of the results, as responses could vary depending on factors such as the 

presentation layout and the perceived sense of security and anonymity [98], a systematic review 

has found that the results obtained by the digital versions are generally comparable to those 

obtained by the traditional pen-and-paper versions [99]. 

 

Digital psychiatric assessments provide an increased convenience for both patients and 

clinicians/healthcare providers, as they can be completed by patients in the comfort of their 

homes without needing to visit the clinic or health centre, which may be particularly beneficial 

to those who are reluctant to seek help regarding their mental health. This also means that when 

patients do visit the clinic or health centre, consultation times can be saved and thereby spent 

more efficiently [100]. In addition to the digitalised versions of established paper instruments, 

new instruments are being developed specifically to be utilised online. These can have 

additional technological advantages, such as the personalisation of questions to individual users 

(i.e., skipping irrelevant questions based on previous answers), as well as the inclusion of audio 

and video [97], [101]–[103]. Similarly, web- or smartphone-based interventions could offer a 

more time-efficient, accessible and cost-effective alternative to face-to-face interventions [103]. 

Therefore, digital tools represent a promising area of innovation and have the potential to 
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improve the clinical management of MDD and other mental disorders by facilitating earlier 

and/or more accurate diagnosis as well as supporting more effective interventions.  

 

 

1.2. Pathophysiology of MDD 
 

Despite advances in our understanding of the neurobioloy of MDD, there is currently no single 

theory that can account for all aspects of the disease. In fact, several hypotheses have emerged 

to explain the mechanisms that underlie the development of MDD [104], [105]. MDD appears 

to be a multifactorial disorder that arises from complex interactions between genetic 

predispositions, molecular and functional disturbances, and environmental factors [48], [106]. 

 

1.2.1. Genetics 
The contribution of genetic factors to the risk of MDD is supported by converging evidence 

from family and twin studies [105]. The risk of MDD is three-fold higher in first-degree 

relatives of individuals with MDD compared with that in the general population, and the 

heritability rate of MDD is estimated to be approximately 37% [107], [108]. In addition, 

heritability appears to be significantly higher in women than in men [109], which supports the 

higher incidence and prevalence of depression in women. 

 

Despite the considerable heritability of MDD, genome-wide association studies (GWAS) have 

had limited success in revealing consistent significant genetic effects and providing insights 

into the biological pathways involved in MDD [110]. For example, no significant findings were 

reported in a mega-analysis of 18,759 individuals (9,240 cases and 9,519 controls) by the 

Psychiatric Genomics Consortium [111], or in a meta-analysis of depressive symptoms of 

34,549 individuals by the Cohorts for Heart and Aging Research in Genomic Epidemiology 

Consortium [112]. This is not only because the risk of MDD is highly polygenic and involves 

many susceptibility genes with small effect sizes (in other words, each susceptibility gene 

makes only a small contribution to the total genetic risk), but also given the complex genetic 

heterogeneity of the disorder, very large sample sizes are required to detect significant 

associations [48], [113]. More recently, GWAS involving larger sample sizes have been 

successful in identifying significant genetic variants. A meta-analysis of 461,134 individuals 

(135,458 cases and 344,901 controls) by the Psychiatric Genomics Consortium found 44 
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independent loci associated with clinically evaluated and self-reported MDD [113], and a meta-

analysis of 807,553 individuals (246,363 cases and 561,190 controls) found 102 independent 

variants associated with depression, of which 87 were replicated in an independent sample of 

1,306,354 individuals (414,055 cases and 892,299 controls) [114]. 

 

1.2.2. Environmental factors 
Several environmental and sociodemographic factors are associated with an increased risk of 

MDD. These include childhood trauma (sexual, physical or emotional abuse during childhood)  

[115]–[117], the absence of a partner (including being divorced or widowed) [5], recent 

negative life events (such as financial problems and illness or loss of close relatives or friends) 

[118], unemployment, low educational attainment and low socioeconomic status [48], [119]. 

Lifestyle factors including smoking [120], [121], alcohol use [122]–[124], drug use [125]–

[127], low physical activity [128], [129], and obesity [130]–[132] also increase the risk of 

MDD. 

 

1.2.3. Monoamines 
The monoamine hypothesis of depression proposes that depression is caused by a functional 

deficiency of the monoamine neurotransmitters serotonin, noradrenaline and/or dopamine in 

the central nervous system (CNS) [133], [134]. This was first implicated after the 

antihypertensive drug reserpine, which reduces the level of these monoamine neurotransmitters, 

was found to induce depression, and further supported by clinical observations that 

antidepressant medications which increase monoamine transmission, including TCAs and 

MAOIs, alleviate symptoms of depression [135]–[137]. As such, the field of pharmacotherapy 

of MDD continues to be dominated by monoamine-based compounds to this day [48]. Despite 

this, studies that measured noradrenaline and serotonin metabolites in the plasma, urine, 

cerebrospinal fluid (CSF) and brains (post-mortem) of MDD patients have revealed 

inconsistent findings, and some argue that the monoamine hypothesis of MDD may be overly 

simplistic [48], [138]. 

 

1.2.4. HPA axis 
The hypothalamus-pituitary-adrenal (HPA) axis is a major neuroendocrine system that 

involves the hypothalamus, pituitary and adrenal glands, and plays an important role in stress 

response. Corticotropin-releasing factor (CRF; also known as corticotropin-releasing hormone) 
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is released from the hypothalamus in response to stress, which, in turn, stimulates the release 

of glucocorticoids such as cortisol from the adrenal glands in a negative feedback mechanism 

(feedback inhibition). Abnormalities of the HPA axis, including an impaired glucocorticoid-

mediated feedback regulation, have been widely implicated in the pathophysiology of 

depression [48], [139]. Studies have found that MDD is associated with elevated levels of 

cortisol and CRF, and reduced glucocorticoid receptor sensitivity (also known as 

glucocorticoid resistance), as demonstrated by non-suppression of cortisol release in the 

dexamethasone test [140]–[143]. Hippocampal volume reductions have also been reported in 

MDD, which may be linked to HPA axis dysfunction [144], [145]. 

 

Clinical studies have shown that individuals who have been sexually or physically abused in 

childhood show an enhanced HPA axis activation both at baseline and when exposed to 

psychological stress [140], [146]. Early-life stress or trauma is a strong risk factor for adult 

depression, and a dose-response relationship between the severity of childhood adversity and 

the risk of lifetime and recent depressive episodes in adulthood has also been reported [115]–

[117]. This link appears to be reflected in the altered ability of the HPA axis to respond to stress 

following childhood trauma, which can lead to an increased susceptibility to depression [147], 

[148]. HPA axis disturbances associated with childhood trauma include sensitisation of the 

neuroendocrine stress response, CRF hyperactivity, glucocorticoid resistance, and reduced 

hippocampal volume, which are comparable to many of the neuroendocrine abnormalities in 

depression [139], [146]. In addition, women show greater responsiveness to stress than men, 

consistent with the higher incidence of MDD in women [149]. 

 

1.2.5. Inflammation and immune response 
The role of immune system dysfunction in the pathophysiology of major depression is 

supported by the observations that MDD patients exhibit activated inflammatory pathways 

[141]. Studies have reported that MDD patients show increased levels of pro-inflammatory 

cytokines, including interleukin (IL)-6, IL-1-β and tumour necrosis factor (TNF)-α, both in 

CSF and peripheral blood (serum or plasma) [150]–[156]. These findings have led to the 

cytokine hypothesis of depression. Acute-phase proteins, such as C-reactive protein (CRP), α-

1-acid glycoprotein, α-1-antichymotrypsin and haptoglobin, as well as chemokines and cellular 

adhesion molecules, such as human macrophage chemoattractant protein-1, soluble 

intracellular adhesion molecule-1 and E-selectin, have also been found to be elevated in MDD 
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[141], [150], [151]. In addition, various inflammatory markers, including IL-6 and IL-1-β, have 

been reported to be positively correlated with depression symptom severity [153], [157], and 

administration of the inflammatory cytokine interferon-α has been shown to induce depressive 

symptoms [158]. 

 

Moreover, evidence suggests that immune/inflammatory responses may contribute to the 

development of MDD partially through interactions with the stress response pathways 

involving the HPA axis [141], [150], [159]. Given the communication that occurs between the 

immune and neuroendocrine systems, activation of immune/inflammatory responses could 

result in HPA axis hyperactivity, and vice versa [160]. As glucocorticoids that are released by 

the HPA axis in response to stress normally have anti-inflammatory and immunosuppressive 

effects, glucocorticoid resistance in MDD could induce immune activation; on the other hand, 

increased inflammation could lead to HPA axis hyperactivity by directly stimulating the CRF 

or by inducing glucocorticoid resistance [141], [159]. In addition, the relationship between 

early-life stress (childhood trauma) and MDD has been linked to not only HPA axis 

hyperactivity (as discussed above in Section 1.2.4), but also increased activation of the 

immune/inflammatory system [161], [162]. Stress and depression have been associated with 

increased levels of circulating cytokines and an increased activity of the brain immune cell 

microglia, indicating elevated inflammatory responses in the CNS as well as in the peripheral 

system [163], [164]. These findings suggest that inflammation and microglial activation play a 

role in the pathophysiology of depression. It has been proposed that the increase in cytokines 

following stressful life experiences in childhood may induce changes to microglia, which may, 

in turn, lead to structural and functional changes in the brain, most notably within the 

hippocampus and the prefrontal cortex, that increase the vulnerability to developing depression 

in adulthood [165], [166]. 

 

1.2.6. Gene-environment interactions 
MDD is thought to result from a complex interplay of genetic predispositions and 

environmental exposures such as stressful life events (i.e., gene-environment interaction). A 

gene-environment interaction is defined as a differential effect of an environmental exposure 

on disease risk in individuals with different genotypes; or alternatively, a differential effect of 

a genotype on disease risk in individuals with different environmental exposures [167]. 

Essentially, it reflects a mechanism whereby genetic and environmental factors jointly 



Chapter 1 

 15 

contribute to the development of a disease, and the sensitivity to environmental exposures is 

influenced by genetic factors [168], [169]. Such interactions may help to account for the lack 

of consistent findings from GWAS of MDD [48], [135]. 

 

Although our understanding of how genetic and environmental factors interact in the 

pathogenesis of depression is incomplete, emerging evidence suggests that epigenetic 

mechanisms (such as deoxyribonucleic acid (DNA) methylation and histone modification), 

which modify gene function without changing the DNA sequence, may play a role in mediating 

the combined effects of genetic predisposition and environmental exposure on the risk for 

depression development [48], [105], [170]. Epigenetic modifications resulting from early-life 

trauma have been associated with an increased vulnerability to develop MDD in adulthood 

[168], [171], [172]. For example, the link between early-life stress, HPA axis dysfunction and 

increased risk of MDD in adults could possibly be explained by epigenetic regulation of the 

glucocorticoid receptor expression following childhood abuse [172], [173]. Therefore, genetic 

predispositions and stressful experiences in childhood may result in a maladaptive stress 

response system that amplifies the impact of negative life events and increases the vulnerability 

to depression in adulthood [168], [174]. In other words, whether or not individuals with adverse 

childhood experiences develop MDD (or other psychiatric disorders) in adulthood is dependent 

on the individual genetic background and its regulation of the stress response system [168]. 

 

1.2.7. Neurotrophic factors (neurogenesis and neural plasticity) 
Observations of reduced volumes of the hippocampus and prefrontal cortex areas of the brain 

in depressed patients have led to a hypothesis of depression involving neurotrophic factors 

[175], [176]. Brain-derived neurotrophic factor (BDNF), a growth factor that regulates 

neuronal development and plasticity, is thought to play a particularly important role in 

depression [177]. Studies have found that while the expression of BDNF in the brain is reduced 

by stress, it is increased after treatment with antidepressants [175], [178]. In addition, reduced 

serum and plasma levels of BDNF have been reported in MDD patients [179]–[182]. 

 

1.2.8. Functional neural circuits 
It has been suggested that stress-related alterations in inflammatory and glucocorticoid 

signalling could be associated with functional changes in corresponding brain networks [183], 

[184]. Consistent with this idea, neuroimaging studies of MDD have reported abnormalities in 
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the connectivity and/or activation of the affective-salience circuit, which plays an important 

role in guiding motivated behaviour, as well as the frontoparietal circuit, which is involved in 

cognitive control. Increased connectivity and activation of regions of the affective-salience 

circuit, including the amygdala, dorsal anterior cingulate and anterior insula, have been 

observed, which may reflect the heighted salience to negative stimuli in MDD [185]. 

Furthermore, MDD has been linked to reduced connectivity among regions of the 

frontoparietal network, particularly in response to negative stimuli; this may reflect general 

deficits in cognitive control of attention and emotion regulation in MDD, and implicate a role 

played by this network in inappropriate appraisals of negative life events [186], [187]. 

 

 

1.3. Blood-based proteomic biomarkers of MDD 
 

1.3.1. The clinical need for biomarkers 
Although extensive research has led to a better understanding of the pathophysiological 

mechanisms underlying MDD, there are currently no biological tests that have been approved 

and implemented into routine clinical practice for MDD or other psychiatric disorders [188]. 

Given the considerable disease burden and economic costs associated with undiagnosed or 

inadequately treated depression, there is a crucial yet unmet need to improve clinical 

management and patient care by developing more objective and robust methods of diagnosis 

and treatment selection. This can be achieved by identifying biomarkers of MDD, which would 

have valuable applications in disease detection and monitoring [189]. While biomarkers are 

routinely used to detect and monitor various medical conditions such as breast cancer, diabetes 

and heart disease, this is not yet the case for psychiatric disorders. 

 

A biomarker, as defined by the National Institutes of Health Biomarker Working Group, is ‘a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention’ 

[189]. Biomarkers can be categorised into three types: diagnostic, prognostic, and treatment. 

Diagnostic biomarkers are useful in detecting the presence of a disease. They could facilitate 

earlier and more accurate diagnosis, and consequently enable patients to receive appropriate 

treatment at an earlier stage of the disease. Early diagnosis, by leading to early treatment, has 

been shown to beneficially affect the progression and outcome of MDD [190]. While clinical 
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diagnosis can only be established in the presence of sufficient symptoms (that fulfil the defined 

criteria), biomarkers may be detectable in patients in the months or even years preceding the 

overt manifestation of the disorder, which could be indicative of disease development [14]. 

Prognostic biomarkers characterise the course of the disease and predict disease outcome or 

severity (independent of treatment); they could be used to monitor disease progression [191]. 

Treatment biomarkers are useful in predicting treatment response. They could allow for the 

substratification of MDD patients based on their responses to different treatments, such as 

pharmacotherapy and psychotherapy, and guide personalised treatment strategies by helping 

clinicians to find an optimal approach for a particular patient with maximum benefit and 

minimum side effects [14], [42]. This is expected to reduce the duration of ineffective treatment 

period. Although biomarkers are typically considered to refer to explicitly biological measures, 

such as genetic or protein features, they are not necessarily limited to be so; features measured 

in surveys or rating scales could also represent candidate biomarkers [192]. Thus, biomarkers 

have the potential to facilitate earlier and more accurate diagnosis and treatment for patients, 

which would improve their quality of life, enable a better allocation of resources of the 

healthcare system, and reduce the disease-related burden and costs for both governments and 

patients [193]. In addition, biomarkers could help to elucidate the underlying biological and 

molecular mechanisms of disease. 

 

1.3.2. Proteomics for biomarker discovery 
Advances in ‘–omics’ technologies have created novel opportunities for identifying molecular 

signatures, or biomarkers, of MDD. While genomics and transcriptomics were originally 

considered the state-of-the-art disciplines for biomarker discovery, with numerous reports 

pointing towards genetic and transcriptional aetiologies of psychiatric disorders, over the last 

decade, there has been a growing interest in proteomics, that is, the comprehensive analysis of 

all proteins in a biological system [194], [195]. As proteins are the functional molecules of the 

cell and reflect the dynamic state (current biological status) of the organism, a proteomic 

approach could enable the detection of disease-related alterations that are not detectable at the 

genetic or transcript level and help to elucidate the biological mechanisms underlying MDD 

[193], [196]. Recent developments in proteomic technologies mean that vast amounts of 

protein information, including protein expression levels, post-translational modifications, and 

protein-protein interactions, can be readily collected from bodily fluids and tissues [197], [198]. 

Hence, proteomics has emerged as a powerful approach for biomarker discovery and validation. 
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Proteomic studies have been performed using various methods, including two-dimensional gel 

electrophoresis, immunoaassays, protein microarrays, affinity separation, and mass 

spectrometry (MS)-based technologies. Immunoassays, such as enzyme-linked 

immunosorbent assays (ELISAs), are generally considered the gold standard in clinical 

laboratories. However, they have several drawbacks which can limit the technological and 

biological reproducibility of the results, including cross-reactivity, availability of suitable 

antibodies, batch-to-batch antibody variation, high cost, and requirement for relatively large 

sample volumes [199]–[202]. The limitations associated with immunoassays have encouraged 

a shift towards MS-based techniques in proteomic biomarker discovery and validation, as they 

allow high-throughput analyses with increased sensitivity and specificity and therefore yield 

more reproducible results [203]. This shift has been further facilitated by the fact that MS is 

already routinely used in clinical laboratories to detect and quantify metabolites, hormones, 

small molecules and drugs in blood, urine, and other biologically relevant material [204]–[206]. 

 

1.3.3. Mass spectrometry 
MS enables the identification and quantification of proteomic analytes by measuring their 

mass-to-charge ratio (m/z) [207]. Given its high sensitivity and multiplexing capacity to 

simultaneously characterise and quantify several thousands of analytes, it is emerging as an 

increasingly powerful method for proteomic biomarker research [208]–[210]. In particular, MS 

coupled with separation techniques such as liquid chromatography (LC-MS) has become an 

effective tool for providing a comprehensive analysis of the proteome and profiling of disease-

related alterations [211], [212]; changes in protein expression, abundance, structure, and 

function, all of which could serve as potential indicators of disease, can be detected [213]. Thus, 

the application of MS-based methods for molecular profiling of MDD has the potential to 

improve our understanding of the involved pathophysiological mechanisms as well as identify 

diagnostic, prognostic and treatment biomarkers [194].  

 

Proteomic analysis by MS can involve a targeted or an untargeted approach. Untargeted 

analysis (e.g., shotgun proteomics) aims to identify and quantify all detectable proteins or 

analytes present in the sample (global profiling). However, it can have limited sensitivity and 

precision, especially in the analysis of lower-abundance proteins [209]. On the other hand, 

targeted MS techniques such as multiple reaction monitoring (MRM) enable the identification 
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and quantification of a pre-selected set of proteins with increased sensitivity, precision, and 

throughput [210]. While untargeted methods are typically employed in biomarker discovery 

experiments to give a global characterisation of proteomic signatures, it is often desirable to 

subsequently confirm the findings using more reliable targeted methods [214], [215]. Thus, 

targeted and untargeted MS techniques are complementary for biomarker discovery and 

validation. 

 

1.3.4. Biomarkers in peripheral blood 
In order to be useful in routine clinical practice, biomarkers need to not only have high 

sensitivity and specificity (> 80%), but also be reliable, reproducible, non-invasive and cost-

effective [216]. While the search for biomarkers of neuropsychiatric disorders has traditionally 

focused on the CNS (post-mortem brain tissue and CSF), there is converging evidence that 

disease-related alterations can also be detected in the peripheral system, such as the circulating 

blood [14]. Blood is a widely used sample type for biomarker discovery, as it is a rich source 

of proteins that reflects the complexity of the human proteome as well as a circulating 

representation of the physiological and pathophysiological processes occurring in the body 

[217]–[219]. Extensive research has shown that depression is associated with changes and/or 

disturbances in the function of several biological systems, which indicate that depression is a 

systematic disorder. Consistent with this, proteomic studies of MDD have reported alterations 

in peripheral biomarkers involved in the HPA axis, immune/inflammatory response, as well as 

carbohydrate and/or lipid metabolism [14], [130], [220]–[227]. The accessibility, low 

invasiveness, time-efficiency and cost-effectiveness of blood-based peripheral biomarkers 

make them an appealing alternative to CNS biomarkers for clinical application with regards to 

the detection and monitoring of psychiatric disorders [14], [228], [229]. The utility of blood-

based biomarkers has already been demonstrated in other clinical fields. This is especially the 

case for oncology, as various blood-based protein biomarkers have obtained FDA clearance 

and are currently used in clinical practice for cancer screening, monitoring, prognosis and/or 

prediction. These include: cancer antigen 125 for ovarian cancer; cancer antigen 19-9 for 

pancreatic cancer; carcinoembryonic antigen for colon cancer, prostate-specific antigen for 

prostate cancer; and cancer antigen 15-3, oestrogen receptor, progesterone receptor and human 

epidermal growth factor receptor 2 for breast cancer [230]–[233]. Additionally, a diagnostic 

blood test for liver fibrosis, which measures three serum biomarkers, hyaluronic acid, 

procollagen III amino terminal peptide, tissue inhibitor of metalloproteinase 1, has been 
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developed and made available for clinical use [234]. This field is evidently lagging behind in 

psychiatry as a blood-based biomarker test is yet to be approved by the FDA or other regulatory 

authorities and successfully make its way into clinical application [235]. 

 

Given the complexity and heterogeneity of MDD, single biomarkers are unlikely to sufficiently 

capture the disease characteristics. Hence, it is anticipated that a panel of multiple biomarkers 

will be needed to not only provide appropriate coverage of the various biological abnormalities, 

but also achieve sufficient sensitivity and specificity, that is, deliver sufficiently high 

discriminatory power, for clinical implementation [14], [223], [236], [237]. For instance, it has 

been shown that although serum proteins have between small and moderate effect sizes when 

considered individually, they are able to distinguish between MDD patients and controls with 

a good discriminatory power when combined into a biomarker panel [222]. Additionally, as 

biomarkers involved in disease-related pathways tend to be functionally highly correlated, it is 

important that the joint effects of the biomarkers are investigated using appropriate statistical 

methods [222]. 

 

1.3.5. Blood-based diagnostic biomarkers of MDD 
Recent studies have demonstrated that blood proteomic profiling enables the identification of 

differentially expressed proteins between individuals with and without MDD as potential 

diagnostic biomarkers of MDD. To provide a comprehensive overview of the current evidence 

for blood-based diagnostic biomarkers of MDD, a PubMed database search was conducted 

using the search terms: ‘depression proteomic biomarker blood’, ‘depression proteomic 

biomarker serum’ and ‘depression proteomic biomarker plasma’ (Preece, Han, and Bahn 

(2018) [228]). The search was based on articles available as of September 2020, and was 

restricted to human studies published in the last ten years. The ten-year period was chosen to 

ensure that similar sample formats and analytical techniques were implemented in the studies 

to allow for a straightforward comparison, given the increase in the number of studies using 

peripheral blood as a sample source and the notable developments in proteomic technologies. 

Biomarkers associated with predicting disease prognosis or treatment response were not 

considered. The PubMed database search was conducted and the findings were analysed and 

summarised in collaboration with Rhian Lauren Preece, who was another candidate PhD 

student in the Bahn Lab. 
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This search strategy identified 11 studies focused on identifying diagnostic biomarkers that 

differentiate between individuals with and without MDD [222], [223], [244], [226], [227], 

[238]–[243]. These studies are summarised  in Table 1.2. Two studies used plasma [227], [238] 

and nine studies used serum [222], [223], [226], [239]–[244] as the sample source of peripheral 

blood. The studies show that a range of proteomic techniques have been applied for protein 

biomarker discovery. MS- and immunoassay-based techniques have been used either alone or 

in combination, where immunoassays have been used to validate findings from MS analyses. 

Studies using single or multiplex immunoassay profiling have adopted a targeted approach and 

measured candidate protein biomarkers that have been identified as proteins of interest in 

previous studies and/or neurobiological theories of affective disorders. In contrast, other 

studies have adopted an untargeted approach (e.g., LC-MS/MS) to identify potential blood 

protein biomarkers. In terms of the statistical methods, univariate methods  (Student’s t-test, 

analysis of variance (ANOVA), analysis of covariance (ANCOVA), and Mann-Whitney U test) 

have been predominantly used, where proteins have been reported as significantly altered 

between MDD patients and controls if p-values were below a pre-defined threshold (often 0.05; 

before or after multiple testing correction). Some studies have implemented one or more 

multivariable methods with variable selection (logistic regression, least absolute shrinkage and 

selection operator (LASSO), random forests, discriminant analysis, principal component 

analysis (PCA), or support vector machine) to identify differentially expressed protein 

biomarkers. 

 

The studies demonstrate that the comparison of blood (serum or plasma) proteomic profiles 

enables the identification of proteins that are differentially expressed between MDD patients 

and healthy controls. These proteins have functional roles in immune response, inflammation, 

metabolism, and cell signaling, among others. Across the 11 studies, 84 unique proteins were 

identified as diagnostic biomarker candidates for MDD. Ceruloplasmin was reported in five 

studies [226], [238], [240], [241], [243], and seven proteins (α-2-macroglobulin [222], [227], 

[238], apolipoprotein B-100 [238], [241], [243], apolipoprotein D [238], [239], [241], BDNF 

[223], [226], [227], IL-1 receptor antagonist protein [222], [226], [239], macrophage migration 

inhibitor factor [222], [226], [239], and protein S100-A12 [222], [226], [239]) were each 

reported in three studies. While proteins that have been repeatedly reported across different 

studies may potentially represent diagnostic biomarkers of MDD and should be further 

investigated, there were disagreements in the direction of change in some cases. Therefore, 

care must be taken when comparing and interpreting findings from different studies, as they 
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vary on the proteomic technique used, the proteins quantified, and the statistical method 

applied [228]. 

 

Of paricular note is the work by Papakostas et al. (2013) [223] and subsequently Bibello et al. 

(2015) [245], which represented one of the first attempts in the field to develop a panel 

consisting of multiple biomarkers and to explore a probabilistic approach. This eventually led 

to the commercialisation of a diagnostic test for MDD (MDDScore) by Ridge Diagnostics Inc 

based on a panel of nine serum biomarkers, whereby the probability of an individual having 

depression could be calculated using the biomarker concentrations and body mass index (BMI). 

The panel was developed in a pilot study of 36 MDD patients and 43 non-depressed controls 

and a replication study of 34 MDD patients [223], and later validated in a larger follow-up 

confirmation study of 68 MDD patients and 86 non-depressed controls, which achieved 

sensitivity and specificity above 90% and 80%, respectively [245]. The nine serum biomarkers 

(α-1 antitrypsin, apolipoprotein CIII, BDNF, cortisol, epidermal growth factor, 

myeloperoxidase, prolactin, resistin, and soluble TNF-α receptor type II) are associated with 

inflammatory, HPA axis, metabolic and neurotrophic pathways. However, despite the high 

accuracy, a potential limitation of this test is that it is not known to have been tested on 

naturalistic patient populations recruited from the general population and primary healthcare 

settings, where the need for a diagnostic test for MDD is greatest (the published studies were 

conducted in more restricted patient populations). Additionally, it has not yet been approved 

by official regulatory authorities such as the FDA. 

 

Moreover, Bot et al. (2015) [239] previously conducted the largest proteomic study examining 

serum proteins in 687 currently depressed patients (six-month recency of depressive episode) 

and 420 controls recruited from different healthcare settings (general population, primary care 

and specialised mental healthcare). Thirty-three analytes were identified as significantly 

different in MDD patients compared to controls based on univariate analysis, where p-values 

< 0.05 were considered as statistically significant. However, this study did not consider the 

joint effects of the biomarker candidates, which are essential for exploring their diagnostic 

potential. 

 

More recently, Chan et al. (2016) [222] performed a meta-analysis of multiplex immunoassay 

profiling data to develop and validate a diagnostic biomarker panel for detecting depression. A 

panel of 33 serum proteomic biomarkers, which defined an immune-neuroendocrine profile in 
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depression, was identified by applying a joint effects statistical method (LASSO regression 

with ten-fold cross-validation) to differentiate between 78 first-/recent-onset drug-naive/drug-

free MDD patients and 156 controls. Importantly, the discriminatory performance of the panel 

was subsequently tested on 468 currently depressed patients (one-month recency of MDD 

diagnosis) and 305 controls recruited from naturalistic healthcare settings (general population, 

primary care and specialised mental healthcare). This resulted in a moderate discriminatory 

performance, which further improved following the incorporation of sociodemographic 

variables, such as age, BMI, family history and alcohol dependence and/or abuse. This 

highlighted the importance of considering sociodemographic variables in addition to the 

proteomic biomarkers for differentiating between patients and controls. Despite the need for 

further validation, the authors demonstrated the feasibility of a blood-based biomarker-

sociodemographic panel for detecting depression and improving the accuracy of clinical 

diagnosis in naturalistic healthcare settings [222]. 

 

One of the challenges in identifying robust diagnostic biomarkers of MDD arises from the fact 

that the pathophysiology of MDD overlaps, at least to a certain extent, with that of other major 

psychiatric disorders, including BD and schizophrenia. GWAS have demonstrated that genetic 

risk factors are shared between MDD, BD and schizophrenia [246]–[248], and disturbances in 

the immune/inflammatory and neuroendocrine pathways have been implicated across these 

disorders [150], [249]–[251], suggesting a potential overlap in biomarker profiles between 

MDD and other major psychiatric disorders. In line with this, a recent review of previous blood-

based biomarker studies has demonstrated that the same proteins (such as TNF-α, CRP and 

interferon-γ) have been identified as biomarkers of not only MDD but also BD and/or 

schizophrenia [14]. Similarly, another review, Preece, Han, and Bahn (2018) [228], has shown 

that, among 82 proteins which have been identified as biomarkers of MDD, 29 (including 

apolipoprotein AI, angiotensin-converting enzyme and CD40 ligand) have also been identified 

as biomarkers of BD. These proteins may be involved in disease-related alterations and 

pathophysiological mechanisms that are common to both MDD and BD, and could reflect risk 

factors that are shared between the two disorders [252]. Thus, this complication that biomarkers 

may not be disease-specific reinforces the need for a diagnostic test for MDD to be based on a 

panel of multiple biomarkers, as a test based on any single biomarker is likely to lack sufficient 

discriminatory power [14], [193]. Furthermore, considering the joint effects of biomarkers and 

other patient characteristics, including sociodemographic factors and/or clinical symptoms, 

will be important, as this approach may reveal a disease-specific profile of MDD that consists 
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of a combination of biological and non-biological features. The idea is that, based on such a 

profile, an individual presenting with only the biological features of MDD (e.g., an 

inflammatory profile) may be predicted as having a relatively low probability of having or 

developing MDD in comparison to another individual presenting with both the biological and 

non-biological features of MDD. 
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Table 1.2. Proteomic studies identifying blood-based diagnostic protein biomarkers of MDD (published in the last ten years). 
The sample groups, biological material, proteomic technique, statistical method, number of proteins or analytes targeted, and the findings, are shown for each 

study. *Proteins that are reported in two studies, independent of the direction of change. **Proteins that are reported in three or more studies, independent of 

the direction of change. Abbreviations: ANCOVA (analysis of covariance); ANOVA (analysis of variance); ELISA (enzyme-linked immunosorbent assay); 

iTRAQ (isobaric tag for relative and absolute quantification); LASSO (least absolute shrinkage and selection operator); LC (liquid chromatography); MALDI-

TOF (matrix assisted laser desorption ionisation time of flight); MS (mass spectrometry); MDD (major depressive disorder); PCA (principal component 

analysis); PLS-DA (partial least squares discriminant analysis); RFE (recursive feature elimination); SVM (support vector machine). 

 

Study Material Sample 
groups 

Proteomic 
technique 

Statistica
l method 

Number of 
proteins or 

analytes 
targeted 

Findings Upregulated Downregulated 

Domenici et al. 
(2010) [227] Plasma 

MDD patients 
(n=245) vs 

healthy 
controls 
(n=254) 

Multiplex 
immunoassay 

Student's 
t-test; 

ANOVA; 
PCA; 

PLS-DA; 
Random 
Forests 

79 proteins 

2 proteins 
differentially 

expressed 
(univariate); 7 

important 
proteins 

identified by 
multivariable 
analysis (high 

variable 
importance of 
contribution 
from PLS-

DA) 

Insulin*; Matrix 
metalloproteinase-

9; Plasminogen 
activator inhibitor 
1; Tumor necrosis 

factor receptor 
superfamily 
member 1B* 

Brain-derived 
neurotrophic 

factor**; 
Apolipoprotein 

A-I; α-2-
macroglobulin** 

Xu et al. (2012) 
[238] Plasma 

First-onset, 
treatment-

naïve 
depressed 

patients (n=21) 

iTRAQ LC-
MS/MS; 

validation by 
immunoblotting

, ELISA 

Mann-
Whitney 

U test 
Untargeted 

(LC-MS/MS) 
9 proteins 

differentially 
expressed 

Apolipoprotein 
D**; Afamin; 

Apolipoprotein B-
100**; α-1B-
glycoprotein; 

Ceruloplasmin*
*; Histidine-rich 

glycoprotein; 
Semaphorin-3F; 
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vs healthy 
controls 
(n=21) 

Vitamin D-
binding protein 

isoform 1 

α-2-
macroglobulin** 

Papakostas et al. 
(2013) [223] Serum 

MDD patients 
(pilot n=36, 
replication 
n=34) vs 

healthy (n=43) 

ELISA 
(individual 

immunoassays) 
ANCOV

A 110 proteins 
9 proteins 

differentially 
expressed 

α-1-antitrypsin*; 
Brain-derived 
neurotrophic 

factor**; 
Cortisol*; Pro-

epidermal growth 
factor; 

Myeloperoxidase; 
Tumor necrosis 

factor 

Apolipoprotein 
C-III; Prolactin; 

Resistin 

Stelzhammer et 
al. (2014) [226] Serum 

First onset, 
drug-naïve 

MDD patients 
(discovery 

n=23, 
validation 
n=15) vs 
healthy 
controls 

(discovery 
n=42, 

validation 
n=21) 

Multiplex 
immunoassay; 

LC-MSE 

Mann-
Whitney 
U test; 

ANCOV
A 

190 analytes 
(multiplex 

immunoassay)
; Untargeted 
(LC-MSE) 

11 proteins 
differentially 

expressed 
(multiplex 

immunoassay)
; 2 proteins 

differentially 
expressed 
(LC-MSE) 

Ferritin*; 
Macrophage 

migration 
inhibitory 

factor**; Protein 
S100-A12**; 
Superoxide 
dismutase; 

Interleukin-1 
receptor 

antagonist 
protein**; Pro-
interleukin-16; 

Tenascin; Brain-
derived 

neurotrophic 
factor**; 

Haptoglobin-
related protein 

Angiotensin-
converting 
enzyme*; 

Serotransferrin; 
Somatotropin*; 
Ceruloplasmin*

* 

Bot et al. (2015) 
[239] Serum 

MDD patients 
(current 

n=687) vs 

Flow cytometry 
(multi-analyte 

profiling) 
Univariat
e linear 171 proteins 

28 proteins 
differentially 

expressed 

Pancreatic 
prohormone*; 

Prostasin; 

Follicle-
stimulating 
hormone*; 
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healthy 
controls 
(n=420); 

validation on 
antidepressant-

free current 
MDD patients 

(n=78) vs 
healthy 
controls 
(n=156) 

regressio
n 

Angiogenin; 
Apolipoprotein 

D**; α-1-
antitrypsin*; α-1-
antichymotrypsin; 

Macrophage 
migration 
inhibitory 
factor**; 
Urokinase 

plasminogen 
activator surface 

receptor; 
Stromelysin-1*; 

Cathepsin D; 
Serine protease 

hepsin; 
Stromelysin-2; 
Protein S100-

A12**; 
Interleukin-12 

subunit β*; 
Interleukin-1 

receptor 
antagonist 
protein**; 

Apolipoprotein A-
IV; Complement 
factor H-related 

protein 1; α-2-HS-
glycoprotein; 

Carcinoembryonic 
antigen; von 
Willebrand 

factor*; Fatty 

Luteinizing 
hormone; 
Growth-

regulated α 
protein*; 

Insulin-like 
growth factor-
binding protein 
5; Angiopoietin-

2; Receptor 
tyrosine-protein 
kinase erbB-3; 
CD40 ligand 
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acid-binding 
protein, adipocyte 

Lee et al. (2015) 
[240] Serum 

MDD patients 
(n=8) vs 
healthy 

controls (n=8) 
ELISA 

Mann-
Whitney 

U test 
10 proteins 

3 proteins 
differentially 

expressed 

Ceruloplasmin**; 
Complement C1q 

subcomponent 
subunit C; Inter-α 
-trypsin inhibitor 
heavy chain H4* 

 

Lee et al. (2016) 
[241] Serum 

Drug-free 
female MDD 
patients (LC-
MS/MS n=10, 
MRM n=25) 

vs healthy 
controls (LC-
MS/MS n=10, 
MRM n=25) 

LC-MS/MS; 
MRM LASSO Untargeted 

(LC-MS/MS) 
6 proteins 

differentially 
expressed 

Apolipoprotein 
D**; 

Apolipoprotein B-
100**; Vitamin 

D-binding 
protein*; Hornerin 

Profilin-1; 
Ceruloplasmin*

* 

Wang et al. 
(2016) [242] Serum 

First-onset 
treatment-

naïve MDD 
patients (n=22) 

vs healthy 
controls 
(n=20) 

iTRAQ LC-
MS/MS; 

validation by 
ELISA 

Student's 
t-test 

Untargeted 
(LC-MS/MS) 

4 proteins 
differentially 

expressed 

C-reactive 
protein; 

Angiopoietin-
related protein 3; 

Serum amyloid A-
1 protein; Inter-α-
trypsin inhibitor 
heavy chain H4* 

 

Chan et al. (2016) 
[222] Serum 

First-onset 
drug-naïve 
drug-free 

MDD patients 
(n=78) vs 
healthy 
controls 
(n=156) 

Multiplex 
immunoassay 

LASSO; 
Stepwise 
logistic 

regressio
n 

99 analytes 
33 proteins 

differentially 
expressed 

α-2-
macroglobulin**; 
von Willebrand 
factor*; Serum 

glutamic 
oxaloacetic 

transaminase; 
Insulin-like 

growth factor-
binding protein 2; 

Factor VII; 
Angiotensin-
converting 
enzyme*; 

Creatine kinase 
MB; Tyrosine-
protein kinase 
receptor UFO; 

Stromelysin-1*; 
Thyroxine-
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Follicle-
stimulating 
hormone*; 
Insulin*; 

Pancreatic 
prohormone*; 

Angiotensinogen; 
Cortisol*; 

Interleukin-1 
receptor 

antagonist 
protein**; 

Interleukin-1 α; 
C-C motif 

chemokine 22; 
Macrophage 

migration 
inhibitory 

factor**; Protein 
S100-A12**; 

Ferritin*; Cancer 
antigen 19-9 (CA 

19-9); Tumor 
necrosis factor 

receptor 
superfamily 
member 10C 

binding 
globulin; 
Thyroid-

stimulating 
hormone; 

Somatotropin*; 
Interleukin-13; 

Granulocyte 
colony-

stimulating 
factor; Growth-

regulated α 
protein*; C-C 

motif chemokine 
2; Tumor 

necrosis factor 
receptor 

superfamily 
member 1B*; 
Interleukin-12 

subunit β*; 
Interleukin-3; 

Myoglobin 

Kim et al. (2017) 
[243] Serum 

Drug-free 
female MDD 

patients (n=25) 
vs healthy 
controls 
(n=25) 

LC-MS/MS; 
MRM 

SVM-
RFE 

Untargeted 
(LC-MS/MS) 

3 proteins 
differentially 

expressed 

Apolipoprotein B-
100**; Vitamin 

D-binding 
protein* 

Ceruloplasmin*
* 
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Kang et al. 
(2019) [244] Serum 

MDD patients 
(n=86) vs 
healthy 
controls 
(n=89) 

MALDI-TOF 
MS SVM Untargeted 

2 proteins 
differentially 

expressed 
Fibrinogen Kininogen 
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1.4. Statistical methods for biomarker identification 
 

1.4.1. Clinical risk prediction models 

Clinical risk prediction models estimate the probabilities or risks of having (diagnostic) or 

developing (prognostic) an outcome or a disease [253]. They are a useful tool to integrate 

various patient characteristics, including molecular profiles, sociodemographic factors and 

symptoms, to make probabilistic predictions in a multivariable manner [254], [255]. These 

prediction models can be used within a clinical setting to facilitate, rather than replace, 

decision-making by healthcare providers, as the probabilities estimated by the models can aid  

in making more statistically informed and objective decisions on the diagnosis, prognosis, and 

treatment of patients [256], [257]. This supports the idea of personalised medicine and would 

increase the efficiency and cost-effectiveness of clinical management [258]. 

 

Developing a prediction model involves two stages: model development and model evaluation 

(Figure 1.1). In the development stage, multivariable classification and model selection 

methods are used to fit a prediction model to the training data. Any patient features that are 

known or considered to be associated with the outcome, such as sociodemographic factors and 

candidate biomarkers, can be investigated as a predictor [254]. Multivariable methods select a 

set of predictors with the best joint ability for discrimination, and define the individual 

contribution of the selected predictors to the probability estimation of the outcome (in the form 

of regression coefficients) [254]. The probability of having or developing the outcome can then 

be calculated for each individual based on the combined contributions of the selected predictors. 

 

In the evaluation stage, the predictive ability of the fitted prediction model is assessed when 

applied to data other than that used for model development (test data). The selected model is 

used to predict the outcomes of a new set of individuals and the predictions are compared 

against the observed outcomes [253]. This allows for an evaluation of the generalisation 

performance of the prediction model, which is highly important for clinical application [259]. 

A diagnostic prediction model should be able to accurately and reliably distinguish between 

individuals with and without disease (discrimination). Ideally, independent participant datasets 

should be used for model development (training data) and model evaluation (test data) if 

available, and both training and test datasets should be sufficiently large and diverse to ensure 
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that they are representative, although such data-rich situations tend to be rare in clinical studies 

[260]. 

 

 
Figure 1.1. Workflow of prediction model development and evaluation. 

 

 

1.4.2. Statistical considerations for biomarker discovery and validation 

Despite considerable research and investment into proteomic biomarker discovery for MDD 

and other psychiatric disorders, very few biomarkers have been successfully translated into 

regulatory authority-approved clinical tests and are routinely used in clinical practice [261], 

[262]. This is mainly because many candidate biomarkers that were initially found to be 

discriminatory have failed to be validated in subsequent studies [263], [264]. As in other fields 

of biomedical research, the lack of reproducibility of potential biomarker findings for 

psychiatric disorders arises from not only the inherent complexity and heterogeneity of the 

disorders, but also limitations in the pre-analytical, analytical and statistical workflow [15], 

[261], [265]. This suggests that the task of developing and validating a biomarker panel with a 

sufficiently high discriminatory power may be more challenging than previously considered. 
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1.4.2.1. Study design 

While appropriate study design is an important pre-analytical factor that determines the 

reproducibility of findings, a major limitation of many biomarker studies is the fact that they 

are not designed with a specific clinical objective and therefore are carried out without strict 

recruitment criteria for sample inclusion or exclusion [15]. For the identification of diagnostic 

biomarkers, first- or recent-onset drug-naïve patients should ideally be compared against 

controls. Using established or chronically ill patients or patients on medication is less ideal not 

only as the effect of medication can be a confounding factor in the analysis, but also as the 

findings may have limited generalisability when applied for the diagnosis of first- or recent-

onset patients [15]. In addition, rather than using ‘healthy’ controls as a reference population 

for comparison against patients, using individuals presenting with subthreshold depression may 

allow for a more clinically relevant and appropriate reference sample population, as 

distinguishing MDD patients from subthreshold symptomatic individuals is more likely to 

represent a task that GPs would need to undertake in primary care compared with 

distinguishing MDD patients from non-symptomatic individuals. Furthermore, the presence of 

comorbid diseases (e.g., MDD with anxiety disorder) or symptoms of other undiagnosed 

diseases (e.g., MDD with subthreshold symptoms of anxiety) increases the heterogeneity of 

the population, making discrimination more difficult. While this problem could be addressed 

by using a more homogeneous sample population, it may not be truly representative of the 

target population, and findings would be less generalisable when applied to more naturalistic 

patient cohorts. Since studies that lack proper design tend to be carried out using pre-existing 

or available samples and data that have originally been collected for other purposes, it is 

expectedly less likely to be able to obtain reproducible findings from such studies [15]. The 

poor reproducibility of findings is also a result of many biomarker studies being conducted 

using small sample sizes [261] (see Section 1.4.2.2 below). 

 

Moreover, as individuals’ blood-based biomarker profiles can vary substantially with 

sociodemographic and lifestyle factors, including age, sex, BMI, smoking and alcohol 

consumption, these variables could be potential confounders [15]. A confounder is a variable 

that is related to both the predictor variables and the outcome variable, and results in a spurious 

association between the predictors and the outcome [266]. It is therefore important that 

potential confounders are appropriately dealt with, for instance, as part of the study design by 

recruiting controls that are matched with patients for certain sociodemographic and lifestyle 

factors. However, as this can be challenging to achieve and/or result in non-matched patients 
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or controls having to be excluded (i.e., wasteful of resources), another approach is to adopt 

appropriate statistical techniques to account and adjust for the effects of potential confounders 

[267]. For example, multivariable regression methods, such as logistic regression, investigate 

the joint effects of many variables, including predictors and potential confounders, on the 

outcome, and thereby enable potential confounders to be dealt with in a relatively flexible 

manner [266]. Additionally, reproducibility can be affected by technical variability, including 

variability in sample collection, storage, and handling [268]. Establishing strict guidelines 

(standard operating procedures) which all participating centers need to follow would help to 

address these factors. 

 

1.4.2.2. Model overfitting 

Prediction model development in biomarker studies typically involves datasets that contain a 

large number of predictors (p) relative to the number of observations (n). Performing model 

selection on such high-dimensional datasets (‘small n, large p’) is likely to lead to model 

overfitting, which is when the prediction model captures not only the underlying relationship 

of interest but also noise in the data [255]. As a result, the model provides an over-optimistic 

assessment of the predictive performance based on the original data, which does not reproduce 

when the model is applied to new data. An overfitted model typically underestimates the 

probability of an event in low risk individuals and overestimates it in high risk individuals 

[269]. 

 

When developing a risk prediction model, the events per variable (EPV), which is the number 

of observations (in the smallest sample group) divided by the number of candidate predictors, 

is often used for sample size considerations. Candidate predictors should include all variables 

that are initially considered in the study as potential predictors and not only those used in 

multivariable analysis for prediction model development, as well as dummy variables that are 

used for categorical predictors [270]. As a rule-of-thumb, it has been recommended that an 

EPV of at least ten is required to avoid overfitting and ensure that the prediction model is 

reliable; lower EPV values in prediction model development have been found to result in 

poorer predictive performance in validation [271]–[273]. Although this criterion has been 

questioned for not being based on convincing scientific reasoning [274], [275] and challenged 

for being too lenient [276], [277] as well as too strict [273], the EPV is nonetheless generally 

regarded as useful for considering the sample size in relation to model complexity and hence 

frequently reported in clinical prediction studies [270]. However, the recommended EPV ≥ ten 
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is often difficult to achieve in practice, especially for studies of psychiatric disorders where the 

recruitment of relevant patients and control individuals is notoriously challenging [193], [228]. 

Hence, appropriate statistical methods that can address the problem of overfitting need to be 

considered in order to ensure that a prediction model which only captures the meaningful and 

relevant aspects of the data, and thereby, is generalisable and useful for clinical decision-

making, is obtained. A review of flawed research (by the Institute of Medicine at Duke 

University, USA) underscored the serious repercussions of model overfitting and incorrectly 

used statistical methods in –omics biomarker discovery studies, which subsequently led to not 

only the cancellation of clinical trials but also the retraction of many manuscripts [278]. 

 

Data prefiltering (dimensionality reduction) 

A common approach that is used in proteomic biomarker discovery workflows to deal with the 

‘small n, large p’ problem is to reduce the dimensionality of the dataset (and thereby increase 

the EPV) by prefiltering the predictor variables. The relationship of each predictor to the 

outcome is assessed based on univariable screening (such as Student’s t-test, ANCOVA and 

Mann-Whitney U test), and only predictors that are statistically significant are used for 

subsequent model selection, whereas others are eliminated. However, when the same data that 

is used to prefilter the predictors is again used to build a prediction model, the generalisability 

of the model can be limited, as prefiltering gives an over-optimistic assessment of the 

predictive ability of the model [261]. Hence, this strategy is not recommended [279]. 

 

 Regularisation 

Alternatively, regularisation (or shrinkage) methods can be used to alleviate overfitting. 

Penalised regression methods, such as ridge regression and LASSO, are recommended in the 

Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis 

(TRIPOD) Statement for developing and validating prediction models [253], and are being 

increasingly used to build clinical risk prediction models with high-dimensional data [279]. By 

imposing a constraint on the values of the regression coefficients, these methods shrink (or 

regularise) the regression coefficients and consequently reduce the range of the predicted 

probabilities [255]. Ridge regression shrinks the regression coefficients towards zero by 

placing a constraint on the sum of the squared regression coefficients [280]. On the other hand, 

as LASSO constrains the absolute values of the regression coefficients, it shrinks the regression 

coefficients exactly to zero, which effectively eliminates poor predictors from the model [281]. 

Therefore, the LASSO method might be preferred to obtain a prediction model for potential 
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use in a clinical setting, as it yields a simpler model using fewer predictors without affecting 

the predictive ability of the model, which can save time and/or resources by allowing for less 

information to be collected from patients and help-seekers [255]. 

 

Validation 

Ideally, the prediction model should be validated on independent patient data (external 

validation) to obtain an unbiased estimate of model predictive performance and evaluate 

whether the model is overfitted. When this is not available, internal validation techniques that 

use only the original data, such as cross-validation and bootstrapping, should be implemented 

as part of model development to limit overfitting and ensure that the obtained model is reliable 

[282]. 

 

1.4.2.3. Model selection uncertainty 

Another problem that can limit the reproducibility of a prediction model is model selection 

uncertainty, which is when no single model is strongly supported by the given data. 

Traditionally, the process of model selection is concerned with selecting, from a set of all 

possible candidate models, a single model that best approximates the given data [283], [284]. 

Once the ‘best’ model has been determined, it is often treated as if it were the only model 

explaining the data, and subsequent inferences and predictions are based on this model alone. 

However, this approach ignores any uncertainty in model selection, which is inherently 

involved in the process of searching through the set of candidate models to identify the best 

one [285]. Model selection uncertainty can, for instance, arise from small changes in the data 

and be problematic as it reflects statistical variation that is not captured within the single ‘best’ 

model [285]. Failure to account for this uncertainty may lead to biased parameter estimates and 

inferences and predictions that are overconfident and not reproducible [286], [287]. Although 

model selection uncertainty often outweighs other sources of uncertainty (such as sampling 

variation and parameter uncertainty), it is typically overlooked in practice [288]. 

 

In cases where the ‘best’ model can clearly be identified, then inferences and predictions can 

be based on that model alone [284]. However, when model selection uncertainty is evident, it 

would be disingenuous to only present the ‘best’ model. Therefore, in these cases, it would be 

more appropriate to adopt a multimodel approach and derive inferences and predictions from 

a candidate set of models rather than from a single model [284], [289], [290]. 
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1.4.3. Other challenges in the translation of biomarkers into clinical practice 

Despite substantial advances, the progression from biomarker discovery to validation and 

clinical implementation remains a significant hurdle and requires cooperation and 

collaboration between many stakeholders. In addition to the abovementioned limitations 

associated with the lack of reproducibility of biomarker findings, there are challenges arising 

from funding and regulation. The financial burden increases as candidate biomarkers progress 

through the development pipeline (i.e., towards the clinic) and validation studies need to be 

conducted with increasingly large sample sizes, which often results in academic investigators 

seeking financial support from the industry [233]. Yet, in spite of the potential clinical utility 

of a candidate biomarker, acquiring an industrial partner to undertake its development may be 

difficult if it is not considered to have sufficient commercial value and potential for investment 

return [15], [233]. In line with this, the inadequate reimbursement rates and the accompanying 

high financial risks of diagnostics relative to therapeutics have limited investments into the 

development and commercialisation of diagnostic tests [291]. Hence, academic investigators 

are advised to apply for intellectual property rights early in the biomarker discovery process to 

incentivise investment. Moreover, the translation of biomarkers into clinical practice is 

complicated by the stringent FDA regulations, under which protein-based (and other molecular) 

biomarker tests used for disease diagnosis, monitoring and treatment are considered as 

‘medical devices’ and follow the same regulatory standards as other types of medical devices 

[292]. It is therefore important to ensure that the translational scientists working on biomarker 

development have a comprehensive understanding of not only the analytical and clinical 

requirements but also the regulatory requirements for biomarker tests [265], [292]. 

Additionally, as obtaining regulatory approval does not automatically lead to acceptance by 

the clinical community, demonstration of strong clinical utility, including the benefit that will 

be brought to the patients as well as feasibility in the clinic, is essential [293].  
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1.5. Thesis aims and outline 
 

With less than half of patients with MDD correctly diagnosed within the primary care setting, 

there is a clear clinical need to develop an objective and readily accessible test to aid in earlier 

and more accurate diagnosis of the condition. Blood-based proteomic biomarkers, in 

combination with sociodemographic and other patient characteristics, can be used to build risk 

prediction models that could be implemented within a clinical setting to complement and 

facilitate evaluations by healthcare professionals and thereby improve patient care. The main 

aim of this thesis is to explore the potential of such clinical risk prediction models to provide a 

novel and robust diagnostic tool for MDD. This will involve:  

 

i) Identifying blood-based proteomic biomarkers and sociodemographic and other patient 

characteristics as predictors of MDD, and 

ii) Achieving reproducible predictions of the risk of having or developing MDD in 

clinically relevant individuals. 

 

The remaining chapters of this thesis will be organised as follows: 

 

• Chapter 2 discusses the experimental and statistical methods used to obtain the results 

presented in subsequent chapters of the thesis. This includes an outline of the targeted 

MS technique used for serum and dried blood spot (DBS) proteomic profiling. 

Statistical data pre-processing and analysis methods are also described. 

 

• Chapter 3 explores the development of a novel approach which combines feature 

extraction and model averaging to account for model selection uncertainty as well as 

limit model overfitting, and thereby improve model predictive performance and 

reproducibility. The utility of this multimodel approach in predicting the probability of 

having a complex psychiatric disorder is investigated, and a dataset consisting of first-

onset drug-naïve schizophrenia patients and controls is used to demonstrate proof-of-

concept. The applications of this method in developing robust clinical prediction 

models of MDD are explored in Chapters 4 and 5.  
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• Chapter 4 investigates the prediction of future onset of depression in individuals 

presenting with subthreshold levels of depressive symptoms using their serum 

proteomic, sociodemographic and clinical data. The multimodel approach combining 

feature extraction and model averaging, developed and refined in Chapter 3, is applied 

to develop a parsimonious prediction model of MDD in the presence of model selection 

uncertainty. The feasibility of detecting early disease indications in individuals with 

subthreshold depression prior to clinical diagnosis is explored. 

 

• Chapter 5 explores the identification of MDD among individuals presenting with 

subthreshold depression using data from DBS proteomics and a novel digital mental 

health assessment. The multimodel approach is applied to develop prediction models 

of MDD, and a repeated nested cross-validation approach is used to evaluate and 

address the variation in feature selection and predictive performance that arises from 

choosing different splits of the data. The ability of the prediction models to identify 

currently depressed patients without an existing MDD diagnosis as well as currently 

not depressed patients with an existing MDD diagnosis among individuals with 

subthreshold depression is assessed. 

 

• Finally, Chapter 6 provides an integrated summary of the findings from Chapters 3, 

4 and 5 and discusses their significance and clinical implications. The limitations of 

the work in this thesis and considerations of future studies in relation to the presented 

findings are also discussed. 

 

Note how each publication relates to each chapter in the thesis: 

 

• Preece, Han, and Bahn (2018) [228] relates to Chapters 1 and 2. 

 

• Cooper et al. (2019) [294] relates to the work in Chapter 3. 

 

• Han et al. (2019) [295] relates to the work in Chapter 4. 

 

• Olmert et al. (2020) [296] and Han et al. (2020) [297] relate to the work in Chapter 5. 



 

 40 

Chapter 2      Methods 
 

 

This chapter outlines the experimental and statistical methods used to obtain the results 

presented in subsequent chapters of the thesis. 

 

 

2.1. Participants 
 

Participants were selected to comprise patient and reference groups in relevance to the clinical 

objectives of the studies presented in Chapters 3, 4 and 5. Participants provided blood samples 

which were used for MS-based targeted protein quantification, as well as sociodemographic 

and other patient characteristics. Specific details of recruitment and selection criteria and 

diagnoses of psychiatric disorders can be found in the individual chapters. The research 

protocols of the studies were approved by the relevant ethical committees, written informed 

consent was obtained from all participants, and the studies were conducted under the standards 

of Good Clinical Practice and in compliance with the principles of the Declaration of Helsinki 

[298]. 

 

 

2.2. Blood samples 
 

2.2.1. Serum 

Serum samples were used to identify blood-based proteomic biomarkers in Chapters 3 and 4. 

Serum (and plasma) has been widely used as sample material of choice for for blood-based 

proteomic biomarker discovery. It contains approximately 60–80 mg/mL of proteins, as well 

as various small molecules including amino acids, lipids, salts, and sugars [219]. More than 

10,000 proteins are estimated to be present in serum, in concentrations that span 10 orders of 

magnitude, resulting in one of the widest dynamic range for proteomes studied to date [217], 

[299]. However, a comprehensive characterisation of the human serum proteome is analytically 

challenging, as approximately 95% of the total protein content is accounted for by a small 
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number of high abundance proteins, such as albumin, immunoglobulins and complement 

factors [217], and the majority of the remaining proteins are present at relatively low 

concentrations. While proteins in the low and medium abundance range hold great potential as 

novel candidate biomarkers, their detection could be hindered by the masking and subsequent 

suppression by the high abundance proteins [300]. Therefore, in discovery experiments (non-

targeted MS; global protein profiling), it may be necessary to introduce strategies that reduce 

the sample complexity (such as fractionation, enrichment and/or depletion) during the sample 

preparation workflow, and in doing so, improve the detection of the lower abundance proteins 

and enhance the coverage of the blood proteome [299], [301], [302]. However, if the analyte 

of interest is already known, these issues can be avoided by adopting a targeted approach such 

as MRM. 

 

2.2.2. DBS 

In Chapter 5, DBS samples were used to identify blood-based proteomic biomarkers. DBS 

presents a relatively novel and innovative sampling technique with several advantages over the 

traditional use of serum or plasma as the sample source of blood [303]–[305]. These include: 

easy and minimally invasive sample collection (e.g., self-collection by means of a finger prick 

with no requirement for venipuncture); relatively small blood volume requirement; convenient 

sample storage and shipment (samples can be shipped using standard postage as analytes 

remain stable at room temperature over extended periods of time); and lower cost [202], [303], 

[306]. DBS are also exempt from dangerous goods regulations (biohazard) and represent a 

relatively low safety risk. In addition, DBS sampling provides an opportunity to investigate 

potential protein biomarkers in peripheral blood cells (e.g., erythrocytes, monocytes, and 

thrombocytes), which are not present in serum (or plasma), representing a promising area of 

research. 

 

Since DBS sampling was first introduced for newborn screening of phenylketonuria and other 

congenital metabolic disorders [307], the utility of this sampling technique has been further 

demonstrated in various fields, such as therapeutic drug monitoring [308] and HIV screening 

[309]. The implementation of DBS sampling in proteomic biomarker discovery and validation 

holds great promise for the development of a non-invasive and cost-effective diagnostic test 

for MDD and other psychiatric disorders, especially as the possibility of remote or home 

sample self-collection could facilitate patient recruitment which is notoriously challenging for 
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psychiatric disorders [202], [310]. This will allow DBS sampling to reach a larger target 

population without compromising sample integrity or encountering financial limitations, which 

often limit the conduct of large-scale clinical studies. However, despite these advantages of 

using DBS samples over traditional serum or plasma samples, it should be noted that the quality 

of DBS samples may be poor if the instructions regarding sampling, drying, and posting are 

not followed by the participants [306]. Furthermore, a recent study from the group 

demonstrated that targeted protein quantification in DBS can be achieved to a comparable 

extent to that in conventional serum [202]. Nevertheless, despite the increased attention 

received by DBS sampling over the past years and its clear potential for application in the field 

of psychiatry, this remains largely unexplored [310]. Additionally, as the characterisation of 

the DBS matrix is hindered by the same issues of sample complexity as in the case of serum, 

similar considerations should be made to improve the detection of the lower abundance 

proteins where necessary (as outlined above in Section 2.2.1). 

 

 

2.3. Multiple reaction monitoring (MRM) 
 

MRM (also known as selected reaction monitoring; SRM) is a targeted MS technique that 

enables highly sensitive and specific quantitation of pre-selected proteins. Its original 

application was in the measurement of small molecules such as metabolites or drugs [311]. In 

MRM, protein quantitation is based on the selected measurement of unique constituent peptides 

which have been selected as surrogates for and are produced from their corresponding proteins 

through proteolytic digestion [210]. MRM is most effectively used in a LC-MS system, in 

which the separation capabilities of LC are coupled with the analytical capabilities of MS [215]. 

Key advantages of MRM-MS are its ability to target specific peptides, its multiplexing capacity 

to monitor and analyse hundreds of peptides in a single LC-MS run, and true internal 

standardisation via the use of stable isotope-labelled (SIL) peptides (see Section 2.3.3 for more 

details on internal standard) [210], [312]. The MRM-based approach using SIL peptides has 

been shown to be capable of highly multiplexed quantitation of proteins in plasma and serum 

samples [313], [314], as well as in DBS samples [315], [316]. 

 

MRM-MS was used in Chapters 3, 4 and 5 to measure the abundances of pre-selected panels 

of proteins. The majority of the proteins was selected based on their previous associations with 
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psychiatric disorders as gathered from the scientific literature [294]. Target proteins were 

represented by unique peptide sequences (i.e., surrogates). MRM-MS methods were 

reproduced and/or adapted from Ozcan et al. (2017) [202], a previously published study on 

MRM-based biomarker discovery from the group. This study provides details on MRM assay 

development, including targeted protein-peptide selection, transition selection and interference 

screening, and LC-MS/MS analysis. The researchers conducting the sample preparation and 

the LC-MS/MS analysis were blinded to the clinical status of the participants. 

 

2.3.1. Sample preparation 

An overview of the sample preparation process is shown in Figure 2.1. For both serum and 

DBS, samples were prepared in a 96-well plate format using a liquid handling robotic system 

(Biomex NX liquid handler; Beckman Coulter, High Wycombe, UK).  Samples were diluted 

with ammonium bicarbonate (protein extraction), and dithiothreitol and iodoacetamide were 

used for disulphide bond reduction and cysteine alkylation, respectively. Proteins were 

digested overnight using trypsin, resulting in arginine or lysine at the C-terminus. 

 

2.3.1.1. Serum 

In Chapters 3 and 4, serum samples were stored at -80 °C prior to LC-MS/MS analysis. 5 µL 

serum samples in each well were diluted with 105 µL of 50 mM ammonium bicarbonate. This 

was followed by disulphide bond reduction using 20.5 µL of 32.5 mM dithiothreitol (final 

concentration 5 mM) and cysteine alkylation using 20.5 µL of 75 mM iodoacetamide (final 

concentration 10 mM). Samples were then digested overnight using trypsin (1:50 ratio of 

enzyme to protein weights). 

 

2.3.1.2. DBS 

In Chapter 5, DBS samples were stored at room temperature prior to LC-MS/MS analysis, 

each in a sealed storage bag containing a desiccant. 3 mm DBS discs were punched from the 

centre of a blood drop using a semi-automated puncher (pneumatic card punch; Analytical 

Sales and Services, Inc.; Flanders, New Jersey, USA) and transferred to a 96-well plate. 

Proteins were extracted from the samples using 40 µL of 50 mM ammonium bicarbonate. This 

was followed by disulphide bond reduction using 15 µL of 18.3 mM dithiothreitol (final 

concentration 5 mM) and cysteine alkylation using 15 µL of 46.6 mM iodoacetamide (final 

concentration 10 mM). Samples were then digested overnight using 15 µL trypsin (1:20 ratio 
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of enzyme to protein weights). Trypsin-digested peptides were enriched and purified using C-

18 microfilter 96-well plates (FNSC18 from Glygen Corp., Columbia, MD, USA) on a 

Beckman Coulter Biomek NX workstation, and eluted from C-18 with 60% acetonitrile. 

 

 

 
 
Figure 2.1. Workflow of automated sample preparation. 

Adapted (with permission)  from Ozcan et al. (2017). Serum and DBS samples were prepared in a 96-

well plate format using a liquid handling robotic system. Abbreviations: DBS (dried blood spot); LC 

QQQ-MS (liquid chromatography system coupled with triple quadrupole mass spectrometer); SIL 

(stable isotope-labelled peptide). 

 

 

2.3.2. LC-MS/MS analysis 

Triple quadrupole (QQQ) mass spectrometer is a tandem MS (MS/MS) instrument (a single 

instrument with two or more mass analysers) that is commonly used for MRM, in which 

peptide ions (precursors) undergo fragmentation to generate unique and characteristic fragment 

ions (products) [210]. The fragment ions containing the N- and C- terminal ends of the peptide 

ions are termed b- and y- ions, respectively. Essentially, the combinations of the intact peptide 

ions and their corresponding fragment ions comprise precursor-product ion pairs, also known 

as transitions, which are specific for the peptide sequences monitored [210].  

 

A mass spectrometer typically consists of three principal components: an ionisation source to 

ionise the sample; mass analysers to separate ions based on their m/z ratios; and a detector to 

record the analyte signal [317]. Upon entering the mass spectrometer, peptides are introduced 

into the ionisation source where they become ionised. A QQQ mass spectrometer consists of 

two quadrupole mass filters in series with a collision cell in between. The first quardrupole 

(Q1) functions as a mass filter to selectively transmit precursor (peptide) ions of particular m/z 
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Protein 
extraction Reduction Alkylation Digestion
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values (MS1) into the second quadrupole (Q2), where fragment ions are generated by collision-

induced dissociation. The third quadrupole (Q3) functions as a second mass filter to selectively 

transmit fragment ions with high intensity of particular m/z values (MS2), and the detector 

measures the intensity of the precursor-product ion pairs (i.e., transitions) [318]. MS/MS results 

are represented as mass spectra, in which the detected ion abundance (peak intensity) is plotted 

against the m/z value of the transitions. The monitoring of defined precursor-product ion pairs 

(transitions) enhances the signal-to-noise ratio and allows for a reliable determination of lower-

abundance proteins [319]. A schematic of a QQQ mass spectrometer is shown in Figure 2.2. 

 

In Chapters 3, 4 and 5, trypsin-digested peptides were separated and detected using a LC 

system coupled with a QQQ mass spectrometer (Agilent Infinity 1290 LC system and Agilent 

6495 QQQ LC/MS system with Agilent Jet Stream electrospray ionisation (ESI) technology). 

Approximately 3.2 µg of digested serum or DBS peptides was injected into an Agilent 

AdvanceBio Peptide Map column (2.1 × 150 mm 2.7-micron) and separated at 50 °C. Peptides 

were eluted over a linear gradient from 3% to 30% acetonitrile in 0.1% formic acid in 45 

minutes, at a flow rate of 0.3mL min−1. The mass spectra were acquired in positive mode and 

the quantification of all analytes was carried out in MRM mode. Peptides were quantified at 

the transition level; in other words, the quantification of peptides was based on the signals of 

precursor-product ion pairs that reached the detector after the two-step mass filtering 

mechanism by the QQQ mass spectrometer. One to four interference-free transitions were 

selected for each peptide as described in Ozcan et al. (2017) [202]. Peptide retention times 

were identified using full scan data. Delta retention time window was 0.8 minutes and cycle 

time was 1 s. 

 

 

 
Figure 2.2. Schematic of QQQ mass spectrometer used for MRM. 

Abbreviations: MRM (multiple reaction monitoring); QQQ (triple quadrupole). 
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2.3.3. Internal standard 

SIL peptides were implemented as internal standards for each endogenous target peptide. This 

method, called stable isotope dilution, is the gold standard for peptide quantitation in MRM-

MS [210], [320]. The SIL peptides are synthetically produced by incorporation of heavy (13C- 

and 15N- labelled) arginine or lysine. As they have the same sequence, and therefore the same 

chromatographic, ionisation and fragmentation properties as the endogenous peptides (but can 

be distinguished in the MS spectra), this technique facilitates the quantitation of endogenous 

peptides in the samples and improves the specificity and reproducibility of the measurements 

[202], [321]. SIL internal standard peptides were spiked into samples for each endogenous 

target peptide prior to LC-MS/MS analysis (that is, following trypsin digestion for serum 

samples and following peptide purification/enrichment for DBS samples; Figure 2.1). 

Endogenous and corresponding SIL peptide-transitions were monitored and acquired 

simultaneously by the QQQ mass spectrometer. 

 

2.3.4. Quality control samples 

In Chapters 3, 4 and 5, quality control (QC) samples were used to assess the technical 

variation associated with instrument performance and sample preparation. To assess the 

variation in instrument performance, a pooled QC sample was prepared by pooling together 

the digested clinical serum or DBS samples, and injected once a day along with the clinical 

samples for the duration of the entire study. To assess the variation in sample preparation, 

commercial serum samples (Human Sera S7023, Sigma Aldrich) were used in Chapters 3 and 

4, and DBS samples obtained from a healthy volunteer (volunteer DBS) were used in Chapter 

5. These QC samples were prepared following the same protocol as the clinical samples and 

distributed across the experimental plates. 

 

 

2.4. Data pre-processing 
 

2.4.1. Raw MS data processing 

In Chapters 3, 4 and 5, raw MS data were processed using Skyline software package (version 

3.1.0) [322]. Peptide-transition peaks were examined manually and peak integration 

boundaries were adjusted accordingly where necessary. Peak area values of the endogenous 
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and the SIL peptide-transitions were exported as a comma delimited data file for data pre-

processing and analysis. 

 

All statistical data pre-processing and analysis were carried out using R statistical software 

(version 3.6.0) [323], and all plots were made using the R package ggplot2 [324]. 

 

2.4.2. Quantifier transition selection 

In Chapters 3, 4, and 5, quantifier transitions were selected for each peptide based on the 

abundance (peak area) values of the endogenous and the SIL peptide-transitions. The quantifier 

transition was selected as the transition that was consistently most abundant across the majority 

of the samples. Subsequent analyses were conducted using data of the quantifier transitions 

only. This approach has a number of advantages, among which the most important is that as 

the quantifier transition tends to be the most robustly measured transition for a given peptide, 

it would provide a robust prediction of disease outcome if selected as a biomarker/predictor 

[202]. The robustness of the most abundant peptide-transition measurements was previously 

demonstrated in Ozcan et al. (2017) [202]. 

 

2.4.3. Ratio normalisation 

In Chapters 3, 4 and 5, peptide-transition quantification was based on the abundance ratio, 

calculated as the relative abundance of the endogenous and the SIL peptide-transitions. This 

process, referred to as ratio normalisation, is intended to account for any technical variation 

occuring across MS runs. 

 

2.4.4. Logarithmic transformation 

In Chapters 3, 4 and 5, the normalised peak area ratio vaules were log2-transformed for 

variance stabilisation prior to further analysis. While the variance of biological measurements 

often increases with intensity, logarithmic transformation decreases the variability of the data 

and improves normality, such that skewed distributions become more symmetric and the 

influence of high-abundance peptide-transitions is reduced [325], [326]. 

 

2.4.5. Principal component analysis 

PCA is a technique used to reduce the dimensionality of a dataset and increase interpretability 

whilst retaining as much variation as possible [327]. It geometrically projects the data onto a 
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lower-dimensional space by identifying new variables, the principal components (PCs), which 

are linear combinations of the original variables and geometrically orthogonal (uncorrelated to 

each other) [328], [329]. The first PC is found as the direction along which the data shows the 

largest variation (in the space of the original variables); the second PC is found as the direction 

uncorrelated to the first PC along which the data shows the largest variation; subsequent PCs 

are found to successively maximise the variance of the data with the requirement of being 

uncorrelated to all previous PCs. The variation captured by the PCs decreases from the first PC 

to the last PC. 

 

PCA was used in Chapters 3, 4 and 5 to facilitate the visualisation of patterns or artefacts in 

the MS data and the identification of any outliers. It was conducted using the R package stats 

[323]. 

 

2.4.6. Coefficient of variation 

In Chapters 3, 4 and 5, the geometric coefficient of variation (CV) was used to estimate the 

magnitude of variation in the MS data (in the original scale of measurement). For natural log-

transformed data, the geometric CV was calculated as: 

 

CV = $%!"!#$	 × 	100% 

 

where sd = standard deviation of the log-transformed data. 

 

The technical variation was assessed by calculating the geometric CVs of peptide-transition 

abundance ratios of the pooled QC samples (variation in MS instrument performance) and 

those of either the Sigma serum or volunteer DBS QC samples (variation in sample preparation) 

across MS runs. In addition, the biological variation was assessed by calculating the geometric 

CVs of peptide-transition abundance ratios of the clinical samples within each clinical sample 

group.  
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2.5. Statistical analysis 
 

2.5.1. Model selection and bias-variance trade-off 

Model selection is the process of selecting a statistical model from a set of potential models 

that best approximates the given data. In practice, this means identifying a set of model 

parameters that best constructs the relationship between the outcome (dependent variable) and 

the predictors (independent variables). 

 

An important concept in model selection is the bias-variance trade-off [330]. Here, bias is the 

difference between the prediction of the model and the actual value, and variance is the 

variability of the model prediction for a given data point. Usually, simple models with few 

predictors have high bias and low variance, whereas complex models with many predictors 

have low bias and high variance (the statistical principle of parsimony) [290], [330], [331]. 

Underfitting occurs when there are not enough predictors in a model and the model is unable 

to capture the underlying pattern in the data. On the other hand, overfitting occurs when there 

are too many predictors in a model and the model captures not only the underlying pattern but 

also noise in the data. As a result, it has good predictive ability on the original data but this is 

not reproduced when applied to new data. Therefore, statistical model selection must seek an 

appropriate balance between overfitting and underfitting, which basically corresponds to the 

bias-variance trade-off. 

 

2.5.2. LASSO regression 

LASSO is a penalised regression method that simultaneously performs regularisation 

(shrinkage) and variable selection [281]. Logistic LASSO regression was used for binary 

classification problems in Chapters 3, 4 and 5. 

 

2.5.2.1. Logistic regression 

Logistic regression models the relationship between the probability of a binary outcome (e.g., 

presence or absence of a disease) and explanatory variables (also called predictors or 

covariates). The probability (or likelihood) that the outcome is 1 (Y = 1) given that the 

explanatory variables are X can be written as: 

 

+(-) = /(0 = 1|-) 



Chapter 2  

 50 

The logistic (or sigmoid) function is [332]: 

 

+(2%) =
1

1 + %#('"('#)$#('!)$!(⋯('%)$%)
 

4 = 1,… , 7 

 

where observations are indexed with subscript i; n is the number of observations; b0 is the 

intercept (the bias term); and bp are the regression coefficients for p explanatory variables. This 

function transforms the predictions into a binary outcome, which is expressed as a probability 

between 0 and 1. It can be manipulated to yield a model that is a linear combination of the 

explanatory variables: 

 

log ;
+(2%)

1 − +(2%)
= = >, + >$2%$ + >-2%- +⋯+ >.2%. 

log ;
+(2%)

1 − +(2%)
= = >, +@>/2%/

.

/0$
 

4 = 1,… , 7 

 

On the left-hand side is the logit or the logarithm of the odds (log odds), where the odds are 

the ratio of the probability that the event occurs versus the probability that the event does not 

occur. It is important to note that, while a covariate can be either a predictor variable, which is 

of direct interest, or an unwanted, confounding variable, since logistic regression examines the 

relationship between multiple covariates and the outcome, the resulting odds ratio is controlled 

for potential confounders. Hence, this is known as the adjusted odds ratio, as it has been 

adjusted for the other covariates, including potential confounders [266]. 

 

Maximum likelihood estimation is used to estimate the b parameters (regression coefficients) 

of a model. This involves identifying a set of parameters that maximises the probability (or 

likelihood) of observing the outcomes in the training dataset [332], [333]. The log-likelihood 

function, ℓ(>), is maximised (which is equivalent to minimising the negative log-likelihood 

function): 
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ℓ(>) =@(y1 logCπ(x1)F + (1 − y1) logC1 − π(x1)F)
2

10$
 

 

The regression coefficients are interpreted as the estimated change in the log odds of the 

outcome associated with a one-unit change in the value of the independent variable, adjusting 

for all other independent variables in the model. 

 

Several assumptions must be met when performing logistic regression [332]: 

- Logistic regression does not assume that there is a linear relationship between the 

outcome variable and the explanatory variables (which is a key assumption of linear 

regression); however, it does assume that there is a linear relationship between the logit 

of the outcome and the explanatory variables. 

- Logistic regression assumes that there is little or no multicollinearity among the 

explanatory variables, which means that they should not be highly correlated with each 

other. 

- Logistic regression assumes that the observations are independent of each other. 

- Logistic regression assumes that there are no strong influential outliers. 

- Logistic regression requires that there is an adequate number of events per explanatory 

variable to avoid model overfitting; a minimum EPV of ten is commonly recommended 

as a rule-of-thumb (see Section 1.4.2.2). 

 

2.5.2.2. Penalised logistic regression 

When the number of observations (sample size) is small relative to the number of candidate 

predictors (small n, large p), standard regression methods may result in overfitted models 

which make inaccurate predictions [255]. This problem can be alleviated by using penalised 

regression methods, in which a penalty is introduced for complexity in the model. LASSO 

regularisation penalises the log-likelihood function (i.e., adds a penalty term to the negative 

log-likelihood function) [281]: 

 

ℓ∗(>) = ℓ(>) − G@|>/|
.

/0$
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where l is the regularisation (or shrinkage) parameter and p is the number of explanatory 

variables. By placing a constraint on the sum of the absolute values of the regression 

coefficients (L1 regularisation), the coefficients of the variables that contribute poorly to the 

prediction are reduced exactly to zero, which effectively results in these variables being 

eliminated from the model. On the other hand, variables with non-zero coefficients are selected 

to be part of the model. Hence, the LASSO method simultaneously performs regularisation and 

variable selection to give sparse prediction models [281]. 

 

The extent of regularisation is controlled by the regularisation parameter l. A larger l value 

leads to more regularisation and results in a simpler model, as more variables are shrunken to 

zero (bias increases and variance decreases as l increases). Note that when l = 0, no 

regularisation is applied and the problem reduces to standard logistic regression. The optimal 

value of l, and therefore the optimal model, is selected by K-fold cross-validation. More details 

on this are found in Section 2.5.4 below. 

 

By eliminating irrelevant variables from the model and retaining only the important variables, 

the LASSO method reduces model complexity and gives interpretable models. This also helps 

to reduce model overfitting and improve prediction accuracy, which is especially useful when 

the number of observations is small relative to the number of predictors. Therefore, LASSO is 

widely applied for developing clinical prediction models using high-dimensional datasets [255], 

[334]. 

 

However, LASSO has some limitations [335]. If p > n, then it selects at most n variables before 

saturating. This could potentially be problematic in cases where the number of important 

variables exceeds n, and due to the nature of the LASSO method, some important variables 

may fail to be selected in the model. Additionally, if there is a set of highly correlated variables 

in the data, then it tends to select only one variable from the set at random, which may limit 

the reproducibility of the results. 

 

The R package glmnet was used in Chapter 3 to implement LASSO [336]. 
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2.5.3. Group LASSO regression 

Group LASSO is an extension of the LASSO method which performs variable selection on 

predefined groups of variables [337]. This was used in Chapters 4 and 5 in the presence of 

categorical variables (factors with more than two levels), to allow for sets of dummy variables 

derived from categorical variables to be selected together. The R package gglasso [338] was 

used to implement group LASSO. 

 

2.5.4. K-fold cross-validation 

K-fold cross-validation is a popular resampling technique for model selection and assessment 

that reduces overfitting. It was used to select the optimal value of the regularisation parameter 

l for LASSO regression and group LASSO regression in Chapters 3, 4 and 5. 

 

In K-fold cross-validation, the dataset is randomly partitioned into K folds, and each fold is 

retained as the test set whilst the remaining K – 1 folds are used as the training set. For each 

round of cross-validation, a model is fitted on the training set and its predictive performance 

(i.e., misclassification error) is evaluated on the test set consisting of the held out observations 

for each value of l. An overall measure of model predictive performance (mean cross-

validation error) can be found for each value of l by computing the average performance over 

all folds (Figure 2.3). 

 

The one-standard-error rule, as suggested by Breiman et al. [339] and Hastie et al. [330], was 

used to select the most parsimonious (i.e., simplest) model whose accuracy wass comparable 

with the most accurate model. While lmin (left vertical dotted line in Figure 2.3) is the value 

of l that gives minimum mean cross-validation error, l1se (right vertical dotted line in Figure 

2.3) is the largest value of l that gives a model whose error lies within one standard error of 

the minimum. The latter was chosen as the optimal value of l as it resulted in a more 

regularised, and hence, parsimonious model. The model that was defined by the optimal value 

of the regularisation parameter was subsequently fit to the entire dataset [284]. 
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Figure 2.3. Selection of tuning parameter ! in LASSO using K-fold cross-validation. 

Here, lmin = 0.0149 gives mean cross-validation error = 0.163 ± 0.0083 [0.1547, 0.1713] and l1se = 

0.0237 gives mean cross-validation error = 0.171 ± 0.0082 [0.1628, 0.1792]. 

 

 

2.5.5. Model predictive performance 

In order to evaluate the predictive performance (or classification performance) of the models 

in Chapters 3, 4 and 5, receiver operating characteristic (ROC) curves were generated. The 

ROC curve plots the true positive rate (TPR), which measures the proportion of patients 

correctly identified by the model, against the false positive rate (FPR), which measures the 

proportion of controls incorrectly identified as patients by the model, at different classification 

thresholds. TPR (sensitivity) and FPR (1 – specificity) are calculated as: 

 

TPR = 	
TP

TP + FN 

 

FPR = 	
FP

FP + TN 
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where TP, FP, TN and FN represent the number of true positives, false positives, true negatives 

and false negatives, respectively (Table 2.1). In other words, TP represents the number of 

patients correctly predicted as having the disease; FP represents the number of healthy 

individuals incorrectly predicted as having the disease (also known as type 1 error); TN 

represents the number of healthy individuals correctly predicted as being healthy; and FN 

represents the number of patients incorrectly predicted as being healthy (also known as type 2 

error). 

 
 

Table 2.1. Confusion matrix. 

Abbreviations: FP (false positive); FN (false negative); TP (true positive); TN (true negative). 

 

 
Actual class 

Patient Control 

Predicted 

class 

Patient TP FP 

Control FN TN 

 

 

The predictive performance was assessed using the area under the ROC curves (AUC). The 

AUC measures the likelihood that a randomly chosen individual with the disease (i.e., patient) 

is assigned a higher predicted probability than a randomly chosen individual without the 

disease (i.e., control) [340], [341]. A value of 1 reflects perfect classification performance, 

whereas a value of 0.5 reflects performance expected by random guessing and corresponds to 

a ROC curve along the M = 2 line. In general, predictive performance is defined based on the 

following ranges of AUC values: 0.9 – 1 = excellent; 0.8 – 0.9 = good; 0.7 – 0.8 = fair; 0.6 – 

0.7 = poor; 0.5 – 0.6 = fail [340], [341]. The R package ROCR was used to generate ROC 

curves and measure AUCs [342]. 

 

2.5.6. Univariate analysis 

 

2.5.6.1. Mann-Whitney U test 

The Mann-Whitney U test (also known as Wilcoxon’s rank sum test) is a non-parametric test 

that is used to compare differences between two independent sample groups [343]. The 
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dependent variable is either continuous or ordinal (but not normally distributed), and the 

independent variable consists of two categorical groups. The null hypothesis is that there is no 

statistically significant difference between the two sample groups, and the alternative 

hypothesis is that there is a statistically significant difference between the sample groups. 

 

2.5.6.2. Kruskal-Wallis H test 

The Kruskal-Wallis H test is a non-parametric test that is used to compare differences between 

two or more independent sample groups [343]. The dependent variable is either continuous or 

ordinal (but not normally distributed), and the independent variable consists of two or more 

categorical groups. Similar to the Mann-Whitney U test, the null hypothesis is that there is no 

statistically significant difference between the sample groups, and the alternative hypothesis is 

that there is a statistically significant difference between the sample groups. 

 

2.5.6.3. χ2 test 

The χ2 test is a non-parametric test that is used to assess relationships between two categorical 

variables [343]. Each variable needs to have two or more categories, and the frequency of each 

category for one variable is compared across the categories of the second variable. The null 

hypothesis is that there is no statistically significant relationship between the categorical 

variables (i.e., the categorical variables are independent), and the alternative hypothesis is that 

there is a statistically significant relationship between the categorical variables. 

 

Univariate statistical tests were used in Chapters 3, 4 and 5 to compare the sociodemographic 

and/or lifestyle characteristics of participants in different clinical groups. Mann-Whitney U 

tests were used to compare numerical variables, such as age and BMI, between two clinical 

groups; Kruskal-Wallis H tests were used to compare numerical variables between more than 

two clinical groups; and χ2 tests were used to compare categorical variables, such as sex and 

education level, between two or more clinical groups. Additionally, in Chapter 5, Kruskal-

Wallis H tests were used to assess for plate effects and Mann-Whitney U tests were used to 

assess for the effects of antidepressant medication use on participants’ proteomic profiles and 

BMI. P-values < 0.05 were considered to be statistically significant. Univariate statistical tests 

were conducted using the R package stats [323].



 

 57 

Chapter 3      A multimodel approach for 
reproducible prediction model development 
 

 

3.1. Introduction 
 

Over the past few decades, considerable progress has been made in the field of biomarker 

research for psychiatric disorders, with many significant reports of potential candidate 

biomarker findings. Biomarkers have the potential to improve clinical practice, for instance, in 

relation to disease diagnosis, prognosis and treatment, especially given the symptom-based 

checklist approach to diagnosis and the ‘trial-and-error’ approach to treatment selection (see 

Chapter 1). Nonetheless, very few biomarkers have been successfully translated into FDA-

approved clinical tests and are routinely applied in clinical settings [261], [262]. This is largely 

due to the lack of reproducibility of the research findings, which arises from the inherent 

complexity and heterogeneity of the disorders, as well as limitations in the pre-analytical, 

analytical and statistical workflow [15] (see Chapter 1). 

 

While –omics technologies, such as LC-MS, enable hundreds or thousands of features (p) to 

be quantified, biomarker studies tend to involve a relatively small number of samples (n). This 

is especially the case for psychiatric disorders for which the recruitment of participants is 

notoriously difficult [193], [228]. As a result, prediction model development is typically 

performed on high-dimensional datasets (small n, large p). This can be problematic and lead to 

model overfitting, which occurs when the prediction model captures not only the underlying 

relationship of interest but also noise in the data [255]. Consequently, the predictive 

performance of the model is not reproduced when applied to new patient data; in other words, 

the model provides an overly optimistic assessment of the predictive performance based on the 

original data analysed [269]. More details on model overfitting can be found in Chapter 1 (see 

Section 1.4.2.2). 

 

Another important, yet often overlooked, issue that can limit the reproducibility of a prediction 

model is that of model selection uncertainty, which is when no single model is strongly 
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supported by the data. Model selection is traditionally considered to be a process of selecting 

a single model from a set of all possible candidate models that best approximates the data [283], 

[284]. Once the ‘best’ model has been selected, any uncertainty in model selection, which may 

arise from small changes in the data, is ignored. However, failure to account for this uncertainty 

may lead to biased inferences and predictions that are not reproducible, limiting the 

generalisability of the model [286], [287]. More details on model selection uncertainty can be 

found in Chapter 1 (see Section 1.4.2.3). 

 

Prediction models can potentially aid healthcare providers to make more statistically informed 

and objective decisions on the diagnosis, prognosis, and treatment of patients. However, as 

outlined above and in Chapter 1, the ability of the models to make accurate and reproducible 

predictions can be limited by problems such as model overfitting and model selection 

uncertainty. The aim of the work presented in this chapter is to explore the utility of a 

multimodel-based approach to predict the probability of having a complex psychiatric disorder 

while allowing for any uncertainty in model selection. The sensitivity of model selection to 

small changes in the data was evaluated by repeatedly applying LASSO regression with ten-

fold cross-validation on the training set to obtain a set of 100 models. In the absence of a 

strongly supported model, that is, in the presence of model selection uncertainty, feature 

extraction and model averaging were applied across the 100 models to form weighted average 

prediction models [294]. Essentially, this approach enabled inferences and predictions to be 

derived from an entire set of models (i.e., multimodel inference) instead of a single ‘best’ model 

[284], [289], [290], which improved model generalisability by not only accounting for model 

selection uncertainty but also reducing model overfitting [294]. Subsequently, the weighted 

average prediction models were applied to an independent test set to validate their predictive 

performance. 

 

Although the present thesis is focused on depression, in this chapter, a serum MS dataset (77 

proteins represented by 147 peptides) of 60 first-onset drug-naïve schizophrenia patients and 

77 healthy controls was used to demonstrate proof-of-concept. This provided an ideal setting 

to investigate the utility of the multimodel approach for reproducible diagnostic prediction 

model development, not only as the patients were first-onset and drug-naïve, and schizophrenia 

tends to be more homogeneous than MDD as a disease in general, but also because using 

healthy controls as a reference group allowed for a clear-cut comparison, making the task of 

differentiation easier. 
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In the work reported in this chapter, blood samples were prepared by Nitin Rustogi, and run on 

the MS by Dr. Sureyya Ozcan. Raw MS data were processed by Dr. Sureyya Ozcan using 

Skyline. I was provided with the peak area values of the endogenous and SIL peptide-

transitions and conducted all of the data pre-processing and analysis myself using R. 

 

 

3.2. Materials and Methods 
 

3.2.1. Clinical samples 

The present work investigated participants from the Cologne Study, who were recruited by the 

Department of Psychiatry, University of Cologne, as described previously [344]. Blood serum 

samples were collected through venipuncture from 60 first-onset drug-naïve schizoprenia 

patients and 77 demographically-matched (for age and sex) healthy controls. Diagnosis of 

schizophrenia was based on the DSM-IV [345]. Participants with CNS disorders or other 

comorbidities were excluded. The ethical committees of the Medical Faculty of the University 

of Cologne and Addenbrooke’s Hospital (Cambridge, UK) approved the protocols of this study, 

including procedures for sample collection and analysis. Informed consent was given in writing 

by all participants and the study was conducted according to the principles of the Declaration 

of Helsinki [298]. 

 

3.2.2. Targeted protein quantification 

 

3.2.2.1. Sample preparation 

Serum samples of the participants were randomised to allocate equal numbers of patients and 

controls across the experimental plates for LC-MS/MS analysis. Samples were prepared in a 

96-well plate format as described in Section 2.3.1.1. 

 

3.2.2.2. LC-MS/MS analysis 

One hundred and forty-seven peptides representing 77 proteins, the majority previously 

associated with psychiatric disorders, were measured using targeted MRM-MS analysis. 

Peptides were quantified at the transition level. More details on LC-MS/MS analysis can be 

found in Section 2.3.2. The researchers conducting the sample preparation and the MS analysis 

were blinded to the clinical status of the participants. 
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3.2.2.3. QC samples 

Pooled and Sigma serum QC samples were used to assess the technical variation associated 

with instrument performance and sample preparation as described in Section 2.3.3. A pooled 

QC sample, which was prepared by pooling together the digested clinical serum samples, was 

injected once a day along with the clinical samples for the duration of the entire study (11 

injections in total). Eleven Sigma serum QC samples were prepared following the same 

protocol as the clinical samples and distributed across the plates. 

 

3.2.3. MS data pre-processing 

Pre-processing of the MS data was carried out as described in Chapter 2 (see Section 2.4). 

Quantifier transitions were selected for each peptide based on the abundance values of the 

endogenous and the SIL peptide-transitions. A quantifier transition was selected as the 

transition that was consistently most abundant in at least 80% of the sample runs in both the 

endogenous and SIL peptides. Peptides for which quantifier transitions could not be selected 

based on these criteria, which can occur in the presence of competing transitions, the raw peak 

data were examined for manual selection. Subsequent analyses were conducted using data of 

the quantifier transitions only. Peptide quantification was based on the relative abundance of 

the endogenous and SIL peptide quantifier transitions, and the abundance ratio was log2-

transformed for statistical analysis. There was no missing data. 

 

3.2.4. Statistical quality control 

PCA was conducted to identify any outliers based on the log2-transformed abundance ratios of 

147 peptides (Figure 3.1). No outlier samples were identified. 

 

In addition, the geometric CV was used to estimate the magnitude of variation in the proteomic 

data as described in Chapter 2 (see Section 2.4.6). The median CV values for the pooled and 

Sigma serum QC runs, which were used to assess the technical variation, were 9.9% and 30.2%, 

respectively. The median CV values of the clinical samples, which were used to assess the 

biological variation, were 54.2% and 61.3% for the control and patient groups, respectively. 
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Figure 3.1. PCA plot of protein peptide abundance ratios of clinical samples. 

The scores for the first two PCs are plotted with the percentage of variation accounted for by each PC 

shown in the axis labels. Data points are coloured by the clinical groups of the participants (60 first-

onset drug-naïve schizophrenia patients and 77 healthy controls). Abbreviations: PC (principal 

component); PCA (principal component analysis). 

 

 

3.2.5. Data analysis 

The full dataset (60 first-onset drug-naïve schizophrenia patients and 77 controls) was 

randomly partitioned into 80:20 to form training (48 schizophrenia patients and 62 controls) 

and test (12 schizophrenia patients and 15 controls) sets. The training and test sets were 

matched for sex and age distribution. Sex and age of patients and controls were compared using 

a χ2 test and a Mann-Whitney U test, respectively (see Section 2.5.6). P-values < 0.05 were 

considered to be statistically significant (Table 3.1). 

 

3.2.5.1. Model selection 

One hundred and forty-seven peptides representing 77 serum proteins were analysed for model 

selection to predict the probability of schizophrenia outcome in the training set. The full list of 
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the analysed proteins and peptides can be found in the Appendix (Table A. 1).  LASSO 

regression with ten-fold cross-validation was used to reduce overfitting, such that the value of 

the shrinkage parameter l that resulted in the most regularised model was selected. More 

details on LASSO regression and K-fold cross-validation can be found in Chapter 2 (see 

Sections 2.5.2 and 2.5.4). 

 

To investigate model selection uncertainty, LASSO regression with ten-fold cross-validation 

was repeatedly applied on the training set 100 times to generate a set of 100 models. This 

allowed for an evaluation of the sensitivity of model selection to small changes in the data, 

which resulted from the random partitioning of the data in each application of ten-fold cross-

validation. Models which comprised of the same combinations of features selected were 

grouped together. 

 

3.2.5.2. Akaike information criterion 

The model averaging framework was implemented using the Akaike information criterion 

(AIC), as described in Burnham and Anderson [283], [284]. The AIC measures how well a 

model approximates the data relative to the other possible models, with the best approximating 

model being the one with the lowest AIC value [346]. For a given model, the AIC can be 

expressed as a function of its maximised log-likelihood (L), which is a measure of model fit 

(see Section 2.5.2), and the number of estimated model parameters (k, i.e. the number of 

features selected in the model) [284], [346]: 

 

AIC = 	−2Q + 2R 

 

Therefore, the AIC measure gives a trade-off between model accuracy and model complexity, 

in other words, it seeks a balance between overfitting and underfitting. Essentially, as models 

with more estimated parameters (higher k) have higher AIC values, all other things being equal, 

models with fewer parameters are favoured [289]. 

 

In this work, given the small sample size (n) compared to the largest value of k (n/k ≤ 40), the 

bias-corrected version of the AIC (AICc) was adopted [347], [348]: 

 

AIC4 = AIC +	
2R(R + 1)
7 − R − 1  



Chapter 3 

 63 

where n = sample size and k = number of estimated model parameters. In practice, since AICc 

converges to AIC as n increase, it is often recommended that AICc is used as default [347], 

[348]. The AICc was calculated for each model that was selected by LASSO regression with 

ten-fold cross-validation. 

 

3.2.5.3. Akaike model weights 

After model selection, the Akaike weight (wi) was calculated for each model using the 

difference between its AICc and the lowest AIC (Di). This used to assess the relative strength 

of the model among the candidate set of models [283], [284]: 

 

Δ% = AIC4	% −	AIC4	612 

 

T% =	
exp	(−12Δ%)

∑ exp	(−12Δ7)
8
70$

 

 

where wi and AICc i are, respectively, the Akaike weight and the AICc for model i in a set of R 

models, and AICc min is the lowest AIC value across all models. The Akaike weight can be 

interpreted as the probability or the ‘weight of evidence’ in favour of a particular model being 

the best model approximating the outcome of interest given the set of models considered (i.e., 

model probability) [283], [289]. It was a value between 0 and 1, and the sum of weights of all 

models was equal to 1: 

 

@T% = 1
8

%0$
 

 

3.2.5.4. Relative feature importance 

Traditionally, assessment of the relative importance of features is often based on the best model 

alone, such as features selected in the best model are considered ‘important’, whereas those 

excluded from the best model are considered not important [283]. However, as this approach 

is too simplistic, relative feature importance can be refined by making inferences from all the 

models in the candidate set [283], [284]. In the present work, the relative importance of 
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individual features as well as that of subsets of features occurring together were assessed in 

two related but different ways: 

 

i) Selection fraction 

For each feature, the proportion of models out of 100 in which it was selected was measured. 

This was called the selection fraction, and was a value between 0 and 1. The relative importance 

of subsets of features occurring together was quantified by grouping together models which 

comprised of the same combinations of features selected and measuring the frequency of 

occurrence of each model group. 

 

ii) Selection probability 

Akaike model weights were used to estimate the probability that a particular feature was a 

component of the best model [284], called the selection probability (also more generally known 

as the predictor weight). The selection probability of each feature was calculated by summing 

the Akaike weights across the set of models in which it was selected, and was a value between 

0 and 1. For example, the selection probability of a feature appearing in all of the high-ranking 

models would tend towards 1, whereas the selection probability of a feature only appearing in 

the very unlikely models would tend towards 0 [289]. In order to quantify the relative 

importance of subsets of features occurring together [284], for each model group, the Akaike 

weights of all corresponding models were summed to estimate the probability that the selected 

combination of features comprised the best approximating model [294]. 

 

3.2.5.5. Model selection uncertainty 

The set of models obtained from the repeated application of LASSO regression with ten-fold 

cross-validation on the training set was evaluated to determine whether there existed 

uncertainty in model selection. If one of the model groups had w > 0.9, which could be 

interpreted as meaning that there was a 90% chance that it was the best model approximating 

the outcome given the candidate set of models, then this model could be considered as evidently 

superior to the other models [284]. In this instance, inference and prediction could be based on 

this model alone as there was minimal uncertainty in model selection, and accordingly, the 

coefficients of the features in this superior model group were estimated by averaging over the 

corresponding set of models. 
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However, when this was not the case (i.e., there was no such model with w > 0.9) and there 

were other competing models that were equally or nearly as well supported as the best model, 

it would be disingenuous to only present the ‘best’ model as uncertainty in model selection was 

evident [289]. Under these circumstances, inference would need to be derived from the entire 

set of models to result in more reproducible predictions. Therefore, in order to obtain more 

reproducible predictions of the probability of having schizophrenia in the presence of model 

selection uncertainty, a multimodel approach was adopted by applying feature extraction and 

model averaging across the full set of 100 models to form weighted average prediction models. 

 

3.2.5.6. Feature extraction 

Feature extraction was used to define prediction models based on the relative importance of 

the features. Selection fraction and probability thresholds of 0.9 and 0.8 were used, such that 

only features with selection fractions or probabilities greater than or equal to the defined 

threshold were included in the models. Four prediction models were defined: a model 

consisting of features with selection fractions ≥ 0.9; a model consisting of features with 

selection fractions ≥ 0.8; a model consisting of features with selection probabilities ≥ 0.9; and 

a model consisting of features with selection probabilities ≥ 0.8. This feature extraction strategy 

provided the advantage of further reducing overfitting by excluding features that were less 

frequently selected or those with low selection probabilities based on Akaike model weights, 

which also had the effect of enhancing model interpretability. 

 

3.2.5.7. Model averaging 

Model averaging was used to estimate the weighted mean coefficient (>X) of a given feature of 

interest across the entire set of models: 

 

>X =@T%>Y%

8

%0$
 

 

where wi and >Y% are, respectively, the Akaike weight and the estimated feature coefficient in 

model i across a set of R models [284]. As all models were considered under this framework, 

those in which the feature of interest was not selected contributed nothing to the weighted mean 

coefficient estimate, resulting in the shrinkage of the coefficient towards zero [289]. As a result, 

poorly weighted features contributed less to the predictions than strongly weighted features. 
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3.2.5.8. Predictive performance 

Predictive performance of the models when applied to the training and test sets was evaluated 

by plotting ROC curves and measuring the AUC. More details on model predictive 

performance can be found in Chapter 2 (see Section 2.5.5). 

 

 

3.3. Results 
 

One hundred and forty-seven peptides were measured in a training set of 48 first-onset drug-

naïve schizophrenia patients and 62 healthy controls, and a test set of 12 first-onset drug-naïve 

schizophrenia patients and 15 healthy controls (Table 3.1). One hundred prediction models 

were obtained from repeatedly applying LASSO regression with ten-fold cross-validation on 

the training set. Akaike weights were calculated for each model to estimate the probability of 

it being the best model approximating schizophrenia outcome in the training set. 

 

3.3.1. Model selection and Akaike model weights 

Results across the 100 prediction models revealed some uncertainty in model selection (Table 

3.2). The number of peptide features selected in a model ranged between one and 49, with a 

median of 12 (Figure 3.2a). Eight features out of 147 were selected at least 80 times out of 

100, among which six features were selected at least 90 times (Table 3.2); one feature 

(HPT_VTSIQDWVQK) was selected 100 times. Fifty-five features were selected at least once 

(among which 25 features were selected less than 10 times out of 100), and 92 features were 

never selected, which was consistent with limited overfitting (Figure 3.2b). Moreover, feature 

selection probabilities were calculated to estimate the probability that a particular feature was 

a component of the best model. Nine features had selection probabilities ≥ 0.8, among which 

seven features had selection probabilities ≥ 0.9, and one feature (HPT_VTSIQDWVQK) had 

a selection probability of 1 (the 92 features that were never selected had selection probabilities 

of zero). The selection fraction and selection probability of the features were significantly 

correlated (Pearson’s product-moment correlation coefficient = 0.97; p-value < 0.01; Figure 

3.2c), very much as expected. 

 

On average, the candidate set of models showed a good predictive performance on the training 

set (median AUC = 0.85; mean ± 95% confidence intervals AUC = 0.86 ± 0.01; Figure 3.2d). 
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Thirty model groups were identified based on the combination of features selected together 

(Table 3.3). For each model group, the frequency of occurrence and the probability of it being 

the best model were measured to assess the relative importance of subsets of features occurring 

together. The model group with the highest frequency of occurrence (20 times out of 100) 

consisted of 12 features and had the highest model probability of 0.35, which could be 

interpreted as there being a 35% chance that this model group was the best model. Given this 

relatively low weight (w < 0.9), there was insufficient evidence in favour of a superior model 

approximating schizophrenia outcome in the training set; in other words, there existed model 

selection uncertainty. When this model group was applied to predict the probability of 

schizophrenia outcome in the training set, it demonstrated a good predictive performance 

(AUC = 0.85; Figure 3.3a). However, its performance dropped to fair when applied to the test 

set (AUC = 0.73; Figure 3.3b), which was indicative of model overfitting. The remaining 

model groups each occurred eight times or fewer, and had model probabilities of 0.13 or 

smaller. Therefore, the considerable variability in feature selection and the lack of a strongly 

supported model approximating the probability of having schizophrenia in the training set 

highlighted the need for a multimodel approach. 

 

3.3.2. Feature extraction and model averaging 

In the presence of model selection uncertainty, a multimodel approach was adopted to form 

weighted average prediction models. Four weighted average prediction models (average 

selection fraction 0.9, average selection fraction 0.8, average selection probability 0.9, and 

average selection probability 0.8) were defined by applying feature extraction using selection 

fraction and selection probability thresholds of 0.9 and 0.8, followed by model averaging across 

all 100 models to obtain weighted mean coefficient estimates of the selected features. The first 

average model consisted of six features with selection fractions ≥ 0.9; the second average 

model consisted of eight features with selection fractions ≥ 0.8; the third average model 

consisted of seven features with selection probabilities ≥ 0.9; and the fourth average model 

consisted of nine features with selection probabilities ≥ 0.8 (Table 3.4). The weighted average 

models were applied to predict the probability of schizophrenia outcome in the training and 

test sets, and their predictive performance was evaluated. Overall, the models demonstrated a 

good predictive performance when applied to the training set (AUC = 0.81 – 0.84; Figure 3.3a), 

and a fair predictive performance when applied to the test set (AUC = 0.74 – 0.77; Figure 

3.3b). Importantly, the weighted average models achieved lower training AUCs and higher test 
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AUCs than the best model group, which was expected, as the weighted average models 

consisted of fewer features. This demonstrated the effectiveness of the multimodel approach 

in alleviating model overfitting. Among the average models, comparisons between their 

predictive performance on the training and test sets indicated that model overfitting was most 

evident in the fourth model, which consisted of the largest number of features and achieved the 

highest training AUC and the lowest test AUC (0.84 and 0.74, respectively). On the other hand, 

model overfitting was least evident (i.e., most effectively alleviated) in the first model, which 

consisted of the smallest number of features. This model achieved the lowest training AUC 

and the highest test AUC (0.81 and 0.77, respectively), demonstrating the smallest drop in 

predictive performance.  
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Table 3.1. Demographic characteristics of healthy controls and first-onset drug-naïve 

schizophrenia patients. 

Age is shown as the mean (standard deviation) and sex is shown as the percentage of males and females 

for participants in the full (n = 137), training (n = 110) and test (n = 27) datasets. P-values are from 

comparisons between patients and controls in the full dataset using a χ2 test for sex (categorical variable) 

and a Mann-Whitney U test for age (numerical variable). 

 

 Healthy controls 
First-onset drug-naïve 

schizophrenia patients 
p-value 

n 

Full 77 60  

Training 62 48  

Test 15 12  

Sex % (male/female) 

Full 55.8/44.2 51.7/48.3 0.6264 

Training 54.8/45.2 52.1/47.9  

Test set 60/40 50/50  

Age (years) 

Full 31.8 (8.7) 30.9 (10.5) 0.3350 

Training 31.8 (8.7) 30.9 (11.2)  

Test 31.8 (9.2) 30.8 (7.3)  
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Table 3.2. Summary of the selected features. 

For each of the 55 features selected at least once, the selection fraction, selection probability, coefficient 

in the best model group, and weighted mean coefficient, are reported. The features are shown in 

descending order of selection fraction. They are represented in a protein_peptide format, and their 

abbreviations can be found in the Appendix (Table A. 1). Ninety-two features out of 147 were never 

selected (not shown). 

 

Feature 
Selection 

fraction 

Selection 

probability 

Best model 

group 

coefficient 

Weighted 

mean 

coefficient 

(Intercept) 1 1 -0.2757 -0.2756 

HPT_VTSIQDWVQK 1 1 0.2659 0.254 

IC1_TNLESILSYPK 0.99 0.9951 0.3363 0.3172 

APOA2_SPELQAEAK 0.98 0.9927 -0.2618 -0.2487 

APOC3_DALSSVQESQVAQQAR 0.97 0.99 -0.0802 -0.0843 

APOC1_EFGNTLEDK 0.96 0.9878 -0.0623 -0.0601 

APOA4_IDQNVEELK 0.94 0.9841 -0.1722 -0.1644 

FETUA_HTLNQIDEVK 0.88 0.9569 -0.1352 -0.1272 

ITIH4_GPDVLTATVSGK 0.8 0.8596 0.0989 0.092 

A2MG_NEDSLVFVQTDK 0.77 0.8295 0.116 0.1098 

IGHA1_DASGVTFTWTPSSGK 0.67 0.7077 -0.0443 -0.0501 

APOH_EHSSLAFWK 0.62 0.6591 0.02 0.039 

IGHA2_DASGATFTWTPSSGK 0.42 0.3107 0 -0.0081 

AACT_EQLSLLDR 0.41 0.6818 0.0181 0.0151 

FCN3_YGIDWASGR 0.36 0.178 0 0.0053 

A2AP_FDPSLTQR 0.3 0.0598 0 0.0044 

C1RL_GSEAINAPGDNPAK 0.27 0.0398 0 0.0029 

A1BG_ATWSGAVLAGR 0.22 0.0168 0 -0.0006 

PHLD_NQVVIAAGR 0.22 0.0168 0 -0.0006 

KNG1_DFVQPPTK 0.21 0.0138 0 -0.0029 

IGHG2_TTPPMLDSDGSFFLYSK 0.17 0.0043 0 -0.0002 

KLKB1_LSMDGSPTR 0.16 0.004 0 -0.0001 

CBPB2_DTGTYGFLLPER 0.15 0.0001 0 0 

CLUS_IDSLLENDR 0.15 0.0001 0 0 
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HRG_ADLFYDVEALDLESPK 0.15 0.0001 0 0 

PEDF_TVQAVLTVPK 0.15 0.0001 0 0 

A2AP_DSFHLDEQFTVPVEMMQAR 0.14 0.012 0 0.0006 

HBG1_MVTAVASALSSR 0.14 0.0043 0 0.0001 

ANT3_FDTISEK 0.12 0 0 0 

ANGT_ALQDQLVLVAAK 0.11 0.0357 0 -0.0006 

TTHY_VLDAVR 0.11 0 0 0 

AMBP_ETLLQDFR 0.09 0 0 0 

APOL1_LNILNNNYK 0.09 0 0 0 

APOL1_VTEPISAESGEQVER 0.09 0 0 0 

ITIH1_GSLVQASEANLQAAQDFVR 0.09 0 0 0 

ITIH4_ETLFSVMPGLK 0.09 0 0 0 

THRB_SGIECQLWR 0.09 0 0 0 

TRFE_EGYYGYTGAFR 0.09 0 0 0 

AACT_EIGELYLPK 0.08 0.043 0 0.0005 

APOC2_ESLSSYWESAK 0.06 0 0 0 

APOF_SLPTEDCENEK 0.06 0 0 0 

CO2_HAIILLTDGK 0.06 0 0 0 

CO6_TLNICEVGTIR 0.06 0 0 0 

GELS_SEDCFILDHGK 0.06 0 0 0 

A1BG_SGLSTGWTQLSK 0.05 0 0 0 

A2MG_AIGYLNTGYQR 0.05 0.009 0 0 

CO3_VYAYYNLEESCTR 0.05 0 0 0 

A1AT_LSITGTYDLK 0.03 0 0 0 

APOD_VLNQELR 0.03 0 0 0 

APOE_LEEQAQQIR 0.03 0 0 0 

CAH1_ADGLAVIGVLMK 0.03 0 0 0 

CD5L_EATLQDCPSGPWGK 0.03 0 0 0 

HBA_MFLSFPTTK 0.03 0 0 0 

SHBG_IALGGLLFPASNLR 0.03 0 0 0 

CO4A_ITQVLHFTK 0.01 0 0 0 

LUM_SLEDLQLTHNK 0.01 0 0 0 
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Figure 3.2. Summary of 100 models obtained from repeated application of LASSO regression 

with ten-fold cross-validation on the training set. 

a) The number of features selected in each model. b) The selection fraction of each feature. c) The 

selection fraction and the selection probability of each feature. d) The AUC of each model. 

Abbreviations: AUC (area under the receiver operating characteristic curve); LASSO (least absolute 

shrinkage and selection operator).  
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Table 3.3. Model groups based on the combinations of features selected. 

Thirty model groups were identified. For each model group, the frequency of occurrence and the model 

probability (summed Akaike weights) are reported. Model groups are shown in descending order of 

model probability. The features are represented in a protein_peptide format, and their abbreviations can 

be found in the Appendix (Table A. 1). 

 

Model group 
Number of 

features 
Frequency 

Model 

probability 

A2MG_NEDSLVFVQTDK + AACT_EQLSLLDR + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + FETUA_HTLNQIDEVK + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

ITIH4_GPDVLTATVSGK 

12 20 0.3484 

A2MG_NEDSLVFVQTDK + AACT_EQLSLLDR + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + FETUA_HTLNQIDEVK + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

ITIH4_GPDVLTATVSGK 

13 6 0.1327 

A2MG_NEDSLVFVQTDK + AACT_EQLSLLDR + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + FCN3_YGIDWASGR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

ITIH4_GPDVLTATVSGK 

14 6 0.1183 

A2MG_NEDSLVFVQTDK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

9 5 0.0990 
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FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + ITIH4_GPDVLTATVSGK 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK 

7 8 0.0973 

A2MG_NEDSLVFVQTDK + AACT_EQLSLLDR + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK + 

ITIH4_GPDVLTATVSGK 

11 5 0.0486 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + ITIH4_GPDVLTATVSGK 

8 3 0.0300 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK 

6 6 0.0272 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

AACT_EIGELYLPK + ANGT_ALQDQLVLVAAK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

ITIH4_GPDVLTATVSGK 

17 5 0.023 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

AACT_EIGELYLPK + AACT_EQLSLLDR + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

16 3 0.0200 
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APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + FCN3_YGIDWASGR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

ITIH4_GPDVLTATVSGK 

A2MG_NEDSLVFVQTDK + AACT_EQLSLLDR + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + ITIH4_GPDVLTATVSGK 

10 1 0.0139 

A2MG_AIGYLNTGYQR + A2MG_NEDSLVFVQTDK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

FETUA_HTLNQIDEVK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + ITIH4_GPDVLTATVSGK 

10 4 0.009 

A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

ANGT_ALQDQLVLVAAK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

ITIH4_GPDVLTATVSGK + KNG1_DFVQPPTK + 

PHLD_NQVVIAAGR 

20 3 0.0077 

HPT_VTSIQDWVQK 1 1 0.0049 

A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

22 1 0.0039 
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APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH4_GPDVLTATVSGK + KLKB1_LSMDGSPTR + 

KNG1_DFVQPPTK + PHLD_NQVVIAAGR 

APOA2_SPELQAEAK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK 

5 2 0.0036 

A1BG_ATWSGAVLAGR + A2AP_FDPSLTQR + 

A2MG_NEDSLVFVQTDK + 

ANGT_ALQDQLVLVAAK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

ITIH4_GPDVLTATVSGK + PHLD_NQVVIAAGR 

18 1 0.0030 

APOA2_SPELQAEAK + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK 
3 1 0.0027 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK 2 1 0.0024 

APOA2_SPELQAEAK + 

APOC3_DALSSVQESQVAQQAR + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK 

4 1 0.0022 

A1BG_ATWSGAVLAGR + A2AP_FDPSLTQR + 

A2MG_NEDSLVFVQTDK + 

ANGT_ALQDQLVLVAAK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HPT_VTSIQDWVQK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

19 1 0.0018 
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ITIH4_GPDVLTATVSGK + KNG1_DFVQPPTK + 

PHLD_NQVVIAAGR 

A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

ANGT_ALQDQLVLVAAK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH4_GPDVLTATVSGK + KNG1_DFVQPPTK + 

PHLD_NQVVIAAGR 

22 1 < 0.0001 

A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

CBPB2_DTGTYGFLLPER + CLUS_IDSLLENDR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

HRG_ADLFYDVEALDLESPK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH4_GPDVLTATVSGK + KLKB1_LSMDGSPTR + 

KNG1_DFVQPPTK + PEDF_TVQAVLTVPK + 

PHLD_NQVVIAAGR 

26 3 0.0001 

A1AT_LSITGTYDLK + A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

AMBP_ETLLQDFR + ANT3_FDTISEK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

36 3 < 0.0001 
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APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + APOL1_LNILNNNYK + 

APOL1_VTEPISAESGEQVER + 

C1RL_GSEAINAPGDNPAK + 

CBPB2_DTGTYGFLLPER + CLUS_IDSLLENDR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

HRG_ADLFYDVEALDLESPK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH1_GSLVQASEANLQAAQDFVR + 

ITIH4_ETLFSVMPGLK + ITIH4_GPDVLTATVSGK + 

KLKB1_LSMDGSPTR + KNG1_DFVQPPTK + 

PEDF_TVQAVLTVPK + PHLD_NQVVIAAGR + 

THRB_SGIECQLWR + TRFE_EGYYGYTGAFR + 

TTHY_VLDAVR 

A1BG_ATWSGAVLAGR + A1BG_SGLSTGWTQLSK + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

AMBP_ETLLQDFR + ANT3_FDTISEK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + APOC2_ESLSSYWESAK + 

APOC3_DALSSVQESQVAQQAR + APOD_VLNQELR 

+ APOE_LEEQAQQIR + APOF_SLPTEDCENEK + 

APOH_EHSSLAFWK + APOL1_LNILNNNYK + 

APOL1_VTEPISAESGEQVER + 

C1RL_GSEAINAPGDNPAK + 

CAH1_ADGLAVIGVLMK + CBPB2_DTGTYGFLLPER 

+ CD5L_EATLQDCPSGPWGK + CLUS_IDSLLENDR + 

CO2_HAIILLTDGK + CO3_VYAYYNLEESCTR + 

CO6_TLNICEVGTIR + FCN3_YGIDWASGR + 

FETUA_HTLNQIDEVK + GELS_SEDCFILDHGK + 

HBA_MFLSFPTTK + HPT_VTSIQDWVQK + 

HRG_ADLFYDVEALDLESPK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

46 2 < 0.0001 
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ITIH1_GSLVQASEANLQAAQDFVR + 

ITIH4_ETLFSVMPGLK + ITIH4_GPDVLTATVSGK + 

KLKB1_LSMDGSPTR + KNG1_DFVQPPTK + 

PEDF_TVQAVLTVPK + PHLD_NQVVIAAGR + 

SHBG_IALGGLLFPASNLR + THRB_SGIECQLWR + 

TRFE_EGYYGYTGAFR + TTHY_VLDAVR 

A1BG_ATWSGAVLAGR + A2AP_FDPSLTQR + 

A2MG_NEDSLVFVQTDK + AMBP_ETLLQDFR + 

ANT3_FDTISEK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC2_ESLSSYWESAK + 

APOC3_DALSSVQESQVAQQAR + 

APOF_SLPTEDCENEK + APOH_EHSSLAFWK + 

APOL1_LNILNNNYK + APOL1_VTEPISAESGEQVER 

+ C1RL_GSEAINAPGDNPAK + 

CBPB2_DTGTYGFLLPER + CLUS_IDSLLENDR + 

CO2_HAIILLTDGK + CO6_TLNICEVGTIR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

GELS_SEDCFILDHGK + HBG1_MVTAVASALSSR + 

HPT_VTSIQDWVQK + HRG_ADLFYDVEALDLESPK 

+ IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK 

+ IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH1_GSLVQASEANLQAAQDFVR + 

ITIH4_ETLFSVMPGLK + ITIH4_GPDVLTATVSGK + 

KLKB1_LSMDGSPTR + KNG1_DFVQPPTK + 

PEDF_TVQAVLTVPK + PHLD_NQVVIAAGR + 

THRB_SGIECQLWR + TRFE_EGYYGYTGAFR + 

TTHY_VLDAVR 

39 1 < 0.0001 

A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

ANT3_FDTISEK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

CBPB2_DTGTYGFLLPER + CLUS_IDSLLENDR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

28 2 < 0.0001 



Chapter 3  

 80 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

HRG_ADLFYDVEALDLESPK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH4_GPDVLTATVSGK + KLKB1_LSMDGSPTR + 

KNG1_DFVQPPTK + PEDF_TVQAVLTVPK + 

PHLD_NQVVIAAGR + TTHY_VLDAVR 

A1BG_ATWSGAVLAGR + A1BG_SGLSTGWTQLSK + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

AMBP_ETLLQDFR + ANT3_FDTISEK + 

APOA2_SPELQAEAK + APOA4_IDQNVEELK + 

APOC1_EFGNTLEDK + APOC2_ESLSSYWESAK + 

APOC3_DALSSVQESQVAQQAR + 

APOF_SLPTEDCENEK + APOH_EHSSLAFWK + 

APOL1_LNILNNNYK + APOL1_VTEPISAESGEQVER 

+ C1RL_GSEAINAPGDNPAK + 

CBPB2_DTGTYGFLLPER + CLUS_IDSLLENDR + 

CO2_HAIILLTDGK + CO3_VYAYYNLEESCTR + 

CO6_TLNICEVGTIR + FCN3_YGIDWASGR + 

FETUA_HTLNQIDEVK + GELS_SEDCFILDHGK + 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

HRG_ADLFYDVEALDLESPK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH1_GSLVQASEANLQAAQDFVR + 

ITIH4_ETLFSVMPGLK + ITIH4_GPDVLTATVSGK + 

KLKB1_LSMDGSPTR + KNG1_DFVQPPTK + 

PEDF_TVQAVLTVPK + PHLD_NQVVIAAGR + 

THRB_SGIECQLWR + TRFE_EGYYGYTGAFR + 

TTHY_VLDAVR 

41 2 < 0.0001 

A1BG_ATWSGAVLAGR + A1BG_SGLSTGWTQLSK + 

A2AP_FDPSLTQR + A2MG_AIGYLNTGYQR + 

A2MG_NEDSLVFVQTDK + AMBP_ETLLQDFR + 

ANT3_FDTISEK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC2_ESLSSYWESAK + 

49 1 < 0.0001 
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APOC3_DALSSVQESQVAQQAR + APOD_VLNQELR 

+ APOE_LEEQAQQIR + APOF_SLPTEDCENEK + 

APOH_EHSSLAFWK + APOL1_LNILNNNYK + 

APOL1_VTEPISAESGEQVER + 

C1RL_GSEAINAPGDNPAK + 

CAH1_ADGLAVIGVLMK + CBPB2_DTGTYGFLLPER 

+ CD5L_EATLQDCPSGPWGK + CLUS_IDSLLENDR + 

CO2_HAIILLTDGK + CO3_VYAYYNLEESCTR + 

CO4A_ITQVLHFTK + CO6_TLNICEVGTIR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

GELS_SEDCFILDHGK + HBA_MFLSFPTTK + 

HPT_VTSIQDWVQK + HRG_ADLFYDVEALDLESPK 

+ IC1_TNLESILSYPK + IGHA1_DASGVTFTWTPSSGK 

+ IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH1_GSLVQASEANLQAAQDFVR + 

ITIH4_ETLFSVMPGLK + ITIH4_GPDVLTATVSGK + 

KLKB1_LSMDGSPTR + KNG1_DFVQPPTK + 

LUM_SLEDLQLTHNK + PEDF_TVQAVLTVPK + 

PHLD_NQVVIAAGR + SHBG_IALGGLLFPASNLR + 

THRB_SGIECQLWR + TRFE_EGYYGYTGAFR + 

TTHY_VLDAVR 

A1BG_ATWSGAVLAGR + 

A2AP_DSFHLDEQFTVPVEMMQAR + 

A2AP_FDPSLTQR + A2MG_NEDSLVFVQTDK + 

ANT3_FDTISEK + APOA2_SPELQAEAK + 

APOA4_IDQNVEELK + APOC1_EFGNTLEDK + 

APOC3_DALSSVQESQVAQQAR + 

APOH_EHSSLAFWK + C1RL_GSEAINAPGDNPAK + 

CBPB2_DTGTYGFLLPER + CLUS_IDSLLENDR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HBG1_MVTAVASALSSR + HPT_VTSIQDWVQK + 

HRG_ADLFYDVEALDLESPK + IC1_TNLESILSYPK + 

IGHA1_DASGVTFTWTPSSGK + 

IGHA2_DASGATFTWTPSSGK + 

IGHG2_TTPPMLDSDGSFFLYSK + 

ITIH4_GPDVLTATVSGK + KLKB1_LSMDGSPTR + 

27 1 < 0.0001 
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KNG1_DFVQPPTK + PEDF_TVQAVLTVPK + 

PHLD_NQVVIAAGR 
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Figure 3.3. ROC curves showing model performance in predicting the probability of schizophrenia outcome. 
The best group prediction model (i.e., the model group with the highest frequency of occurrence and model probability) and four weighted average prediction 

models were applied to predict the probability of having schizophrenia in: a) the training set (48 first-onset drug-naïve schizophrenia patients vs 62 healthy 

controls), and b) the test set (12 first-onset drug-naïve schizophrenia patients vs 15 healthy controls). Abbreviations: AUC (area under the curve); ROC (receiver 

operating characteristic).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC = 0.85

AUC = 0.81

AUC = 0.83

AUC = 0.81

AUC = 0.84

Training

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC = 0.73

AUC = 0.77

AUC = 0.74

AUC = 0.74

AUC = 0.74

Test
a b

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te Best unique

Average selection fraction 0.9

Average selection fraction 0.8

Average selection probability 0.9

Average selection probability 0.8

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te Best group

Average selection fraction 0.9

Average selection fraction 0.8

Average selection probability 0.9

Average selection probability 0.8

Single median



Chapter 3  

 84 

Table 3.4. Summary of the evaluated prediction models. 

The best group prediction model was defined as the model group with the highest frequency of 

occurrence and model probability among the candidate set of models. Four weighted average prediction 

models (average selection fraction 0.9, average selection fraction 0.8, average selection probability 0.9, 

and average selection probability 0.8) were defined by applying feature extraction using selection 

fraction and selection probability thresholds of 0.9 and 0.8, followed by model averaging across all 100 

models. For each of the evaluated models, the number of features selected, the predictive performance 

(as measured by the AUC) and the predictive accuracy when applied to the training and test sets, are 

shown. Abbreviations: AUC (area under the curve). 

 

Model 

Number 

of 

features 

Training 

AUC 

Training 

accuracy 
Test AUC 

Test 

accuracy 

Best group 12 0.8498 0.7818 0.7333 0.7407 

Average selection 

fraction 0.9 
6 0.8071 0.7273 0.7722 0.8148 

Average selection 

fraction 0.8 
8 0.8310 0.7273 0.7444 0.7407 

Average selection 

probability 0.9 
7 0.8122 0.7091 0.7389 0.7037 

Average selection 

probability 0.8 
9 0.8424 0.7818 0.7389 0.6667 
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3.4. Discussion 
 

This chapter explored and further developed the multimodel framework in the context of 

obtaining reproducible predictions of having a complex psychiatric disorder based a proteomic 

biomarker dataset. One hundred and forty-seven peptides representing 77 serum proteins were 

measured in 60 first-onset drug-naïve schizophrenia patients and 77 demographically-matched 

controls using targeted MRM-MS. Given the distinct clinical conditions of the participants 

under comparison (i.e., first-onset drug-naïve patients vs healthy controls), the schizophrenia 

dataset represented an ideal scenario to establish proof-of-concept for investigating model 

selection uncertainty and demonstrating the advantage of the multimodel approach, despite the 

focus of the present thesis on depression. 

 

To this end, the sensitivity of model selection to small changes in the data was evaluated by 

repeatedly applying LASSO regression with ten-fold cross-validation on the training set to 

obtain 100 models. Relative model weights (Akaike weights) were subsequently calculated for 

each model based on the AICc, such that the weights depended on how much the model was 

supported by the data given the candidate set of models [289]. Thus, by comparing multiple 

models in terms of approximating the data, the AICc enabled model selection uncertainty to be 

quantified and relative model weights to be determined in a relatively practical and simple 

manner [289], [290]. As no single model stood out as being the best model approximating 

schizophrenia outcome in the training set, a multimodel approach was adopted to produce 

inferences and predictions that were unconditional on a specific model, and instead derived 

across the entire set of models. Hence, model selection could be viewed as a way to obtain 

model weights for model averaging, rather than just a way to select only one model [283]. In 

addition, the fact that 92 out of 147 features were never selected in any of the 100 models 

indicates that the method used for model selection (i.e., LASSO regression with ten-fold cross-

validation) was effective in limiting model overfitting. It should be noted that model averaging 

using the AICc is an established method for deriving inferences and predictions from a set of 

models rather than a single ‘best’ model in the presence of model selection uncertainty [284], 

[289], [290]. 

 

A clear advantage of the multimodel approach, particularly given the considerable variability 

in feature selection across the 100 models, was that it enabled the risk of selecting one of the 
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less probable models by chance to be reduced [294]. Additionally, feature extraction to identify 

the most important features for the average model and exclude less important ones had the 

effect of further alleviating model overfitting and improving model interpretability. The 

relative importance of the features was assessed by measuring their selection fractions (the 

proportion of models out of 100 in which a particular feature was selected) and selection 

probabilities (the probability that a particular feature was a component of the best model, 

calculated using relative model weights). Weighted average prediction models, which were 

defined by applying feature extraction with selection fraction and selection probability 

thresholds of 0.9 and 0.8, followed by model averaging across all 100 models, consisted of 

between six and nine features, and demonstrated a good predictive performance when applied 

to the training set (AUC = 0.81 – 0.84), and a fair predictive performance when applied to the 

test set (AUC = 0.74 – 0.77) in differentiating between patients and controls. The most 

reproducible predictions of the probability of having schizophrenia were obtained by the 

simplest average model consisting of six features with selection fractions ≥ 0.9. Given the 

training and test set AUCs of 0.81 and 0.77, respectively, the extent of model overfitting 

appeared to be relatively small. In this model, six serum proteins, apolipoprotein A-II (APOA2), 

apolipoprotein A-IV (APOA4), apolipoprotein C-I (APOC1), apolipoprotein C-III (APOC3), 

haptoglobin (HPT) and plasma protease C1 inhibitor (IC1), were selected as predictors of 

schizophrenia outcome; among these, two proteins (HPT and IC1) were upregulated in 

schizophrenia patients compared to controls, whereas four proteins (APOA2, APOC3, APOC1, 

and APOA4) were downregulated in schizophrenia patients compared to controls. All of the 

selected proteins except for IC1 have been previously linked to schizophrenia, with the most 

robust finding for increased HPT levels in schizophrenia patients compared to controls [349]–

[352]. 

 

Therefore, a parsimonious diagnostic prediction model, which produced the most reproducible 

predictions of schizophrenia outcome with as few features as possible, was obtained using the 

selection fraction threshold of 0.9 for feature extraction. Increasing model complexity by 

adding more features to the model had the effect of increasing overfitting and reducing 

generalisability (as the predictive performance on the training set was increased whereas that 

on the test set was reduced). Simple models tend to be favoured over complex ones as they are 

not only more interpretable but also potentially more cost-effective and convenient for 

application in a clinical setting. While both selection fractions and probabilities were used for 

feature extraction, the results indicate that the former may be a more favoured approach as it 
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led to simpler models in both cases of using thresholds of 0.9 and 0.8, although this finding 

may be specific to the dataset analysed. Note that in future applications of the multimodel 

approach, a lower threshold may be required for feature extraction if no features have selection 

fractions ≥ 0.9. Moreover, the advantage of the multimodel approach was further exemplified 

by the fact that presenting only the best model group when the amount of support for it being 

superior to the other models was insufficient (w < 0.9), and thereby ignoring model selection 

uncertainty, resulted in less reproducible predictions of schizophrenia outcome. This model 

group, which represented the best model that could be obtained from the set of 100 models, 

was more complex (i.e., consisted of more features) and overfitted than the weighted average 

models. Therefore, these results suggest that it would be unlikely for predictions obtained from 

any of the 100 models without applying feature extraction and model averaging to outperform 

those obtained from the multimodel approach. 

 

There are several limitations to the present study. While the predictive performance of the 

parsimonious model could be considered as reproducible in that there was a modest 

discrepancy between the training and test set AUCs, there is potential for improvement. More 

specifically, achieving a test AUC of at least 0.8 (‘good’ predictive performance, by definition 

[340], [341]) would be desirable considering the application of such a diagnostic prediction 

model in a clinical setting. Moreover, although the original dataset was partitioned to create 

training and test sets in order to allow for the prediction models to be externally validated on 

an independent dataset (i.e., dataset other than that used for model training), the models could 

not be validated on an independent cohort of patients and controls recruited from a different 

clinical centre due to the lack of availability of such a dataset. Finally, it should be noted that 

since the clinical conditions of the investigated participants were very distinct in order to 

demonstrate proof-of-concept, the application of the presented multimodel approach to the 

development diagnostic prediction models using more clinically relevant datasets such as those 

consisting of MDD patients could potentially result in predictions of outcome that are not as 

good as those achieved in this work. 

 

In conclusion, this chapter demonstrated the utility of a multimodel-based approach in 

addressing model overfitting and model selection uncertainty and thereby making reproducible 

predictions of the diagnosis of a complex psychiatric disorder using high-dimensional serum 

proteomic biomarker data. A parsimonious and generalisable diagnostic prediction model, 

comprised of the most important and fewest set of features and their weighted average 
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coefficient estimates, was developed in the presence of model selection uncertainty by the 

combined implementation of feature extraction and model averaging based on a set of 

candidate models.
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Chapter 4      Integrating proteomic, 
sociodemographic and clinical data to 

predict future depression diagnosis in 
subthreshold symptomatic individuals 
 

 

4.1. Introduction 
 
MDD is a complex and burdensome disorder that is characterised by low mood and energy 

levels, as well as concentration problems, sleep disturbances and changes in weight and 

appetite [1], [353]. It affects more than 300 million people worldwide [2], and is estimated to 

become the most debilitating disorder worldwide by 2030 [11]. Diagnosis of MDD currently 

relies on the evaluation of symptoms in clinical interviews according to the criteria outlined in 

the DSM-5 [1] or ICD-11 [16] (see Chapter 1). 

 

As discussed in Chapter 1, there is an increased interest in identifying individuals experiencing 

subthreshold depression [47], [55]–[61]. Diagnosis of MDD based on the DSM-5 requires 

individuals to present with at least five out of nine depressive symptoms, including at least one 

core symptom of depressed mood or anhedonia (loss of interest or pleasure), and the symptoms 

need to be present most of the day, nearly every day, for at least two weeks (Table 1.1) [1]. 

Under such a checklist diagnostic approach, those who present with depressive symptoms that 

do not fulfil the diagnostic criteria (i.e., fewer than five symptoms and/or duration of symptoms 

for less than two weeks and/or lack of a core symptom) are overlooked, despite the converging 

evidence that the presence of subthreshold depressive symptoms is associated with increased 

functional and social impairment, reduced quality of life, and increased utilisation of health 

services [58], [60], [64], [67], [68]. Importantly, while subthreshold depression has been 

identified as a risk factor for developing MDD in the future [67], [72], [76], there is also 

growing evidence that targeting subthreshold individuals with indicated preventive 
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interventions can help to prevent or delay the onset of MDD [78]–[80]. This highlights the 

clinical importance of finding early manifestations or biomarkers of incident MDD in 

subthreshold individuals, which could be used to identify those who will benefit most from 

appropriate preventive interventions. Early and more accurate detection of MDD is also 

essential for reducing the disease burden and the related healthcare costs. More on subthreshold 

depression can be found in Section 1.1.5.  

 

The probability of an individual having or developing MDD can be predicted using a risk 

prediction model, based on his or her molecular, sociodemographic and/or clinical 

characteristics [254], [255]. The clinical utility of such a model is in aiding the process of 

decision-making with regards to the diagnosis or treatment of patients or symptomatic help-

seekers, and it is important that the performance of the model is reproduced when applied to 

new patient data (see Chapter 1). However, as the development of a prediction model in 

biomarker studies often involves performing model selection on high-dimensional data, model 

reproducibility can be limited by problems such as overfitting as well as model selection 

uncertainty. These problems, which are discussed in detail in Chapter 3, need to be 

appropriately addressed to ensure that a robust and generalisable model is obtained. 

 

A standard approach employed by many biomarker studies is to use healthy controls as a 

reference population against which patients are compared. However, in this chapter, a more 

clinically relevant and appropriate sample population was examined by defining individuals 

presenting with subthreshold levels of depressive symptoms, the idea being that distinguishing 

between depressed patients and subthreshold individuals would better represent a situation that 

GPs would face in primary care relative to distinguishing between depressed patients and 

healthy individuals. A disease prediction model of MDD was developed by comparing 

subthreshold individuals who did not develop MDD (reference group) against first-episode 

MDD patients, based on their proteomic, sociodemographic and clinical profiles. As the 

reference group was more similar to the patient group, this provided an additional challenge to 

model selection. Several methods were implemented to limit model overfitting and ensure 

model generalisability, and in the presence of model selection uncertainty, the multimodel 

approach (feature extraction and model averaging), which was developed and refined in 

Chapter 3, was applied across a set of candidate models to obtain a weighted average 

prediction model. To investigate the prediction of future MDD onset, this model was then 
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extrapolated to differentiate between subthreshold individuals who developed and did not 

develop MDD. 

 

In the work reported in this chapter, blood samples were prepared by Nitin Rustogi and Rhian 

Lauren Preece, and run on the MS by Dr. Sureyya Ozcan. Raw MS data were processed by Dr. 

Sureyya Ozcan using Skyline. I was provided with the peak area values of the endogenous and 

SIL peptide-transitions and conducted all of the data pre-processing and analysis myself using 

R. 

 

 

4.2. Materials and Methods 
 

4.2.1. Clinical samples 
The study presented in this chapter investigated participants from the Netherlands Study of 

Depression and Anxiety (NESDA), a naturalistic, longitudinal study in which 2,981 

participants (aged 18-65 years) were recruited between 2004 and 2007 and followed up for up 

to eight years [354]. In order to reflect the various settings and developmental stages of 

psychopathology, participants were recruited from the general population, general practices, 

and mental health organisations [354]. The aims of the NESDA were: 1) to examine the long-

term course and consequences of depressive and anxiety disorders, and 2) to investigate 

predictors of the long-term course and consequences within an epidemiological approach [354]. 

The protocol of the present study was approved by all relevant ethical committees (the Ethical 

Review Board of the VU University Medical Centre and by the local ethical review boards at 

the participating centres of the Leiden University Medical Centre and the Groningen University 

Medical Centre), written informed consent was obtained from all participants [354], and the 

study was conducted according to the principles of the Declaration of Helsinki [298]. 

Diagnoses of MDD and other psychiatric disorders were determined at the baseline and follow-

up assessments using the WHO World Mental Health CIDI, version 2.1 [25]. A detailed 

description of the NESDA can be found in Penninx et al. (2008) [354]. 
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4.2.2. Study design 
For the purpose of this study, 209 participants were selected based on their disease status at the 

baseline and second- and fourth-year follow-up assessments, and baseline data of the 30-item 

Inventory of Depressive Symptomatology (IDS30; self-report) [355], which measures the 

severity of depressive symptoms in the past seven days on a scale of zero (none) to three 

(severe). Using 16 items of the IDS30 corresponding to nine diagnostic symptoms that comprise 

the DSM-5 MDD criteria (and also the shortened version of the IDS30, the 16-item QIDS [356]), 

‘subthreshold depression’ at baseline was defined as presenting with two or more depressive 

symptoms, including at least one of sadness or anhedonia (i.e., two core symptoms of the DSM), 

whereby a symptom was considered as present if any one of the corresponding IDS30 items 

was above zero (Table 4.1). 

 

To identify early biomarkers or indicators of MDD, it would be ideal to test for differences 

between subthreshold individuals who later developed and did not develop MDD. However, 

as the number of subthreshold individuals who developed MDD was limited, the model was 

first trained to differentiate between 86 subthreshold individuals who had no current or lifetime 

diagnosis of MDD at the baseline assessment and did not develop MDD by the fourth-year 

follow-up assessment (reference group) and 86 recent-onset MDD patients who experienced 

their first and only MDE within a month before the baseline assessment (training set patient 

group). To provide a fair comparison, recent-onset MDD patients also had to fulfil the criteria 

for baseline subthreshold depression. The model was subsequently extrapolated to predict the 

probability of developing MDD in the shared reference group and 37 subthreshold individuals 

who had no current or lifetime diagnosis of MDD at the baseline assessment and developed 

MDD by the second-year (n = 21) or fourth-year (n = 16) follow-up assessment (extrapolation 

test set patient group). 

 

None of the selected participants were diagnosed with BD, obsessive compulsive disorder, 

severe substance use disorder or psychotic disorder at the baseline assessment, and/or with BD 

at the follow-up assessments. Comorbid anxiety disorder was not used as an exclusion criterion.  
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Table 4.1. Nine DSM-5 depressive symptoms and corresponding IDS30 items. 

For a diagnosis of MDD under the DSM-5, five or more of the nine symptoms need to be present, 

including at least one core symptom (*) of depressed mood or anhedonia, during the same two-week 

period and represent a change from previous functioning [1]. The present study defined subthreshold 

symptomatic individuals at baseline using 16 items of the IDS30 [355] that correspond to the nine DSM 

symptom domains (and comprise the shortened version of the IDS30, the 16-item QIDS [356]): 

individuals had to present two or more depressive symptoms including one core symptom, whereby any 

one of the corresponding items had to be above zero for a symptom to be considered as present. 

Abbreviations: DSM (Diagnostic and Statistical Manual of Mental Disorders); IDS (Inventory of 

Depressive Symptomatology); MDD (major depressive disorder); QIDS (Quick Inventory of 

Depressive Symptomatology). 

 

DSM-5 symptom IDS item IDS description 

*Depressed mood IDS 5 Sadness 

*Anhedonia IDS 19 General interest 

Decrease or increase in weight or appetite 

IDS 11 

IDS 12 

IDS 13 

IDS 14 

Decreased appetite 

Increased appetite 

Decreased weight 

Increased weight 

Insomnia or hypersomnia 

IDS 1 

IDS 2 

IDS 3 

IDS 4 

Early insomnia 

Middle insomnia 

Late insomnia 

Hypersomnia 

Psychomotor agitation or retardation 
IDS 23 

IDS 24 

Psychomotor retardation 

Psychomotor agitation 

Fatigue or loss of energy IDS 20 Energy level 

Worthlessness or inappropriate guilt IDS 16 Self-criticism 

Diminished ability to concentrate or 

indecisiveness 
IDS 15 Concentration/decision-making 

Recurrent thoughts of death or suicide IDS 18 Thoughts of death or suicide 
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4.2.3. Sociodemographic and clinical characteristics 
Sociodemographic and lifestyle information of the participants was collected at the NESDA 

baseline assessment [354]. This included sex, age, BMI, education level, physical activity, 

smoking, alcohol abuse, recreational drug use, employment status, family history, childhood 

trauma, chronic diseases, and medication use (Table 4.2). Clinical features were derived from 

the baseline IDS30 data: 28 depressive symptoms were derived from 30 IDS30 items (after items 

on increase or decrease in weight and appetite were aggregated into single domains of 

weight/appetite increase or decrease), and the IDS30 total score and severity classification were 

determined. 

 

The sociodemographic and lifestyle characteristics of participants in different clinical groups 

were compared using Kruskal-Wallis H tests for numerical variables and χ2 tests for categorical 

variables (see Section 2.5.6). P-values < 0.05 were considered to be statistically significant 

(Table 4.2). 

 

4.2.4. Targeted protein quantification 
 

4.2.4.1. Serum sample preparation 

Blood serum samples of the participants were collected at the NESDA baseline assessment 

[354]. Two hundred and nine serum samples of the selected participants were randomised to 

allocate equal numbers of reference and patient groups, training and test sets, and males and 

females across four experimental plates for LC-MS/MS analysis. Samples were and prepared 

in a 96-well plate format as described in Section 2.3.1.1. 

 

4.2.4.2. LC-MS/MS analysis 

One hundred and forty-six peptides representing 77 proteins, the majority previously associated 

with psychiatric disorders, were measured using targeted MRM-MS analysis. Peptides were 

quantified at the transition level. More details on LC-MS/MS analysis can be found in Section 

2.3.2. The researchers conducting the sample preparation and the MS analysis were blinded to 

the clinical status of the participants.  
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4.2.4.3. QC samples 

Pooled and Sigma serum QC samples were used to assess the technical variation associated 

with instrument performance and sample preparation as described in Section 2.3.3. A pooled 

QC sample, which was prepared by pooling together the digested clinical serum samples, was 

injected once a day along with the clinical samples for the duration of the entire study (28 

injections in total). Twenty-four Sigma serum QC samples were prepared following the same 

protocol as the clinical samples and distributed across the experimental plates. More details on 

targeted protein quantification can be found in Section 2.3. 

 

4.2.5. MS data pre-processing 
Pre-processing of the MS data was carried out as described in Chapter 2 (see Section 2.4). 

Quantifier transitions were selected for each peptide based on the abundance values of the 

endogenous and the SIL peptide-transitions. A quantifier transition was selected as the 

transition that was consistently most abundant in at least 80% of the sample runs in both the 

endogenous and SIL peptides. Peptides for which quantifier transitions could not be selected 

based on these criteria, which can occur in the presence of competing transitions, the raw peak 

data were examined for manual selection. Subsequent analyses were conducted using data of 

the quantifier transitions only. Peptide quantification was based on the relative abundance of 

the endogenous and SIL peptide quantifier transitions, and the abundance ratio was log2-

transformed for statistical analysis. 

 

4.2.6. Statistical quality control 
PCA was conducted to identify any outliers based on the log2-transformed abundance ratios of 

146 peptides (Figure 4.1). No outlier samples were identified. 

 

In addition, the geometric CV was used to estimate the magnitude of variation in the proteomic 

data (based on the abundance ratios of 147 peptides), as described in Chapter 2 (see Section 

2.4.6). The technical variation was assessed by calculating the geometric CVs of peptide 

abundance ratios of the pooled (variation in MS instrument performance) and the Sigma serum 

(variation in sample preparation) QC samples across MS runs. The median CV values for the 

pooled and Sigma serum QC runs were 6.7% and 22.9%, respectively. The biological variation 

was assessed by calculating the geometric CVs of peptide abundance ratios of clinical samples 

within each clinical sample group. The median CV values were 59.2%, 51.7% and 49.7% for 
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the training set patient group, extrapolation test set patient group and shared reference group, 

respectively. 

 

 

 
 

Figure 4.1. PCA plot of protein peptide abundance ratios of clinical samples. 

The scores for the first two PCs are plotted with the percentage of variation accounted for by each PC 

shown in the axis labels. Data points are coloured according to the allocation of clinical samples into 

the training set patient group (first-episode MDD patients), the extrapolation test set patient group 

(subthreshold symptomatic individuals who developed MDD within two or four years) and the shared 

reference group (subthreshold symptomatic individuals who did not develop MDD within four years). 

Abbreviations: MDD (major depressive disorder); PC (principal component). 

 

 

4.2.7. Missing data 
There were no peptides with missing values, and no sociodemographic or clinical variables 

with more than 5% missing values. Missing values in sociodemographic and clinical variables 

were replaced using multiple imputation. Methods used for imputation were: predictive mean 

matching for numeric data, logistic regression imputation for binary data (factor with two 
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levels), and multinomial logistic regression imputation for categorical data (factor with more 

than two levels). The final complete dataset was produced by finding the central estimate of 

the missing values across five imputed datasets, using the median and the mode for numeric 

and categorical variables, respectively. Multiple imputation was conducted using the R 

package mice [357].  

 

4.2.8. Data analysis 
 

4.2.8.1. Model selection 

A total of 198 features (146 proteomic, 22 sociodemographic and 30 clinical) was analysed for 

model selection to predict the probability of MDD outcome in the training set. The full list of 

the analysed proteins and peptides can be found in the Appendix (Table A. 1). Categorical 

variables were represented as sets of dummy variables. Group LASSO regression was used to 

allow sets of dummy variables derived from categorical variables to be selected together. Ten-

fold cross-validation was used to further reduce overfitting by selecting the value of the 

shrinkage parameter l that resulted in the most regularised model. More details on group 

LASSO regression and K-fold cross-validation can be found in Chapter 2 (see Sections 2.5.3 

and 2.5.4). 

 

One hundred models were generated by repeatedly applying group LASSO regression with 

ten-fold cross-validation on the training set. As shown in Chapter 3, this approach allowed for 

model selection uncertainty to be investigated by evaluating the sensitivity of model selection 

to small changes in the data that resulted from the random partitioning in ten-fold cross-

validation. Relative model weights and relative importance of the features were measured as 

described in Chapter 3 (see Section 3.2.5). Briefly, the AICc was used to calculate the Akaike 

weight of each model, which was a value between 0 and 1 and interpreted as the probability 

that the model was the best approximating model for the data [284]. The sum of weights of all 

models was equal to 1. The relative importance of each feature was assessed by measuring the 

selection fraction (i.e., the proportion of models out of 100 in which it was selected), which 

was a value between 0 and 1. Moreover, models which comprised of the same combinations 

of features selected were grouped together, and the relative importance of subsets of features 

occurring together was quantified by measuring the frequency of occurrence of each model 
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group, as well as by summing the Akaike weights of all corresponding models to estimate the 

probability that the selected combination of features comprised the best approximating model. 

 

4.2.8.2. Feature extraction and model averaging 

As discussed in Chapter 3, when there was one strongly supported model group (e.g., ! > 

0.9), inference and prediction could be based on that model alone [284]. In this instance, the 

coefficients of the features in the superior model group were estimated by averaging over the 

corresponding set of models. 

 

However, in the absence of a superior model group, that is, when there was uncertainty in 

model selection, the multimodel approach that was developed in Chapter 3 was applied to 

obtain more reproducible predictions of the probability of MDD outcome. Based on the 

findings in Chapter 3, feature extraction was applied using a selection fraction threshold of 

0.9, such that only features with selection fractions ≥ 0.9 were included in the prediction model 

to limit overfitting. This was followed by model averaging across all 100 models to obtain 

better estimates of feature coefficients [284], [289], [290]. The weighted average coefficient of 

a given feature was estimated across the 100 models as described in Chapter 3 (see Section 

3.2.5.7). 

 

4.2.8.3. Predictive performance 

Predictive performance of the models when applied to the training and test sets was evaluated 

by plotting ROC curves and measuring the AUC. More details on model predictive 

performance can be found in Chapter 2 (see Section 2.5.5).  
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4.3. Results 
 

One hundred and forty-six proteomic, 22 sociodemographic and 30 clinical features (198 total) 

were measured in the training set patient group of 86 first-episode MDD patients, the 

extrapolation test set patient group of 37 subthreshold symptomatic individuals who developed 

MDD within two or four years, and the shared reference group of 86 subthreshold symptomatic 

individuals who did not develop MDD within four years (Table 4.2). 
 

 

Table 4.2. Sociodemographic and lifestyle characteristics of individuals in the training set patient 

group (first-episode MDD patients), the extrapolation test set patient group (subthreshold 

symptomatic individuals who developed MDD within two or four years) and the shared reference 

group (subthreshold symptomatic individuals who did not develop MDD within four years). 

Numerical variables are shown as the mean (standard deviation), and binary and categorical variables 

are shown as the percentage of participants in each category. Abbreviations: BMI (body mass index); 

IDS (Inventory of Depressive Symptomatology); MDD (major depressive disorder). 

 

 

Shared 

reference 

group 

Training set 

patient 

group 

Extrapolation 

test set patient 

group 

p-

value 

n 86 86 37  

Sex % (male/female) 35/65 48/52 32/68 0.1399 

Age (years) 37.8 (14.1) 41.8 (12.2) 38.5 (14) 0.1421 

Body mass index (kg/m2) 23.8 (4.4) 26.7 (6) 25.6 (5) 0.0018 

Education % (basic/intermediate/high) 8/42/50 6/67/27 3/59/38 0.0137 

Physical activity % 

(low/moderate/high) 
23/48/29 30/44/26 27/41/32 0.8157 

Smoking % (yes/no) 31/69 38/62 32/68 0.6041 

Alcohol abuse % (yes/no) 21/79 40/60 19/81 0.0097 

Weekly alcohol consumption (number 

of drinks per week) 
8 (11) 6.8 (11) 6.3 (7.4) 

0.1615 

Recreational drug use (past month) % 

(yes/no) 
7/93 8/92 8/92 0.9535 

Partner % (yes/no) 69/31 57/43 70/30 0.1952 

Children % (yes/no) 44/56 48/52 51/49 0.7522 
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Employment % 

(employed/unemployed/retired/ 

occupationally disabled) 

77/17/2/3 60/17/2/20 65/30/0/5 0.0097 

Absent from work due to health 

problems (past 6 months) % 

(yes/no/not applicable) 

43/35/22 41/21/38 35/32/32 0.1209 

Childhood life event index score 0.3 (0.5) 0.2 (0.5) 0.2 (0.5) 0.8888 

Childhood trauma index score 0.5 (0.9) 1 (1.3) 0.8 (1.1) 0.0086 

Number of negative life events (past 

year) 
1 (1) 1 (1.1) 0.9 (1) 0.9182 

Family history % (yes/no) 73/27 87/13 84/16 0.0591 

Heart disease % (yes/no) 1/99 5/95 5/95 0.3323 

Diabetes % (yes/no) 3/97 6/94 11/89 0.2774 

Other chronic disease % (yes/no) 26/74 40/60 22/78 0.0592 

Anti-inflammatory drug % (yes/no) 2/98 8/92 8/92 0.2069 

Heart medication % (yes/no) 10/90 23/77 8/92 0.027 

IDS30 total score 14.9 (7.4) 37.4 (11.5) 20.2 (8.8) 
< 

0.0001 

 

 

4.3.1. Analysis 1: model selection including IDS30 total score 
When all 198 features were used, there was minimal uncertainty in model selection. The 

number of features selected in a model ranged from one to six with an average of one (Figure 

4.2a). IDS30 total score was selected 100 times, one peptide was selected four times, and four 

peptides were selected once; the remaining features were never selected. Three model groups 

were identified based on the combination of features selected (Table 4.3). The most frequently 

occurring model group consisting of the IDS30 total score alone occurred 96 times and had a 

model probability of 0.98. Given the strong support for this model group (Model 1), there was 

no need for feature extraction, and the average feature coefficient was estimated using the 

corresponding 96 models (Table 4.4). 

 

The resulting single-feature model of IDS30 total score showed an excellent predictive 

performance when applied to the training set (AUC = 0.95; Figure 4.3a), and a poor 

performance when extrapolated to the test set (AUC = 0.68; Figure 4.3b). This suggests that 

while first-episode MDD patients could be accurately distinguished from subthreshold 
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individuals who did not develop MDD based on the IDS30 total score alone, the differentiation 

was much more difficult between subthreshold individuals who developed and did not develop 

MDD as both groups had minimal symptoms resulting in more similar scores (Table 4.2). 

 

4.3.2. Analysis 2: model selection excluding IDS30 total score 
To improve the model predictive performance on the extrapolation test set, the analysis was 

repeated after excluding IDS30 total score to allow for other features to be selected (197 

features). In this case, the number of features selected in a model ranged from ten to 27, with 

a median of 14, demonstrating a degree of uncertainty in model selection (Figure 4.2b). 

Twelve features were selected at least 90 times out of 100, among which nine features were 

selected 100 times. Twenty-eight features were selected at least once, and 169 features were 

never selected. Seventeen model groups were identified based on the combination of features 

selected together (Table 4.3). Two competing models consisting of 13 and 14 features occurred 

most frequently, 30 and 29 times, and had model probabilities of 0.22 and 0.50, respectively; 

the 13 features were a subset of the 14 features. This demonstrates that the frequency of 

occurrence did not necessarily correspond to the probability of being the best approximating 

model for the given data. The remaining model groups each occurred eight times or fewer. As 

there was considerable variability in feature selection and no strongly supported model group, 

feature extraction and model averaging were implemented across all 100 models. 

 

The resulting average model (Model 2) was comprised of 12 features that had selection 

fractions greater than 0.9 (Table 4.4). Six peptides representing six proteins (α-1-

antichymotrypsin (AACT), apolipoprotein E (APOE), apolipoprotein H (APOH), fetuin-A 

(FETUA), haemoglobin subunit α (HBA) and glycoprotein phospholipase D (PHLD)) were 

included, as well as three sociodemographic factors (BMI, childhood trauma and education 

level), and three depressive symptoms (sadness, fatigue and leaden paralysis). The 12-feature 

average prediction model showed an excellent predictive performance when applied to the 

training set (AUC = 0.94; Figure 4.3a), and a fair predictive performance when extrapolated 

to the test set (AUC = 0.75; Figure 4.3b). Here, the reduced performance on the latter can be 

explained by subthreshold individuals who developed MDD generally displaying weaker 

indications of disease (i.e., more similar to the reference group) compared to first-episode 

MDD patients (Figure 4.4), as expected. 
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In order to assess the relative contributions of the selected proteomic biomarkers and non-

biological features in predicting MDD, a prediction model consisting only of the six protein 

peptides and another model consisting only of the three sociodemographic factors and the three 

depressive symptoms were applied to the data sets. A biomarker-only model achieved a good 

predictive performance on the training set (AUC = 0.76), and a fair predictive performance on 

the extrapolation test set (AUC = 0.70). On the other hand, a sociodemographic-clinical-only 

model achieved an excellent predictive performance on the training set (AUC = 0.91), and a 

poor predictive performance on the extrapolation test set (AUC = 0.67). This demonstrates that 

combining the biomarkers and the non-biological features resulted in improved predictive 

performance on all data sets, and importantly, in predicting future onset of MDD among 

subthreshold individuals on the extrapolation test set.  
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Figure 4.2. Feature selection across 100 models obtained from repeated application of group 

LASSO regression with ten-fold cross-validation on the training set. 

(a) Analysis 1: model selection including IDS30 total score (198 features). (b) Analysis 2: model 

selection excluding IDS30 total score (197 features). (i) Number of features selected in each model. (ii) 

Selection fractions of each feature. Abbreviations: IDS (Inventory of Depressive Symptomatology; 

LASSO (least absolute shrinkage and selection operator).  
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Table 4.3. Model groups based on the combinations of features selected.  

Three model groups were identified in Analysis 1 (model selection including IDS30 total score), and 17 

model groups were identified in Analysis 2 (model selection excluding IDS30 total score). For each 

model group, the frequency of occurrence and the model probability (summed Akaike weight) are 

reported. Model groups are shown in descending order of frequency of occurrence. Proteomic features 

are represented in a protein_peptide format, and their abbreviations can be found in the Appendix 

(Table A. 1). 

 

Model group 
Number of 

features 
Frequency 

Model 

probability 

Analysis 1 

IDS30 total score 1 96 0.9825 

PHLD_NQVVIAAGR + IDS30 total score 2 3 0.0171 

FETUA_HTLNQIDEVK + IGHG2_GLPAPIEK + 

PHLD_NQVVIAAGR + RET4_QEELCLAR + 

SHBG_LPLVPALDGCLR + IDS30 total score 

6 1 0.0004 

 

Analysis 2 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOE_ALMDETMK + APOH_EHSSLAFWK + 

FETUA_HTLNQIDEVK + HBA_MFLSFPTTK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood trauma + Sadness + Fatigue + Leaden 

paralysis 

13 30 0.2169 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOE_ALMDETMK + APOH_EHSSLAFWK + 

FETUA_HTLNQIDEVK + HBA_MFLSFPTTK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood trauma + Sadness + Fatigue + Leaden 

paralysis 

14 29 0.5024 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + APOL1_VNEPSILEMSR 

+ CO8A_MESLGITSR + FETUA_HTLNQIDEVK 

+ HBA_FLASVSTVLTSK + HBA_MFLSFPTTK + 

23 3 < 0.0001 
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HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood life event + Childhood trauma + Sadness 

+ Mood reactivity + Self-criticism + Fatigue + 

Pleasure/enjoyment + Leaden paralysis 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + APOL1_VNEPSILEMSR 

+ CO6_SEYGAALAWEK + CO8A_MESLGITSR + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood life event + Childhood trauma + Sadness 

+ Mood reactivity + Mood quality + Self-criticism + 

Fatigue + Pleasure/enjoyment + Leaden paralysis 

25 5 < 0.0001 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOE_ALMDETMK + APOH_EHSSLAFWK + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + PHLD_NQVVIAAGR + 

Education + BMI + Childhood trauma + Sadness + 

Fatigue + Leaden paralysis 

15 8 0.1530 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOE_ALMDETMK + APOH_EHSSLAFWK + 

HBA_MFLSFPTTK + PHLD_NQVVIAAGR + BMI 

+ Childhood trauma + Sadness + Fatigue + Leaden 

paralysis 

11 2 0.0158 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOE_ALMDETMK + APOH_EHSSLAFWK + 

FETUA_HTLNQIDEVK + HBA_MFLSFPTTK + 

PHLD_NQVVIAAGR + BMI + Childhood trauma + 

Sadness + Fatigue + Leaden paralysis 

12 4 0.0963 
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A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOE_ALMDETMK + APOH_EHSSLAFWK + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + IGHG2_GLPAPIEK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood trauma + Sadness + Self-criticism + 

Fatigue + Leaden paralysis 

17 3 0.0002 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + CO8A_MESLGITSR + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood trauma + Sadness + Mood reactivity + 

Self-criticism + Fatigue + Pleasure/enjoyment + 

Leaden paralysis 

21 3 < 0.0001 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + CO8A_MESLGITSR + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + PHLD_NQVVIAAGR + 

Education + BMI + Childhood trauma + Sadness + 

Self-criticism + Fatigue + Leaden paralysis 

18 2 < 0.0001 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + APOL1_VNEPSILEMSR 

+ CO6_SEYGAALAWEK + CO8A_MESLGITSR + 

FCN3_YGIDWASGR + FETUA_HTLNQIDEVK + 

HBA_FLASVSTVLTSK + HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

27 2 < 0.0001 
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PHLD_NQVVIAAGR + Education + BMI + 

Childhood life event + Childhood trauma + Sadness 

+ Mood reactivity + Mood quality + Self-criticism + 

Suicidal thoughts + Fatigue + Pleasure/enjoyment + 

Leaden paralysis 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + APOL1_VNEPSILEMSR 

+ CO6_SEYGAALAWEK + CO8A_MESLGITSR + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood life event + Childhood trauma + Sadness 

+ Mood reactivity + Self-criticism + Fatigue + 

Pleasure/enjoyment + Leaden paralysis 

24 1 < 0.0001 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + FETUA_HTLNQIDEVK + 

HBA_FLASVSTVLTSK + HBA_MFLSFPTTK + 

IGHG2_GLPAPIEK + PHLD_NQVVIAAGR + 

Education + BMI + Childhood trauma + Sadness + 

Self-criticism + Fatigue + Leaden paralysis 

16 2 0.0006 

AACT_ADLSGITGAR + AACT_EIGELYLPK + 

APOH_EHSSLAFWK + HBA_MFLSFPTTK + 

PHLD_NQVVIAAGR + BMI + Childhood trauma + 

Sadness + Fatigue + Leaden paralysis 

10 1 0.0148 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + CO8A_MESLGITSR + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

PHLD_NQVVIAAGR + Education + BMI + 

20 3 < 0.0001 
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Childhood trauma + Sadness + Mood reactivity + 

Self-criticism + Fatigue + Leaden paralysis 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + APOL1_VNEPSILEMSR 

+ CO8A_MESLGITSR + FETUA_HTLNQIDEVK 

+ HBA_FLASVSTVLTSK + HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + ITIH4_GPDVLTATVSGK + 

PHLD_NQVVIAAGR + Education + BMI + 

Childhood trauma + Sadness + Mood reactivity + 

Self-criticism + Fatigue + Pleasure/enjoyment + 

Leaden paralysis 

22 1 < 0.0001 

A2MG_NEDSLVFVQTDK + 

AACT_ADLSGITGAR + APOE_ALMDETMK + 

APOH_EHSSLAFWK + CO8A_MESLGITSR + 

FETUA_HTLNQIDEVK + HBA_FLASVSTVLTSK 

+ HBA_MFLSFPTTK + 

HRG_ADLFYDVEALDLESPK + 

IGHG2_GLPAPIEK + PHLD_NQVVIAAGR + 

Education + BMI + Childhood trauma + Sadness + 

Mood reactivity + Self-criticism + Fatigue + Leaden 

paralysis 

19 1 < 0.0001 
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Table 4.4. Features included in the two prediction models from Analysis 1 and Analysis 2. 

Model 1 (one feature) was based on the superior model group in Analysis 1 (model selection including 

IDS30 total score), and Model 2 (12 features) was developed by implementing feature extraction and 

model averaging in Analysis 2 (model selection excluding IDS30 total score) in the absence of a superior 

model group. The selection fraction and the weighted mean coefficient of the features are shown. 

Proteomic features are represented in a protein_peptide format. Categorical features (education, sadness, 

fatigue and leaden paralysis) are represented as sets of dummy variables. Abbreviations: AACT (α-1-

antichymotrypsin); APOE (apolipoprotein E); APOH (apolipoprotein H); BMI (body mass index); 

FETUA (fetuin-A); HBA (haemoglobin subunit α); IDS (Inventory of Depressive Symptomatology); 

PHLD (glycoprotein phospholipase D). 
 

Feature Model Selection fraction 
Weighted mean 

coefficient 

Proteomic 

AACT_ADLSGITGAR 2 1.00 0.122 

APOE_ALMDETMK 2 0.99 -0.195 

APOH_EHSSLAFWK 2 1.00 0.080 

FETUA_HTLNQIDEVK 2 0.97 0.082 

HBA_MFLSFPTTK 2 1.00 0.231 

PHLD_NQVVIAAGR 2 1.00 0.286 

Sociodemographic 

BMI 2 1.00 0.291 

Childhood trauma 2 1.00 0.115 

Education; Intermediate 2 0.93 0.065 

Education; High 2 0.93 -0.055 

Clinical 

Sadness; Mild 2 1.00 -0.681 

Sadness; Moderate 2 1.00 0.819 

Sadness; Severe 2 1.00 0.369 

Fatigue; Mild 2 1.00 -0.124 

Fatigue; Moderate 2 1.00 0.339 

Fatigue; Severe 2 1.00 0.085 

Leaden paralysis; Mild 2 1.00 -0.145 

Leaden paralysis; Moderate 2 1.00 0.219 

Leaden paralysis; Severe 2 1.00 0.272 

IDS30 total score 1 1.00 0.346 
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Figure 4.3. ROC curves showing model performance in predicting the probability of MDD outcome.  
Model 1 consisted of IDS30 total score and Model 2 consisted of six proteins (α-1-antichymotrypsin, apolipoprotein E, apolipoprotein H, fetuin-A, haemoglobin 

subunit α and glycoprotein phospholipase D), three sociodemographic factors (BMI, childhood trauma and education level), and three depressive symptoms 

(sadness, fatigue and leaden paralysis). The prediction models were applied to predict the probability of MDD outcome in: (a) the training set (86 first-episode 

MDD patients vs 86 subthreshold individuals who did not develop MDD within four years), and (b) the extrapolation test set (37 subthreshold individuals who 

developed MDD within two or four years vs 86 subthreshold individuals who did not develop MDD within four years). Abbreviations: AUC (area under the 

curve); IDS (Inventory of Depressive Symptomatology); MDD (major depressive disorder); ROC (receiver operator characteristic).
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Figure 4.4. Disease indications of MDD represented by 12 features comprising Model 2.  
The distribution of data for individuals in the training set patient group (first-episode MDD patients), 

the extrapolation test set patient group (subthreshold symptomatic individuals who developed MDD 

within two or four years), and the shared reference group (subthreshold symptomatic individuals who 

did not develop MDD within four years) is shown. Protein abundances are represented by the log2-
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transformed peptide abundance ratios. The severity of depressive symptoms is represented on scale of 

zero (none) to three (severe). Numeric features are illustrated using boxplots, and categorical features 

are illustrated using bar charts.  

 

 

4.4. Discussion 
 

This chapter evaluated the accuracy with which future onset of MDD could be predicted in 

subthreshold symptomatic individuals by extrapolating a disease prediction model of MDD 

that was trained to differentiate between first-episode MDD patients and subthreshold 

symptomatic individuals who did not develop MDD. A fair predictive performance (AUC = 

0.75) was obtained, which was promising given that it involved going beyond the scope of the 

model, although there is potential for improvement. Consequently, this study demonstrated that 

some indicators of future MDD onset could be detected in subthreshold individuals using 

samples and data collected up to four years prior to diagnosis. This has important clinical 

implications with regards to enabling healthcare professionals to identify individuals with high 

probabilities of incident MDD and subsequently provide appropriate early intervention 

strategies, in light of accumulating evidence that subthreshold individuals have an increased 

risk of developing MDD [67], [72], [76] and that subthreshold depression may represent a 

prodromal stage of MDD [55], [358]. 

 

The disease prediction model was comprised of a combination of 12 proteomic, 

sociodemographic and clinical features. Six proteins (represented by six peptides) were 

identified as biomarkers of MDD: AACT, APOE, APOH, FETUA, HBA and PHLD, which 

have functional roles in acute-phase response, lipid transport and metabolism, blood 

coagulation and oxygen transport [359]. MDD was associated with increased serum levels of 

AACT, APOH, FETUA, HBA and PHLD, and decreased serum levels of APOE. Alterations 

in peripheral proteins involved in inflammatory response, the HPA axis, and carbohydrate and 

lipid metabolism have been reported in previous biomarker studies on depression [14], [222]–

[227] (see Chapter 1). In particular, the finding of increased levels of acute-phase proteins, 

AACT and FETUA, is consistent with previous reports of increased blood levels of acute-phase 

proteins in MDD [141], [150], [151], although the protein AACT itself has not previosuly been 

found to be associated with the disorder. Nevertheless, it has been reported that cortisol resulted 
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in an increase in the mRNA levels of SERPINA3, the gene encoding the AACT protein, 

demonstrating the pro-inflammatory properties of glucocorticoids and thereby providing a 

potential mechanism by which stress can lead to increased inflammation [360], [361]. Plasma 

FETUA has been identified as a biomarker of depression in another recent study; however, the 

reported direction of change was inconsistent with that reported in the present study (i.e., 

depression was found to be associated with reduced plasma levels of FETUA) [362]. Moreover, 

evidence from genetic studies suggests that the presence of the APOE ε4 allele may enhance 

the risk of developing MDD by increasing susceptibility to the adverse effects of stress [363], 

[364]. While the association of APOH with MDD has not previously been reported, other 

apolipoproteins (apolipoprotein A, apolipoprotein B, apolipoprotein C-III and apolipoprotein 

D) have been linked to the disorder, with altered serum levels found in MDD patients compared 

to healthy controls [223], [239], [241], [243], [365]. 

 

Three sociodemographic factors (BMI, childhood trauma and education level) and three 

depressive symptoms (sadness, fatigue and leaden paralysis) were identified as important 

predictors of MDD outcome. The relationship between BMI and depression is well known 

[366], [367], and some studies have reported a shared pathophysiology between obesity and 

depression, including dysregulation of the HPA axis and inflammatory response [130]–[132]. 

MDD was found to be associated with a higher childhood trauma index score, which measured 

experiences of emotional neglect, psychological abuse, physical abuse and sexual abuse in 

early life. Consistent with this, adverse or traumatic experience in childhood has been found as 

a strong risk factor for developing depression in adulthood [115]–[117], and this relationship 

has been suggested to be reflected in disturbances in the neuroendocrine and autoimmune stress 

response system [146], [147]. The link between education level and depression is less well 

established, with some studies reporting a decreased risk and others reporting an increased risk 

of depression with a higher education level [368]–[370]. Moreover, the identification of 

depressive symptoms as key predictors of MDD supports the idea that individual symptoms 

are associated with different risk factors, and that they are not interchangeable as assumed by 

the current diagnostic approach in which symptoms are added together [371], [372]. Note that 

sadness is one of the two core symptoms of depression according to both the DSM-5 and ICD-

11 and was also required as a core symptom for the definition of subthreshold depression in 

this study. Fatigue (reduced energy level) is specified as a core symptom in the ICD-11 but not 

in the DSM-5. The identification of leaden paralysis (heaviness in arms and legs) as a key 

feature was interesting, as it is a symptom of atypical depression, a subtype of depression, and 
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not included in the DSM-5 or ICD-11 criteria for general MDD. Overall, this study 

demonstrated the advantage of integrating different aspects of patient data (i.e., proteomic, 

sociodemographic and clinical) for developing a clinically useful disease prediction model. 

The combined biomarker-sociodemographic-clinical prediction model resulted in an improved 

predictive performance for predicting future MDD onset in subthreshold symptomatic 

individuals in relation to both the biomarker-only and sociodemographic-clinical-only models. 

 

Furthermore, this study showed that the combined use of feature extraction and model 

averaging could effectively address model selection uncertainty and result in a parsimonious 

prediction model of MDD. This builds upon the work in Chapter 3 and further demonstrates 

the utility of the multimodel approach in producing reproducible predictions of a complex 

psychiatric disorder, not only when applied to investigate individuals with distinct clinical 

conditions (e.g., first-onset drug-naïve schizophrenia patients vs healthy controls, as in 

Chapter 3), but also when applied to investigate more clinically relevant individuals with less 

distinct conditions (e.g., first-episode MDD patients vs subthreshold individuals, as in this 

chapter). In comparison to the one-feature model of IDS30 total score (Model 1) that was based 

on the superior model group in Analysis 1, the 12-feature model (Model 2) that was developed 

by implementing feature extraction and model averaging in Analysis 2 (in the absence of a 

superior model group) resulted in an improved predictive performance when applied to the 

extrapolation test set. Although the performance of the 12-feature model on the extrapolation 

test set was reduced compared to that on the training set, the discrepancy could be considered 

to be largely due to the model having to go beyond its scope to make predictions on the test 

set, and less a result of model overfitting as several methods (LASSO regression, repeated ten-

fold cross-validation, feature extraction and model averaging) implemented specifically to 

limit this. 

 

There are several limitations to the present study. Although the fair predictive performance 

(AUC = 0.75) that was achieved by the prediction model when applied to the extrapolation test 

set was promising  given that it involved going beyond the scope of the model, It would be 

more ideal for the model to be able to achieve a good predictive performance, which would 

require an AUC of at least 0.8 [340], [341]. A limitation in the study design is that models were 

trained on MDD patients given the limited availability of subthreshold individuals who 

developed MDD in the dataset. In relation to this, model reproducibility is anticipated to 

improve if training is to be conducted on the latter group. Small sample size is a major 
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limitation in many psychiatric studies, due to the general difficulty associated with recruiting 

appropriate patient and reference samples. To ensure sufficient sample size for the present 

analysis, a relatively liberal definition of subthreshold depression was employed compared to 

other studies, allowing for individuals experiencing mild and/or infrequent symptoms to be 

included as long as they fulfilled the specified criteria. Additionally, a period of up to four 

years between initial assessment and subsequent diagnosis of MDD was allowed, but predictive 

performance may improve if a shorter period is examined. Finally, although this work aimed 

to conduct a comprehensive analysis of the various features that could be associated with MDD 

outcome, other potentially important features may have been overlooked. 

 

In conclusion, the prediction of future onset of depression in subthreshold symptomatic 

individuals was investigated using their proteomic, sociodemographic and clinical data. A 

parsimonious 12-feature prediction model was developed in the presence of model selection 

uncertainty by applying feature extraction and model averaging based on a set of candidate 

models. The results of the present study suggest that early manifestations of depression, as 

represented by a combination of serum proteins, sociodemographic factors and depressive 

symptoms, can be detected in subthreshold individuals up to four years prior to clinical 

diagnosis. Having demonstrated that subthreshold individuals who developed MDD could be 

differentiated from those who did not develop MDD, further studies need to be conducted in 

subthreshold individuals for a better identification and characterisation of the condition to 

enable earlier interventions and improved outcomes.  
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Chapter 5      Diagnostic prediction model 
development using data from dried blood 

spot proteomics and a digital mental health 
assessment to identify major depressive 

disorder among individuals presenting with 
subthreshold depression 
 

 

5.1. Introduction 
 
MDD is a highly debilitating disorder that affects more than 300 million people worldwide [2]. 

It is characterised by low mood and energy levels, and is associated with a reduced quality of 

life, increased mortality rates and high economic burdens [6], [10], [12] (see Chapter 1). Given 

the limited biological disease understanding of MDD, diagnosis currently relies on the clinical 

evaluation of self-reported symptoms, with no objective tests. The diagnostic criteria, including 

the number and duration of symptoms required, are outlined in formal classification systems, 

such as the DSM-5 [1] and the ICD-11 [16]. However, as clinical evaluations by GPs in primary 

care, in which the majority of care for depression is delivered, are usually time-restrained and 

can be subjective, MDD is frequently under-, over- or misdiagnosed. A meta-analysis of over 

50,000 patients found that only about 47% of MDD patients are correctly identified by GPs 

[17]. As a result, patients are likely to receive no or inappropriate treatment, often for several 

years, which is detrimental to patient outcomes (see Chapter 1). Thus, there is a clear clinical 

need to develop an objective, reliable and accessible test to facilitate earlier recognition and 

more accurate diagnosis of MDD, and thereby enable more effective care for patients and 

reduce the disease burden. 
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As discussed in Chapter 1, there is a growing interest in identifying blood-based proteomic 

biomarkers of MDD, not only due to their ease of accessibility, but also given the converging 

evidence that disease-related alterations can be detected in the peripheral system, such as the 

HPA axis, immune/inflammatory response and metabolism [14], [222]–[227]. While clinical 

proteomic studies have traditionally relied on the use of serum and plasma as the sample source 

of blood, DBS offers a novel and innovative sampling technique with several advantages [305]. 

These include easy and minimally invasive sample collection (e.g., self-collection by means of 

a finger prick), small blood volume requirement, convenient sample storage and shipment 

(standard postage), and lower cost [202], [303], [306] (see Section 2.2.2). Although yet largely 

unexplored, the implementation of DBS sampling for proteomic biomarker discovery and 

validation holds great promise for the development of a non-invasive and cost-effective 

diagnostic test for MDD, especially as the possibility of remote/home self-sample collection 

could facilitate patient recruitment which is notoriously challenging for psychiatric disorders 

[202], [310]. 

 

Furthermore, advances in information technology present opportunities to improve patient care 

(disease detection, monitoring and management) by enabling increased access to patient data 

[95] (see Chapter 1). Various patient information that are potentially related to disease status 

or outcome, including sociodemographic characteristics, symptom profiles and personality 

traits, can be readily collected through web- or smartphone-based digital platforms. The 

extensive patient data can be combined with biomarkers to build risk prediction models that 

estimate the probabilities or risks of individuals having or developing MDD [254], [255]. When 

used within a clinical setting, such models could complement evaluations by healthcare 

professionals and assist them to make more statistically-informed and objective decisions about 

the diagnosis of patients [256] (see Chapter 1). 

 

The aim of this chapter was to develop risk prediction models with the potential to be used as 

a diagnostic aid for MDD, based on data from DBS proteomics and a digital mental health 

assessment. Individuals presenting with subclinical low mood (subthreshold depression) were 

recruited to investigate a clinically relevant population, the rationale behind which was 

analogous to that adopted in Chapter 4. Diagnostic prediction models of MDD were developed 

by comparing established current MDD patients and low mood controls, and the models were 

subsequently evaluated by applying them to differentiate between new current MDD patients 

and low mood controls, as well as between established non-current MDD patients and low 
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mood controls. The multimodel method of Chapter 3 was used for prediction model 

development, and a repeated nested cross-validation approach was adopted to evaluate 

variation in model selection and ensure model reproducibility. 

 
In the work reported in this chapter, blood samples were prepared and run on the MS by by 

Nitin Rustogi. Raw MS data were processed by Dr. Santiago Lago using Skyline. I was 

provided with the peak area values of the endogenous and SIL peptide-transitions and 

conducted all of the data pre-processing and analysis myself using R. 

 

 

5.2. Materials and methods 
 

5.2.1. Clinical samples 
This study (International Registered Report Identifier (IRRID): RR2-10.2196/18453) 

investigated participants from the Delta Study, a study launched in April 2018 by the 

Cambridge Centre for Neuropsychiatric Research at the University of Cambridge in 

collaboration with Psyomics Ltd. (IRRID: RR1-10.2196/18453). The aim of the Delta Study 

was to develop and evaluate tests, based on data from DBS proteomics and a novel digital 

mental health assessment, to be used as diagnostic aids for mood disorders (BD and MDD) in 

individuals presenting with subclinical low mood [296]. The primary objective of the Delta 

Study was to reduce the misdiagnosis of BD as MDD, while the secondary objective of the 

Delta Study was to achieve earlier and more accurate diagnosis of MDD; the present chapter 

was focused on the secondary objective. The Delta Study was approved by the University of 

Cambridge Human Biology Research Ethics Committee (approval number HBREC 2017.11) 

and conducted under the standards of Good Clinical Practice and in compliance with the 

principles of the Declaration of Helsinki [298]. A detailed description of the Delta Study 

research protocol  can be found in Olmert et al. (2020) [296]. 

 

The study flow chart is shown in Figure 5.1. A total of 5,422 participants were recruited online 

through e-mail, CCNR website and Facebook. Written informed consent was obtained from all 

participants upon enrolment. Inclusion criteria for the Delta Study were: age 18-45; UK 

resident; not pregnant or breastfeeding; not suicidal; and presenting with at least ‘low mood’ 

at the time of recruitment, as determined by the Patient Health Questionnaire-9 (PHQ-9) [373], 
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[374]. The PHQ-9 measured the severity of nine DSM-5 depressive symptoms in the past two 

weeks on a scale of zero (none) to three (severe); PHQ-9 total score ≥ five was required for 

inclusion in the study (depression severity classification based on total score: 0 – 4 = none; 5 

– 9 = mild; 10 – 14 = moderate; 15 – 19 = moderately severe; 20 – 27 = severe). 

 

Three thousand, two hundred and thirty two participants completed the digital mental health 

assessment (available through the Delta Study website), which collected data on their diagnosis 

history, sociodemographic and lifestyle characteristics, symptom profiles and personality traits. 

Participants’ diagnosis history (combined with their current disease status) was used to select 

participants for the clinical groups, whereas other non-overlapping variables were used as 

predictors for model selection (as described below in Section 5.2.3). DBS sample collection 

kits were sent by post to eligible participants who consented to providing a DBS sample and 

completing a telephone diagnostic interview, were free from blood-borne illnesses, and had no 

previous diagnosis of schizophrenia. One thousand, three hundred and seventy-seven 

participants provided DBS samples (details on DBS sample collection are outlined below in 

Section 5.2.4).  

 

In those who successfully completed the digital questionnaire and provided DBS samples, 

diagnoses of MDD and BD were determined using the WHO World Mental Health CIDI, 

version 3.0 [25], conducted by specially trained interviewers over the telephone. All 

interviewers received in-person training and thereafter were certified by an external licensed 

CIDI trainer to administer the CIDI. Only sections of the CIDI required for mood disorder 

diagnosis (screening, depression and mania sections) were implemented. Nine hundred and 

twenty-four participants attended and completed the telephone diagnostic interviews. 

 

5.2.2. Study design 
Overall, 897 participants completed the digital mental health assessment, provided usable DBS 

samples, were fasting at the time of sample collection, and obtained CIDI diagnoses (Figure 

5.1). To be eligible for selection in the present study (to achieve the secondary objective), 

additional criteria to the general Delta Study inclusion and exclusion criteria were imposed. 

Participants had to have no previous or new diagnosis of BD, based on their self-reported 

diagnosis history and CIDI results, respectively. Moreover, participants had to be experiencing 

at least ‘subthrehold depression’, defined as presenting with two or more depressive symptoms, 
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including at least one of sadness or anhedonia (i.e., two core symptoms of the DSM), whereby 

a symptom was considered as present if the corresponding PHQ-9 item was above zero (see 

Chapter 4). 

 

For the purpose of this study, 295 participants were selected based on their current disease 

status (determined by the CIDI) and self-reported diagnosis history (collected from the digital 

assessment). They were: 130 subclinical low mood controls (no lifetime MDD), 40 currently 

depressed individuals with a new MDD diagnosis (new current MDD; MDE within the past 

month, no previous diagnosis of MDD, unmedicated), 53 currently depressed individuals with 

an existing MDD diagnosis (established current MDD; MDE within the past month, previous 

diagnosis of MDD, 33 on antidepressant medication), and 72 currently not depressed 

individuals with an existing MDD diagnosis (established non-current MDD; MDE within the 

past six months but not within the past month, previous diagnosis of MDD, 47 on 

antidepressant medication). 

 

Developing diagnostic prediction models of MDD would ideally involve investigating 

differences between new current MDD patients and low mood controls. However, due to the 

limited number of new current MDD patients in the dataset, prediction models were first 

trained to differentiate between established current MDD patients and low mood controls 

(training set), and subsequently applied to differentiate between new current MDD patients and 

low mood controls (extrapolation test set), as well as between established non-current MDD 

patients and low mood controls (application set). The reference group of low mood controls (n 

= 130) was randomly split into 2:1 (matched for sex and age distribution) to form the training 

(n = 87) and extrapolation test/application (n = 43) sets.
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Online recruitment 
(N=5,422)

Digital mental health assessment 
(N=3,232)

DBS sample collection 
(N=1,377)

CIDI (N=924)

Usable DBS sample & fasting at  
time of sample collection (N=897)

Previous MDD diagonsis 
(N=232)

No previous MDD diagnosis 
(N=263)

No new MDD diagnosis 
(N=130)

New MDD diagnosis 
(N=133)

MDE within past 1 month 
(N=40)

Confirmed MDD diagnosis 
(N=206)

MDE within past 1 month 
(N=53)

MDE within past 6 months 
but not 1 month (N=72)

Subclinical low mood 
(N=130)

New current MDD 
(N=40)

Established current MDD 
(N=53)

Established non-current MDD 
(N=72)

Excluded (N=2190):
- Incomplete digital mental health 

assessment

Excluded (N=1855):
- Not eligible/no consent for DBS 

sample collection/CIDI 
(N=1492)

- DBS sample not returned 
(N=363)

Excluded (N=453):
- No/incomplete CIDI

Excluded (N=27):
- No usable DBS sample (N=15)
- Not fasting (N=12)

Excluded (N=402):
- Previous or new BD diagnosis 

(N=391)
- Not experiencing subthreshold 

depression (N=11)

Eligible for study selection 
(N=495)

Excluded (N=81):
- No MDE within past 6 months

Excluded (N=93):
- No MDE within past 1 month
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Figure 5.1. Delta Study participant selection and attrition flow chart. 

The number of participants in each step of the study and the reasons for attrition are shown. The steps 

relevant to the Delta Study are coloured in red; the steps relevant to the present study are coloured in 

yellow; the selected participants are coloured in blue. Abbreviations: BD (bipolar disorder); CIDI 

(World Health Organization World Mental Health Composite International Diagnostic Interview); DBS 

(dried blood spot); MDD (major depressive disorder); MDE (major depressive episode). 

 

 

5.2.3. Digital mental health assessment 
Data of participants’ sociodemographics and lifestyle characteristics, symptom profiles and 

personality traits were collected from the digital mental health assessment. Sociodemographic 

and lifestyle factors included: sex, age, BMI, higher education (undergraduate or above), 

employment status, stable relationship, smoking, alcohol consumption, recreational drug use, 

alcohol- or drug-related problems, self-rated physical health and mental health, chronic disease, 

family history of psychiatric disease, childhood trauma and major life event in the past six 

months (Table 5.1). Depressive symptoms and mental well-being features were derived from 

the PHQ-9 [373], [374] and the Warwick-Edinburgh Mental Well-Being Scale (WEMWBS) 

[375], respectively. Assessment of personality traits was based on the NEO Five-Factor 

Inventory (NEO FFI), in which each of the five domains of personality (‘Big Five’; 

agreeableness, conscientiousness, extraversion, neuroticism, openness) was measured using 12 

items [376]. A total of 102 variables were derived from the digital mental health assessment 

and included as predictors for model selection. 

 

The sociodemographic and lifestyle characteristics of participants in different clinical groups 

were compared using Kruskal-Wallis H tests for numerical variables and χ2 tests for categorical 

variables (see Section 2.5.6). P-values < 0.05 were considered to be statistically significant 

(Table 5.1). 

 

 

5.2.4. Targeted protein quantification 
 

5.2.4.1. DBS sample collection 

DBS sample collection kits containing relevant materials and instructions were sent to 

addresses specified by participants. The kit used was a Conformité Européenne marked device 
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under Article 22 of the Medical Device Regulation 2017/745. Participants were requested to 

collect samples after fasting for at least six hours. To collect DBS samples, participants cleaned 

a finger with an alcohol pad (after washing hands with soap and warm water); performed a 

finger prick using a sterile lancet; after removing the first drop of blood with a cotton ball, 

spotted a single blood drop per circle onto Perkin Elmer 226 Spot Saver Cards (Waltham, 

Massachusetts, USA) to collect five blood spot samples; and air-dried the blood spots for at 

least three hours at room temperature. Samples were then returned to the CCNR laboratory by 

standard post (sealed in a storage bag containing a desiccant) and stored with dessicants at 

room temperature prior to analysis. 

 

5.2.4.2. DBS sample preparation 

Two hundred and ninety-five DBS samples of the selected participants were randomised to 

allocate equal numbers of patient and reference groups across the experimental plates for MS 

analysis. Samples were prepared in a 96-well plate format as described in Section 2.3.1.2. 

 

Note that overall, almost 900 DBS samples were prepared and analysed across 12 experimental 

plates for the Delta Study (among which 295 DBS samples were relevant to this chapter; the 

majority of the remaining DBS samples were relevant to the primary objective). 

 

5.2.4.3. LC-MS/MS analysis 

One hundred and ninety-four peptides representing 115 proteins, the majority previously 

associated with psychiatric disorders, were measured using MRM-MS. Peptides were 

quantified at the transition level. More details on LC-MS/MS analysis can be found in Section 

2.3.2. The researchers conducting the sample preparation and the MS analysis were blinded to 

the clinical status of the participants. 

 

5.2.4.4. QC samples 

Pooled and volunteer DBS QC samples were used to assess the technical variation associated 

with instrument performance and sample preparation as described in Section 2.3.3. A pooled 

QC sample was prepared by pooling together the digested clinical DBS samples from the first 

four plates and injected once a day along with the clinical samples for the duration of the entire 

study (106 injections in total). Thirty-nine DBS samples obtained from a healthy volunteer 

were prepared following the same protocol as the clinical samples and distributed across the 
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experimental plates. More details on targeted protein quantification can be found in Section 

2.3. 

 

5.2.5. MS data pre-processing 
Pre-processing of the MS data was carried out as described in Chapter 2 (see Section 2.4). 

Peptide-transition quantification was based on the relative abundance of the endogenous and 

the SIL peptide-transitions, reported as the abundance ratio. 

 

5.2.5.1. Median normalisation 

As targeted protein quantification in the Delta Study involved processing and LC-MS/MS 

analysis of DBS samples across 12 experimental plates, the potential for plate effects was tested.  

Kruskal-Wallis tests by ranks (a non-parametric one-way ANOVA) were used to test for any 

biases arising from processing and analysing samples across multiple experimental plates (See 

Section 2.5.6). The null hypothesis was that there was no statistically significant difference in 

peptide-transition abundance ratios between the plates. Plate effects were considered as 

significant when p-values were < 0.05. As all peptide-transitions reported p-values < 0.01, 

median normalisation was conducted to correct for the differences between plates. This method 

scales the data so that there is no difference in the median values between plates [377].  

 

For each peptide-transition, the median scaling factor per plate was estimated by scaling 

(dividing) the ratio abundance values of the relevant samples (i.e., within the plate) by the 

median and then calculating the median of the scaled values. The normalised value for each 

peptide-transition per plate was calculated by applying the median scaling factor per plate to 

the relevant samples:  

 

!!"#$ = !#%&
#$%&'(	*+',&(-	.'+/01 

 

where Xraw is the raw ratio abundance value and Xnorm is the normalised ratio abundance value. 

 

After normalisation by median scaling, all peptide-transitions reported p-values > 0.05; that is, 

there was no significant difference in the median peptide-transition abundance ratios of the 

clinical samples between plates. The normalised abundance ratio was then log2-transformed 

for statistical analysis. 
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5.2.5.2. Quantifier transition selection 

Quantifier transitions were selected for each peptide as the transition with the highest 

abundance (highest peak area value) in both the endogenous and the SIL peptides, when the 

difference in CV between the given transition and the transition with the lowest CV was less 

than 5% (based on CV values of the volunteer DBS QC samples). In 192 out of 194 peptides, 

the difference in CV between the most abundant transition and the transition with the lowest 

CV was less than 5%; therefore, the most abundant transition was selected as the quantifier 

transition. In the remaining two peptides (CO4A_DFALLSLQVPLK, 

KNG1_DIPTNSPELEETLTHTITK), the most abundant transition was not selected as the 

quantifier transition. Subsequent analyses were conducted using data of the quantifier 

transitions only. Peptide quantification was based on the relative abundance of the endogenous 

and SIL peptide quantifier transitions, and the abundance ratio was log2-transformed for 

statistical analysis. 

 

5.2.6. Statistical quality control 
PCA was conducted to identify any outliers based on the log2-transformed abundance ratios of 

194 peptides (Figure 5.2). No outlier samples were identified. 

 

In addition, the technical variation was assessed by calculating the geometric CVs of peptide-

transition abundance ratios of the pooled (variation in MS instrument performance) and the 

volunteer DBS (variation in sample preparation) QC samples across MS runs, as described in 

Chapter 2 (see Section 2.4.6). The median CV values for the pooled and the volunteer DBS 

QC runs were 18.3% and 16.9%, respectively. The biological variation was assessed by 

calculating the geometric CVs of peptide-transition abundance ratios of clinical samples within 

each clinical sample group. The median CV values were: 27.8% for the reference group (low 

mood controls), 26.0% for the training set patient group (established current MDD patients), 

26.2% for the extrapolation test set patient group (new current MDD patients), and 28.0% for 

the application set patient group (established non-current MDD patients). 
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Figure 5.2. PCA plot of protein peptide abundance ratios of clinical samples. 

The scores for the first two PCs are plotted with the percentage of variation accounted for by each PC 

shown in the axis labels. Data points are coloured according to the allocation of clinical samples into 

the reference group (low mood controls), the training set patient group (established current MDD 

patients), the extrapolation test set patient group (new current MDD patients), and the application set 

patient group (established non-current MDD patients). Abbreviations: MDD (major depressive 

disorder); PC (principal component); PCA (principal component analysis). 

 

 

5.2.7. Data analysis 
 

5.2.7.1. Model selection 

A total of 296 features (194 peptides and 102 variables from the digital mental health 

assessment) was analysed for model selection. The full list of the analysed proteins and 

peptides can be found in the Appendix (Table A. 1). There were no variables with missing 

values. Categorical variables were represented as sets of dummy variables. Group LASSO 
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regression was used to allow for sets of dummy variables derived from categorical variables to 

be selected together. Five-fold cross-validation was used to further reduce overfitting by 

selecting the value of the shrinkage parameter l that resulted in the most regularised model. 

More details on group LASSO regression and K-fold cross-validation can be found in Chapter 

2 (see Sections 2.5.3 and 2.5.4). 

 

One hundred models were generated by repeatedly applying group LASSO regression with 

five-fold cross-validation on the training set to investigate model selection uncertainty. The 

Akaike weight of each model was calculated using the AICc and interpreted as the probability 

that the model was the best approximating model for the data. The selection fraction of each 

feature was measured as the proportion of models out of 100 in which it was selected and used 

to assess the relative importance of the features. Models which comprised of the same 

combinations of features selected were grouped together, and the frequency of occurrence and 

the summed Akaike weight of each model group were measured to estimate the probability 

that the selected combination of features comprised the best approximating model. More details 

on Akaike model weights and relative feature importance can be found in Chapter 3 (see 

Section 3.2.5). 

 

5.2.7.2. Feature extraction and model averaging 

Due to the uncertainty in model selection, feature extraction and model averaging were 

implemented using all 100 models to obtain more reproducible predictions of the probability 

of MDD outcome. Based on the findings in Chapter 3, only features with selection fractions 

≥ 0.9 were included in the prediction model (feature extraction) to limit overfitting, and 

subsequently averaged over the 100 models (model averaging) to obtain better estimates of 

feature coefficients [284], [289], [290]. The weighted average coefficient of a given feature 

was estimated across the 100 models as described in Chapter 3 (see Section 3.2.5.7). 

 

5.2.7.3. Predictive performance 

Predictive performance of the models when applied to the training and test sets was evaluated 

by plotting ROC curves and measuring the AUC. More details on model predictive 

performance can be found in Chapter 2 (see Section 2.5.5). 

 



Chapter 5  

 128 

5.2.7.4. Repeated nested cross-validation 

As different random splits of the dataset (here, the reference group of low mood controls) into 

training and test sets can lead to variation in feature selection and model predictive performance, 

a repeated nested cross-validation (also known as double cross-validation) approach was 

adopted [260], [378] to assess the variation and obtain an unbiased and generalised estimate of 

model performance (Figure 5.3). 

 

In nested cross-validation, the full reference group dataset (n = 130) was randomly split into 

three folds (matched for sex and age distribution). Each fold was retained as a test set reference 

group and the remaining two folds were used as a training set reference group. In the inner loop 

of nested cross-validation, the training set, consisting of 87 low mood controls and 53 

established current MDD patients, was used to select a prediction model (based on repeated 

group LASSO with five-fold cross-validation, followed by feature extraction and model 

averaging). In the outer loop, the predictive performance of the selected model when applied 

to the extrapolation test set, consisting of 43 low mood controls and 40 new current MDD 

patients, and the application set, consisting of the same 43 low mood controls and 72 

established non-current MDD patients, was assessed. Note that, while the use of low mood 

controls followed a nested cross-validation approach (as those used for model assessment were 

alternately also used for model selection), patients used for model assessment in the outer loop 

were never used for model selection in the inner loop. Therefore, this should be considered as 

an adapted nested cross-validation approach. 

 

In repeated nested cross-validation, this procedure was repeated five times in an addiitonal 

repetition loop, each with a different random split of the full reference group dataset into 

training and test sets. This resulted in 15 prediction models (five repeats of three-fold nested 

cross-validation). Repetition is a key component of reliable model assessment based on nested 

cross-validation, as given the variability, model predictive performance cannot be reliably 

assessed using any single nested cross-validation run [260]. The overall importance of the 

features was assessed based on their frequency of appearance across the 15 models, whereby 

those appearing in at least five models were considered as the most robust features. A 

generalised estimate of model performance was obtained by finding the average performance 

across the 15 models (reported as the mean AUC ± 95% confidence intervals). The importance 

of repeated nested cross-validation in model evaluation has previously been demonstrated in 

Filzmoser et al. (2009) [378] and Krstajic et al. (2014) [260]. 
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5.2.7.5. Antidepressant medication 

Mann-Whitney U tests [343] and bootstrap hypothesis tests [379] were performed to assess 

whether any of the proteomic features or BMI were significantly associated with participants’ 

current antidepressant use. The abundances of 194 protein peptides and BMI were compared 

between 33 antidepressant users and 20 non-users among established current MDD patients. 

The null hypothesis was that there was no statistically significant effect of antidepressant 

medication use on the value/abundance of the feature of interest. P-values < 0.05 were 

considered to be statistically significant. Additionally, unsupervised PCA was conducted to 

assess the effect of antidepressant use on the patients’ proteomic profiles. 

 

5.2.7.6. Associations of selected proteomic biomarkers with lifestyle factors 

As lifestyle factors such as smoking, alcohol, drug use and poor self-rated physical health could 

affect the abundances of protein peptides and thus have potential confounding effects on the 

results of model selection, Mann-Whitney U tests [343] were performed to assess the 

associations of the selected proteomic biomarkers with the lifestyle factors. The protein peptide 

abundances of the features appearing the 15 prediction models were associated with binary 

measures of smoking, alcohol consumption, recreational drug use and self-rated poor physical 

health (yes/no) in 295 participants. The null hypothesis was that there was no statistically 

significant effect of the lifestyle factor on the abundance of the feature of interest. The 

Benjamini-Hochberg method was used to adjust for multiple testing [380]. P-values < 0.05 

were considered to be statistically significant.  
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Figure 5.3. Schematic of repeated nested cross-validation. 

In nested cross-validation, the full reference group dataset was randomly split into three folds. Each 

fold was retained as a test set reference group and the remaining two folds were used as a training set 

reference group. In the inner loop of nested cross-validation, the training set was used to select a 

prediction model. In the outer loop, the predictive performance of the selected model when applied to 

the extrapolation test set and the application set was assessed. In repeated nested cross-validation, this 

procedure was repeated five times, each with a different random split of the full reference group dataset 

into training and test sets, resulting in 15 models (five repeats of three-fold nested cross-validation).  

Test

Test fold

Full data

Training folds

Prediction model 

Model selection

Model performance 
assessment

Outer loop

Inner loop
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5.3. Results 
 

One hundred and ninety-four DBS proteomic and 102 digital mental health assessment features 

(296 in total) were measured in the reference group of 130 low mood controls, the training set 

patient group of 53 established current MDD patients, the extrapolation test set patient group 

of 40 new current MDD patients, and the application set patient group of 72 established non-

current MDD patients. Table 5.1 shows their sociodemographic and lifestyle characteristics. 

The participants consisted of 70.8% females, which reflects the gender difference in the 

prevalence of MDD (women have a two-fold increased risk of MDD than men)[30], and were 

on average 25.9 (standard deviation = 6.3) years old. 

 

Repeated nested cross-validation revealed a degree of variation in feature selection across the 

15 average prediction models (Table 5.2). Note that for a particular feature to appear in an 

average prediction model, it had to be selected in at least 90 out of 100 models (selection 

fraction ≥ 0.9) in the inner loop of nested cross-validation. The number of features in a model 

ranged between five and 15, with a median of nine. None of the models comprised an identical 

combination of features. Overall, there were 29 unique features (16 proteomic biomarkers and 

13 digital features) which appeared in at least one model; the weighted average coefficients of 

these features are shown in Figure 5.4. Features that appeared in more than one model showed 

consistent directions of change across different models. Based on their frequency of appearance 

across the 15 models, the most robust features (and the number of models in which they 

appeared) were: A1AG1_SDVVYTDWK (8); A2GL_VAAGAFQGLR (6); 

AL1A1_ILDLIESGK (5); APOE_LGPLVEQGR (15); CFAH_NGFYPATR (14); BMI (10); 

poor mental health (15); positive emotions (extraversion) (12); tender-mindedness 

(agreeableness) (6). MDD was found to be associated with increased levels of α-1-acid 

glycoprotein 1 (A1AG1), leucine-rich α-2-glycoprotein (A2GL), apolipoprotein E (APOE) and 

complement factor H (CFAH), and decreased levels of retinal dehydrogenase 1 (AL1A1); as 

well as with poorer self-rated mental health, higher BMI, reduced daily experiences of positive 

emotions such as happiness and joy, and greater tender-mindedness (empathy toward others). 

Moreover, unsupervised PCA of the 29 features showed a moderate separation between low 

mood controls and MDD patients (Figure 5.5). 
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The prediction models showed relatively stable and consistent predictive performance (Table 

5.2). On average, the models demonstrated an excellent predictive performance in 

differentiating between established current MDD patients and low mood controls in the training 

set (AUC = 0.94 ± 0.01; Figure 5.6a). To evaluate the ability of the models to identify currently 

depressed patients among individuals presenting with low mood, they were applied to 

differentiate between new current MDD patients and low mood controls in the extrapolation 

test set. Importantly, this resulted in a good predictive performance (AUC = 0.80 ± 0.01; Figure 

5.6b). In addition, to further evaluate the diagnostic utility of the prediction models, they were 

applied to differentiate between established non-current MDD patients and low mood controls 

in the application set. The predictive performance was fair, but nearing the AUC threshold of 

good (AUC = 0.79 ± 0.01; Figure 5.6c). 

 

In order to assess the relative contributions of the selected digital features and proteomic 

biomarkers in predicting MDD, prediction models consisting only of the digital features and 

those consisting only of the proteomic biomarkers were applied to the data sets. Digital-only 

models demonstrated a good predictive performance on the training set (AUC = 0.88 ± 0.01), 

and a fair predictive performance on the extrapolation test set (AUC = 0.79 ± 0.01) and the 

application set (AUC = 0.76 ± 0.02). On the other hand, biomarker-only models demonstrated 

a good predictive performance on the training set (AUC = 0.76 ± 0.02), but the predictive 

performance on the extrapolation test set (AUC = 0.56 ± 0.03) and the application set (AUC = 

0.63 ± 0.03) was poor. Therefore, while the digital-only models clearly outperformed the 

biomarker-only models in predicting MDD, combining the digital features and the biomarkers 

resulted in prediction models with improved predictive performance on all data sets, although 

this improvement was minimal on the extrapolation test set. 

 

Results of Mann-Whitney U tests and bootstrap hypothesis tests showed that none of the 

selected proteomic biomarkers or BMI were significantly associated with antidepressant 

medication use (Table 5.3), which suggests that these features were likely to be related to 

depression itself rather than to medication. In addition, PCA of protein peptide abundance 

ratios of established current MDD patients (training set patient group) showed minimal 

separation between antidepressant users and non-users (Figure 5.7). Moreover, results of 

Mann-Whitney U tests showed that, although there were some significant associations between 

the selected biomarkers and lifestyle factors of smoking, recreational drug use and poor self-

rated physical health, most of these were no longer significant after adjustment for multiple 
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testing; only the associations of protein peptides A1AG1_SDVVYTDWK, 

CFAH_IDVHLVPDR and CFAH_NGFYPATR with poor physical health remained 

significant after adjustment for multiple testing (adjusted p-values < 0.05; Table 5.4). This 

raises the possibility that the identification of A1AG1 and CFAH as biomarkers of MDD could 

have been influenced by their associations with poor physical health rather than with the 

disease itself. However, the fact that poor physical health was never selected in the prediction 

models despite being included as a predictor for model selection suggests that the factor itself 

was not significantly associated with the outcome of MDD. Hence, its potential confounding 

effect on the selection of the biomarkers in the prediction models was considered to be 

insignificant.  
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Table 5.1. Summary of sociodemographic and lifestyle characteristics of participants in the 

reference group (low mood controls), the training set patient group (established current MDD 

patients), the extrapolation test set patient group (new current MDD patients), and the 

application set patient group (established non-current MDD patients). 

Numerical variables are shown as the mean (standard deviation), and binary and categorical variables 

are shown as the percentage of participants in each category. P-values were from Kruskal-Wallis H 

tests for numerical variables and χ2 tests for categorical variables. Abbreviations: BMI (body mass 

index); MDD (major depressive disorder); PHQ (Patient Health Questionnaire); WEMWBS (Warwick-

Edinburgh Mental Well-Being Scale). 

 

 

Low mood 

controls 

(reference 

group) 

Established 

current MDD 

patients 

(training set 

patient 

group) 

New 

current 

MDD 

patients 

(extrapolati

on test set 

patient 

group) 

Established 

non-current 

MDD 

patients 

(application 

set patient 

group) 

p-

value 

n 130 53 40 72  

Sex % (male/female) 34.6/65.4 17.0/83.0 40.0/60.0 22.2/77.8 0.022 

Age (years) 25.7 (6.5) 26.2 (5.9) 23.9 (5.7) 27.2 (6.3) 0.02 

BMI (kg/m2) 24.6 (4.8) 28.4 (6.9) 26.5 (6.2) 28.1 (6.3) 
< 

0.001 

Higher education % 

(yes/no) 
62.3/37.7 64.2/35.8 70.0/30.0 66.7/33.3 0.814 

Employment % 

(employed/unemployed/

student) 

56.2/3.8/40.0 49.1/13.2/37.7 55/7.5/37.5 56.9/18.1/25 0.026 

Stable relationship % 

(yes/no) 
57.7/42.3 58.5/41.5 40.0/60.0 55.6/44.4 0.232 

Living alone % (yes/no) 6.9/93.1 15.1/84.9 7.5/92.5 8.3/91.7 0.350 

Smoking % (yes/no) 26.9/73.1 20.8/79.2 22.5/77.5 27.8/72.2 0.764 

Alcohol % (yes/no) 78.5/21.5 69.8/30.2 85.0/15.0 55.6/44.4 0.001 

Recreational drug use % 

(yes/no) 
14.6/85.4 18.9/81.1 15.0/85.0 16.7/83.3 0.905 
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Alcohol- or drug-related 

problems % (yes/no) 
16.9/83.1 24.5/75.5 20/80 31.9/68.1 0.098 

Poor physical health % 

(yes/no) 
16.9/83.1 32.1/67.9 10.0/90.0 30.6/69.4 0.009 

Poor mental health % 

(yes/no) 
30.8/69.2 94.3/5.7 85.0/15.0 76.4/23.6 

< 

0.001 

Chronic disease % 

(yes/no) 
8.5/91.5 5.7/94.3 10.0/90.0 12.5/87.5 0.603 

Chronic pain % (yes/no) 21.5/78.5 20.8/79.2 10.0/90.0 26.4/73.6 0.241 

Family history of 

psychiatric disease % 

(yes/no) 

66.2/33.8 86.8/13.2 67.5/32.5 83.3/16.7 0.005 

Childhood trauma % 

(yes/no) 
35.4/64.6 62.3/37.7 52.5/47.5 55.6/44.4 0.002 

Major life event in the 

past six months % 

(yes/no) 

47.7/52.3 64.2/35.8 65.0/35.0 51.4/48.6 0.093 
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Table 5.2. Summary of the 15 average prediction models obtained from five times-repeated three-fold nested cross-validation. 
For each average prediction model, the number of features and its performance on the training set, extrapolation test set and application set, as measured by the 

AUC, are shown. Proteomic features are represented in a protein_peptide format. Personality traits are represented in a factor_trait format, the factor being one 

of agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), openness (O). Abbreviations: A1AG1 (α-1-acid glycoprotein 1); A2GL (leucine-

rich α-2-glycoprotein); AL1A1 (retinal dehydrogenase 1); APOA4 (apolipoprotein A-IV); APOE (apolipoprotein E); AUC (area under the receiver operating 

characteristic curve); BMI (body mass index); CV (cross-validation); CFAH (complement factor H); CO4A (complement C4-A); CO9 (complement component 

C9); IF4B (eukaryotic translation initiation factor 4B); IGHG1 (immunoglobin heavy constant γ 1); IGHG3 (Immunoglobin heavy constant γ 3); KAD1 

(adenylate kinase isoenzyme 1); PARK7 (protein/nucleic acid deglycase DJ-1); PSA6 (proteasome subunit α type-6). 

 

Repeated 
nested CV 

Average model 
Number of 

features 
Training 

AUC 
Extrapolation 

test AUC 
Application 

AUC 

Repeat 1; 

fold 1 

APOE_LGPLVEQGR + CFAH_NGFYPATR + IGHG3_DTLMISR 

+ BMI + Poor mental health + E_positive emotions 
6 0.93 0.78 0.77 

Repeat 1; 

fold 2 

A1AG1_SDVVYTDWK + A2GL_VAAGAFQGLR + 

AL1A1_ILDLIESGK + APOA4_LAPLAEDVR + 

APOE_LGPLVEQGR + CFAH_NGFYPATR + 

IGHG1_FNWYVDGVEVHNAK + PARK7_DGLILTSR + BMI + 

Poor mental health + E_positive emotions + A_trust + A_tender-

mindedness + O_ideas + Total neuroticism 

15 0.95 0.80 0.80 

Repeat 1; 

fold 3 

AL1A1_ILDLIESGK +  APOE_LGPLVEQGR + 

CFAH_NGFYPATR + CO9_LSPIYNLVPVK + Poor mental health 

+ E_positive emotions + A_tender-mindedness 

7 0.92 0.79 0.77 
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Repeat 2; 

fold 1 

APOE_LGPLVEQGR + CFAH_NGFYPATR + BMI + Poor mental 

health + E_positive emotions 
5 0.93 0.78 0.76 

Repeat 2; 

fold 2 

APOE_LGPLVEQGR + CFAH_NGFYPATR + 

CO9_LSPIYNLVPVK + Poor mental health + E_positive emotions 
5 0.91 0.80 0.79 

Repeat 2; 

fold 3 

A1AG1_SDVVYTDWK + A2GL_VAAGAFQGLR + 

APOE_LGPLVEQGR + CFAH_NGFYPATR + IF4B_SILPTAPR + 

IGHG1_FNWYVDGVEVHNAK + BMI + Poor mental health + 

A_straightforwardness + A_compliance + O_ideas + O_actions 

12 0.95 0.82 0.83 

Repeat 3; 

fold 1 

A1AG1_SDVVYTDWK + A2GL_VAAGAFQGLR + 

AL1A1_ILDLIESGK + APOE_LGPLVEQGR + 

CFAH_NGFYPATR + IF4B_SILPTAPR + BMI + Poor mental 

health + E_positive emotions + A_tender-mindedness + O_ideas 

11 0.95 0.81 0.83 

Repeat 3; 

fold 2 

A1AG1_SDVVYTDWK + APOE_LGPLVEQGR + 

CFAH_NGFYPATR + CO4A_DFALLSLQVPLK + 

CO9_LSPIYNLVPVK + IGHG1_FNWYVDGVEVHNAK + Poor 

mental health + E_positive emotions + N_depression 

9 0.93 0.80 0.78 

Repeat 3; 

fold 3 

APOE_LGPLVEQGR + CFAH_NGFYPATR + 

PARK7_DGLILTSR + BMI + Poor mental health + A_tender-

mindedness + C_competence + O_actions + Total agreeableness 

9 0.92 0.80 0.78 

Repeat 4; 

fold 1 

A1AG1_SDVVYTDWK + AL1A1_ILDLIESGK + 

APOE_LGPLVEQGR + CFAH_IDVHLVPDR + 

PARK7_DGLILTSR + PSA6_HITIFSPEGR + BMI + Poor mental 

health + E_positive emotions + Total neuroticism 

10 0.94 0.79 0.77 
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Repeat 4; 

fold 2 

APOE_LGPLVEQGR + CFAH_NGFYPATR + BMI Poor mental 

health + E_positive emotions + A_tender-mindedness 
6 0.92 0.82 0.80 

Repeat 4; 

fold 3 

A1AG1_SDVVYTDWK + A2GL_VAAGAFQGLR + 

APOE_LGPLVEQGR + CFAH_NGFYPATR + IF4B_SILPTAPR + 

IGHG3_DTLMISR + KAD1_IIFVVGGPGSGK + Poor mental 

health + E_positive emotions + O_ideas + O_actions 

11 0.95 0.82 0.81 

Repeat 5; 

fold 1 

APOA4_ISASAEELR + APOE_LGPLVEQGR + 

CFAH_NGFYPATR + IGHG3_DTLMISR + BMI + Poor mental 

health + E_positive emotions 

7 0.94 0.76 0.73 

Repeat 5; 

fold 2 

A1AG1_SDVVYTDWK + A2GL_VAAGAFQGLR + 

APOE_LGPLVEQGR + CFAH_NGFYPATR + BMI + Poor mental 

health + Total neuroticism 

7 0.92 0.82 0.80 

Repeat 5; 

fold 3 

A1AG1_SDVVYTDWK +  A2GL_VAAGAFQGLR + 

AL1A1_ILDLIESGK + APOE_LGPLVEQGR + 

CFAH_NGFYPATR + CO9_LSPIYNLVPVK + 

IGHG1_FNWYVDGVEVHNAK + Poor mental health + E_positive 

emotions + A_tender-mindedness 

10 0.95 0.80 0.79 
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Figure 5.4. Coefficients of features appearing in the 15 average prediction models. 
Features with coefficients > 0 were increased in MDD patients compared to low mood controls, and 

features with coefficients < 0 were decreased in MDD patients compared to low mood controls. The 

number of datapoints of each feature represents the number of prediction models in which it appears. 

Data points are coloured by the repeat number allocated to the models in repeated nested cross-

validation. Proteomic features are represented in a protein_peptide format. Personality traits are 

represented in a factor_trait format, the factor being one of agreeableness (A), conscientiousness (C), 

extraversion (E), neuroticism (N), openness (O). Abbreviations: A1AG1 (α-1-acid glycoprotein 1); 

A2GL (leucine-rich α-2-glycoprotein); AL1A1 (retinal dehydrogenase 1); APOA4 (apolipoprotein A-

IV); APOE (apolipoprotein E); BMI (body mass index); CFAH (complement factor H); CO4A 

(complement C4-A); CO9 (complement component C9); IF4B (eukaryotic translation initiation factor 

4B); IGHG1 (immunoglobin heavy constant γ 1); IGHG3 (Immunoglobin heavy constant γ 3); KAD1 

(adenylate kinase isoenzyme 1); MDD (major depressive disorder); PARK7 (protein/nucleic acid 

deglycase DJ-1); PSA6 (proteasome subunit α type-6). 
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Figure 5.5. PCA plot of 29 features appearing in the 15 prediction models. 
The scores for the first two PCs are plotted with the percentage of variation accounted for by each PC 

shown in the axis labels. Data points are coloured according to the allocation of clinical samples into 

the reference group (low mood controls), the training set patient group (established current MDD 

patients), the extrapolation test set patient group (new current MDD patients), and the application set 

patient group (established non-current MDD patients). Abbreviations: MDD (major depressive 

disorder); PC (principal component); PCA (principal component analysis).
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Figure 5.6. ROC curves showing model performance in predicting the probability of MDD outcome. 
The prediction models were applied to predict the probability of MDD in: (a) the training set (53 established current MDD patients vs 87 low mood controls), 

(b) the extrapolation test set (40 new current MDD patients vs 43 low mood controls), and (c) the application set (72 established non-current MDD patients vs 

43 low mood controls). The AUC values are shown as the mean ± 95% confidence intervals of  the 15 prediction models (Table 5.2). ROC curves are coloured 

by the repeat number allocated to the models in repeated nested cross-validation. Abbreviations: AUC (area under the curve); MDD (major depressive disorder); 

ROC (receiver operating characteristic). 
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Table 5.3. Mann-Whitney U test and bootstrap hypothesis test results to assess the associations of 

protein peptide abundances and BMI with antidepresant use. 

The abundances of 194 protein peptides and BMI were compared between 33 antidepressant useres and 

20 non-users among established current MDD patients (training set patient group). The null hypothesis 

was that there was no statistically significant effect of antidepressant medication use on the 

value/abundance of the feature of interest. The W-value (Mann-Whitney U statistic), p-value and q-

value (FDR-adjusted p-value) are shown for each Mann-Whitney U test, and the t-value (boostrap test 

statistic), p-value and q-value are shown for each bootstrap hypothesis test. Features appearing in the 

15 prediction models are shown in bold, none of which had p-values < 0.05. Proteomic features are 

represented in a protein_peptide format, and their abbreviations can be found in the Appendix (Table 

A. 1). Abbreviations: BMI (body mass index); FDR (false discovery rate); MDD (major depressive 

disorder). 

 

Feature 

Mann-Whitney U test Bootstrap hypothesis test 

W-

value 

p- 

value 

q-

value 

t- 

value 

p-

value 

q-

value 

A1AG1_SDVVYTDWK 335 0.9342 0.9947 -0.239 0.591 0.8446 

A1AT_LSITGTYDLK 342 0.8329 0.9718 0.6265 0.241 0.8166 

A1AT_SPLFMGK 393 0.2514 0.9718 1.306 0.092 0.7176 

A1AT_SVLGQLGITK 387 0.2999 0.9718 1.1589 0.115 0.767 

A1BG_ATWSGAVLAGR 399 0.2088 0.9718 1.3705 0.071 0.7176 

A1BG_GVTFLLR 354 0.6663 0.9718 0.4504 0.297 0.8166 

A1BG_LLELTGPK 364 0.5387 0.9718 0.3616 0.324 0.8166 

A1BG_SGLSTGWTQLSK 369 0.4799 0.9718 0.7063 0.215 0.8166 

A2AP_DFLQSLK 314 0.7761 0.9718 -0.1153 0.557 0.842 

A2AP_FDPSLTQR 348 0.7481 0.9718 0.1655 0.424 0.8166 

A2AP_LFGPDLK 297 0.5509 0.9718 -0.5736 0.712 0.8648 

A2GL_VAAGAFQGLR 254 0.1659 0.9718 -0.6114 0.68 0.8446 

A2MG_AIGYLNTGYQR 343 0.8186 0.9718 0.582 0.273 0.8166 

A2MG_NEDSLVFVQTDK 334 0.9488 0.9947 0.0246 0.466 0.8166 

AACT_ADLSGITGAR 342 0.8329 0.9718 0.4364 0.312 0.8166 

AACT_EIGELYLPK 331 0.9927 0.9978 0.3566 0.339 0.8166 

AACT_EQLSLLDR 301 0.601 0.9718 0.1676 0.405 0.8166 

AL1A1_ILDLIESGK 280 0.3637 0.9718 -0.8701 0.81 0.913 

ALBU_AAFTECCQAADK 469 0.011 0.9718 2.703 0.002 0.39 

ALBU_ETYGEMADCCAK 463 0.015 0.9718 2.5382 0.004 0.39 
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ALBU_QNCELFEQLGEYK 397 0.2224 0.9718 1.3117 0.078 0.7176 

ALBU_YLYEIAR 352 0.6932 0.9718 0.6351 0.249 0.8166 

ALDOA_ALANSLACQGK 388 0.2914 0.9718 1.0722 0.13 0.78 

ALDOA_QLLLTADDR 317 0.8186 0.9718 -0.0161 0.517 0.8209 

AMBP_ETLLQDFR 291 0.4799 0.9718 -1.2416 0.901 0.9377 

AMBP_TVAACNLPIVR 389 0.2831 0.9718 0.8624 0.213 0.8166 

ANGT_ALQDQLVLVAAK 331 0.9927 0.9978 -0.0959 0.54 0.8357 

ANGT_SLDFTELDVAAEK 299 0.5757 0.9718 -0.2604 0.599 0.8446 

ANT3_EVPLNTIIFMGR 416 0.1167 0.9718 1.9699 0.023 0.7176 

ANT3_FATTFYQHLADSK 376 0.4038 0.9718 0.8952 0.18 0.8166 

ANT3_FDTISEK 397 0.2224 0.9718 1.4383 0.078 0.7176 

ANT3_LPGIVAEGR 390 0.2749 0.9718 1.1085 0.144 0.78 

APOA1_ATEHLSTLSEK 385 0.3173 0.9718 1.306 0.084 0.7176 

APOA1_LLDNWDSVTSTFSK 371 0.4574 0.9718 0.7343 0.233 0.8166 

APOA1_VSFLSALEEYTK 342 0.8329 0.9718 0.385 0.317 0.8166 

APOA2_EQLTPLIK 346 0.7761 0.9718 0.1544 0.418 0.8166 

APOA2_SPELQAEAK 407 0.1604 0.9718 1.6085 0.052 0.7176 

APOA4_ALVQQMEQLR 258.5 0.1926 0.9718 -1.2087 0.871 0.9276 

APOA4_IDQNVEELK 270 0.2749 0.9718 -1.1025 0.842 0.9224 

APOA4_ISASAEELR 270 0.2749 0.9718 -1.1139 0.852 0.923 

APOA4_LAPLAEDVR 263 0.2224 0.9718 -1.2125 0.876 0.9276 

APOA4_LLPHANEVSQK 265 0.2366 0.9718 -1.1426 0.868 0.9276 

APOB_TGISPLALIK 230 0.0679 0.9718 -2.1149 0.988 0.988 

APOC1_EFGNTLEDK 329 0.9927 0.9978 0.0097 0.466 0.8166 

APOC1_EWFSETFQK 353 0.6797 0.9718 0.0116 0.483 0.819 

APOC2_TAAQNLYEK 320 0.8616 0.9756 0.3181 0.355 0.8166 

APOC2_TYLPAVDEK 292 0.4914 0.9718 -0.0902 0.494 0.8209 

APOC3_GWVTDGFSSLK 342 0.8329 0.9718 0.3497 0.354 0.8166 

APOD_NILTSNNIDVK 353 0.6797 0.9718 0.2253 0.401 0.8166 

APOD_VLNQELR 396 0.2294 0.9718 1.4207 0.067 0.7176 

APOE_AATVGSLAGQPLQER 392 0.2591 0.9718 1.094 0.141 0.78 

APOE_ALMDETMK 367 0.503 0.9718 0.7367 0.221 0.8166 

APOE_LGPLVEQGR 377 0.3935 0.9718 1.1747 0.113 0.767 

APOE_SELEEQLTPVAEETR 369 0.4799 0.9718 0.6519 0.26 0.8166 

APOH_EHSSLAFWK 306 0.6663 0.9718 -1.1701 0.885 0.9278 

APOL1_LNILNNNYK 349 0.7343 0.9718 0.4844 0.324 0.8166 
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APOL1_VNEPSILEMSR 342 0.8329 0.9718 0.2699 0.409 0.8166 

APOM_FLLYNR 348 0.7481 0.9718 0.6653 0.211 0.8166 

APOM_SLTSCLDSK 381 0.3541 0.9718 1.0908 0.118 0.767 

C1QB_GNLCVNLMR 365 0.5267 0.9718 0.757 0.229 0.8166 

C1QC_FQSVFTVTR 346 0.7761 0.9718 0.0572 0.469 0.8166 

C1QC_TNQVNSGGVLLR 351 0.7068 0.9718 0.4469 0.316 0.8166 

C1R_YTTEIIK 319 0.8472 0.9718 -0.3141 0.604 0.8446 

C1RL_VVVHPDYR 401 0.1958 0.9718 1.5515 0.065 0.7176 

C1S_LLEVPEGR 296 0.5387 0.9718 -0.6442 0.74 0.8799 

C4BPA_EDVYVVGTVLR 309 0.7068 0.9718 -0.58 0.711 0.8648 

C4BPA_GYILVGQAK 369 0.4799 0.9718 0.5856 0.262 0.8166 

C4BPA_YTCLPGYVR 429 0.0707 0.9718 1.779 0.051 0.7176 

CAH1_ADGLAVIGVLMK 276 0.3263 0.9718 -0.6993 0.756 0.8881 

CAH2_GGPLDGTYR 338 0.8905 0.9756 0.1008 0.44 0.8166 

CAH2_SADFTNFDPR 355 0.653 0.9718 0.1351 0.432 0.8166 

CAH2_VVDVLDSIK 353 0.6797 0.9718 0.1952 0.416 0.8166 

CATA_LNVITVGPR 346 0.7761 0.9718 0.5931 0.288 0.8166 

CBG_GTWTQPFDLASTR 294 0.5148 0.9718 -0.6271 0.719 0.8655 

CD44_YGFIEGHVVIPR 375 0.4142 0.9718 0.5201 0.316 0.8166 

CD5L_IWLDNVR 386 0.3085 0.9718 1.2269 0.09 0.7176 

CD5L_LVGGLHR 428 0.0736 0.9718 1.8931 0.027 0.7176 

CERU_DIASGLIGPLIICK 392 0.2591 0.9718 0.829 0.199 0.8166 

CERU_EYTDASFTNR 313 0.7621 0.9718 -0.2189 0.574 0.8446 

CFAB_DISEVVTPR 256.5 0.1804 0.9718 -1.2925 0.904 0.9377 

CFAB_DLLYIGK 290 0.4686 0.9718 -0.8949 0.834 0.9224 

CFAB_EELLPAQDIK 285 0.4142 0.9718 -0.8476 0.805 0.913 

CFAB_YGLVTYATYPK 311 0.7343 0.9718 -0.2355 0.593 0.8446 

CFAH_IDVHLVPDR 289 0.4574 0.9718 -0.7271 0.775 0.8996 

CFAH_NGFYPATR 339 0.8761 0.9756 0.4679 0.325 0.8166 

CFAI_IVIEYVDR 314 0.7761 0.9718 -0.518 0.709 0.8648 

CLUS_ASSIIDELFQDR 394 0.2439 0.9718 1.3485 0.078 0.7176 

CLUS_ELDESLQVAER 339 0.8761 0.9756 0.2241 0.403 0.8166 

CLUS_FMETVAEK 392 0.2591 0.9718 1.105 0.137 0.78 

CLUS_IDSLLENDR 386 0.3085 0.9718 1.182 0.097 0.7275 

CO3_AGDFLEANYMNLQR 330 1 1 -0.3689 0.68 0.8446 

CO3_GYTQQLAFR 284 0.4038 0.9718 -0.783 0.801 0.913 
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CO3_TGLQEVEVK 347 0.7621 0.9718 0.4683 0.319 0.8166 

CO4A_DFALLSLQVPLK 260 0.2022 0.9718 -1.5154 0.935 0.9546 

CO4A_VGDTLNLNLR 253 0.1604 0.9718 -1.5487 0.935 0.9546 

CO4A_VLSLAQEQVGGSPEK 239 0.0968 0.9718 -2.0765 0.979 0.984 

CO8A_AMAVEDIISR 369 0.4799 0.9718 0.6845 0.228 0.8166 

CO8A_HTSLGPLEAK 352 0.6932 0.9718 0.4328 0.322 0.8166 

CO8B_SGFSFGFK 283 0.3935 0.9718 -0.9423 0.825 0.9193 

CO9_LSPIYNLVPVK 325 0.9342 0.9947 -0.0363 0.51 0.8209 

CO9_VVEESELAR 328 0.978 0.9978 0.0487 0.455 0.8166 

CXCL7_NIQSLEVIGK 334 0.9488 0.9947 0.4132 0.328 0.8166 

DEMA_VTSNLGK 469 0.011 0.9718 2.5913 0.006 0.39 

ENOA_TIAPALVSK 347 0.7621 0.9718 0.3635 0.35 0.8166 

F13A_STVLTIPEIIIK 237 0.0896 0.9718 -1.5858 0.948 0.9628 

FETUB_LVVLPFPK 286 0.4248 0.9718 -0.4454 0.679 0.8446 

FIBA_GSESGIFTNTK 256 0.1774 0.9718 -1.2212 0.877 0.9276 

FIBB_AHYGGFTVQNEANK 242 0.1084 0.9718 -1.3051 0.88 0.9276 

FIBG_EGFGHLSPTGTTEFWLGNEK 227 0.06 0.9718 -1.8639 0.964 0.974 

FINC_SYTITGLQPGTDYK 369 0.4799 0.9718 0.3373 0.39 0.8166 

FINC_YSFCTDHTVLVQTR 383 0.3354 0.9718 0.9137 0.192 0.8166 

GDIB_DLGTESQIFISR 334 0.9488 0.9947 0.0653 0.457 0.8166 

GDIB_FVSISDLLVPK 305 0.653 0.9718 -0.1792 0.577 0.8446 

GELS_AGALNSNDAFVLK 311 0.7343 0.9718 -0.3865 0.653 0.8446 

GELS_SEDCFILDHGK 383 0.3354 0.9718 1.1538 0.109 0.767 

H4_DAVTYTEHAK 321 0.8761 0.9756 -0.1626 0.562 0.843 

H4_VFLENVIR 257 0.1834 0.9718 -1.3698 0.928 0.9546 

HABP2_VVLGDQDLK 274 0.3085 0.9718 -1.0142 0.842 0.9224 

HBG1_MVTAVASALSSR 439 0.0465 0.9718 2.0508 0.022 0.7176 

HEMO_NFPSPVDAAFR 301 0.601 0.9718 -0.3326 0.628 0.8446 

HEMO_VDGALCMEK 422 0.0932 0.9718 1.7543 0.033 0.7176 

HEP2_FAFNLYR 340 0.8616 0.9756 0.2125 0.406 0.8166 

HEP2_IAIDLFK 319 0.8472 0.9718 -0.4163 0.678 0.8446 

HEP2_TLEAQLTPR 304 0.6398 0.9718 -0.3395 0.648 0.8446 

HINT1_IIFEDDR 356 0.6398 0.9718 0.8128 0.208 0.8166 

HPT_DYAEVGR 334 0.9488 0.9947 -0.022 0.515 0.8209 

HPT_VGYVSGWGR 314 0.7761 0.9718 -0.4063 0.671 0.8446 

HPT_VTSIQDWVQK 319 0.8472 0.9718 -0.5095 0.714 0.8648 
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HRG_GGEGTGYFVDFSVR 395 0.2366 0.9718 0.1863 0.421 0.8166 

IC1_FQPTLLTLPR 342 0.8329 0.9718 0.2968 0.383 0.8166 

IC1_LLDSLPSDTR 377 0.3935 0.9718 0.8756 0.19 0.8166 

IC1_TNLESILSYPK 331 0.9927 0.9978 0.3165 0.352 0.8166 

IF4B_SILPTAPR 308 0.6932 0.9718 -0.414 0.662 0.8446 

IGHA1_TPLTATLSK 389 0.2831 0.9718 0.2727 0.401 0.8166 

IGHG1_FNWYVDGVEVHNAK 319 0.8472 0.9718 -0.1175 0.548 0.8414 

IGHG1_GPSVFPLAPSSK 323 0.9051 0.986 -0.1826 0.601 0.8446 

IGHG3_DTLMISR 351 0.7068 0.9718 0.328 0.348 0.8166 

IGHG3_NQVSLTCLVK 373 0.4355 0.9718 0.724 0.196 0.8166 

IGHM_GFPSVLR 392 0.2591 0.9718 1.2503 0.092 0.7176 

IGHM_QIQVSWLR 386 0.3085 0.9718 1.4108 0.068 0.7176 

IGHM_YAATSQVLLPSK 396 0.2294 0.9718 1.4802 0.064 0.7176 

ITIH1_AAISGENAGLVR 367 0.503 0.9718 0.8562 0.188 0.8166 

ITIH4_GPDVLTATVSGK 367 0.503 0.9718 0.6036 0.261 0.8166 

ITIH4_ILDDLSPR 355 0.653 0.9718 0.2693 0.384 0.8166 

KAD1_IIFVVGGPGSGK 354 0.6663 0.9718 0.3986 0.329 0.8166 

KNG1_DIPTNSPELEETLTHTITK 362 0.5633 0.9718 0.6483 0.237 0.8166 

KNG1_TVGSDTFYSFK 314 0.7761 0.9718 -0.3518 0.662 0.8446 

KNG1_YFIDFVAR 318 0.8329 0.9718 -0.2699 0.616 0.8446 

KPYR_GDLGIEIPAEK 298 0.5633 0.9718 0.1268 0.436 0.8166 

LEG3_IALDFQR 297 0.5509 0.9718 -0.1038 0.533 0.8315 

LUM_SLEDLQLTHNK 317 0.8186 0.9718 -0.0161 0.504 0.8209 

MUCB_GQPLSPEK 427 0.0766 0.9718 2.0602 0.026 0.7176 

NDKA_DRPFFAGLVK 315 0.7902 0.9718 0.0855 0.444 0.8166 

PARK7_ALVILAK 335 0.9342 0.9947 0.0124 0.478 0.8176 

PARK7_DGLILTSR 351 0.7068 0.9718 0.1982 0.422 0.8166 

PEBP1_LYEQLSGK 353 0.6797 0.9718 0.1846 0.414 0.8166 

PEDF_ELLDTVTAPQK 289 0.4574 0.9718 -0.8731 0.788 0.9092 

PEDF_TVQAVLTVPK 307 0.6797 0.9718 -0.7745 0.817 0.9156 

PERM_IANVFTNAFR 332 0.978 0.9978 -0.3615 0.671 0.8446 

PLMN_FVTWIEGVMR 345 0.7902 0.9718 0.1902 0.415 0.8166 

PMGE_HYGALIGLNR 349 0.7343 0.9718 0.295 0.374 0.8166 

PNPH_FEVGDIMLIR 309 0.7068 0.9718 -0.6123 0.729 0.8721 

PNPH_VFGFSLITNK 358 0.6138 0.9718 0.0327 0.478 0.8176 

PON1_LLIGTVFHK 363 0.5509 0.9718 0.048 0.518 0.8209 



Chapter 5 

 147 

PPAC_IELLGSYDPQK 295 0.5267 0.9718 -0.6997 0.765 0.8933 

PPIA_FEDENFILK 322 0.8905 0.9756 -0.0477 0.506 0.8209 

PRDX1_ADEGISFR 319 0.8472 0.9718 -0.3415 0.637 0.8446 

PRDX2_SVDEALR 362 0.5633 0.9718 0.8232 0.187 0.8166 

PRDX2_TDEGIAYR 363 0.5509 0.9718 0.8321 0.19 0.8166 

PRDX6_LSILYPATTGR 314 0.7761 0.9718 0.1549 0.439 0.8166 

PROF1_TLVLLMGK 248 0.1348 0.9718 -0.9716 0.808 0.913 

PRS6A_DAFALAK 365 0.5267 0.9718 1.0828 0.124 0.78 

PRS8_FIGEGAR 395 0.2366 0.9718 1.5378 0.046 0.7176 

PSA2_AANGVVLATEK 368 0.4914 0.9718 0.6721 0.238 0.8166 

PSA6_HITIFSPEGR 310 0.7205 0.9718 -0.1396 0.554 0.842 

PSB7_GTTAVLTEK 377 0.3935 0.9718 1.0463 0.144 0.78 

RANG_FLNAENAQK 420 0.1005 0.9718 1.4115 0.076 0.7176 

SAA4_EALQGVGDMGR 311 0.7343 0.9718 -0.338 0.614 0.8446 

SAMP_IVLGQEQDSYGGK 308 0.6932 0.9718 -0.2809 0.627 0.8446 

SH3L3_VYSTSVTGSR 322 0.8905 0.9756 -0.2711 0.584 0.8446 

TBA4A_EIIDPVLDR 341 0.8472 0.9718 0.1236 0.443 0.8166 

THBG_NALALFVLPK 293 0.503 0.9718 -0.715 0.753 0.8881 

THIO_VGEFSGANK 417 0.1125 0.9718 1.7057 0.036 0.7176 

THRB_ELLESYIDGR 272 0.2914 0.9718 -1.028 0.849 0.923 

TPIS_FFVGGNWK 333 0.9634 0.9978 -0.1934 0.59 0.8446 

TRFE_EGYYGYTGAFR 361 0.5757 0.9718 0.6503 0.252 0.8166 

TRFE_MYLGYEYVTAIR 357 0.6268 0.9718 0.0381 0.467 0.8166 

TSP1_GTLLALER 304 0.6398 0.9718 -0.3326 0.617 0.8446 

UB2L3_IYHPNIDEK 332 0.978 0.9978 0.0505 0.462 0.8166 

VTDB_HLSLLTTLSNR 369 0.4799 0.9718 0.6605 0.237 0.8166 

VTDB_VLEPTLK 348 0.7481 0.9718 0.6175 0.246 0.8166 

VTNC_DVWGIEGPIDAAFTR 361 0.5757 0.9718 0.0552 0.501 0.8209 

VTNC_DWHGVPGQVDAAMAGR 352 0.6932 0.9718 -0.242 0.622 0.8446 

WDR1_VFASLPQVER 309 0.7068 0.9718 -0.0818 0.522 0.8209 

BMI 283 0.3935 0.9718 -0.3307 0.647 0.8446 
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Figure 5.7. PCA plot of protein peptide abundance ratios of antidepressant users and non-users 

in the training set patient group (established current MDD patients). 

The scores for the first two PCs are plotted with the percentage of variation accounted for by each PC 

shown in the axis labels. Data points are coloured by the patients’ current antidepressant use (33 

antidepressant users and 20 non-users). Abbreviations: MDD (major depressive disorder); PC (principal 

component); PCA (principal component analysis).

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50
PC1 (28.4%)

PC
2 

(1
1.

59
%

)

Antidepressant ● ●No Yes



Chapter 5 

 149 

Table 5.4. Mann-Whitney U test results to assess the associations of the selected proteomic biomarkers with lifestyle factors. 

The protein peptide abundances of the 16 biomarkers appearing the 15 prediction models were associated with binary measures of smoking, alcohol consumption, 

recreational drug use and poor self-rated physical health in 295 participants. The null hypothesis was that there was no statistically significant effect of the 

lifestyle factor on the abundance of the feature of interest. The W-value (Mann-Whitney U statistic), p-value and q-value (FDR-adjusted p-value) are shown for 

each test. P-values and q-values < 0.05 are shown in bold. Proteomic features are represented in a protein_peptide format, and their abbreviations can be found 

in the Appendix (Table A. 1). Abbreviations: FDR (false discovery rate); MDD (major depressive disorder). 

 

Feature 

Smoking Alcohol Recreational drug use Poor physical health 

W-

value 

p-

value 

q-

value 

W-

value 

p-

value 

q-

value 

W-

value 

p-

value 

q-

value 

W-

value 

p-

value 

q-

value 

A1AG1_SDVVYTDWK 22494 0.4524 0.857 26880 0.5322 0.7344 18105 0.1789 0.503 16999 0.0006 0.0047 

A2GL_VAAGAFQGLR 22357 0.3962 0.857 27797 0.2136 0.6157 18798 0.0535 0.3054 18411 0.0171 0.0613 

AL1A1_ILDLIESGK 25853.5 0.1033 0.6462 26716 0.6073 0.7752 15920 0.6139 0.8848 19654.5 0.1428 0.2978 

APOA4_ISASAEELR 22260 0.359 0.857 28033 0.1606 0.6026 13667 0.0159 0.1612 21852 0.8737 0.9262 

APOA4_LAPLAEDVR 21761 0.2038 0.7666 27754.5 0.2243 0.6216 12875 0.0021 0.1612 22033.5 0.7693 0.8519 

APOE_LGPLVEQGR 25893 0.0975 0.6425 26138 0.9017 0.9576 17470 0.4198 0.7599 21179 0.7354 0.8307 

CFAH_IDVHLVPDR 24339 0.5784 0.8932 28470 0.0895 0.5381 18414 0.1083 0.3965 14947 0 0.0002 

CFAH_NGFYPATR 23338.5 0.8786 0.974 26955.5 0.4993 0.7229 17634 0.3444 0.6749 16732 0.0003 0.0025 

CO4A_DFALLSLQVPLK 22970 0.6789 0.9275 27102 0.4386 0.6807 18449 0.102 0.3879 20662 0.4713 0.6773 

CO9_LSPIYNLVPVK 24302 0.5965 0.897 28102 0.1471 0.6026 18807 0.0526 0.3054 20038 0.2373 0.4343 

IF4B_SILPTAPR 22919 0.6526 0.9275 25774 0.9033 0.9576 16938 0.7216 0.9586 19455 0.1067 0.236 

IGHG1_FNWYVDGVEVHNAK 26712.5 0.0252 0.6195 27439 0.3163 0.668 17862.5 0.2547 0.5814 23612 0.1441 0.2978 

IGHG3_DTLMISR 26709.5 0.0254 0.6195 27588.5 0.27 0.668 17815 0.2719 0.6063 23598 0.147 0.3001 
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KAD1_IIFVVGGPGSGK 23664 0.9384 0.9948 25252 0.6355 0.7954 15337 0.3183 0.6639 22479 0.5335 0.7305 

PARK7_DGLILTSR 24743 0.3997 0.857 25387 0.7018 0.8404 16252 0.8232 0.9906 20171 0.2786 0.4777 

PSA6_HITIFSPEGR 25319 0.2112 0.7666 24872 0.465 0.6886 17552 0.381 0.7318 20537 0.4163 0.6261 
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5.4. Discussion 
 

Despite the complexity and heterogeneity of MDD, many previous studies have used healthy 

controls as a reference group for comparison against patients, and investigated the group 

differences based on limited study participant information. This chapter not only examined 

individuals presenting with subclinical low mood as a more clinically relevant reference 

population, but also leveraged extensive participant information gathered through the Delta 

Study, including proteomic, clinical, sociodemographic/lifestyle and personality features. The 

convenience of DBS sampling, digital mental health assessment and telephone diagnostic 

interview enabled participants to complete all parts of the data collection remotely (from home 

or elsewhere, without the need to visit the clinic or laboratory). To the best of our knowledge, 

the Delta Study is the largest study to date involving a digital mental health assessment of mood 

disorders [381], [382]. 

 

Diagnostic prediction models were developed with the aim of identifying depressed patients 

among individuals presenting with low mood. This study demonstrated that the combined 

digital-biomarker prediction models were able to differentiate between new current MDD 

patients and low mood controls with a good and robust predictive performance (extrapolation 

test AUC = 0.80 ± 0.01), as well as between established non-current MDD patients and low 

mood controls with a fair to good, robust predictive performance (application AUC = 0.79 ± 

0.01), despite having been trained to differentiate between established current MDD patients 

and low mood controls (training AUC = 0.94 ± 0.01). The decrease in model performance in 

comparison to the training performance could be seen as a result of the models having to go 

beyond their scope to make predictions on the extrapolation test set and the application set 

(given the differences in the patient groups), and rather than due to model overfitting, which 

was alleviated by the implementation of various statistical methods (LASSO regression, 

repeated nested cross-validation, feature extraction and model averaging). This generalisability 

suggests that a considerable part of the disease profile was commonly exhibited across the 

different patient groups of established current MDD patients, new current MDD patients and 

established non-current MDD patients. Although these findings are preliminary and require 

further validation on an independent dataset, they may represent an encouraging step towards 

the development of a diagnostic test for MDD. 
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A selection of proteomic biomarkers, sociodemographic and lifestyle factors and personality 

traits were found as important predictors of MDD. Several proteins were identified as 

biomarker candidates for MDD: MDD was associated with increased DBS levels of A1AG1, 

A2GL and CFAH, which have functional roles in immune/inflammatory response (anti-

inflammatory response, acute-phase response, complement system); increased DBS levels of 

APOE, which is involved in lipid transport and metabolism; and decreased DBS levels of 

AL1A1, which is involved in retinol metabolism [359]. These findings are in agreement with 

previous reports of increased blood plasma levels of acute-phase proteins, including A1AG1 

[383]–[385], and complement proteins, including CFAH [386]–[388], in MDD patients 

compared to controls, although the association of A2GL with depression has not been reported 

before. Thus, they are generally consistent with the observations that MDD patients exhibit 

activated inflammatory pathways, and support the role of immune system dysregulation in the 

pathophysiology of MDD [141], [150], [151]. It should be noted that A1AG1 and CFAH were 

also found to be significantly associated with poor self-rated physical health. Additionally, the 

APOE ε4 allele has been identified as a risk factor for MDD, especially among the elderly 

[389]–[391], and it has been suggested that the presence of the APOE ε4 allele may increase 

the vulnerability to depression in late life following stressful life events, including adverse 

childhood experiences (gene-environment interaction) [363], [364]. Chapter 4 identified 

serum APOE as a biomarker for predicting future depression diagnosis in subthreshold 

symptomatic individuals. While AL1A1 oxidises retinaldehyde to retinoic acid (RA), the link 

between RA signalling and depression is supported by the evidence that brain areas implicated 

in RA signalling, such as the hippocampus, prefrontal cortex and striatum, overlap with those 

affected in depression [392]. 

 

Moreover, poor self-rated mental health was found as a strong and robust predictor of MDD, 

consistent with a previous report that those who rated their mental health as poor were more 

likely to have a first or recurrent depressive episode within the next year compared to those 

who rated their mental health as fair, good or excellent [393]. Others have demonstrated 

associations between poor self-rated mental health and increased psychological distress, 

increased utilisation of mental health and medical care services, and increased adherence to 

antidepressant treatment plans [394]–[397]. An association between MDD and increased BMI 

was also observed, which is a well-established phenomenon [366], [367] and consistent with 

the finding in Chapter 4. This is also in agreement with the findings that depression and obesity 

have an overlapping pathophysiology, including dysregulation of the HPA axis and 
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immune/inflammatory response [130]–[132]. In support of this, blood (serum or plasma) levels 

of the identified proteomic biomarkers of depression that are involved in 

immune/inflammatory response (i.e., A1AG1, A2GL and CFAH) have been reported to be 

increased in obesity [398]–[401]. Furthermore, among various personality traits assessed using 

the NEO FFI, reduced daily experiences of positive emotions, such as happiness and joy, and 

greater empathy towards others (tender-mindedness) were found as important predictors of 

MDD. The association between MDD and personality has potentially important implications 

for elucidating the aetiology of MDD, identifying more homogeneous subgroups of disease, 

identifying at-risk individuals, tailoring treatment strategies, and predicting treatment response 

[402]. It should be noted that the combined digital-biomarker prediction models resulted in 

comparable yet improved predictive performance in relation to the digital-only prediction 

models, which demonstrates that the contribution of the digital features in predicting MDD was 

substantial, while that of the proteomic biomarkers was relatively modest. 

 

An important aspect of the present study is the use of repeated nested cross-validation, which 

is essential for reliable model assessment, especially when large and representative datasets are 

not available [260]. Due to the study design, an adapted approach of repeated nested cross-

validation was implemented, such that patients used for model assessment in the outer loop 

were never used for model selection in the inner loop. Fifteen prediction models were obtained 

from five times-repeated three-fold nested cross-validation, and despite using a robust model 

development approach (feature extraction and model averaging), some variation in feature 

selection and predictive performance was observed across the models. This indicates that the 

results were largely dependent on the random split of the dataset into training and test sets, 

which highlights the need for repeated nested cross-validation to allow for more informed 

decision-making in selecting and assessing prediction models [260]. Without using repeated 

nested cross-validation, any one of the 15 models could have been obtained, ignoring the 

possibility of the other models. As the random split was only relevant for the reference group 

(the patient groups remained constant), the observed variation in model selection was possibly 

due to heterogeneity in the low mood controls. Repeated nested cross-validation addressed this 

variation and improved model reproducibility by allowing the results across the different 

models to be pooled together to identify the most robust features and obtain an average estimate 

of model predictive performance. 
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Furthermore, this study clearly demonstrated the utility of DBS sampling for proteomic 

biomarker identification and its potential for application within a clinical setting. However, in 

spite of the many advantages offered by this sampling method, there were also challenges 

involved the quantitative analysis of DBS proteins compared to that of serum proteins. A 

potential major limitation was the quality of DBS samples, since the protein content could be 

affected by factors such as small spot size (i.e., insufficient sample) and multiple spotting. 

Hence, the spotting of blood onto the DBS collection card was an additional step involved in 

DBS sample preparation in comparison to serum sample preparation which could potentially 

increase the variability [315]. As pilot studies from the group (unpublished) revealed that DBS 

sample quality could be improved by providing clear instructions for sample collection and 

submission, it was subsequently ensured that the DBS sample collection kits used in the present 

study contained clear instructions with regards to sampling, drying and posting of the DBS 

samples [296]. Yet, the possibility that the quality of the samples could be compromised in 

some cases due to participants’ failing to carefully follow the instructions still remained [306]. 

Another additional step implemented to the DBS sample preparation workflow which could 

potentially increase the variability was the extraction of analytes from the sample collection 

card [315]. However, despite these concerns, it was demonstrated in a previous study from the 

group, Ozcan et al. (2017) [202], that the reproducibility of targeted protein quantification 

achieved in DBS was comparable to that achieved in serum. Results showed that the average 

variation in sample preparation (median CV) was 6.5% and 8.9% in serum and DBS samples, 

respectively, while the average biological variation (median CV) was 8.8% and 13.2% in serum 

and DBS samples, respectively. Additionally, a strong correlation was found between peptide 

abundances measured in DBS and serum samples which were collected from healthy 

volunteers, indicating relatively consistent measurements between the two sample formats. 

There are several limitations to the present study, one of which is that prediction models were 

trained on established current MDD patients due to the limited availability of new current MDD 

patients in the dataset. The sample size of the training set was also small, particularly 

considering the large number of features examined in model selection. In addition, while the 

gender difference in the prevalence of MDD was reflected in the study participants, they could 

be considered as relatively young (average age of 26 years), given that the median age of onset 

of MDD is typically in the early to mid 20s [29]. Moreover, although it may be more practical 

to define a single risk prediction model of MDD for potential translation into clinical 

application, this was not feasible using the given dataset due to the demonstrated variation in 

feature selection and predictive performance across different models. It is expected that 
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performing the analysis on a larger, more representative and homogeneous dataset would not 

only enhance model reproducibility but also potentially allow for a single prediction model to 

be specified. Furthermore, the fact that a proportion of established current MDD patients were 

taking antidepressant medication at the time of data collection could potentially confound the 

results of the analysis, as the reported associations between MDD and the selected proteomic 

features could at least partially represent medication effects and not solely disease effects. 

However, this study demonstrated not only that there were no significant associations between 

the selected proteomic features and antidepressant medication use, but also that the prediction 

models comprised of these features showed good predictive performance on new current MDD 

patients who were not on antidepressant medication. Additionally, the potential confounding 

effects of the sociodemographic and lifestyle factors were accounted for by including them as 

predictors for model selection using group LASSO regression. Finally, despite the effort to 

conduct a comprehensive analysis of the various features that could be related to MDD, the 

possibility of disregarding other potentially relevant features should be acknowledged. 

 

In conclusion, this chapter showed that currently depressed patients with a new MDD diagnosis 

could be identified among individuals presenting with low mood using risk prediction models 

comprised of DBS proteomic biomarkers, sociodemographic/lifestyle factors and personality 

traits. The same models could also be used to identify currently not depressed patients with an 

existing MDD diagnosis. An adapted approach of repeated nested cross-validation enabled an 

evaluation of the variation in feature selection and predictive performance that arised from 

choosing different splits of the data. This study also demonstrated the advantages of 

implementing DBS sampling for proteomic biomarker identification. These findings, although 

preliminary, may represent a promising step towards developing an objective, non-invasive 

and cost-effective diagnostic test for MDD in the future, which could potentially complement 

clinical evaluations, improve patient care, and reduce the overall socioeconomic disease burden. 

In order to develop a robust and accurate diagnostic test to be translated into routine clinical 

practice, particularly in primary care, extensive validation studies using large, representative 

and independent sample sets will need to be carried out. 
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Chapter 6      Final discussion and 
conclusions 
 

 

The aim of this chapter is to provide an integrated summary of the major findings resulting 

from the work presented in this thesis and their significance. The limitations of the studies and 

the ways in which they could be addressed in future work are subsequently discussed. 

 

 

6.1. Summary 
 

The study presented in Chapter 3 explored the utility of a multimodel-based approach to 

predict the probability of having a complex psychiatric disorder using high-dimensional 

biomarker data. A novel approach combining feature extraction and model averaging was 

developed to address model overfitting and model selection uncertainty, which are statistical 

problems that can limit the ability of prediction models to make accurate and reproducible 

predictions. A serum MS dataset (147 peptides representing 77 proteins) comprising of first-

onset drug-naïve schizophrenia patients and healthy controls was used to demonstrate proof-

of-concept. LASSO regression with ten-fold cross-validation was repeatedly applied on the 

training set to produce a set of 100 prediction models. In the presence of model selection 

uncertainty, feature extraction and model averaging were applied across the entire set of models 

to define a parsimonious weighted average prediction model that consisted of the most robust 

(i.e., frequently selected) features and their weighted average coefficient estimates. The 

resulting model demonstrated the advantage of the multimodel approach over the conventional 

approach based on a single ‘best’ model in producing reproducible predictions of the 

probability of having a complex psychiatric disorder (AUC = 0.77), despite the potential for 

improvement. This multimodel approach was subsequently applied in Chapters 4 and 5 to 

develop diagnostic prediction models of MDD. 

 

The study presented in Chapter 4 investigated the prediction of future onset of depression in 

subthreshold symptomatic individuals using their serum proteomic, sociodemographic and 
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clinical data (146 peptides representing 77 serum proteins, 22 sociodemographic factors and 

30 clinical features). Diagnostic prediction models were trained to differentiate between first-

episode MDD patients and subthreshold individuals who did not develop MDD within four 

years. The multimodel approach combining feature extraction and model averaging was 

applied to obtain a parsimonious diagnostic prediction model consisting of six serum proteins 

(AACT, APOE, APOH, FETUA, HBA and PHLD), three sociodemographic factors (BMI, 

childhood trauma and education level), and three depressive symptoms (sadness, fatigue and 

leaden paralysis). When the model was subsequently applied to differentiate between 

subthreshold individuals who developed MDD within two or four years and subthreshold 

individuals who did not develop MDD within four years, which involved going beyond the 

scope of the model, it achieved a fair predictive performance (AUC = 0.75). 

 

The study presented in Chapter 5 investigated the prediction of MDD in individuals presenting 

with subthreshold depression (subclinical low mood) using data from DBS proteomics (194 

peptides representing 115 DBS proteins) and a novel digital mental health assessment (102 

sociodemographic, clinical and personality characteristics). Repeated nested cross-validation 

was used to evaluate variation in model selection and predictive performance arising from 

choosing different splits of the data and ensure model reproducibility, and feature extraction 

and model averaging were applied in each round of nested cross-validation. Diagnostic 

prediction models that were trained to differentiate between currently depressed individuals 

with an existing MDD diagnosis (established current MDD patients) and low mood controls 

demonstrated a good predictive performance when extrapolated to differentiate between 

currently depressed individuals with a new MDD diagnosis (new current MDD patients) and 

low mood controls (AUC = 0.80 ± 0.01), as well as between currently not depressed individuals 

with an existing MDD diagnosis (established non-current MDD patients) and low mood 

controls (AUC = 0.79 ± 0.01). DBS proteins A1AG1, A2GL, AL1A1, APOE and CFAH were 

identified as predictors of MDD, which indicate immune system dysregulation. Poor self-rated 

mental health, BMI, reduced daily experiences of positive emotions and tender-mindedness 

were also identifed as predictors of MDD.  
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6.2. Significance of major findings 
 

6.2.1. Study design and statistical methods for reproducible prediction 

model development 
The studies presented in Chapters 4 and 5 represent rigorous efforts, both in terms of design 

and methodology, to develop and validate clinical risk prediction models based on protein 

biomarkers and other non-biological patient characteristics, which can potentially act as a 

diagnostic aid for MDD. This was an important consideration as poor study design and 

incorrectly used statistical techniques have been frequently recognised as factors contributing 

to the lack of reproducible biomarker findings and the limited translation of biomarkers into 

clinical tests, despite numerous reports of significant candidate biomarkers in discovery studies 

[15], [261] (as discussed in Chapter 1). The studies in Chapters 4 and 5 attempted to address 

and overcome some of the limitations in previous biomarker research by not only defining 

stringent criteria for sample inclusion and exclusion based on clear clinical objectives, but also 

applying a range of statistical methods, including the multimodel approach developed in 

Chapter 3, to identify features that are robustly associated with MDD and ensure that the 

resulting models are able to make accurate and reproducible predictions of the probability of 

having or developing MDD. 

 

Whereas many diagnostic biomarker studies typically use healthy controls as a reference group 

for comparison against patients, the studies in Chapters 4 and 5 examined individuals 

presenting with subthreshold depression to investigate a more clinically relevant and 

appropriate population for developing and validating diagnostic prediction models of MDD. 

The rationale behind this was that distinguishing MDD patients from individuals with 

subthreshold depression would better represent a situation that GPs would encounter relative 

to distinguishing MDD patients from healthy individuals, since it is more likely for those who 

seek help in primary care to be presenting with at least subthreshold levels of depressive 

symptoms than with no symptoms [19], [58]. An additional challenge to model selection and 

classification was provided by the reference groups being more similar to the patient groups. 

Therefore, a notable advantage of these studies is that the findings may be more generalisable 

to primary care settings than those obtained from studies that have been conducted using 

healthy controls. Moroever, Chapters 4 and 5 investigated the group differences based on 

extensive information of individual participants gathered through the NESDA and the Delta 
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Study, respectively. The study in Chapter 4 measured 198 features (146 peptides representing 

77 proteins, 22 sociodemographic factors and 30 clinical characteristics) across 209 

participants, while the study in Chapter 5 measured 296 features (194 peptides representing 

115 proteins, and 102 sociodemographic, clinical and personality characteristics) across 295 

participants. The Delta Study (Chapter 5) was not only, to our knowledge, the largest study 

thus far which exploited a digital mental health assessment of mood disorders, but also 

designed in such a way as to enable all parts of the data collection (i.e., DBS sampling, digital 

mental health assessment and telephone diagnostic interview) to be completed by the 

participants remotely without needing to visit the clinic or laboratory. In addition, the studies 

in Chapters 4 and 5 investigated blood-based proteomic biomarkers in serum and DBS 

samples. While the use of serum sampling for blood-based biomarker discovery is widespread, 

the demonstration of the utility of DBS sampling, which is a relatively novel sampling 

technique in the field that has a clear potential for application in clinical practice, was 

particularly notable [310]. 

 

Furthermore, results of model selection in Chapters 3, 4 and 5 consistently demonstrate the 

presence of model selection uncertainty (i.e., the sensitivity of model selection to small changes 

in the data), which is often overlooked in clinical prediction studies despite its significant 

impact on model reproducibility and generalisability (discussed in Chapters 1 and 3). This 

highlights the importance of implementing appropriate statistical techniques that allow for 

model selection uncertainty to be properly assessed and accounted for, especially considering 

that it may be realistically difficult to overcome the pre-analytical factors which contribute to 

it, such as small sample size and sample heterogeneity. In relation to this, the work presented 

in Chapter 3 illustrates an effort to explore and develop a novel statistical approach that 

combines model averaging with feature extraction to obtain reproducible predictions of the 

probability of having a complex psychiatric disorder. While LASSO regression allows for 

sparse multivariable prediction models to be obtained by simultaneously performing 

regularisation and variable selection [281], the uncertainty involved the process of model 

selection was evaluated by repeatedly applying LASSO regression with ten-fold cross-

validation on the training set to obtain a set of 100 models. Relative model weights (Akaike 

weights) were subsequently calculated for each model based on the AICc and used to assess 

the relative strength of the model among the candidate set of models. The relative importance 

of the features was assessed by measuring their selection fractions (the proportion of models 

out of 100 in which a particular feature was selected) and selection probabilities (the probability 
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that a particular feature was a component of the best model, calculated using Akaike model 

weights). In the presence of model selection uncertainty, defined as there being less than 90% 

chance that the model with the highest weight was the best model approximating the outcome 

given the candidate set of models, a multimodel approach was adopted to produce inferences 

and predictions that were derived across the full set of models rather than conditional on a 

specific model. This was important, particularly given the considerable variability in feature 

selection across the 100 models, as the risk of selecting one of the less probable models by 

chance could be reduced [294]. Feature extraction enabled the most important set of features 

to be identified for the average model and less important ones to be excluded, further alleviating 

model overfitting and enhancing model interpretability, while model averaging enabled the 

coefficient estimates of the identified features to be averaged across the full set of models in a 

weighted manner. Among the four weighted average prediction models analysed (defined by 

applying feature extraction using selection fraction and probability thresholds of 0.9 and 0.8, 

followed by model averaging), the most reproducible predictions of the probability of having 

a complex psychiatric disorder were obtained by the simplest weighted average model 

consisting of six features with selection fractions ≥ 0.9 (training AUC = 0.81; test AUC = 0.77). 

Increasing model complexity had the effect of increasing overfitting, as expected. Thus, the 

study in Chapter 3 demonstrates that the combined use of feature extraction and model 

averaging could effectively address model selection uncertainty and model overfitting when 

analysing high-dimensional biomarker data, and thereby, result in a parsimonious prediction 

model with improved generalisability. It should be noted that, while model averaging using 

Akaike weights is an established method for deriving inferences and predictions from a set of 

models in the presence of model selection uncertainty [284], [289], [290], the novelty of the 

multimodel approach specifically lies in the generation of 100 models from the repeated 

application of the model selection method (e.g., LASSO regression with ten-fold cross-

validation) on the training set; the assessment of relative feature importance by measuring the 

proportion of models out of 100 in which a particular feature was selected (selection fraction); 

and feature extraction to identify the most important features (features with selection fractions 

≥ 0.9), which was critical for obtaining a parsimonious and generalisable prediction model 

[294]. Obtaining a parsimonious prediction model, which achieved sufficient classification 

performance with as few features as possible, was important to not only enhance the 

interpretability of the findings, but also improve convenience and cost-effectiveness 

considering its potential use in a clinical setting. These considerations were taken forward to 

prediction model development in Chapters 4 and 5, such that the models were assessed by 
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their abilities to produce accurate and reproducible predictions of having or developing MDD 

using the smallest feasible set of features. The applications of the multimodel approach (feature 

extraction using selection fraction threshold 0.9, followed by model averaging across the set of 

models) in Chapters 4 and 5 resulted in parsimonious and generalisable diagnostic prediction 

models of MDD. Therefore, the findings across Chapters 3, 4 and 5 collectively demonstrate 

the utility of the multimodel approach in producing reproducible predictions of a complex 

psychiatric disorder, not only when the clinical conditions of the investigated participants were 

distinct (such as in Chapter 3 where first-onset drug-naïve schizophrenia patients were 

compared against healthy controls), but also when the clinical conditions of the investigated 

participants were less distinct and more reflective of the relevant clinical population (such as 

in Chapters 4 and 5 where MDD patients were compared against individuals with 

subthreshold depression). 

 

In Chapters 3, 4 and 5, protein quantification was achieved by the selected measurement of 

surrogate peptides using MRM-MS [210]. The use of surrogate peptides for the quantification 

of target peptides is a well-established and widely used method; therefore, differential 

expression of a peptide was considered to represent differential expression of the corresponding 

protein (i.e., protein of interest). Each target protein was represented by between one and five 

peptides, and the abundance levels of the individual peptides were used for statistical analysis 

to determine whether or not they were differentially expressed between the clinical groups of 

interest. The identification of individual peptides as candidate biomarkers (i.e., important 

predictors of disease) indicates that it was the abundance levels of the peptides within their 

corresponding proteins, and not necessarily those of the whole proteins, that were altered. 

Similarly, there were other peptides which represented the same proteins but were not 

identified as candidate biomarkers. This could be because different peptides representing the 

same protein are likely to be highly correlated with each other, and the nature of the LASSO 

method is such that when there is a set of highly correlated features, only one feature from the 

set tends to be selected [335].  
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6.2.2. Clinical implications of findings 
 

6.2.2.1. Prediction models 
In both Chapters 4 and 5, the diagnostic prediction models had to make predictions beyond 

their scopes, as the patient groups comprising the test sets (extrapolation test and/or application 

sets) differed to those comprising the training sets. In Chapter 4, the training set patient group 

consisted of first-episode MDD patients (n = 86), whereas the extrapolation test set patient 

group consisted of subthreshold individuals who developed MDD within two or four years (n 

= 37); the shared reference group consisted of subthreshold individuals who did not develop 

MDD within four years (n = 86). In Chapter 5, the training set patient group consisted of 

established current MDD patients (n = 53), whereas the extrapolation test set patient group 

consisted of new current MDD patients (n = 40), and the application set patient group consisted 

of established non-current MDD patients (n = 72); the reference group consisted of low mood 

controls (n = 130). Therefore, although the model predictive performance was reduced relative 

to the training performance (Chapter 4 training AUC = 0.94, extrapolation test AUC = 0.75; 

Chapter 5 training AUC = 0.94, extrapolation test AUC = 0.80, application AUC = 0.79), this 

can be considered to be a result of the models having to go beyond their scopes to make 

predictions on the extrapolation test and/or application sets, rather than due to limited model 

generalisability, as a range of statistical methods (LASSO regression, repeated K-fold cross-

validation, feature extraction and model averaging) were purposefully applied to reduce model 

overfitting and account for model selection uncertainty. This generalisability suggests that a 

considerable part of the disease profile, as represented by a combination of proteomic 

biomarkers and sociodemographic and other patient characteristics, was shared across the 

different patient groups of first-onset MDD patients and subthreshold individuals who 

developed MDD in Chapter 4, and established current MDD patients, new current MDD 

patients, and established non-current MDD patients in Chapter 5. In particular, the strength of 

the study in Chapter 4 is that the disease profile of MDD was characterised based on first-

onset drug-naïve MDD patients. Although in Chapter 5, the disease profile of MDD was 

characterised based on established current MDD patients, a proportion of whom were taking 

antidepressant medication, the findings that there were no significant associations between the 

selected proteomic features and the participants’ antidepressant use, and that the prediction 

models showed a good predictive performance on new current MDD patients who were not on 
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antidepressant medication, demonstrated that the characterised disease profile was unlikely to 

be confounded by the effects of antidepressant medication. 

 

Moreover, results of Chapters 4 and 5 highlight the importance of combining different aspects 

of patient data for developing clinically useful disease prediction models. Blood (serum or DBS) 

proteomic biomarkers, as well as sociodemographic/lifestyle factors and other patient 

characteristics, were identified as important predictors of MDD outcome. These findings are 

consistent with the idea that, due to the complex and heterogeneous nature of MDD, the disease 

characteristics are unlikely to be sufficiently captured by any single biomarker or feature, and 

instead, a panel comprised of multiple biomarkers and features would be needed to achieve 

sufficiently high discriminatory power for clinical application [14], [223], [236], [237] (as 

discussed in Chapter 1). In Chapter 4, the combined biomarker-sociodemographic-clinical 

model achieved an improved predictive performance for predicting future MDD onset among 

individuals with subthreshold depression in relation to both the biomarker-only model and the 

sociodemographic-clinical-only model (extrapolation test AUC: combined = 0.75, biomarker-

only = 0.70, sociodemographic-clinical-only = 0.67). Additionally, in Chapter 5, the combined 

digital-biomarker models achieved a comparable yet improved predictive performance for 

predicting MDD outcome among individuals with subthreshold depression in relation to the 

digital-only models, and a significantly improved predictive performance in relation to the 

biomarker-only models (extrapolation test AUC : combined = 0.80; biomarker-only = 0.56; 

digital-only = 0.79; application AUC: combined = 0.79; biomarker-only = 0.63; digital-only = 

0.76). Thus, in Chapter 4, the contribution of the serum proteomic biomarkers in predicting 

MDD on the extrapolation test set was comparable to, yet greater than, that of the non-

biological features (i.e., sociodemographic factors and depressive symptoms), whereas in 

Chapter 5, the contribution of the digital features in predicting MDD on the extrapolation test 

and application sets was substantially greater than that of the DBS proteomic biomarkers.  

 

It should be noted that the biomarker findings are not directly comparable between Chapters 
4 and 5 as different yet partially overlapping panels of protein peptides were employed for 

MRM-based targeted protein quantification in serum and DBS. Not all protein peptides could 

be measured in both serum and DBS samples, the main difference between the serum and DBS 

proteomes being that the latter contained additional proteins derived from red and white blood 

cells [403], [404]. This could account for the lack of overlap in the protein peptides that were 

identified as biomarker candidates between the two studies. While 146 peptides representing 
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77 serum proteins were investigated in Chapter 4 and 194 peptides representing 115 DBS 

proteins were investigated in Chapter 5, 89 peptides representing 51 proteins were 

investigated in both Chapters 4 and 5; 57 peptides representing 45 proteins were investigated 

in Chapter 4 only; and 105 peptides representing 86 proteins were investigated in Chapter 5 

only. Consequently, among the six serum protein peptides identified as predictors of MDD in 

Chapter 4, only three (AACT_ADLSGITGAR, APOE_ALMDETMK and 

APOH_EHSSLAFWK) were investigated in DBS in Chapter 5; and among the five DBS 

protein peptides identified as predictors of MDD in Chapter 5, only one 

(APOE_LGPLVEQGR) was investigated in serum in Chapter 4. 

 

Despite the need for further validation, these findings demonstrate the potential of such 

prediction models to be used as an aid to the detection and diagnosis of MDD in clinical 

practice. In particular, the findings in Chapter 4 suggest that it may be possible to detect 

disease indications in subthreshold individuals up to four years prior to diagnosis, which has 

important clinical implications regarding the identification of high-risk individuals early in the 

disease course. Targeting these individuals with indicated preventive interventions could be 

effective in delaying or even preventing the onset of MDD [78]–[80] and further contribute to 

the reduction of the disease burden. 

 

6.2.2.2. Predictors of MDD and clinical interpretations 
Overall, although further investigations are required, the findings in Chapters 4 and 5 

collectively point to the presence of an altered immune/inflammatory profile in the 

pathophysiology of depression: many of the proteomic biomarker candidates identified in 

Chapters 4 and 5 are involved in immune/inflammatory processes. MDD was found to be 

associated with elevated levels of acute-phase proteins, such as serum AACT and FETUA in 

Chapter 4 and DBS A1AG1 and A2GL in Chapter 5, as well as with elevated levels of the 

complement factor CFAH in DBS in Chapter 5. These findings are in agreement with the 

extensive literature showing that depression is associated with activated inflammatory 

pathways, as manifested by increased levels of pro-inflammatory cytokines, acute-phase 

proteins, chemokines and cellular adhesion molecules, and support the role of immune system 

dysregulation in the pathophysiology of depression [141], [150], [151]. Thus, the findings in 

Chapters 4 and 5 are consistent with the notion that depression is a systematic disorder and 

that the disease-related alterations can be traced in the peripheral system [14]. However, a 

common complication in biomarker studies is that it remains to be established whether the 
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observed alterations are involved in the aetiology of MDD or represent an adaptive response 

to the pathophysiological changes [14]. Given the evidence that exposure to stressful stimuli 

can induce inflammation both in the brain and peripherally [405], [406], the possibility that the 

observed upregulation of the immune/inflammatory response represents pathophysiological 

alterations that are associated with a stress response rather than specifically with MDD should 

be acknowledged. Nevertheless, the joint effects of proteomic features as well as other patient 

characteristics to differentiate between MDD patients and subthreshold individuals were 

investigated in Chapters 4 and 5, and the set of biomarkers identified consisted of not only of 

inflammatory proteins, but also other proteins that are not known to be involved in stress 

response. Thus, the combination of the different proteins (and the sociodemographic/lifestyle 

factors) could be considered to represent a disease-specific profile of MDD as opposed to a 

stress response. 

 

A consistent finding across Chapters 4 and 5 was that MDD patients had higher BMI 

compared to individuals with subthreshold depression. While the relationship between 

depression and obesity (defined as BMI (kg/m2) ≥ 30) is an established phenomenon that has 

been repeatedly observed [366], [367], [407], a bidirectional association between depression 

and obesity was also reported in a meta-analysis of longitudinal studies, such that not only were 

obese individuals 55% more likely to develop depression, but depressed individuals were also 

58% more likely to become obese [131]. In addition, the positive association between 

depression and BMI was found to be more notable among women, which may reflect the 

increased incidence and prevalence of depression in women [407]. Importantly, depression and 

obesity share alterations in immune/inflammatory and neuroendocrine pathways [130]–[132], 

[408], [409], and this is further supported by the evidence that blood levels of the inflammatory 

biomarkers of depression identified in Chapter 5 (A1AG1, A2GL and CFAH) have been found 

to be increased in obesity [398]–[401]. Moreover, childhood trauma was identified as a strong 

predictor of MDD in Chapter 4. Adverse childhood experience is a well-known risk factor for 

developing depression in adulthood, particularly in response to stress [115]–[117], [410]. This 

relationship has been proposed to be mediated by dysregulation of the HPA axis and 

inflammatory pathways, as childhood trauma has been associated with several of the 

characteristic pathophysiological features of depression, including sensitisation of the 

neuroendocrine stress response, CRF hyperactivity, glucocorticoid resistance and immune 

activation [139], [146] (as discussed in Chapter 1). Additionally, a positive association 

between childhood trauma and obesity has been observed [411]–[413]. These relationships 
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could potentially be explained by the idea that childhood adversity leads to emotional 

dysregulation through activation of the stress response; in turn, emotional dysregulation has 

been associated with an increased appetite and a preference for and consumption of foods high 

in sugar and fat (‘emotional eating’), which are observed in depression and could lead to 

excessive weight gain [130], [414]–[417]. Therefore, these findings support potential 

disturbances in the immune/inflammatory and neuroendocrine pathways in depression. While 

alterations in immune/inflammatory response is clearly supported by the biomarker findings in 

Chapters 4 and 5, this is not necessarily the case for the HPA axis, as none of the identified 

biomarker candidates are known to be directly involved in the neuroendocrine system. 

Nevertheless, the observed associations between MDD, BMI and childhood trauma could be 

taken as implicative of not only a dysregulated immune/inflammatory system but also a 

dysregulated HPA axis. It has been suggested that interactions may occur between these 

pathways and that there may be a common pathophysiological mechanism linking them, 

whereby activation of immune/inflammatory responses in MDD could lead to HPA axis 

hyperactivity, and vice versa [14], [141], [150], [160]. 

 

In addition, preliminary evidence suggests that the relationship of depression with HPA axis 

hyperactivity and immune activation may be mainly driven by somatic symptoms, such as 

fatigue and sleeping problems; on the other hand, the role of cognitive symptoms, such as 

sadness and anhedonia, may be considerably smaller [418]–[422]. Thus, elevated inflammatory 

and neuroendocrine responses may contribute to the development of the somatic components 

of depression [421], which is consistent with the findings of the somatic symptoms of fatigue 

and leaden paralysis as strong predictors of MDD outcome in Chapter 4 (but not sadness which 

was found as another strong predictor). The differential association of somatic and cognitive 

symptoms of depression with HPA axis hyperactivity and immnue activation provides insight 

into the heterogeneity of depression and highlights the importance of considering the effects of 

specific symptom profiles on the pathophysiological mechanisms of depression and the 

therapeutic efficacy of antidepressants [422]. This also suggests that the current diagnostic 

strategy, which considers individuals symptoms as interchangeable and relies on summing 

them together to establish diagnoses, could result in a loss of information [371], [372], [423]. 

 

Furthermore, the findings appear to be consistent with the diathesis-stress model for depression, 

which proposes that the onset of depression is a result of an interaction between an individual’s 

vulnerability (i.e., diathesis) and environmental stress (caused by life experiences) [106], [424]. 
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As genetic risk factors can be regarded as a genetic diathesis, the interaction between genetic 

diathesis and stress can be considered as a gene-environment interaction [425]. While stressful 

life events have been consistently recognised as a strong determinant of depressive symptoms 

and the onset of MDD [118], [426]–[428], according to the diathesis-stress model, individuals 

develop depression if the combined effect of latent diathesis and stress exceeds a certain 

threshold, whereby an individual with a greater vulnerability requires a smaller amount of 

stress to trigger the manifestation of symptoms [424], [429]. This is supported by the finding 

from a study of female-female twin pairs that the onset of MDEs could be predicted by the 

interaction between genetic risk factors and stressful life events [427], and explains why some 

individuals develop depression following stressful life events whereas others never do so. In 

addition, the diathesis-stress model proposes that the interaction between diathesis and stress 

increases the liability to depression beyond what would be expected from their additive 

contributions. Consistent with this, recent studies have shown that, due to such gene-

environment effects, those with an inherent genetic predisposition to MDD and a high number 

of recent stressful life events are at an extra risk of depression, although larger sample sizes 

may be required to confirm these findings [425], [429]. Moreover, it has been suggested that 

as different individuals have various levels of inherent vulnerability and experience various 

levels of stress in their lives, diathesis-stress interactions may result in a fluctuating level of 

depressive symptoms across the population [430]. This could be consistent with the spectrum 

view of depression, which proposes that depressive disorders exist along a dimensional 

continuum of symptomatic severity, and account for the clinical observations of subthreshold 

depression, partial remission and residual symptoms [430]. 

 

MDD is a complex and multifactorial disorder that arises from complex interactions between 

genetic risk factors, molecular and functional disturbances and environmental exposures [48], 

[106]. From a developmental viewpoint, genetic predispositions and childhood adversity may 

result in sensitisation of the neuroendocrine stress response system involving the HPA axis, 

possibly through epigenetic modifications (i.e., gene-environment interaction), which can, in 

turn, lead to immune system activation, increase the vulnerability to depression, as well as 

promote unhealthy lifestyles and obesity in later life [168], [172], [173], [431]. The 

identification of APOE, a protein involved in lipid transport and metabolism, as a biomarker 

candidate for MDD in both Chapters 4 and 5 may represent a potential interaction between 

genetic and environmental factors. Previous studies have revealed an association between 

APOE polymorphism and depression, in particular late-life depression [389]–[391], and it has 
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been suggested that the APOE ε4 allele may modulate the adverse effects of stress, including 

childhood adversity, and lead to an increase the vulnerability to depression in later life [363]. 

Additionally, the APOE ε4 genotype has been associated with an increased severity of 

depression among depressed patients [432], as well as with stronger responses to stress [364]. 

However, it should be noted that APOE levels were reduced in MDD patients compared to 

subthreshold individuals in Chapter 4, whereas they were increased in MDD patients 

compared to subthreshold individuals (low mood controls) in Chapter 5. Such inconsistency 

could be partially accounted for by the use of different sample materials (serum in Chapter 4 

and DBS in Chapter 5), as well as by the identification of different peptides representing 

APOE (ALMDETMK in Chapter 4 and LGPLVEQGR in Chapter 5; only the abundance 

levels of the peptides within the proteins, and not necessarily those of the whole proteins, were 

altered).  

 

 

6.3. Limitations and future work 
 

There are several limitations to the work presented in this thesis. The sample sizes of the 

datasets used in Chapters 3, 4 and 5 were relatively small, particularly considering the large 

numbers of features analysed in model selection. Given the general difficulty associated with 

recruiting appropriate patient and reference samples, small sample size is a major limitation in 

many psychiatric studies. Nevertheless, the multimodel approach developed in Chapter 3 and 

applied in Chapters 4 and 5 was effective in accounting for model selection uncertainty and 

alleviating model overfitting, which can limit model reproducibility when model selection is 

performed on high-dimensional data (small n, large p). Additionally, in Chapters 4 and 5, 

prediction models had to be extrapolated to the target sample groups of subthreshold 

individuals who developed MDD and new current MDD patients, respectively, after having 

been trained on first-onset MDD patients and established current MDD patients, due to the 

limited availability of the target sample groups in the datasets. The accuracy and reproducibility 

of the prediction models could potentially be improved if they could be both trained and tested 

on the relevant target sample groups of sufficient sample sizes. Furthermore, although the 

models were validated on independent datasets (i.e., datasets other than those used for model 

training), it would be essential to also validate them on independent cohorts of patient and 

reference samples recruited from different clinical centres in order to further determine the 
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generalisability of the models. This was not feasible as no such cohorts were available. Hence, 

extensive studies using large, representative and independent sample sets will need to be 

conducted to develop robust, accurate and reliable prediction models to aid in the clinical 

diagnosis of MDD, particularly within the primary care setting. Moreover, despite potential 

gender differences in proteomic biomarker profiles of MDD, these were not investigated within 

the current scope of the thesis. Further analyses could therefore be carried out on the existing 

datasets to investigate differences in serum and/or DBS biomarkers of MDD between males 

and females as well as gender-specific associations between MDD and biomarker levels, as 

reported in previous studies [433], [434]. These would help to not only elucidate gender 

differences in the pathophysiology of MDD but also explore their potential utility in the 

development of a diagnostic biomarker test. The existing datasets could also be used to 

examine the effects of various sociodemographic and lifestyle factors, such as smoking, alcohol 

abuse and childhood trauma, on proteomic biomarker profiles, which were not explicitly 

studied within the present thesis. As these sociodemographic and lifestyle factors may 

potentially interact with the biomarkers in predicting the disease outcome, it would be 

important to explore these interactions in future analyses and enable any significant interactions 

to be taken into account for disease classification and prediction. 

 

As the findings of Chapters 4 and 5 reveal that MDD patients could be differentiated from 

individuals presenting with subthreshold levels of symptoms, further studies need to be 

conducted in subthreshold individuals for a better characterisation of the condition. This would 

allow for earlier and more accurate diagnosis of MDD, and thereby result in earlier 

interventions and improved patient outcomes. In particular, given the growing evidence that 

subthreshold depression may represent a prodromal stage of MDD [55], [56], [358], it would 

be of interest to examine whether diagnostic (or prognostic) prediction models could identify 

individuals at different stages of the prodromal stage and/or investigate the role of proteomic 

biomarkers in the progression from subthreshold depression to full-blown MDD. In addition, 

given the heterogeneity of depression and the discussed differential association of somatic and 

cognitive symptoms of depression with HPA axis hyperactivity and immnue activation, it may 

be relevant for future studies to identify subgroups of MDD patients based on their symptom 

profiles (i.e., those who present mainly with somatic symptoms and those who present mainly 

with cognitive symptoms) and develop separate diagnostic prediction models for each 

subgroup. This may potentially improve the accuracy and reproducibility of the outcome 

predictions. Future studies should also assess whether the diagnostic biomarkers and patient 
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characteristics that have been identified in this work are specific for MDD or whether they are 

also altered in other psychiatric disorders. In other words, the differential diagnostic potential 

of prediction models need to be evaluated, especially in differentiating between MDD and BD, 

since BD is frequently misdiagnosed as MDD and the two disorders share overlaping 

depressive symptoms [228]. 

 

Furthermore, the contribution of DBS proteomic biomarkers to the prediction of MDD was 

limited relative to that of the digital features in Chapter 5, even though serum proteomic 

biomarkers made a considerable contribution to the prediction of MDD in Chapter 4. While 

the overall precision of a protein quantification assay depends on the reproducibility of sample 

preparation as well as that of MRM-MS analysis, two additional steps were involved in DBS 

sample preparation which could potentially increase the variability when compared with serum 

sample preparation; these were the spotting of blood onto the DBS collection card and the 

extraction of analytes from the card [315]. In particular, failure of the participants to follow 

instructions with regards to sampling, drying and posting could lead to poor quality of DBS 

samples [306]. Therefore, better controlling for these steps in the sample collection and 

preparation procedures in future studies could enhance the precision and accuracy with which 

proteins are quantified in DBS samples, and potentially allow for more important and robust 

DBS-based biomarkers to be identified. 

 

It should be noted that while childhood trauma was investigated as a potential predictor of 

MDD in both Chapters 4 and 5, it was only identified as a predictor in Chapter 4. This is 

expected to be not only due to differences in the datasets analysed, but also at least partially 

due to difference in the way in which childhood trauma was assessed and measured in the 

respective clinical studies. In Chapter 4 (NESDA), childhood trauma was assessed using the 

childhood trauma index, where participants were asked about their experiences of emotional 

neglect, psychological abuse, physical abuse and sexual abuse in early life and sum scores 

ranging from zero to eight were calculated to take into account the number of types and 

frequency of childhood trauma experienced [354]. On the other hand, in Chapter 5 (Delta 

Study), participants were only asked whether or not they had had any emotionally painful or 

distressing experiences in early childhood, resulting in a binary (yes/no) variable. This 

highlights the potential importance of measuring a predictor in a way that makes the most out 

of the information contained, which may be a valuable consideration in designing studies in 

the future. Moreover, as much of the patient information collected in the NESDA and the Delta 
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Study in Chapters 4 and 5, including sociodemographic, lifestyle, clinical and/or personality 

features, was assessed by self-report, these variables may be inaccurate and potentially suffer 

from social desirability response bias (that is, the tendency for participants to present a 

favourable image of themselves on questionnaires) [435]. 

 

Finally, despite the efforts to conduct a comprehensive analysis of the various features that 

could be associated with MDD in Chapters 4 and 5, it should be acknowledged that other 

potentially relevant features may have been overlooked. In particular, as the selection of 

proteins which were investigated by targeted MRM-MS analysis was based on their previous 

associations with psychiatric disorders as gathered from the scientific literature, it is possible 

that potentially important discriminatory proteins have not been included. Therefore, it would 

be essential to conduct discovery proteomic analysis using an untargeted approach such as 

shotgun proteomics to identify additional blood-based protein biomarker candidates for MDD 

[436]. This could be performed using a LC system coupled with a quadrupole time-of-flight 

(Q-TOF) mass spectrometer [437]. A potential challenge in discovery proteomic analysis is 

that, while biomarker candidates are generally likely to be present within the low concentration 

range, low abundance proteins tend to be masked by high abundance proteins, such as albumin, 

immunoglobulins and complement factors, which account for the majority of the total protein 

content [217] [300]. Therefore, removal of these high abundance proteins from the blood 

samples using methods such as immunodepletion in order to enhance the coverage of the blood 

proteome would be an essential consideration for the identification novel biomarker candidates 

[299], [301], [302]. Note that this was not necessary in targeted MS analysis in Chapters 3, 4 
and 5 as the proteins of interest were already known. Additionally, proteins encoded by genes 

which have been implicated in MDD based on findings from genomic studies should be 

investigated for their diagnostic potential. Furthermore, it would be interesting to combine 

findings across different –omics fields and explore the potentially complementary roles of 

genomic and proteomic biomarkers in comprising a disease-specific profile and enabling 

differential diagnosis, particularly given the likelihood that individual biomarkers could be 

shared with other psychiatric disorders such as BD and schizophrenia [194]. Exploring 

additional non-biological patient characteristics for their potential associations with MDD 

would also be of interest.  
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6.4. Conclusions 
 

The work carried out in this thesis represents extensive investigations of proteomic biomarker 

candidates, sociodemographic factors and other patient characteristics to develop risk 

prediction models of MDD that could potentially be used to assist in the detection and diagnosis 

of MDD in clinical practice. Targeted MRM-MS was used to measure the abundances of a 

panel of peptides representing proteins which have been previously associated with psychiatric 

disorders in serum and DBS samples, and various non-biological patient characteristics were 

investigated as potential predictors of MDD along with proteomic biomarker candidates. By 

developing and adopting a multimodel approach, involving LASSO regression, repeated K-

fold cross-validation, feature extraction and model averaging, parsimonious and reproducible 

prediction models were obtained. Several blood-based proteomic biomarkers, which mainly 

represented an immune/inflammatory profile, BMI, childhood trauma, as well as other features, 

were found to be associated with MDD. Although further investigations are needed, these 

associations indicate a dysregulation of the immune/inflammatory and neuroendocrine systems 

in the pathophysiology of depression. Moreover, these findings demonstrate that prediction 

models comprised of blood-based proteomic biomarkers, sociodemographic factors and 

clinical/personality features can identify and predict depression among clinically relevant 

populations of individuals presenting with subthreshold depression/low mood, despite the need 

for additional validation studies. The findings also demonstrate the utility of serum and DBS 

as sample materials for identifying blood-based biomarkers of MDD, and represent a 

substantial step forward in the development of an objective, non-invasive and cost-effective 

diagnostic test for MDD. Such a test has the potential to facilitate earlier and more accurate 

clinical diagnosis, particularly in primary care where time and resources are limited, and reduce 

the overall socioeconomic burden of MDD. Nevertheless, a considerable amount of further 

work remains to be done for a diagnostic test to be translated into routine clinical practice and 

for the pathophysiological mechanisms of MDD to be fully elucidated.
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Appendix 
 
Table A. 1. Protein peptides investigated using targeted MRM-MS in Chapters 3-5. 
One hundred and forty-seven peptides representing 77 serum proteins were investigated in Chapter 3; 

One hundred and forty-six peptides representing 77 serum proteins were investigated in Chapter 4. 

One hundred and ninety-four peptides representing 115 DBS proteins were investigated in Chapter 5.  

 

Protein Protein name 
UniProt 
accession 
number 

 
 
Peptide sequence 
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A1AG1 α-1-acid glycoprotein 1 P02763 SDVVYTDWK   ✔ 

A1AG2 α-1-acid glycoprotein 2 P19652 EHVAHLLFLR    

A1AT α-1-antitrypsin P01009 LSITGTYDLK ✔ ✔ ✔ 

A1AT α-1-antitrypsin P01009 SPLFMGK ✔ ✔ ✔ 

A1AT α-1-antitrypsin P01009 SVLGQLGITK ✔ ✔ ✔ 

A1BG α-1B-glycoprotein P04217 ATWSGAVLAGR ✔ ✔ ✔ 

A1BG α-1B-glycoprotein P04217 CLAPLEGAR ✔ ✔  

A1BG α-1B-glycoprotein P04217 GVTFLLR   ✔ 

A1BG α-1B-glycoprotein P04217 LLELTGPK   ✔ 

A1BG α-1B-glycoprotein P04217 SGLSTGWTQLSK ✔ ✔ ✔ 

A2AP α-2-antiplasmin P08697 DFLQSLK ✔ ✔ ✔ 

A2AP α-2-antiplasmin P08697 
DSFHLDEQFTVPVE

MMQAR ✔ ✔  

A2AP α-2-antiplasmin P08697 FDPSLTQR ✔ ✔ ✔ 

A2AP α-2-antiplasmin P08697 LFGPDLK   ✔ 

A2GL 
Leucine-rich α-2-

glycoprotein 
P02750 VAAGAFQGLR 

  ✔ 

A2MG α-2-macroglobulin P01023 AIGYLNTGYQR ✔ ✔ ✔ 

A2MG α-2-macroglobulin P01023 NEDSLVFVQTDK ✔ ✔ ✔ 

AACT α-1-antichymotrypsin P01011 ADLSGITGAR ✔ ✔ ✔ 

AACT α-1-antichymotrypsin P01011 EIGELYLPK ✔ ✔ ✔ 

AACT α-1-antichymotrypsin P01011 EQLSLLDR ✔ ✔ ✔ 
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AL1A1 Retinal dehydrogenase 1 P00352 ILDLIESGK   ✔ 

ALBU Albumin P02768 AAFTECCQAADK ✔ ✔ ✔ 

ALBU Albumin P02768 ETYGEMADCCAK ✔ ✔ ✔ 

ALBU Albumin P02768 QNCELFEQLGEYK ✔ ✔ ✔ 

ALBU Albumin P02768 YLYEIAR   ✔ 

ALDOA 
Fructose-bisphosphate 

aldolase A 
P04075 ALANSLACQGK 

  ✔ 

ALDOA 
Fructose-bisphosphate 

aldolase A 
P04075 QLLLTADDR 

  ✔ 

AMBP Protein AMBP P02760 ETLLQDFR ✔ ✔ ✔ 

AMBP Protein AMBP P02760 TVAACNLPIVR ✔ ✔ ✔ 

ANGT Angiotensinogen P01019 ALQDQLVLVAAK ✔ ✔ ✔ 

ANGT Angiotensinogen P01019 FMQAVTGWK ✔ ✔  

ANGT Angiotensinogen P01019 SLDFTELDVAAEK ✔ ✔ ✔ 

ANT3 Antithrombin-III P01008 EVPLNTIIFMGR   ✔ 

ANT3 Antithrombin-III P01008 FATTFYQHLADSK   ✔ 

ANT3 Antithrombin-III P01008 FDTISEK ✔ ✔ ✔ 

ANT3 Antithrombin-III P01008 LPGIVAEGR ✔ ✔ ✔ 

APOA1 Apolipoprotein A-I P02647 ATEHLSTLSEK ✔ ✔ ✔ 

APOA1 Apolipoprotein A-I P02647 
EQLGPVTQEFWDN

LEK ✔ ✔  

APOA1 Apolipoprotein A-I P02647 LLDNWDSVTSTFSK   ✔ 

APOA1 Apolipoprotein A-I P02647 VSFLSALEEYTK   ✔ 

APOA2 Apolipoprotein A-II P02652 EQLTPLIK   ✔ 

APOA2 Apolipoprotein A-II P02652 SPELQAEAK ✔ ✔ ✔ 

APOA4 Apolipoprotein A-IV P06727 ALVQQMEQLR ✔ ✔ ✔ 

APOA4 Apolipoprotein A-IV P06727 IDQNVEELK ✔ ✔ ✔ 

APOA4 Apolipoprotein A-IV P06727 ISASAEELR ✔ ✔ ✔ 

APOA4 Apolipoprotein A-IV P06727 LAPLAEDVR   ✔ 

APOA4 Apolipoprotein A-IV P06727 LLPHANEVSQK   ✔ 

APOB Apolipoprotein B-100 P04114 TGISPLALIK   ✔ 

APOC1 Apolipoprotein C-I P02654 EFGNTLEDK ✔ ✔ ✔ 

APOC1 Apolipoprotein C-I P02654 EWFSETFQK ✔ ✔ ✔ 

APOC2 Apolipoprotein C-II P02655 ESLSSYWESAK ✔ ✔  

APOC2 Apolipoprotein C-II P02655 TAAQNLYEK ✔ ✔ ✔ 
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APOC2 Apolipoprotein C-II P02655 TYLPAVDEK   ✔ 

APOC3 Apolipoprotein C-III P02656 
DALSSVQESQVAQ

QAR ✔ ✔  

APOC3 Apolipoprotein C-III P02656 GWVTDGFSSLK ✔ ✔ ✔ 

APOC4 Apolipoprotein C-IV P55056 AWFLESK ✔ ✔  

APOD Apolipoprotein D P05090 NILTSNNIDVK   ✔ 

APOD Apolipoprotein D P05090 VLNQELR ✔ ✔ ✔ 

APOE Apolipoprotein E P02649 
AATVGSLAGQPLQ

ER ✔ ✔ ✔ 

APOE Apolipoprotein E P02649 ALMDETMK ✔ ✔ ✔ 

APOE Apolipoprotein E P02649 LEEQAQQIR ✔ ✔  

APOE Apolipoprotein E P02649 LGPLVEQGR ✔ ✔ ✔ 

APOE Apolipoprotein E P02649 
SELEEQLTPVAEET

R ✔ ✔ ✔ 

APOF Apolipoprotein F Q13790 SLPTEDCENEK ✔ ✔  

APOH β-2-glycoprotein 1 P02749 EHSSLAFWK ✔ ✔ ✔ 

APOH β-2-glycoprotein 1 P02749 VSFFCK ✔ ✔  

APOL1 Apolipoprotein L1 O14791 LNILNNNYK ✔ ✔ ✔ 

APOL1 Apolipoprotein L1 O14791 VNEPSILEMSR ✔ ✔ ✔ 

APOL1 Apolipoprotein L1 O14791 
VTEPISAESGEQVE

R ✔ ✔  

APOM Apolipoprotein M O95445 AFLLTPR ✔ ✔  

APOM Apolipoprotein M O95445 FLLYNR   ✔ 

APOM Apolipoprotein M O95445 SLTSCLDSK ✔ ✔ ✔ 

C1QB 
Complement C1q 

subcomponent subunit B 
P02746 GNLCVNLMR 

  ✔ 

C1QC 
Complement C1q 

subcomponent subunit C 
P02747 FQSVFTVTR 

  ✔ 

C1QC 
Complement C1q 

subcomponent subunit C 
P02747 TNQVNSGGVLLR 

✔ ✔ ✔ 

C1R Complement C1r P00736 YTTEIIK ✔ ✔ ✔ 

C1RL 

Complement C1r 

subcomponent-like 

protein 

Q9NZP8 GSEAINAPGDNPAK 
✔   
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C1RL 

Complement C1r 

subcomponent-like 

protein 

Q9NZP8 VVVHPDYR 

  ✔ 

C1S 
Complement C1s 

subcomponent 
P09871 LLEVPEGR 

✔ ✔ ✔ 

C1S 
Complement C1s 

subcomponent 
P09871 TNFDNDIALVR 

✔ ✔  

C4BPA 
C4b-binding protein α 

chain 
P04003 EDVYVVGTVLR 

✔ ✔ ✔ 

C4BPA 
C4b-binding protein α 

chain 
P04003 FSAICQGDGTWSPR 

✔ ✔  

C4BPA 
C4b-binding protein α 

chain 
P04003 GYILVGQAK 

  ✔ 

C4BPA 
C4b-binding protein α 

chain 
P04003 YTCLPGYVR 

✔ ✔ ✔ 

CAH1 Carbonic anhydrase 1 P00915 ADGLAVIGVLMK ✔ ✔ ✔ 

CAH2 Carbonic anhydrase 2 P00918 GGPLDGTYR   ✔ 

CAH2 Carbonic anhydrase 2 P00918 SADFTNFDPR   ✔ 

CAH2 Carbonic anhydrase 2 P00918 VVDVLDSIK   ✔ 

CATA Catalase P04040 LNVITVGPR   ✔ 

CBG 
Corticosteroid-binding 

globulin 
P08185 GTWTQPFDLASTR 

✔ ✔ ✔ 

CBG 
Corticosteroid-binding 

globulin 
P08185 ITQDAQLK 

✔ ✔  

CBPB2 Carboxypeptidase B2 Q96IY4 DTGTYGFLLPER ✔ ✔  

CBPB2 Carboxypeptidase B2 Q96IY4 YPLYVLK ✔ ✔  

CD44 CD44 antigen P16070 YGFIEGHVVIPR   ✔ 

CD5L CD5 antigen-like O43866 
EATLQDCPSGPWG

K ✔ ✔  

CD5L CD5 antigen-like O43866 IWLDNVR   ✔ 

CD5L CD5 antigen-like O43866 LVGGLHR   ✔ 

CERU Ceruloplasmin P00450 DIASGLIGPLIICK   ✔ 

CERU Ceruloplasmin P00450 
EVGPTNADPVCLA

K ✔ ✔  

CERU Ceruloplasmin P00450 EYTDASFTNR   ✔ 
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CERU Ceruloplasmin P00450 
NNEGTYYSPNYNP

QSR ✔ ✔  

CFAB Complement factor B P00751 DISEVVTPR ✔ ✔ ✔ 

CFAB Complement factor B P00751 DLLYIGK ✔ ✔ ✔ 

CFAB Complement factor B P00751 EELLPAQDIK ✔ ✔ ✔ 

CFAB Complement factor B P00751 YGLVTYATYPK ✔ ✔ ✔ 

CFAH Complement factor H P08603 CFEGFGIDGPAIAK ✔ ✔  

CFAH Complement factor H P08603 IDVHLVPDR   ✔ 

CFAH Complement factor H P08603 NGFYPATR   ✔ 

CFAI Complement factor I P05156 IVIEYVDR   ✔ 

CHSP1 
Calcium-regulated heat-

stable protein 1 
Q9Y2V2 

LQAVEVVITHLAPG

TK    

CLUS Clusterin P10909 ASSIIDELFQDR   ✔ 

CLUS Clusterin P10909 ELDESLQVAER   ✔ 

CLUS Clusterin P10909 FMETVAEK ✔ ✔ ✔ 

CLUS Clusterin P10909 IDSLLENDR ✔ ✔ ✔ 

CO2 Complement C2 P06681 HAIILLTDGK ✔ ✔  

CO3 Complement C3 P01024 
AGDFLEANYMNLQ

R ✔ ✔ ✔ 

CO3 Complement C3 P01024 GYTQQLAFR   ✔ 

CO3 Complement C3 P01024 
SGIPIVTSPYQIHFT

K    

CO3 Complement C3 P01024 TGLQEVEVK  ✔ ✔ 

CO3 Complement C3 P01024 VYAYYNLEESCTR ✔ ✔  

CO4A Complement C4-A P0C0L4 DFALLSLQVPLK ✔ ✔ ✔ 

CO4A Complement C4-A P0C0L4 ITQVLHFTK ✔ ✔  

CO4A Complement C4-A P0C0L4 VGDTLNLNLR  ✔ ✔ 

CO4A Complement C4-A P0C0L4 
VLSLAQEQVGGSPE

K ✔ ✔ ✔ 

CO6 
Complement component 

C6 
P13671 SEYGAALAWEK 

✔ ✔  

CO6 
Complement component 

C6 
P13671 TLNICEVGTIR 

✔ ✔  

CO8A 
Complement component 

C8 α chain 
P07357 AMAVEDIISR 

  ✔ 
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CO8A 
Complement component 

C8 α chain 
P07357 HTSLGPLEAK 

  ✔ 

CO8A 
Complement component 

C8 α chain 
P07357 MESLGITSR 

✔ ✔  

CO8B 
Complement component 

C8 β chain 
P07358 SGFSFGFK 

  ✔ 

CO9 
Complement component 

C9 
P02748 LSPIYNLVPVK 

✔ ✔ ✔ 

CO9 
Complement component 

C9 
P02748 VVEESELAR 

✔ ✔ ✔ 

CXCL7 Platelet basic protein P02775 NIQSLEVIGK   ✔ 

DEMA Dematin Q08495 VTSNLGK   ✔ 

ENOA α-enolase P06733 TIAPALVSK   ✔ 

F13A 
Coagulation factor XIII A 

chain 
P00488 STVLTIPEIIIK 

  ✔ 

FA12 Coagulation factor XII P00748 CFEPQLLR ✔ ✔  

FA12 Coagulation factor XII P00748 VVGGLVALR ✔ ✔  

FCN3 Ficolin-3 O75636 YGIDWASGR ✔ ✔  

FETUA α-2-HS-glycoprotein P02765 FSVVYAK ✔ ✔  

FETUA α-2-HS-glycoprotein P02765 HTLNQIDEVK ✔ ✔  

FETUB Fetuin-B Q9UGM5 LVVLPFPK   ✔ 

FIBA Fibrinogen α chain P02671 GSESGIFTNTK   ✔ 

FIBB Fibrinogen β chain P02675 
AHYGGFTVQNEAN

K   ✔ 

FIBG Fibrinogen γ chain P02679 
EGFGHLSPTGTTEF

WLGNEK   ✔ 

FIBG Fibrinogen γ chain P02679 IHLISTQSAIPYALR    

FINC Fibronectin P02751 SYTITGLQPGTDYK   ✔ 

FINC Fibronectin P02751 YSFCTDHTVLVQTR ✔ ✔ ✔ 

GDIB 
Rab GDP dissociation 

inhibitor β 
P50395 DLGTESQIFISR 

  ✔ 

GDIB 
Rab GDP dissociation 

inhibitor β 
P50395 FVSISDLLVPK 

  ✔ 

GELS Gelsolin P06396 AGALNSNDAFVLK ✔ ✔ ✔ 

GELS Gelsolin P06396 SEDCFILDHGK ✔ ✔ ✔ 

H4 Histone H5 P62805 DAVTYTEHAK   ✔ 
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H4 Histone H4 P62805 VFLENVIR   ✔ 

HABP2 
Hyaluronan-binding 

protein 2 
Q14520 VVLGDQDLK 

  ✔ 

HBA Hemoglobulin subunit α P69905 FLASVSTVLTSK ✔ ✔  

HBA Hemoglobulin subunit α P69905 MFLSFPTTK ✔ ✔  

HBD Hemoglobulin subunit δ P02042 LLGNVLVCVLAR    

HBG1 Hemoglobulin subunit γ-1 P69891 MVTAVASALSSR ✔  ✔ 

HEMO Hemopexin P02790 NFPSPVDAAFR ✔ ✔ ✔ 

HEMO Hemopexin P02790 VDGALCMEK ✔ ✔ ✔ 

HEP2 Heparin cofactor 2 P05546 FAFNLYR ✔ ✔ ✔ 

HEP2 Heparin cofactor 2 P05546 IAIDLFK ✔ ✔ ✔ 

HEP2 Heparin cofactor 2 P05546 TLEAQLTPR   ✔ 

HINT1 
Histidine triad nucleotide-

binding protein 1 
P49773 IIFEDDR 

  ✔ 

HPT Haptoglobin P00738 DYAEVGR ✔ ✔ ✔ 

HPT Haptoglobin P00738 VGYVSGWGR ✔ ✔ ✔ 

HPT Haptoglobin P00738 VTSIQDWVQK ✔ ✔ ✔ 

HRG 
Histidine-rich 

glycoprotein 
P04196 

ADLFYDVEALDLES

PK ✔ ✔  

HRG 
Histidine-rich 

glycoprotein 
P04196 DSPVLIDFFEDTER 

✔ ✔  

HRG 
Histidine-rich 

glycoprotein 
P04196 

GGEGTGYFVDFSV

R   ✔ 

IC1 
Plasma protease C1 

inhibitor 
P05155 FQPTLLTLPR 

✔ ✔ ✔ 

IC1 
Plasma protease C1 

inhibitor 
P05155 LLDSLPSDTR 

  ✔ 

IC1 
Plasma protease C1 

inhibitor 
P05155 TNLESILSYPK 

✔  ✔ 

IF4B 
Eukaryotic translation 

initiation factor 4B 
P23588 SILPTAPR 

  ✔ 

IGHA1 
Immunoglobulin heavy 

constant α 1 
P01876 

DASGVTFTWTPSSG

K ✔ ✔  

IGHA1 
Immunoglobulin heavy 

constant α 1 
P01876 TPLTATLSK 

✔ ✔ ✔ 
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IGHA2 
Immunoglobulin heavy 

constant α 2 
P01877 

DASGATFTWTPSSG

K ✔ ✔  

IGHG1 
Immunoglobulin heavy 

constant γ 1 
P01857 

FNWYVDGVEVHN

AK ✔ ✔ ✔ 

IGHG1 
Immunoglobulin heavy 

constant γ 1 
P01857 GPSVFPLAPSSK 

  ✔ 

IGHG2 
Immunoglobulin heavy 

constant γ 2 
P01859 GLPAPIEK 

✔ ✔  

IGHG2 
Immunoglobulin heavy 

constant γ 2 
P01859 

TTPPMLDSDGSFFL

YSK ✔   

IGHG3 
Immunoglobulin heavy 

constant γ 3 
P01860 DTLMISR 

✔ ✔ ✔ 

IGHG3 
Immunoglobulin heavy 

constant γ 3 
P01860 NQVSLTCLVK 

✔ ✔ ✔ 

IGHM 
Immunoglobulin heavy 

constant μ 
P01871 GFPSVLR 

  ✔ 

IGHM 
Immunoglobulin heavy 

constant μ 
P01871 QIQVSWLR 

✔ ✔ ✔ 

IGHM 
Immunoglobulin heavy 

constant μ 
P01871 YAATSQVLLPSK 

✔ ✔ ✔ 

ITIH1 
Inter-α-trypsin inhibitor 

heavy chain H1 
P19827 AAISGENAGLVR 

  ✔ 

ITIH1 
Inter-α-trypsin inhibitor 

heavy chain H1 
P19827 

GSLVQASEANLQA

AQDFVR ✔ ✔  

ITIH1 
Inter-α-trypsin inhibitor 

heavy chain H1 
P19827 LDAQASFLPK 

✔ ✔  

ITIH2 
Inter-α-trypsin inhibitor 

heavy chain H2 
P19823 FYNQVSTPLLR 

✔ ✔  

ITIH2 
Inter-α-trypsin inhibitor 

heavy chain H2 
P19823 IQPSGGTNINEALLR 

✔ ✔  

ITIH4 
Inter-α-trypsin inhibitor 

heavy chain H4 
Q14624 ETLFSVMPGLK 

✔ ✔  

ITIH4 
Inter-α-trypsin inhibitor 

heavy chain H4 
Q14624 GPDVLTATVSGK 

✔ ✔ ✔ 

ITIH4 
Inter-α-trypsin inhibitor 

heavy chain H4 
Q14624 ILDDLSPR 

  ✔ 
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KAD1 
Adenylate kinase 

isoenzyme 1 
P00568 IIFVVGGPGSGK 

  ✔ 

KLKB1 Plasma kallikrein P03952 LSMDGSPTR ✔ ✔  

KNG1 Kininogen-1 P01042 DFVQPPTK ✔   

KNG1 Kininogen-1 P01042 
DIPTNSPELEETLTH

TITK ✔ ✔ ✔ 

KNG1 Kininogen-1 P01042 TVGSDTFYSFK   ✔ 

KNG1 Kininogen-1 P01042 YFIDFVAR   ✔ 

KPYR KPYR_HUMAN P30613 GDLGIEIPAEK   ✔ 

LEG3 Galectin-3 P17931 IALDFQR   ✔ 

LUM Lumican P51884 SLEDLQLTHNK ✔ ✔ ✔ 

MUCB 
Immunoglobulin heavy 

constant μ 
P01871 GQPLSPEK 

  ✔ 

NDKA 
Nucleoside diphosphate 

kinase A 
P15531 DRPFFAGLVK 

  ✔ 

PARK7 
Parkinson disease protein 

7 
Q99497 ALVILAK 

  ✔ 

PARK7 
Parkinson disease protein 

7 
Q99497 DGLILTSR 

  ✔ 

PEBP1 
Phosphatidylethanolamine

-binding protein 1 
P30086 LYEQLSGK 

  ✔ 

PEDF 
Pigment epithelium-

derived factor 
P36955 DTDTGALLFIGK 

✔ ✔  

PEDF 
Pigment epithelium-

derived factor 
P36955 ELLDTVTAPQK 

✔ ✔ ✔ 

PEDF 
Pigment epithelium-

derived factor 
P36955 LQSLFDSPDFSK 

✔ ✔  

PEDF 
Pigment epithelium-

derived factor 
P36955 TVQAVLTVPK 

✔ ✔ ✔ 

PERM Myeloperoxidase P05164 IANVFTNAFR   ✔ 

PGRP2 
N-acetylmuramoyl-L-

alanine amidase 
Q96PD5 GCPDVQASLPDAK 

✔   

PGRP2 
N-acetylmuramoyl-L-

alanine amidase 
Q96PD5 TFTLLDPK 

✔ ✔  
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PHLD 

Phosphatidylinositol-

glycan-specific 

phospholipase D 

P80108 NQVVIAAGR 
✔ ✔  

PLMN Plasminogen P00747 FVTWIEGVMR ✔ ✔ ✔ 

PLMN Plasminogen P00747 HSIFTPETNPR    

PMGE 
Bisphosphoglycerate 

mutase 
P07738 HYGALIGLNR 

  ✔ 

PNPH 
Purine nucleoside 

phosphorylase 
P00491 FEVGDIMLIR 

  ✔ 

PNPH 
Purine nucleoside 

phosphorylase 
P00491 VFGFSLITNK 

  ✔ 

PON1 

Serum 

paraoxonase/arylesterase 

1 

P27169 LLIGTVFHK 

  ✔ 

PPAC 

Low molecular weight 

phosphotyrosine protein 

phosphatase 

P24666 IELLGSYDPQK 

  ✔ 

PPIA 
Peptidyl-prolyl cis-trans 

isomerase A 
P62937 FEDENFILK 

  ✔ 

PRDX1 Peroxiredoxin-1 Q06830 ADEGISFR   ✔ 

PRDX2 Peroxiredoxin-2 P32119 SVDEALR   ✔ 

PRDX2 Peroxiredoxin-2 P32119 TDEGIAYR   ✔ 

PRDX6 Peroxiredoxin-6 P30041 LSILYPATTGR   ✔ 

PROF1 Profilin-1 P07737 TLVLLMGK   ✔ 

PRS6A 
26S proteasome 

regulatory subunit 6A 
P17980 DAFALAK 

  ✔ 

PRS8 
26S proteasome 

regulatory subunit 8 
P62195 FIGEGAR 

  ✔ 

PSA2 
Proteasome subunit α 

type-2 
P25787 AANGVVLATEK 

  ✔ 

PSA6 
Proteasome subunit α 

type-6 
P60900 HITIFSPEGR 

  ✔ 

PSB7 
Proteasome subunit β 

type-7 
Q99436 GTTAVLTEK 

  ✔ 

RANG 
Ran-specific GTPase-

activating protein 
P43487 FLNAENAQK 

  ✔ 
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RET4 Retinol-binding protein 4 P02753 QEELCLAR ✔ ✔  

RET4 Retinol-binding protein 4 P02753 YWGVASFLQK ✔   

SAA4 
Serum amyloid A-4 

protein 
P35542 EALQGVGDMGR 

  ✔ 

SAMP 
Serum amyloid P-

component 
P02743 IVLGQEQDSYGGK 

✔ ✔ ✔ 

SH3L3 

SH3 domain-binding 

glutamic acid-rich-like 

protein 3 

Q9H299 VYSTSVTGSR 

  ✔ 

SHBG 
Sex hormone-binding 

globulin 
P04278 IALGGLLFPASNLR 

✔ ✔  

SHBG 
Sex Hormone-binding 

globulin 
P04278 LPLVPALDGCLR 

 ✔  

TBA4A Tubulin α-4A chain P68366 EIIDPVLDR   ✔ 

TETN Tetranectin P05452 EQQALQTVCLK ✔ ✔  

THBG 
Thyroxine-binding 

globulin 
P05543 NALALFVLPK 

  ✔ 

THIO Thioredoxin P10599 VGEFSGANK   ✔ 

THRB Prothrombin P00734 ELLESYIDGR ✔ ✔ ✔ 

THRB Prothrombin P00734 SGIECQLWR ✔ ✔  

TPIS 
Triosephosphate 

isomerase 
P60174 FFVGGNWK 

  ✔ 

TRFE Serotransferrin P02787 EGYYGYTGAFR ✔ ✔ ✔ 

TRFE Serotransferrin P02787 MYLGYEYVTAIR   ✔ 

TSP1 Thrombospondin-1 P07996 GTLLALER   ✔ 

TTHY Transthyretin P02766 AADDTWEPFASGK ✔ ✔  

TTHY Transthyretin P02766 VLDAVR ✔ ✔  

UB2L3 
Ubiquitin-conjugating 

enzyme E2 L3 
P68036 IYHPNIDEK 

  ✔ 

VTDB 
Vitamin D-binding 

protein 
P02774 HLSLLTTLSNR 

 ✔ ✔ 

VTDB 
Vitamin D-binding 

protein 
P02774 THLPEVFLSK 

 ✔  

VTDB 
Vitamin D-binding 

protein 
P02774 VLEPTLK 

 ✔ ✔ 
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VTNC Vitronectin P04004 
DVWGIEGPIDAAFT

R ✔ ✔ ✔ 

VTNC Vitronectin P04004 
DWHGVPGQVDAA

MAGR ✔ ✔ ✔ 
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Appendix Figure 1. Skyline MS/MS results from targeted MRM-based protein peptide 
quantification using QQQ mass spectrometer. 
(a) Extracted ion chromatogram for three peptides SPLFMGK, LSITGTYDLK and SVLGQLGITK 

targeted for protein α-1-antitrypsin (A1AT) in a digested DBS sample. (b) Precursor (MS1) ion 

chromatogram for peptide LSITGTYDLK (monitored at retention time 32.6 minutes). The endogenous 

peptide is shown in red and the SIL (heavy) peptide is shown in blue. Peak area was determined for 

each ion as the total integrated area within peak boundaries (vertical dotted lines), minus background 

area. (c) Fragment (MS2) ion chromatogram for y6, y7 and y8 transitions of the (i) endogenous and (ii) 

SIL peptide LSITGTYDLK (monitored at retention time 32.6 minutes). The y7 (purple) fragment ion 

served as a quantifier transition and was used for quantitation, whereas the y6 (red) and y8 (blue) 

fragment ions served as qualifier transitions and were used to ensure the correct selection of the 

endogenous and SIL peptides. Peak area was determined for each ion as the total integrated area within 

peak boundaries (vertical dotted lines), minus background area.  (d) Peak area determined from: (i) 

peptide precursors and (iI) fragments across multiple digested DBS samples. Abbreviations: MRM 

(multiple reaction monitoring); MS (mass spectrometry); QQQ (triple quadrupole); SIL (stable isotope-

labelled).
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Appendix Figure 2. Peptide-transition abundances of QC samples. 
QC samples were used to assess the technical variation associated with instrument performance and 

sample preparation. (a) The variation in instrument performance was assessed using a pooled QC 

sample, which was prepared by pooling together the digested clinical samples and injected once a day 

along with the clinical samples for the duration of the entire study. (b) The variation in sample 

preparation was assessed using QC samples obtained from a healthy volunteer, which were prepared 

following the same protocol as the clinical samples and distributed across the experimental plates. 

Peptide-transition abundance (peak area) data are shown for 194 peptides representing 115 DBS 

proteins (measured in Chapter 5). Boxplots show the log2-transformed abundance values of the 

peptide-transitions: (i) endogenous, (ii) SIL, and (iii) ratio. Boxplots are coloured by plate. 

Abbreviations: DBS (dried blood spot); QC (quality control).
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Appendix Figure 3. Endogenous peptide-transition abundances in serum and DBS QC samples. 
Peptide-transition abundance (peak area) data are shown for 89 endogenous peptides representing 51 

proteins that were measured in both (a) serum and (b) DBS samples. QC samples were used to assess 

the technical variation associated with instrument performance and sample preparation. (i) The variation 

in instrument performance was assessed using a pooled QC sample, which was prepared by pooling 

together the digested clinical serum or DBS samples and injected once a day along with the clinical 

samples for the duration of the entire study. (ii) The variation in sample preparation was assessed using 

commercial serum samples (Human Sera S7023, Sigma Aldrich) or DBS samples obtained from a 

healthy volunteer, which were prepared following the same protocol as the clinical samples and 

distributed across the experimental plates. Boxplots show the log2-transformed abundance values of the 

endogenous peptide-transitions. Abbreviations: DBS (dried blood spot); QC (quality control). 
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