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Abstract: 1 

Extensive studies have been done on adaptive thermal comfort for naturally ventilated buildings. 2 

However, further studies of the adaptive comfort model are needed to develop a control method 3 

for buildings with the air-conditioning systems. This study aims to extend the application of the 4 

adaptive comfort model by developing an adaptive comfort control (ACC) for air-conditioning 5 

systems. Special attention is given to testing the acceptability of the ACC to the occupants of 6 

the office buildings. Two extensive longitudinal field studies were carried out that involved 807 7 

office workers and a total of 13,523 individual comfort votes were collected. This study reveals 8 

that it is possible to develop statistically and substantively significant adaptive comfort models 9 

for the cooling operation of air-conditioned buildings. This field study provides scientific 10 

evidence that the adaptive comfort model can be used to control an air-conditioning system 11 

without sacrificing occupants’ thermal comfort. Further field studies on air-conditioned buildings 12 

are warranted to quantify the energy use implications of the ACC.   13 

 14 

Keywords: Adaptive comfort; Control; Air-conditioning; Adaptive opportunity; Field study. 15 

16 
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1. Introduction 1 

 2 

Buildings are one of the largest energy end-use sectors, responsible for 32% of total global 3 

energy consumption [1] and 60% of global electricity consumption [2]. Greenhouse gas (GHG) 4 

emissions from the building sector have been increasing continuously since 1970 and reached 5 

9.18 billion metric tonnes of carbon dioxide equivalent (tCO2e) in 2010, representing 19% of 6 

global GHG emissions [3]. Without active efforts to reduce building energy use, global energy 7 

consumption in buildings is expected to double by 2050 through rapid urbanization, economic 8 

development, and increased demands for comfort [4]. Thus, it is critical to understand how 9 

buildings use energy for comfort, in order to reduce GHG emissions from the building sector.  10 

 11 

One fundamental function of a building is to provide a comfortable indoor climate for its 12 

occupants, and a large amount of energy is used in the process of creating such environments 13 

[5,6]. Globally, space conditioning to meet thermal comfort requirements accounted for 34–40% 14 

of the final energy consumption in both residential and commercial buildings in 2010 [4]. In the 15 

European Union, space conditioning is the largest energy end use in the building sector, 16 

representing 69% of residential energy consumption and 45% of commercial energy use in 17 

2010 [7]. Thus, it is evident that maintaining thermal comfort is a key factor in how buildings use 18 

energy and consequently in GHG emissions from buildings.   19 

  20 

Research on thermal comfort has taken two approaches — the heat balance model and the 21 

adaptive model. The heat balance model, developed by Fanger [8], is based on a series of 22 

climate chamber studies that investigate both the conditions for thermal equilibrium between a 23 

human body and its surroundings and the thermal perception of building occupants in a wide 24 

range of environmental conditions with four environmental elements (air temperature, radiant 25 

temperature, humidity, and air velocity) and two personal factors (insulation level of clothing and 26 

metabolic rate). Fanger’s seminal work, on the predicted mean vote (PMV) and predicted 27 
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percentage of dissatisfied (PPD) models, have been adopted widely in standards such as 1 

International Standard Organization (ISO) 7730 [9], European Standard EN 15251 [10], and 2 

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 55 [11].  3 

 4 

On the one hand, many studies have examined the validity of the PMV model through climate 5 

chambers and field studies. Several climate chamber studies confirmed that the predicted 6 

thermal responses from the PMV model on the ASHRAE comfort scale were similar to the 7 

actual mean vote (AMV) of human subjects for thermally neutral conditions. Doherty and Arens 8 

[12] showed that the PMV model accurately predicted the thermal sensation of resting subjects 9 

in a climate chamber when the effective temperature was between 26°C and 30°C. Parsons [13] 10 

found that the difference between PMV and AMV values was less than 0.5 of a 7-point 11 

ASHRAE comfort scale for neural conditions. Zhang and Zhao [14] found that the PMV model 12 

was valid only in steady and uniform thermal conditions.  13 

 14 

On the other hand, many field studies have found large discrepancies between PMV values and 15 

the actual thermal sensations of people in everyday thermal environments in real buildings 16 

where people use various adaptive measures to attain thermal comfort [15,16,17]. Humphreys 17 

and Nicol [18] found that the PMV model differed noticeably from the AMV value for both air-18 

conditioned and naturally ventilated buildings using the ASHRAE thermal comfort database 19 

prepared by de Dear and Brager [19]. Using the same ASHRAE database, De Dear and Brager 20 

[20] showed that the PMV model was unreliable in predicting the thermal responses of people in 21 

naturally ventilated buildings. Field studies to test the applicability of the PMV model to young 22 

children [21,22] and university students [23,24] found that modifications were required to the 23 

original PMV model to reduce the discrepancy between predicted and actual thermal sensations.  24 

 25 

In response to those field studies showing the inaccurate prediction of the PMV model, several 26 

researchers tried to improve the original PMV model. Fanger and Totfum [25] proposed an 27 

‘expectancy factor’ to extend the application of the PMV model to naturally ventilated buildings. 28 
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Alfano et al. [26] also developed an expectancy factor to apply the original PMV for 1 

Mediterranean schools. Humphreys and Nicol [18] revised the PMV model using the ASHRAE 2 

thermal comfort database to reduce the bias between predicted and actual thermal sensations. 3 

Yao et al. [27] proposed an adaptive PMV model that included an adaptive coefficient to 4 

represent the adaptive factors of people in real buildings. Recently, Kim et al. [28] developed 5 

two types of adaptive PMV models using the methods proposed by Humphreys and Nicol [18] 6 

and Yao et al. [27]. 7 

 8 

The adaptive comfort model of thermal comfort was introduced in the 1970s based on field 9 

studies of people in buildings that found that comfort temperatures were not fixed, but changed 10 

with outdoor temperatures [29]. The adaptive comfort model is best characterized by the work of 11 

Nicol and Humphreys [30,31] and de Dear and Brager [19,20] and has mainly focused on 12 

naturally ventilated buildings [32]. The adaptive comfort model in ASHRAE 55 [11] was intended 13 

to determine acceptable thermal conditions in naturally ventilated buildings, and the adaptive 14 

model in EN 15251 [10] specified comfort temperatures for free-running buildings. Several other 15 

researchers developed adaptive comfort models for naturally ventilated residential buildings 16 

[33,34,35,36]. Ye et al. developed an adaptive model for residential buildings with natural 17 

ventilation in Shanghai [36], and Wong et al. [33] and Indraganti [35] highlighted the importance 18 

of adaptive behaviour of occupants in residential buildings.  19 

 20 

The adaptive comfort model for office buildings with natural ventilation and hybrid ventilation 21 

has been also actively investigated [37,38,39]. Daghigh et al. [37] revealed that predictions from 22 

the adaptive comfort model in ASHRAE 55 were in line with the actual thermal comfort 23 

sensations of people in naturally ventilated offices. Yang and Zhang [38] developed an adaptive 24 

model for naturally ventilated office buildings and showed that people in naturally ventilated 25 

buildings were more tolerant of higher temperatures than people in air-conditioned buildings. 26 

Field studies in Shenzhen, China [39], and Sydney, Australia [40], found that the thermal 27 
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perceptions of occupants in a mixed-mode building were successfully represented by the 1 

adaptive comfort model when the natural ventilation mode was in use.   2 

 3 

The adaptive comfort model commonly uses the monthly mean temperature as the index for 4 

outdoor temperature, although comfort temperatures change within a month as the outdoor 5 

temperature varies [41]. In particular, there were only a few field studies developing an adaptive 6 

comfort model for air-conditioned buildings with an outdoor running mean temperature instead 7 

of the monthly mean temperature. This is because field studies for air-conditioned buildings 8 

focused on the test of the accuracy of PMV index [15]. McCartney and Nicol [42] developed 9 

adaptive comfort models for air-conditioned buildings in Europe, while Yun et al. [43] proposed 10 

the adaptive comfort model for the office buildings with air-conditioning systems in Seoul, Korea. 11 

Both models used the outdoor running mean temperatures as a predictor so that an air-12 

conditioning control system based on the developed adaptive comfort models could respond to 13 

outdoor temperature variations. However, further studies to develop the control method for an 14 

air-conditioning system using the adaptive comfort model are needed to test if or to what extent 15 

the adaptive comfort model can be used in control systems [42].  16 

  17 

Based on the previous research on the adaptive comfort model, this study aims to test its 18 

application to the control of air-conditioned buildings by developing an adaptive comfort control 19 

(ACC) strategy for air-conditioning systems. We have given special attention to testing the 20 

acceptability of the ACC to the occupants of air-conditioned office buildings. 21 

 22 

2. Methods 23 

2.1 Data acquisition for the development of the adaptive comfort model 24 

We began by conducting extensive longitudinal field studies on the thermal perceptions of 551 25 

office workers in air-conditioned buildings, along with measurements of indoor and outdoor 26 

environmental conditions from July 2009 to February 2010 and from January 2012 to December 27 
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2012 to cover a full cycle of the seasons. We used the 11,161 individual comfort votes (11,161 1 

questionnaire sets) collected during those longitudinal field studies to develop an adaptive 2 

comfort model for air-conditioned buildings. Survey participants were office workers in four 3 

offices in the area of Seoul, South Korea (37° N, 126° E), which has a humid continental climate 4 

with hot humid summers and cold dry winters, with strong seasonality (Figure 1). The 5 

participants worked in open plan offices with electric air conditioning systems. The first and 6 

second offices were equipped with ductless, split heat pumps for heating and cooling and were 7 

monitored from July 2009 to February 2010. Direct-expansion air handling units (DX AHU) were 8 

used in the third office, and a variable refrigerant flow (VRF) air conditioning system that 9 

provided heating and cooling was installed in the fourth office, with energy recovery ventilators 10 

to meet fresh air requirements. Individual indoor units in the offices with the ductless, split heat 11 

pump and VRF system were controlled by the office workers. The monitoring period for the third 12 

and fourth offices was from January 2012 to December 2012. The DX AHU were operated by a 13 

central building energy management system (BEMS) that determined all operation parameters, 14 

including the opening ratio of the outdoor air damper and setpoint temperatures. Office workers 15 

in the office with the DX AHU had remote controllers to adjust indoor units. Only the two offices 16 

with the ductless, split heat pumps had operable windows, but the windows were rarely opened 17 

by office workers due to external noise and poor outdoor air quality.  18 

 19 

We obtained outdoor conditions from external temperature and humidity data loggers, HOBO 20 

U23-002 with solar radiation shields, installed on the roofs of the monitored offices. HOBO U23-21 

002 has an accuracy of ± 0.2K for air temperature and ± 2.5% for relative humidity, with a 22 

measurement range from – 40°C to 75°C. We used 28 standalone data loggers (HOBO U12-23 

012; accuracy of ± 0.35K for air temperature and ± 2.5% for relative humidity) to measure the 24 

indoor air temperatures and humidity levels experienced by participating office workers at 10 25 

minute intervals throughout the whole monitoring period. We positioned the indoor data loggers 26 

on the tops of desk partitions 1.1m above the floor near participating office workers to 27 

characterize the local indoor environment experienced by the office workers. In addition, we 28 
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measured globe temperatures using a temperature sensor (HOBO TMC1-HD) with its probe 1 

inserted at the centre of a black painted table tennis ball for the monitoring period from January 2 

2012 to December 2012, taking care to avoid exposure to heat sources such as direct solar 3 

radiation and the heat dissipating fans of personal computers. The operative temperature that is 4 

calculated from air temperature, radiant temperature and air speed was used in the analysis.  5 

 6 

Each office worker received a paper folder with comfort questionnaires coded to indicate their 7 

location within each building. We collected and replaced the folders every two weeks. The office 8 

workers were asked to fill out a questionnaire five times a day (twice in the morning, twice in the 9 

afternoon, and once in the evening) during the monitoring period from July 2009 to February 10 

2010. In 2012, we reduced the number of daily questionnaire surveys to one to minimize 11 

interruptions at work. Office workers assessed their thermal comfort using the ASHRAE thermal 12 

comfort scale ranging from cold (-3) to hot (+3), with neutral (0) in the middle. A question to 13 

evaluate thermal preference adopted a five-point scale: ‘Warmer’, ‘Slightly warmer’, ‘No change’, 14 

‘Slightly cooler’, and ‘Cooler’.  15 

 16 

2.2 Test of the occupant acceptability of the adaptive comfort control 17 

After we developed our adaptive comfort model using our collected data (described in section 3 18 

below), we applied it to the air-conditioning systems of two offices to test its acceptability to the 19 

building occupants. The two offices were those with the DX AHU and the VRF system from our 20 

monitoring study because the DX AHU and the VRF system market showed rapid growth in 21 

South Korea. We determined the daily setpoint temperatures using our adaptive comfort model 22 

just after midnight because the daily optimal comfort temperature in the adaptive comfort model 23 

depends on the outdoor daily mean temperature of the previous day and the running mean of 24 

the outdoor temperature [10,30,31,32,43]. The BEMS operator controlled the DX AHU using the 25 

daily setpoint temperature from the adaptive comfort model, whereas a data management 26 

server (DMS) controlled the VRF system. During the monitoring period, the indoor control units 27 
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were disabled. Building occupants did not know that the air-conditioning systems were being 1 

operated following the adaptive comfort model.  2 

 3 

The monitoring period for the occupant acceptability testing of the ACC was from August 2013 4 

to September 2013. We collected 2,362 questionnaire sets from 256 office workers during this 5 

field study. We used the same questionnaire survey folders we had used during the 2012 6 

monitoring period. The monitoring method for measuring outdoor air temperature, indoor air 7 

temperature, globe temperature, and relative humidity remained unchanged from the first field 8 

study.  9 

 10 

3. Adaptive comfort model for air-conditioned buildings 11 

3.1 Outdoor and indoor conditions 12 

Figure 1 shows the outdoor air temperature distributions during the monitoring period, which 13 

represent the typical Korean climate with a clear seasonal variation (F(3,15111)=49637, P < 0.001). 14 

The average outdoor temperature was 14.6°C in spring (standard deviation, SD=4.7°C) and 15 

rose to 26.6°C (SD=2.7°C) in summer. The average temperature dropped to 10.6°C in autumn 16 

and reached a low of -0.1°C (SD=4.4°C) in winter. The average monthly temperature from 1981 17 

to 2010 was 25.6°C in August and 0.0°C in December [44]. The maximum outdoor temperature 18 

during the monitoring period was 34.9°C in summer, and the minimum temperature was -10.3°C, 19 

which shows the wide variation in outdoor temperatures during the monitoring period. There 20 

were also clear distinctions in outdoor absolute humidity among the seasons (F(3,15111)=73311, P 21 

< 0.001). The mean absolute humidity ranged from 2.2 g/kg (SD = 0.1 g/kg) in winter to 15.1 22 

g/kg (SD = 0.2 g/kg) in summer. Thus, the outdoor conditions during the monitoring period were 23 

characterized by a hot humid summer and a cold dry winter.  24 
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 1 

Figure 1. Outdoor air temperature distribution during the monitoring period 2 

 3 

Indoor air temperatures recorded from the standalone data loggers ranged from 10.8°C to 4 

34.1°C during the monitoring period (Figure 2). One-way analysis of variance (ANOVA) test is 5 

applied to examine whether the seasonal variations during the monitoring period is statistically 6 

meaningful. The statistical analysis program, SPSS Statistics version 22, was used in this study. 7 

The statistical test in this study was carried out with the statistical analysis program, SPSS 8 

Statistics version 22.  The variation in indoor temperatures as a function of the seasons was 9 

statistically significant (F(3,275745)=26192, P < 0.001) but less clear than that in outdoor 10 

temperatures. The average temperature during the whole monitoring period was 24.5°C 11 

(SD=3.3°C), and the interquartile range, the difference between the upper and lower quartiles, 12 

was only 3.5°C. The average temperatures in summer and winter were 26.5°C (SD=1.5°C) and 13 

23.0°C (SD=3.7°C), respectively, which suggests that there were adaptive adjustments such as 14 

changes in setpoint temperatures. 15 

 16 
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 1 

Figure 2. Indoor temperature distribution during the monitoring period 2 

 3 

We investigated the change in indoor temperature in relation to variation in outdoor 4 

temperatures (Figure 3) and found a positive correlation. As the outdoor temperature increased, 5 

so did the indoor temperature. The Pearson correlation coefficient, R, between indoor and 6 

outdoor temperatures is 0.466 (F(1,7728))=2139, P<0.001). A potential reason for this correlation 7 

is that the indoor temperatures in Figure 3 includes periods when buildings were unoccupied 8 

and so heating or cooling systems were turned off. Also, Internal and solar heat gains would be 9 

a potential reason why indoor temperatures were sometimes higher than outdoor temperatures. 10 
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 1 

Figure 3. Relationship between outdoor and indoor temperatures 2 

 3 

After we revealed the positive relationship between indoor and outdoor temperatures, we 4 

investigated a potential relationship between the optimal comfort temperatures of office workers 5 

and prevailing outdoor temperatures. The optimal comfort temperature refers to indoor 6 

temperature for which building occupants will vote neutral on the ASHRAE scale and is 7 

calculated using the comfort vote from office workers investigated using the method by 8 

Humphreys and Nicol [42]. The monitored data indicates a statistically significant relationship 9 

between the optimal comfort temperature of office workers in air-conditioned buildings and 10 

outdoor temperatures (Figure 4). The Pearson correlation coefficient, R, is 0.404 (F(1,7728))=2506, 11 

P<0.001). This analysis indicates that the optimal comfort temperature of survey participants in 12 

the air-conditioned offices changed with outdoor temperatures, although the cooling and heating 13 

setpoint temperatures were not determined by a change in outdoor temperatures.  14 
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 1 

Figure 4. Relationship between outdoor and optimal comfort temperatures 2 

 3 

Table 1 compares the indoor temperatures of the interior office zone with those of the perimeter 4 

zone, which was directly influenced by the outdoor conditions. We set the depth of the perimeter 5 

zone from the external wall as 2.5 times the floor to ceiling height in this study. The results show 6 

that the indoor temperatures for the interior and perimeter zones differed from each other. The 7 

temperature of the perimeter zone was higher than that of the interior zone in summer, whereas 8 

the temperature was higher in the interior zone in winter. The difference between the interior 9 

and perimeter zones was most evident in the afternoon. For example, the average temperature 10 

difference in spring was 0.8K in the afternoon and only 0.1K in the morning. The temperature 11 

difference between the interior and perimeter zones increased as the indoor and outdoor 12 

temperature difference became greater. The largest temperature difference, found in winter, 13 

was 0.9K in the morning.  14 
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 1 

Table 1. Mean indoor temperatures for the perimeter and interior zones of the fourth office with 2 

the VRF system 3 

Indoor temperature 

(℃) 

Morning  
(06 AM to 12 PM) 

Afternoon 
(12 PM to 6 PM) 

Evening 
(6 PM to 12 AM) 

Interior 
zone 

Perimeter 
zone 

Interior 
zone 

Perimeter 
zone 

Interior 
zone 

Perimeter 
zone 

Spring 

Mean 25.1 25.2 27.3 28.1 25.3 25.1 

Standard 
deviation 

1.7 2.3 0.8 1.5 1.7 2.1 

Summer 

Mean 25.8 26.2 26.8 27.4 25.4 25.5 

Standard 
deviation 

1.2 1.6 0.6 1.3 0.9 1.3 

Autumn 

Mean 25.5 24.9 27.0 26.8 25.6 24.8 

Standard 
deviation 

1.3 1.5 1.1 1.1 1.3 1.5 

Winter 

Mean 24.0 23.1 27.0 26.1 24.6 23.5 

Standard 
deviation 

2.3 2.5 1.3 1.3 2.4 2.5 

 4 

We developed our adaptive comfort models for air-conditioned buildings from data obtained 5 

from all buildings in the study to predict daily optimal comfort temperatures using a running 6 

mean outdoor temperature (Table 2). Our basic equation for the adaptive comfort model is as 7 

follows: 8 

 9 

𝑇𝑐(𝑛) = 𝑎𝑇𝑟𝑚(𝑛) + 𝑏        Equation (1) 10 

 11 

where Tc(n) is the optimal comfort temperature for day n, and Trm(n) is the weighted running mean 12 

temperature for day n. Nicol and Humphreys [31,32] proposed the running mean temperature to 13 

better reflect the effect of past outdoor temperatures and represent the time-dependence of the 14 

optimal comfort temperature. The running mean temperature is given by Equation (2): 15 

  16 

𝑇𝑟𝑚(𝑛) = (1 − 𝛼)𝑇𝑜𝑢𝑡(𝑛−1) + 𝛼𝑇𝑟𝑚(𝑛−1)      Equation (2) 17 
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where Tout(n-1) is the mean outdoor temperature for day n-1 and α is a constant between 0 and 1. 1 

The constant α determines the responsiveness of the running mean temperature to a change in 2 

outdoor temperatures. Previous studies [42,43] found that an α value of 0.8 gave the best fit 3 

between running mean temperature and optimal comfort temperature in Europe and Korea. 4 

Thus, we set the α value at 0.8 in this study. Research has shown that the strength of the 5 

correlation between optimal comfort temperature and outdoor temperature for buildings with 6 

mechanical heating or cooling systems changes at an outdoor temperature of 10°C [19,29,30]. 7 

The relationship is close when the outdoor temperature is above 10°C; however, outdoor 8 

temperature is not a good indicator at or below an outdoor temperature of 10°C. Thus, we have 9 

developed separate models for heating and cooling operation modes, and we have assumed 10 

that the heating mode would come in to effect at or below an outdoor temperature of 10°C. 11 

Table 2 summarizes the adaptive comfort models for the air-conditioned buildings. We used the 12 

F-test to examine the statistical significance of an overall model and the T-test to examine the 13 

significance of the running mean temperature variable as a predictor in the model, both with a 14 

significance level of P < 0.05.   15 

 16 

F-tests indicate that the adaptive comfort models in Table 2 are statistically significant at the 17 

significance level of P < 0.001, except for the models of the heating mode. For example, the 18 

adaptive comfort model of the heating mode for the interior zone was not statistically or 19 

substantively meaningful (P = 0.222, R = 0.031). The model implies that the optimal comfort 20 

temperature should change very little with the outdoor temperature because the coefficient 21 

value for the outdoor temperature was only 0.0022. In addition, T-test results show that the 22 

outdoor temperature was not a statistically significant predictor of optimal comfort temperature 23 

in the heating mode when outdoor temperature was less than 10°C. However, the adaptive 24 

comfort models for the cooling mode, when outdoor temperature was equal to or higher than 25 

10°C, were all statistically meaningful at the significance level of P < 0.001. Also, the Pearson 26 

correlation coefficients for the cooling models indicate that a correlation between the optimal 27 

comfort temperature and the running mean outdoor temperature was high, with R values higher 28 
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than 0.67. According to Cohen [45], an R value higher than 0.5 indicates that the effect size or 1 

strength of the relationship is large in social and behavioural research.  2 

 3 

Table 2. Adaptive comfort models for air-conditioned buildings as a function of thermal zones 4 

Thermal 
zone 

Operation 
mode 

Coefficient F test T test 
R 

a b F-statistic P value T-statistic P value 

Perimeter 

& Interior 

Cooling 0.238 20.089 5233 < 0.001 72 < 0.001 0.731 

Heating 0.053 23.963 16 < 0.001 4 < 0.001 0.075 

Perimeter 
Cooling 0.191 21.044 1179 < 0.001 34 < 0.001 0.670 

Heating 0.029 23.973 2 0.107 1.614 0.107 0.047 

Interior 
Cooling 0.245 19.988 4122 < 0.001 64 < 0.001 0.761 

Heating 0.022 24.101 1 0.222 1 0.222 0.031 

 5 

4. Occupant acceptability of the adaptive comfort control 6 

for the air-conditioning system 7 

 8 

After we developed adaptive comfort models for the cooling mode that are statistically and 9 

substantively significant, we applied them to the control of air-conditioning systems to test their 10 

occupant acceptability. Figure 5 shows the outdoor temperature distribution during the 11 

monitoring period from August 2013 to September 2013, which was a typical summer season in 12 

South Korea. The outdoor temperature during the second monitoring period ranged from 13.2°C 13 

to 34.8°C, with an average temperature of 24.8°C (SD = 3.9°C). The outdoor temperature range 14 

stayed within the range we used when developing the adaptive comfort model, so the 15 

application of the adaptive comfort model was free from extrapolation.   16 

 17 
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 1 

Figure 5. Outdoor temperature distribution during the monitoring period for testing the 2 

acceptability of the adaptive comfort control 3 

 4 

We determined the setpoint temperatures for the DX AHU and VRF system using our adaptive 5 

comfort model (Table 2). We had to use the adaptive comfort model for the whole zone because 6 

the air-conditioning systems in the participating offices could not accommodate the distinction 7 

between the perimeter and interior zones. Figure 6 illustrates the daily setpoint temperatures for 8 

the DX AHU and VRF system in the offices. The setpoint temperatures ranged from 25°C to 9 

28°C. The minimum interval of the temperature settings for the VRF system was 1K. The 10 

setpoint temperatures were equal to or greater than 26°C except for September 30th, when the 11 

setpoint temperature was 25°C. 48 per cent of the monitoring period was controlled at or higher 12 
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than 27°C. The setpoint temperatures applied in this study were considerably higher than the 1 

thermal comfort conditions recommended by ASHRAE Standard 55 (22°C for summer 2 

assuming a relative humidity of 50%, a mean relative velocity lower than 0.15 m/s, and a 3 

metabolic rate of 1.2 met) [46]. The existing setpoint temperature for the office with the DX AHU 4 

in the cooling period of 2012, before the adaptive comfort control was applied, was set at 23°C. 5 

Occupants in an office with the VRF system had remote controllers to change setpoint 6 

temperatures of the indoor units in 2012. As a result, occupants freely changed setpoint 7 

temperatures. Building facility managers informed us that the setpoint temperatures of the 8 

indoor unit in the cooling season of 2012 were in most cases lower than 24 °C and often less 9 

than 22°C. 10 

 11 

Figure 6. Setpoint temperatures for the DX AHU and VRF system 12 

 13 

Figure 7 illustrates the indoor temperature distributions of the investigated offices during the test 14 

for occupant acceptability of the adaptive comfort model. The average indoor temperature was 15 

26.6°C (SD = 1.2°C) in the office with the DX AHU and 25.7°C (SD = 0.6°C) in the office with the 16 

VRF system. One reason for the higher indoor temperature in the office with the DX AHU was a 17 
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malfunction of the DX AHU from the afternoon of September 19th to the morning of September 1 

20th. The indoor temperature increased to above 30°C, peaking at 32.4°C in the afternoon of 2 

September 19th due to the fault of the DX AHU. Office workers still worked during the period 3 

that the DX AHU was not operating; therefore, we included the data from that period in the 4 

analysis.   5 

 6 

 

 

Figure 7. Indoor temperature distributions during the test for occupant acceptability of the 7 

adaptive comfort model, (a) Office with DX AHU, (b) Office with VRF system 8 
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 1 

Figure 8 shows that office workers mostly accepted the indoor thermal conditions set using the 2 

adaptive comfort model. Office workers who voted -1, 0, or +1 were assumed to accept their 3 

thermal conditions in this study. The percentage of office workers who accepted the thermal 4 

conditions was 83% in the office with DX AHU and 87% in the office with the VRF system. 5 

Fewer than 1 per cent of the thermal sensation votes were -2 (Cold), and the ratio of the votes 6 

above 1 was 15 per cent in the office with the DX AHU and 13 per cent in the office with the 7 

VRF system.  8 

 9 

The rate of acceptance by office workers reduced from 90% to 83% in the office with the DX 10 

AHU and from 94% to 87% in the office with the VRF system. The reduction was relatively small 11 

considering the setpoint temperature by the adaptive comfort control was 2K to 5K higher than 12 

that of the existing control and also the fact that the occupants of the office with the VRF system 13 

lost their controllability over indoor units when the adaptive comfort control was applied. The 14 

comfort conditions met existing standards [9,11], though theoretically acceptance rates reduced 15 

slightly by an average of 7%.   16 
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 1 

Figure 8. Comparison of thermal sensation votes of office workers when the adaptive comfort 2 

control is used with those of the existing control  3 

 4 

After we analysed the acceptance ratio of the thermal sensation votes, we examined the office 5 

workers’ thermal acceptance as a function of indoor temperatures (Figure 9). The monitoring 6 

results indicated that the ratio of occupant acceptance of the indoor conditions was greater than 7 

89% until the indoor temperature reached 26°C. The acceptance ratio started to decrease as 8 

the indoor temperature rose above 26°C. The acceptance ratio fell to 58% at an indoor 9 

temperature of 30°C, and no office workers accepted the thermal condition when the indoor 10 

temperature reached 31°C. We also examined the average thermal sensation vote as a function 11 

of indoor temperature (Figure 10) and found that it increased as the indoor temperature rose. 12 

The thermal sensation vote was -0.33 at an indoor temperature of 23°C and reached 0.98 at an 13 

indoor temperature of 28°C. We found a negative relation between the ratio of the thermal 14 

acceptance and the average thermal sensation vote of office workers. As the thermal sensation 15 

vote increased, the acceptance ratio of office workers decreased. When the mean thermal 16 



22  

 

 

sensation votes increased from 0.18 at an indoor temperature of 24 °C to 0.98 at an indoor 1 

temperature of 28 °C, the acceptance ratio fell by 40%.  2 

 3 

Figure 9. Occupant acceptance of the indoor conditions as a function of indoor temperature 4 

 5 

 6 

Figure 10. Thermal sensation vote with standard deviation as a function of indoor temperature  7 

 8 
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5. Discussion and conclusions 1 

For this study, we carried out two field studies to extend the applicability of the adaptive comfort 2 

model to the control of air-conditioning systems. With data from the first field study (11,161 sets 3 

of individual comfort votes from 551 office workers), we developed an adaptive comfort model 4 

for air-conditioned buildings. We conducted the second field study to test the occupant 5 

acceptability of our adaptive comfort model, which we applied to the control of the air-6 

conditioning systems in summer. For the second study, we collected 2,362 questionnaire sets 7 

from 256 office workers.  8 

 9 

Our results provide scientific evidence that there is a statistically significant relationship between 10 

outdoor temperatures and optimal comfort temperatures inside air-conditioned office buildings 11 

when the cooling is controlled independent of changes in outdoor temperature (R = 0.404, P < 12 

0.001). Moreover, we showed that it is possible to develop statistically and substantively 13 

significant adaptive comfort models for cooling operations in air-conditioned buildings (R = 14 

0.731, P < 0.001). Previous adaptive comfort models have been intended for application in 15 

naturally ventilated buildings [32,33,34,35,36]. For example, the adaptive comfort model in 16 

ASHRAE Standard 55 [11] is only for naturally ventilated buildings. Therefore, the outcomes of 17 

this study can contribute to extending the application potentials of adaptive comfort theory to air-18 

conditioned buildings.  19 

 20 

An R value for the adaptive comfort models developed in this study ranged from 0.670 to 0.761. 21 

Further field studies are required to improve the adaptive comfort model, although an R value 22 

over 0.5 indicates a strong relationship between independent and dependent variables in 23 

behavioural research [5]. In particular, the effects of indoor humidity and current outdoor 24 

temperature on thermal comfort sensation should be carefully investigated in order to better 25 

predict the thermal comfort evaluation of building occupants. In this study, only outside 26 

temperature and humidity were measured. However, further studies should include the 27 
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measurement of solar radiation because the thermal perception of occupants is also influenced 1 

by solar radiation.  2 

 3 

We also found that the adaptive potential of people in relation to thermal comfort was limited 4 

when outdoor temperatures were less than 10°C. The adaptive comfort models for the heating 5 

operation, when outdoor temperatures were below 10°C, were not statistically significant. For 6 

example, the adaptive comfort model of the interior zone for the heating operation had an R 7 

value of 0.031, and the T test result indicates that outdoor temperatures were not a significant 8 

indicator for optimal comfort temperatures. This finding is in line with those of previous studies 9 

[19,29,30]. Humphreys [30] showed that optimal comfort temperature did not change with 10 

outdoor temperature when the outdoor temperature was below 10°C, which was confirmed by 11 

de Dear [19,32] using the ASHRAE thermal comfort database. One potential reason is that 12 

buildings in cold environments offer their occupants fewer adaptive opportunities than buildings 13 

in warm environments [47]. 14 

 15 

One important outcome of this study is the occupant acceptability of the adaptive comfort model 16 

applied to the control of air-conditioned buildings in summer. Our second field study indicates 17 

that the adaptive comfort model could be applied to the control of air-conditioning systems with 18 

a slight penalty in thermal comfort of occupants. For example, the percentage of the thermal 19 

acceptance (i.e. occupants who voted -1, 0, or +1) reduced from 94% to 87% in the office with 20 

DX AHU when the adaptive comfort model developed in this study was applied. Our study 21 

indicates that the setpoint temperature should not exceed a maximum of 27°C because the rate 22 

of thermal acceptance fell below 80% when the temperature was over 27°C [Figure 10]. Few 23 

studies have developed statistically significant adaptive comfort models for air-conditioned 24 

buildings [19,42,43]. Moreover, it is rare to test an adaptive comfort model in an air-conditioned 25 

building. This study can therefore reduce barriers to the application of adaptive comfort models 26 

by providing field evidence that most occupants in summer were satisfied with the indoor 27 

thermal conditions in an air-conditioned building with the adaptive comfort control.  28 
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 1 

The adaptive comfort control we developed in this study has an energy savings potential with a 2 

slight theoretical penalty in occupant comfort. The application of the adaptive comfort control in 3 

the office with the DX AHU increases the setpoint temperature by 2K to 5K higher than the 4 

existing setpoint temperature of 23°C (Figure 6). Previous studies [48,49,50,51] reveal that 5 

cooling energy consumption reduces by 6% for every 1K increase in cooling setpoint 6 

temperature. We calculate daily cooling energy savings due to the increase in setpoint 7 

temperatures of the office with the DX AHU when the adaptive comfort control was used, 8 

considering the relationship between cooling energy savings and an increase in setpoint 9 

temperature revealed in the previous studies. It is estimated that daily cooling energy savings 10 

by the adaptive comfort control would be 22% on average. The acceptance rate of thermal 11 

conditions reduced by only 7% but was still over the 80% threshold used to determine comfort 12 

(Figure 8). Further field studies on air-conditioned buildings with the adaptive comfort control 13 

are warranted to quantify its energy-use implications in more detail. 14 

 15 

The adaptive approach to thermal comfort [19,30] is applied in this study. However, Fanger’s 16 

PMV/PPD model has been a foundation for thermal comfort research and has been widely used 17 

in practice. In particular, Fanger’s model includes all the major personal and physical variables 18 

affecting thermal sensation, which makes the model useful for wide applications [25]. It should 19 

be mentioned that the adaptive comfort and the PMV/PPD models are complementary. For 20 

example, Humphreys and Nicol [18] proposed a method to improve the PMV model by 21 

considering both outside temperature and PMV variables. Recently, Kim et al. [28] developed 22 

the adaptive PMV model that considers both the major variables of the PMV model and the 23 

variable from the adaptive comfort model as a corrective term. The combination of the factors of 24 

the two models is necessary for a comprehensive thermal comfort model. 25 

 26 
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