
DSP.Ear: Leveraging Co-Processor Support for
Continuous Audio Sensing on Smartphones

Petko Georgiev§, Nicholas D. Lane†, Kiran K. Rachuri§‡, Cecilia Mascolo§

§University of Cambridge, †Microsoft Research, ‡Samsung Research America

Abstract
The rapidly growing adoption of sensor-enabled smart-

phones has greatly fueled the proliferation of applications
that use phone sensors to monitor user behavior. A central
sensor among these is the microphone which enables, for in-
stance, the detection of valence in speech, or the identifica-
tion of speakers. Deploying multiple of these applications
on a mobile device to continuously monitor the audio en-
vironment allows for the acquisition of a diverse range of
sound-related contextual inferences. However, the cumula-
tive processing burden critically impacts the phone battery.

To address this problem, we propose DSP.Ear – an inte-
grated sensing system that takes advantage of the latest low-
power DSP co-processor technology in commodity mobile
devices to enable the continuous and simultaneous operation
of multiple established algorithms that perform complex au-
dio inferences. The system extracts emotions from voice, es-
timates the number of people in a room, identifies the speak-
ers, and detects commonly found ambient sounds, while crit-
ically incurring little overhead to the device battery. This is
achieved through a series of pipeline optimizations that allow
the computation to remain largely on the DSP. Through de-
tailed evaluation of our prototype implementation we show
that, by exploiting a smartphone’s co-processor, DSP.Ear
achieves a 3 to 7 times increase in the battery lifetime com-
pared to a solution that uses only the phone’s main processor.
In addition, DSP.Ear is 2 to 3 times more power efficient than
a naı̈ve DSP solution without optimizations. We further an-
alyze a large-scale dataset from 1320 Android users to show
that in about 80-90% of the daily usage instances DSP.Ear is
able to sustain a full day of operation (even in the presence
of other smartphone workloads) with a single battery charge.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing

General Terms
Design, Experimentation, Performance

Keywords
mobile sensing, co-processor, DSP, energy, audio

1 Introduction
In recent years, the popularity of mobile sensing applica-

tions that monitor user activities has soared, helped by the
wide availability of smart and wearable devices. The appli-
cations enabled by the microphone have attracted increasing
attention as audio data allows a wide variety of deep infer-
ences regarding user behavior [23, 28, 36, 46, 19]. The track-
ing of one’s activities requires a fairly continuous stream of
information being recorded. Most smartphones already boast
a quad-core or octa-core processor, therefore, computation
is increasingly less of a constraint on these commonly used
devices. However, the biggest limiting factor for smartphone
applications that depend on sensor data is the inadequate bat-
tery capacity of phones. This problem is exacerbated in the
case of the microphone sensor, due to its high data rates.
Further, as more of these sensing applications become de-
ployed on the device, the high computational requirements
of simultaneously running complex classifiers add to the en-
ergy burden. As a result, duty cycling strategies are com-
monly adopted, but the side effect is a reduced coverage of
captured sound events, since these can be missed while the
sensor is not sampling.

Recently, a new architecture has been adopted by many
smartphone manufacturers whereby an additional low-power
processor, typically referred to as co-processor, is added
alongside the more powerful primary processor. The aim of
this additional low-power processor is to sample and process
sensor data. For example, the Apple iPhone 5S is equipped
with an M7 motion co-processor [6] that collects and pro-
cesses data from the accelerometer and gyroscope even when
the primary processor is in sleep mode. Similarly, the Mo-
torola Moto X [7] is equipped with a “contextual computing
processor” for always-on microphone sensing but is limited
to recognizing only spoken voice commands. A key chal-
lenge in leveraging such a co-processor is effectively man-
aging its fairly limited computational resources to support a
diverse range of inference types.

In this work, we present a system that operates within
the hardware constraints of low-power co-processors (Qual-
comm Hexagon DSP [13]) to continuously monitor the
phone’s microphone and to infer various contextual cues
from the user’s environment at a low energy cost. Most exist-
ing work (e.g., [27, 34]) on using a low-power processor for
sensing has employed custom hardware: we build our sys-
tem on off-the-shelf phones and propose several novel opti-
mizations to substantially extend battery life. Sensing with
commodity co-processor support (e.g., [40, 42]) is still ex-
ploratory. The computational constraints of the low-power
units has limited the research to either fairly simple tasks

1



such as accelerometer step counting or pipelines typically
seen in isolation or in pairs. We take these efforts one step
further by studying how the co-processor in off-the-shelf
smartphones can support multiple computationally inten-
sive classification tasks on the captured audio data, suitable
for extracting, for instance, human emotional states [36] or
stress [28]. In our design we are able to support the inter-
leaved execution of five existing audio pipelines: ambient
noise classification [29], gender recognition [19], counting
the number of speakers in the environment [46], speaker
identification [36], and emotion recognition [36]. This is
done primarily on the DSP itself with only limited assis-
tance from the CPU, maximizing the potential for energy
efficiency.

The contributions of our work are:
• The design, and implementation, of a novel framework

for smartphone microphone sensing (DSP.Ear) which
allows continuous and simultaneous sensing of a variety
of audio-related user behaviors and contexts.

• A detailed study of the trade-offs of CPU and co-
processor support for sensing workloads. We design a
series of techniques for optimizing interleaved sensing
pipelines that can generalize to other future designs.

We provide an extensive evaluation of the system and find
that it is 3 to 7 times more power efficient than baselines
running solely on the CPU. The optimizations we introduce
prove critical for extending the battery lifetime as they allow
DSP.Ear to run 2 to 3 times longer on the phone compared to
a naı̈ve DSP deployment without optimizations. Finally, by
analyzing a large 1320-user dataset of Android smartphone
usage we discover that in 80% to 90% of the daily usage in-
stances DSP.Ear is able to operate for the whole day with a
single battery charge – without impacting non-sensor smart-
phone usage and other phone operations.

2 Hardware Support for Continuous Sensing
Low-power co-processors for mobile devices are usually

narrowly specialized to perform dedicated tasks in an energy
friendly manner [27]. Such processing units prove especially
handy for continuous sensing where the sensor sampling
power consumption costs [34] are several orders of magni-
tude lower than CPU-driven sensing designs that maintain
a wake lock on the main CPU. However, co-processor use
often introduces slower computation (due to the units being
low-power and generally more limited in capabilities).

Two very popular co-processor units made available in
high-end off-the-shelf smartphone models are the iPhone’s
M7 motion co-processor [6] and the Qualcomm’s Hexagon
QDSP6 [10] of the Snapdragon 800 processor platform.
Whereas the former is specialized solely to efficiently of-
fload collection and processing of motion sensing through
accelerometer, gyroscope, and compass, the latter excels
at low-power multimedia processing. An important distin-
guishing feature between the two is that, unlike iPhone’s M7,
the Hexagon QDSP6 supports custom programmability. This
is achieved through the publicly released C/assembly-based
Hexagon SDK [8] which, to date, has been used for multi-
media applications but has yet to be used for sensing.

The realization of our targeted scenario of multiple con-
currently running audio inference pipelines with emerging
co-processor technology such as the Hexagon application
DSP becomes particularly challenging because of the follow-
ing design space limitations:

Memory Restrictions. The DSP runtime memory con-
straints restrict the amount of in-memory data reserved to
sensing applications. Examples of such data are classifica-
tion model parameters, accumulated inferences or features
extracted for further processing. The lack of direct file sys-
tem support for the DSP imposes the interaction with the
CPU which will either save the inferences or perform ad-
ditional processing on DSP-computed features. This eas-
ily turns into a major design bottleneck if the DSP memory
is low, the data generated by multiple sensing applications
grows fast, and the power-hungry CPU needs to be woken
up from its low-power standby mode specifically to address
the memory transfers.

Code Footprint. The DSP restricts the size of the shared
object file deployed with application code. Deployment is-
sues arise when machine learning models with a large num-
ber of parameters need to be initialized but these parameters
cannot be read from the file system and instead are provided
directly in code which exhausts program space. Sensing in-
ferences performed on the DSP become restricted to the ones
the models of which successfully fit under the code size limit.

Performance. The DSP has different performance charac-
teristics. While ultra low-power is a defining feature of the
DSP, many legacy algorithms which have not been specif-
ically optimized for the co-processor hardware architecture
will run slower. Computations that are performed in real time
on the CPU may not be able to preserve this property when
deployed on the DSP. The DSP generally supports floating
point operations via a 32-bit FP multiply-add (FMA) unit,
but some of the basic operations such as division and square
root are implemented in software which potentially intro-
duces increased latency in some of the algorithms.

Programability. The DSP supports only a subset of the
symbols commonly found in C programming environments.
This limits the range of already developed C libraries that
can be ported to the DSP without modifications.

3 System Overview
In this section, we introduce the main architectural com-

ponents of DSP.Ear as well as a high-level workflow of its
operation. The system has been designed to perform the con-
tinuous sensing of a range of user behaviors and contexts,
in near real-time, by leveraging the energy-efficient compu-
tation afforded by commodity DSPs found in a number of
recent smartphones. To achieve this design goal we have ad-
dressed two fundamental challenges:

Supporting Multiple Complex Audio-based Inference
Pipelines. To recognize a broad set of behaviors and
contexts we must support a variety of complex inference
pipelines. We have implemented a series of concurrently-
operating representative audio-based pipelines based on pre-
viously published research: ambient noise classification

2



raw audio 
data

preprocessing

admission
filters

Framing Preemphasis Hamming
windows

Silence vs.
noise

Speech vs.
ambience

Feature 
extraction

Feature
extraction

Feature
extraction

Emotions
similarity

Neutral vs.
other emotions

Emotion
recognition

3s window
32ms frame

1.28s win
32ms frame

5s window
30ms frame

Speaker
similarity

Speaker
identification

Ambient sound
similarity

Ambient sound
classification

Gender
estimation

Speaker
count

CPU CPU

Speech Ambience

Light-weight
features

Figure 1. DSP.Ear Architecture.

[29], gender recognition [19], speaker counting [46], speaker
identification [36], and emotion recognition [36].

Operating within Commodity Co-Processor Mobile Ar-
chitectural Limits. To leverage the low-power co-
processor capabilities of DSPs requires our design to cope
with a number of architectural bottlenecks. The DSP can
easily be overwhelmed by the high-sampling rates of the mi-
crophone and the bursts of computation needed to process
audio data deep into pipelines, depending on context – for
example, when the user is in conversation requiring a num-
ber of inferences (such as emotion, speaker identification,
gender estimation).

We overcome these challenges through our system ar-
chitecture and implementation that interleaves the execution
of five inference pipelines principally across a single stan-
dard DSP – critically our design enables each pipeline to be
largely executed directly on the DSP and minimizes the fre-
quency to offload computation to the primary CPU. A key
design feature is a series of pipeline execution optimizations
that reduce computation through cross-pipeline connections
in addition to leveraging common behavioral patterns.

Figure 1 shows the overall system architecture. In
DSP.Ear, the phone’s microphone is continuously sampled
(i.e., without any interruption) on the DSP, which applies
a series of admission filters to the sampled audio. Light-
weight features are then extracted to determine the pres-
ence of acoustic events. If the sampled audio passes an ini-
tial admission filter that filters out non-sound samples, then
volume-insensitive features are extracted. Further, an addi-
tional filter splits the execution into two processing branches
– one for speech, and the other for ambient sounds – depend-
ing on the output of a decision tree classifier. We now briefly
describe each of these execution branches.

Speech Processing Branch. Under this pipeline branch we
perform the following human voice-related inferences.

Gender Estimation. A binary classification is performed to
identify the gender of the speaker. The output of this classi-
fier also assists with subsequent pipeline stages that estimate
the number of nearby people (Speaker Count) and recogniz-
ing which person is speaking (Speaker Identification).

Speaker Count. To find the number of speakers in a conver-
sation, we implement an adapted version of the Crowd++ un-
supervised algorithm [46]. We continuously extract features
from 3-second long utterances and perform on-stream merg-
ing of subsequent segments into the same cluster depending
on whether the feature vectors are close enough. Once we
detect that the conversation has stopped after a minute of no
talking, we schedule the final stage of the speaker counting
algorithm.

Emotion Recognition. We divide the audio stream into 5-
second long samples and on the DSP extract a different fea-
ture set required by the emotion and speaker identification
stages. A light-weight similarity detector computes sum-
mary statistics (mean and variance) over the extracted acous-
tic features and compares the summary vectors of the previ-
ous and current audio segment. If the features are similar
enough, the emotion labels are propagated from the previous
inference.

The emotion classification stage consists of several steps
and is mainly performed on the CPU. The first step is ap-
plying an admission filter that accounts for whether the emo-
tion is neutral or not. It operates faster than running the full
pipeline of all emotions and often saves computation given
that neutral emotions dominate in everyday settings [36]. If
the emotion is not neutral, the finer category classification
continues with determining the narrow non-neutral emotion
such as happiness, sadness or fear.

Speaker Identification. The speaker identification algo-
rithm uses the same set of features required for the emo-
tion recognition task and again makes inferences based on
audio recordings of the same length (5 seconds). An iden-
tical similarity detector calibrated with a different similarity
threshold eliminates redundant classifications when the co-
sine angle between summary feature vectors of subsequent
audio recordings is sufficiently low. In the classification
stage when the likelihood of offline trained speaker mod-
els is derived for the audio recordings, the already estimated
genders are cross-correlated with the models to reduce the
number of computed likelihoods to the set of gender-speaker
matches.

Ambient Sound Processing Branch. This pipeline branch
deals with the detection of everyday sounds. We train in an
offline manner several classifier models that represent exam-
ples of commonly encountered sounds in natural environ-
ments (music, water, traffic, other). The classifiers require
the computation of an additional set of summary features
over a commonly adopted 1.28-second window [28, 46]. At
runtime, an ambient sound similarity detector intercepts the
classification process and firstly compares the feature vectors
of subsequent windows for similarity. If the acoustic finger-
prints are sufficiently close to each other, the same type of
sound is inferred which bypasses the expensive classification
process. In the alternative case, the final stage of the ambi-
ent processing pipeline consists of finding the sound model
that with the highest probability matches the input sequence
of acoustic observations. This classification step becomes
more expensive with the increase in the number of sounds

3



Feature Set Pipelines and Filters
RMS, Spectral Entropy [29] Silence Filter
pitch [19] Crowd++, Gender
MFCC [21] Crowd++, Ambient
PLP (16 static and 16 delta) [22] Emotions, Speaker Id
Low Energy Frame Rate [38], Zero Cross-
ing Rate [37], Spectral Flux [38], Spectral
Rolloff [24], Spectral Centroid [24], Band-
width [24], Relative Spectral Entropy [29],
Normalized Weighted Phase Deviation [20]

Speech Filter, Ambient

Table 1. Acoustic features.
Broad Emotion Narrow Emotions
Anger Disgust, Dominant, Hot Anger
Fear Panic
Happiness Elation, Interest, Happiness
Neutral Boredom, Neutral Distant, Neutral Conversation,

Neutral Normal, Neutral Tete, Passive
Sadness Sadness

Table 2. Emotion categories (adopted from [36]).

against which the audio input is being matched.
4 Audio Inference Pipelines

In this section, we detail five microphone-based behav-
ioral inference pipelines currently included in our system.
Four of these pipelines are under the speech processing
branch while one is in the ambient processing branch. Our
design is extensible and additional audio pipelines (e.g., So-
cioPhone [23], StressSense [28]) can easily be added as re-
quired to capture additional dimensions of the user behavior
and context. Each implemented pipeline in our system is
based on previously published research. Table 1 provides an
overview of the features and inference algorithms used. We
now describe each pipeline in turn.

Emotion Recognition. Emotions are an integral part of
a user’s everyday life and to detect them we analyze hu-
man voice by employing the algorithm introduced by Emo-
tionSense [36]. Gaussian Mixture Model classifiers with
diagonal covariance matrices are trained using emotional
speech from the Emotional Prosody Speech and Transcripts
library [26]. Each of 14 narrow emotions (Table 2) is rep-
resented by an emotion-specific GMM classifier built by
performing Maximum a Posteriori (MAP) adaptation of a
128-component background GMM representative of all emo-
tional speech.

The GMM evaluates the probability of certain observa-
tions being attributed to the model and in our case these
observations are Perceptual Linear Prediction (PLP) coeffi-
cients [22] extracted from frames over 5 seconds of recorded
audio. The audio signal is segmented into 30ms frames with
a 20-ms overlap and 32 PLP coefficients are computed from
each frame. At runtime, the likelihood of the recorded au-
dio sequence is calculated given each emotion class model
and the emotion corresponding to the highest likelihood is
assigned. As described by the authors [36], the narrow emo-
tions are grouped together into 5 broad categories that cap-
ture sadness, happiness, fear, anger and neutral speech. The
final result of the recognition process is thus the broad cate-
gory to which the classified narrow emotion belongs.

Speaker Identification. The speaker recognition algorithm

is again based on [36] and it reuses the algorithmic elements
introduced in the emotion classification. A 128-component
background GMM representative of all available speakers is
built and MAP adaptation is performed on PLP features from
speaker specific utterances to obtain the speaker-dependent
models. At runtime, the speaker-specific model that pro-
duces the highest likelihood given the audio sequence is
identified as the speaker of the audio sample.

Gender Estimation. One of our use cases is determining
the gender of the current speaker. Previous studies [14] have
demonstrated that the most distinctive trait between male and
female voices is their fundamental frequency, also known as
pitch. Similarly to Xu et al. [46], we adopt Yin’s algorithm
[19] to determine the pitch from a 32-ms frame. We compute
a series of pitch values from the 50% overlapping frames in a
3-second long window and use the mean as a summary statis-
tic over the whole utterance. Gender inferences are made
based on the findings of Baken [14] that the average pitch
for men typically falls between 100 and 146Hz, whereas for
women it is usually between 188 and 221Hz. The algorithm
we use infers a male voice for the whole utterance if the pitch
is below 160Hz, reports a female voice if the pitch is above
190Hz and is uncertain in the cases where the value falls be-
tween these thresholds.

Speaker Count. We count the number of speakers in a con-
versation by using the Crowd++ unsupervised counting al-
gorithm [46]. It consists of 2 phases: feature extraction and
speaker counting. In the first phase, speech is segmented
into 3-second long windows and 20-dimensional MFCC fea-
tures are extracted from the 32-ms frames with 50% over-
lap. The speaker counting phase is triggered infrequently
and when the conversation is over. A forward pass stage,
linear in the number of segments, merges neighboring seg-
ments into clusters represented by the mean values of the
MFCC features. Two segments are merged together if the co-
sine angle between the representative feature vectors of the
segments falls below an experimentally identified threshold
(15◦). Thus clusters correspond to audio sequences during
which the same speaker is talking. Once this is done, the
final stage of the algorithm compares clusters against each
other and merges them based on their cosine similarity and
the inferred gender of the speaker represented by the cluster.
The total number of identified clusters in this final stage is
the inferred number of speakers in the conversation.

Ambient Sound Classification. For the detection of vari-
ous ambient sounds we again adopt Gaussian Mixture Mod-
els which have proven effective in discriminating between
human activity sounds in natural environments [33]. We
divide the audio signal into 32-ms non-overlapping frames
and extract features (Table 1) from each frame in a window
of 40 frames. The audio sample length of 1.28 seconds is
small enough to account for short-length sounds, while at the
same time being wide enough to capture distinctive acoustic
characteristics. The series of frame features in the window
constitute the acoustic observations which are then evaluated
against the GMM models. We pick 3 commonly encountered
types of sounds (music, traffic, and water) as some examples

4



and build a total of 4 GMMs representative of the 3 sound
categories and other noises. We use 66 as the number of
mixture components after evaluating the Bayesian Informa-
tion Criterion (BIC) [43] on several validation models. The
GMMs are trained with a standard expectation maximization
(EM) algorithm.

5 Concurrent Inference Pipeline Support
In what follows, we describe four general categories of

audio inference pipeline optimizations designed to enable
each pipeline to operate concurrently within the (largely)
hardware limitations of our target prototype platform. These
optimization categories include: admission filters enabling
the early elimination of unnecessary pipeline stages; behav-
ioral locality detection for reducing the frequency of full in-
ference computation; selective CPU offloading for delegat-
ing tasks the DSP is unable to process; and cross-pipeline
optimizations.
5.1 Admission Filters

We adopt three distinct admission filters based on the
combination of implemented audio inference pipelines.

Silence filtering. A large proportion of the time users are
situated in silent environments where the ambient noise is
low. In such cases performing audio processing is a waste
of phone resources. Similarly to [29] we divide the audio
stream into a series of frames and compute the Root Mean
Square (RMS) and spectral entropy which we test against
experimentally determined thresholds to decide whether the
frame is silent or not. We use a shorter frame of 32ms
which allows us to increase the precision with which we de-
tect the onset of sounds. In a manner similar to [27] this
stage of the processing can be delegated to the low-power
co-processor and thus eliminate the need for adopting duty
cycling schemes which may miss sound events. Once the
frame is determined to contain some acoustic event, all sub-
sequent frames in a time window are admitted for further
processing. If a time window occurs such that all frames
inside are flagged as silent, frame admission ceases.

Neutral emotion biasing. As reported by [36] between
60% and 90% of the time the emotions encountered in hu-
man speech are neutral. This finding implies that being able
to quickly flag an utterance as being neutral or not could pro-
vide significant savings in processing power. In most cases
the binary decision would result in the emotion being clas-
sified as neutral which can bypass the time-consuming com-
parisons against all emotion class models. We therefore build
2 GMMs, one representative of neutral emotions and a filler
one capturing the rest. When the emotion recognition part
ensues we first perform a classification against these two
models and finer emotion recognition proceeds only if the
detected valence is not neutral.

Speech detection. The majority of the application scenar-
ios we consider require the analysis of human voice which is
why ensuring that such processing occurs only when speech
is encountered is mandatory. The coarse category classifica-
tion of the audio samples into speech and ambient noise is
a frequently performed step that occurs whenever the envi-
ronment is not silent. It needs to be fast and efficient while

at the same time retaining high accuracy to reduce the false
positive rate and avoid unnecessarily triggering the expen-
sive speech processing pipelines. We adopt a strategy that
has been established in previous works [29, 27] where we
use non-overlapping frames in a window from which we ex-
tract features and perform binary classification via a J48 de-
cision tree on the whole audio window. We use 32ms as the
frame length and a window of 40 frames which amounts to
1.28 seconds of audio sampling before deciding whether the
sound sample contains speech or ambient noise. The low en-
ergy frame rate [38] as well as the mean and variance over a
window of the features shown in Table 1 are used.

5.2 Leveraging Behavioral Locality in Audio
Many human activities and behaviors, such as taking a

shower or being in a specific emotional state, last much
longer than a few seconds. However, conventionally our in-
ference pipelines perform the entire inference process each
time a new audio data segment arrives from the microphone
– even though often the prior user activity or context will be
still on-going. The largest computational waste is the incre-
mental Bayesian process of testing each GMM model used
to represent possible behavior or sound categories to find the
most likely model given the data segment. Instead, simi-
larly to Lu et al. [30], we adopt a scheme that computes
the similarity between the current and previous feature vec-
tors and triggers the full classification step only if the new
acoustic signature differs significantly from the previous one.
For Ambient Sound Classification we use summary values
(mean and variance) of the features to build vectors that will
be compared from subsequent windows. We compute the
cosine angle between these vectors and if it remains within
a threshold δ we do not run the full classification pipeline
and instead propagate the prior category. For Emotion and
Speaker Recognition we compute the mean and variance of
the PLP coefficients in an audio sample and compare sub-
sequent segments for similarity. If these derived vectors are
similar enough we reuse the label of the previous recognized
emotion or speaker. Note that this strategy is reasonable
since the emotional state is unlikely to oscillate violently be-
tween subsequent speech utterances.

5.3 Selective CPU Offloading
There are several important parameters that drive the de-

sign of an integrated system for audio processing running on
the DSP. On the one hand, there is a limit on the amount
of memory allocated for the compiled code that will be de-
ployed on the DSP. Since the co-processor does not have a
file system of its own, the model parameters for the GMMs
cannot be loaded from a file but need to be initialized directly
through code. This restricts the amount of sounds, emotions
and speakers that can be recognized on the co-processor.
Therefore, even in the cases when we could afford to op-
portunistically perform heavy and time-consuming classifi-
cations on the DSP, there will be a limit on the type of in-
ferences we could make. This constraint drives the need for
selectively offloading computation on the main CPU where
it could perform the tasks the DSP is unable to handle.

To accomplish this offloading the DSP needs to interact
with the CPU to transfer feature buffers for further process-

5



ing. Often the CPU will be in sleep mode at the point of
DSP interaction initiation which means that the DSP needs
to wake up the CPU. This is currently supported on the Snap-
dragon 800 platform through a mechanism known as Fas-
tRPC that is based on remote procedure calls. The CPU
invokes a remote method on the DSP where the execution
can be blocked on a variable until the DSP updates its sta-
tus. Due to the thread migration mechanism implemented
by Qualcomm, during the method invocation the CPU can
go to sleep if the DSP execution takes too long. On returning
from the remote method, the CPU is woken up automatically.
The buffer transfers in this case consist of simply passing an
argument to the remotely invoked method which is why the
transfer itself is relatively inexpensive compared to the wake-
up operation.

The rate at which the CPU is woken up is critical to the
energy profile of the full system as waking the CPU is ac-
companied with a power consumption overhead originating
from two sources. First, the wake-up itself consumes power
that is an order of magnitude higher than the standby power.
Second, once the buffer transferring is over, the CPU remains
idle for some time before going back to sleep/standby mode.
Therefore, reducing the wake-up rate proves to be of utmost
importance for maintaining a low-energy profile.

The time between two subsequent buffer transfers from
the DSP to the CPU defines the CPU wake-up rate. This
time is dependent on several factors, the most pronounced
of which are the runtime memory limitations of the DSP as
well as the frequency of encountered sound events. As the
DSP can only accumulate a certain amount of data before
waking up the CPU to offload computation, the offloading
must work in synergy with the similarity detectors to reduce
the number of transferred acoustic features and increase the
number of inferences made by the DSP. The speech features
computed over 5 seconds of audio recording consume 2 or-
ders of magnitude more memory than the ambient features
which means that the rate at which the CPU is woken up is
largely determined by the proportion of the time speech is
detected. We can formalize the time ∆t in seconds between
two DSP-CPU interactions by the following equation:

∆t = γ+
(ML −MM)

MP
× (1+min(SE ,SS))× τ

where,
• γ is the time spread in seconds during which silence and

ambient sounds interleave the speech;

• ML is the DSP memory limit;

• MM is the memory consumed by the audio module pa-
rameter initialization, the pipeline inferences plus the
accumulated ambient features;

• MP is the size of the speech (PLP) features;

• SE and SS are the fractions of similar emotions and
speakers identified by the similarity detectors;

• τ is the sampling window in seconds over which speech
features are extracted (currently equal to 5 seconds).

Note that we need to take the minimum of SE and SS as

the speech features are shared by the two classification algo-
rithms. To give a perspective on this time ∆t, if we assume
that γ is 0 (no silence/ambience in between the speech), no
classifications are saved and the memory limit is 8MB we
easily run out of co-processor space in around 9 minutes.
On the other hand, if we encounter only ambience and no
speech we can accumulate ambient features for well over 9
hours in the absence of silence. To summarize, the frequency
with which a user is involved in conversations is a prime de-
terminer of how often we resort to selective CPU offloading.
Maximizing the time between subsequent DSP-CPU interac-
tions is crucial for maintaining a low-power system profile.
5.4 Cross-Pipeline Optimizations

Our design leverages the following inter-pipeline links to
allow contextual hints extracted by early simpler pipeline
components to benefit later more complex inference phases.

Gender Filtering for Speaker Identification. We make
use of the gender estimation pipeline to reduce the number
of GMMs against which we perform speaker identification.
If the gender of the speaker whose GMM is being evaluated
does not match the inferred gender from the audio sequence
we do not compute the probability for that model.

Speaker Count Prior from Speaker Identification. We
boost the accuracy of estimating the number of nearby peo-
ple with a prior based on the number of unique speakers
found by Speaker Identification. From Speaker Identifica-
tion the number of speakers is estimated for those individu-
als our system possesses a speaker model. This is used to set
a prior on the likelihood of each Speaker Count category of
nearby crowd size. If Speaker Identification recognizes an
unknown voice (i.e., a voice too dissimilar from all available
speaker models) then category priors are adjusted to reflect
the potential for additional nearby people.

Speech Detection activated Speaker Identification and
Speaker Count. Only if speech is detected by an admis-
sion filter are later complex inferences of Speaker Count and
Speaker Identification made. Otherwise these pipelines of
audio analysis are short circuited and never performed.
6 Prototype Implementation

The system prototype is implemented on a Snap-
dragon 800 Mobile Development Platform for Smartphones
(MDP/S) with an Android Jelly Bean OS [9] (Figure 2). Ac-
cess to the low-level co-processor APIs is granted through
the C-based Hexagon SDK of which we use version 1.0.0.
The audio processing algorithms are implemented in C
through the Elite firmware framework which is part of the
SDK and is designed for the development of audio modules.
We duplicate the C functionality of the audio processing for
the Android OS where we utilize the Native Development
Kit (NDK) to interface with the Java code. This is needed so
that we can compare the system performance and efficiency
against a CPU-only implementation. The audio sampling of
the microphone on the CPU is performed in Java.

The DSP programmability is open to selected develop-
ment devices such as the MDP/S but not to commodity
smartphones featuring the same Snapdragon 800 proces-
sor. Currently the version of the C programming language

6



Figure 2. Snapdragon 800 Mobile Development Platform
(MDP) [9] used for the system development.

supported on the DSP includes only a subset of the stan-
dard libraries commonly found in recent C compiler im-
plementations. This drives the need for porting and mod-
ifying audio processing code from other libraries specifi-
cally for the DSP. We adapt common algorithms such as
Fast Fourier Transforms, feature implementations and GMM
classification from the HTK Speech Recognition Toolkit
(HTK) [5]. The training of the GMMs for the emotion
and speaker recognition models is performed in an offline
manner through the HTK toolkit, while the ambient mix-
ture models are trained through the scikit-learn Python li-
brary [11]. The microphone sampling rate used for all appli-
cations is 8kHz.

The audio module is deployed via a compiled shared ob-
ject file with the system code. For our version of the SDK
the maximum allowed size of this shared object file on the
DSP is 2MB. This introduces limits to the number of mix-
ture models that could be kept on the DSP at runtime. Since
the DSP does not have a file system of its own, the model
parameters cannot be loaded from a file but need to be ini-
tialized directly through code. The compiled code for one
emotion or ambient model occupies approximately 260KB
or 87KB of the shared object file respectively. This leads to
a maximum of 5 emotion or 16 ambient mixture models that
could be used at runtime by the DSP given that the code for
the functioning of the integrated system also requires space.
Our prototype keeps loaded on the DSP 2 GMMs for the
”neutral vs. all” emotion admission filter and 4 ambient mix-
ture models as some examples of commonly found sounds in
everyday life (music, traffic, water and a sink model captur-
ing other sounds).

To enable real-time analysis of the audio stream we need
to bring together the execution for the processing of the same
type of sound. When human voice is detected we would like
to make gender inferences, count the speakers and extract
features needed for emotion and speaker recognition at the
same time. Not doing this online as the microphone is be-
ing sampled would result in spending additional memory for
keeping raw audio buffers for further processing at a later
stage. With the relatively limited amount of memory avail-
able for the DSP (currently 8MB) this case is undesirable.
Therefore, we take advantage of the hardware threads on the
DSP to enable multi-threaded execution.

There are a total of three hardware threads on the DSP of
which we effectively use two. The hardware threads unlike
typical software ones are architected to look like a multi-core

with communication through shared memory. Currently the
speaker count algorithm is executed on-the-fly in the main
processing thread where the audio buffers become available.
The PLP feature extraction required for emotion and speaker
identification, as well as the neutral emotions admission fil-
ter, are performed together in a separate thread as soon as 5
seconds of audio recording are accumulated. Whereas en-
abling multi-threading naturally consumes more power in
mW than running each pipeline individually, the latency is
reduced so that the overall energy consumption in mJ re-
mains roughly equal to the case of running the pipelines se-
quentially. This observation confirms a near perfect power
scaling for the multi-threaded support of the DSP and it is
a crucial feature for energy efficiency advertised by Qual-
comm [13].

7 Evaluation
In this section we provide an extensive evaluation of the

proposed system and its various components. The main find-
ings can be summarized to the following:

• The only runtime bottlenecks on the DSP are the classi-
fication stages of the emotion and speaker recognition.

• Our design is between 3 and 7 times more power effi-
cient than CPU-only baselines.

• The optimizations are critical for the extended battery
lifetime of the system as they allow the DSP+CPU so-
lution to operate 2 to 3 times longer than otherwise pos-
sible.

• Under common smartphone workloads the system is
able to run together with other applications for a full
day without recharging the battery in about 80-90% of
the daily usage instances.

In Section 7.1 the evaluation highlights the accuracy, run-
time and power profiles of the pipelines in isolation. Section
7.2 details a study on the parameters and importance of the
introduced optimizations. Last, Section 7.3 gives an evalua-
tion of the full system energy consumption compared against
three baseline models.
7.1 Inference Pipeline Micro-Benchmarks

Here we focus on testing the individual audio pipelines
with regard to the accuracy, runtime and power consumption
characteristics. All measurements performed on the DSP are
reported for a default clock frequency and a Release version
of the deployed code. We show that among the pipelines the
emotion and speaker recognition are a processing bottleneck
for the DSP, whereas the feature extraction stages, ambient
classification and speaker counting can be run efficiently and
in near real time on the DSP. Finally, most application algo-
rithms are an order of magnitude more power efficient when
executed on the DSP.
7.1.1 Datasets

We evaluate our implemented pipelines using the follow-
ing datasets.

Emotions: Similarly to EmotionSense [36] we use train-
ing and testing data from the Emotional Prosody Speech
and Transcripts library [26]. The dataset consists of voiced
recordings from professional actors delivering a set of 14

7



Speech Ambient Noise
Speech 93.02% 6.98%

Ambient Noise 10.34% 89.66%

Table 3. Confusion matrix for speech/ambient noise clas-
sification. Results obtained via 5-fold cross validation.

narrow emotions grouped into 5 broad categories (happiness,
sadness, fear, anger and neutral).

Speaker identification: We use 10-minute speech samples
recorded by a total of 22 speakers working in our research
department at the time of the dataset collection.

Conversations and gender: We extract 24 minutes worth
of conversational speech in various contexts from online ra-
dio programs. 12 male and 12 female voices are captured in
natural turn-taking situations with occasional pauses.

Ambient sounds: The dataset consists of 40 minutes of var-
ious sounds equally split into the 4 categories music, traf-
fic, water and other. The music audio clips are a subset of
the GTZAN genre collection [25]; the traffic samples were
downloaded from an online provider of free sound effects
[3]; the water samples were obtained from the British Li-
brary of Sounds [1]; the rest of the sounds were crawled from
a subset of the SFX dataset [17].

Speech vs. ambient noise. We assemble a dataset that
consists of 12 minutes of conversations from online radio
programs and 12 minutes of various ambient sounds includ-
ing street noise, traffic, water, weather effects, animal pet
sounds, machinery, typing, and more. The sources of the
ambient noise are as described in the previous paragraph.
7.1.2 Accuracy

As shown below, we discover the accuracy of each im-
plemented pipeline is in line with already published results.
We report the performance of the algorithms for correctness
and with datasets recorded in relatively clean environments.
Nevertheless, detailed analysis of the algorithmic accuracy
under more challenging conditions can be found in the orig-
inal papers [36, 46, 30].

Speech detection. In Table 3 we show the confusion ma-
trix of the decision tree classifier that distinguishes between
speech and other types of sounds. It achieves an overall ac-
curacy of 91.32%.

Emotion recognition and speaker identification. We con-
firm through our implementation an overall accuracy of
70.88% for discriminating between the five broad emotion
categories when acoustic features are computed over 5 sec-
onds of voiced speech [36]. Similarly to the reported results
for the original implementation of the speaker identification,
we observe an increase in the accuracy which on our dataset
of 22 speakers reaches 95%.

Gender classification. Table 4 shows the confusion matrix
for our implementation of the gender classification algorithm
described by Xu et al. [46]. It is reasonably accurate with the
male and female voices correctly classified as such 95.05%
and 90.63% of the time respectively. The largest error in
the classification is observed when the algorithm is uncertain
about the gender of the detected voice, while errors caused

Male Female Uncertain
Male 95.05% 0.00% 4.95%

Female 1.04% 90.63% 8.33%

Table 4. Confusion matrix for gender estimation based
on pitch.

Music Traffic Water Other
Music 97.22% 0.22% 0.43% 2.13%

Traffic 0.27% 97.63% 1.05% 1.05%
Water 1.33% 1.55% 94.47% 2.65%
Other 8.42% 4.08% 5.36% 82.14%

Table 5. Confusion matrix for ambient sound detection.
Results are obtained through 5-fold cross validation.

by misclassification barely exceed 1%.

Speaker count. We extract parts of the conversations in the
described dataset and vary the number of speakers from 1 to
10 in a manner similar to Crowd++ [46]. The metric used by
the authors to compute the accuracy of the speaker counting
algorithm is Average Error Count Distance (AECD). It mea-
sures the error rate as the absolute difference between the
actual and reported number of speakers. On the dataset we
have gathered the Crowd++ algorithm achieves an AECD of
1.1 which is consistent with the reported results for private
indoor environments.

Ambient sound classification. In this task we disambiguate
between 3 distinct classes of sounds with fairly unique char-
acteristics which together with the clean dataset might ac-
count for the high discriminating power reported in Table 5.
The main source of confusion comes from the other types
of sounds which might be acoustically close to either mu-
sic, traffic or water. For instance, some of the sounds in the
Other dataset are ring tones or chirping of birds which might
be interpreted as music.

7.1.3 Latency
The execution of any classification pipeline of the system

is preceded by the admission filters ensuring that no unneces-
sary additional processing is incurred. Since they are always
applied to the audio input, being capable of running fast and
efficiently is of prime importance. In Table 6 we demonstrate
that although the DSP is between 5 and 7 times slower than
the CPU, the admission filters occupy a small 0.045-0.066
fraction of the audio processing per second. This spares exe-
cution space for the more compute-heavy scenarios the nor-
malized runtime of which we display in Figure 3.

It is worth pointing out that since Figure 3 portrays nor-
malized runtimes per one second of audio sampling, we can
easily distinguish between the application scenarios that can
be run in real time on either of the two processing units (CPU
and DSP). The quad-core Krait CPU performs all tasks in
real time, while for the DSP the emotion recognition (14
GMMs) and speaker identification (22 GMMs) use cases are
bottlenecks. The PLP feature extraction stage shared by the
two application scenarios, however, consumes less than 12%
of the total emotion recognition execution making these fea-
tures computation real-time on the DSP. The rest of the ap-
plications can easily run all of their stages on both the CPU
and the DSP without introducing delays.

A noticeable difference between the two processing units

8



CPU DSP
Silence 7.82 ms 45.80 ms
Speech 11.20 ms 66.42 ms

Table 6. Normalized runtime for processing 1 second of
audio data for the silence and speech admission filters.

Ambient
Sound

Speaker
Count

Emotion
Recognition

300
600
900

1200
1500
1800

R
u
n
ti

m
e
 (

m
s)

Features

Full pipeline

(a) CPU

Ambient
Sound

Speaker
Count

Emotion
Recognition

300
600
900

1200
1500
1800

R
u
n
ti

m
e
 (

m
s)

Features

Full pipeline

(b) DSP

Figure 3. Normalized runtimes per one second of audio
sensing for the various applications when execution hap-
pens on (a) the CPU and (b) the co-processor.

is that the DSP operates between 1.5 and 12 times slower
than the CPU on the various classification scenarios. The
variability in the slow-down factor hints that the DSP treats
the computation of the acoustic features differently from the
CPU. This is because although the DSP supports floating
point operations, some of them such as division and square
root are implemented in software. In contrast, modern pro-
cessors have dedicated hardware instructions for the same
set of operations. The pitch computation algorithm, for in-
stance, which is quadratic in the number of the samples in a
frame, is composed predominantly of additions and multipli-
cations which favor the co-processor hardware. As we can
see from the figure, the DSP is only 1.5 times slower than the
CPU on the speaker count feature set where the pitch estima-
tion dominates the MFCC computation. On the other hand,
the ambient features computation on the DSP takes slightly
over 11 times longer than the CPU. The basic operations for
these features include not only floating point division, but
also taking the square root and performing discrete cosine
transforms, all of which incur a processing overhead.
7.1.4 Power Consumption

In this subsection, we provide critical insights on the rela-
tive efficiency with which the DSP is able to perform the var-
ious algorithmic tasks compared to the CPU. The measure-
ments have been obtained through a Monsoon Power Mon-
itor [2]. The reported values account only for the process-
ing required by the algorithms without including the cost of
maintaining the CPU awake and pulling audio data from the
microphone sensor. This is done for this subsection only and
so that we can better compare and contrast the energy over-
head incurred by the pipeline stages themselves. The aver-
age power consumed by maintaining a wake lock on the CPU
with a screen off on the MDP device is 295mW, while keep-
ing the microphone on adds around 47mW on top for a total
of 342mW which is consistent with the reported values by
Lu et al. [27]. The sampling of one microphone on the DSP
with 8kHz maintains a current of 0.6 ∼ 0.9mA (2 ∼ 4mW)
which is comparable to other sensors on low-power chips
[34]. Since continuously sampling the microphone on the
DSP is not a publicly released functionality yet, we have ob-
tained the exact values for the MDP board through the Qual-
comm support team.

CPU DSP
Silence 12.23 mW 1.84 mW
Speech 17.61 mW 2.54 mW

Table 7. Normalized average power consumption in mW
for the silence and speech admission filters.

Ambient
Sound

Speaker
Count

Emotion
Recognition

100

101

102

103

P
o
w

e
r 

(m
W

)

(a) CPU

Ambient
Sound

Speaker
Count

Emotion
Recognition

100

101

102

103

P
o
w

e
r 

(m
W

)

Features

Full pipeline

(b) DSP

Figure 4. Average power consumed by the various ap-
plications when running on (a) the CPU and (b) the co-
processor. Values on the Y axis are in a logarithmic scale.

As already mentioned in the previous section, the admis-
sion filters are performed always as a first step in the process-
ing which is why it is also important for them to be energy
efficient. Table 7 shows this is indeed the case. The DSP is
around 7 times more energy efficient for both tasks than the
CPU. The overhead of continuously checking for whether
the environment is silent is negligibly small on the DSP as
the power does not exceed 2mW. In the non-silent case, the
additional energy cost of performing a decision tree classi-
fication on the type of sound is very low on the DSP, being
merely 0.7mW on top of the first admission filter.

The stages of the application algorithms, on the other
hand, are more compute-heavy and consume much more
power (Figure 4). Despite this, the DSP is an order of
magnitude more energy efficient than the CPU. The emotion
recognition for instance consumes 836mW on average on the
CPU, while this number drops to merely 37mW for the full
pipeline on the co-processor. For the emotion/speaker de-
tection task the DSP is thus more than 22 times more power
efficient than the main processor. Similarly, the full speaker
count algorithm requires an average of 296mW of power on
the CPU, whereas on the co-processor the same execution
consumes barely 21mW. To put these numbers into perspec-
tive, if we add the required power for maintaining the audio
sensing on the CPU, a standard 2300mAh battery would last
less than 14 hours if it performs only speaker counting on the
mobile phone and nothing else. If we assume that the CPU
drains the battery with 30mW of power in standby state [4],
and the DSP microphone sampling consumes 4mW on aver-
age, then adding the 21mW of the DSP for the same speaker
counting task means that the battery would last for more than
154 hours if it only counts speakers on the co-processor.
7.2 Optimization Benchmarks

In this section we elaborate on several important aspects
of the system design related to the introduced optimization
techniques. We comment on the expected trade-offs between
the accuracy and the savings in the processing.
7.2.1 Admission Filters: Neutral Emotions

Here we discuss the implications of adding an admission
filter that attempts to disambiguate between neutral and other
emotions as a step that intercepts the full emotion recognition
pipeline. We recall that the filter uses 2 Gaussian Mixture

9



Neutral Non-Neutral
Neutral 77.26% 22.74%

Non-Neutral 24.20% 75.80%

Table 8. Confusion matrix for neutral vs. emotional
speech. Results are obtained via 10-fold cross validation.

0 5 10 15 20 25

Number of speaker models (GMMs)

0
2
4
6
8

10
12
14

La
te

n
cy

 (
se

co
n
d
s) CPU

DSP

Figure 5. Runtime of the emotion and speaker recogni-
tion use cases as a function of the number of GMMs.

Models, one representative of neutral speech, and another
one absorbing the rest of the emotions. Table 8 demonstrates
that such a model achieves an overall accuracy of 76.62%
and a false negative rate, i.e. neutral emotions predicted as
non-neutral, of around 23%. While false negatives unneces-
sarily trigger the full pipeline of evaluating non-neutral nar-
row emotion models, in practice, the introduction of such an
admission filter early into the pipeline is worthwhile even
with this level of inaccuracy because of the following rea-
sons. First, the figures outperform the overall accuracy of
71% demonstrated by EmotionSense on the full set of emo-
tions. Second, as discussed by Rachuri et al. [36] neutral
speech occurs between 60% and 90% of the time making the
short-circuiting possible for the majority of emotion recog-
nition use cases even when false negative errors occur.

The importance of the neutral emotion biasing becomes
more pronounced when we take into account the following
fact. Due to the DSP memory constraints which prohibit the
deployment of more than 5 emotion models on the DSP, the
full pipeline needs to be executed on the power-hungry CPU.
However, if the admission filter, which has 2 GMMs, is de-
ployed and executed fast on the DSP, for more than 60% of
the time the emotion will be flagged as neutral and the pro-
cessing will remain entirely on the low-power unit. In Fig-
ure 5 we demonstrate that this scenario can be achieved. We
plot the runtime of the speaker/emotion recognition pipeline
as a function of the number of speaker/emotion models
(GMMs) involved in the classification step. As can be seen
from the figure, a pipeline with 2 GMMs, which corresponds
to the neutral emotion biasing, can be executed in less than
5 seconds which is the EmotionSense base audio sampling
period. In other words, this step can be executed in real time
on the DSP and the emotion processing can indeed remain
there for the majority of use cases given the dominance of
neutral speech in everyday conversation settings.

Furthermore, when the emotion is flagged as non-neutral
the further processing needs to occur only on the set of nar-
row models comprising the other broad emotions (happy,
sad, afraid, angry). Thus, the revised full pipeline leads to the
evaluation of the likelihood for a total of 10 GMMs (2 for the
admission filter plus 8 for the narrow non-neutral emotions)

0 10 20 30 40 50 60 70 80
Percentage of saved classifications(%)

0
5

10
15
20
25
30

A
cc

u
a
rc

y
 l
o
ss

 (
%

)

basic

full

(a) Ambient sounds

0 10 20 30 40 50 60 70 80
Percentage of saved classifications(%)

0
5

10
15
20
25
30

A
cc

u
ra

cy
 l
o
ss

 (
%

) narrow emotion

broad emotion

speaker

(b) Emotions/Speakers

Figure 6. The percentage of misclassified sounds/ emo-
tions/ speakers as a function of the proportion of saved
GMM classifications due to engaging the similarity detec-
tors. The similarity between subsequent sounds is com-
puted based on two cases for the ambient sounds: the ba-
sic (without MFCC) and full set of features (with MFCC).

as opposed to 14 in the original version of EmotionSense.
7.2.2 Locality of Sound Classification

In this part of the analysis we shed light on the con-
sequences of adding similarity detectors to the processing
pipelines. We recall that we exploit behavioral locality so
that when acoustic features from neighboring audio windows
are sufficiently similar, classifications are bypassed and the
sound category label from the previous inference is propa-
gated to the next window. This optimization introduces false
positive errors when features from subsequent windows are
similar but the sound categories are not the same.

In Figure 6(a) we plot the proportion of similarity false
positives as a function of the saved GMM classifications
when the similarity detector component is introduced into
the ambient processing pipeline. To obtain the figure we vary
the similarity distance threshold between the vectors repre-
senting subsequent acoustic fingerprints. The threshold in
the figure is implicitly represented by the number of saved
computations where higher thresholds result in more saved
classifications and larger errors. We notice that when we
exploit the full feature set with MFCCs (Table 1) to com-
pute the similarity between subsequent audio windows we
can save around 50% of the classifications at the expense of
a 4.3% penalty in the classification accuracy.

Figure 6(b) demonstrates the accuracy loss incurred by
wrongly marking subsequent audio windows with the same
broad emotion, narrow emotion and speaker label when the
similarity distance between speech features falls below a
threshold and classifications are omitted. A noticeable ob-
servation is that the accuracy penalty is higher than what has
been achieved by the ambient sound similarity component.
This can be explained by the fact that the inherent difference
in acoustic fingerprints is greater for ambient sounds than ex-
pressed emotions. In general, subtle changes in valence are
difficult to detect. Nevertheless, on the broad emotion recog-
nition task we are still able to save 20% of the classifications
at the expense of an accuracy loss of only 1%.
7.2.3 Selective CPU Offloading

As discussed in Section 5.3 the DSP is subject to run-
time memory constraints which affects the rate at which the
CPU is approached to perform further processing on accu-
mulated acoustic features. The main sources of space con-
cerns are the PLP features occupying nearly 64KB when ex-
tracted once every 5 seconds and any ambient features re-

10



2 4 6 8 10 12 14 16

Memory (MB)

0

5

10

15

20

25

30

T
ra

n
sf

e
r 

p
e
ri

o
d
 (

m
in

)

no savings

20% saved

40% saved

Figure 7. Time in minutes before the CPU is woken up
by the DSP as a function of the runtime memory con-
straint on the co-processor. The additional gain in time is
also given when the similarity detectors eliminate a per-
centage of the classifications by propagating class labels,
discarding features and thus freeing space.

maining unlabeled because of the unavailability of the full
set of sound models on the DSP. As already discussed the
intensity of detected speech is the dominating factor in how
often the CPU is woken up by the DSP. To provide a lower
bound on the amount of time spent before the CPU needs
to be interrupted from its sleep mode, we consider the case
when human voice is continuously detected.

In Figure 7 we plot the time the DSP can be actively pro-
cessing speech audio data before running out of space and
waking up the CPU to transfer acoustic feature buffers. In
the current mobile development platform the memory limit
is 8MB which results in the CPU being approached for pro-
cessing by the DSP once every 9 minutes assuming no emo-
tion/speaker classification savings are allowed and no accu-
racy losses are incurred. Involving the similarity detectors
into the pipeline leads to propagating a proportion of the
class labels and discarding the corresponding features which
frees up space. We can thus extend the wake-up time to
13 minutes at the expense of a modest 5% loss in accuracy
when 40% of the features are discarded because of class label
propagation. Note that delaying the transfers of the feature
buffers to the CPU is desirable energy-wise since the aver-
age power consumed to wake it up is generally high. We
measure 383mW on average on the MDP during the wake-
up process which may last several seconds. In addition, the
CPU does not go immediately to low-power standby mode
and typically on production phones the CPU may remain idle
for 10-20 seconds (such as Samsung Galaxy S, S2, S4) af-
ter the processing is over which incurs a power consumption
overhead.

7.3 Full System Evaluation
In this subsection we provide an exhaustive evaluation of

the full system given various workload settings and latency
requirements.
7.3.1 Assumptions

Based on the analysis performed in the previous sections,
we assume default parameters for several of the system com-
ponents. We activate the similarity detectors so that the per-
centages of saved classifications are 50%, 40% and 20% for
ambient sounds, speakers and emotions respectively. This
is done so that we maintain a reasonable accuracy loss of
4%− 5% for the ambient sounds and speakers and 1% for

CPU-only w/o

CPU-only

DSP+CPU w/o

DSP+CPU

2 4 6 8 10 12

Hours of talking in a day

20

40

60

80

100

Li
fe

ti
m

e
 (

h
o
u
rs

)

Figure 8. Lifetime in hours of the system running on the
CPU only or the DSP+CPU as a function of the propor-
tion of detected speech during a 24-hour day. Two ver-
sions of the system are provided: without (w/o) and with
optimizations.

the emotions. Given the detailed experiments on the distri-
bution of emotions performed by Rachuri et al. [36], we
expect neutral emotions to be encountered around 60% of
the time which is when the DSP is capable of performing
the entire emotion processing. We use the mobile system
parameters of a popular smartphone, Google Nexus 5, fea-
turing the Qualcomm Snapdragon 800 platform and having
a battery of capacity 2300mAh. The estimated standby time
is officially reported to be up to 300 hours which translates to
an average standby power of 30mW [4]. Based on measure-
ments we performed on the MDP and other popular smart-
phones such as Samsung Galaxy S, S2 and S4 we assume the
CPU remains idle for 15 seconds after all processing is over
and before going to deep sleep (standby) mode. By default,
we wake up the CPU once every 11.1 minutes when speech
is detected as we run out of space given a runtime mem-
ory constraint for the DSP of 8MB. Last but not least, the
cross-pipeline optimization of tagging the speech features
with the detected gender allows us to reduce the number of
speaker models against which we evaluate the likelihood of
the speech features. Our assumption is that the gender detec-
tion is able to eliminate roughly half of the speaker models
which leaves us with 11 GMMs given our test dataset of 22
speakers.
7.3.2 Unconstrained Battery Usage

Here we give an overview of how the system drains power
given that the full battery capacity is available for use solely
by the system. The goal is to contrast how the system
fares against baselines, whereas estimates for realistic bat-
tery drains under common workloads are given in the next
section. We compare the model against three baselines in-
cluding a CPU-only solution, and two solutions for the CPU
and DSP respectively without the introduced improvements
of similarity detectors, neutral emotions admission filter and
cross-pipeline optimizations. We vary the distribution of
sound types a user encounters in everyday settings to demon-
strate the level of dependence of the system on the type of
processing performed (voice/ambient cases). We fix the pro-
portion of silence in a day to 1/3 of all types of sounds which
corresponds to roughly 8 hours of a night’s sleep.

In Figure 8 we vary the amount of detected speech dur-
ing the day as the voice processing has the most pronounced
effect on the battery given that the execution there relies on

11



Category Examples of Profiled Applications
Books Amazon Kindle, Bible
Browsing & Email Firefox, Yahoo! Mail
Camera Camera, Panorama 360 Camera
Games Angry Birds, Fruit Ninja
Maps & Navigation Google Maps, Street View
Media & Video Android Video Player, VPlayer
Messaging GO SMS Pro, KakaoTalk
Music & Audio n7player Music Player, Winamp
Photography Adobe Photoshop Express, Photo Editor
Social Facebook, Twitter
Tools & Productivity Advanced Task Killer, Easy Battery Saver
Other Skype, Super Ruler Free

Table 9. Categories of smartphone apps used in the CPU
workload evaluation.
the heavier pipelines of the system. A first observation is that
the DSP solution with optimizations is between 3 and 7 times
more power-efficient than the CPU-only solutions. With un-
constrained battery usage and 4.5 hours of talking per day
the integrated system with optimizations is able to last almost
60 hours exceeding considerably the 14.4 hours reached by
a CPU-only solution with the same optimizations. Note that
the targeted 4.5 value is an average number of hours spent in
conversations in a day as found by Lee et al. [23]. As we
increase the amount of detected speech from 4.5 to 12 hours
per day, the system longevity significantly decreases where
we witness a 58% drop in the total hours of runtime for the
DSP case and 41% drop for the CPU-only case.

Another insight is that the optimizations that have been
introduced provide a noticeable improvement in the battery
lifetime, especially for the DSP case where for 4.5 hours of
talking the total hours jump from 20 to 60. The optimizations
are so crucial that we observe the following phenomenon:
using the DSP without them reaches a point at around 8 hours
of speech where the CPU + co-processor design is less effi-
cient than simply having the optimizations on the CPU. This
is expected since the major energy burden are the emotion
recognition and speaker identification classifications which
always run on the CPU. In this case, running the optimiza-
tion procedures on the DSP is critical for enabling the truly
continuous sensing of the microphone. The battery is able
to last 2 to 3 times more if the mentioned optimizations are
added to the DSP+CPU solution.
7.3.3 CPU Workload Analysis

In this final subsection we study the implications of run-
ning DSP.Ear together with other common workloads gener-
ated by smartphone users. For this purpose, we use a dataset
provided by the authors of AppJoy [47]. It consists of traces
of hourly application usage from 1320 Android users, and
is collected between February—September 2011 as part of
a public release on the Android marketplace. The number
of applications found in the user traces exceeds 11K which
renders the energy and CPU workload profiling of all apps
impractical. Therefore, we group the apps with similar work-
load characteristics into categories, as shown in Table 9, and
profile several typical examples from each category. To ob-
tain measurements we run 1-2 minute interactive sessions
(open-run-close) with each app using the Trepn Profiler [12]
for the CPU load and the Power Monitor [2] for the power
consumption.

0 10 20 30
CPU load (%)

Other
Tools & Productivity

Social
Photography

Music & Audio
Messaging

Media & Video
Maps & Navigation

Games
Camera

Browsing & Email
Books

(a) CPU load (%)

0 1000 2000 3000
Average power (mW)

Other
Tools & Productivity

Social
Photography

Music & Audio
Messaging

Media & Video
Maps & Navigation

Games
Camera

Browsing & Email
Books

(b) Power (mW)

Figure 9. The average (a) CPU load and (b) power of
interactively (screen on) running applications from the
given categories.

There are two major issues to consider when analyzing
how the continuous audio sensing workloads incurred by our
system interact with the smartphone usage patterns. The first
consideration is the overhead of waking up the CPU from
the DSP to offload emotion and speaker recognition. When
4.5 hours of conversations are encountered on average in a
day [23], the overhead of the wake-up operations plus keep-
ing the CPU in active state excluding the sound classifica-
tion processing itself is 4.5% of the battery capacity. This
amounts to 12 minutes of sacrificed web browsing energy-
wise. In practice, the CPU will be already active for other
tasks at times. Exactly when our processing will take ad-
vantage of this is a complex function not only of the CPU
active state encounters, but also of the unknown distribution
of speech encounters. On average the users in our dataset
spend 72 minutes in interactive sessions, whereas the total
emotion and speaker processing for 4.5 hours of conversa-
tions lasts 82 minutes. Since the 4.5% wake-up overhead is
not critical for our further analysis, we make a simplifying
assumption that half of the time the CPU will be on for other
tasks when the speech pipelines engage it.

The second primary consideration is the energy and CPU
overhead of running the speech processing on the CPU to-
gether with other active apps on the phone. A major burden
is the interactive usage when the screen is on [16], where
the display energy overhead is attributed to the LCD panel,
touchscreen, graphics accelerator, and backlight. The An-
droid OS maintains one foreground app activity at a time
[47], making the application currently facing the user and
the screen the main sources of energy consumption. When
running the audio pipelines on the Snapdragon MDP de-
vice, we observe that the power consumption is additive as
long as the normalized CPU load (across cores) remains be-
low 80%. The apps from the various categories as shown
in Figure 9(a) rarely push the CPU beyond 25% in inter-
active mode. The additional CPU load of performing the
speaker/emotion identification is 15% for a total of 40% cu-
mulative utilization. This remains below the threshold be-
yond which the energy consumption stops being additive and
outgrows the value under normal workloads.

To evaluate the overhead of running our system together
with other smartphone usage workloads, we replay the ap-
plication traces from the AppJoy dataset with measurements
performed on the Snapdragon MDP device. In Figure 10
we plot the percentage of the battery capacity (2300mAh)
expended in 24 hours of operation. Since the dataset does
not provide explicit information for background application

12



101 102 103

Fraction of battery capacity (%)

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

Figure 10. Complementary cumulative distribution
function (CCDF) of the percentage of battery capacity
drained in 24 hours of smartphone usage.

Facebook
Twitter

Yahoo! Mail

Winamp (40 min)
0

20

40

60

80

100

E
n
e
rg

y
 b

u
d
g
e
t 

(m
A

h
)

Apps Background Load
Facebook 232KB per 1 hour
Twitter 54.5KB per 15 min
Yahoo! Mail 513 KB, 7 e-mails
Winamp 40 min of playback

Figure 11. Energy budget expended in a day by the back-
ground services of 4 popular mobile apps. Measurements
are obtained with the Snapdragon MDP where server
data from Facebook, Twitter and Yahoo! Mail is down-
loaded via WiFi.

usage when the screen is off, the figure accounts for the in-
teractive usage of the phone, our system running in the back-
ground and the CPU standby power draw. This is a best case
scenario for our system where third-party background ser-
vices are disabled, and periodic server data synchronization
and push notifications are off. In this scenario, in 90% of the
days the battery is able to sustain at least a full day of smart-
phone usage without charging. This is encouraging news,
since for the significant proportion of daily usage instances,
users need not worry about their everyday charging habits.

The next scenario we focus on is adding the overhead
of running typical background services such as the ones
started from social networking applications, mail clients,
news feeds, and music playback. In the AppJoy dataset 50%
of the users have installed Facebook on their phone, 69%
have Gmail or Yahoo! Mail, 10% have Twitter and 15%
have Pandora radio or Winamp. Social networking and mi-
croblogging apps such as Facebook and Twitter sync user
timelines periodically in the background with default update
periods of 1 hour or 15 minutes respectively. Mail clients, on
the other hand, usually adopt push notifications as their pri-
mary method of synchronization where cached data on the
phone is updated through the Google Cloud Messaging ser-
vices only when new e-mails are received on the mail server.
Since these services trigger operations either periodically or
based on some external events, the CPU may not be awake
when the updates occur.

In Figure 11 we present the energy budget required by 4
representative applications/services so that they are able to
run in the background over a day with default sync settings.
The measurements account for the worst case when the CPU
needs to be woken up on every occasion any of the services
needs an update. Given this and an extrapolated 40 minutes

of background music playback per day, the total energy bud-
get remains below 10%. If we aggressively add this workload
to all daily traces, we find that in more than 84% of the in-
stances, the users will not need to charge their phone before
the full day expires. This is again encouraging, since even
when users have several popular apps running in the back-
ground, they can, in a considerable proportion of the cases,
engage in uninterrupted audio life logging.
8 Limitations and Future Work

In what follows, we outline key limitations of our imple-
mentation and sketch potential directions for future work.

Programmability. Due to imposed limitations on the sup-
ported devices by the publicly released APIs, the develop-
ment of the system cannot be performed directly on a stan-
dard commodity phone with the same Snapdragon 800 pro-
cessor. While this work is a proof-of-concept implemen-
tation through which we provide generalizable techniques,
questions of programmability are still prominent.

DSP Efficiency. The current implementation does not fully
take advantage of the more advanced DSP capabilities such
as optimized assembly instructions or fixed point arithmetic.
The primary advantage of using the C programming lan-
guage with floating point operations for the DSP system im-
plementation is that it allows for the prototyping of more ad-
vanced algorithms and importing legacy code. However, the
challenges in supporting advanced algorithms are not solely
based on the need to perform floating point operations or to
reduce runtime through assembly optimizations. Limitations
still remain — for example, encoding the range of necessary
models for each type of supported classification places sig-
nificant strain on memory reserved for program space (e.g.,
speaker identification requires one separate model for each
speaker recognized).

Scheduling. Through our work we have explored a schedul-
ing scheme with relatively short delays in selectively offload-
ing tasks to the CPU. While opportunistically performing
computation on the DSP at times when it is not busy might be
generally more energy friendly than waking up the CPU, the
issues of co-processor memory constraints persist. Further,
the near real-time nature of various application scenarios re-
quiring immediate feedback increases the need for short de-
lays in the processing. Examples are behavior interventions
such as distress detection, or detecting dangerous situations
such as falling down the stairs.

Future Work. Potential directions for future work include
cloud offloading, GPU offloading and substituting classifica-
tion algorithms to trade-off accuracy vs. latency. Performing
the expensive pipeline classification tasks in the cloud has the
potential to substantially improve the energy profile of sensor
inference systems on mobile phones as long as the right bal-
ance is found between the maximum tolerated latency and
the overhead of uploading features. Cloud offloading with
short delays will have a high energy overhead, therefore, ac-
cumulating features for larger batch transfers will be highly
desirable. Similar concerns for batched execution with larger
delays are valid for the GPU as well where the overhead in
approaching the GPU stems from the CPU-GPU memory

13



transfer costs. A suitable workload for the GPU would be
SIMD-like processing where one and the same task is per-
formed in parallel on multiple data items, such as speaker
recognition on multiple audio windows.
9 Design Observations

In this section, we summarize the broader lessons learned
from developing our system and draw guidelines for devel-
opers of audio sensing applications. There are several major
design options to be taken into consideration when providing
sensing solutions for DSPs.

Maximize pipeline exposure to the DSP. The first primary
design concern is related to the introduction of optimization
techniques that allow the pipeline processing and inferences
to occur predominantly on the low-power unit with mini-
mal assistance from the CPU. This is important since the en-
ergy consumption on the DSP is usually orders of magnitude
lower than the CPU. Example techniques we have leveraged
to achieve this design goal are: 1) admission filters that are
efficiently executed in the early pipeline stages on the DSP
to interrupt unnecessary further processing of sensor data;
and 2) behavioral locality detectors that propagate class la-
bels when the acoustic fingerprints of nearby audio windows
are sufficiently similar.

Favor decomposable classification algorithms. The clas-
sification/inference stage of the pipelines is often the most
computationally demanding algorithmic component. As we
have seen with the emotion and speaker identification scenar-
ios, it is a processing bottleneck for the DSP not only because
of its extended latency but also because of the memory con-
straints prohibiting the deployment of models with a large
number of parameters. If the classification stage could be
decomposed into a series of incremental inferences, it would
allow part of the inferences to be computed efficiently on the
DSP. A prominent example is the emotions recognition use
case where the classification consists of matching features
against each of a set of emotional models. We are able to ex-
ploit this property to quickly make a binary decision on the
DSP whether or not the current emotion is the commonly en-
countered neutral speech. Only if the inference suggests the
emotion is non-neutral will other emotional models be later
evaluated and the higher-power CPU approached.

Minimize frequency of DSP-CPU interactions. When the
CPU is frequently approached by the DSP for assistance,
chances are the CPU will not be already awake on all occa-
sions and will need to be woken up from its deep sleep mode.
As demonstrated earlier, this is accompanied with an energy
overhead originating from both the wake-up operation itself
and the trailing energy consumed before the CPU goes back
to its low-power mode. We have demonstrated how to take
advantage of the behavioral locality detectors to reduce the
number of DSP-CPU contact points by prolonging the time
before the next DSP buffer transfer.

Favor compact classification models. Memory limitations
of the DSP are prominent. The less space the classification
models occupy, the more memory becomes available at run-
time for application inferences and extracted features. In ad-
dition, compact model representations with fewer parameters

allow for a larger set of models to be deployed on the DSP.
The cumulative benefit is the DSP becomes less dependent
on the CPU for processing which increases energy efficiency.

10 Related Work
Modern mobile phones embedded with a variety of sen-

sors provide an opportunity to build applications that can
continuously capture information about the phone user. Con-
tinuous sensing, however, drains the phone battery. To over-
come the battery challenges, many solutions have been de-
vised, which can be broadly classified into two categories:
software-based and hardware-based approaches.

Prominent software-based approaches include adaptive
duty cycling [39, 30, 45], triggered sensing [41, 15, 31], and
exploiting relations between various contexts [32]. Adap-
tive duty cycling techniques enhance the static duty cycling
by adjusting the interval according to various metrics such
as user’s context, energy budget, or mobility. While these
techniques enhance duty cycling efficiency, they do not com-
pletely fill the gap to perform always-on sensing. In order
for these schemes to perform always-on sensing, especially
when a continuous stream of on-going events need to be cap-
tured, they would need to keep the main CPU awake, which
would reduce the battery life considerably. Using a low-
power sensor to trigger a high-power one [31] and techniques
that exploit the relation between context items [32] are ap-
plicable to specific scenarios. An example is accelerometer-
based triggering of GPS, but it might be difficult to general-
ize these schemes across different sensors.

Existing work on hardware-based solutions include ex-
ploring co-processor computation [27] or using phone pe-
ripheral devices [44]. Lu et al. [27] present a speaker iden-
tification system that achieves energy efficiency by distribut-
ing the computation between a low-power processor and the
phone’s main processor. Verma, Robinson and Dutta [44]
present AudioDAQ, a mobile phone peripheral device that
can be plugged to the headset port of a phone and that pro-
vides continuous capture of analogue sensor signals. Most
of these solutions, however, are based on custom-build hard-
ware whereas our work focuses on hardware that is already
present in commodity smartphones. Moreover, the optimiza-
tions that we presented extend the battery life further by
many folds, and are not present in most existing systems.

CloneCloud [18] achieves energy efficiency and reduces
latency by offloading a part of the execution from a local
virtual machine on the phone to device clones running in the
cloud. Rachuri et al. [35] build a system that distributes com-
putation between the phone and the cloud to balance energy-
latency trade-offs. Although there is a similarity between
these works and balancing computation between the main
CPU and the co-processor, the challenges faced by these
schemes are very different. While network related issues are
an important consideration in the former, memory, computa-
tion, and energy limitations are the main focus in the latter.

11 Conclusion
In this paper we have studied the trade-offs of using a low-

power co-processor found in state-of-the-art smartphones to
perform continuous microphone sensing and logging of a
variety of sound-related behaviors and contexts. We have

14



developed DSP.Ear, an integrated system with multiple in-
terleaved audio inference pipelines that are able to run con-
tinuously together 3 to 7 times longer than when deployed
entirely on the CPU. Our system is also 2 to 3 times more
power efficient than a naı̈ve DSP-based design. Further, we
have introduced techniques such as admission filters, local-
ity of sound detectors, cross-pipeline optimizations and se-
lective CPU offloading that prove critical for lowering the
power profile of near-real time applications such as behav-
ior interventions. The insights drawn and the techniques de-
veloped in the presented work can help towards the growth
of the next-generation of context-aware and reactive mobile
applications, able to operate uninterrupted and concurrently
without noticeably affecting the device battery lifetime.
12 Acknowledgments

This work was supported by Microsoft Research through
its PhD Scholarship Program. We are grateful to the Qual-
comm team for their cooperation. We would also like to
thank Natasa Milic-Frayling for insightful discussions, as
well as the anonymous reviewers and our shepherd, Rajesh
Gupta, for helping us improve the paper.
13 References

[1] British Library of Sounds. http://sounds.bl.uk/.
[2] Monsoon Power Monitor. http://www.msoon.com/LabEquipment/

PowerMonitor/.
[3] Free Sound Effects. http://www.freesfx.co.uk/.
[4] Google Nexus 5. https://www.google.com/nexus/5/.
[5] HTK Speech Recognition Toolkit. http://htk.eng.cam.ac.uk/.
[6] iPhone 5s M7 Motion Coprocessor. https://www.apple.com/

iphone-5s/specs/.
[7] Motorola Moto X. http://www.motorola.com/us/FLEXR1-1/

moto-x-specifications.html.
[8] Qualcomm Hexagon SDK. https://developer.

qualcomm.com/mobile-development/maximize-hardware/
multimedia-optimization-hexagon-sdk.

[9] Qualcomm Snapdragon 800 MDP. https://developer.
qualcomm.com/mobile-development/development-devices/
snapdragon-mobile-development-platform-mdp.

[10] Qualcomm Snapdragon 800 Processors. http://www.qualcomm.
com/snapdragon/processors/800.

[11] Scikit-Learn Python Library. http://scikit-learn.org/stable/.
[12] Trepn Profiler. https://developer.qualcomm.com/

mobile-development/increase-app-performance/
trepn-profiler.

[13] Hexagon DSP processor. https://developer.
qualcomm.com/mobile-development/maximize-hardware/
multimedia-optimization-hexagon-sdk/
hexagon-dsp-processor.

[14] R. J. Baken. Clinical Measurement of Speech and Voice. Taylor &
Francis Ltd, London, 1987.

[15] N. Lane, et al. Piggyback CrowdSensing (PCS): Energy Efficient
Crowdsourcing of Mobile Sensor Data by Exploiting Smartphone App
Opportunities. In SenSys ’13.

[16] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In USENIXATC ’10.

[17] G. Chechik, E. Ie, M. Rehn, S. Bengio, and D. Lyon. Large-scale
content-based audio retrieval from text queries. In MIR ’08.

[18] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
Elastic execution between mobile device and cloud. In EuroSys ’11.

[19] A. de Cheveigné and H. Kawahara. YIN, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society
of America, 111(4):1917–1930, 2002.

[20] S. Dixon. Onset Detection Revisited. In Proc. of the Int. Conf. on
Digital Audio Effects (DAFx-06), pages 133–137, Montreal, Quebec,
Canada, Sept. 2006.

[21] Z. Fang, et al. Comparison of different implementations of MFCC. J.
Comput. Sci. Technol., 16(6):582–589, Nov. 2001.

[22] H. Hermansky. Perceptual linear predictive (PLP) analysis of speech.
J. Acoust. Soc. Am., 57(4):1738–52, Apr. 1990.

[23] Y. Lee, et al. Sociophone: Everyday face-to-face interaction monitor-
ing platform using multi-phone sensor fusion. In MobiSys ’13.

[24] D. Li, et al. Classification of general audio data for content-based
retrieval. Pattern Recognition Letters, 22(5):533–544, 2001.

[25] T. Li. Musical genre classification of audio signals. In IEEE Transac-
tions on Speech and Audio Processing, pages 293–302, 2002.

[26] M. Liberman, K. Davis, M. Grossman, N. Martey, and J. Bell. Emo-
tional prosody speech and transcripts. 2002.

[27] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu. Speak-
ersense: Energy efficient unobtrusive speaker identification on mobile
phones. In Pervasive’11.

[28] H. Lu, et al. Stresssense: Detecting stress in unconstrained acoustic
environments using smartphones. In UbiComp ’12.

[29] H. Lu, et al. Soundsense: Scalable sound sensing for people-centric
applications on mobile phones. In MobiSys ’09.

[30] H. Lu, et al. The JigSaw continuous sensing engine for mobile phone
applications. In SenSys ’10.

[31] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: Rich mon-
itoring of road and traffic conditions using mobile smartphones. In
SenSys ’08.

[32] S. Nath. ACE: Exploiting correlation for energy-efficient and contin-
uous context sensing. In MobiSys ’12.

[33] S. Ntalampiras, I. Potamitis, and N. Fakotakis. Acoustic detection of
human activities in natural environments. Journal of Audio Engineer-
ing Society, 2012 2012.

[34] B. Priyantha, D. Lymberopoulos, and J. Liu. Enabling energy efficient
continuous sensing on mobile phones with littlerock. In IPSN ’10.

[35] K. K. Rachuri, et al. Sociablesense: Exploring the trade-offs of adap-
tive sampling and computation offloading for social sensing. In Mobi-
Com ’11.

[36] K. K. Rachuri, et al. Emotionsense: A mobile phones based adaptive
platform for experimental social psychology research. Ubicomp ’10.

[37] J. Saunders. Real-time discrimination of broadcast speech/music. In
ICASSP ’96.

[38] E. Scheirer and M. Slaney. Construction and evaluation of a robust
multifeature speech/music discriminator. In ICASSP ’97.

[39] I. Constandache et al. EnLoc: Energy-Efficient Localization for Mo-
bile Phones. In InfoCom ’09.

[40] C. Shen et al. Exploiting Processor Heterogeneity for Energy Efficient
Context Inference on Mobile Phones. In HotPower ’13.

[41] D. Zhang et al. ACC: Generic On-demand Accelerations for Neighbor
Discovery in Mobile Applications. In SenSys ’12.

[42] M. Ra et al. Improving Energy Efciency of Personal Sensing Appli-
cations with Heterogeneous Multi-Processors. In Ubicomp ’12.

[43] G. Schwarz. Estimating the Dimension of a Model. The Annals of
Statistics, 6(2):461–464, 1978.

[44] S. Verma, A. Robinson, and P. Dutta. Audiodaq: Turning the mo-
bile phone’s ubiquitous headset port into a universal data acquisition
interface. In SenSys ’12.

[45] Y. Wang, et al. A framework of energy efficient mobile sensing for
automatic user state recognition. In MobiSys ’09.

[46] C. Xu, et al. Crowd++: Unsupervised speaker count with smart-
phones. In UbiComp ’13.

[47] B. Yan, and G. Chen. AppJoy: Personalized Mobile Application Dis-
covery In MobiSys ’11.

15


