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ABSTRACT: We introduce grand and semigrand canonical global
optimization approaches using basin-hopping with an acceptance criterion
based on the local contribution of each potential energy minimum to the
(semi)grand potential. The method is tested using local harmonic vibrational
densities of states for atomic clusters as a function of temperature and
chemical potential. The predicted global minima switch from dissociated states
to clusters for larger values of the chemical potential and lower temperatures,
in agreement with the predictions of a model fitted to heat capacity data for
selected clusters. Semigrand canonical optimization allows us to identify
particularly stable compositions in multicomponent nanoalloys as a function of
increasing temperature, whereas the grand canonical potential can produce a useful survey of favorable structures as a byproduct
of the global optimization search.

1. INTRODUCTION

Structure prediction is essential in many areas of computational
science, ranging from molecular physics and biochemistry to soft
and condensed matter. For a given system with definite size, the
global optimization problem is usually nontrivial owing to high-
dimensional potential energy landscapes, and many methods
have been proposed to locate low-energy configurations.1−4 The
global minimum is fundamentally important and often carries
essential insight into the interactions responsible for the
emergence of specific morphologies, and it plays an important
role in explaining self-assembling motifs and symmetries.5,6

However, in many applications, temperature can play a
significant role and the entropic contribution to the free energy
of individual configurations becomes important. Examples of
entropy-driven structural transitions have been reported in
atomic clusters,7,8 proteins,9 colloids,10 glasses,11 and pressur-
ized materials.12 The determination of configurations that are
low in free energy can proceed by the a posteriori analysis of
molecular simulations, often employing biases in order to
sample the energy landscape more efficiently and based on
system-dependent order parameters.13−17 Such free energies are
global and can encompass many potential energy minima, as
expected in the context of phase transitions. Local free energies
can also be defined for individual isomers, which are related to
global quantities through suitable grouping procedures that
require additional knowledge about the connectivity of the
minima.18,19

It is possible to locate the global free energy minimum among
an existing database of structures by evaluating the entropy
using the harmonic approximation20,21 and, when affordable,
incorporating anharmonic corrections.21−23 More recently,
calculating the free energy directly on-the-fly during global
optimization was proposed,24 producing a promising procedure
for exploring energy landscapes, since the free energy minimum

was encountered faster this way than by postprocessing a sample
based on optimizing the potential energy alone. In the present
contribution, we further extend this approach by addressing
systems with variable size or composition, which should be
treated in the grand canonical or semigrand canonical
ensembles, respectively. Fluctuations in the number of particles
occur in the case of nucleation of fluids and their absorption into
porous materials, as well as in the increasingly important
problem of reversible gas storage for energy production. These
ensembles correspond to situations in which the system
exchanges particles with a (possibly fictitious) reservoir, thereby
controlling size or composition at fixed temperature.
Grand canonical ensembles are characterized by the chemical

potential (or chemical potential difference) and a finite
temperature, with the Gibbs free energy being the potential of
interest that, in turn, controls the size or composition around
equilibrium. As the chemical potential varies, changes in the
Gibbs free energy are indicative of different regimes in which the
system grows or shrinks or reaches equilibrium values in
absorption isotherms. In semigrand canonical ensembles,
particularly stable compositions should be manifested by
plateaux in the segregation isotherms. Compared to free energy
global optimization, the need to calculate local Gibbs free
energies for systems with varying size or composition requires
sampling these additional variables as well. The extra degrees of
freedom further justify the use of the harmonic approximation to
approximate the entropy component in a computationally
efficient manner. In practice, the harmonic approximation
requires calculating the vibrational frequencies at local minima,
which involves constructing and diagonalizing the dynamical
matrix (the mass-weighted Hessian).
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Our results for atomic clusters in the grand canonical
ensemble indicate that increasingly large clusters are obtained
as the chemical potential is increased or the temperature is
decreased, in agreement with conventional nucleation theories.
The results of grand canonical basin-hopping simulations in the
harmonic approximation are also found to agree with a model
for the grand canonical partition function fitted to reproduce the
size-dependent heat capacity for specific clusters. Our other
example application deals with model nanoalloys treated in the
semigrand canonical ensemble, which is at fixed total size but
varying alloy composition. Here, we show that the semigrand
canonical basin-hopping method efficiently locates the stability
plateaux in the composition isotherms that were previously
reported based on alternative simulation methods.25

The article is organized as follows. The next section describes
the method in its general formulation and details the harmonic
expression employed for the local Gibbs free energy associated
with individual potential energy minima. Practical details
regarding the implementation of the basin-hopping method
are also given in relation to Monte Carlo moves that change the
system size. The results for the grand canonical ensemble are
presented in Section 3 and discussed in the context of the
homogeneous nucleation problem. The semigrand canonical
application to model nanoalloys is described in Section 4,
followed by concluding remarks in Section 5.

2. METHODS
2.1. Grand Canonical Formulation. In the grand canonical

ensemble, the volume , temperature T, and chemical potential
μ are fixed, whereas the pressure, energy, and number of
particles, N, can fluctuate. The grand partition function
describing an equilibrium distribution is then

∑μΞ = βμT Z N T( , , ) e ( , , )
N

N

(1)

where β = 1/kBT, with kB the Boltzmann constant, and
Z N T( , , ) is the canonical partition function of the system
with fixed number of particles, N. In previous work, we have
constructed Z N T( , , ) as a sum over contributions from local
minima, i.e., the superposition approach.20,21,26−29 Here, the
classical vibrational density of states can be written as

∑

∑ β
β ν

=

≈
−

̅

α
α α

α

α α

α
κ

Z N T n Z N T

n E

h

( , , ) ( , , )

exp[ ]

( )

N

N N

N N

( )

( )

( )
(2)

where κ(N) = 3N − 6 is the number of nonzero eigenvalues for
the Hessian matrix, vα̅

N = [∏j=1
κ(N)να

N(j)]1/κ(N) is the geometric
mean vibrational frequency of minimum α, να

N(j) is the normal-
mode frequency of the jth mode in this minimum, and Eα

N is the
corresponding potential energy. The approximation in eq 2
corresponds to using harmonic vibrational frequencies. The
superposition approach can also incorporate quantum effects23

and anharmonicity,21−23,28,30−32 but it is usually employed in the
harmonic approximation to obtain a rapid survey of
thermodynamic properties, which is guaranteed to be ergodic
by construction.
In recent work, we have demonstrated how the superposition

framework can usefully be applied within grand and semigrand
canonical formulations to examine equilibrium thermodynam-
ics.25 In the present contribution, we show how a potential

function based on the grand (and semigrand) canonical
ensembles can be used in the context of basin-hopping global
optimization. This approach is a natural extension of the free
energy basin-hopping method,24 generalized so that the size (or
composition) is permitted to change. To find the largest
contribution to the grand potential from local minima of any
size N, we adapt the acceptance criterion to use the potential
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where we have included the rotational partition function
π β= | | ℏq I8 /rot

1/2 3/2 3 for a rigid rotor with inertia tensor I,
for completeness. A translational contribution was not included
since we are considering nontranslating clusters. The sign
definition in eq 3 enables us to formulate the location of a
maximum contribution to the grand potential as a global
minimization. In a monatomic system, nα

(N) = 2N!/oα, where oα is
the order of the point group.26,33−35 In this harmonic/rigid rotor
approximation, the occupation probability pN for structures
containing N atoms can then be written in terms of the sum over
the corresponding subset of minima (denoted by N)
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A Metropolis acceptance criterion was applied at each step,
u s i n g a n a c c e p t a n c e p r o b a b i l i t y b a s e d o n
min{1,exp[−(ξα(new)N(new) − ξα(old)

N(old))/kBTGCBH]}, where TGCBH is a
fictitious temperature parameter that determines how often
uphill moves in ξ are accepted. Along with the temperature
parameter, another key choice in basin-hopping that affects
efficiency is the coordinate perturbation scheme applied before
each local minimization. Here, we employed perhaps the
simplest scheme based on Cartesian coordinate displacements,
drawn from a uniform distribution with a fixed maximum value.
Many other possibilities have been considered in the literature,
along with variations in the acceptance condition, and the
present approach could be combined with any of these methods
in future work. So long as the key local minimization is
included,2,36,37 efficiency gains might be possible. Here, we
adopted one other modification, since moves that involve
changes in N are likely to be much more disruptive than
geometrical perturbations. We therefore considered moves
changing the number of atoms only at intervals of Δ basin-
hopping steps. Before changing the number of atoms, the
structure of the current minimum in a Markov chain over blocks
was saved, along with the value of ξα

N. After adding or removing
an atom, the structure obtained after minimization was used as
the initial seed for a local Markov chain of Δ coordinate
perturbations, accepting moves according to the condition
min{1,exp[ − (ξα(new)

N − ξα(old)
N )/kBTGCBH]} for fixed N. At the

last step of each block, the minimum with the lowest value of ξα
N

was used in a block accept/reject test and compared with the
current minimum in the block Markov chain. If the block move
was rejected, then the current structure was reset to the one
saved in the block Markov chain before proposing another move
that changed the number of atoms. The same BH temperature

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00962
J. Chem. Theory Comput. 2016, 12, 902−909

903

http://dx.doi.org/10.1021/acs.jctc.5b00962


parameter was employed for both types of acceptance check,
although different values, or indeed different criteria, could
certainly be considered.
Two different schemes were compared for grand canonical

basin-hopping (GCBH) in the present work to analyze the role
of different contributions to the potential. The first scheme used
ξα
N, as defined above, and the second scheme based the sampling
on ξα

N(0) = Eα
N − Nμ, omitting the last term of the right-hand

side of eq 3 involving the canonical partition function of the
minimum. In effect, this version corresponds to neglecting
entropic contributions. The results are compared in Section 3.
The grand canonical potential in eq 3 can be reinterpreted as

a semigrand canonical potential for a binary system with variable
numbers of A- and B-type particles, NA and NB, respectively, but
N = NA + NB fixed. The potential employed in the accept/reject
criterion is then

ξ μ
π

β β ν
= − Δ −

| |
ℏ ̅

α α
α α

α
κ

E N k T
n

h

I
ln

8

( )
N N

B

N N

N NB

( , ) 1/2

3/2 3 ( )
B B

BA

(5)

where Δμ = μB − μA is the chemical potential difference, and
nα
(NA,NB) = 2NA!NB!/oα. In Section 3, we describe a semigrand
canonical basin-hopping (SGCBH) scheme with and without

the rotational contribution ( π β= | | ℏq I8 /rot
1/2 3/2 3), geo-

metric perturbations disabled, and particle insertion/deletion
moves replaced by exchange moves that transmute particles.
2.2. Steps That Change the Cluster Size. Steps within the

blocks of constant size were proposed in a manner similar to
that in previous work, including procedures to move weakly
bound or surface atoms.37 Steps to change size were proposed
by adding or deleting single atoms, with probability p+ and
p− = 1 − p+, respectively. All of the results reported below
simply used p+ = p− = 0.5 throughout. Atomic clusters bound by
a pair potential were chosen for the first application of grand
canonical basin-hopping. For pair potentials (but also for
embedded-atom potentials, as used in our semigrand canonical
basin-hopping examples), we can easily identify the most weakly
bound atom for each minimum, and this was the atom removed
in steps that reduced the cluster size. To add an atom, the center
of coordinates was first located, along with the largest atomic
radial distance, rmax. An atom was then added at a random point
on the sphere with radius rmax + δr (where δr = σ for Lennard-
Jones systems) by generating a three-component vector with
each entry drawn from the normal distribution with zero mean
and unit variance38 and then normalizing appropriately.
Gaussian random variables were generated using the Box−
Muller algorithm.39

Following each atom addition or deletion, the resulting
configuration was immediately minimized; if this quench failed,
then the attempted size change was simply rejected. Local
minima were also rejected if they did not correspond to
connected single clusters. Here, we used a depth first search40 to
check for a percolating network of atoms, which proved to be
particularly useful in previous studies of clusters bound by short-
range potentials.41 The present results therefore exclude
fragmented systems, focusing on single clusters.

3. APPLICATION OF BASIN-HOPPING TO A GRAND
CANONICAL POTENTIAL

We considered clusters bound by the Lennard-Jones (LJ)
potential,42 where the potential energy is
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<
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ϵ is the equilibrium pair well depth, 21/6σ is the equilibrium pair
separation, and rij is the distance between particles i and j.
Reduced units with ϵ = σ = 1 are used throughout.
Depending on the values of T and μ, the GCBH runs either

exhibit sizes that shrink to a single atom or grow quite steadily to
contain hundreds of atoms for the run lengths considered here.
To prevent indefinite growth, an upper limit of 1000 atoms was
applied.

3.1. Model for the Size-Dependent Density of States.
In order to interpret the observed behavior, a model for the size-
dependent partition function was constructed for comparison
with the GCBH runs using data available for selected LJ clusters.
Here, the input included results for predicted global minimum
energies, point groups, normal modes, and moments of inertia
up to LJ1610.

37,43−46 We also employed the heat capacity curves
calculated by parallel tempering Monte Carlo47,48 forN = 13, 31,
55, 75, 129, 135, and 309. The objective was to predict relative
values for the canonical partition function Z N T( , , ) as a
function of N, and we represented the N-dependent terms of
interest as
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where the subscript 0 refers to the putative global minimum for
N atoms, and Stirling’s approximation was used for ln N!. The
first term is the usual Boltzmann factor, associated with the
global potential energy minimum for N. It serves as the lower
bound to the potential energy distribution of local minima at
each size. The next two terms derive from the harmonic
approximation to the vibrational density of states, again for the
global minimum, which serves as a baseline. The fourth term is
the N-dependent part of the rotational partition function for the
global minimum, and the N! term comes from the number of
distinct permutation-inversion isomers, with the corresponding
point group order in the final term. This last term is a
representation of the quadrature over the potential energy
density of local minima and their associated vibrational and
rotational densities of states. The quadrature has H slices, where
a g e ome t r i c p r o g r e s s i o n w i t h c ommon r a t i o
R(N, T) = exp{[γ(N) − ΔE(N)/kBT]/H} has been summed.
It subsumes variation of the rotational and vibrational densities
of states relative to the reference values for the global minimum,
which are divided out in eq 7. The contribution of the global
minimum is included separately as 1/o0, since this structure is
likely to have particularly high symmetry,6,26 and the spectrum
of energy minima is better represented as discrete rather than
continuous at low energy. ΔE(N) is the potential energy range
spanned by minima containing N atoms, and the parameter
γ(N) includes the rate of increase in the number of minima with
potential energy. Hence, ΔE(N)/H is the width of each
quadrature slice, and the contribution of slice q in the canonical
partition function is exp{[γ(N) − ΔE(N)/kBT]q/H}.
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In selecting the above model, we have been guided by the
densities of minima calculated in previous work31 for LJ31 and
LJ75. The energy range and growth rate, ΔE(N) and γ(N), were
fitted to best reproduce the heat capacity curves from parallel
t e m p e r i n g M o n t e C a r l o d a t a , u s i n g
ΔE(N) = ΔE0 + NΔE1 + N2/3ΔE2 and γ(N) = γ0 + Nγ1 +
N2/3γ2. Various other representations were also considered; the
choice in eq 7 produces an acceptable fit for the melting peak in
the heat capacity curves (Table 1). The fitting is only qualitative,

since we make no attempt to reproduce additional peaks due to
phase-like transformations below the melting point.26,29,37,49−57

We require only a qualitative description of the growth in the
number of local minima, convoluted with the change in
rotational and vibrational densities of states relative to the
global minimum reference values. The results presented below
correspond to H = 30 quadrature slices, which is sufficient to
converge the properties of interest. The resulting heat capacities
for some selected cluster sizes are shown in Figure 1.

It is instructive to consider the individual summation terms in
eq 1 associated with a particular N at selected fixed values of the
chemical potential μ and temperature T. In Figure 2, we plot

μ μ μ

μ

≡ Ξ

= +

W N T p T T

N k T Z N T

ln ( ; , , ) ln[ ( , , ) ( , , )]

/ ln ( , , )
N

B (8)

with Z N T( , , ) evaluated from the model defined in eq 7 and
μW N T( ; , , ) representing a relative (i.e., not normalized)

probability of cluster size N for a given μ, , and T. Note that
test runs where the rotational contribution was omitted gave
essentially the same results (data not shown).
The nonmonotonic trends in Figure 2 exhibit a minimum,

which corresponds to the least probable cluster size Nlp, i.e., the
N that minimizes μW N Tln ( ; , , ). (The relationship
between Nlp and the definition of a critical nucleus will be
investigated in more detail in future work.) Figure 3 shows that,

for a range of μ and T values, Nlp(μ, T) is consistently
intermediate between Nmin = 3 and Nmax = 1610. In contrast,
Figure 4 shows that the value of N that maximizes

μW N Tln ( ; , , ), denoted by Nmp as short-hand for “most
probable”, always appears either at the maximum (Nmax) or the
minimum (Nmin) size considered. Since Nmp accounts for the
largest contribution to μΞ T( , , ) and always occurs at one
end of the size range considered, one result of a GCBH run is a
prediction of cluster growth or dissociation for a given μ and T.
If a survey of low-lying minima is not required, then each run
can be terminated once the growth or dissociation is clear.

3.2. GCBH Results.We find that cluster growth is favored by
low temperature and larger μ, and the values of μ above which
GCBH runs produced growth, μ*(T), are summarized as a
function of temperature in Table 2. The same values were
obtained in runs of 107 GCBH steps with size moves attempted

Table 1. Fitted Parameters Employed for the Model
Canonical Partition Functions

ΔE0 8.34177 γ0 28.7118
ΔE1 0.332144 γ1 0.56546
ΔE2 −0.452931 γ2 0.47651

Figure 1. Variation of the heat capacity, Cv/N, with temperature for
some selected cluster sizes using the model defined by eq 7. The peak
shifts to higher temperature with increasing size, and the results
illustrated correspond to N = 13, 31, 38, 55, 75, 129, 309, and 1610.

Figure 2. Cluster size distributions, as quantified by μW N Tln ( ; , , ) defined in eq 8, for (a) fixed μ = −7.5 and temperatures of 0.05, 0.075, 0.1,
0.15, 0.2, 0.25, and 0.3 (reduced units) and (b) fixed T = 0.05 and chemical potentials −7.1, − 7.2, − 7.3, − 7.4, − 7.5, and −7.6.

Figure 3. Least probable cluster size, Nlp, as a function of μ and T. For
the largest and smallest values of μ considered, Nlp corresponds (or is
very close) to one limit of the cluster size range. However, for
intermediate values of μ, it can occur elsewhere, corresponding to the
minima in Figure 2.
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every 50 or 1000 steps. The corresponding block sizes for
accept/reject testing after a size move were set to 40 and 900.
Runs that exhibited cluster growth did not reach the limit of
1000 atoms. The maximum Cartesian coordinate perturbation
was fixed at 0.4, and the temperature parameter employed in
both the standard BH steps (constant size) and in the block
accept/reject tests was fixed at TGCBH = 1.5 reduced units
throughout in this initial survey. The temperature parameter
must be carefully distinguished from the physical temperature
that appears in the grand potential. As in standard basin-
hopping, effective values for the temperature parameter should
be large enough for the algorithm to escape from low-lying local
minima and small enough for low-lying regions to be properly
explored. The GMIN code includes a replica exchange option
where exchanges are attempted between parallel runs with
different values of the basin-hopping temperature parameter,58

but we have not explored this extension in the present work.
The observation of a minimum in the relative probability size

distribution for ranges of T and μ seems to be consistent with
the appearance of a critical nucleus in classical nucleation
theory.59−62 In the latter framework, clusters containing fewer
particles than the critical value are predicted to shrink and
clusters containing more particles should exhibit spontaneous
growth. However, we note that various subtleties exist in the
treatment of cluster nucleation by simulation,63,64 and
connections with the procedure adopted in the present work
require further investigation. Our results simply represent a
search to optimize the potential ξα

N, defined in eq 3, with no
attempt to describe a vapor/droplet equilibrium. For reference,
recent calculations of the chemical potential for saturation
(equilibrium), μs, with alternative potentials for argon produce

values around −8.7 and −10.4 for kBT/ϵ ≈ 0.61 and 0.78,
respectively.65

Runs using ξα
N(0) = Eα

N − Nμ, which do not require normal-
mode analysis, gave results consistent with the low-temperature
limit of ξα

N, with μ* = −5. The lowest minima located as a
function of cluster size are an interesting and potentially useful
byproduct of the GCBH runs. Since systematic global
optimization is not being performed explicitly for each cluster
size, we would not expect to locate the true global minima for all
N in the range encountered. Nevertheless, searches that involve
changes in size, and the block move structure, may provide a
useful survey of the low-lying morphologies. To illustrate this
possibility, the lowest potential energies encountered in two
selected GCBH runs compared to the lowest known minima are
plotted as a function of N in Figure 5. These plots include a

range of μ values for temperatures of 0.001 and 0.1 and illustrate
the trends that also appear for higher temperatures. At T =
0.001, runs with μ values large enough for cluster formation
often encounter the lowest known minimum up to N around
200 atoms. For larger sizes, the potential energy difference
generally increases with N.
For T = 0.1, the lowest minima encountered are close to the

global minimum for smaller sizes, and the energy difference

Figure 4. Most probable cluster size, Nmp, as a function of μ and T.
Note that Nmp always occurs at (or very close to) one limit of the
cluster size range considered.

Table 2. For Fixed Temperatures, the Value of μ Above
Which GCBH Runs Produced Cluster Growth, μ*(T)a

T μ*(T)

0.001 −5
0.1 −3
0.15 −2
0.2 −2
0.4 0

aThe μ values considered were in integer steps.

Figure 5. Potential energy difference (ΔV) in ϵ between the lowest
minimum encountered in selected GCBH runs and the lowest known
minimum as a function of cluster size N. Top: T = 0.001; bottom:
T = 0.1. The common μ values for the two panels are −2 (red), −3
(orange), −4 (yellow), −5 (green), and −6 (blue). The black line in the
lower panel corresponds to μ = −1. In both cases, the results are for
GCBH runs of 106 steps with size moves attempted every 1000 steps,
block size for accept/reject testing of 900 steps, maximum Cartesian
coordinate perturbation fixed at 0.4, and TGCBH = 1.5 throughout
(reduced units). The data points are joined to guide the eye.
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again generally rises with N. However, for μ = −2, we see the
difference decrease above about N = 370. These trends basically
reflect the proportion of steps that the GCBH run spends
around each cluster size. The better a given N value is sampled,
the smaller the deviation from the energy of the putative global
minimum. The results for higher temperatures (omitted for
brevity) are consistent with this pattern. To obtain a survey of
low-energy structures as a function of size, we would therefore
choose a low temperature, together with a large enough value of
μ to produce clustering.

4. APPLICATION OF BASIN-HOPPING TO A
SEMIGRAND CANONICAL POTENTIAL
4.1. Model and Calculation Details. To demonstrate

semigrand canonical basin-hopping (SGCBH) and compare
with previous work,25 we consider icosahedral AgnPd55−n
nanoalloys modeled by the same many-body (Gupta) potential
(with the same parameter values). Using independent SGCBH
runs, each at a different value of Δμ, we seek the composition
and mixing pattern that minimize the value of ξα

NAg defined in eq
5, with the rotational contribution omitted, as in ref 25, or
included for comparison. Before proceeding, we note here that
the calculations reported in ref 25 employed a different
d efin i t i on o f ξ ba s ed on Δμ (N A g − N P d ) =
Δμ(NAg − (N − NAg)) = 2ΔμNAg − NΔμ. The chemical
potential difference used in this reference should, therefore, be
multiplied by two for comparison with the present results.
Each SGCBH run consisted of 105 basin-hopping steps at

kBTSGCBH = 0.01 eV, with the stoichiometry reset to NAg = 28
and species distribution randomized every 500 steps to enhance
exploration.
4.2. Equilibrium Composition. The Ag content of the

lowest encountered configuration obtained at the three physical
temperatures of 0, 100, and 300 K is plotted versus Δμ in Figure
6. At low temperature, the segregation isotherms display
particularly striking plateaux for NAg = 12 and 42, as well as
secondary steps at intervening sizes. These plateaux indicate
particularly stable compositions and are associated here with
highly symmetric motifs in which the nanoalloy is enriched in
silver at the surface, either at the vertices (NAg = 12) or entirely

(NAg = 42). Those motifs were also identified in ref 25, and after
scaling the chemical potential difference by a factor of 2, the
results agree well with those obtained here.
In ref 25, the harmonic superposition method was applied to

the same system, and the equilibrium fraction of silver atoms
contains all of the important thermal fluctuations. Among the
contributions to the grand partition function included in the
superposition method, the semigrand canonical basin-hopping
method seeks only the term corresponding to the potential
energy minimum that makes the largest contribution. Only at
T = 0, when thermal occupation of higher energy minima is
completely suppressed, do the two calculations coincide
precisely. We show in Figure 7 the importance of such

fluctuations by comparing the SGCBH and HSA results at
300 K, correcting the previous results by scaling the chemical
potential difference, as explained above. In this graph, we have
also superimposed the basin-hopping results obtained when the
rotational contribution to the partition function is included.
The neglect of higher energy minima in the SGCBH method

explains the staircase character of the silver fraction in Figures 6
and 7, whereas the superposition method gives smoother
variations even at 100 K. As temperature increases, thermal
fluctuations also increase and further smoothen the equilibrium
silver fraction.25 A similar effect is found for the SGCBH
approach, which results from the increasingly similar Gibbs free
energies of the various isomers. While the fluctuations predicted
by the HSA appear relatively significant at 300 K, they are
actually well represented by the global minimum of the
semigrand partition function. It is also worth noting that some
of the differences between the SCGBH and HSA calculations
are related to the inclusion of nonicosahedral structures in the
latter results, which contribute significantly to the stabilization of
the composition 43:12 in Ag/Pd near Δμ = 1.2 eV.25 This
discrepancy observed between the superposition and basin-
hopping calculations would likely be reduced if the SGCBH
simulations were no longer restricted to sampling the
icosahedral homotop.

Figure 6. Ag content in the lowest lying AgnPd55−n icosahedron at a
given (relative) chemical potential Δμ = μAg − μPd, found using
SGCBH based on the potential defined in eq 5 for three temperatures.
In the ball-and-stick representation of the most persistent stoichiome-
tries, Ag atoms are gray (lighter) and Pd atoms are magenta (darker).

Figure 7. Ag content in the lowest lying AgnPd55−n icosahedron at a
given (relative) chemical potential Δμ = μAg − μPd, found using
semigrand canonical basin-hopping (SGCBH) based on the potential
defined in eq 5 for T = 300 K, and compared to the results of harmonic
superposition approximation (HSA) that include the contribution of a
database of minima (solid line). The results of SGCBH accounting for
the rotational partition function are also shown.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00962
J. Chem. Theory Comput. 2016, 12, 902−909

907

http://dx.doi.org/10.1021/acs.jctc.5b00962


Finally, Figure 7 confirms that the rotational partition
functions plays essentially no role on the segregation isotherms
for this cluster. This result was expected because all minima are
homotops of the two-layer Mackay icosahedron; hence, the
moments of inertia differ only in the ways the atomic masses are
allocated within this framework.
4.3. Some Remarks on the High Symmetry of Stable

Compositions. The high symmetry of the most persistent
compositions is consistent with the principle of maximum
symmetry,6,26,66 which suggests that structures with a higher
symmetry content are most likely to lie in the low- and high-
energy tails of the distribution. Since exceptions to this principle
are not difficult to find, we do not expect it to be universally
applicable, but there seems to be no doubt that many global
minima observed for a wide variety of systems have high
symmetry content. An explanation can be found by writing the
total energy as a sum over contributions from a many-body
expansion, involving single atom, pairwise and three-body terms,
etc. If these terms are drawn from the same distribution, then
geometrical symmetry (degeneracies) would be manifested as
correlation. The variance is larger when correlation is present.
Symmetrical structures are therefore more likely to have
particularly high or particularly low energy. Low-lying structures
are therefore likely to exhibit symmetry.
More formally, denote the mean and variance of a variable, X,

drawn from probability distribution p(X) as μ and σ2.
Contributions to the total energy are correlated when symmetry
is present, and for the corresponding probability distributions,
p(X,X′) ≠ p(X) p(X′). If we sum M terms with mean μ and
variance σ2 from the same distribution, then the variance of the
mean is Mσ2 +M(M − 1)ρσ2 where the correlation ρ is defined
by

∫ρσ μ μ= − ′ − ′ ′X X p X X X X( )( ) ( , )d d2

For ρ = 0, the variance isMσ2, but for ρ = 1, it rises toM2σ2. On
average, we therefore expect to find structures with a higher
symmetry content in the tails of the distribution.6

We have previously exploited symmetry-biased moves in the
context of basin-hopping global optimization, and the core
orbits scheme produced efficiency gains of 1 or 2 orders of
magnitude for some benchmark atomic clusters.67 The present
results suggest that the maximum symmetry principle may also
apply to nanoalloys.

5. CONCLUSIONS

Grand canonical ensembles are commonly encountered in
problems relevant to nucleation or absorption. In this article, a
methodology is introduced to search directly for the
configuration that minimizes the Gibbs free energy and
therefore makes the largest individual contribution to the
grand potential. The method is based on basin-hopping global
optimization and extends a recent effort24 where the free energy
landscape for a given system is minimized using the harmonic
approximation for the entropy at finite temperature. Here, we
have further developed the method to treat a variable number of
particles (grand canonical ensemble) or, at fixed size, the
composition in heterogeneous systems (semigrand canonical
ensemble). Two applications illustrating both situations were
presented, dealing with the nucleation of LJ clusters at fixed
temperature or with the progressive segregation in nanoalloys as
the chemical potential is varied.

In the grand canonical case, the method predicts that the
global minimum in the local Gibbs free energy switches from
dissociated states to bound clusters for larger chemical
potentials and lower temperatures. Those results are in
agreement with a specific model for the size- and temper-
ature-dependent canonical partition function fitted to reproduce
the heat capacities of reference clusters. They are also consistent
with one of the primary conclusions of nucleation theory,
namely, the existence of a critical nucleus that minimizes the
Gibbs free energy.59−62

Our semigrand canonical application to silver−palladium
nanoalloys can be compared with the predictions of the
harmonic superposition method,25 which is similar to the
present approach but incorporates the contributions of different
minima to the grand partition function, not just the largest
individual terms. The two approaches generally agree well, with
discrepancies appearing at higher temperature, where new
families of minima are stabilized, which are omitted in the
present work.
Compared with the superposition method for the same

statistical ensembles, grand canonical basin-hopping is less
demanding because only the global minimum of the
corresponding ensemble is sought instead of entire (ergodic)
samples covering all relevant regions of the free energy
landscape for the different system sizes or compositions. For
the semigrand canonical ensemble, our approach provides a
powerful way of solving the combinatorial problem of chemical
ordering for a nonrigid lattice at finite temperature.
Future applications of the present methodology include the

important case of absorption into porous materials, especially at
low temperature and high densities, for which conventional
grand canonical simulations are not practical. In particular, the
contribution of zero-point motion can be straightforwardly
incorporated in the expression of the partition functions from
knowledge of the individual vibrational frequencies. Moreover,
the notorious difficulty of sampling high-density phases would
be alleviated owing to the systematic local minimization step of
the basin-hopping procedure, thus increasing the chance of
accepting the corresponding moves.
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