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Abstract 

The influence of the dimensions of square-patterned pyramidal protuberances on a 

spheronisation plate on pellet yield, size and shape distributions, surface tensile strength and 

surface morphology was investigated using a 45 wt% microcrystalline cellulose/water paste. 

Tests were conducted using four extrudate diameters (1.0, 1.5, 2.0 and 2.5 mm) generated by 

screen extrusion and seven plate geometries, including a flat plate as a control. Geometrical 

analyses of the protuberance shapes provide some insight into the observed differences. 

Sharper protuberances reduced yield (promoting breakage and attrition) but tended to give 

narrower size distributions and less even pellet surfaces. The pellet yield for 1 mm extrudates 

was also subject to losses caused by fragments passing through the 1.0 mm gap between the 

plate and the spheroniser wall. Pellet tensile strengths were noticeably greater for 1.0 mm 

diameter extrudates, which is attributed to the greater extensional strain imparted on the paste 

during the extrusion step. For some geometries there is an optimal ratio of extrudate to 

protuberance dimensions. 
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strength. 
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1. Introduction 

Extrusion-spheronisation (E-S) is a favoured pelletisation process in the pharmaceutical, food 

and catalyst industries since it can generate dense pellets with an almost spherical shape, a 

narrow size distribution and smooth surfaces [1]. These properties enable the pellets to deliver 

controlled dosage and also allow further processing steps (such as coating and tableting) to be 

carried out relatively easily. E-S features four steps, namely combination, extrusion, 

spheronisation, and drying and finishing [2]. In the combination step, dry powders (e.g. 

excipients, active pharmaceutical ingredients) are mixed with a liquid binder to produce a wet 

mass, which is also known as a paste. The paste is then loaded into an extruder where it is 

compacted and forced to flow through the holes in a die or screen to generate long cylindrical 

extrudates. In the spheroniser, essentially a rotating friction plate, the extrudates break up and 

are rounded into pellets which are then dried and coated as required. For pharmaceutical 

tableting and capsuling, the pellets are required to be within the size range 0.5 – 1.5 mm [3]. 

 

The design and optimisation of an E-S process requires a good understanding of the 

relationship between the raw material properties, paste rheology, processing conditions and 

pellet quality. Optimisation is currently based on empirical approaches, the results of which 

may be interpreted by data fitting methods based on generic models such as response surface 

methodologies  (e.g. [4]): this usually requires large amounts of material and experimental time. 

Another approach is to establish the governing physical mechanisms from experiments, and to 

construct physical-mathematical models [5] which can be then used to interpret the 

experimental data and provide guidance for optimisation, such as in the selection of groups of 

variables to be manipulated. The mechanisms governing spheronisation are not completely 

understood, and this paper describes an investigation of the influence of the spheroniser plate 

geometry, which will help to elucidate the mechanisms involved. 
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Screen extrusion is commonly used in industry where high throughput is a priority. Zhang et 

al. [6] recently demonstrated a novel laboratory device for studying screen extrusion of 

pharmaceutical pastes and its use in developing new formulations for screen E-S. Most of the 

investigations of paste extrusion, however, have focused on ram [7-11] and screw varieties [12-

14].  

 

Quantitative physical methods, such as the Benbow-Bridgwater approach, are available to 

characterise the paste rheology during such operations [15]. By comparison, the understanding 

of material-machine interactions in spheronisation is poor. Various groups have used high 

speed video techniques to track the motion of extrudates and pellets [16-17]: in brief, the 

extrudates are initially accelerated towards the outer rim of the spheroniser plate and are 

subsequently dragged around circumferentially in a rope. They experience collisions with the 

wall, with the plate, and with each other in a complex flow pattern. Rough and co-workers [18-

19] showed that ram extruded extrudates undergoing spheronisation passed from a breakage to 

a rounding stage and presented a dimensional analysis of the process [20].  

 

Influence of the spheronisation plate 

There are three mechanical parameters involved in spheronisation: the radius of the 

spheronisation plate, R; the rotation speed, ; and the geometry of any protuberances on the 

plate. The rim speed, given by R, is used in design and scale-up. Since the pellets spend most 

of the time in the rope, R sets the characteristic velocity in collisions. Video analyses (e.g. 

[20]) confirmed that pellet velocities were of order R, and usually significantly below this 

value.  
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By comparison, there is little in the published literature on screen extrudate-spheroniser 

interactions and their effect on pellet quality. The influence of plate groove geometry on pellet 

size, shape and surface morphology has not been studied in depth. The groove shape and 

dimensions, also known as the hatching pattern, refers to the arrangement of groove lines on a 

plate surface. Table 1 is a summary of systematic studies of protuberance size and shape 

performed to date. As part of this study we introduce the geometrical parameters d*, D*,  and 

 (defined in the next section) and these are reported in Table 1 to allow comparison of the 

current work with previous investigations.  

 

Michie et al. [21] compared pellets obtained from three plates with different hatching patterns, 

namely cross-hatched, radial-hatched and striated edge patterns (Figure 1 in [21] shows images 

of the plates). They generated 1.0 and 1.5 mm diameter extrudates using an industrial scale 

screen extruder. Differences in the groove line arrangements and the extrudate diameter 

resulted in noticeable differences in spheronisation yield, median pellet size, pellet mechanical 

strength and porosity. They found that a cross-hatched pattern plate gave a high pellet tensile 

strength and porosity, accompanied by a lower yield and smaller percentage of pellets within 

the desired range compared to the other two plates. They did not investigate the influence of 

protuberance size and shape for the same hatching pattern. This is the subject of the current 

study.  

 

On radial and striated pattern plates the protuberance size and shape change with radial 

location. These features on a cross-hatched pattern are independent of plate radius, which 

benefits scale-up and has promoted industrial interest in cross-hatched patterns. Given that the 

solids only interact with the outer ring of the plate for the majority of the spheronisation 
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process, the size and shape of the protuberances in this region are expected to determine the 

dynamics of the bed.  

 

Schmidt and Kleinebudde [22] investigated two cross-hatched plates, both with pyramidal 

protuberances. The protuberances differed in their dimensions (see Table 1). Their work 

suggested that tall protuberances with a larger base (Table 1: H = 1.5 mm, W×W = 9.0 mm2) 

led to a rough surface, generating pellets of a large median diameter and a broad size 

distribution. 

 

Liew et al. [23] investigated spheronisation of screen-extruded material on two cross-hatched 

plates, one with pyramidal protuberances and the other teardrop-studded ones (see Figure 2 in 

[23]). The former generated larger and more spherical pellets at a rim speed of 10 m s-1, and 

they attributed the differences in pellet size and shape to the amount of frictional force 

experienced by the extrudates. They asserted that, compared to the pyramidal protuberances at 

a given rim speed, the teardrop studs imparted fewer and weaker frictional interactions due to 

their rounded shape and smaller number per unit area. Since the protuberance size and shape 

differed, it was not possible to separate the effect of these parameters. 

 

Zhang et al. [24] investigated spheronisation of 1.0 and 2.0 mm screen extrudates using four 

cross-hatched plates which differed either in protuberance size or shape (see Figure 2 in [24]). 

Both size and shape had significant effects on pellet yield, size, shape and surface morphology. 

Compared with saw-toothed protuberances, pyramidal ones gave pellets with a narrower size 

and shape distribution, and smoother surfaces. These results indicated the need to 

systematically study how the ratio of the extrudate diameter to protuberance size influences 

spheronisation. One complication is that the strain experienced by the paste during screen 
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extrusion, and thereby its strength (i.e. its rheology), is related to the diameter and spacing of 

the screen holes, while the diameter of the extrudate determines how it interacts with the 

protuberances (via geometry).  

 

This study extends earlier work [24] on the influence of extrudate diameter, D, and 

protuberance dimensions. Testing employed a 45 wt% MCC/water paste which has been 

employed previously as a model formulation to investigate E-S mechanisms [6, 19, 24-26]. 

Extrudates were generated using a basket screen extruder with screen hole diameters ranging 

from 1.0 to 2.5 mm, allowing D to be varied. Preliminary tests showed that these extrudates 

could produce pellets in the size range, after drying, of 0.5 – 1.5 mm.  

 

Pellets are compared in terms of spheronisation yield, water content, pellet size and shape 

distribution, surface tensile strength and surface morphology. The results provide insight into 

the spheronisation mechanism and guidance for design or selection of E-S equipment for 

generation of pharmaceutical pellets. 

 

2. Spheroniser plate geometries 

Six spheroniser plates of diameter 120 mm were manufactured from 304 stainless steel with 

pyramidal protuberances in a cross-hatched surface pattern. Schematics of the pattern, 

introducing the geometry and characteristic dimensions, are given in Figure 1. The dimensions 

for each plate (labelled A to F) are given in Table 2. A flat, smooth plate (polished, surface 

roughness less than 1 m, labelled X) was employed as a control. Table 2 reports four metrics 

which were used to characterise the plate geometries.  
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Pyramid sharpness,  

Angle  quantifies the sharpness of the top edge of the pyramid, which is expected to affect 

breakage when extrudates strike the plate surface, as well as erosion of material from pellets 

during rounding and indentation. 



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

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 
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tan 1          [1] 

 

Area fraction,  

This quantifies the amount of flat surface, provided by the pyramid tops, in contact with the 

solids. A large value of  is expected to reduce the influence of furrow geometry. 

2

2

S

W
           [2] 

 

Critical extrudate diameter, D* 

Extrudates with a small diameter are expected to be able to collect or rest in the furrows 

between protuberances, affecting the interaction of the bed with the plate. For each 

protuberance shape a critical extrudate size can be calculated, as shown in Figure 1(b). 
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Critical pellet diameter, d* 

Following similar arguments to D*, the ‘seat’ between four adjacent protuberances can give 

rise to a critical pellet size (assuming spherical pellets), as shown for a spherical pellet in 

Figure 1(c), and is calculated thus: 
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A second characteristic pellet diameter arises from breakage considerations. Wilson and 

Rough [2] reported that pellet sizes were often distributed around a characteristic size, with the 

latter being the diameter of a sphere whose volume was equal to the volume of a cylinder (i.e. 

extrudate) with length equal to its diameter. This characteristic size is labelled dD: 

DDd 15.12/33
D          [5] 
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3. Material and methods 

3.1 Material 

Microcrystalline cellulose (MCC, Avicel PH101) powder was obtained from FMC 

biopolymerTM (FMC Corporation, Philadelphia, USA). The moisture content of the as-received 

MCC powder was approximately 2 wt%. Particle sizing analysis was performed using a 

Beckman CoulterTM LS13320 laser diffraction particle size analyser (Beckman Coulter, Inc., 

USA), giving a particle size range of 1.7 – 340 µm with D[3,2]  46 µm. Deionised water was 

used to prepare suspensions for particle sizing analysis and to prepare pastes. 

 

3.2 Experimental 

3.2.1 Paste preparation 

The 45 wt% MCC/water paste was prepared following the procedure reported by Zhang et 

al. [24]. MCC powder and deionised water were weighed out using an electronic balance 

(± 0.01 g, PL1502E, Mettler-Toledo Ltd., Shanghai, China). The powder was loaded into the 

bowl of a planetary mixer fitted with a K-shaped beater (Chef Classic KM353, Kenwood Ltd., 

Shanghai, China), and deionised water then poured slowly into the bowl over a period of one 

minute while the beater stirred at its minimum speed. The mixture was stirred for another 

10 minutes, during which mixing was performed at dial setting speeds of 1, 2, 3 and 4 for 2, 3, 

3 and 2 minutes, respectively. The process was interrupted at the end of each period and paste 

built up on the walls returned to the bowl by a wooden spatula. After mixing, the paste was 

placed in a plastic sample bag, sealed and held at room temperature for at least one hour before 

extrusion, which allowed the water to equilibrate through the paste. Paste was discarded after 

7 hours. 
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3.2.2 Extrusion-spheronisation 

Extrudates were generated using a lab-scale basket screen extruder (ZLB-80, Cheng Hang Xin 

Rong Hua Manufacturer, Zhang Jia Gang, China) manufactured from 304 stainless steel with a 

screen inner diameter of 84 mm. Four screens with hole sizes of 1.0, 1.5, 2.0 and 2.5 mm 

diameter were available. The holes were manufactured by punching and the dimensions of the 

screens are summarised in Table 3. The gap between the blade and the inner side of the screen 

was 1.0 mm. Extrusions were performed at a blade rotational speed of 52 rpm, generating a 

shear rate in the nip of 226 s-1. 

 

Spheronisation was performed on a 120 mm diameter bench-scale unit (R-120, Chong Qing Li 

Pu Pharmaceutical Equipment Manufacturer, Co. Ltd., Chong Qing, China). The spheroniser 

plates (see Table 2) and the spheroniser chamber were constructed from 304 stainless steel. 

Spheronisation runs used about 30 g of fresh extrudates and a plate rotational speed of 

1600 rpm (corresponding to a rim speed of 10 m s-1) for 6 min. Each experiment was repeated 

at least twice to confirm its reproducibility. 

 

3.2.3 Drying 

The water content of paste, extrudate and pellet samples was determined from the mass loss on 

drying in a hot air oven at 60 oC. The percentage yield of pellets on a dry basis, Y, was 

calculated from 

 

 
 exex

pp

100

100
(%)

wm

wm
Y






                          [6] 

where mp is the mass of fresh pellets obtained after spheronisation, wp their water content (in 

wt%), mex the mass of fresh extrudates loaded into the spheroniser and wex their water content. 

The percentage lost, i.e. 100-Y, gives an indication of the total amount of solid lost as fines. 



11 

 

Each test was repeated at least three times and the average, Y, is reported. 

 

3.2.4 Pellet characterisation 

Dry pellets were firstly sieved using a 2.0 mm mesh to remove large pellets, followed by a 

0.335 mm mesh to separate out smaller ones, labelled as fines. About 150 pellets were then 

selected using a riffler for further analysis. Pellet size and shape were determined using an 

image analysis system (BT-1600, Bettersize Instrument Ltd, Dandong, China), fitted with a 

0.7× magnification lens. The circle equivalent diameter, dCE, is reported as the pellet size 

parameter, and the aspect ratio is used as the shape parameter (see [11,18]). One-way analysis 

of variance analysis (ANOVA) and principal component analysis (PCA) were carried out using 

the SPSS Statistics 17.0 package. For ANOVA analysis, the difference is considered 

significant if the F statistic is noticeably larger than 1.0 and the statistical significance (P) is 

not larger than 0.05. 

 

The coefficient of quartile variation (CQV) was used to quantify the spread of each pellet size 

and shape data set, calculated using [27] 

13

13  CQV
QQ

QQ






                [7] 

where Q1 and Q3 are the 25% and the 75% percentiles, respectively. 

 

For each batch, the extent of shrinkage on drying was determined by measuring dCE of ten 

pellets before and after drying using image analysis. The pellet samples were selected 

randomly. Most tests were run twice and the data showed good reproducibility. The pellet 

dimensions were found to decrease by about 26%, irrespective of the initial extrudate diameter 

and protuberance size. The diameter of a dried pellet is therefore expected to be 
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                 ).( 260-1×=
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Combining this result with Eq. 5 yields 

                                                                 
740×151=

dry
.. Dd

                                         [8] 

 

The force required to crush the pellets was measured on a pellet crushing force analyser 

(± 0.1 N, Hai Nan Haibo Lab equipments Co., Ltd.; model: HB-KQD; max. load: 500 N). 

Individual pellets were placed at on the midpoint of the lower of two parallel plates and the 

upper plate moved down slowly. The maximum force at failure was recorded as the crushing 

force of the pellet, Fc. About 25 pellets were tested per batch and the pellet surface tensile 

strength, σt, was calculated from the average of Fc via [28]. 
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where dCE is the median circle equivalent diameter of the pellets (see above). 

 

Scanning electron microscopy (SEM, TM-1000, Hitachi Ltd, Japan) was used to investigate the 

surface morphology of randomly selected dry pellets. The pellets were sputter coated with a 

thin layer of platinum before imaging at 15 kV under vacuum at 60× magnification.  
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4. Results and Discussion 

4.1Spheronisation yield 

Yield is calculated using Eq. 6, and expresses the mass of dry pellets recovered after 

spheronisation. Material is lost via the formation of fines, which are not recovered from the 

plate, and from fines and fragments which are lost through the 1 mm gap between the plate and 

the spheroniser wall. The results are presented in the form Y  against extrudate diameter in 

Figure 2, with plates grouped together based on similarity in trend. The results for the flat plate, 

X, are given in each plot as the control. For a given extrudate diameter(r, plates E and D give 

the lowest and the highest yields, respectively, and the difference between the seven plates is 

significant (D = 1.0 mm: F = 12.014, P = 0.001; D = 1.5 mm: F = 10.526, P = 0.001; 

D = 2.0 mm: P(Welch) = 0.033, P(Brown-Forsythe) = 0.017; D = 2.5 mm: P(Welch) = 0, 

P(Brown-Forsythe) = 0.005). 

 

The yield obtained with the flat plate increases gently with extrudate diameter, which can be 

attributed to two mechanisms which will also be active with other plates. The first is termed 

gap loss, arising directly from breakage. Following collisions, the extrudates break into 

segments (shorter cylindrical sections) of varying length, l. The l/D ratio determines the 

segment’s behaviour during the rounding stage [18, 26]. Many of the D = 1.0 mm extrudates 

gave long segments (i.e. l/D ≥1.5: [26]) but a fraction gave short segments (l/D < 1.5) which 

were then prone to be lost through the 1 mm plate-wall gap. With the exception of plate B, all 

plates gave lower yields for D = 1 mm. The choice of l/D = 1.5 as the division between long 

and short segments was proposed by Lau et al. [18] and Zhang et al. [26]. The fraction of 

extrudates giving long segments decreased as D increased: for the 2.5 mm extrudates, most of 

them broke into short segments but this would not lead to gap loss as the diameter was then 

larger than the gap.  
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For D> 1 mm the loss of about 2% is attributed to generation of fines. This is postulated to be 

due to the difference in the rheology of the extrudates. Bryan et al. [29] reported that more 

fines were generated in spheronisation of a model paste similar to that used here when extruded 

through two different devices: the stiffer extrudates gave noticeably more fines on breakage. 

The strain experienced by the material undergoing screen extrusion is related to the hole area 

fraction (see Table 3) and the extrudates with small D are then likely to be stiffer than those 

with large D. Quantitative evidence of extrudate stiffness has been identified as an area for 

future work, and may require technique development [26]. 

 

The effect of D via stiffness and breakage for D > 1 mm on the flat plate is mild. Figure 2(a) 

shows that similar trends were observed with plates C and D, with superior yield for 1.5 mm 

extrudates. The lower yields for 1 mm extrudates are attributed to gap loss. Plates C and D 

featured D* values of 1.8 mm and 1.4 mm (see Table 2), respectively, suggesting that 1.5 mm 

extrudates and their segments could sit in furrows periodically, altering the interactions 

between the plate and bed, which reduce the velocity of collisions and thereby the attrition rate. 

This interaction would not be available for 2.0 and 2.5 mm extrudates, and similar results to X 

are obtained. Detailed motion analysis is suggested to verify this hypothesis. Plates C and D 

also featured more oblique protuberances, with  values of 63 and 45, respectively, and this 

is expected to result in less attrition in paste/protuberance collisions. Schmidt and 

Kleinebudde [22] also reported that taller protuberances (lower ) give higher friction surfaces.  

 

Figure 2(b) shows the effect of D* for smaller values of  (i.e. sharper protuberances) to be 

significant (P(Welch test) = 0.021, P(Brown-Forsythe test) = 0.008). For D> 1.5 mm, yield 

decreases progressively with increasing D, with greatest loss for plate E (with sharpest 
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protuberances,  =14).  The decrease is noticeably milder for plate F, which differs from A, B 

and E in the value of D* (at 1.8 mm compared to less than 1 mm). The D* value of plates A, B 

and E is less than 1 mm so extrudates with diameter 1 mm or greater are less likely to sit in the 

furrows (as discussed above): the extrudates and pellets are expected to experience higher 

velocities on the plates, and contact with sharp protuberances is more likely to result in attrition.  

 

Plate F has a noticeably larger value of d* than the other three plates with sharp protuberances, 

with d* = 2.3 mm compared to   1.3 mm for plates A, B and E. Pellets are expected to be able 

to occupy the seat in this plate (as with extrudates and D*), modifying the friction interaction 

and collision history (i.e., the number of and force involved in collisions that material 

experiences). Michie et al. [21] also reported a reduction in yield at higher D for all three 

striation patterns tested. They did not report the protuberance dimensions, so it is not possible 

to say whether their findings confirm this result for .   

 

In terms of the shape metrics, the effect of d*, D* and θ on spheronisation yield is significant, 

as one-way ANOVA analysis gives P(Welch test) = 0.003 and P(Brown-Forsythe test) = 0.001, 

P(Welch test) = 0.004 and P(Brown-Forsythe test) = 0.001, and P(Welch test) = 0.005 and 

P(Brown-Forsythe test) = 0.001, respectively. There is no evident correlation between yield 

and area fraction, most likely because the range of  values is admittedly small.  
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4.2 Pellet characterisation 

Dried material recovered from the spheroniser plate was initially sieved using a pair of meshes 

to remove undersize (<0.355 mm) and oversize (>2.0 mm) pellets. The mass percentages of 

excluded fractions are given in Table 4. For most cases the excluded pellets constituted less 

than 1% of the product. For the largest extrudate diameter, ddry (when dried, Eq, 8) is 2.13 mm 

so some oversized pellets were expected. Noticeable amounts of oversized pellets were 

obtained with plates C and D, at 31% and 40%, respectively, with a milder fraction of 4.8% for 

plate F. These were also the plates with largest yield for D = 2.5 mm: this result is consistent 

with these protuberance patterns subjecting extrudates to less energetic collisions, reducing 

attrition and breakup, and allowing agglomeration.  

 

Pellets in the 0.355 to 2.0 mm size range, which were considered acceptable for pharmaceutical 

applications, were subjected to image analysis and the size and shape distributions are 

summarised in Figure 3. The pellet sizes are presented in dimensionless form, dCE/D. It is 

noticeable that few pellets were obtained with dCE/D > 1, for all extrudate sizes.  

 

Inspection of the aspect ratios indicates that all the pellets obtained from plates with 

protuberances were of acceptable shape. There is little variation in aspect ratio and the median 

values lay in the range of 0.92-0.95, which is larger than the threshold of 0.80 suggested by 

Chopra et al. [30]. Plate X gave a median aspect ratio of 0.92 for D = 1 mm (detailed in 

Supplementary Figure S1), indicating that rounding on the flat plate was not as efficient as on 

the patterned plates. Similar results were obtained by Liew et al. [23] for 1 mm extrudates on a 

larger spheroniser plate with cross-hatched pyramidal protuberances (see Table 1). They 

reported their results in terms of the elongation ratio, which is the inverse of the aspect ratio 

employed here: their value of 1.085 is equivalent to an aspect ratio of 0.92. 
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The pellet size distributions were classified as uni, bi- or tri-modal, with or without a shoulder 

and the results are listed in Table 5. There is more variation for D = 1 and 1.5 mm extrudates: 

for larger extrudates the distributions were mostly unimodal (with the exception of the flat 

plate, X).  

 

From Equation [8], the expected average pellet size after drying is ddry = 0.85D. Figure 4 shows 

that the median dCE/D value for nearly all the plates for D  2 mm was approximately 0.74. 

This corresponds to an undried median pellet diameter essentially equal to that of the extrudate. 

The exception was plate E, which gave dCE/D = 0.64 at D = 2 mm.  

 

There is a noticeable difference between plates C and D and the other plates for the largest 

extrudates: the median dCE/D value for C and D remained near 0.74 whereas it decreased for all 

the others, including the flat plate, towards 0.60. This is consistent with plates C and D giving 

significant amounts of large pellets with D = 2.5 mm (Table 4). Plates C and D also gave 

unimodal distributions at high D. One-way ANOVA shows that the effect of D on median 

dCE/D of plates X, A, B, E and F is significant (F = 36.858, P = 0).  

 

The effect of D on pellet size range (as quantified by the difference between the 75% and 25% 

percentile values) is also significant, as ANOVA analysis (excluding data from D = 2.5 mm 

extrudates using plates C and D) gives F = 4.252 and P = 0.016. The pellet size range 

(indicated by range bars in Figure 4) from the 1.0 and 1.5 mm extrudates is generally larger 

than that of pellets from 2.0 and 2.5 mm extrudates when a given plate is used for 

spheronisation.  
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The variation in the number of modes and median values of the size distributions arises from 

the breakage process, as this determines the amount of material in the fragments that undergo 

subsequent rounding. The shift to lower dCE/D values does not appear to be related to D* or d* 

for the plates with protuberances, and ANOVA analysis gives F = 0.742 and P = 0.602 for D*, 

and F = 0.942 and P = 0.461 for d*. Sharper protuberances E (14: D = 2 mm) appear to 

promote the transition before A, B, F (27, 28; D = 2.5 mm) and C, D (> 40; D> 2.5 mm) but 

the trend is not statistically significant, with F = 0.793 and P = 0.544. In contrast, Schmidt and 

Kleinebudde [22] found that high protuberances gave large pellets (see Table 1)  

 

The reason why the transition with the flat plate is similar to A, B, and F requires further 

investigation. Pellets from plate X also gave broader size distributions than the other plates 

(ANOVA, comparing X with A – F: F = 5.759, P = 0.024). The aspect ratio range, as quantified 

as the difference between the 75% and 25% percentiles, of pellets from plate X is also 

significantly larger than that of pellets from plates A – F (F = 10.222, P = 0.004: see 

Supplementary Figure S1). Protuberances narrow the pellet size and shape distribution, 

possibly at the expense of generating fines. 

 

These results highlight how the mechanisms governing break-up in these systems require 

further elucidation: the momentum of the extrudates increases with the size of extrudates by D2 

but how this determines the number and size of segments is not currently understood.  

 

4.3 Pellet surface tensile strength 

The average pellet surface tensile strength data in Figure 5 show a statistically significant effect 

of D on pellet tensile strength (F = 24.525, P = 0). The strengths of the pellets from D = 1.5, 

2.0 and 2.5 mm extrudates are not statistically different (P(Welch test) = 0.054, P(Brown-
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Forsythe test) = 0.129), while the strength of the pellets generated from D = 1.0 mm extrudates 

is significantly higher (see the Post Hoc Least Squares Difference (LSD) results in Table 6). 

There is no significant effect of protuberance dimensions on pellet tensile strength (F = 0.374, 

P = 0.887). The results indicate that the extrudate diameter, but neither the protuberance 

dimensions nor the pellet size distributions, has a significant effect on the pellet tensile strength. 

Given that the pellet sizes were similar, the difference in strength is expected to arise from the 

material rheology. As mentioned above, the 1 mm extrudates were expected to be stiffer as they 

experienced the largest strain during preparation. The similarity of strengths for D = 1.5 and 

2.0 mm is consistent with the similar strain histories during extrusion (Table 3).   

 

The values of crushing strength can be compared with earlier studies. Liew et al. [23] reported 

crushing force and pellet size in terms of the mass median diameter, which yields an estimated 

crushing strength of 0.9 – 1.0 MPa, albeit for a different formulation and different extrusion 

device. Michie et al. [21] reported pellet tensile strengths in the range of 3 – 7 MPa for 

different studies, including those in Table 1, for a different formulation (10 g diclofenac sodium, 

40 g lactose monohydrate, 150 g MCC and 135 g distilled water) using different spheronisation 

plates. 

 

4.4 Pellet surface morphology 

The SEM images of pellets in Figure 6 allow surface defects and smoothness to be gauged. 

This information is not available from the pellet shape and size techniques. Pellets generated 

using plates X and D have few surface defects (holes, cracks and dents). These are the plates 

with more oblique angles, with θ = 90o and 63o for X and D, respectively. There is no 

consistent trend for plates with θ  45o: plates A, B and E give relatively even surfaces for 

D  2 mm, whereas pellets generated using C and F from similar extrudates were dimpled. 
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Visual inspection suggests that pellets with D/d* > 1.5 tended to be smoother: in this case, the 

pellet bed would be more likely to roll over the plate, promoting collisions from many contacts 

and thus rounding. More energetic collisions are expected to result in dents and cracks. 

 

Zhang et al. (2016a&b) also reported differences in the surface morphology of pellets 

generated from 1.0 and 2.0 mm diameter extrudates on a pyramidal cross-hatched plate (where 

θ =28o). They also suggested that the differences may be due to the different pellet forming 

routes (see Figure 10 in Zhang et al., 2016b).   

 

4.5 Discussion 

The effects of the relative dimension of extrudates to the protuberances on spheronisation yield, 

pellet size and shape distributions, pellet surface tensile strength and surface morphology have 

been investigated. Plots of the yield, surface tensile strength, CQV of dCE and CQV of AR 

against the geometrical factors are given in Figure 7.  

 

The spheronisation yield varies with extrudate diameter when a given plate is used. The 

differences observed for flat plate indicate the influence of extrudate rheology and breakage on 

pellets. The effect of d* and D*on spheronisation yield is significant (as supported by ANOVA), 

and similar trends were observed with plates with similar θ (Figure 7). For plates A, B, E and F, 

all with θ  28o, spheronisation yields decrease significantly as D/d* and D/D* increase, 

especially at D/d* > 1.2 and D/D* > 1.6 (Figure 7) when extrudates and pellets are less likely to 

stay in the furrows. For plates C and D, with θ  45, the yields increase with D/d* and D/D*, 

and remain around 99% when both D/d* and D/D* are larger than 0.80.  

 

A large amount of oversized pellets were obtained with the 2.5 mm extrudates using plates C 
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and D. These gave the highest yields, suggesting that collisions on these plates promoted less 

attrition. For plates other than C and D, the effect of D on median dCE/D is significant. The 

reason why a small median dCE is observed with D = 2.5 mm for plates X, A, B and E requires 

further investigation. Plate protuberance sizes and extrusion strain show little effect on aspect 

ratio.  

 

For plates A, B and E, the CQV for dCE varies with D/d* and D/D*, however, there is no 

consistent correlation (see Figure 7). As the protuberances are sharp, with θ 28o, collisions 

between pellets and protuberances promote shape change, attrition and formation of fines, as 

well as breakage. Both spheronisation yield and pellet size distribution width are therefore 

reduced. There is common ground here with the literature on the erosion of surfaces by solid 

particle impact, e.g. Humphrey [31], where the particle is hard and the surface is relatively soft: 

in spheronisation the reverse applies.  

 

Although the CQV of dCE of plates C and D gradually decreases with increasing D/d* and D/D* 

(Figure 7), this is accompanied by oversized pellet generation. This suggests that collisions 

with the less sharp protuberances tend to promote rounding and attachment of fines. As a result, 

large pellets are produced and the yields are relatively constant for D/d* and D/D* > 0.80.  

 

The pellets from flat plates show broader size and aspect ratio ranges, indicating the 

importance of the furrows in promoting breakage and collisions involved in rounding.  

 

The extrudate diameter, which reflects the extrusion stain experienced by the material, shows a 

statistically significant effect on pellet tensile strength. Plates with more oblique protuberance 

angles, such as plates X and D, generated pellets with few surface defects. For plates with 
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θ 45o, pellet surface morphology varies with D and d*. Pellets with D/d*>1.5 show smooth 

surfaces. This is possible due to the large amount of collisions between pellets in the rope. The 

results suggest that the sharpness of protuberances has an important role in the energy 

transition from plate to material. The protuberances with a similar θ show a similar correlation 

between pellet properties and the relative dimension of extrudates to protuberances. The 

current results do not indicate any correlation between the surface defects and surface tensile 

strength. 

 

PCA was performed using dimensional groups (including S, W, H and D) and dimensionless 

ones (including D/(S-W), D/H, D/d*, D/D* and θ). The results were inconclusive and more 

experimental data would be needed in order to identify principal components.  
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5. Conclusions 

The effect of spheronisation plate geometry has been studied systematically for the first time 

using square patterned plates with different dimensions and extrudates of different diameters.  

The extrudate diameter (set by the screen hole size), plate protuberance dimensions and the 

ratio of the two all have noticeable effects on spheronisation behaviour and final pellet 

properties.  

 

Pellet yield was found to be subject to two geometrical factors. Material can be lost through the 

gap between the rotating plate and the spheroniser wall, so was noticeably larger for 1 mm 

extrudates. Similarly, plate patterns which promoted attrition – principally those with sharp 

protuberances – gave lower yields for a given extrudate size. Sharp protuberances tended to 

give a more narrow size distribution, which is a favourable outcome, so there is a trade-off 

involved in selecting the plate geometry. 

 

Most of the pellets generated had acceptable shape characteristics for tableting and capsuling, 

as measured by automated image analysis. Electron microscopy inspection, however, indicated 

that several groups of pellets featured defects that would render them unacceptable for 

controlled drug release applications. Surface defects were evident appearing when D/d* < 1.5 

and θ  45
o
. This result, and several others, highlights the link between protuberance geometry 

and extrudate diameter: the dimensionless ratios used in this work provide a basis for scale-up 

when D is varied. Several results for 2.5 mm extrudates differed from those obtained for 

smaller diameters, suggesting a change in spheronisation mechanism for these larger extrudates. 
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Although the same paste formulation was used in the tests, the surface tensile strength of 

pellets obtained from 1.0 mm extrudates was significantly larger, indicating that the rheology 

of the paste material differed from that of the other cases. This result is consistent with 

previous studies in the literature and demonstrates some of the complexities involved in scale 

up of these systems. 
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Nomenclature 

Roman 

dCE Circle equivalent diameter of pellet m 

dCE Mean circle equivalent diameter of pellets from a batch m 

ddry Diameter of a dry sphere with a volume equal to an extrudate of length D m 

dD Diameter of a sphere with a volume equal to an extrudate of length D m 

d* Critical pellet diameter m 

D Diameter of screen holes/diameter of extrudates m 

D* Critical extrudate diameter m 

D[3,2] Sauter mean diameter m 

F Test statistic - 

Fc Average crushing force N 

H Height of protuberances on plate surface  m 

l Length of an extrudate segment m 

L Thickness of screen m 

LAC Length of AC in Figure A2 m 

LAO Length of AO in Figure A2 m 

LAP Length of AC in Figure A1 m 

mex Mass of extrudates kg 

mp Mass of spheronisation product kg 

P Statistical significance - 

Q1 The first quartile (25% percentile) - 

Q3 The third quartile(75% percentile) - 

R Radius of spheronisation plate m 

S Spacing between protuberances on plate surface m 

wex Water content of extrudates % 

wp Water content of spheronisation product % 

W Width of top of protuberances on plate surface m 

Y Yield of a pellet sample on a dry basis % 

Y Average yield of pellet samples from three repeated tests % 
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Greek 

α Protuberance top surface area fraction  - 

β Angle indicated in Figure A2 degrees 

δ Angle indicated in Figure A1 degrees 

σt Pellet surface tensile strength N/m2 

θ Protuberance corner angle degrees 

ω Plate rotational speed rpm 
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Figure 1 Schematics of protuberance pattern and dimensions (a) plan and elevation views; (b) schematic 

showing calculation of cylindrical extrudate with diameter D* lodged in furrow; (c) schematic 

showing calculation of sphere of diameter d* lodged in ‘seat’.  
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Figure 2 Spheronisation yield on a dry basis for (a) plates X, D (θ = 63o, D* = 1.8 mm) and C (θ = 45o, 

D* = 1.4 mm), and (b) X, A (θ = 28o, D* <1 mm), B (θ= 27o, D* < 1. mm), E (θ = 14o, D* < 1. 

mm), F (θ = 27o, D* = 1.8 mm) 
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Figure 3 Size and shape distributions of pellets obtained from spheronisation using plate X (x), A(a), B(b), C(c), 

D(d), E(e) and F(f). Sizes are plotted in dimensionless form, dCE/D. 
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Figure 4 Plots of median dCE/D against screen hole diameter. Pellets obtained from plates (a) A and X, 

(b) B and X, (c) C and X, (d) D and X, (e) E and X and (f) F and X. Error bars represent the 

25% and 75% percentile values. 
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Figure 5 Surface tensile strength of pellets obtained from spheronisation of extrudates with different 

diameters. Error bars represent data range. 

 



36 

 

    

    

    

Figure 6 SEM images of dry pellets obtained from extrudates generated using screen hole diameters of (i) D = 1.0 mm, (ii) D = 1.5 mm,(iii) D = 2.0 mm (iv) 

D = 2.5 . Magnification 60×.         

(x) 
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(ii) D = 1.5 mm (i) D = 1.0 mm (iii) D = 2.0 mm (iv) D = 2.5 mm 

 (a)   
plate A 

 (b)   
plate B 

D/d*>1.5 D/d*>1.5 

D/d*=1.5 

D/d*>1.5 

D/d*>1.5 



37 

 

 

            

            

           

Figure 6 Continued.     
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Figure 6 Continued. 
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plate F 

(i)  D = 1.0 mm (ii)  D = 1.5 mm (iii)  D = 2.0 mm (iv)  D = 2.5 mm 
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Figure 7  Plots of (a)yield,  (b) CQV of dCE, (c) CQV of AR and (d) surface tensile strength against dimensionless groups of (i) D/(S-W), (ii) D/H, (iii) D/D*, (iv) 

D/d* and (v) θ. Dotted lines – data of plate X for D = 1.0 mm extrudates; short dashes – data of plate X for D = 1.5 mm extrudates; long dashes – data 

of plate X for D = 2.0 mm extrudates; and very long dashes – data of plate X for D = 2.5 mm extrudates. 
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Figure 7 Continued. 
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Table 1 Investigations of influence of spheronisation plate geometry on pellet yield and properties (All dimensions are in mm unless otherwise 

stated). Microcrystalline cellulose (MCC) PH101 was used in all formulations. 

 

Source

Paste

formulation

(w/w)

Extruder
Spheroniser

plate diameter

Plate hatching

pattern/pertuberance

shape

Plate protuberance dimensions
Spheronisation

condtions

Extrudate

diameter, D

Pellet properties

W S H d* D* α

(-)

θ

(-)

rim speed, V 

(m s-1)

time, t

(min)

Yield

(%)

Median pellet

diameter

Aspect

ratio*

(-)

Surface tensile 

strength 

(MPa)

1Schmidt and 

Kleinebudde
(1998)

lactose-

Monohydrate:MCC:
water=70:30:149

Twin-

screw 
(ZE 25 × 18 

D, Berstorff)

320
(Nica S320)

cross-hatched,

pyramidal shape

1.9 3.5 0.8 1.3 1.1 0.29 45o

10.1

5 NG**

- 1.2 0.92 -

13.4 - 1.4 0.91 -

300
(Schlϋter RM-300)

1.25 3.0 1.5 1.9 1.5 0.14 60o

10.1 - 1.7 0.88 -

13.4 - 2.0 0.88 -

2Liew et al. (2007)

MCC:lactose

monhydrate:water=
25:75:38

screen 

(GEA-

Niro,E140)

320
(GEA-Niro,S320)

cross-hatched,

pyramidal shape
1.0 3.0 0.5 0.94 0.89 0.11 63o 10.1 10 1 - 0.88 0.92 1.0

275
(Aeromatic-Fielder, 

MP1)

Teardrop-drop 
(edges rounded)

base max. width = 8 ; base length = 14; 

H = 2.75 mm
11.4 20 1 - 0.77 0.90 0.9

3Michie et al. 

(2012) 

diclofenac

sodium:lactose
monohydrate:MCC:
water = 1:4:15:13.5

screen
(Caleva, 

model 10)

225
(Caleva, model 250)

cross-hatched

NG 11.8 12

1.0 76 1.2 0.91 3.8

1.5 58 1.3 0.92 4.6

1.0 84 1.2 0.93 3.8
radial-hatched 

1.5 70 1.2 0.93 4.7

striated edge
1.0 94 1.1 0.92 3.3

1.5 37 1.5 0.90 4.7

4Zhang et al.

(2016a)

MCC:water

= 45:55

screen
(Cheng 

Hang Xin

Rong Hua,

ZLB-80)

120
(Chong Qing Li 

Pu,R-120)

cross-hatched, pyramidal

shape
0.5 1.4 0.86 1.0 0.79 0.13 27o

10.0 12

1.0 98 0.69 0.94 -

2.0 96 0.70 0.95 -

cross-hatched,

small studs
0.5 1.4 0.86 1.3 0.90 0.13 0o

1.0 96 0.69 0.95 -

2.0 93 0.68 0.93 -

cross-hatched,

larger studs
2.0 5.0 1.0 4.2 3.0 0.16 0o

1.0 99 0.76 0.86 -

2.0 99 0.76 0.93 -

cross-hatched,

saw-toothed
0 3.0 1.5 2.1 1.9 0 63o

1.0 97 0.57 0.79 -

2.0 96 0.68 0.94 -
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1. More formulations were investigated by Schmidt and Kleinebudde [22]. Results for one which had a water content similar to the water content of the paste investigated in current study is 

reported here. 

2. Pellet size distribution was measured by sieving, and median diameter was estimated based on mass distribution; pellet tensile strength was estimated using 

2

mass

c
mass-t

2

4.0











d

F





, where massd  is 

mass median diameter. 

3. The yield was defined as the percentage of pellets in the size range between 0.7 and 1.4 mm; median size was estimated based on mass distribution; pellet surface tensile strength in MPa is 

reported. 

4.Yield is defined as the percentage of dry material obtained after spheronisation; pellet diameter was measured by image analysis, and median size was estimated based on number distribution. 

 

* Image analysis was used to measure pellet aspect ratios in all studies 

**NG – not given.  
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Table 2 Dimensions and characteristic lengths of spheroniser plate protuberances (see Figure 1). 
 

 

Plate

W

(mm)

S

(mm)

H

(mm)

S-W

(mm)

d*

(mm)

D*

(mm)

W 2

(mm2)

θ

(degrees)

α

(-)

X 0 ∞ 0 ∞ - - 0 90 0

A 0.5 1.4 0.86 0.9 1.0 0.80 0.25 28 0.13

B 0.5 1.5 1.0 1.0 1.2 0.89 0.25 27 0.11

C 1.0 3.0 1.0 2.0 1.6 1.4 1.0 45 0.11

D 2.0 6.0 1.0 4.0 1.9 1.8 4.0 63 0.11

E 0.5 1.5 2.0 1.0 1.3 0.97 0.25 14 0.11

F 1.0 3.0 2.0 2.0 2.3 1.8 1.0 27 0.11
 

 

 

 

 

Table 3 Screen dimensions 

 

Hole diameter , D

(mm)

Thickness*, L

(mm)

L/D

(-)

Percentage of the area occupied 

by holes on the screen 

(%) 

1.0 1.2 1.20 19.0% 

1.5 1.2 0.80 24.2%

2.0 1.2 0.60 24.5% 

2.5 1.2 0.48 55.4%

 

*Thickness variation±0.2 mm. 
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Table 4 Mass percentage of dry fines (<0.355) mm and large particles (>2.0 mm) 
 

 
 

 

 

Table 5 Summary of characterisics of the pellet size distributions curves given in Figure 3. 
 

Plates
D (mm)

1.0 1.5 2.0 2.5

X U+S B+S B+S T

A B+S B B U+S

B U+S T+S U U+S

C B U+S U U

D B B U U

E U+S U U+S U

F B+S B+S U U
 

U: unimodal distribution; B: biomdal distribution; S: shoulder(s) on the distribution curve.
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Table 6 Results of LSD test of pellet surface tensile strength 
 
 

Batches compared

P for LSD test

D (mm) D (mm)

1.0 vs 1.5 5.29*

2.0 6.46*

2.5 5.45*

1.5 vs 1.0 -5.29*

2.0 1.17

2.5 0.16

2.0 vs 1.0 -6.46*

1.5 1.17

2.5 -1.01

2.5 vs 1.0 -5.45*

1.5 -0.16

2.0 1.01

 

* The mean difference is significant at the 0.05 level. 
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Supplementary Figure S1 Plots of median pellet aspect ratio against screen hole diameter. 

Data for X plotted in each as reference: (a) A, (b) B, (c) C, (d) D, (e) E,(f) F. Error 

bars represent the 25% and 75% percentile values. ANOVA analysis indicated that 

the effect of D on aspect ratio range is not significant (F = 0.307, P = 0.820). 
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Appendix: 

Equation 3:  

         

cosd =
D* 2

(S -W ) 2
=

D*

(S -W )
 

         

L
AP

=
S-W

2

æ

è
ç

ö

ø
÷

2

+ H 2

 

where LAP is the length of AP in Figure A1. 

       

also  

         

cosd =
H

S-W

2

æ

è
ç

ö

ø
÷

2

+ H 2

 

so  

 

D* =
H S-W( )

S-W
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2

+ H 2

     =
1

4H 2
+

1
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2
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Figure A1 Schematics for calculation of D*. 
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Equation 4: 

L
AC

= 2 S-W( )
 

where LAC is the length of AC in Figure A2. 

 

L
AO

=
2 S-W( )

2

æ

è

ç
ç

ö

ø

÷
÷

2

+ H 2

      =
S-W( )

2

2
+ H 2

 

where LAO is the length of AO in Figure A2. 

 

cosb =
d * 2

L
AC

2
=
d *

L
AC

=
d *

2 S-W( )
 

also  

cosb =
H

S-W( )
2

2
+ H 2

 

so 
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2 S-W( )H

S-W( )
2

2
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1
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Figure A2 Schematics for calculation of d*. 


