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Abstract. Conservation laws that describe the behavior of partially molten3

mantle rock have been established for several decades, but the associated rhe-4

ology remains poorly understood. Constraints on the rheology may be ob-5

tained from recently published experiments involving deformation of partially6

molten rock around a rigid, spherical inclusion. These experiments give rise7

to patterns of melt segregation that exhibit the competing effects of pres-8

sure shadows and melt-rich bands. Such patterns provide an opportunity to9

infer rheological parameters through comparison with models based on the10

conservation laws and constitutive relations that hypothetically govern the11

system. To this end, we have developed software tools to simulate finite strain,12

two-phase flow around a circular inclusion in a configuration that mirrors13

the experiments. Simulations indicate that the evolution of porosity is pre-14

dominantly controlled by the porosity-weakening exponent of the shear vis-15

cosity and the poorly known bulk viscosity. In two-dimensional simulations16

presented here, we find that the balance of pressure shadows and melt-rich17

bands observed in experiments only occurs for bulk-to-shear-viscosity ratio18

of less than about five. However, the evolution of porosity in simulations with19

such low bulk viscosity exceeds physical bounds at unrealistically small strain20

due to the unchecked, exponential growth of the porosity variations. Processes21

that limit or balance porosity localization should be incorporated in the for-22

mulation of the model to produce results that are consistent with the poros-23

ity evolution in experiments.24
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1. Introduction

Segregation and extraction of melt from the mantle control the chemical evolution of25

the mantle and crust over geological time. Observations of petrological and isotopic dise-26

quilibrium suggest that melt extraction to produce oceanic crust is rapid and potentially27

localized into channels [Kelemen et al., 1997]. The mechanics of such melt extraction28

processes are still somewhat mysterious. Equations that are thought to describe melt ex-29

traction are well established [McKenzie, 1984], but these require refinement and validation.30

In particular, although the relevant conservation principles are known, the constitutive31

laws and closure conditions remain poorly constrained.32

New experiments by Qi et al. [2013] provide an opportunity to improve our under-33

standing of the rheology of partially molten rocks. In these experiments, a fine-grained,34

partially molten aggregate of olivine and basalt is deformed around a nearly rigid, olivine35

sphere. The experimental samples start with an approximately uniform porosity; af-36

ter they are deformed, quenched, and sectioned to reveal the resulting distribution of37

olivine and basaltic melt, they show clear evidence for melt migration within the sample.38

Measurements of the resulting patterns show that the spherical inclusion induces a per-39

turbation to the pressure field around it, driving flow of magma from the high-pressure40

sectors to the low-pressure sectors. These sectors are known as pressure shadows.41

Experimental results from a subset of the experiments by Qi et al. [2013] indicate that42

the pressure shadows can interact with emergent bands of high melt fraction. These43

bands are the result of a known instability in deforming, partially molten aggregates.44

This instability has been investigated theoretically [Stevenson, 1989; Spiegelman, 2003;45
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Katz et al., 2006; Butler , 2009, 2010; Takei and Katz , 2013; Katz and Takei , 2013] and46

experimentally [Holtzman et al., 2003; King et al., 2010] and has been shown to produce47

melt-enriched bands at a low angle to the shear plane. In the experiments by Qi et al.48

[2013], such melt bands nucleate at or near the pressure shadows, and grow at the expense49

of the shadows.50

The present work aims to derive constraints on the rheology of the partially molten51

mantle from the aforementioned experiments. We hypothesize that the theory developed52

to model partially molten aggregates [McKenzie, 1984] can be used to describe the results53

obtained by Qi et al. [2013] if the correct constitutive laws are included. In particular,54

we seek to quantify the form and magnitude of the viscous resistance to compaction55

based on comparisons between numerical simulations, analytical solutions, and laboratory56

experiments. Moreover, our goal is to establish a framework for the interpretation of57

current and future laboratory experiments that is based on the two-phase dynamics of58

partially molten aggregates.59

Previous analysis by McKenzie and Holness [2000] modeled melt segregation into pres-60

sure shadows around a rigid inclusion based on the theory of McKenzie [1984]. The61

authors show that the pattern of compaction and decompaction is sensitive to the ratio62

of the bulk to shear viscosity. They develop analytical solutions for an extremal case63

where the compaction length, the intrinsic length scale associated with the two-phase64

dynamics, is much larger than the size of the rigid inclusion, and is hence approximated65

as being infinite. And in this context, they solved only for the instantaneous pattern66

of pressure and (de)compaction associated with the onset of flow. In contrast with this67

analysis, experiments are performed with a compaction length that is on the order of the68
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size of the spherical inclusion. Furthermore, patterns in experiments develop over finite69

strain, during which segregation of melt and solid modifies the viscosity structure, and70

the inclusion undergoes finite rotation. This is further complicated by the emergence of71

melt bands in the experiments, and hence there is an interaction and competition be-72

tween the two modes of melt segregation. Hence the models of McKenzie and Holness73

[2000], while instructive, cannot be used to quantify constitutive parameters. The present74

work addresses these deficiencies by computing time-dependent solutions of the governing75

equations for a partially molten aggregate with finite compaction length.76

We use a finite element discretization and implement the simulation code in the FEn-77

iCS software framework [Logg et al., 2012; Logg and Wells , 2010]. FEniCS is an advanced78

library of tools for finite element modeling. Our numerical solutions extend a new set of79

analytical solutions for the instantaneous compaction rate surrounding a spherical inclu-80

sion at arbitrary compaction length [Rudge, 2013]. The simulation code is benchmarked81

against analytical theory, and our results are compared with patterns observed in experi-82

ments by Qi et al. [2013].83

The manuscript is organized as follows. We first describe the governing equations of84

two-phase mantle flow and discuss the numerical methods used to model them. Next,85

a pair of benchmarks is presented: the first tests our calculation of instantaneous com-86

paction around a circular inclusion; the second examines the growth rate and advection87

of porosity bands. We then explore the role of rheological parameters in three different88

model configurations of increasing complexity. The first suite of simulations addresses the89

formation of melt bands in a medium with randomly distributed melt, but without a rigid90

inclusion. The second suite focuses on the evolution of pressure shadows around a circular91
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inclusion for an initially uniform porosity field. The final set of simulations incorporates92

both the random initial porosity and the rigid, circular inclusion. We examine the com-93

petition between melt bands and pressure shadows, and compare these simulations with94

previous experimental results.95

2. Governing Equations

Mass and linear momentum balances for a two-phase (partially molten) system in a

domain Ω ⊂ Rd, 1 ≤ d ≤ 3, can be written as follows [McKenzie, 1984]:

∂φ

∂t
+∇ · (1− φ)us = 0 , (1)

∇ · ū = 0 , (2)

φ(uf − us) = −Kφ

µf
∇pf , (3)

∇ · σ̄ = 0 , (4)

where φ is the porosity, us is the solid velocity, uf is the fluid velocity, and ū = φuf +(1−96

φ)us. The fluid pressure is given by pf ; µf is the fluid viscosity. Kφ is the permeability,97

with the subscript φ denoting a dependence on the porosity. Furthermore, σ̄ := φσf +98

(1− φ)σs with σf the fluid stress and σs the solid stress.99

Equation (1) describes mass conservation for the solid phase, and equation (2) de-100

scribes conservation of mass for the two-phase mixture. Equations (3) and (4) are linear101

momentum balances for the fluid phase and the two-phase mixture, respectively. It is102

assumed here that there is no mass transport between the two phases, i.e., no melting or103

recrystallization takes place, that the densities of the two phases are constant, and that104

gravitational forces are negligible.105
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We assume a Newtonian constitutive model for σ̄:

σ̄ := −pfI + ζφ(∇ · us)I + τ̄ , (5)

where ζφ is the effective bulk viscosity of the two-phase mixture and

τ̄ := ηφ

(
∇us +∇uTs −

2

3
(∇ · us) I

)
(6)

is the deviatoric stress; ηφ is the effective shear viscosity.106

Inserting equation (3) into (2), under the preceding constitutive assumptions, equa-

tions (1)–(4) reduce to:

∂φ

∂t
+∇ · (1− φ)us = 0, (7)

∇ ·

(
−Kφ

µf
∇pf + us

)
= 0, (8)

−∇pf +∇(ζφ∇ · us) +∇ · τ̄ = 0, (9)

where the primal unknowns are φ, pf and us.107

To complete the problem, the following boundary conditions are applied:

−Kφ

µf
∇pf · n = 0 on ∂Ω , (10)

us = w on ∂Ω , (11)

where w is prescribed, and the boundaries are taken to be impermeable.108

To non-dimensionalize the equations above, we use the following scalings:

Kφ = K0K
′
φ, x = Hx′, us = Hγ̇us

′, t = γ̇−1t′,

ηφ = η0η
′
φ, ζφ = ζ0ζ

′
φ, pf = η0γ̇p

′
f ,

(12)

where φ0 is the reference porosity, K0 the permeability at the reference porosity, H a length

measure and γ̇ the imposed shear strain rate. The non-dimensional form of equations (7)–
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(9) are:

∂φ

∂t′
+∇′ · (1− φ)u′s = 0 , (13)

∇′ ·

(
− D2

R + 4/3
K ′φ∇′p′f + u′s

)
= 0 , (14)

∇′ ·
(

2η′φε̄(u
′
s)
)

+∇′
((

Rζ ′φ −
2

3
η′φ

)
∇′ · u′s

)
−∇′p′f = 0 , (15)

where ε̄(u′s) = (∇us +∇uTs )/2 is the strain-rate tensor, the bulk-to-shear viscosity ratio

R = ζ0/η0 and the length scale D = δ/H, in which

δ =

√
(R + 4/3)η0K0

µf
(16)

is the compaction length at reference porosity φ0.109

In this study, we choose the non-dimensional permeability K ′φ, bulk viscosity ζ ′φ and

shear viscosity η′φ to be:

K ′φ =

(
φ

φ0

)n
, ζ ′φ =

(
φ

φ0

)−m
, η′φ = e−α(φ−φ0), (17)

with n = 2 and m = 1; the porosity-weakening exponent α and the bulk-to-shear viscosity

ratio R are varied between simulations. The boundary conditions in non-dimensional form

become:

− D2

R + 4/3
K ′φ∇′p′f · n′ = 0 on ∂Ω , (18)

u′s = w′ on ∂Ω. (19)

We dispense with the prime notation from this point and work at all times with the110

non-dimensional form.111

3. Model Setup and Benchmarks

The governing equations in the previous section are solved using the finite element112

method. The finite element method is chosen for the ease with which arbitrarily shaped113
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inclusions can be modeled and to permit localized spatial refinement. The developed114

finite element code builds on the open-source FEniCS Project libraries [Logg et al., 2012;115

Logg and Wells , 2010], and the complete code for reproducing all examples in this work116

is freely available as supporting material. We summarize in this section some important117

aspects of the method that we use, and validate the model against published analytic and118

computational results.119

3.1. Discretization

To solve the dimensionless governing equations (13)–(15), together with the bound-120

ary conditions in equation (18)–(19), using the finite element method we first cast the121

equations in a weak form. To handle the time derivative in the solution of the porosity122

evolution equation (13), the Crank-Nicolson scheme is used. For equations (14) and (15),123

the P 2–P 1 Taylor–Hood element on triangles is used. The weak forms and finite element124

scheme are detailed in Appendix A.125

3.2. Boundary and Initial Conditions

Figure 1 shows a schematic of the domain and boundary conditions used for the sim-

ulations presented in Section 4. In all simulations, the top and bottom boundary are

impermeable. The velocity is prescribed on these boundaries to create simple shear with

the top moving to the right:

utop
s (x,H/2) =

(
H

2
γ̇, 0

)
, ubottom

s (x,−H/2) =

(
−H

2
γ̇, 0

)
, (20)

where γ̇ is the shear strain rate. The domain is periodic in the x-direction. In simulations126

with an inclusion, we additionally enforce zero net torque on the inclusion boundary127
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using a Lagrange multiplier, and make the inclusion rotate as a rigid body using Nitsche’s128

method (see Appendix B).129

The simulations that are presented in Section 4 either have a uniform initial back-130

ground porosity φ0 = 0.05, or a random initial field around φ0 = 0.05 with a maximum131

perturbation amplitude A = 0.03. This is within the range of initial porosities used in132

experiments [for example Holtzman and Kohlstedt , 2007; Qi et al., 2013]. The random133

field is created once, and then re-used for all simulations to ensure reproducibility. The134

random initial perturbations in the porosity field are coarser than the grid scale, so that135

porosity variations are sufficiently resolved.136

3.3. Rheology

The porosity-weakening exponent α (see equation (17)) has been experimentally deter-137

mined to be around 26 for diffusion creep and 31 for dislocation creep [Kelemen et al.,138

1997; Mei et al., 2002]; α = 28 has previously been used in simulations [e.g., Katz et al.,139

2006]. In this study, we vary α between 0 and 50 so that we can establish, in detail, the140

effects of this porosity-weakening exponent on model dynamics.141

The bulk-to-shear viscosity ratio R, however, is significantly less well-constrained. Simp-142

son et al. [2010] used homogenization theory on two interpenetrating, viscously deformable143

fluids to deduce that the bulk-to-shear viscosity ratio R is proportional to the porosity144

as φ−1, and consider R ∼ 20 for a background porosity φ0 = 0.05. In contrast, Takei145

and Holtzman [2009] find, through a micro-scale model of diffusion creep of a grain partly146

wetted by melt, that R ∼ 5/3, independent of porosity except when the porosity is vanish-147

ingly small (or when it is above the disaggregation fraction). In the simulations presented148
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in Section 4, we use bulk-to-shear viscosities between 5/3 and 100 to encompass the values149

advocated in the above referenced studies.150

With increasing strain, the amplitude of porosity variations is expected to grow. Given151

that there is no porosity-limiting term in the model, the porosity perturbations will grow152

to values beyond the mathematical bounds of zero and one. Therefore we terminate153

simulations when the porosity anywhere within the domain becomes smaller than zero or154

larger than one.155

3.4. Benchmark 1: Instantaneous Compaction Around a Circle

The instantaneous compaction around a circular inclusion in a medium with a uniform156

initial porosity has been described analytically by Rudge [2013] and therefore lends itself157

as a benchmark for numerical simulations of compaction.158

The far field velocity consists of simple shear and can be written as u∞ = (γ̇y, 0) in

terms of a strain rate γ̇. The governing equations (13)–(15) are solved with us = 0 and

∇pf · n = 0 on the circle. This results in the following analytical solutions for matrix

velocity us and pressure pf [Rudge, 2013]:

us = u∞ +

(
−4G

r4
+

2HK2(r)

r2

)
E · x +

(
−2F

r4
+

8G

r6
− HK3(r)

r3

)
(x · E · x)x , (21)

pf =

(
−4BF

r4
+
HK2(r)

r2

)
x · E · x , (22)
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where Kn(r) is the modified Bessel function of the second kind, B = η/(ζ + (4/3)η),

and

F = − a4K ′2(a)

4BK1(a)− a2K ′2(a)
, (23)

G =
a4

4
+

4a3BK2(a)

4BK1(a)− a2K ′2(a)
, (24)

H =
8aB

4BK1(a)− a2K ′2(a)
, (25)

where r is the distance from the center of the inclusion and a the radius of the circle. This159

solution assumes a finite compaction length δ, and all lengths have been scaled with the160

compaction length.161

E is the constant, trace-free, symmetric, second-rank, strain rate tensor of the far-field

flow, E = 1
2

(
∇u∞ +∇uT∞

)
, which can be written in components as

E =
1

2

(
0 γ̇
γ̇ 0

)
. (26)

The compaction rate is:

∇ · us =
FK2(r)

r2
x · E · x . (27)

Figure 2a shows the antisymmetric pattern of the instantaneous compaction rate, with162

two positive and two negative lobes around the circle in the shape of a quadrupole. The163

negative compaction rate lobes form where overpressure causes melt to be expelled, leading164

to compaction and therefore low porosity. The positive lobes have an underpressure, and165

therefore attract melt and decompact, resulting in high porosity.166

To validate the numerical results, we compute the L2 difference e between the numerical

solid velocity field uNs and the analytical solution uAs given in equation (21):

e =
||uNs − uAs ||2
||uAs ||

, (28)
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for different radii of the inclusion a. The results are shown in Figure 2b. The analytical167

solution assumes an infinite domain, whereas the numerical solution is affected by the168

boundaries at the top and bottom. These boundary effects (and therefore e) are reduced169

if the size of the inclusion is decreased relative to the domain size while still resolving the170

compaction around the inclusion.171

3.5. Benchmark 2: Plane Wave Melt Bands

We will now look at the angle and growth of melt bands as they rotate under simple172

shear in a rectangular, two-dimensional domain with aspect ratio 4. This benchmark aims173

to reproduce analytical solutions of initial melt band growth rate [Spiegelman, 2003].174

The initial condition for this benchmark is a plane wave in the porosity field, described

by:

φinit(x, y) = 1.0 + A cos
(
k0x sin (θ0) + k0y cos (θ0)

)
(29)

The wavenumber and melt band angle at t = 0 are given by k0 = |k|t=0 and θ0 =

tan−1[k0
x/k

0
y], respectively. The amplitude of the perturbation (A) must be small for the

linear approximation in the analytical solution to be valid. The analytical solution for

melt band growth rates is [Spiegelman, 2003]:

ṡA = − η0

ζ0 + (4/3)η0

α(1− φ0)2ε̇xy sin 2θ . (30)

The strain rate ε̇xy is equal to 1/2 for simple shear. The numerical melt band growth rate

is computed as follows:

ṡN =
(1− φ0)

Aφ0

∇ · us . (31)
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Figure 3 shows the melt bands rotating with increasing shear, i.e., with progressing time.

The band angle θ(t) is given by [Katz et al., 2006]:

θ(t) = tan−1

[
sin θ0

cos θ0 − t sin θ0

]
. (32)

We first validate the numerical results by comparing numerical and analytical growth rates175

for different initial melt-band angles θ0. Figure 4a displays a sinusoidal dependence on θ0.176

Figure 4b shows that the numerical error in the growth rate decreases with decreasing grid177

spacing h and with decreasing wavenumber k0. A higher wavenumber results in narrower178

melt bands, and therefore requires smaller grid cells in order to be sufficiently resolved.179

The rate of convergence is approximately of order O(h2) in both cases.180

The analytical solution is valid only when perturbations in the porosity field are small,181

which becomes apparent when the perturbation amplitude is increased, as shown in Fig-182

ure 4c. The difference between the numerical and analytical growth rates becomes signif-183

icant for amplitudes ≥ 10−2. Hence the analytical solution does not hold under experi-184

mental conditions where perturbations have magnitudes of O(10−2) to O(10−1). This is185

unsurprising given the that analytical growth rate is obtained by linearizing the governing186

equations about a uniform-porosity state.187

4. Results

We now present three model problems of increasing complexity. First, we consider188

melt bands in a partially molten medium without an inclusion but with a randomly189

perturbed initial porosity field. Then we investigate the compaction pattern around a190

circular inclusion in an initially uniform porosity field. Finally, we combine a randomly191

perturbed initial porosity field with a circular inclusion.192
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The simulations presented in Section 4 with no inclusion are solved on a uniform square193

mesh with 300× 300 cells, such that the cell size is approximately 5× 10−3. Simulations194

with an inclusion have a mesh that is linearly refined towards the inclusion boundary, with195

cell sizes ranging from 1× 10−2 near the outer boundaries to 2× 10−3 near the inclusion.196

4.1. Melt Bands in a Random Medium Without an Inclusion

For a partially molten medium without any inclusions, we consider a random initial197

porosity field with a perturbation amplitude of 0.03 with a background value of 0.05198

(Figure 5a). We study a suite of simulations with a wide range of values for the porosity-199

weakening exponent (α ∈ [15, 50]) and bulk-to-shear viscosity ratio (R ∈ [1.7, 100]) in200

order to establish the parameter regime for which melt-rich bands readily develop. For201

this case, we do not consider simulations with α = 0, since a positive porosity-weakening202

exponent is required for a non-zero melt band growth rate (see equation (30)).203

Figure 5c-d shows that for α = 28 and a small bulk-to-shear viscosity ratio R of 1.7, high-204

porosity bands form rapidly, and are well-developed at a strain of 0.1. The bands rotate205

clockwise in the simple shear velocity field, but continue to re-form at 45◦. The bands206

with positive compaction rate and high porosity dominate over the negative compaction207

rate and low-porosity features due to the porosity weakening rheology.208

For R = 20, melt bands have not fully formed yet at a strain of 0.5, as shown in209

Figure 5e-f. Even though bands are not widely present in the porosity field, the high210

compaction rate areas are concentrated in narrow bands at 45◦ to the plane of shear. As211

melt bands grow more slowly for higher bulk-to-shear viscosity ratios (see equation (30)),212

the re-forming at a 45◦ angle happens at a slower rate, and small parts of the bands in213

the compaction rate field have therefore a higher angle than for the R = 1.7 case.214
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A small bulk-to-shear viscosity ratio (R ≤ 10) and a large porosity-weakening exponent215

are required to form persistent shear bands. Both factors enhance melt band growth216

rates, and thus cause the porosity to exceed the physical range of [0, 1] more rapidly.217

We therefore conclude from these simulations that it is challenging to obtain simulations218

with well-developed melt bands at high strains while keeping the porosity within physical219

bounds.220

4.2. Compaction Around an Inclusion with Uniform Initial Porosity

We now introduce a circular inclusion into the domain. With a uniform initial porosity,221

the instantaneous compaction rate at a strain of zero is identical to the pattern shown in222

Figure 2a (Benchmark 1). When a medium with α = 0 and R = 50 is deformed by simple223

shear, the porosity field initially develops according to this instantaneous compaction rate224

pattern as indicated in Figure 6a-b. As the strain increases, the porosity lobes rotate225

around the inclusion according to the simple shear velocity field. Figures 6c and 6e show226

that the high-porosity lobes become stretched, and grow faster and into sharper features227

than the low-porosity lobes. Even though the porosity exponent in the shear viscosity is228

zero in the case shown here, the permeability and bulk viscosity still depend on porosity229

(see equation (17)).230

The compaction rate evolves in a different manner than the porosity. The divergence231

of the velocity field is mainly governed by the prescribed constant simple shear. Hence232

the non-rotating instantaneous pattern generally dominates, as illustrated in Figure 6b.233

At high strains, the compaction rate is affected by the large porosity variations that have234

developed. Figures 6d and f show that the areas with highest porosity and therefore lowest235
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bulk viscosity are most easily deformed, partially overprinting the instantaneous pattern,236

which results in deformed compaction rate lobes.237

To further analyze the evolution of porosity and compaction rate, we compute integrals

of φ and ∇ ·us from the boundary of the inclusion at radius r = a outward to a radius of

r = 2a, for a series of azimuths between 0 and 2π:

1

a

∫ 2a

a

φ dr,
1

a

∫ 2a

a

(∇ · us) dr. (33)

These integrals show the rotation and evolution of the asymmetry of the high- and low-238

porosity lobes in Figure 6g, and the deformation of features in the compaction rate field239

in Figure 6h.240

Both the bulk-to-shear viscosity ratio R and the porosity-weakening exponent α in the241

shear viscosity have a profound effect on the porosity evolution and compaction rate.242

A smaller bulk-to-shear viscosity ratio results in faster and more asymmetric growth of243

features in the porosity field, and causes the porosity to go out of bounds more quickly.244

For example, the simulation with R = 1.7 and α = 0 in Figure 7a and c shows a similar245

porosity field as the case with R = 50 but with larger amplitudes. The compaction rate246

field is more strongly affected by the porosity for smaller R because the porosity differences247

in space are larger. A low porosity acts to decrease the compaction rate. As the porosity248

lobes rotate with shear and become misaligned with the non-rotating compaction rate249

lobes, they decrease the magnitude of negative compaction rate lobes in an asymmetric250

manner (Figure 7b, d). This simulation goes out of physical bounds for a strain > 0.3.251

In the small bulk-to-shear viscosity regime, the effect of the porosity exponent α is252

particularly discernible. When α is chosen to be the experimentally determined value of253

28, the porosity reaches the physical limits at an even smaller strain of 0.1. The porosity254
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and compaction rate features in Figure 8 develop similar to the melt bands seen in the255

previous section, with an elongated shape towards 45◦ from the plane of shear. The256

maximum value of the compaction rate grows with time when α > 0, and its peaks flatten257

with the widening high-compaction rate lobes.258

Figure 9 summarizes the controlling effect of R and α; for α = 0, increasing R causes259

compaction around the inclusion to have larger amplitudes, resulting in sharper positive260

porosity lobes (that are advected, Figure 9a) and deformed negative compaction rate lobes261

(Figure 9b). Figure 9c-d shows that when α = 28, a higher R results in wider and flatter262

positive lobes in porosity and compaction rate, indicating behavior similar to melt bands.263

4.3. Melt Bands and Pressure Shadows Around an Inclusion

The final suite of tests involves a random initial porosity field around the inclusion.264

Generally, the porosity goes out of bounds significantly faster than in the preceding tests,265

as the compaction around the inclusion compounds the growth of porosity in melt bands.266

Figure 10a shows that this results in less extensive melt bands, even with high α and low R267

where, at most, short high-porosity bands can be seen adjacent to the inclusion for a case268

with α = 28 and R = 1.7. The compaction rate shows both the bands and the effect of the269

inclusion (Figure 10b). In the integrals, melt bands distinguish themselves by peaks that270

flatten with strain, whereas pressure shadows around the inclusion manifest themselves as271

a sinusoidal quadrupole shape. Figure 10c indicates that the porosity amplitudes increase272

as the positive lobes grow faster with increasing strain. In the compaction rate field in273

Figure 10d, only the positive lobes grow. An increase in R causes melt bands to grow more274

slowly, and compaction around the inclusion to be dominant over domain-wide melt bands,275

as shown in Figure 11a-b. This is especially reflected in the porosity and compaction rate276
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integrals in Figures 11c-d and 12 which, for large R, closely resemble the uniform case277

with wide troughs and sharp peaks.278

4.4. Model regimes

The results of the three sets of simulations are summarized as a function of the porosity279

exponent α and bulk-to-shear viscosity ratio R in Figure 13. The maximum strain γmax280

reached in simulations is an indicator for the effective growth rate brought about by all281

melt segregation processes together. Generally, γmax increases with decreasing effective282

growth rate, i.e., with increasing R and decreasing α, indicated by the black contours in283

Figure 13. Figure 13a shows that simulations with uniform initial porosity and with only284

linear compaction around an inclusion evolve to the largest strains of the three suites.285

The maximum strain is the lowest in simulations where compaction around the inclusion286

competes with the exponential growth of melt bands originating in the random initial287

porosity field, as indicated in Figure 13c.288

For the simulations with uniform initial porosity, we compute the average width W of289

the two high-porosity lobes around the inclusion at the final strain scaled by 0.5π (the290

width of a lobe in its initial state), shown as the color background in Figure 13a. A scaled291

lobe width larger than one indicates flattened high-porosity lobes and narrow low-porosity292

lobes, and therefore shearing, such as in Figure 8a. On the other hand, W < 1 indicates293

that the high-porosity lobes are narrow and advected according to the simple shear velocity294

field, as for example in Figure 6e. The lobe width increases with α and decreases with R,295

and is inversely proportional to the maximum strain, demonstrated by the contours of W296

that parallel those of maximum strain. Therefore W must be proportional to the growth297

rate of porosity anomalies.298
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A scaled lobe width W > 1 is seen for R ≤ 10 when α > 15, and for R ≤ 5 when299

α = 15. This could be viewed as the regime where melt-rich bands could develop. For300

small R and large α, W decreases again; this indicates the underdevelopment of porosity301

lobes for small maximum strain.302

In simulations with random initial porosity without a inclusion, melt bands are seen303

for R < 20 when α < 50, and for R ≤ 20 when α = 50 (indicated by the green circles304

in Figure 13b). Figure 13c shows that in simulations with random initial porosity and a305

circular inclusion, melt bands are more elusive and only develop for R < 5 and α > 15.306

Outside this narrow regime, the porosity field is dominated by compaction around the307

inclusion.308

5. Discussion

The numerical models of partially molten mantle material presented in this paper ex-309

plore the evolution of melt segregation as a function of the bulk-to-shear viscosity ratio R310

and the porosity-weakening exponent of the shear viscosity α. These parameters control311

the balance between pressure shadows around an inclusion and domain-wide melt bands.312

Generally, the pressure shadows around the inclusion dominate the porosity field. There313

is a small portion of the parameter regime that allows for significant development of melt314

bands, requiring a small bulk-to-shear viscosity ratio and therefore a material that is315

relatively easily compactable.316

The porosity field that represents the melt distribution in the simulations does not317

bear close resemblance to the experimental results obtained by Qi et al. [2013]. Most318

importantly, we are not able to reproduce prominent melt bands adjacent to the inclusion,319

that overprint the pressure shadows around the inclusion. Secondly, the strains at which320
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the porosity in the simulations exceeds the physical regime of [0, 1] are significantly smaller321

than those at which the experiments fail. Qi et al. [2013] report maximum local strains322

between 0.9 and 5.0, whereas in our numerical simulations with a random initial porosity323

around an inclusion the maximum strains are between 0.03 and 0.8. Furthermore, when324

the porosity increases past ∼ 0.25 in partially molten rock, it disaggregates and the solid325

particles are in suspension. We do not consider these processes in our numerical models326

since laboratory experiments are terminated before reaching the disaggregate regime.327

In our simulations, the presence of an inclusion causes the porosity to go out of bounds328

more quickly, as the compaction in pressure shadows around the inclusion compounds329

the porosity growth in melt bands directly adjacent to the inclusion. For the same total330

strain, simulations with and without a circular inclusion show the same amount of melt331

band development, indicating that the lack of melt bands in simulations with the inclusion332

compared to the simulations without the inclusion is exclusively the result of a smaller333

maximum strain. The exact maximum strain reached in a simulation is not necessarily334

relevant, as it may depend on the placement of the initial random high-porosity perturba-335

tions directly adjacent to the inclusion. Rather the observed trends in maximum strains336

as a function of model parameters inform us about the effective growth rates of porosity337

near the inclusion as a result of the two competing modes of melt segregation.338

The porosity going out of bounds is indicative of physics not captured by the set of339

governing equations and constitutive relations presented in this paper. Several studies340

suggest possible modifications to constitutive relations that would limit the growth of341

sharp porosity gradients. For example, Bercovici et al. [2001] use surface tension terms,342

and Takei and Hier-Majumder [2009] consider a second melt segregation process aside343
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from decompaction and compaction of the solid that results from dissolution and precip-344

itation in the melt. Keller et al. [2013] implement a higher-order polynomial form for345

the porosity-dependent permeability that results in a decrease in permeability for very346

high porosities. The most appropriate approach to this question remains a debate; more347

theoretical work is likely needed to resolve it. Incorporation of mechanisms that prevent348

the porosity going out of bounds at small strains could lead to a larger parameter space349

for which simulations display melt bands than indicated in this paper.350

Melt-rich bands are observed to form at shallow angles of 15-20◦ [Holtzman et al., 2003;351

Holtzman and Kohlstedt , 2007; King et al., 2010; Qi et al., 2013]. In numerical models,352

melt bands form at 45◦ angle to the simple shear plane, unless a non-Newtonian rheology353

with large stress exponent (n > 3) [Katz et al., 2006] or an anisotropic viscosity is used354

[Takei and Katz , 2013; Katz and Takei , 2013]. In this work, we are primarily concerned355

with understanding the model behavior as function of the bulk-to-shear viscosity ratio and356

the porosity-weakening exponent. The incorporation of non-Newtonian and anisotropic357

viscosities is a topic of ongoing work, and should improve comparisons of our simulations358

with experimental results.359

An important feature of laboratory experiments is their three-dimensional nature. Nu-360

merical simulations should also be performed in three dimensions to advance a detailed361

quantitative comparison with experimental results. The compaction rate around a circu-362

lar inclusion in two dimensions decays as 1/r2 and around a spherical inclusion in three363

dimensions as 1/r3. We therefore expect pressure shadows to be spatially limited in364

three-dimensional models, which could allow planar melt bands to become more promi-365

nent. However, such computations in three dimensions are computationally challenging366
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as they involve very large systems of equations. The key to tractable simulations in three367

dimensions is the development of effective preconditioners to accelerate the solution of368

linear systems. Research in this area is underway [Rhebergen et al., 2013], and the im-369

plementation and use of recently developed preconditioners will enable three-dimensional370

computations of two-phase flow at high resolutions, which will be the core of future work.371

6. Conclusions

We computed two-dimensional models of partially molten mantle material under simple372

shear, with and without inclusions that perturb the flow. The model configurations are373

based on recent laboratory experiments that exhibit pressure shadows around an inclu-374

sion and associated melt bands as competing features in the melt distribution. Previous375

theoretical studies only considered instantaneous solutions to the governing equations; we376

improve on this by computing the evolution of the two-phase material with strain. The377

simulations display the pressure shadows around a circular inclusion, as well as abun-378

dant melt band development in simulations without an inclusion. The geometry and379

evolution of these features depend on the bulk-to-shear viscosity ratio as well as on the380

porosity-weakening exponent in the shear viscosity. However, it has proven challenging381

to determine a parameter regime for which melt bands develop in the presence of an382

inclusion. We find that a bulk-to-shear viscosity ratio of less than 5 is required in our383

simulations. For such small bulk-to-shear viscosity ratios, the porosity field reaches its384

physical bounds at unrealistically small strains. This indicates that an important compo-385

nent of the physics is not captured in the governing equations and constitutive relations386

outlined in this paper, and some form of limiter on porosity weakening would be required387

to obtain numerical results that resemble the laboratory experiments more closely.388
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Appendix A: Weak Form

To solve equations (13)–(15), together with boundary conditions in equation (18)–(19),

we cast them in a weak form. Given φ, the weak solutions us and pf satisfy

0 =

∫
Ω

2ηφε(us) : ε(vs) dx +

∫
Ω

(Rζφ − 2
3
ηφ)(∇ · us)(∇ · vs) dx

−
∫

Ω

pf∇ · vs dx−
∫

Ω

qf∇ · us dx−
∫

Ω

(
D2

R + 4/3

)
Kφ∇pf · ∇qf dx, (A1)

where vs and qf are arbitrary test functions. To obtain the weak form of equation (13) it

will be useful to first discretize in time. We use a Crank-Nicolson time stepping scheme:

φ− φ0 + ∆t
(
us · ∇φmid − (1− φmid)∇ · us

)
= 0, (A2)

where ∆t is the time step, φmid = 1
2
(φ+φ0) and φ0 and φ are, respectively, the known and

unknown porosities from the previous and current time step. Given us from the previous

time step, the weak solution φ satisfies

0 =

∫
Ω

w

(
φ− φ0 + ∆t

(
us · ∇φmid − (1− φmid)∇ · us

))
dx, (A3)

where w is an arbitrary test function.389

Additionally, we apply standard streamline upwind Petrov-Galerkin stabilization by

adding a term rSUPG to the porosity transport equation (A3) [Brooks and Hughes , 1982]:

keff =
1

2

(
h|us|

2
− 1 +

∣∣∣∣h|us|2
− 1

∣∣∣∣
)

(A4)

rSUPG =

∫
Ω

keff

|us|2
(us · ∇w) rCN dx, (A5)

where h is the cell size, |us| is the norm of the solid velocity field, and rCN is the residual390

of equation (A3).391
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Appendix B: Boundary Conditions on the Inclusion

We impose a no-net torque boundary condition on the circular inclusion:∫
Ωs

x× (σ̄ · n) ds = 0 (B1)

which is applied by adding a term FL to the weak form in equation (A1):

FL = λ ·
∫

Ωs

x× (σ̄ · n) ds, (B2)

where λ is the Lagrange multiplier, which reduces to (0, 0, λ) in our two-dimensional392

model.393

The second boundary condition on the inclusion is a rigid body rotation. Nitsche’s

method is used to ensure that us = ω×x on the inclusion boundary. This is a variationally

consistent method for the weak imposition of Dirichlet boundary conditions, consisting of

a term FN added to the weak form in equation (A1):

FN =

∫
Ωs

10

h
(us − ω × x) · vs − (us − ω × x) · tv − vs · tu ds (B3)

where h is the cell size, and ω is the unknown rotation rate of the inclusion. tu and tv394

are traction vectors (σ̄ · n) corresponding to velocities us and vs. For the simulations395

presented here, ω = (0, 0, ω).396
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y
x

r = a

P P

us  top

us  bottom

H

Figure 1. Schematic of the domain and boundary conditions used for the simulations presented

in Section 4. The side boundaries indicated by P are periodic; the top and bottom boundaries

have a prescribed horizontal velocity. The height of the domain is indicated by H, and the radius

of the inclusion around the origin is given by a.
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(a)

(b)

Figure 2. (a) Instantaneous compaction pattern around a circular inclusion under simple

shear (only a part of the full domain is shown). The top moves to the right, the bottom to the

left. (b) L2 difference e between the analytical and numerical velocity field, for various inclusion

radii, with a mesh of 160× 160 cells. The inclusion radius a is given as a fraction of the height

of the domain.
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(a) t = 0.0

(b) t = 1.5

(c) t = 3.0

Figure 3. Plane wave porosity field at strains of (a) 0.0, (b) 1.5, and (c) 3.0. The top boundary

moves to the right, the bottom boundary to the left. The arrows show the perturbations in the

solid velocity with respect to the simple shear velocity field.
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(a)

(b)

(c)

Figure 4. (a) Initial melt band growth rate for various initial melt band angles, with porosity

amplitude A = 10−4, wavenumber k0 = 4π, and number of grid points along the short side

n = 80. (b) Relative error in initial melt band growth rate as a function of grid spacing h = 1/n

for k0 = 8π and 16π; θ0 = 30◦. The dotted line indicates an order O(h2) convergence. (c)

Relative error in initial melt band growth rate for various porosity perturbation amplitudes,

with n = 80 and k0 = 4π. For all simulations shown: porosity-weakening exponent α = 1,

background porosity φ0 = 0.05, bulk-to-shear viscosity ratio R = 10, and the compaction length

δ = 1.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 5. (a) Porosity and (b) compaction rate in a partially molten medium with random

initial porosity under simple shear without inclusion, α = 28 and R = 1.7, at its initial state. (c)

Porosity and (d) compaction rate for the same simulation, at a strain of 0.1. (e) Porosity and (f)

compaction rate for a simulation with R = 20 at a strain of 0.5. In all cases, the top boundary

moves to the right and the bottom boundary to the left.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 6. Porosity (left) and compaction rate (right) for a simulation with uniform initial

porosity, R = 50 and α = 0, at strains 0.1 (a-b) and 4.0 (c-d). (e) Porosity and (f) compaction

rate integrated between a and 2a for different angles at various strains.
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(a)

(c)

(b)

(d)

Figure 7. (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity,

R = 1.7 and α = 0, at a strain of 0.3. (c) Porosity and (d) compaction rate integrals at various

strains.
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(a)

(c)

(b)

(d)

Figure 8. (a) Porosity and (b) compaction rate for a simulation with uniform initial porosity,

R = 1.7 and α = 28, at a strain of 0.1. (c) Porosity and (d) compaction rate integrals for various

strains.
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(a)

(c)

(b)

(d)

Figure 9. (a) Porosity and (b) compaction rate integrals for simulations with uniform initial

porosity, α = 0 at γ = 0.3, for various values of R. (c) Porosity and (d) compaction rate for

simulations with α = 28 at γ = 0.1, for various values of R.
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(a)

(c)

(b)

(d)

Figure 10. (a) Porosity and (b) compaction rate for a simulation with random initial porosity,

R = 1.7 and α = 28, at a strain of 0.06. (c) Porosity and (d) compaction rate integrals for the

same simulation, at various strains. The solid lines are fits with Fourier functions with the lowest

9 coefficients included.
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(a)

(c)

(b)

(d)

Figure 11. (a) Porosity and (b) compaction rate for a simulation with random initial porosity,

R = 20 and α = 28, at a strain of 0.15. (c) Porosity and (d) compaction rate integrals for the

same simulation, at various strains. The solid lines are fits with Fourier functions with the lowest

9 coefficients included.
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(a) (b)

Figure 12. (a) Porosity and (b) compaction rate integrals for simulations with random initial

porosity, α = 28 at γ = 0.05, for various values of R. The solid lines are fits with Fourier

functions with the lowest 9 coefficients included.
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Figure 13. (a) Maximum strain γmax reached as function of α and R (black contours) in

simulations with uniform initial porosity and an inclusion. The background color denotes the

scaled average width of high-porosity lobes W . The black circles indicate parameter combinations

used in simulations. (b) Maximum strains in simulations with random initial porosity without

an inclusion. The red circles indicate simulations that do not display significant melt bands at

the final strain γmax, the green circles indicate simulations that do. (c) Maximum strains reached

in simulations with random initial porosity with an inclusion.
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