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Abstract 

This paper considers the heterogeneity of household consumer preferences for electricity service 

contracts in a smart grid context. The analysis is based on original data from a discrete choice 

experiment on smart electricity service contracts that was designed and conducted in collaboration 

with Accent and 1,892 UK electricity consumers in 2015.  The results suggest that while customers 

are willing to pay for technical support services, they are likely to demand significant compensation to 

share their usage and personally identifying data and to participate in automated demand response 

programs. Based on these findings potential platform pricing strategies that could incentivise 

consumers to participate in a smart electricity platform market are discussed. By combining 

appropriate participation payments with sharing of bill savings, service providers could attract the 

number of customers required to provide the optimal level of demand response. We also examine the 

significant heterogeneity among customers to suggest how, by targeting customers with specific 

characteristics, smart electricity service providers could significantly reduce their customer 

acquisition costs. 
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Contribution 

Existing literature consistently finds that the combination of economic incentives and 

enhanced information and communication technologies can foster electricity demand 

flexibility and hence the implementation of a ‘smart’ electricity grid. .  While most studies 

analyse the impact of electricity demand management measures on consumption patterns, 

hardly any literature quantifies the value of services that emerge with the ‘smart’ 

technologies. The literature has not yet analysed which smart electricity services consumers 

would choose, if they were offered a menu of contracts bundling different service 

components together. This paper fills this gap. We address how household consumers value 

smart electricity services, which contract terms they would accept and what this implies for 

the optimal pricing strategies. 

Introduction 

In line with many other countries attempting to reduce carbon emissions and increase the use 

of renewable energy, the UK government is aiming to integrate larger quantities of 

intermittent wind and solar into the electricity grid. Such renewable energy resources result in 

variable electricity supply that must be matched with flexible demand. One way to achieve 

this is via demand response, i.e. via intentional modifications of electricity consumption 

patterns to alter the timing, level of instantaneous demand, or total electricity consumption 

(Albadi and El-Saadany, 2007).  

Such demand response can be facilitated by the integration of the electricity grid with 

information and communication technology (ICT), as part of so-called ‘smart grids’. The 

challenge is to improve monitoring and control of generation, storage, transmission, 

distribution and consumption of electricity such that both the renewables and the flexible 

demand can be matched in real time (Austin Energy, 2010). Residential households have 
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particular potential for demand response, since the domestic sector makes up a significant 

share of total electricity consumption (around 30% across the year and up to 45% at peak 

times of the day in the UK). A ‘smart’ home incorporates a communication network that 

connects the key electrical appliances and allows them to be remotely controlled, monitored 

or accessed (DTI, 2003). Here, ‘smart’ refers to the connection and communication of 

different electrical devices in the home via the internet.  

It is important to distinguish smart home devices from the smart energy services that emerge 

with them:  smart home devices range from smart electricity meters and smart household 

appliances to integrated solar photovoltaic panels and electric vehicles that both smartly 

consume and deliver electricity. The combination of these devices, the data they provide and 

the control actions they enable facilitate a wide range of smart home services (GSMA, 2011). 

Electricity service providers can position themselves between suppliers and customers to 

bridge the gap between the smart technology and the required engagement of the consumer.  

Recent regulation encourages consumer participation in electricity service contracts that 

incentivise consumers to partly give up control over their electricity devices to facilitate 

efficient grid management.  However, there is no empirical evidence yet, which electricity 

services households would choose, if they were offered a menu of contracts bundling 

different service components such as remote and automated monitoring and control, data 

management, technical support and electricity bill savings. While some of these components 

might be valued by the consumer, others might be only acceptable if compensation is paid. 

The level of utility obtained from the different service components is likely to be 

heterogeneous: while some consumers might value full automation and the ability to 

outsource control to an expert third party, others might only be willing to sign-up for a 

service contract against compensation for giving up part of their device ownership. A 
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thorough analysis of such preference heterogeneity is crucial for the design of electricity 

service contracts and an understanding, estimation and prediction of the scope of feasible 

demand response. The main question in this paper therefore is: how do household consumers 

value smart electricity services, which contract terms would they accept and what does this 

imply for the optimal pricing strategies? 

We estimate the demand for smart electricity services based on a stated choice experiment 

conducted with 1,892 electricity consumers in the UK in 2015. Our demand model takes 

different types of heterogeneity into account: a flexible mixed logit model in willingness-to-

pay space is combined with posterior analysis to elicit consumer preferences and 

heterogeneity in valuations for smart electricity services. This allows us to directly estimate 

the consumers' valuation (WTP/WTA) of the distinct service components and to suggest 

possible pricing strategies that could incentivise contract adoption by the number of 

customers required to provide the optimal level of demand response. The findings could 

inform competition authorities, regulators and smart service providers and feed into future 

research in a smart grid context in which customer heterogeneity can be exploited for 

effective demand side management. 

The paper is organised as follows. Section 2 provides background on smart homes and 

electricity services, the transition of the traditional electricity market to a platform market and 

on the relevant literature. Section 3 presents the econometric background and model. Section 

4 describes the discrete choice experiment and the estimation strategy. Section 5 presents the 

data from the experiment and the background survey. The main results are discussed in 

section 6. Section 7 illustrates the practical implications of the results for electricity service 

contracts and pricing strategies. Section 8 discusses suggestions for further research and 

finally, section 9 concludes.  
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Smart Electricity Services and Platform Markets 

In the traditional electricity market power flows from large generating stations via 

national/regional transmission networks on to local distribution networks that connect to final 

customers, while the network operators ensure the matching of demand and supply and the 

maintenance of power quality at all times.  This involves, inter alia, ensuring that system 

frequency is maintained within narrow bounds, supply and demand are instantaneously in 

balance and that there is adequate reserve capacity on the system in the event of significant 

unforeseen changes in supply or demand, via the provision of so called ‘ancillary services’. 

Network operators can be seen as ‘intermediaries’ between producers and consumers. 

Traditionally, balancing is managed centrally, at the transmission level. There is no such 

market at the local distribution level. However, the electricity industry is structurally 

changing and two main features characterise this transformation: firstly, the rapid integration 

of intermittent, often highly distributed, renewable generation and, secondly, the introduction 

of ICT based products and services. These features will enable flexible demand response and 

change market definitions, producer-consumer relationships and create opportunities for 

innovation in new products, services and business models. In contrast to the traditional 

electricity system, balancing can take place on the local distribution level. 

There are two main types of demand side management actions: firstly, load interruption for 

short periods with minimal impact on consumer comfort can provide frequency response 

energy services. This is usually considered for appliances that continuously use power (e.g. 

fridges and freezers). Secondly, demand shifting of appliances that operate in limited 

duration cycles can provide standing reserve and balancing energy services. This is usually 

considered for appliances that consume electricity during a fixed duration cycle (e.g. washing 

machines and tumble dryers).  



6 

Solutions to the load balancing problem include the introduction of dynamic (i.e. time 

varying) pricing or the taking of a degree of control over appliance use (according to pre-

specified consumer preferences) to limit peak demand. Under these circumstances the 

residential customer can become a flexible resource for the electricity system: this possibility 

is at the heart of the transition to a platform market in residential electricity services. 

Generally, a platform market is characterised by 1) the existence of one or more user groups 

linked by an intermediary, the platform provider, who coordinates their interactions and 2) 

the existence of network externalities, implying that the utility of users of a platform depends 

on the number of other users - either on the same side or the other side of the platform 

(Eisenmann and Alstyne, 2011). Weiller and Pollitt (2013) also consider ICT and the 

associated complementary innovation an essential component of platform markets: they 

create added-value that increases utility to all user groups. 

The emerging electricity market can be considered as platform market. Residential 

consumers want electricity services supplied across the network; retailers (and their 

associated generation) want to sell electricity to consumers across the network (platform). 

These are the two sides of the market. Load balancing is required by the platform and the 

question is: which side of the market should pay for it? Match-making smart electricity 

service providers can position themselves as intermediaries between the retailers, who cannot 

predict their generation requirements, and consumers, who start to participate in demand 

management. Such platform service providers can offer balancing services by managing the 

electricity load of consumers and sell this service to the retailers (and associated generators), 

who are the main beneficiaries of the increased predictability of domestic load.  

The value of such smart services to the whole market (system) depends on the number of 

consumers signing up for the services. The degree to which the retailers can effectively match 
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supply and demand in such a world depends on the number and the degree of engagement of 

the residential consumers (i.e. on users on the other side of the platform). To make remote 

monitoring and control economic, a critical mass of consumers whose load can be managed is 

required. These are so-called cross-side externalities. Retailers have an interest in helping the 

platform attract sufficient consumers as are necessary to gain reliable aggregate control over 

their devices. There are also same-side externalities: smart electricity service providers are 

competing with each other to attract households.  

 
Pricing in platform markets 

Since there is a system-level benefit of the platform, platform pricing strategies are in fact a 

re-allocation mechanism of costs and value, without any change in total economic surplus. 

However, to align the provision of smart services with consumer preferences and generate 

sufficient volume and revenues to gain competitive advantages within the market, the pricing 

strategy of the service provider should be based on preference and willingness to pay 

analysis.  

The new connectedness and differentiation of consumer preferences implies that the 

traditionally inelastic demand for electricity (services) becomes elastic as a function of 

quality (reliability, flexibility, security) and environmental benefits. This is a precondition for 

differentiated contracts, services and pricing. Weiller and Pollitt (2013) suggest that the entry 

of competing platform providers who offer new services such as renewable contracts or smart 

electricity services could bring along a transition from traditional transaction-based, marginal 

cost pricing of energy to two-part tariffs with a subscription fee and a transaction-based 

component.   
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A platform service provider can in principle price its service on both sides of the market. 

However, it is also possible to take over part or all of the costs of the platform for one side of 

the market in order to attract a sufficient number of users on the other side. We expect that 

this is likely. 

The optimal pricing strategy to attract users on each side of the electricity service platform 

depends on the precise nature of the externalities. Whether customer compensation is 

efficient for example depends on the strength of the cross-side externalities (Weiller and 

Pollitt, 2013): if the network externalities are high enough, i.e. when the marginal cost of 

connecting an additional customer to the platform is lower than the marginal value of its 

connection for existing and prospective customers, the platform provider can apply negative 

prices to the consumers and still collect overall positive profits in equilibrium (Caillaud and 

Jullien, 2003; Economides and Katsamakas, 2006). Retailers (and their associated generation) 

are the main beneficiaries of the new balancing options, and they could bear the cost of 

compensation. As they benefit from cross-side network externalities in the sense that 

predictability and manageability improve with the number of customers participating, they 

could partly or fully pay for the platform service to attract the number of customers required 

to provide the optimal level of demand response.  

Literature 

One of the few studies investigating customer views on smart home appliances is reported in 

Paetz et al. (2012). They study consumer reactions to a fully furnished and equipped smart 

home based on four focus groups. The analysis looks at consumer perceptions of an energy 

management system which optimises electricity consumption based on different ICT 

solutions. They address variable tariffs, smart metering, smart appliances, and home 

automation. Consumers saw many advantages for themselves; especially the chance to save 
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money. However, giving up high levels of flexibility and adapting everyday routines to fit in 

with electricity tariffs were regarded as difficult. Smart appliances that take over most of the 

work on the consumer side were therefore considered necessary.  Duetschke and Paetz (2013) 

suggest that future design of energy (service) contracts needs to be transparent for customers 

and reflect their individual preferences as customer acceptance of the new technologies is 

essential for their effectiveness. They address consumer preferences for different types of 

dynamic pricing. They find that consumers are open to dynamic pricing, but prefer simple 

pricing programs. Their results indicate heterogeneity in customer preferences regarding 

dynamic prices and overall their results are in line with their ‘high-comfort-low-price-

presumption’.  Silva et al. (2011) present a framework to assess the value of smart appliances 

to increase system flexibility and to provide new sources of ancillary services. They derive 

the value of smart appliances from the benefits of system efficiency, reduced operating costs 

and carbon dioxide emissions and take the potential reduction in comfort for the customer 

into account. While they recognise the importance of consumer acceptance, customer 

preferences for smart technologies are only touched upon briefly. The SMART A project 

focuses on the customers’ willingness to adjust their behaviour and/or to adopt new smart 

appliances (Suschek-Berger, 2014). The results suggest a positive attitude towards smart 

appliances and a high level of acceptance. However, a willingness to pay or accept such new 

technologies and the related services has not been estimated so far. 

Discrete Choice Experiment 

The aim of this paper is to study how multiple consumer and product attributes jointly affect 

service contract choices and to estimate implicit prices not only for the bundled service, but 

also for its components that could be combined into a portfolio of contracts. Data from 

discrete choice experiments (DCE) can be exploited for demand estimation and analysis, 

identify consumer segments characterised by similar tastes and inform the design of products 
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and services to match consumer preferences (Ackura and Weeks, 2014). The empirical 

analysis in this paper is based on original data from a stated choice experiment conducted 

with 1,892 respondents in the UK in 2015 to elicit customer valuations for smart electricity 

service attributes and contracts.  

The demand for electricity services depends on the service fees, the service attributes and on 

socio-economic and demographic consumer characteristics. Since smart electricity service 

contracts are new to most customers, the number of attributes presented in the DCE is 

restricted to those likely to determine the substitution patterns between smart service 

contracts. Six attributes were chosen based on previous consumer research on smart homes 

and interviews conducted in the context of a pilot study. These were: (1) the monitoring of 

energy usage, (2) the control of electricity usage, (3) technical support with set-up and usage, 

(4) data privacy and security services as well as, (5) expected electricity savings, and (6) a fee 

for the service bundle.  

We consider so-called ‘shared savings contracts’, in which the expected savings in the 

electricity bill are shared with the service company who enables these savings. This can be 

modeled by a monthly fee that is paid to the service provider in exchange for the service 

bundle that involves expected electricity savings (besides other services). The respondents 

were asked to choose between two electricity service contracts that differed in these six 

dimensions. Alternative 3 was a standard electricity contract without any smart services and 

at zero additional cost or saving.  We set all attribute levels to the base level for this third 

alternative. Table 1 shows an example choice card presented to the respondents. The 

electricity service attributes and levels are summarised in Table 2 and explained in more 

detail below.  
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When making their choices, respondents were asked to assume that they were equipped with 

all necessary smart devices to facilitate the contract chosen at no additional cost, e.g. wireless 

internet connections, smart sensors or remote controls. A questionnaire accompanying the 

choice experiment included further questions on the customer such as socio-economic 

characteristics, demographics, technology savviness or previous experience. 

 Usage Monitoring 

Understanding how much electricity is consumed and at what cost is the starting point for any 

electricity bill saving. Traditionally, households monitor their electricity usage and cost via 

their electricity bills or their prepayment meter. In-house monitors make it possible to track 

electricity usage in real time. More advanced features enable monitoring by device and alert 

messages at times of excessive or unusual usage (e.g. via the bill payer’s mobile phone or 

personal computer). Moreover, households can outsource the monitoring to an electricity 

service provider. The consumer might perceive the monitoring by a service company as 

valuable or intrusive, rendering the sign of the impact on the consumer utility ambiguous. 

The three types of usage monitoring included in the discrete choice experiment are: (1) via 

the monthly electricity bill or pre-payment meter, (2) real-time in-house monitoring by the 

household with alerts in case of unusual usage, and (3) remote monitoring by an electricity 

service provider who gives personalised feedback based on the monitored data and exploits 

the information for service design and load management. 

Control of Electrical Devices 

Smart ICT makes it possible to control electrical devices remotely or set them to work 

automatically based on pre-specified household preferences. On the one hand, consumers 

might value any electricity and carbon savings or increases in living comfort (e.g. from 

temperature related control of heating). On the other hand, the household might perceive 
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remote control by a service company as intrusive and might want to be compensated for 

giving up part of their ownership rights associated with their devices. The sign of the impact 

of the remote control attribute levels on the consumer utility is thus ambiguous. In the 

discrete choice experiment three types of control were considered: (1) manual control by the 

household, (2) remote and automated control by the household and (3) remote and automated 

control by an electricity service provider.  

Data Privacy and Security 

The service attribute ‘data privacy and security’ refers to the manner in which electricity 

usage data and personal data are shared. Electricity companies have access to usage data and 

personal information. With smart metering technologies this data becomes increasingly 

granular and can provide insights into consumer behaviour and preferences. To enable 

advanced smart services and deliver the optimal electricity management and balancing 

services, the data may need to be shared with third parties in order to be fully exploited to 

help customers to tailor advertisements to specific customer segments and to help the 

balancing the electricity grid. Depending on whether the benefits of personalised services 

outweigh the costs of a loss in privacy for an individual consumer, the data sharing service 

can impact the utility positively or negatively. The three types of data sharing services 

considered are: (1) no sharing of data with any third party, (2) sharing of electricity usage 

data third parties engaged in research, marketing or advertising and (3) sharing of electricity 

usage data and personally identifying data (e.g. email addresses) with third parties engaged in 

research, marketing or advertising.  

Technical Support 

Smart homes are an opportunity to offer technical expert support services regarding the set-

up and usage of smart devices. Those services can be included in the service contract and 
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priced based on the type of support. Our hypothesis is that the respondents have a positive 

WTP for technical support. Three types of technical support services are considered in the 

discrete choice experiment: (1) basic support with set-up and usage of the devices for the 

initial 90 days of the service contract, (2) ongoing basic support with set-up and usage of the 

devices, and (3) ongoing technical premium support that includes set-up and usage of devices 

as well as customer specific, personalised support.  

Expected Monthly Electricity Bill Savings 

The service attribute ‘expected monthly electricity bill savings’ refers to the monthly 

electricity bill savings for the household. In the choice experiment the levels of expected 

savings are calculated as percentages of the household’s current monthly electricity bill (0%, 

5%, 10%, 15% and 20%). On the choice cards they were presented in monetary terms (£ per 

month). The coefficient of this attribute indicates the fees to expected savings ratio that 

consumers would accept. A positive WTP coefficient below 1 indicates that consumers are 

willing to pay for expected bill savings as long as the savings exceed the cost. A WTP above 

£ 1 per expected £ 1 saving could be an indication of consumers receiving utility from 

expected electricity savings that goes beyond the monetary savings. The coefficient can also 

be seen as a measure of risk aversion in the context of smart electricity services: a WTP 

below £ 1 per £ 1 expected savings is consistent with risk aversion of the respondent, a WTP 

equal to £ 1  is consistent with risk neutrality and a WTP above £ 1 per expected £ 1 saving 

could indicate risk affinity. Under the prior of risk averse respondents a positive WTP smaller 

than £ 1 is hence expected. 

Monthly Fee 

We include the two attributes ‘expected electricity bill savings’ and ‘monthly fee’ separately, 

because the expected savings involve uncertainty while the fee is paid with certainty. The 
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willingness to trade-off certain payments against uncertain savings can shed light on 

consumers’ risk preferences and on whether consumers’ valuations go beyond the financial 

aspect of the savings. In the spirit of the shared savings contract the fee levels considered in 

the experiment are defined in percentages of the savings expected: 0%, 25%, 50%, 75%, 

100% and 125% of the expected monthly electricity savings.  However, in the experiment we 

present the absolute cost level in terms of £ per month. The actual levels are status quo 

specific and calculated based on the reported annual monthly electricity bill. In most cases 

the monthly fee is thus lower than the bill savings, but there are also contract options which 

involve a net financial cost for the customer. 

Table 1 Choice Card Example 

            Option 1  Option 2  Option 3 (standard) 

Usage Monitoring  Real-time monitoring by 
electricity service provider   
who sends personalised 
feedback and advice  

Real-time in-house 
monitor with alerts 

Standard electricity bill 

Control of Electrical 
Devices  

Remote \ automated control 
by electricity service provider  

Manual control by 
household  

Manual control by 
household 

Technical Support  On-going basic technical 
support   

On-going premium 
support including 
personalised advice 

On-going basic technical 
support   

Data Privacy and 
Security  

No data shared with third 
parties   

Electricity usage and 
personally identifying data 
shared with third parties  

No data shared with third 
parties   

Expected Electricity 
Bill Savings (£)  

7.5 2.5 0 

Monthly fee (£) 3.4 1.2 0 

Preferred option (tick)     

 

 

Table 2 Attributes and Levels 

 Attribute and Level 
Description 

 Variable 
Name 



15 

    Electricity Usage Monitoring   

Level 1 (base)          Electricity bill or  prepayment meter   

Level 2  Real-time in-house monitor with alerts in case of unusual usage  monitor2 

Level 3  Real-time monitoring & personalised  advice by service provider   monitor3  

           Control of Electrical Devices  

Level 1 (base)    Manual control by household    

Level 2  Remote \ automated control by household  control2 

Level 3   Remote \ automated control by service provider   control3 

           Technical Support   

Level 1 (base)  Initial 90 days basic technical support   

Level 2  On-going basic technical support  support2 

Level 3  On-going premium support including personalised advice  support3 

           Data Privacy & Security  

Level 1 (base) No data shared with third parties  

Level 2  Only electricity usage data shared with third parties privacy2  

Level 3   Electricity usage \ personally identifying data shared with third parties privacy3  

           E(Electricity Bill Savings)  (£ per month)  

5 levels   Calculated as 0%, 5%, 10%, 15%, 20% savings in status quo electricity bill  Esavings 

           Monthly Service Fee  (£ per month)  

5 levels           Calculated as 25%, 50%, 75%, 100%, 125% of electricity bill savings (based 
on status quo bill) 

fee 

 

Experimental Design  

In our experiment2 the attributes and levels selected for the study were combined into profiles 

and the profiles combined into sequences of choice situations according to a D-efficient 

experimental design. This design approach uses a search algorithm to find as statistically 

efficient a design as possible given prior values for the ultimate model to be estimated.  

                                                 
2 Thanks to Paul Meltcalfe from PJM Economics, who designed the experiment and provided this 
summary of the experimental design. 
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A number of restrictions were placed on the design in order to prevent dominant and 

dominated alternatives within a choice situation, and to avoid combinations of attributes that 

were considered implausible. These included the following: more monitoring and control 

must lead to higher cost savings; remote and automated control required a smart monitor; and 

that better service should always imply a more expensive package. The design was 

segmented into 12 blocks, with 8 choices per block. The target measure of efficiency was the 

D-error, calibrated on the basis of an MNL model containing marginal utilities which were 

derived from analysis of the pilot data for the study. Sign-based priors only were used for the 

pilot study itself. A swapping algorithm (Huber and Zwerina, 1996) was implemented within 

the Ngene software package to obtain the experimental design that was ultimately adopted. In 

this design, levels were approximately, although not exactly, balanced across the design.  

The final discrete choice experiment consisted of a panel of eight choices for each 

respondent. Each choice card consisted of two experimentally designed unlabeled alternatives 

and a base alternative that implied zero change in cost for the consumer. 

 
Flexible Mixed Logit in WTP Space with Posterior Analysis 

Our estimation approach is based on the assumption of heterogeneity in preferences and 

valuations for smart electricity services across customers. Since consumers might also differ 

in their randomness of choice, a model that can accommodate preference and so-called scale 

heterogeneity is employed. Scale heterogeneity might result from heterogeneous experience 

with smart technology, which might make less experienced consumers choose more 

randomly than consumers with experience or knowledge.  
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We specify the model in so-called WTP space. The distributional assumptions can then be 

imposed directly on the WTPs and their moments estimated directly from the data. Let the 

utility in WTP space be 

Uijt = (σiαi)[pjt+ (ωi/αi)vjt] + εijt       (1) 

with (σiαi) = λi , (σiωi) = ci and (ωi/αi) = wi 

where pjt measures the price of contract alternative j and vjt is a Kx1 vector of observable 

non-price attributes. αi and ωi are individual specific vectors of attribute coefficients to 

estimate. σi can capture scale heterogeneity and (ν1it, ν2it) are random components that follow 

a multivariate distribution to be specified by the researcher and capture unobserved 

individual characteristics. In this WTP space specification the idiosyncratic error follows a 

standardised extreme value type I distribution (Var(εijt)= π2/6), which allows estimation  as a 

mixed logit (MXL) model.  

The scale parameter σi does not directly impact the WTPs, but is picked up separately by λi , 

i.e. by the price coefficient in WTP space. λi incorporates any differences in scale across 

respondents (Train and Weeks, 2004). However, while the estimation in WTP space can yield 

unconfounded WTP estimates, the price coefficient, λi, remains confounded by scale. Any 

differences in model fit compared to models estimated on the same data in preference space 

are mainly a result of the distributional assumptions imposed on the parameters.  

However, despite the lack of identification, we model the scale parameter explicitly and 

follow the model framework first proposed by Keane and Wasi (2013) and operationalised by 

Fiebig et al. (2013) and Hensher and Greene (2011): in the generalised multinomial logit 

(GMNL) the scale parameter is modeled as σi =exp(σ +τε0,i), where ε0,i follows a iid standard 

normal distribution such that the parameter σi is log-normally distributed. A parameter τ 
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significantly different from zero indicates significant heterogeneity in σi. This model is 

therefore a flexible mixed logit model in which the scale and preference coefficients are 

modelled separately, can be heterogeneous and follow the distributions described above. We 

therefore refer to the GMNL model as `heterogeneous scale mixed logit model`. 

In addition, the heterogeneous scale mixed logit model  in WTP space allows for the 

derivation of individual conditional distributions. Working with the conditional distributions 

allows us to infer the likely position of each sampled individual on the distribution of 

valuations exploiting the information on their choices made.  Conditional distributions allow 

posterior analysis to be conducted (Hess and Rose, 2012). We perform classical rather than 

Bayesian simulation, but refer to `posterior analysis' in the sense that we explore the 

conditional estimates derived based on the individuals' choices. The individual-level 

conditional mean can be interpreted as the most likely value for a consumer i whose choices 

yi were observed. The variance of the conditional means (the between variation) plus the 

variance around these means (the within variance) yields the total variance of valuations. If 

the between variance captures a sufficiently large share of the total variation, the individual 

conditional means and their variances have the potential to be useful in distinguishing 

customers (Train, 2003). While the estimation of the unconditional parameters can shed light 

on the average valuations of services in the population, the conditional estimates can provide 

more detailed insights on how electricity service contracts, service fees in particular, should 

be designed to incentivise the optimal number of customers to participate in the service 

contracts in order to maximise the surplus of the platform mediated two-sided electricity 

market. 

Data and Empirical Results 
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The DCE was conducted with a representative sample of electricity customers in Great 

Britain. About 79 percent of the respondents were customers of one of the UK's big six 

electricity suppliers. The remaining 21 percent of respondents were customers of smaller 

companies. Many of these have potential to offer smart electricity services in the future. 

When asked for the preferred contractor for a smart electricity service, almost 50 percent of 

the respondents considered one of the big six energy suppliers. About 14 percent would opt 

for a contract with a specialist electricity management company.  

Only about 10 percent of the respondents have bought or been given any smart devices in the 

last two years. The most common smart device among this group is an in-house monitor. 

Other smart devices mentioned are smart lighting, programmable thermostats, smart plugs 

and household appliances. The respondents without any smart appliances reported that they 

perceive the smart appliances as too expensive (28 percent), that they are not necessary (28 

percent) and that they are difficult to understand (20 percent). Moreover, 17 percent of the 

respondents who did not have any smart appliances considered the impact on the electricity 

bill as too small, 14 percent did not know where to buy the appliances and 12 percent 

reported that they do not buy any smart appliances due to privacy concerns. When prompted 

more directly whether remote control was associated with any concerns, almost half of the 

sample indicated concerns regarding remote controlled appliances. Privacy concerns were 

regarded as the most common concern (21 percent). Other concerns included damage to the 

appliances, lack of flexibility in use and the accessibility of appliances when needed and the 

required behaviour change. 

The survey also included a question on the respondents’ technology savviness, worded as 

‘Which of the following best describes your typical reaction to new technologies?’. Four 

categories of technology savviness were considered (using a Likert Scale). Table 3 

summarises the responses. 
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Table 3 Technology Eagerness 

Technology Eagerness Respondent Share 

Always eager to try new ideas and products, regardless of what others say 13% 

Keen to try out new products early on if some positive reviews heard 39% 

Decision after most of friends and usually rely on the views of others  33% 

Reluctant to adopt new technologies regardless of what others say  10% 
 

 

Model Specification and WTP Space Results 

For the service attributes each attribute level is indicated by dummy variables. Level 1 of 

each attribute serves as the base level and for the opt-out alternative all levels are set equal to 

this base level. The fee and expected electricity bill savings attributes are included as a 

continuous monetary variable. We include an alternative specific constant (ASC3) for the  

third alternative. A positive coefficient of this ASC indicates a preference to choose the 

standard contract, regardless of the levels of the service attributes. The equation for the 

expected utility in preference space is given as: 

E(Ujit)=αifeejt+ωASC3jit+ω1imonitor2+ω2imonitor3ji+ω3icontrol2jt+ω4icontrol3jt+ω5jisupport2jt

+ω6isupport3jt+ω7iprivacy2jt+ω8iprivacy3jt+ω9iEsavingsjt 

Where feejt is the monthly service fee (£) and monitor2jt, …, Esavingsjt are the variables 

capturing the attribute levels. As mentioned above, the cost and savings variable are included 

as levels in monetary terms based on the customers’ status quo electricity bills. αi, ωASC3jit 

and ω1i, …, ω9i, are the attribute level coefficients. 

For the reasons highlighted in section 3 we focus on the WTP space results. The conditional 

estimates can provide detailed insights on how targeted electricity service contracts, service 
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fees in particular, might be designed to incentivise the optimal number of customers to 

participate in the service contracts in order to maximise the surplus of the platform mediated 

two-sided electricity market. Table 4 lists the summary statistics for the individual posterior 

mean valuations, derived from the heterogeneous scale mixed logit model in WTP space. The 

last three columns summarise the estimated unconditional parameters, from Table A1, as well 

as the ratio of the posterior between standard deviations to the total standard deviations.  

Table 4 Summary Statistics Posterior Distributions 

Service posterior 
mean 

between 
SD 

min 
mean 

max 
mean 

prior 
mean 

prior 
SD 

ratio 
posterior/prior SD 

monitor2 0.14 0.5 -2.71 2.73 0.13 1.036 48.40% 

monitor3     -0.55 0.03 -0.73 -0.38 -0.55 0.079 44.45% 

control2  -0.04 0.22 -1.36 1.16 -0.04 0.493 45.55% 

control3 -1.65 0.64 -4.57 1.7 -1.64 1.262 51.02% 

support2  0.45 0.14 -0.17 1.02 0.45 0.294  47.00% 

support3 0.48 0.04 0.27 0.7 0.48 0.081 46.48% 

privacy2    -1.01 0.65 -4.04 1.77 -1.00 1.295 50.22% 

privacy3 -3.17 1.84 -10.81 5.64 -3.11 2.923 62.85% 

E(Bill Savings) (£)    0.33 0.49 -1.4 2.18 0.34 0.674 72.72% 

 

 

 As theory suggests, the estimated posterior population mean valuations (column 1 in Table 

4) lie very close to the estimated unconditional population means. The estimated posterior 

means (see monitor2) suggest that consumers have a positive, but not statistically significant 

WTP for smart monitoring via an in-house monitor that indicates consumption in real time 

and sends alerts in case of unusual usage. They do, however, want significant compensation 

for being monitored remotely by an electricity service provider. Their WTA is on average £ 
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0.55 per month. The valuations for smart control are comparable: while the valuation of 

smart remote control by the household is insignificant, the average WTA smart remote and 

automated control by the service provider is about £ 1.65 per month (see control3). On the 

other hand consumers value technical support: they would pay about £ 0.45 per month for 

ongoing technical support (see support2) with set-up and usage of the devices and slightly 

more, £ 0.48 per month, if the service included personalised feedback (see support3). The 

valuations of usage and personally identifying data are also significant. To provide real-time 

usage data to third parties, customers would ask for a compensation of about £ 1 per month 

(see privacy2). In order to share personally identifying data in addition to this, the 

compensation would need to be three times as high: on average £ 3.17 per month. Per 

expected pound of bill saving, the customer would be willing to pay about £ 0.33, which 

supports the argument of risk averse consumers, who are only willing to pay for expected 

savings if the ratio of fee to expected savings is relatively low. 

The between standard deviations (column 2 in Table 4) can shed light on the probability of 

sign reversal and more broadly on the likelihood with which an individual level conditional 

mean valuation falls into a specific value range. When based on the posterior means and 

between standard deviations, the probability of sign reversal is the probability that an 

individual’s mean valuation has the opposite sign than the population mean. These posterior 

probabilities of sign reversal reveal that consumers are highly likely to demand compensation 

rather than to be willing to pay for smart service contract attributes such as remote 

monitoring or control. As an example, the posterior estimates indicate a probability of only 

four percent that a customer is on average willing to pay to share usage and personally 

identifying data. And the probability that a customer has a positive mean WTP for remote 

monitoring or control services is negligible. While a priori the parameter signs were 

ambiguous, we empirically find almost unambiguous parameter signs for all attributes.  
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For the expected savings attribute the probability of the mean valuation lying above or below 

1 is likely to be of most interest. Table 5 lists the probabilities that the mean valuation for 

expected electricity bill savings lie in specific intervals, exploiting the normality assumption 

and the between standard deviations. With a probability of 75 percent the average individual 

valuation for electricity bill savings is positive, but the necessary fee to savings ratio varies 

widely. With a probability of about 39 percent the required fee to expected savings ratio is 

less than 0.5. The probability that consumers are willing to share more than 50 percent (but 

less than 100 percent) of the savings with the service provider is 28 percent.  

Table 5 Posterior Probabilities of Valuations for Expected Bill Savings 

Probabilities of intervals of  
fee to savings ratios 

Probability 
(%) Intuition 

Pr(μi <0)   25.03%   Pr(i likely not willing to pay)  

Pr(0< μi <0.5)  38.54%   Pr(i likely willing to pay less than half of savings)  

Pr(0.5< μi <1)   27.86%   Pr(i likely willing to pay more than half of savings) 

Pr(1< μi)   8.58%   Pr(i likely willing to pay more than expected savings) 
 

 

The last column in Table 4 lists the ratios of the posterior between standard deviations to the 

total standard deviations. For the attributes remote control by the service provider, data 

privacy and electricity bill savings the variation of the posterior means makes up over 50 

percent of the total variation in valuations. Almost 73 percent of the variation in WTPs for 

expected electricity bill savings for example is due to variation between (rather than within) 

individuals. Since the variation of the individual conditional means (i.e. the variation between 

individuals) captures a large share of the total estimated variation in that coefficient, they 
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have potential to be useful in distinguishing customers (Train, 2003). This can be valuable for 

targeting contract designs on particular customers. 

Implications for Electricity Service Contracts 

Traditionally, settlement for domestic customers was performed using so-called load 

‘profiling’ based on a small sample of the population and the rest of the population was 

assumed to have similar profiles (McKenna et al., 2012). Heterogeneity in customer profiles 

was mostly ignored at the retail level. The availability of smart meter data is expected to 

facilitate more customer specific load profiling. For electricity service providers the 

heterogeneity in valuations for different service attributes offers additional potential for 

consumer targeted contracting and pricing. 

In our discrete choice experiment it is assumed that consumers are equipped at no additional 

cost with the devices needed to enable the smart services contract. Conditional on signing the 

contract the service provider charges a monthly fee that is paid by either side of the platform. 

This can be a fixed subscription fee, a transaction-based tariff, or a mixture of both. The 

challenge lies in the optimal design of the platform fee. Our results suggest that consumers 

are likely to ask for compensation to participate in smart electricity service contracts that 

involve remote and automated monitoring and control by the service provider. Following the 

more general results regarding pricing on platform markets of Caillaud and Jullien (2003) and 

Economides and Katsamakas (2006) we suggest that a mixture of fixed and transaction based 

payment to the consumers could incentivise them to sign up for the platform service 

contracts. The fixed payment could consist of a monthly compensation for remote monitoring 

and control by the service provider (e.g. the mean WTA). It could be supplemented with 

charges for technical support and/or compensations for data sharing.  
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Table 6 lists the average (fixed) compensation households would need to be paid per month 

when signing up for smart service contracts. These compensations are differentiated by 

service, but not by consumer type. They were calculated as the sum of the respective mean 

attribute valuations listed in Table 4. As an example, the mean compensation to be paid for a 

contract that combines remote monitoring and control by the service provider would need to 

be £ 2.19 (i.e. 1.64+0.55=2.19). The highest average compensation would need to be paid for 

customers who sign up for remote monitoring and control, do not want any technical support 

beyond the basic support, but are willing to share usage and personally identifying data 

against compensation (£ 5.36 per month). On average, the compensation required is lowest 

for consumers who sign up for the premium support but not for any data sharing (£ 1.71 per 

month). Data privacy services can be seen as a means to reducing the compensation required 

to acquire customers. 

Table 6 Average Fixed Compensation for Different Service Bundles 

Service Bundle  Compensation 
(£ per month) 

Remote monitoring  & control ONLY -2.19 

   

Remote monitoring  & control PLUS  

 + usage data sharing -3.20 

 + usage and personally identifying 
data sharing 

-5.36 

 + ongoing support -1.75 

 + premium support -1.71   

 + ongoing support  
& usage data sharing 

-2.76 

 + ongoing support  
& usage and personal data sharing 

-4.91 
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 + premium support  
& usage data sharing 

-2.72 

 + premium support  
&  usage and personal data sharing 

-4.88 

 

 
Beyond the fixed part of the platform fee that consists of several components (e.g. remote 

monitoring and control, data and technology services), a transaction based fee could be paid 

for each £ 1 that the service provider expects to save in the electricity bill. The DCE yields 

the WTP for the expected bill savings per se, regardless of any other service contract 

attributes: consumers are willing to pay on average about 34 percent of the amount they 

expect to save in their bills.  

Since we find significant heterogeneity in valuations for most of the service attributes, there 

is scope for differentiated contracts. The fixed part of the service fee could vary by the 

contract type (with or without technical support and/or data sharing policy chosen) and in 

certain dimensions by consumer type. In particular the significant heterogeneity in the WTP 

for data sharing and expected savings could justify customer differentiation. Moreover, 

depending on the bargaining power of the service provider, the heterogeneity in consumers’ 

willingness to share savings could be exploited to increase the fixed compensation in 

exchange for a lower share of savings for those who are relatively risk averse, for example. 

The conditional distributions can be exploited to identify and characterise customer types in 

the population. The individual conditional mean valuations can be grouped together into 

bigger customer clusters or considered on their own. And depending on the type of contract 

design of interest either the between variance, i.e. the variance of the individual-level 

posterior means, or the within variance, i.e. the variance of valuations around the subgroup 

mean or both might be relevant. We distinguish: 1) two types of posterior analysis that 

focuses on conditional mean valuations and their variation, i.e. the between variance, to 
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inform the design of contract menus; and 2) posterior analysis of individual valuation profiles 

and the within variation to inform the design of customer specific contracts. Small niche 

service providers for example might want to attract customers whose preferences for 

electricity contracts are quite different from those of the other customer clusters. Under these 

circumstances, customer specific contract design might be viable and valuable. 

Posterior Analysis of Conditional Mean Valuations for Contract Differentiation 

We perform two types of posterior analysis of conditional mean valuations: first, we test for 

mean differences in individual level posterior valuations across different covariate categories. 

Second, we cluster the posterior valuations using a k-means algorithm and test mean 

differences in valuations and in respondent characteristics across the clusters. 

 

First, when testing mean differences in valuations across different covariate categories, we 

find that high income respondents have significantly higher valuations for smart monitoring 

and smart energy savings than low and medium income respondents. The valuations for the 

other attributes do not differ across income categories. These findings are consistent with the 

estimates resulting from model specifications with the respective covariate-attribute 

interactions. In a simple MNL specification in preference space, for example, the coefficient 

of the fee-income interactions are significant and result in higher valuations for higher 

income consumer categories for some of the attributes. 

 
Second, to illustrate how the posterior means can be used to identify and characterise 

customer segments in the population, we group the observations using k-means clustering on 

the nine posterior valuations for the service attributes into segments of respondents 

(following Train, 2003). Such clustering can shed light on the groups of customers that would 
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accept contracts with similar characteristics. Respondents within one cluster hence are similar 

in multiple valuation dimensions.  

Several different numbers of clusters k were tested. Starting from k=2 the number of clusters 

in the population was increased until significant mean differences in valuations were found 

that could be exploited for segment specific contract design and price discrimination. This 

was the case for k=4. We label these clusters: Unremarkable, Private data, Risk averse and 

Open Data. Across the four clusters significant mean differences in valuations for remote 

control by the service provider (control3), in the willingness to accept sharing of usage and 

personally identifying data (privacy3), and in the WTP for expected electricity bill savings 

(Esavings) are found. Table 7 summarises these mean valuations for each cluster. 

Table 7 Mean Valuations by Cluster 

          Cluster 1       Cluster 2       Cluster 3       Cluster 4  

Cluster name  Unremarkable Private data Risk averse Open data 

Share of observations  32% 15% 40% 14%  

control3         -1.59 -1.62 -1.72   -1.58 

privacy3  -2.29 -5.9 -3.93 -0.07 

E(Bill Savings) (£)        0.35 0.44 0.24   0.41 

     

average monthly bill (£) 57.45 61.19 54.58 56.20 

age      4.87 4.85 4.95 4.74 

female  54%      63%   57%    51% 

SEG (DE)         24%     23%  26%     37% 

occupants  2.21 2.19 2.07   2.35 

PAG Tariff         17%     15%    14%    20% 

technology type  2.49 2.55 2.72 2.33 
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concerns remote control   41%   53%   51%     39% 

         

above avge choice 
confidence     50%    53%  52%      37% 

above avge understanding  
of DCE         39%     38%    40%    31% 

above avge perception  
of realism        67%      68%   59%  66% 

 

 

In particular the mean compensation asked for sharing usage and personally identifying data 

varies remarkably from a low mean WTA of -£ 0.07 in cluster 4 to a mean valuation of -£ 

5.90 in cluster 3. Service providers should thus ensure careful treatment of the consumers’ 

data when targeting cluster 2, while they could exploit the potential to use consumer data for 

service improvements at relatively low cost based on cluster 4. The mean WTP for expected 

electricity bill savings varies from £ 0.25 per £ 1 expected savings per month in cluster 3 to £ 

0.44 per £ 1 expected savings per month in cluster 2. However, in all clusters the desired 

shared savings contracts should at least offer expected bill savings that are more than twice 

the fee, i.e. in all clusters the mean fee to expected savings ratio is below 0.5.  

Based on these findings cluster 2 can be considered as a cluster of respondents that 

particularly value their data privacy (hence named ‘Private data’ for the cluster). Cluster 3 is 

characterised by particularly risk averse respondents (hence named ‘Risk averse’) and cluster 

4 does not call for compensation to share data (hence named ‘Open data’). 

Table 7 also summarises respondent characteristics of the clusters. Tests of mean differences 

in these characteristics across the clusters indicate significant differences in the average age, 

the share of females, the share of deprived households and the number of occupants in the 
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household, as well as in the share of households that is on a pay as you go tariff. Cluster 2 

(private data) has a significantly higher share of females (63%) than the other clusters. 

Respondents in this cluster also report concerns regarding remote control, which is consistent 

with their valuations of data privacy. Cluster 3 (Risk averse) has a relatively high share of 

technology averse respondents, which is consistent with the fact that these respondents 

require relatively high expected savings for any given fee. This cluster also has on the oldest 

customer base. Cluster 4 (Open data) has a relatively low share of females (51 percent) and a 

high share of deprived respondents (37 percent). Related to this, a relatively big share of 

respondents is on pay as you go tariffs. Respondents in this cluster are less concerned about 

data privacy. Unsurprisingly, the share of people with concerns regarding remote control is 

relatively low in this cluster. Lastly, cluster 4 has a significantly lower share of respondents 

who indicate above average confidence and understanding of the choices.  

To shed light on the acceptance rate of certain contract types, the distribution of the 

individual conditional estimates can be exploited. When calculating the probabilities of 

acceptance, the mean estimates attract around 50 percent of the consumers (since the 

valuations are normally distributed). More interesting are therefore the probabilities of 

acceptance of fees that lie on either side of the mean and the probabilities of acceptance when 

bundling multiple attributes together. 

Table 8 summarises the subscription fees required to achieve acceptance rate of 1, 50, 75 and 

99 percent in the population and in the four identified clusters. Negative subscription fees 

imply a demand for compensation by the consumers. They were calculated based on the 

conditional mean valuations within the population and within the four clusters. 

Table 8 Acceptance Rates 

Remote monitoring and control 
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  All   Cluster 1   Cluster 2   Cluster 3   Cluster 4 

                         Unremarkable Private data         Risk averse     Open data 

1% acceptance -0.5 -0.5 -0.04 -0.78 -0.08 

50% acceptance -2.23 -2.2 -2.22 -2.29 -2.18 

75% acceptance -2.55 -2.5 -2.61 -2.56 -2.6 

99% acceptance -3.83 -3.82 -3.87 -3.85 -3.72 

           

Remote monitoring & control PLUS sharing of usage and personally identifying data 
 

acceptance rate   All   Cluster 1   Cluster 2   Cluster 3   Cluster 4 

                         Unremarkable                 Private data    Risk averse     Open data 

1% acceptance 0.01 -2.41 -5.86 -4.6 2.04 

50% acceptance -5.52 -4.51 -7.86 -6.16 -2.46 

75% acceptance -6.62 -5 -8.65 -6.67 -3.06 

99% acceptance -9.82 -6.2 -11 -7.82 -4.51 
 

Required pay in % of monthly bill 

 All Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Average monthly 
bill (£) 

56.69 57.45 61.19 54.58 56.20 

1% acceptance  
   0.88% 0.87% 0.07% 1.43% 0.14% 

50% acceptance  
3.93% 3.83% 3.63% 4.20% 3.88% 

75% acceptance  
4.50% 4.35% 4.27% 4.69% 4.63% 

99% acceptance  
6.76% 6.65% 6.32% 7.05% 6.62% 
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Required pay in % of monthly bill 

   All  
 Cluster 1   Cluster 2   Cluster 3   Cluster 4 

Average monthly 
bill (£) 

56.69 57.45 61.19 54.58 56.20 

1% acceptance  
0.02% 4.20% 9.58% 8.43% -3.63% 

50% acceptance  
9.74% 7.85% 12.85% 11.29% 4.38% 

75% acceptance  
11.68% 8.70% 14.14% 12.22% 5.44% 

99% acceptance  
17.32% 10.79% 17.98% 14.33% 8.02% 

 

First, consider the basic platform service contract that just involves remote monitoring and 

control by a service provider (Table 8, top). About 45 percent of all customers would be 

willing to accept such a contract, if they receive the mean compensation of £ 2.20 per month. 

A compensation of £ 3.83 would achieve a 99 percent adoption rate. If the compensation was 

£ 2.55, 75 percent would accept remote monitoring and control by a service provider. The 

compensation required to achieve a certain acceptance rate of remote monitoring and control 

are comparable across the four clusters (recall that the most remarkable differences in 

valuations were discovered in the valuations for data privacy services). Depending on the 

required number of customers for optimal local grid balancing, service providers and 

suppliers could negotiate the compensation to be paid and the degree of customer 

differentiation.  

The compensation required to attract consumers in cluster 2 (‘Private data’) is remarkably 

high, for example: for the acceptance of 99, 75 or 1 percent of the customers in cluster 2 £ 11, 

£ 8.65 or 5.86 need to be paid, respectively. These compensations are significantly higher 

than those required to attract similar percentages of consumers in cluster 4 (‘Open data’). To 
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achieve an acceptance rate of 99 or 75 percent of the ‘open data’ cluster, only £ 4.50 or £ 3.05 

need to be paid, respectively. More than 5 percent of the `Open data' customers are willing to 

pay for such a contract that combines remote monitoring and control with data sharing. From 

the service provider's point of view, hence this cluster could be targeted first. 

Table 9 Acceptance Rates & Examples with Transaction Based Component 

  All   Cluster 1   Cluster 2   Cluster 3   Cluster 4  

          Unremarkable Private data 
Risk 

averse Open data 

-£ 2.19 + £ 0.50 per exp. £ 1 
saving   20%   21%  27% 13%  27%  

-£ 2.19 + £ 0.33 per exp. £ 1 
saving    24%   26%  33% 16%  34% 

-£ 4 + £ 0.50 per exp. £ 1 
saving   35%   36%  49%  26% 44%  

-£ 4 + £ 0.33 per exp. £ 1 
saving   46%   48% 60%   36%  59% 

 

Now consider combinations of fixed and transaction based pricing components. Table 9 

summarises the acceptance rate for example contracts that combine a fixed compensation 

payment with a transaction based component, namely a payment per £ 1 saved in the 

electricity bill. Again, the acceptance rates within the different clusters are also listed. As 

expected, the acceptance rate ceteris paribus decreases the lower the fixed subsidy and the 

higher the fee to expected savings ratio (i.e. the lower the share of the savings being granted 

to the customer is). Offering the average required compensation for remote monitoring and 

control, i.e. £ 2.19 and the average required fee to savings ratio of 0.33 would attract about 24 

percent of all customers, for example. That is, 24 percent require a compensation below £ 

2.19 and are willing to accept a fees to expected savings ratio above 0.33. A higher fixed 
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monthly compensation can partly make up for higher fee to expected savings ratios, though: 

with a higher monthly compensation of £ 4, for example, and a fee to expected savings ratio 

of 0.33, around 46 percent of the customers would accept the contract. However, if the 

transaction based payment exceeds the amount of expected to be saved (i.e. the fee to 

expected savings ratio is larger than 1), only 9 percent of customers would accept (even if the 

compensation was much higher). Hence, even very high compensations do not incentivise 

consumers to participate, unless they receive a relatively high share of the expected bill 

savings. Table 9 also lists the acceptance rates for the different clusters. In all examples they 

are lowest for the risk averse cluster, indicating their relative reluctance to engage with smart 

electricity services. 

Analysis of Individual Posterior Profiles for Contract Differentiation 

The individual posterior mean valuations provide further insights into the peculiarities of 

individual preferences and can inform individual specific contract design. We present the 

mean valuations for an example respondent and discuss potential customer specific contract 

features that could incentivise this particular consumer to participate in the smart services 

market. Such contract design is most likely to occur for niche service providers who might 

want to attract customers whose preferences for electricity contracts are quite different from 

most others.  

The respondent was identified based on his valuations for electricity services, which indicate 

his openness towards smart electricity services and his WTP for them. He is willing to spend 

£ 0.72 for being able to remotely monitor his usage, but prefers monitoring by himself over 

outsourcing the monitoring. He would also pay about £ 0.50 for technical support. Finally, his 

need for compensation to share his data seems relatively low and he is willing to pay £ 1.28 

for each £ 1 saving in the electricity bill. This high WTP for savings in the electricity bill 
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might be due to a perceived and valued environmental benefit on top of the monetary bill 

savings. The respondent's mean confidence regarding the choices made is fairly high and his 

understanding and his perceived realism of the tasks as measured on a four point Likert scale 

are also above average. His choice behaviour and valuations are consistent with his 

background characteristics and qualitative survey responses: the respondent considers himself 

as technology friendly and does not have any concerns regarding the remote control of his 

appliances. He is one of the few respondents who own a solar PV panel and smart appliances. 

His current electricity supplier is EDF Energy where he has signed up for an Economy 7 

tariff, a time-varying tariff. His annual electricity bill lies with £ 750 (£ 62.50 per month) 

slightly above average. The respondent lives on his own in an urban area in England in a 

semi-detached house. Being between 64 and 75 years old he is retired and belongs to the 

rather socially deprived social class DE. His annual income lies between £ 15,000 and £ 

52,000 per year. Overall, this respondent seems to be a technology savvy environmentally 

conscious consumer, who is already familiar with smart and energy efficient technologies. 

His survey responses and stated preferences indicate that he is a potential customer of smart 

electricity services. 

Based on the estimated within variance, the likelihood that an individual’s valuation lies in a 

specific range can be calculated (e.g. a large within variation can imply a higher probability 

of sign reversal). The within variance can measure the precision with which the individual 

mean valuation is estimated and hence indicate the precision with which a contract is targeted 

at a specific customer i. 

For each contract feature we can identify the probability of sign reversal for the customer. 

With a probability of at least 70 percent the presented consumer rejects a contract in which he 

is asked to pay for remote monitoring and control. However, based on his average valuations 

he could be offered a contract that combines a £ 1.05 compensation payment with a charge of 
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£ 0.50 for the premium support and a fee to savings ratio that is relatively high, namely 1.28. 

Such a customer hence needs relatively low compensation to participate in the smart service 

platform.  

Limitations and Suggestions for Further Research 

One limitation of this research is that it is based on hypothetical and hence stated choices of 

service contracts for which the market is still emerging. Some randomness of choice on the 

decision maker's side is therefore likely. In fact, we expect the randomness of choice to be 

heterogeneous across respondents: some consumers might have more experience with related 

ICT and thus likely to choose less randomly than others without this experience. To account 

for such heterogeneity in the randomness of choice, a heterogeneous scale parameter is 

included in the model. However, the scale parameter is not separately identified from the 

price parameter. If researchers are interested in the causes of scale heterogeneity, our model 

is not informative.  

However, to address part of this issue, three types of questions, designed to shed light on the 

randomness of choice, were linked to the DCE: (1) after each of the eight choice tasks the 

respondents reported their level of choice confidence; and after the choice experiment the 

respondents reported (2) their understanding of the choice task and (3) their perceived 

realism. The responses were based on a five point Likert scale (e.g. 1 - very confident, 2- 

fairly confident, 3 - neither confident nor inconfident, 4 - fairly inconfident, 5 - very 

inconfident). According to the stated measures most respondents were fairly confident about 

their choices, understood the tasks well and perceived the experiment as realistic: the average 

confidence level across respondents was 1.93, the average understanding of the DCE as 

reported on the five point Likert scale was 1.8 and the average perceived realism was 2.3. 
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Based on these reported measures the heterogeneity of choice does not seem very 

pronounced. 

However, the reported measures of confidence, understanding and perceived realism are 

likely to suffer from measurement error, which will bias the estimates. Hess (2013) argue that 

linking scale heterogeneity to measured characteristics is likely to give limited insights, while 

using respondent reported measures of the randomness of choice implies a risk of 

measurement error and endogeneity bias. Hess suggests a hybrid model in which survey 

engagement is treated as a latent variable to model the values of indicators of survey 

engagement in a measurement model component, as well as explaining scale heterogeneity 

within the choice model. This links part of the heterogeneity across respondents to 

differences in scale. Since our questions on choice confidence, understanding and perceived 

realism are comparable to those discussed by Hess (2013), researchers who aim to focus on a 

more detailed analysis of the randomness of choice could extend our research in this or 

similar directions. To accommodate heterogeneity in the randomness of choice, future work 

could also exploit our data to model the choices directly based on an assumption of stochastic 

preferences.  

Another noteworthy limitation of this research regards so-called ‘packaging effects’. Such 

effects imply that, for the consumer, the sum of the attribute valuations is not equal to the 

value of the bundle of such attributes. If this is the case, adjustment factors should be derived 

and applied to the estimates to scale them appropriately. 

Conclusion 

The value of the domestic consumer as grid resource is at the heart of the transition to a 

platform market in residential electricity services. This paper illustrates how this value can be 

exploited via contract design that takes consumer heterogeneity flexibly into account. We 
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analysed how consumers value smart electricity services and which electricity service 

contract terms they would accept. We start with the prior that most households want 

compensation to accept smart electricity services contracts that involve remote monitoring 

and control by an electricity service provider. The demand analysis is based on a stated 

choice experiment conducted with 1,892 electricity consumers in the UK in 2015, shedding 

light on the key attributes that drive demand for smart electricity services. The statistical 

modelling takes different types of heterogeneity into account: a flexible mixed logit model is 

combined with posterior analysis to elicit consumer preferences and heterogeneity in 

valuations for smart electricity services.  We suggest possible pricing strategies that could 

incentivise contract adoption by the number of customers required to provide the optimal 

level of demand response.  

We find significant heterogeneity in valuations for most of the considered contract attributes, 

suggesting that customer profiling based on posterior analysis could inform contract design. 

The results suggest that a mixture of fixed and transaction based payment to the consumers 

could promote the acceptance of smart electricity services contracts. A fixed monthly 

compensation for remote monitoring and control by the service provider could be 

supplemented by charges for technical support and data privacy services, depending on the 

consumer's preferences. The transaction based payment could be based on the expected 

electricity bill savings. 

We find that consumers demand statistically significant compensation to accept remote 

monitoring and control by a service provider. And the most remarkable contract 

differentiation potential has been revealed to lie in the data services: the compensation 

needed to accept the sharing of usage and personal data is significant, but varies substantially 

across the identified customer clusters. The smart electricity platform service provider should 

hence consider carefully which customer segments to address regarding data sharing. By 
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contrast, we find that consumers value technical support relatively homogeneously and would 

be willing to pay for it.   

When considering the trade-off between fixed compensation payment and the fees to savings 

ratio, we find that even very high fixed monthly compensations do not incentivise consumers 

to participate, unless they receive a relatively high share of the expected bill savings. In 

practice, households that are willing to give up more control to service providers to shift, 

interrupt or reduce their energy consumption offer higher potential for volatility reduction 

and efficiency gains.  

We also illustrate that while customer group profiles can inform the design of contract 

menus, individual profiles can inform customer specific contracts. Small niche service 

providers for example might want to attract customers whose preferences for electricity 

contracts are quite different from those of the other customer clusters. Under these 

circumstances, customer specific contract design might be viable and valuable. 

Since the demand model does not separately identify the scale parameter, further research 

could exploit the survey responses on choice confidence, understanding and realism to 

explore the heterogeneity in the randomness of choice.  

In combination with more information on local balancing cost and required customer 

acceptance rates, our results suggest efficient pricing strategies for platform service providers 

and suppliers that carefully take consumer preferences and engagement into account. Our 

paper only considers some of the aspects of smart electricity services. Other potential fields 

of application include microgeneration, on-site heat and power and electric vehicle 

technology. However, the findings of this paper could inform competition authorities, 

regulators and smart service providers and feed into future research in a smart grid context in 

which customer heterogeneity can be exploited for effective demand side management. 
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APPENDIX 

 
Table A1 Heterogeneous Scale Mixed Logit Results 

Heterogeneous Scale Mixed Logit 
Results  
(WTP Space) 

Mean                                             

ASC3         -2.400*** 

monitor2  0.133          

monitor3     -0.548*** 

control2    -0.0376 

control3  -1.643*** 

support2   0.446*** 

support3    0.483*** 

privacy2    -0.996*** 

privacy3    -3.110*** 

E(Bill Savings) (£)     0.338*** 

[Het] Const           -0.120         
(0.0986)        

Τ 1.016***         
(0.0643) 

SD                                 

ASC3                    
5.330*** 

monitor2                
1.036*** 

monitor3     0.0787 

control2    0.493** 

control3          
1.262*** 
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support2   0.294 

support3    0.0807 

privacy2    1.295*** 

privacy3   2.923*** 

E(Bill Savings) (£)  0.674*** 

AIC 23591.4 

BIC 23783.3  
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