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Abstract

Monte Carlo Methods in Practice and Efficiency Enhancements via Parallel
Computation

Alix Marie d’Avigneau

Monte Carlo methods are crucial when dealing with advanced problems in Bayesian inference.
Indeed, common approaches such as Markov chain Monte Carlo (MCMC) and sequential
Monte Carlo (SMC) can be endlessly adapted to tackle the most complex problems. What is
important then is to construct efficient algorithms, and significant attention in the literature is
devoted to developing algorithms that mix well, have low computational complexity and can
scale up to large datasets. One of the most commonly used and straightforward approaches
is to speed up Monte Carlo algorithms by running them in parallel computing environments.
The compute time of Monte Carlo algorithms is random and can vary depending on the
current state of the Markov chain. Other computing-infrastructure related factors, such
as competing jobs on the same processor, or memory bandwidth, which are prevalent in
shared computing architectures such as cloud computing, can also affect this compute time.
However, many algorithms running in parallel require the processors to communicate every
so often, and for that we must ensure that they are simultaneously ready and any idle wait
time is minimised. This can be done by employing a framework known as Anytime Monte
Carlo, which imposes a real-time deadline on parallel computations.

The contributions in this thesis include novel applications of the Anytime framework
to construct efficient Anytime MCMC and SMC algorithms which make use of parallel
computing in order to perform inference for advanced problems. Examples of such problems
investigated include models in which the likelihood cannot be evaluated analytically, and
changepoint models, which are often used to model the heterogeneity of sequential data, but
tricky to infer upon due to the unknown number and locations of the changepoints. This
thesis also focuses on the difficult task of performing parameter inference in single-molecule
microscopy, a category of models in which the arrival rate of observations is not uniformly
distributed and measurement models have complex forms. These issues are exacerbated
when molecules have trajectories described by stochastic differential equations.



vi

The original contributions of this thesis are organised in Chapters 4-6. Chapter 4 shows
the development of a novel Anytime parallel tempering algorithm and demonstrates the
performance enhancements the Anytime framework brings to parallel tempering, an algo-
rithm, which runs multiple interacting MCMC chains in order to more efficiently explore
the state space. In Chapter 5, a general Anytime SMC sampler is developed for performing
changepoint inference using reversible jump MCMC (RJ-MCMC), an algorithm that takes
into account the unknown number of changepoints by including transdimensional MCMC
updates. The workings of the algorithm are illustrated on a particularly complex changepoint
model, and once again the improvements in performance brought by employing the Anytime
framework are demonstrated. Chapter 6 moves away from the Anytime framework, and
presents a novel and general SMC approach to performing parameter inference for molecules
with stochastic trajectories.
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Chapter 1

Introduction

1.1 Monte Carlo methods

M ONTE CARLO methods, coined as such in 1947 by N. Metropolis (Metropolis
[1987]) and developed by S. Ulam and J. von Neumann (Eckhardt [1987]), are

a widely used class of computational algorithms which rely on repeated random sampling
to approximate quantities which are unavailable analytically. Notable applications include
numerical integration and, as a direct result, estimating expectations. In this thesis, we focus
on their application to Bayesian inference (Geman and Geman [1984]).

1.1.1 Developing efficient Monte Carlo methods for Bayesian inference

Consider a set of Y -valued observations Y following a probability model with underlying
states X ∈ X and associated likelihood g(y|x). The unobserved random variables X describ-
ing the data Y are unknown with prior density p(x). The aim of Bayesian inference is to
use the information contained in the prior – representing prior belief – and the likelihood –
representing evidence from the data – to obtain the posterior density π(x) := p(x|y) of the
parameters:

π(x) =
p(x)g(y|x)∫

X p(x)g(y|x)dx
.

Except for the simplest cases, such as when the state space X is finite, or if the prior and
likelihood are conjugate, this prior is intractable. Fortunately, as long as it is possible to
sample from the posterior, we can obtain a Monte Carlo approximation of it. A vast array of
methods have been developed in order to sample from the posterior. For example, in the case
of perfect Monte Carlo, when it is possible to obtain i.i.d samples from π , its approximation



2 Introduction

is given by

π̂(x) =
1
N

N

∑
i=1

δX (1:N)(x).

This is the case of inversion and rejection sampling presented in Eckhardt [1987]. Being able
to sample directly from π by inversion is unfortunately rare, and rejection sampling is often
extremely inefficient. Other approaches have been developed such as importance sampling
a variance reduction technique in which samples drawn from π are not i.i.d, but a Monte
Carlo approximation can be constructed by assigning a weight to each sample. However,
controlling the variance of importance sampling estimates is difficult, so the approach most
often used to sample from an intractable posterior, and one of the main focus points of this
thesis, is Markov chain Monte Carlo (MCMC) (Gilks et al. [1996]), presented in Section 2.3,
in which a Markov chain is constructed whose invariant or target distribution is π .

An important issue that must then be addressed is the efficiency of MCMC algorithms.
In other words, how fast is the Markov chain able to converge to its stationary distribution?
Often, basic MCMC algorithms such as Metropolis-Hastings (Hastings [1970]; Metropolis
et al. [1953]; Peskun [1981, 1973]) and Gibbs sampling (Gelfand and Smith [1990]; Geman
and Geman [1984]) are slow to converge, and prone to getting stuck in local maxima when
the target of interest is multimodal. An overview of methods to accelerate MCMC is given in
Section 2.4, and includes tempering algorithms, which enable a more efficient exploration of
the state space when constructing the Markov chain.

1.1.2 Sequential Monte Carlo inference

When dealing with sequential data such as in state space models, illustrated in Figure 1.1,
which model dependencies between an unobserved or hidden latent process (Xt)

∞
t=1, and the

observed data (Yt)
∞
t=1 (see Section 3.2 for an introduction to state space models), MCMC

can be particularly ineffective, as it involves evaluating the likelihood for the whole data at
every iteration, which quickly becomes computationally expensive for state space models
as the size of the data increases. Examples of state space models explored in this thesis
include changepoint models (Chapter 5) and the fundamental data model for single-molecule
microscopy (Chapter 6). Additionally, if a new data point arrives, the algorithm needs to
be recomputed entirely, which adds to the computational cost. Another disadvantage of
employing MCMC to approximate the posterior is the need to assess the convergence of the
Markov chain to the desired distribution.

Fortunately, a class of Monte Carlo algorithms known as sequential Monte Carlo (SMC)
or particle filters, described in Chapter 3, has been developed that allows for a sequential
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Xt−1 Xt+1Xt

Yt−1 Yt+1Yt

Fig. 1.1 Directed acyclic graph (DAG) for a state space model. The unobserved latent
process (Xt)

∞
t=1 constitutes a Markov chain and the observed process (Yt)

∞
t=1 is assumed to be

conditionally independent given the latent process, i.e. g(yt |xt ,y−t) = g(yt |xt) for t = 1,2, . . .
(see Section 3.2).

estimation of the posterior of interest. In SMC, a population of weighted particles initialised
at t = 1 is propagated through the steps t = 2,3, . . . , and updated as new data points arrive,
providing via particle filtering (Section 3.3) and smoothing (Section 3.4) algorithms a particle
approximation of the posterior π(x1:t) at step t.

To efficiently perform accurate inference, many common issues need to be addressed in
SMC. Firstly, a resampling step must be included in order to avoid weight degeneracy, which
as the algorithm progresses leads to the posterior being approximated by a single particle
with weight one while all the others have weight zero. Secondly, while the resampling step
is crucial, it introduces particle path degeneracy, in which the number of unique values
representing the marginal at any fixed step t quickly falls to one as the particle smoother
progresses (see Douc et al. [2014], Example 11.2), thus leading to increased variance in
estimates. Finally, each step of an SMC algorithm should not be too computationally
expensive, as this can render the algorithm very inefficient. The ultimate goal in SMC is
to strike a good balance between addressing degeneracy issues and keeping the algorithm
complexity low, and ideally linear. Chapter 6 deals with some of these issues.

1.2 Efficient use of parallel computing

Monte Carlo methods lend themselves well to parallel or distributed computing architectures
(Murray [2010]; Wilkinson [2006]), from straightforward algorithms run on multiple CPU
processors or workers to advanced experiments making use of the large number of processors
provided by GPUs (Lee et al. [2010]). Several MCMC algorithms that make use of parallel
computing have been developed in recent years. Some of these are known as divide-and-
conquer algorithms, such as embarrassingly parallel MCMC (Neiswanger et al. [2013])
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and consensus Monte Carlo (Scott et al. [2016]), and are particularly suitable for big data
applications in which the data are divided into batches and MCMC is run on each batch
separately before combining the results. Population-based algorithms (Laskey and Myers
[2003]; Liang et al. [2011]) have also been developed, in which a population of MCMC
chains are run in parallel and occasionally interact in order to improve convergence to the
target distribution. An example of such algorithms, described in Section 2.4.1 and heavily
featured in Chapter 4, is parallel tempering (Earl and Deem [2005]; Geyer [1991]; Swendsen
and Wang [1986]). Similarly, the population-based nature of SMC algorithms makes them
easily adaptable to parallel computing.

It must, however, be noted that in the majority of the Monte Carlo algorithms considered,
while most updates are performed independently in parallel on the separate workers, some
form of communication between those workers is regularly required. For example, in parallel
tempering, exchange moves are performed between the various MCMC chains, and in SMC,
all the particles must be combined for a resampling move. Before any communication can
occur, all workers must complete the independent updates they are engaged in. At this point,
an issue arises when algorithms take a varying and random time to complete their parallel
updates. One reason for that is that the time taken to complete parallel moves may depend
on the current state of the chain (see for example ABC in Chapter 4 and RJ-MCMC in
Chapter 5). Another, more practical reason, is related to variations caused by the computing
infrastructure, such as competing jobs on the same processor, I/O load, processor hardware,
network traffic, system failures, all of which arise in shared computing environments such
as cloud computing, for example. As a result, workers must sit idle, waiting for the slowest
worker to complete their independent parallel updates before communication can occur. This
idling issue is addressed at length in Murray et al. [2016b] and for various applications in
Chapters 4 and 5.

1.3 Tackling complex models

One of the advantages of Monte Carlo methods is their versatility – they can be adapted to the
most advanced and complex problems, and it is important to develop efficient algorithms to
tackle such problems. This thesis explores a variety of advanced models and the algorithms
that deal with them. For example, when dealing with a model for which the likelihood is
unavailable (such as the Lotka-Volterra predator-prey model in Section 4.5.4), one can resort
to ABC (Sisson and Fan [2011]), a class of algorithms described in Section 2.7 in which
instead of evaluating the likelihood, artificial datasets are simulated and compared to the
observed data.
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Changepoint models, considered in Chapter 5, are particularly useful for modelling
the heterogeneity of sequential observations. However, the number and locations of the
changepoints are often unknown. The varying model dimensions that must be considered
when inferring on the number of changepoints means that basic MCMC algorithms cannot
be applied. Fortunately, when comparing models of varying dimensions, RJ-MCMC (Green
[1995]), described in Section 2.8, generalises MCMC to allow for transdimensional updates
in the Markov chain.

Another important branch of models explored in Chapter 6, which has recently garnered
a lot of attention in the literature, is single-molecule microscopy. Indeed, it has allowed
significant insight into the behaviour of single molecules in cellular environments using
fluorescence microscopy. Single-molecule fluorescence microscopy (Moerner and Fromm
[2003]; Shashkova and Leake [2017]) consists of using a suitable fluorophore to label the
molecule of interest, exciting said fluorophore with a specific light source, and capturing the
fluorescence emitted by the molecule through a microscope system onto a detector during
a fixed acquisition time. Parameter inference such as being able to evaluate the Fisher
information matrix for key hyperparameters is a very important aspect of single-molecule
microscopy, as it is crucial for the effective design of experiments. However, these models are
not straightforward. Firstly, according to optical diffraction theory (Born and Wolf [2013]),
the locations of the photons on the detector are distributed according to difficult models
such as the Airy profile (for an in-focus molecule) and the Born and Wolf model (for an out
of focus molecule). Secondly, the arrival times of the photons on the detector are random
and non-uniformly distributed, a factor which must be taken into account. And finally, if
one considers molecules with stochastic trajectories, rather than static molecules or ones
with deterministic trajectories, the problem is complicated even further. All three of these
issues have been addressed separately, but they have rarely all been considered at once (Vahid
et al. [2020]). Additionally, Gaussian approximations of the photon location profiles have
often been employed in order to use exact filtering and smoothing techniques such as the
Kalman filter (and smoother) to perform parameter inference, but it is possible to employ
SMC methods and directly use the Airy profile and Born and Wolf model instead.
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1.4 Outline

This thesis is organised as follows. Chapters 2 and 3 provide background information on two
major types of Monte Carlo methods employed throughout the thesis, namely Markov chain
Monte Carlo (MCMC) and particle filters, or sequential Monte Carlo (SMC) methods. The
original contributions of this thesis are organised in Chapters 4-6.

Chapter 2: Markov Chain Monte Carlo and its Variants
We formally present MCMC and give an overview of methods to accelerate MCMC

algorithms, with a focus on parallel tempering. Then, we introduce several extensions of
MCMC such as SMC samplers for sampling from a sequence of distributions and Murray
et al. [2016b]’s Anytime Monte Carlo framework, as well as variants such as ABC, that
deals with applications where the likelihood is unavailable, and RJ-MCMC, that introduces
transdimensional updates.

Chapter 3: Sequential Monte Carlo
This chapter presents various SMC methods for state space models. Starting from simple

filtering and smoothing approaches for finite and linear Gaussian state space models and
progressing into particle filtering and smoothing for general state space models. Several
algorithms are described, which deal with the various degeneracy and efficiency issues raised
in Section 1.1.2.

Chapter 4: Anytime Parallel Tempering
We introduce a novel algorithm called Anytime Parallel Tempering Monte Carlo (APTMC)

which combines the commonly used parallel tempering algorithm to improve the efficiency
of MCMC with the Anytime Monte Carlo framework. The APTMC algorithm’s performance
improvements are illustrated in multiple toy examples and real-life applications to ABC.

The work carried out in this chapter has been submitted for publication in collaboration
with co-authors Dr Sumeetpal Singh and Dr Lawrence Murray. An arXiv preprint is available
at Marie d’Avigneau et al. [2020].

Chapter 5: A General Anytime SMC Sampler for Changepoint Models using Re-
versible Jump MCMC

We present a novel general algorithm for performing changepoint inference using RJ-
MCMC as part of an SMC sampler, implemented within the Anytime framework. The
algorithm is presented in a general way that can easily be adapted to any changepoint model,
and especially difficult ones. The workings of the algorithm are illustrated on a complex
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changepoint model, and the performance gains obtained by the addition of the Anytime
framework are demonstrated on simulated data.

Chapter 6: Particle Smoothing for Parameter Inference on Dynamic Single Molecules
with Stochastic Trajectories

This chapter moves away from the Anytime framework to focus on single-molecule
microscopy models in which the trajectory of the object of interest is described by a linear
SDE, and the photons it emits onto a detector are observed for a fixed time interval. A
difficulty of the model is that the arrival times of the photons on the detector are not
uniformly distributed. However, in this chapter, we discretise the observation interval so that
the model can be formulated as a straightforward state space model. As a result, we are able
to apply common particle filtering and smoothing techniques in order to estimate the FIM
of hyperparameters of interest relating to the SDE, and that for complex photon location
measurement models such as the Airy profile and Born and Wolf model, which could not be
done before.

The work carried out in this chapter has been submitted for publication in collaboration
with co-authors Dr Sumeetpal Singh and Professor Raimund Ober. An arXiv preprint is
available at Marie d’Avigneau et al. [2021].





Chapter 2

Markov Chain Monte Carlo and its
Variants

2.1 Chapter overview

This chapter contains the first half of the literature review, focusing on Markov chain Monte
Carlo (MCMC) methods. The chapter begins with an introduction to MCMC and its most
widely used algorithms, before reviewing some approaches that have been developed to
improve their efficiency. Then, some variants of MCMC are presented, which were introduced
with aims ranging from further efficiency improvements to adapting MCMC to more complex
and general applications. All the MCMC variants presented feature in some way or another
in Chapters 4 and 5.

2.2 Introduction

Consider a set of Y -valued observations Y following a probability model with underlying
parameters X ∈ X and associated likelihood g(y|x). The parameters x describing the data
y are unknown and considered random variables with prior density p(x). The aim of
Bayesian inference is to use the information contained in the prior – representing prior
belief – and the likelihood – representing evidence from the data – to obtain the posterior
density π(x) := p(x|y) of the parameters, following Equation 2.1. Summary statistics such
as parameter estimates and credible intervals can subsequently be inferred from the posterior
obtained.

π(x) =
p(x)g(y|x)∫

X p(x)g(y|x)dx
. (2.1)
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In most cases however, the posterior π is intractable, or only known up to a proportionality
constant, as the integral in the denominator of Equation 2.1 is unavailable.

More generally, the problem of computing the following integral often arises

H = Eπ [h(x)] =
∫
X

h(x),π(x)dx,

where h is an arbitrary function. It is generally impossible to evaluate the integral, so it must
be approximated using Monte Carlo (Robert and Casella [2004a]) methods, and consists
of drawing samples from π . A commonly used method is known as Markov chain Monte
Carlo (MCMC) (Gilks et al. [1996]), in which a Markov chain is constructed with π as its
target or stationary distribution. The strength of MCMC methods is that they guarantee
convergence to the target distribution of interest. They are also incredibly versatile and easily
adaptable to applications such as likelihood-free or transdimensional inference. However,
the construction of many MCMC algorithms often leads to a slow convergence, as they tend
to only explore local areas rather than the whole support of the distribution. This issue only
worsens as the dimensionality of the data and/or complexity of the problem increases. As
a result, many techniques have been developed to accelerate the convergence of MCMC
algorithms (Bardenet et al. [2015]; Robert et al. [2018]). In this chapter, we review some of
the common methods employed to speed up and improve the efficiency of MCMC, as well
as some variants that were developed for more complex applications such as likelihood-free
inference and transdimensional problems.

2.3 Markov chain Monte Carlo (MCMC)

This section provides an overview of the basic workings of Markov chain Monte Carlo
(MCMC) algorithms. A short history of MCMC is available in Robert and Casella [2011].

2.3.1 The Metropolis-Hastings algorithm

First introduced in Metropolis et al. [1953] and generalised in Hastings [1970]; Peskun [1981,
1973] the Metropolis-Hastings algorithm is the most generic illustration of how MCMC
works. Let x be the current state in the Markov chain, and let q(·|x) be a conditional density,
known as the proposal density. Propose to move the chain to a new state x′ ∼ q(·|x) and
accept x′ as the next sample in the chain with probability

a(x,x′) = min
{

1,
π(x′)q(x|x′)
π(x)q(x′|x)

}
, (2.2)
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where a is known as the acceptance probability; otherwise, retain the current state x. As a
result, a Markov chain (Xn)

∞
n=0 is constructed with target distribution π and Markov transition

kernel given by

κ(xn+1|xn) = a(xn,xn+1)q(xn+1|xn)+1xn+1=xn

(
1−

∫
X

a(x,xn+1)q(xn+1|x)dx
)
. (2.3)

The Metropolis-Hastings algorithm is summarised in Algorithm 2.1.

Algorithm 2.1 Metropolis-Hastings algorithm
Input: current sample in the chain Xn.

1: Sample X ′ ∼ q(·|Xn).
2: With probability a(Xn,X ′), set Xn+1 := X ′, otherwise set Xn+1 := Xn.

Output: updated sample Xn+1.

To establish that the stationary distribution is indeed π , it suffices to verify that the
detailed balance condition (see Robert and Casella [2004b]) is verified, i.e.

π(xn)κ(xn+1|xn) = π(xn+1)κ(xn|xn+1). (2.4)

Plugging in the transition kernel from Equation 2.3, we have for the first term

π(xn)a(xn,xn+1)q(xn+1|xn) = min{π(xn)q(xn+1|xn),π(xn+1)q(xn|xn+1)}
= π(xn+1)a(xn+1,xn)q(xn|xn+1),

and the second term trivially cancels out when xn = xn+1. Therefore, the detailed balance con-
dition is satisfied. Note that plugging Equation 2.1 into Equation 2.2 above is straightforward
and avoids the need to evaluate the integral in order to sample from π .

When the proposal distribution q is symmetric, we have q(x′|x) = q(x|x′) for all x,x′ ∈X

and the acceptance probability simplifies to

a(x,x′) = min
{

1,
π(x′)
π(x)

}
. (2.5)

This version of the algorithm is known as Metropolis (Metropolis et al. [1953]). The
simplicity of not having to evaluate the proposal density makes the use of symmetric versions
very common. An example is the widely used random walk Metropolis update in which the
proposed state is given by x′ = x+ ε where ε ∼ N (0,σ2).
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2.3.2 Gibbs sampling

The popular MCMC algorithm known as the Gibbs sampler (Gelfand and Smith [1990];
Geman and Geman [1984]) is particularly useful when X is multi-dimensional, i.e X =

(X1, . . . ,Xd) where d > 1 is the number of components, and it is possible to sample directly
from the full conditional πk(·|x−k) where x−k := (x1:k−1,xk+1:d) for k = 1 . . .d.

2.3.2.1 Random scan Gibbs sampling

In the random scan Gibbs sampler, each iteration n of the algorithm proceeds as follows:
update the current state xn := (x1,n, . . . ,xd,n) by sampling a random index k ∼ ν where the
density ν(i)> 0 for 1 ≤ i ≤ d and then sampling

xk,n+1 ∼ πk
(
·|x−k,n

)
.

This version of the Gibbs sampler is simply a special case of the Metropolis-Hastings
algorithm where the acceptance ratio is always 1:

π
(
xk,n+1

)
ν(k)πk

(
xk,n|x−k,n+1

)
π
(
xk,n
)

ν(k)πk
(
xk,n+1|xn,−k

) =
π
(
xk,n+1|x−k,n+1

)
π
(
x−k,n+1

)
πk
(
xk,n|x−k,n+1

)
π
(
xk,n|x−k,n

)
π
(
x−k,n

)
πk
(
xk,n+1|x−k,n

)
=

πk
(
xk,n+1|x−k,n

)
π
(
x−k,n

)
πk
(
xk,n|x−k,n+1

)
πk
(
xk,n|x−k,n+1

)
π
(
x−k,n

)
πk
(
xk,n+1|x−k,n

) = 1,

where the second equality stems from the fact that x−k,n+1 = x−k,n.

2.3.2.2 Multi-stage Gibbs sampling

Instead of only updating one random component of X per iteration, a multi-stage or systematic
scan Gibbs sampler iterates through all components sequentially. In this case, each iteration
of the algorithm proceeds as follows: let Xn be the current state of the chain, then update the
state by sampling

xk,n+1 ∼ πk(·|x1:k−1,n+1,xk+1:d,n)

sequentially for k = 1, . . . ,d. The Markov transition kernel is then defined as κ := κ1κ2 . . .κd

where each transition kernel is given by

κk(xn+1|xn) = πk(xk,n+1|x1:k−1,n+1,xk+1:d,n).
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This version of the Gibbs sampler does not satisfy detailed balance but it still converges to
stationary distribution π , which can be established as follows:

∫
X

π(x)κ(y|x)dx =
∫
X

d

∏
k=1

π(xk|x1:k−1)πk(yk|y1:k−1,xk+1:d)dx1:d

=
∫
X

d

∏
k=1

π(xk|x1:k−1)
π(yk|y1:k−1)π(xk+1:d|y1:k)

π(xk+1:d|y1:k−1)
dx1:d

= π(y)
∫
X

d

∏
k=1

π(xk|y1:k−1,xk+1:d)x1:d = π(y).

For more details, see Mikusheva [2007]; Robert and Casella [2004a]. The multi-stage Gibbs
sampler is summarised in Algorithm 2.2.

Algorithm 2.2 Multi-stage Gibbs sampler

Input: current sample in the chain Xn =
(
X1,n, . . . ,Xd,n

)
.

1: for k = 1, . . . ,d do
2: Sample Xk,n+1 ∼ πk

(
·|X1:k−1,n+1,Xk+1:d,n

)
.

3: end for
Output: updated sample Xn+1.

2.3.2.3 Metropolis-within-Gibbs

When it isn’t possible to sample directly from the full conditional πk (·|x−k) but a proposal
distribution qk is available for component k, it is straightforward to incorporate a Metropolis-
Hastings algorithm within a Gibbs sampler. The acceptance ratio for the k-th component
becomes

ak
(
xk,x′k|x−k

)
= min

{
1,

π
(
x′k
)

qk
(
xk|x′k,x−k

)
π(xk)qk

(
x′k|xk,x−k

) } .

The resulting algorithm is known as Metropolis-within-Gibbs (Tierney [1994]). If the
proposal qk is close to the full conditional πk, this approximates the Gibbs sampler well.

2.4 Accelerating Markov chain Monte Carlo

Despite being easily adaptable and convenient, basic MCMC algorithms can be very slow to
converge to their stationary distribution due to the localised nature of their updates. Indeed,
their lack of ‘awareness’ of the full support of the distribution can lead to them getting stuck
in local maxima, as illustrated in Example 2.1.
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Example 2.1. Consider the example from Wilkinson [2013] in which we wish to sample
from the following density:

π(x) ∝ exp
[
−χ(x2 −1)2] , (2.6)

which is bimodal for χ > 0. Obtaining 5× 105 samples from π for χ = 8 using a single
chain with a basic random walk Metropolis update is inefficient and returns a posterior which
tends to overestimate one of the modes, as evidenced in Figure 2.1.

Fig. 2.1 Output from 5×105 samples of a random walk MCMC chain targeting the bimodal
density in Equation 2.6. Top: histogram of random walk MCMC output compared to the
true density (blue line), the histogram overestimates one of the modes and underestimates
the other. Bottom left: MCMC chain output showing that random walk Metropolis tends to
get stuck in local maxima for extended periods. Bottom right: sample autocorrelation (acf)
function decaying extremely slowly, indicating that the samples are highly correlated and
thus the algorithm is very inefficient.

This efficiency issue only worsens as the dimensionality of the problem increases. For-
tunately, a vast range of algorithms have been developed to improve the performance of
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MCMC algorithms. These can be organised in multiple categories, including algorithms
that explore the state space more efficiently, such as tempering or gradient-based methods,
scalable algorithms, which aim to manage the cost of individual computations for big data
applications, and distributed computing approaches. Comprehensive reviews of how to speed
up MCMC algorithms are available in Bardenet et al. [2017]; Robert et al. [2018]. In the rest
of this section, we present a brief overview of some of the most commonly used algorithms
to speed up MCMC, and present the key algorithms that will be employed throughout this
thesis.

2.4.1 Parallel tempering and other schemes

Several tempering schemes have been developed to accelerate convergence and eliminate
the risk of MCMC algorithms getting stuck exploring local maxima. These include parallel
tempering (Earl and Deem [2005]; Geyer [1991]; Swendsen and Wang [1986]), employed
in Chapter 4, as well as simulated or serial tempering (Geyer and Thompson [1995]; Mari-
nari and Parisi [1992]), tempered transitions (Neal [1996]) and annealed importance sam-
pling (AIS) (Neal [2001]). Tempering schemes consider a sequence of tempered densities
π1, . . . ,πΛ that allow for more exploration of the state space. For example, in simulated
tempering, the densities become the components of a mixture as γ(λ ,x) = πλ (x)cλ , where
the cλ are user-defined constants, as follows:

γ(x) =
Λ

∑
λ=1

γ(λ ,x),

where γ(x) ∝ π(x) is the unnormalised target distribution of interest. A Markov chain is run
with state (λ ,X) where λ is the mixture component index, indicating which of the tempered
densities the algorithm is currently visiting.

Parallel tempering is more commonly used and intuitive to implement. It runs a global
Markov chain

(
X1:Λ

n
)∞

n=1 :=
(
X1

n , . . . ,X
Λ
n
)∞

n=1 with target distribution

π(x1:Λ) ∝

Λ

∏
λ=1

πλ (x
λ ), (2.7)

where the marginals π1, . . . ,πΛ correspond to the target distributions of each of Λ Markov
chains. One of these chains, for example the Λ-th chain, is commonly known as the cold
chain and corresponds to the target density of interest π . The other, tempered or ‘warmer’
chains, are more diffuse in that they allow for more and more exploration of the state space as
their ‘temperature’ increases. A parallel tempering algorithm is made of two types of update:
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1. Local moves: generally a standard Gibbs or Metropolis-Hastings update applied to
each tempered chain independently.

2. Exchange moves: propose to swap the states xλ ∼ πλ and xλ ′ ∼ πλ ′ of two chains and
accept the swap with probability

a
(

xλ ,xλ ′
)
= min

1,
πλ

(
xλ ′
)

πλ ′

(
xλ

)
πλ

(
xλ
)

πλ ′
(
xλ ′)

 . (2.8)

Otherwise, the chains in the pair retain their current states. Assume that λ ′ > λ

for simplicity. An exchange move can be seen as a special case of the Metropo-
lis algorithm where the current state is (x1, . . . ,xλ , . . . ,xλ ′

, . . . ,xΛ) and a new state
(x1, . . . ,xλ ′

, . . . ,xλ , . . . ,xΛ) is proposed where the λ -th and λ ′-th chains are swapped.
Indeed, plugging in the joint density from Equation 2.7 into the Metropolis update in
Equation 2.5 returns the swap probability in Equation 2.8.

With the cold chain providing more precision and the warmer chains more freedom of
movement when exploring the parameter space, the combination of the two types of update
allows all chains to mix much faster than any one of them would mix on its own. This
provides a way to jump from mode to mode in far fewer steps than would be required under
a basic Metropolis-Hastings algorithm, as illustrated in Example 2.2.

Note that the method in which the two candidate chains are selected in an exchange
move must ensure that the proposal density is symmetric for the Metropolis-like update to
be reversible. The most basic way of proposing two chains would be to choose the indices
λ and λ ′ uniformly at random from the set J1,ΛK without replacement. This is however
inefficient, as if the chains are too far apart, the rejection probability will be much higher.
As a result, most parallel tempering algorithms privilege choosing pairs of adjacent chains
for exchange moves. In Geyer [2011], it is suggested that one should first sample the index
λ uniformly at random from the set J1,ΛK and then choose λ ′ uniformly at random from a
user-specified set of neighbours of λ . Alternatively, one could select a pair of chain indices
at random from the set of adjacent pairs {(1,2),(2,3), . . . ,(Λ−1,Λ)}. Since the exchange
move is relatively cheap, it is also common to propose to swap multiple pairs of chains. To
avoid selecting the same chain twice, they are divided into odd O = {(1,2),(3,4), . . .} and
even E = {(2,3),(4,5), . . .} pairs of indices. In what Lingenheil et al. [2009] refer to as the
stochastic even/odd (SEO) algorithm, the set O is selected with probability 1

2 and exchange
moves are performed on all the odd pairs, otherwise they are performed on the even pairs. It
is however argued in detail in Syed et al. [2019] that the non-reversible alternative to the SEO



2.4 Accelerating Markov chain Monte Carlo 17

algorithm, in which we alternate between proposing to exchange all odd and all even pairs
deterministically, known as the deterministic even/odd algorithm (DEO), can outperform its
reversible counterpart.

Example 2.2. Revisiting Example 2.1, apply the following inverse tempering scheme to the
density of interest

πλ (x) ∝ π(x)
λ

Λ

for λ = 1, . . . ,Λ. In this case, the density π8 corresponds to the target density of interest
π defined in Equation 2.6 and the densities get warmer as λ decreases (see Figure 2.2).
Again, 5× 105 samples from π are obtained using Λ = 8 chains, with the same random
walk Metropolis update as in Example 2.1 for the local moves and adding exchange moves
between pairs of adjacent chains. The algorithm is now significantly more efficient, as
evidenced in Figure 2.3.
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Fig. 2.2 Tempered target densities π
λ

Λ , λ = 1, . . . ,Λ of the parallel tempering algorithm for
Λ = 8 temperatures. The tempering is employed to improve convergence when sampling
from the bimodal density π of Example 2.1. The top left plot corresponds to the target or
cold density and displays a probability of almost zero in the dip between the two modes. As
the densities get increasingly warmer, it becomes easier to switch between the two modes, as
the probability in the dip between them increases.
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Fig. 2.3 Output from 5× 105 samples of the cold parallel tempering chain targeting the
bimodal density in Example 2.2. Top: histogram of the cold chain output compared to the
true density (blue line); thanks to the exchange moves between chains, the algorithm has
converged to its target distribution. Bottom left: cold chain MCMC output able to explore
the whole state space thanks to the multi-chain parallel tempering construction and exchange
moves. Bottom right: sample autocorrelation (acf) function for the cold chain decaying a lot
faster than the basic random walk algorithm in Figure 2.1, indicating that parallel tempering
yields a significant gain in efficiency.
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2.4.2 Scalable and gradient-based methods

The most expensive part of MCMC algorithms is generally the computation of the likelihood,
and scalable methods aim to make this cost more manageable. A comprehensive review
of existing methods that aim to scale up the Metropolis-Hastings algorithm for big data
applications and reduce computational costs is available in Bardenet et al. [2015]. The authors
divide the available approaches into two categories: divide-and-conquer and subsampling
methods.

First of all, divide-and-conquer methods (Minsker et al. [2014]; Neiswanger et al. [2013];
Wang and Dunson [2013]; Xu et al. [2014]) aim to divide the data into batches, then
run the MCMC algorithm on each batch separately, before combining the subposteriors
obtained to form an approximation of the full posterior. These methods therefore have
an important advantage which is the possibility of running the algorithm in distributed
computing environments, and thus significantly speeding up computations. This is the case
of the consensus Monte Carlo algorithm presented by Scott et al. [2016]. However, some
issues these methods must also address are how to keep communication between batches
minimal and how to efficiently combine the subposteriors into a good approximation of the
target posterior.

On the other hand, subsampling methods aim to reduce the number of likelihood evalua-
tions to speed up computations. This approach includes pseudo-marginal MCMC methods
(Andrieu et al. [2009]; Deligiannidis et al. [2018]) which employ unbiased estimators of the
unnormalised target distribution. This usually means that only a subsample of the data is used
at each iteration, which speeds up computations. A few examples of subsampling MCMC
algorithms are the Bootstrap Metropolis-Hastings algorithm by Liang et al. [2016] and the
confidence sampler developed by Bardenet et al. [2014] and extended in Bardenet et al.
[2015] and in Kohn et al. [2016]. More examples of subsampling MCMC are available in
Quiroz et al. [2016] and Korattikara et al. [2014]. It is also possible to use delayed acceptance
MCMC, such as the Firefly algorithm in Maclaurin and Adams [2014]. The advantage of
delayed acceptance MCMC is that it avoids computation of the likelihood if there is evidence
that the proposal will be rejected; however, in general, it will compute the likelihood on the
full dataset otherwise, which is not ideal when the likelihood itself is too computationally
costly. This is avoided in Quiroz et al. [2017], where delayed acceptance is combined with
subsampling.

Another major approach to accelerating MCMC is to exploit the geometry of the target.
This in a way achieves a similar purpose as tempering, in that it allows for more efficient
Metropolis-Hastings proposals. The most well-known approach is known as Hamiltonian
Monte Carlo (HMC) described in Neal [2011]. Given target π(x), let L (x) = logπ(x).
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Taking advantage of Hamiltonian dynamics (Duane et al. [1987]), an auxiliary variable p
known as the momentum is introduced so that we generally have p ∼ N (0,M) where M
is the target covariance. A continuous process (Xt ,Pt)

∞
t=0 can then be constructed targeting

the joint density π(x, p) so that ∂

∂ t Xt = M−1Pt and ∂

∂ t Pt = ∇L (Xt). Essentially, at any time,
the momentum is driven by the score of the log density of interest at the current state, and
thus efficiently guides the process towards the joint density. Generally, the path of this
continuous process is intractable, so a discretisation is employed instead (Betancourt [2017])
and the final state in the path is accepted or rejected following a Metropolis-Hastings step. A
commonly used variant of HMC is known as the no-U-turn sampler (NUTS) (Hoffman and
Gelman [2014]), which adapts the discretisation step size. Another approach is known as the
Metropolis-adjusted Langevin algorithm (MALA) (Roberts et al. [1996]) and is equivalent
to using HMC where the discrete path generated only contains a single step, effectively
constructing an MCMC chain with informed proposals.

2.5 Sequential Monte Carlo (SMC) samplers

Sequential Monte Carlo (SMC) methods will be explored in detail in Chapter 3, but in
this section we focus on a particular branch known as Sequential Monte Carlo samplers,
introduced in Del Moral et al. [2006] as a complementary approach to MCMC sampling
with a wide range of applications. The basic aim is to sample sequentially from a sequence
of probability distributions π1, . . . ,πn defined on a common space, though it can easily
be extended to an instance where the πk are defined on different spaces, where the index
k = 1, . . . ,n is referred to as the step throughout this thesis. Following the basic construction
of a particle filter, a weighted particle population is propagated through the sequence so that
at step k it approximates the distribution πk.

There are many possible choices for the sequence of distributions. The most natural
choice, in keeping with particle filters, is to have πk(x) = p(x|y1:k), i.e. where πk(x) corre-
sponds to the posterior given the data y1:k collected until step k. If the whole dataset y1:n

is already available, Chopin [2002] still suggests defining such a sequence of distributions
as an alternative to basic MCMC in order to save computation time. This is the approach
employed in Chapter 5. Another option is for the distribution to follow a tempering schedule,
not unlike in Section 2.4.1, where π1 corresponds to the ‘warmest’ distribution and πn is the
target. There are also many possible choices for the sequence of transition kernels κ1, . . . ,κn

outlined in Del Moral et al. [2006]. For the purpose of this section, we focus on the natural
choice of κk as an MCMC kernel targeting πk.

Let πk be a target density and define the unnormalised density γk ∝ πk. Denote as κk the
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MCMC kernel targeting πk with density κk(xk|xk−1) and introduce a user-defined, problem
dependent backward kernel βk−1(xk−1|xk). Then, define the joint target

π̃(x1:k) ∝ γ̃k(x1:k),

where

γ̃k(x1:k) = γk(xk)
k−1

∏
l=1

βk(xl+1,xl).

The density πk(xk) is a marginal of π̃k(x1:k). The algorithm is initialised at step k = 1 and we
assume that it is easy to approximate π1 = π̃1 by sampling X (i)

1 ∼ η1 for i = 1, . . . ,N, where
the density η1 is known as the importance distribution, and the unnormalised importance
weights w1(X

(i)
1 ), given by

w1(x) =
γ1(x)
η1(x)

(2.9)

can be computed exactly. This is known as importance sampling and is described in more
detail in Section 3.3.1. At step t −1, we have the particle approximation (X (1:N)

k−1 ,ω
(1:N)
k−1 ) of

the density π̃k−1 defined as follows:

π̃
N
k−1(dx1:k−1) =

N

∑
i=1

ω
(i)
k−1δ

X (i)
1:k−1

(dx1:k−1),

where the normalised importance weights are given by

ω
(i)
k−1 :=

wk−1

(
X (i)

1:k−1

)
∑

N
j=1 wk−1

(
X ( j)

1:k−1

) .
At step k, propagate the particles according to transition kernel κk(xk|xk−1) and update the
weights by computing the incremental weights given by

w̃(xk−1,xk) :=
γk(xk)βk−1(xk−1|xk)

γk−1(xk−1)κk(xk|xk−1)
(2.10)

and setting wk(x1:k) = wk−1(x1:k−1)w̃(xk−1,xk).
As is common in particle filters, an additional step must be added to the algorithm to

avoid the well-known issue of weight degeneracy (Doucet and Johansen [2009]; Kong et al.
[1994]), in which the number of weights with significant weight drops rapidly, and we
eventually end up with a single particle with weight equal to 1 while all other particles have
zero weight. To circumvent this issue, the particles are resampled if their effective sample
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size given by

ESSk =

[
N

∑
i=1

(
ω

(i)
k

)2
]−1

(2.11)

falls below a certain threshold TESS (Liu and Chen [1998]). The resampling probabilities are
proportional to the importance weights {ω

(i)
k }N

i=1. A summary of the algorithm is provided
in Algorithm 2.3.

Algorithm 2.3 General SMC sampler

Where (i) appears, the operation is performed for all i = 1, . . . ,N.
Initialise at step k = 1:

1: Draw X (i)
1 ∼ η1.

2: Compute the importance weights w
(

X (i)
1

)
according to Equation 2.9, then normalise

them to obtain ω
(i)
1 .

3: for k = 2, . . . ,n do
4: (RESAMPLE) Obtain the ESSk−1 using Equation 2.11. If ESSk−1 < TESS, resample

the particles and set ω
(i)
k = 1

N .

5: (PROPAGATE) Propagate the particles, i.e. sample Xk ∼ κk

(
·|X (i)

k−1

)
.

6: (WEIGHT) Compute the incremental weights w̃
(

X (i)
k−1,X

(i)
k

)
according to Equation

2.10, then normalise the importance weights to obtain ω
(i)
k as follows:

ω
(i)
k =

ω
(i)
k−1w̃

(
X (i)

k−1,X
(i)
k

)
∑

N
j=1 ω

( j)
k−1w̃

(
X ( j)

k−1,X
( j)
k

) .
7: end for

As is common in a particle filter, the SMC sampler in Algorithm 2.3 follows the standard
resample→propagate→weight procedure (see Chapter 3). The backward kernel is artificial
and its explicit form needs not be known but is instead implied by the computation of the
incremental weights. Given we are working with an MCMC forward kernel κk targeting πk,
the backward kernel can be defined as follows:

βk−1(xk−1|xk) =
πk(xk−1)κk(xk|xk−1)

πk(xk)
,

which yields the incremental weight

w̃(xk−1,xk) =
γk(xk−1)

γk−1(xk−1)
.
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Note that this incremental weight does not depend on the current state Xk. Therefore, when
using this backward kernel (as is the case in Chapter 5), the order of the algorithm is slightly
different, and proceeds as weight→resample→propagate instead (see Algorithm 5.2).

One of the main appeals of SMC samplers is that they allow for basic MCMC algorithms
to be applied in an SMC setting. The presence of a population of particles means that the
propagation step of the algorithm can be seen as ‘local moves’ and easily performed in
parallel on multiple processors. A particular advantage this class of algorithms also has over
parallel tempering is that while it can employ the same tempering schedule to efficiently
explore the state space, there is no need to assess the convergence of the MCMC chains.

2.6 Anytime Monte Carlo

Typically, when running MCMC algorithms, the aim is to draw a fixed number, say n, of
samples, which takes a random amount of real time T (n). Instead, the Anytime Monte Carlo
framework (Murray et al. [2016b]) fixes the real time t during which samples are drawn and
the number of samples returned N(t) becomes a random variable.

Let (Xk)
∞

k=0 be a Markov chain with initial state X0, evolving on state space X , with
transition kernel κ(xk|xn−1) and target distribution π . Define the hold time Hk−1 as the
random and positive real time required to complete the computations necessary to transition
from state Xk−1 to Xk via the kernel κ . Then let Hk−1 |xk−1 ∼ τ(hk−1|xk−1) where τ is the
hold time distribution.
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Fig. 2.4 (Murray et al. [2016b], Figure 1) Real-time realisation of a Markov chain with states
(Xn)

∞

n=0, arrival times (An)
∞

n=0 and hold times (Hn)
∞

n=0 .

Assume that the hold time H > ε > 0 for minimal time ε , supx∈X E [H |x]< ∞, and the
hold time distribution τ is homogeneous in time. In general, nothing is known about the
hold time distribution τ except how to sample from it, i.e. by recording the time taken by
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the algorithm to simulate Xk |xk−1. Let κ(xk,hk−1|xk−1) = κ(xk|hk−1,xk−1)τ(hk−1|xk−1) be
a joint kernel. The transition kernel κ(xk|xk−1) is the marginal of the joint kernel over all
possible hold times Hk−1. Denote by (Xk)

∞
k=0 and (Hk)

∞

k=0 the states and hold times of the
joint process, and define the arrival time of the n-th state as

Ak :=
k−1

∑
i=0

Hi, k ≥ 1,

where a0 := 0. A possible realisation of the joint process is illustrated in Figure 2.4.
Let the process N(t) := sup{k : Ak ≤ t} count the number of arrivals by time t. From

this, construct a continuous Markov jump process (X ,L)(t) where X(t) := XN(t) and L(t) :=
t −AN(t) is the lag time elapsed since the last jump. This continuous process describes the
progress of the computation in real time.

Proposition 2.1. The continuous Markov jump process (X ,L)(t) has stationary distribution
given by

α(x, l) =
F̄τ (l |x)
E [H]

π(x), (2.12)

where F̄τ (l |x) = 1−Fτ (l |x), and Fτ (l |x) is the cumulative distribution function (cdf)
of τ(hk|xk).

Corollary 2.1. The marginal α(x) of the density in Equation 2.12 is length-biased with
respect to the target density π(x) by expected hold time, i.e.

α(x) =
E [H |x]
E [H]

π(x). (2.13)

The proofs of Proposition 2.1 and Corollary 2.1 are given in Murray et al. [2016b].
The distribution α is referred to as the anytime distribution and is the stationary distri-

bution of the Markov jump process. Note that Proposition 2.1 suggests that when the real
time taken to draw a sample depends on the state of the Markov chain, i.e. E[H |x] ̸= E[H], a
length bias with respect to computation time is introduced. In other words, when interrupted
at real time t, the state of a Monte Carlo computation targeting π is distributed according to
the anytime distribution α , which can essentially be seen as a length-biased target distribution.
This bias diminishes with time, and when an empirical approximation or average over all post
burn-in samples is required, it may be rendered negligible for a long enough computation.
However, the bias in the final state does not diminish with time, and when this final state is
important (which is the case e.g. in parallel tempering) the bias cannot be avoided by running
the algorithm for longer.
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We now discuss the approach in Murray et al. [2016b] to correct this bias. The main idea
is to make it so expected hold time is independent of X , which leads to E [H |x] = E [H] and
hence α(x) = π(x), following Corollary 2.1. This is trivially the case for i.i.d sampling as
κ(x|xk−1) = π(x), so the hold time Hk−1 for Xk−1 is the time taken to sample Xk ∼ π(x), and
therefore independent of the state Xk−1.

For non-i.i.d sampling, assume that Λ∈N MCMC chains are being simulated sequentially
on a single processor, and introduce an extra chain. The chains are denoted (X1:Λ+1

k )∞
k=0 and

we assume that they have the same target distribution π , kernels κ and hold time distribution
τ for λ = 1, . . . ,Λ+1. Their joint target is given by

π(x1:Λ+1) =
Λ+1

∏
λ=1

π(xλ ).

For simplicity, let Λ+ 1 always be the state of the chain currently simulating when an
interruption occurs. Construct the joint continuous Markov jump process (X1:Λ+1,L)(t)
where L(t) is the lag time elapsed since the last jump. Generalising Proposition 2.1 and
Corollary 2.1, Murray et al. [2016b] establish and prove the following results.

Proposition 2.2. The continuous Markov jump process
(
X1:K+1,L

)
(t) has stationary distri-

bution given by

A(x1:Λ+1, l) = α(xΛ+1, l)
Λ

∏
λ=1

π(xλ ). (2.14)

Corollary 2.2. The marginal A(x1:Λ+1) of the density in Equation 2.14 is length-biased
with respect to the target density π(x1:Λ+1) by expected hold time on the state XΛ+1 of the
currently working chain, i.e.

A(x1:Λ+1) = α(xΛ+1)
Λ

∏
i=1

π(xλ ).

In other words, Corollary 2.2 states that if a set of Λ+1 chains being updated sequentially
on a single processor are interrupted while chain Λ+1 is working, the first Λ chains have
had a chance to complete their updates and therefore their states are distributed according to
π , but the state of the Λ+1-th chain is distributed according to α , and thus introducing a
length bias. Fortunately, it suffices to discard the Λ+1-th chain to recover a set of chains
targeting π only and thus eliminate the length bias.

The Anytime framework is particularly useful in distributed computing experiments for
two reasons. First, as we’ll see in Chapters 4 and 5, depending on the MCMC implementation
and the inference problem itself, each iteration of MCMC algorithms can easily have a non-
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uniformly distributed hold time which depends on the part of the state space it is exploring.
Many algorithms such as parallel tempering and SMC samplers can be run in parallel on
multiple processors, but every so often the chains or particles must interact, e.g. for exchange
moves in parallel tempering and resampling in SMC. Before any interaction can occur, all
chains or particles must complete the independent parallel updates they are engaged in (e.g.
local moves for parallel tempering or particle propagation for SMC) to avoid introducing
a potentially substantial bias (see Proposition 2.1). This can result in processors sitting
idle while the slowest of them completes its parallel updates. The second reason is more
practical and relates to computing infrastructure induced variations due e.g. to variations in
processor hardware, memory bandwidth, network traffic, I/O load, competing jobs on the
same processors, as well as potential unforeseen interruptions e.g. due to system failures,
all of which affect the compute time of parallel updates. For example, running experiments
on cloud computing platforms is generally financially costly, and being able to manage the
compute budget despite these infrastructure variations is desirable. The Anytime framework
can mitigate both these situations and yield significant performance improvements, as will
be seen in Chapters 4 and 5.

2.7 Approximate Bayesian computation

As Bayesian inference becomes increasingly advanced, it is not uncommon to encounter com-
plex models for which the likelihood is either unavailable analytically or too computationally
costly to compute. The notion of Approximate Bayesian Computation (ABC), also known as
likelihood-free inference (Sisson and Fan [2011]), was developed by Tavaré et al. [1997] and
Pritchard et al. [1999]. It can be seen as a likelihood-free way to perform Bayesian inference,
using instead simulations from the model or system of interest, and comparing them to the
observations available (Marjoram et al. [2003]; Ratmann et al. [2007]; Sisson et al. [2007]).
Since its inception, it has been widely used in biological (Blum and Tran [2010]; Hamilton
et al. [2005]; Jabot and Chave [2009]), signal processing (Nevat et al. [2009]; Peters et al.
[2010]), archaeological (Wilkinson and Tavaré [2009]), and other theoretical (Drovandi and
Pettitt [2011]; Peters et al. [2012]) applications.

Let Y ∈ Y be a set of observations described by underlying parameters X ∈ X through
the analytically unavailable or computationally costly likelihood function g(y|x). Let p(x)
denote the prior density on X . Assuming that it is possible to sample from the density g( · |x)
for all x ∈ X , approximate the likelihood by introducing an artificial likelihood (Lee [2012])
gε of the form

gε(y |x) = Vol(ε)−1
∫

Bε (y)
g(z |x)dz, (2.15)
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where Bε(y) denotes a metric ball centred at y of radius ε > 0 and Vol(ε) is its volume. The
resulting approximate posterior is given by

π
ε(x) := pε(x |y) = p(x)gε(y |x)∫

X p(x′)gε(y |x′)dx′
.

The likelihood gε(y |x) cannot be evaluated either, but an auxiliary variable z can be intro-
duced and a kernel constructed to obtain samples from the approximate posterior πε(x,z)
defined as

π
ε(x,z) := pε(x,z |y) ∝ p(x)g(z|x)1ε(z)Vol(ε)−1,

where 1ε(z) is the indicator function for z ∈ Bε(y). This is referred to as hitting the ball
Bε(y). The joint density πε(x,z) admits the posterior πε(x) as its marginal. The most basic
version of ABC is known as rejection ABC (Pritchard et al. [1999]; Tavaré et al. [1997]) and
is summarised in Algorithm 2.4. It consists of drawing a sample x from the prior, simulating
a dataset z from the likelihood conditional on x and accepting x as a sample from the posterior
πε(x,z) if z hits the ball of radius y, as this means x is a good candidate to have generated the
observed data y from this model. Note that for a high-dimensional Y , it may be difficult or

Algorithm 2.4 ABC Rejection sampling

1: Draw x ∼ p(x).
2: Simulate data from the likelihood z ∼ g(·|x).
3: If z ∈ Bε(y), accept x as a sample from the posterior.

inefficient to directly compare y and z. Instead, it is possible to use summary statistics s(z)
and s(y) for the comparison, i.e. 1ε(z) now corresponds to s(z) ∈ Bε(s(y)) . See Marin et al.
[2014] for a discussion on the choice of statistics.

While it allows for independent sampling from the approximate posterior, the ABC
rejection sampler can be extremely inefficient, since proposing candidates from the prior
does not take into account the data or previously accepted candidates (see Section 4.5.4
for an example). To mitigate this issue, an MCMC kernel can be constructed to form a
Markov chain (Xn,Zn)

∞
n=0 with invariant distribution πε(x,z). In Marjoram et al. [2003] a

Metropolis-Hastings MCMC kernel was introduced for sampling from the posterior. First,
note that in Algorithm 2.4, Steps 1 and 2 are equivalent to proposing a sample from the
density p(x)g(z|x). Similarly, to construct a Metropolis-Hastings kernel, define the proposal
density

q(x′,z′|x,z) = q(x′|x)g(z′|x′)
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and accept the candidate x′ as the next sample in the Markov chain with probability

a(x,z,x′,z′) = min
{

1,
πε(x′,z′)q(x,z|x′,z′)
πε(x,z)q(x′,z′|x,z)

}
= min

{
1,

p(x′)q(x|x′)
p(x)q(x′|x)

1ε(z′)
}
, (2.16)

where the second equality is obtained by cancelling out the likelihood densities and noticing
that 1ε(z) = 1. The Metropolis-Hastings kernel is summarised in Algorithm 2.5.

Algorithm 2.5 Metropolis-Hastings ABC kernel

Input: current state (Xn,Zn).
1: Propose X ∼ q(·|Xn).
2: Simulate data Z ∼ g(·|X).
3: With probability a(Xn,Zn,X ,Z) (Equation 2.16), set (Xn+1,Zn+1) := (X ,Z), otherwise,

(Xn+1,Zn+1) := (Xn,Zn).
Output: updated state (Xn+1,Zn+1).

The Metropolis-Hastings kernel is one of the simplest MCMC kernels that can be em-
ployed to sample from πε(x,z). It is more efficient than rejection sampling, as the construction
of the kernel ensures that more computational effort is spent in regions of X that have a
high mass under πε(x,z), as opposed to blindly proposing candidates from the prior only.
However, in order to ensure that we have a good approximation of the true posterior, the ball
radius ε should be small. A consequence of this is that the probability of hitting the ball is
also small. As a result, this MCMC kernel is prone to high rejection rates and slow mixing.
Adaptive approaches such as SMC samplers with tempering in the form of a sequence of
distributions πε1, . . . ,πεd where ε1 > .. . > εd have been employed to alleviate this issue
(Beaumont et al. [2009]; Del Moral et al. [2012a]; Sisson et al. [2007]). Alternatively, in
Lee [2012]; Lee and Łatuszyński [2014], a group of ‘robust’ MCMC kernels is introduced
to improve the mixing of ABC algorithms. The robustness comes from the fact that these
algorithms retain a similar behaviour as ε → 0. These include the 1-hit ABC-MCMC kernel,
described in Section 4.4, which includes a ‘race’ step between the current and proposed states.
A relevant feature of the 1-hit kernel is that due to the race step involved, its computational
time depends on the value of the current state.
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2.8 Reversible jump Markov chain Monte Carlo (RJ-
MCMC)

Initially proposed in Green [1995] and further developed in Green [2003], Reversible Jump
Markov Chain Monte Carlo (RJ-MCMC) is an extension of the Metropolis-Hastings al-
gorithm to more general state spaces. In this framework, the reversible Markov chain
constructed is able to jump between parameter subspaces of varying dimensions, which
makes RJ-MCMC very useful for applications in model selection (Sisson [2005]) such as
changepoint (Del Moral et al. [2006]; Fan and Brooks [2000]; Wyse and Friel [2010]), finite
mixture models (Richardson and Green [1997]; Tadesse et al. [2005]) or time series models
(Brooks et al. [2003]; Vermaak et al. [2004]) with an unknown number of components, as
well as variable selection in regression models (Nott and Leonte [2004]) and knot selection
in curve fitting (Denison et al. [1998]).

Let Y ∈ Y be a vector of observations and let {M1,M2, . . .} be a countable collection
of candidate models. Each model Mk is associated with the vector of parameters xk ∈ X dk

where dk is the dimension of the state space, and varies from model to model. Introduce
the index k ∈ K as an auxiliary model indicator variable, such that we have the following
hierarchical structure for the joint distribution of (k,xk,y)

p(k,xk,y) = p(k)p(xk |k)g(y |xk),

where p(k) is the prior of model indicator k, or in other words the prior for model Mk, p(xk |k)
is the prior distribution of xk under model Mk and g(y |xk) is the likelihood of the data.

To construct the MCMC sampler, consider ξ = (k,xk) to be the state of the Markov chain
where p(k,xk) = p(k)p(xk |k) is the joint prior distribution and the joint posterior

π(ξ ) := p(k,xk|y) =
p(k,xk)g(y |xk)

∑ j∈K

∫
X d j p( j,x′j,y)dx′j

is the target or invariant distribution over joint state space Ξ =
⋃

k∈K

(
{k}×X dk

)
. Fol-

lowing the Metropolis-Hastings algorithm, propose a new state ξ ′ = (k′,xk′) according to
proposal density qM(ξ ′ |ξ ) where M is the type of move and accept ξ ′ as the next sample in
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the Markov chain with probability

a(ξ ,ξ ′) = min
{

1,
π(ξ ′)qM(ξ |ξ ′)

π(ξ )qM(ξ ′ |ξ )

}
= min

{
1,

p(k′,xk′)g(y |xk′)

p(k,xk)g(y |xk)

qM(k,xk |k′,xk′)

qM(k′,xk′ |k,xk)

}
, (2.17)

otherwise, retain the current state ξ . At each iteration of the RJ-MCMC samples, Fan and
Sisson [2011] divide the types of moves M into two major categories:

1. Within-model moves: fix the model index k and update the parameters xk following
standard Gibbs or Metropolis-Hastings algorithms, for example, in which case the
proposal distribution qM is standard.

2. Between-model moves: jointly update the state ξ = (k,xk) by proposing a new state
ξ ′ = (k′,xk′)∼ qM(ξ ′ |ξ ) and matching dimensions before accepting with probability
a(ξ ,ξ ′).

While the within-model moves are straightforward, the between-model moves are more
involved as they include a ‘dimension matching’ element. For example, assume that under
the current model Mk, the current state ξ has dimension dk and the proposed state ξ ′ under
model Mk′ has dimension dk′ where dk ̸= dk′ . We must ensure that the dimensions of
the numerator and denominator in Equation 2.17 match. For that, introduce an auxiliary
variable for the transition M from model Mk to model Mk′ denoted u ∼ hM and of dimension
rk where the density hM is known. The proposal becomes a function of this joint state,
i.e. ξ ′ = sM(ξ ,u) where sM is the change of variable function. Similarly, for the reverse
transition (i.e. model Mk′ to Mk), introduce u′ ∼ h′M of dimension rk′ such that we recover
ξ = s′M(ξ ′,u′) = s′M(sM(ξ ,u),u′). We now have dk+rk = dk′+rk′ and hence the dimensions
of the joint states (ξ ,u) and (ξ ′,u′) match.

When there are multiple possible moves M, we must generally also include the probability
jM of choosing a specific move. For example, in mixture models, jM can correspond to the
probability of performing a ‘death’ move (i.e. remove a component from the mixture) on a
specific mixture component, say component l, and will take the form (probability of death
move) × (probability of selecting component l).

A direct consequence of the detailed balance condition for the Metropolis-Hastings
algorithm (Green [2003]) is that we must satisfy the following equality

π(ξ )qM(ξ |ξ ′)a(ξ ,ξ ′) = π(ξ ′)qM(ξ ′ |ξ )a(ξ ′,ξ ). (2.18)
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Introducing the dimension matching element and its accompanying change of variable,
Equation 2.18 becomes

π(ξ ) jM(ξ )hM(u)a(ξ ,ξ ′) = π(ξ ′) jM(ξ ′)h′M(u′)a(ξ ′,ξ )

∣∣∣∣∂ sM(ξ ,u)
∂ (ξ ,u)

∣∣∣∣ ,
where the last factor corresponds to the Jacobian for the change of variable between (ξ ,u) and
(ξ ′,u′). Thus, the generalised acceptance probability for transdimensional moves becomes

a(ξ ,ξ ′) = min
{

1,
π(ξ ′) jM(ξ ′)h′M(u′)
π(ξ ) jM(ξ )hM(u)

∣∣∣∣∂ sM(ξ ,u)
∂ (ξ ,u)

∣∣∣∣} .

A particular feature of the transdimensionality in RJ-MCMC is that the computational
complexity of within-model moves is affected by the dimension dk of the current model Mk.
Therefore, RJ-MCMC is an example of an algorithm in which the compute time depends on
the state of the Markov chain, as mentioned in Section 2.6. This will be explored further in
Chapter 5.



Chapter 3

Sequential Monte Carlo

3.1 Chapter overview

This chapter continues the literature review and presents sequential Monte Carlo (SMC)
methods, or particle filters and smoothers, which will be heavily featured in Chapters 5 and
6. The chapter begins by introducing state space models and the main inference goals when
dealing with such models, then reviews some of the most commonly used particle filtering
and smoothing algorithms in the literature.

3.2 Introduction to state space models

A state space model is one of the most widely used models in the literature, with applications
such as biosciences (Boys et al. [2000]; Fearnhead and Vasileiou [2009]; Vahid et al. [2020]),
climatology (Hughes et al. [1999]; Zucchini and Guttorp [1991]), signal processing (Li et al.
[2000]; Xie and Evans [1991]), computer vision (Carmi et al. [2012]), and finance (Rydén
et al. [1998]). See Cappé [2001] for a more complete list of applications.

Let (Xt)
∞
t=1 and (Yt)

∞
t=1 be discrete-time processes taking values in X and Y , respectively.

The hidden states or latent variables (Xt)
∞
t=1 form a Markov process with initial distribution

νθ (x1) and transition density fθ (xt |xt−1) where θ ∈ Θ is the vector of hyperparameters. The
observations (Yt)

∞
t=0 are assumed to be independent given the hidden states, with density

gθ (yt |xt). To summarise, the state space model is defined as

X1 ∼ νθ , Xt |(Xt−1 = xt−1)∼ fθ (·|xt−1),

Yt |(Xt = xt)∼ gθ (yt |xt),
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and its joint density is given by

pθ (x1:n,y1:n) = νθ (x1)
n

∏
t=2

fθ (xt |xt−1)
n

∏
t=1

gθ (yt |xt),

where n ∈ N. The first aim is generally to sequentially derive or estimate the posterior
pθ (xt |y1:s) of the latent state at step t given data observed up to step s. The inference aims
can be divided into three categories (Douc et al. [2014]). These are performed keeping the
hyperparameters θ fixed, so we henceforth drop dependence on the hyperparameters from
the notation for simplicity. The three categories are:

Filtering when s = t, for which it is straightforward to derive the following recursion
(Doucet et al. [2001]) for t = 2, . . . ,n

Predict : p(xt |y1:t−1) =
∫
X

f (xt |xt−1)p(xt−1|y1:t−1)dxt−1, (3.1)

Update : p(xt |y1:t) =
g(yt |xt)p(xt |y1:t−1)∫

X g(yt |xt)p(xt |y1:t−1)dxt
, (3.2)

where p(xt |y1:t−1) is known as the predictive density and p(xt |y1:t) is known as the
filtering distribution.

Smoothing when s > t; it is also possible to derive a backward recursion (Briers et al.
[2010]) for t = s−1, . . . ,1,

p(xt |y1:s) = p(xt |y1:t)
∫
X

p(xt+1|y1:s) f (xt+1|xt)

p(xt+1|y1:t)
dxt+1, (3.3)

where p(xt |y1:s) is known as the marginal smoothing distribution.

Forecasting when s < t.

A filtering pass through the full data y1:n only provides posteriors p(xt |y1:t) based on obser-
vations up to t ≤ n. As a result, it must generally be followed by a backward smoothing
pass in order to obtain posteriors p(xt |y1:n) based on all observations for t = n, . . . ,1. In this
case, the filtering step is a forward pass through the data and the smoothing a backward
pass in what is known as the forward filtering-backward smoothing recursion introduced in
Kitagawa [1987].

It is also of interest in particle filtering and smoothing to derive the full posterior
p(x1:t |y1:s) up to step s ≥ t, for which it is possible to obtain a recursion for s = t:

p(x1:t |y1:t) = p(x1:t−1|y1:t−1)
g(yt |xt) f (xt |xt−1)

p(yt |y1:t−1)
.
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This is referred to as the joint smoothing distribution. A backward decomposition can also
be obtained for s > t given the recursion in Equation 3.3:

p(x1:t |y1:s) = p(xs|y1:s)
s−1

∏
t=1

p(xt |y1:t) f (xt+1|xt)∫
X p(xt |y1:t) f (xt+1|xt)

.

Finally, it is often also of interest to evaluate smoothing expectations

St := E [St (X1:t) |y1:t ] =
∫
X t

St (x1:t) p(x1:t |y1:t)dx1:t , (3.4)

a task for which filtering and smoothing are both needed. In this chapter, we focus on various
filtering and smoothing methods that have been developed.

3.2.1 Finite state space models

Consider the special case in which the state space is finite, e.g. X = {1, . . . ,K}. In this case,
the state space model is sometimes referred to as a Hidden Markov Model (HMM)1. For
finite state spaces, filtering and smoothing can be performed exactly by rewriting Equations
3.1-3.3 as follows:

Filtering for discrete state space,

p(xt |y1:t−1) = ∑
xt−1∈X

f (xt |xt−1)p(xt−1|y1:t−1),

p(xt |y1:t) =
g(yt |xt)p(xt |y1:t−1)

∑xt∈X g(yt |xt)p(xt |y1:t−1)
,

Smoothing for discrete state space and s > t,

p(xt |y1:s) = p(xt |y1:t) ∑
xt+1∈X

p(xt+1|y1:s) f (xt+1|xt)

p(xt+1|y1:t)
.

For the rest of this chapter, we denote the marginal posterior as follows: for s, t ∈ J1,nK,

πs(xt) := pt(xt |y1:s)

for notational simplicity. The forward and backward passes to obtain the marginal smoothing
distribution p(xt |y1:n) = πn(xt) are summarised in Algorithms 3.1 and 3.2. Similar construc-

1Though we note that the terms ‘general state space model’ and ‘HMM’ are often used interchangeably,
regardless of whether the state space is finite.
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tions of these algorithms, which achieve the same result, are also available, such as the
Baum-Welch algorithm (Baum et al. [1970]) and in Douc et al. [2014]; Scott [2002].

Algorithm 3.1 Forward Filtering

1: Initialise π0(x1) := p(x1) = ν(x1).
2: for t = 1, . . . ,n do
3: Forward recursion

Ct = ∑
xt∈X

πt−1(xt)g(yt |xt),

πt(xt) =
1
Ct

πt−1(xt)g(yt |xt),

4: if t < n do
πt(xt+1) = ∑

xt∈X

πt(xt) f (xt+1|xt).

5: end for
Output: {πt(xt)}n

t=1.

Algorithm 3.2 Backward Smoothing

Input: {πt(xt)}n
t=1 output from Algorithm 3.1.

1: Initialise with πn(xn).
2: for t = n−1, . . . ,1 do
3: Backward smoothing

Dt(xt+1) = ∑
xt∈X

πt(xt) f (xt+1|xt),

πn(xt) = πt(xt) ∑
xt+1∈X

πn(xt+1)
f (xt+1|xt)

Dt(xt+1)
.

4: end for
Output: {πn(xt)}n

t=1.

Note that the density πs(xt) is a vector of length K (one component per possible state).
The need to sum over the state space X in order to update πs(xt) makes each iteration of these
algorithms O(K2) in complexity, which can become computationally prohibitive for large K.
Additionally, the need to store {πt(xt)}n

t=1 in order to perform backward smoothing can be
costly in terms of memory for a particularly large n. An alternative way of implementing the
filtering and smoothing algorithms is to approximate them via particle filtering and smoothing
(see Sections 3.3 and 3.4).
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3.2.2 Linear Gaussian state space models

One of the most basic families of infinite state space models is known as the linear Gaussian
state space models, in which both f and g are assumed to be Gaussian densities, i.e. let
X = Rc and Y = Rd , then for t > 1

Xt = AtXt−1 +Vt , Vt ∼ N (0,Qt),

Yt = BtXt +Wt , Wt ∼ N (0,Rt),

where the matrices At ∈ Rc×c and Bt ∈ Rd×c. We also assume the initial state X1 is Gaussian
with mean x0 and covariance Σ0. The Gaussian assumption makes it possible to evaluate
the recursions in Equations 3.1 and 3.2 directly via the Kalman filter (Kalman [1960];
Kalman and Bucy [1961]). Denote the predicted state Xt|s := E [Xt |Y1:s] and covariance
Pt|s := Cov [Xt |Y1:s] = E

[
(Xt −Xt|s)(Xt −Xt|s)

⊺|Y1:s
]
. For a sample y1:n of n observations,

the Kalman filter to sequentially evaluate the filtering distribution πt(xt) := p(xt |y1:t) for
t = 1, . . . ,n is described in Algorithm 3.3. Derivations of the Kalman filter are available in
Byron et al. [2004]; Meinhold and Singpurwalla [1983]; West and Harrison [2006].

Algorithm 3.3 The Kalman Filter
1: Initialise X1|1 = x0 and P1|1 = Σ0.
2: for t = 2, . . . ,n do
3: Predict state and covariance estimates

Xt|t−1 = AtXt−1|t−1,

Pt|t−1 = AtPt−1|t−1A⊺
t +Qt .

4: Update state and covariance estimates

Kt = Pt|t−1Bt
(
BtPt−1|t−1B⊺

t +Rt
)−1

,

Xt|t = Xt|t−1 +Kt
(
Yt −BtXt|t−1

)
,

Pt|t = (I−KtBt)Pt|t−1,

where Kt is known as the Kalman gain.
5: end for

Output:
{
(Xt|t ,Pt|t)

}n
t=1.

Once the Kalman filter has been run, it is also possible to perform the backward pass
in Equation 3.3 exactly in order to obtain the marginal smoothing distribution πn(xt) for
t = n, . . . ,1. The backward smoothing pass is described in Algorithm 3.4. See Ansley and
Kohn [1982]; Byron et al. [2004]; Douc et al. [2014] for a derivation.
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Algorithm 3.4 The Kalman Smoother

Input:
{
(Xt|t ,Pt|t)

}n
t=1 obtained in Algorithm 3.3.

1: Initialise with (Xn|n,Pn|n).
2: for t = n−1, . . . ,1 do
3:

Jt = Pt|tA
⊺
t+1
(
At+1Pt|tA

⊺
t+1 +Qt+1

)−1
,

Xt|n = Xt|t + Jt
(
Xt+1|n −At+1Xt|t

)
,

Pt|n = Pt|t + Jt
(
Pt+1|n −At+1Pt|tA

⊺
t+1 −Qt+1

)
J⊺t .

4: end for
Output:

{
(Xt|n,Pt|n)

}n
t=1.

The Kalman filter and smoother are very convenient, as they are exact and easy to
implement. However, for large c and d, the matrix multiplications and inversions can easily
become computationally prohibitive. Additionally, the Gaussian assumption limits the range
of models that can be explored, which is why the alternative approach known as particle
filtering and smoothing is often employed nowadays.

3.3 Particle filtering

Apart from very simple cases, as described in Sections 3.2.1 and 3.2.2, the recursions in
Equations 3.1-3.4 are impossible to evaluate. Fortunately, a number of methods, known as
Sequential Monte Carlo (SMC) have been developed, which allow particle approximations
to be obtained of the form

π̂t(xt) =
N

∑
i=1

ω
(i)
t δ

X (i)
t
(xt), (3.5)

where δx0(x) denotes the Dirac delta mass located at x0, X (1:N)
t denotes the particles and

ω
(1:N)
t their corresponding normalised weights, i.e. ω

(i)
t > 0 and ∑

N
i=1 ω

(i)
t = 1 for t = 1, . . . ,n.

Combined, (X (1:N)
t ,ω

(1:N)
t ) makes up the particle approximation of the posterior πt(xt). See

Cappé et al. [2006]; Chopin and Papaspiliopoulos [2020]; Douc et al. [2014]; Doucet et al.
[2001] for comprehensive reviews of SMC methods. In this section, we focus on various
SMC algorithms that have been developed to perform filtering, known as particle filters. The
particle smoothers, developed for smoothing purposes, will be explored in Section 3.4.
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3.3.1 Preliminaries

When it is possible to sample directly from the filtering distribution πt(xt), the weights are
uniform, i.e. ω

(i)
t = 1

N for all i ∈ J1,NK and the Monte Carlo approximations in Equations
3.5 are straightforward to obtain by marginalising the Monte Carlo approximation of the
joint posterior. This is known as perfect Monte Carlo. However, this is very rarely the case.

Another basic approach is known as importance sampling. It consists of introducing an
importance distribution ηt(xt) := q(xt |y1:t) from which is easy to sample, and then evaluating
the (unnormalised) importance weights given by

wt (xt) :=
πt (xt)

ηt (xt)
,

which can then be normalised as follows:

ω
(i)
t =

wt

(
X (i)

t

)
∑

N
j=1 wt

(
X ( j)

t

) ,
for all i ∈ J1,NK in order to obtain a particle approximation of the posterior. For more
advanced problems, approaches such as MCMC can also be employed if needed. However,
importance sampling under this basic form is not convenient for recursive estimation, as it
simulates and weights the filtering distribution with respect to the full data y1:t up to step t. If
one wishes to obtain the filtering distribution for y1:t+1, they must restart computations from
scratch, and the computational complexity of evaluating πt(xt) increases with t = 1, . . . ,n.
The same observation can be made for MCMC methods, which is why recursive approaches
are generally preferable for sequential data.

3.3.2 Sequential importance sampling (SIS)

It is possible to implement importance sampling sequentially in order to sample from the
filtering distribution πt(xt), in what is known as Sequential Importance Sampling (SIS).
Rewrite the recursion on the filtering distribution in Equations 3.1 and 3.2 as follows:

πt(xt) ∝ g(yt |xt)
∫
X

f (xt |xt−1)πt−1(xt−1)dxt−1. (3.6)

Since the integral in Equation 3.6 is generally intractable, we can employ a Monte Carlo
approximation. Let (X (1:N)

1:t−1 ,ω
(1:N)
t−1 ) be the particle approximation of the filtering distribution
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πt−1(xt−1). Approximate Equation 3.6 as follows:

π̂t(xt) ∝ g(yt |xt)
N

∑
i=1

ω
(i)
t−1 f

(
xt |X (i)

t−1

)
. (3.7)

This can be done via importance sampling with proposal density ηt(xt |xt−1) := q(xt |xt−1,yt).
Note that a proposal density of the form q(xt |xt−1,y1:t) could also be used; our choice here
stems from the fact that the optimal proposal is of the form q(xt |xt−1,yt). From this, we can
update the importance weights as follows:

wt (xt) ∝ wt−1 (xt−1)
g(yt |xt) f (xt |xt−1)

ηt(xt |xt−1)︸ ︷︷ ︸
w̃(xt−1,xt)

, (3.8)

where w̃(xt−1,xt) is known as the incremental weight. Note that the fact that the recursion is
only up to a constant is not an issue, as the normalising constants cancel out when normalising
the weights. The SIS algorithm is summarised in Algorithm 3.5.

Algorithm 3.5 Sequential Importance Sampling (SIS)

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Initialise at t = 1:

1: Sample X (i)
1 ∼ η1.

2: Compute the importance weights wt

(
X (i)

1

)
=

π1

(
X (i)

1

)
η1

(
X (i)

1

) and normalise them to obtain ω
(i)
1 .

Given weighted particle sample
(

X (1:N)
t−1 ,ω

(1:N)
t−1

)
.

3: for t = 2, . . . ,n do
4: Sample X (i)

t ∼ ηt

(
·|X (i)

t−1

)
.

5: Compute the incremental weights w̃
(

X (i)
t−1,X

(i)
t

)
according to Equation 3.8, then

normalise the importance weights to obtain ω
(i)
t as follows:

ω
(i)
t =

ω
(i)
t−1w̃

(
X (i)

t−1,X
(i)
t

)
∑

N
j=1 ω

( j)
t−1w̃

(
X ( j)

t−1,X
( j)
t

) .
6: end for

It is also straightforward to implement SIS to sequentially sample from the joint smooth-
ing posterior πt(x1:t) := p(x1:t |y1:t) directly. Indeed, most of the particle filtering algorithms
in this section can easily be adapted to sequentially sample from the joint smoothing posterior
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instead of the filtering distribution (Cappé et al. [2007]), using the same incremental weights.
However, in practice, sampling from a very high dimensional state space causes the weights
to degenerate very quickly, so that after relatively few steps t, very few particles contribute
to the approximation. As a result, the low-dimensional filtering distribution is generally
privileged in particle filtering.

3.3.3 Sequential importance resampling (SIR)

When using SIS, a well-known issue becomes apparent as the algorithm progresses through
the steps t = 1, . . . ,n. The weights of a few particles will become much larger than the
rest, and in the end, the algorithm will likely return a single particle with weight 1 while
all the other particles have zero weight (Del Moral and Doucet [2003]). This is known as
weight degeneracy (Doucet et al. [2000]; Doucet and Johansen [2009]; Kong et al. [1994]).
Fortunately, it is possible to avoid this issue by introducing a resampling step (Gordon
et al. [1993]). This consists of drawing indices ι

(1:N)
t with probabilities corresponding (or

proportional) to the normalised weights ω
(1:N)
t , which we denote as follows:

ι
(i)
t ∼ P

(
ω

(1:N)
t

)
, i = 1, . . . ,N.

Many resampling methods are available. See Gerber et al. [2019]; Murray et al. [2016a] for
reviews and theoretical results on the available resampling schemes. However, while crucial,
resampling leads to an increase in the variance of Monte Carlo approximations, and doing
it too often leads to a lower number of distinct particles, so SMC algorithms often opt for
an adaptive resampling strategy (Del Moral et al. [2012b]). This strategy consists of only
resampling the particles when necessary, i.e. when the quality of the particle approximation
is poor. A common method for assessing this is to evaluate the effective sample size given by

ESSt =

[
N

∑
i=1

(
ω

(i)
t

)2
]−1

(3.9)

and to resample if the effective sample size falls below a user-defined threshold TESS. The
adaptive resampling step is summarised in Algorithm 3.6.

For the rest of this chapter, we refer to the adaptive resampling step of algorithms as(
ι
(1:N)
t ,ω

(1:N)
t

)
:= resample

(
ω

(1:N)
t

)
,

where resampling at every iteration is simply a special case of the adaptive resampling
scheme where TESS = N.
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Algorithm 3.6 Adaptive Resampling

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Input: At step t, normalised weights ω

(1:N)
t .

1: Evaluate effective sample size ESSt using Equation 3.9.
2: if ESSt < TESS then ▷ Resample
3: Sample indices ι

(i)
t ∼ P

(
ω

(1:N)
t

)
.

4: Reset weights ω̃
(i)
t := 1

N .
5: else ▷ Do not resample
6: ι

(i)
t := i

7: Keep weights ω̃
(i)
t := ω

(i)
t .

8: end if
Output:

(
ι
(1:N)
t , ω̃

(1:N)
t

)
.

Introducing resampling to the SIS algorithm results in the Sequential Importance Resam-
pling (SIR) algorithm summarised in Algorithm 3.7. Note that the SIR algorithm displays
the three key steps of particle filters, namely resample→propagate→weight. These three key
steps will be present in all particle filtering algorithms in some form or another for the rest of
this chapter.

Algorithm 3.7 Sequential Importance Resampling (SIR)

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Initialise at t = 1:

1: Sample X (i)
1 ∼ η1.

2: Compute the importance weights w1

(
X (i)

1

)
=

π1

(
X (i)

1

)
η1

(
X (i)

1

) and normalise them to obtain

ω
(i)
1 .

Given weighted particle sample
(

X (1:N)
t−1 ,ω

(1:N)
t−1

)
,

3: for t = 2, . . . ,n do
4: (RESAMPLE)

(
ι
(1:N)
t ,ω

(1:N)
t

)
:= resample

(
ω

(1:N)
t

)
.

5: (PROPAGATE) Sample X (i)
t ∼ ηt

(
·|X (ι

(i)
t )

t−1

)
.

6: (WEIGHT) Compute the incremental weights w̃
(

X (ι
(i)
t )

t−1 ,X (i)
t

)
according to Equation

3.8, then normalise the importance weights to obtain ω
(i)
t .

7: end for
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3.3.4 The bootstrap filter

Now that we have described the basic form of a particle filter, we can begin exploring a few
of the most commonly used particle filters. The bootstrap filter was introduced in Gordon
et al. [1993] and can be seen as a special case of SIR where each proposal of the importance
distribution corresponds to the Markov state transition density, i.e. ηt(xt |xt−1) = f (xt |xt−1).
It is straightforward to establish from Equation 3.8 that as a result of this, the incremental
weights are given by

w̃(xt−1,xt) = g(yt |xt).

The bootstrap filter (of which a typical step is summarised in Algorithm 3.8) is one of the
most convenient and easy to implement algorithms. It is very flexible, as it only suffices to
adapt the state transition f (xt |xt−1) and observation g(yt |xt) densities to apply it to a new
state space model in which the former can be sampled from and the latter can be evaluated
pointwise. It is therefore widely used in the literature (Doucet et al. [2001]).

Algorithm 3.8 The Bootstrap filter

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Input: weighted particle sample

(
X (1:N)

t−1 ,ω
(1:N)
t−1

)
.

1:
(

ι
(1:N)
t ,ω

(1:N)
t

)
:= resample

(
ω

(1:N)
t

)
.

2: Sample X (i)
t ∼ f

(
·|X (ι

(i)
t )

t−1

)
.

3: Compute the incremental weights w̃
(

X (i)
t

)
= g

(
yt |X (i)

t

)
then normalise the importance

weights to obtain ω
(i)
t .

Output: updated particle sample
(

X (1:N)
t ,ω

(1:N)
t

)
.

An issue the bootstrap filter faces is that its proposal density f (xt |xt−1) is not ‘aware’ of
the quality of its proposals. For example, a model in which the likelihood density g(yt |xt)

at step t has a peak in a small area of the state space will yield few particles with high
importance weights and many particles with very low weights, thus increasing the variance of
the weights. One possible solution is to simply increase the size N of the particle population,
though this comes at a computational cost. An alternative solution is for the proposal density
to suggest an ‘educated’ proposal based on the current observation yt . If the proposal matches
the target closely, the values of weights will be closer to equal and thus their variance reduced.
Note that we can write

g(yt |xt) f (xt |xt−1) = p(xt ,yt |xt−1) = p(xt |yt ,xt−1)p(yt |xt−1), (3.10)
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so setting the proposal η
opt
t (xt |xt−1) = p(xt |yt ,xt−1) yields the optimal incremental weights

w̃opt(xt−1) = p(yt |xt−1) which do not depend on the value of the state Xt . This was employed
in Kong et al. [1994]; Liu and Chen [1995] and is the optimal choice of proposal as it
minimises the variance of the incremental weights (see Nemeth [2014] Proposition 3.4.1 for
a proof). The issue then is that this optimal filter does require for it to be possible to sample
from the posterior p(xt |yt ,xt−1), which is rarely the case.

3.3.5 The auxiliary particle filter (APF)

First of all, approximate the optimal proposal by defining the auxiliary density as follows:

ρ(xt ,yt |xt−1) = ρ(xt |yt ,xt−1)ρ(yt |xt−1), (3.11)

where ρ(xt |yt ,xt−1) is easy to sample from and ρ(yt |xt−1) can be evaluated point-wise.
Given weighted particle sample (X (1:N)

t−1 ,ω
(1:N)
t−1 ), rewrite the particle approximation of

the filtering distribution in Equation 3.7 using the equality in Equation 3.10:

π̂(xt) ∝

N

∑
i=1

ω
(i)
t−1 p

(
yt |X (i)

t−1

)
︸ ︷︷ ︸

ω̄
(i)
t−1

p
(

xt |yt ,X
(i)
t−1

)
,

which can be seen as a mixture of densities p(xt |yt ,X
(i)
t−1) with mixture weights ω̄

(i)
t−1. At

step t, the auxiliary particle filter (APF) introduced by Pitt and Shephard [1999] (see also
Carpenter et al. [1999]) targets the augmented density

πt(xt , i) := p(xt , i|y1:t) ∝ ω
(i)
t−1 p

(
yt |X (i)

t−1

)
p
(

xt |yt ,X
(i)
t−1

)
= ω

(i)
t−1g(yt |xt) f

(
xt |X (i)

t−1

)
,

where i is the index for the i-th mixture component (and also the i-th particle in the population).
The APF also modifies the importance distribution by simulating an index for each particle
according to a distribution whose weights ω̄

(1:N)
t−1 take into account its ‘compatibility’ with

the new observation yt (Whiteley and Johansen [2010]). As a result, the proposal density for
the i-th particle is of the form

ηt (xt , i) := qt(xt , i|y1:t) = ω
(i)
t−1ρ

(
yt |X (i)

t−1

)
ρ

(
xt |yt ,X

(i)
t−1

)
,

which is equivalent to resampling the particle population using the weights ω̄
(i)
t−1 and then
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propagating the particles by sampling from the density ρ (·|yt ,xt−1). This results in the
following importance weights:

wt(xt−1,xt) =
π(xt , i)
η(xt , i)

∝
g(yt |xt) f (xt |xt−1)

ρ(yt |xt−1)ρ(xt |yt ,xt−1)
. (3.12)

Given particle population X (1:N)
t , the importance weights can be normalised to obtain ω

(1:N)
t .

A typical step of the APF incorporating adaptive resampling (Papaspiliopoulos [2010]) is
summarised in Algorithm 3.9.

Algorithm 3.9 Auxiliary particle filter (APF)

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Input: weighted particle sample

(
X (1:N)

t−1 ,ω
(1:N)
t−1

)
.

1: Evaluate effective sample size ESSt−1 using Equation 3.9.
2: if ESSt−1 < TESS then
3: Sample indices ι

(i)
t ∼ P

(
ω

(1:N)
t−1 ρ

(
yk|X

(1:N)
t−1

))
.

4: Set υ
(i)
t−1 := ρ

(
yt |X (ι

(i)
t )

t−1

)−1

.

5: else
6: Keep ι

(i)
t := i.

7: Set υ
(i)
t−1 := ω

(i)
t−1.

8: end if
9: Sample X (i)

t ∼ ρ

(
·|yt ,X

(ι
(i)
t )

t−1

)
.

10: Update weights wt

(
X (ι

(i)
t )

t−1 ,X (i)
t

)
∝ υ

(i)
t−1w̃t

(
X (ι

(i)
t )

t−1 ,X (i)
t

)
, where

w̃t (xt−1,xt) =
g(yt |xt) f (xt |xt−1)

ρ (xt |yt ,xt−1)
,

and normalise to obtain ω
(1:N)
t .

Output: updated particle sample
(

X (1:N)
t ,ω

(1:N)
t

)
.

A few observations can be made. Firstly, note that in the optimal case where p(xt |yt ,xt−1)

can be sampled from and p(yt |xt−1) can be evaluated pointwise, the importance weights in
Equation 3.12 are all equal. This is referred to in Pitt and Shephard [1999] as the fully adapted
APF. Secondly, by setting ρ(yt |xt−1) = 1, we simply recover the SIR algorithm. Lastly, if in
addition to that, we set ρ(xt |yt ,xt−1) = f (xt |xt−1), then we recover the bootstrap filter. The
last two observations illustrate the fact that the APF can be thought of as a generalised SIR
algorithm.
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3.3.6 The marginal particle filter (MPF)

Another approach to reduce the variance of the importance weights is known as the marginal
particle filter (MPF). It was first introduced in Klaas et al. [2012] as a method to sample
directly from the filtering distribution πt(xt) instead of the joint smoothing distribution
π(x1:t). The MPF approximates the recursion in Equation 3.6 directly by defining a ‘marginal’
proposal density as follows. Given weighted particle population (X (1:N)

t−1 ,ω
(1:N)
t−1 ),

ηt(xt) :=
N

∑
i=1

ω
(i)
t−1ηt

(
xt |X (i)

t−1

)
,

and the importance weights are defined as

wt (xt) ∝

g(yt |xt)∑
N
j=1 ω

( j)
t−1 f

(
xt |X ( j)

t−1

)
∑

N
j=1 ω

( j)
t−1ηt

(
xt |X ( j)

t−1

) .

The optimal choice of proposal here is to take η
opt
t (xt |xt−1) = p(xt |yt ,xt−1)p(yt |xt−1) as this

results in equal weights. If the densities p(xt |yt ,xt−1) and p(yt |xt−1) are unavailable, it is
straightforward to adapt the APF into what is referred to in Klaas et al. [2012] as the auxiliary
marginal particle filter (AMPF), by adapting the proposal density to approximate the optimal
proposal

ηt(xt) =
N

∑
i=1

ω
(i)
t−1ρ

(
yt |X (i)

t−1

)
ρ

(
xt |yt ,X

(i)
t−1

)
,

where ρ (yt |xt−1) and ρ (xt |yt ,xt−1) are defined in Equation 3.11. The importance weights
are similarly adapted to return

wt (xt) ∝

g(yt |xt)∑
N
j=1 ω

( j)
t−1 f

(
xt |X ( j)

t−1

)
∑

N
j=1 ω

( j)
t−1ρ

(
yt |X ( j)

t−1

)
ρ

(
xt |yt ,X

( j)
t−1

) .
A typical step of the AMPF is summarised in Algorithm 3.10. For Step 1 of the algorithm,
Klaas et al. [2012] suggest stratified sampling, and Gustafsson [2013] discusses how to
perform this step. An important observation to make is that the computational cost of MPF
algorithms is O(N2), so the choice of application should ensure that the variance reducing
benefits of MPF are not outweighed by the performance costs. It is also possible to reduce
this complexity to linear, as discussed in Gustafsson [2013].

Note that once again the bootstrap particle filter can be recovered by setting
ρ(xt |yt ,xt−1) = f (xt |xt−1) and ρ(yt |xt−1) = 1.
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Algorithm 3.10 Auxiliary marginal particle filter (AMPF)

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Input: weighted particle sample

(
X (1:N)

t ,ω
(1:N)
t

)
.

1: Sample X (i)
t ∼ q(·|y1:t) where

q(xt |y1:t) ∝

N

∑
i=1

ω
(i)
t−1ρ

(
yt |X (i)

t−1

)
ρ

(
Xt |yt ,X

(i)
t−1

)
.

2: Update weights

wt

(
X (i)

t

)
∝

g
(

yt |X (i)
t

)
∑

N
j=1 ω

( j)
t−1 f

(
X (i)

t |X ( j)
t−1

)
∑

N
j=1 ω

( j)
t−1ρ

(
yt |X ( j)

t−1

)
ρ

(
X (i)

t |yt ,X
( j)
t−1

)
and normalise to obtain ω

(1:N)
t .

Output: updated particle sample
(

X (1:N)
t ,ω

(1:N)
t

)
.

3.4 Particle smoothing

Recall that particle filtering only provides estimates for the filtering distribution πt(xt) up
to step t. If one wishes to estimate the joint posterior, or joint smoothing distribution,
πs(x1:t) := p(x1:t |y1:s) for t ≤ s ≤ n, particle smoothing must also be employed. Some of the
main motivations for particle smoothing are: obtaining a ‘corrected’ or smoothed posterior
for state Xt in light of new observations since step t, and parameter inference such as MLE
via EM or the estimation of the score and OIM.

3.4.1 Preliminaries

Let (X (1:N)
t ,ω

(1:N)
t ) be the particle population at steps t = 1, . . . ,n obtained using any particle

filter. The naïve approach to performing particle smoothing, referred to in Douc et al. [2014]
as the poor man’s smoother, is to keep track of the resampled indices over time as the particle
filter runs so that it is possible to reconstruct a particle’s ancestral path. If ι

(i)
t is the index of

the particle at step t −1, known as the ancestor, from which particle X (i)
t was generated for

t = 1, . . . ,n, define the sequence of ancestor variables ζ
(i)
1:n so that for t = 1, . . . ,n−1,

ζ
(i)
n = i ζ

(i)
t = ι

(ζ
(i)
t+1)

t+1 ,
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where ζ
(i)
t is the index of the ancestor at step t of what is now (at step n) the i-th particle.

Then, at any step t, the ancestral path of particle X (i)
t can be recovered as

Z(i)
t :=

(
X (ζ

(i)
1 )

1 , . . . ,X (ζ
(i)
t )

t

)
.

from this, a particle approximation (Z(1:N)
t ,ω

(1:N)
t ) of the joint smoothing distribution πt(x1:t)

can be recovered, and from this, it is straightforward to marginalise in order to obtain particle
approximations of the marginal smoothing distributions πs(xt) for t ≤ s ≤ n. However, unless
the number N of particles is asymptotically large, this is a very poor approximation. Indeed,
because of the resampling step, the number of unique values representing the marginal at
any fixed step t quickly falls to 1 as the particle smoother progresses (see Douc et al. [2014],
Example 11.2). This problem is known as path degeneracy.

While it is essential to keep the resampling step in particle filters, it makes path degeneracy
unavoidable in naïve implementations such as the poor man’s smoother. Fortunately, a variety
of particle smoothers have been developed to mitigate, and even eliminate, this issue.

3.4.2 Forward-filtering backward smoothing (FFBSm)

The forward-filtering backward smoothing (FFBSm) algorithm (Doucet et al. [2000];
Hürzeler and Künsch [1998]; Kitagawa [1987]) is simply an extension of the forward
backward approach employed for a finite state space model in Section 3.2.1 to particle
methods and does not suffer from path degeneracy. A particle approximation of filtering
distributions πt(xt) for steps t = 1, . . . ,n can be obtained in a forward pass by employing
any available particle filter. For the backward pass, recall the recursion for the marginal
smoothing distribution in Equation 3.3: for t = n−1, . . . ,1,

πn(xt) = πt(xt)
∫
X

πn(xt+1) f (xt+1|xt)∫
X πn(xt+1) f (xt+1|xt)dxt

dxt+1. (3.13)

The FFBSm algorithm simply aims to employ the Monte Carlo approximation of Equation
3.13. Given particle populations (X (1:N)

t ,ω
(1:N)
t ) approximating the filtering distributions

πt(xt) for t = 1, . . . ,n, the backward smoothing pass updates or ‘smooths out’ the particle
weights in order to return the marginal smoothing distributions as follows. Note first of all
that the filtering and marginal smoothing distributions coincide at step n, i.e. for πn(xn). Start



3.4 Particle smoothing 49

from the particle population (X (1:N)
n ,ω

(1:N)
n ) of πn(xn), then for steps t = n−1, . . . ,1 we have

π̂n(xt) =
N

∑
i=1

υ
(i)
t δ

X (i)
t
(xt),

where υ
(1:N)
t denotes the self-normalising, marginal smoothing weights given by

υ
(i)
t = ω

(i)
t

N

∑
j=1

υ
( j)
t+1 f

(
X ( j)

t+1|X
(i)
t

)
∑

N
k=1 ω

(k)
t f

(
X ( j)

t+1|X
(k)
t

) , (3.14)

and υ
(1:N)
n =ω

(1:N)
n . Then, the weighted sample (X (1:N)

t ,υ
(1:N)
t ) is a particle approximation of

the marginal smoothing distribution πn(xt). This particular implementation of the backward
pass is sometimes known as marginal backward smoothing and is summarised in Algorithm
3.11. Note that using the backward decomposition in Equation 3.2, it is also possible to
directly obtain a particle approximation of the joint smoothing distribution πn(x1:t) given by

π̂n(x1:t) =
N

∑
i1=1

· · ·
N

∑
it=1

t−1

∏
k=1

ω
(ik)
k f

(
X (ik+1)

k+1 |X (ik)
k

)
∑

N
j=1 ω

( j)
k f

(
X (ik+1)

k+1 |X ( j)
k

)
ω

(it)
t δ

X i1
1 ,...,X it

t
(x1:t). (3.15)

However, computing Equation 3.15 is a hugely intensive task of computational complexity
O(Nn), so the motivation behind the implementation of marginal backward smoothing
is justified. While more practical and certainly cheaper, each iteration of the FFBSm
algorithm is still O(N2), and the algorithm requires that the full history of estimated filtering
distributions for t = 1, . . . ,n be retained, so also comes at a memory cost.
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Algorithm 3.11 Forward-Filtering Backward Smoothing (FFBSm)

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Input: weighted particle sample

(
X (1:N)

t ,ω
(1:N)
t

)
approximating the filtering distribution

for t = 1, . . . ,n from a particle filter.
1: Set υ

(i)
n = ω

(i)
n .

2: for t = n−1, . . . ,1 do
3: Set

D( j)
t =

N

∑
k=1

ω
(k)
t f

(
X ( j)

t+1|X
(k)
t

)
.

4: Update

υ
(i)
t = ω

(i)
t

N

∑
j=1

υ
( j)
t+1

D( j)
t

f
(

X ( j)
t+1|X

(i)
t

)
.

5: end for
Output: weighted particle sample

(
X (1:N)

t ,υ
(1:N)
t

)
approximating the marginal smooth-

ing distribution for t = 1, . . . ,n.

3.4.3 Forward-filtering backward simulation (FFBSi)

An alternative to FFBSm is known as forward-filtering backward simulation (FFBSi) (Godsill
et al. [2004]) and is more straightforward to implement. It consists of sampling backwards
from the sequence of filtering distribution approximations in order to obtain a realisation
from the joint smoothing distribution.

At step t, given weighted particle samples
(

X (1:N)
t ,ω

(1:N)
t

)
approximating the filtering

distributions for t = 1, . . . ,n output by any particle filter, define the Markov transition matrix
over the set of particle indices:

Λ
(i, j)
t =

ω
( j)
t f

(
X (i)

t+1|X
( j)
t

)
∑

N
k=1 ω

(k)
t f

(
X (i)

t+1|X
(k)
t

) , (i, j) ∈ J1,NK2.

Starting at step n, sample an index Jn ∼ P(ω(1:N)
n ). Then, progressing backwards, i.e. for

steps t = n− 1, . . . ,1, sample the next index Jn ∼ P(Λ(Jt+1,1:N)
t ) from the Jt+1-th row of

the matrix Λt := (Λ
(1:N,1:N)
t ). The FFBSi algorithm is summarised in Algorithm 3.12. By

sampling N indices J(1:N)
t at each step t instead of a single one, it is possible to construct

an unbiased estimator of FFBSm, which can essentially be viewed as a Rao-Blackwellised
version of FFBSi.
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Algorithm 3.12 Forward-Filtering Backward Simulation (FFBSi)

Where (i, j) appears, the operation is performed for all (i, j) ∈ J1,NK2.
Input: weighted particle sample

(
X (1:N)

t ,ω
(1:N)
t

)
approximating the filtering distribution

for t = 1, . . . ,n from a particle filter.
1: Sample Jn ∼ P

(
ω

(1:N)
n

)
.

2: for t = n−1, . . . ,1 do.
3: Set for j = 1, . . . ,N

D( j)
t =

N

∑
k=1

ω
(k)
t f

(
X ( j)

t+1|X
(k)
t

)
.

4: Compute the matrix

Λ
(i, j)
t =

ω
( j)
t

D( j)
t

f
(

X (i)
t+1|X

( j)
t

)
.

5: Sample
Jt ∼ P

(
Λ
(Jt+1,1:N)
t

)
.

6: end for
Output: simulated sample

(
X (Jt)

t

)
for t = 1, . . . ,n from the joint smoothing distribution.

The need to recompute the matrix Λt for all steps t makes each iteration of the FFBSi
algorithm of O(N2) complexity. Under mild assumptions, it is however possible to reduce
this complexity to O(N) by employing an Accept-reject scheme, described next.

Given weighted particle samples (X (1:N)
t ,ω

(1:N)
t ) approximating the filtering distributions

for t = 1, . . . ,n output by a particle filter, assume that the Markov transition density for the
state f is uniformly bounded, i.e.

Assumption 3.1. There exists an upper bound ε > 0 such that

f (x|x′)≤ ε

for all (x,x′) ∈ X ×X .

Given Assumption 3.1, it is possible to sample the indices Jt for t = n, . . . ,1 as described
in Algorithm 3.13. It is straightforward to extend the Accept-reject FFBSi algorithm so that
N indices J(1:N)

t are sampled at each step t, effectively constructing an O(N) approximation
to FFBSm.
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Algorithm 3.13 Accept-reject FFBSi

Input: weighted particle sample
(

X (1:N)
t ,ω

(1:N)
t

)
approximating the filtering distribution

for t = 1, . . . ,n from a particle filter.
1: Sample Jn ∼ P

(
ω

(1:N)
n

)
.

2: for t = n−1, . . . ,1 do
3: REJECT := TRUE

4: while REJECT do
5: Sample Jt ∼ P

(
ω

(1:N)
t

)
.

6: Draw u ∼ U[0,1].

7: if u ≤ f
(

XJt
t+1|X

Jt
t

)
/ε then

8: REJECT := FALSE

9: else
10: REJECT := TRUE

11: end if
12: end while
13: end for

Output: simulated sample
(

X (Jt)
t

)
for t = 1, . . . ,n from the joint smoothing distribution.

3.5 Forward smoothing for additive functionals

We now turn our attention to the general problem of evaluating smoothing expectations.
Recall their definition in Equation 3.4 for function St : X t → R,

St := E [St (X1:t) |y1:t ] =
∫
X t

St (x1:t)πt(x1:t)dx1:t . (3.16)

Let us consider the situation in which the function St is an additive functional, i.e. there
exists a sequence of sufficient statistics sk : X ×X → R for k = 1, . . . , t such that

St(x1:t) =
t

∑
k=1

sk(xk−1,xk),

where s0(x0,x1) := s1(x1). Note that the sufficient statistics can be defined to depend on the
current data point yk. From this, a recursion is straightforward to establish:

St(x1:t) = St−1(x1:t−1)+ st(xt−1,xt), (3.17)

starting from S1(x1) = s1(x1). As seen in Section 3.2, the smoothing expectation can only be
computed exactly for a linear Gaussian state space model or when the state space is finite.
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Otherwise, a particle approximation (X (1:N)
1:t ,ω

(1:N)
t ) of Equation 3.16 given by

Ŝt :=
N

∑
i=1

ω
(i)
t Ŝt

(
X (i)

1:t

)
can be obtained using any of the particle smoothing algorithms above. For example, note
that Equation 3.16 can be rewritten as

St =
t

∑
k=1

∫
X t

sk (xk−1,xk)πt(x1:t)dx1:t =
t

∑
k=1

∫
X 2

sk (xk−1,xk)πt(xk−1:k)dxk−1:k.

Taking the FFBSm algorithm, a particle approximation of πt(xk−1:k) can be obtained in order
to estimate St and is given by

π̂t(xk−1:k) :=
N

∑
i=1

N

∑
j=1

υ
( j)
k δ

X (i)
k−1,X

( j)
k
(xk−1:k),

where the marginal smoothing weights υ
(1:N)
k are defined in Equation 3.14.

Currently, most particle smoothing algorithms described so far require both a forward
and a backward pass, but when St is an additive functional, smoothing can be done in a
single forward pass. This is particularly beneficial for large datasets, or when multiple passes
through the data are required, e.g. when estimating the hyperparameters via offline EM (see
Section 6.5.6 for an example).

Before describing forward smoothing, we give a brief overview of the path space approach
to estimating smoothing expectations of additive functionals without a backward pass, which
is intimately related to the poor man’s smoother from Section 3.4.1. Thanks to the additive
form of St , its estimate can be updated at each step t of the algorithm without needing to store
the ancestral paths of the particles, by taking advantage of the recursion in Equation 3.17 as
follows. Given particle approximations (X (1:N)

t ,ω
(1:N)
t ) and (X (1:N)

t−1 ,ω
(1:N)
t−1 ) for the current

and previous steps, and denoting by Ŝt−1(X
(i)
1:t−1) the i-th particle approximating St−1(x1:t−1),

we have
Ŝt

(
X (i)

1:t

)
= Ŝt−1

(
X (i)

1:t−1

)
+ st

(
X (i)

t−1,X
(i)
t

)
,

starting from Ŝ1(X
(i)
1 ) = s1(X

(i)
1 ) for i = 1, . . . ,N. Despite being relatively simple, of O(N)

complexity and the only smoothing algorithm so far that doesn’t require a backward pass
through the data, the path space approach is often not suitable, since it suffers from path
degeneracy. This leads to poor estimates of St , which have an asymptotic variance that
increases at least quadratically with t (Poyiadjis et al. [2011]).
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3.5.1 Fixed-lag smoothing

One way of reducing the asymptotic variance of the estimates while still avoiding a backward
pass is to employ the fixed-lag smoother introduced by Kitagawa and Sato [2001] and
discussed in Olsson et al. [2008, 2011]. Fixed-lag smoothing consists of taking advantage of
the ‘forgetting properties’ of the state space model, i.e. for ℓ≥ 0,

πt(x1:t)≈ πmin{t+ℓ,n}(x1:t), (3.18)

which essentially means that any observations arriving in the interval t + ℓ < k ≤ n bring
little additional information to X1:t . As a result, this version of the smoother works by only
updating the estimate of the smoothing expectation until step t + ℓ. The issue then is to select
a suitable value of ℓ. Too small and the approximation in Equation 3.18 will be poor, too
large and path degeneracy will arise. Additionally, the storage cost for this approach is higher,
since the ℓ ancestor particles of X (i)

t must be retained for all i ∈ J1,NK.

3.5.2 Forward-only FFBSm

Forward smoothing was introduced in Del Moral et al. [2010] in the form of a forward-only
version of FFBSm, as another way to both fight the issue of path degeneracy and avoid
the addition of a backward pass, and without needing to specify an additional parameter ℓ.
Define the following auxiliary function Tt : X → R,

Tt(xt) :=
∫
X t−1

St(x1:t)πt−1(x1:t−1|xt)dx1:t−1,

where πt−1(x1:t−1|xt) := p(x1:t−1|y1:t−1,xt). It is straightforward to establish a recursion on
Tt known as the forward smoothing recursion as follows:

Tt(xt) =
∫
X t−1

[St−1(x1:t−1)+ s(xt−1,xt)]πt−1(x1:t−1|xt)dx1:t−1

=
∫
X

πt−1(xt−1|xt)
∫
X t−2

St−1(x1:t−1)πt−2(x1:t−2|xt−2)dx1:t−2︸ ︷︷ ︸
Tt−1(xt−1)

dxt−1

+
∫
X

s(xt−1,xt)πt−1(xt−1|xt)dxt−1

=
∫
X

[Tt−1(xt−1)+ s(xt−1,xt)]πt−1(xt−1|xt)dxt−1, (3.19)
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and the smoothing expectation of interest is given in terms of the auxiliary function by

St =
∫
X

Tt(xt)πt(xt)dxt . (3.20)

Now what remains is to obtain an expression for the density πt−1(xt−1|xt):

πt−1(xt−1|xt) =
f (xt |xt−1)πt−1(xt−1)∫

X f (xt |xt−1)πt−1(xt−1)dxt−1
. (3.21)

None of these quantities can be computed exactly for a non-Gaussian, non-finite state space
model, but particle approximations of them can be obtained by incorporating the expressions
in Equations 3.19, 3.20 and 3.21 within any particle filter. The resulting algorithm is known
as forward smoothing SMC (SMC-FS) and is summarised in Algorithm 3.14.

The SMC-FS algorithm does not require a backward pass and is capable of yielding
estimates whose variances increase only linearly with t (Poyiadjis et al. [2011]), thus reduc-
ing path degeneracy. However, its computational complexity is still O(N2) which can be
prohibitive in some cases. Klaas et al. [2012] propose ‘N-body’ (Gray and Moore [2001])
approaches to reduce the complexity to O(N logN) and more recently, Olsson et al. [2017]
introduced an importance sampling-based algorithm described in Section 6.5.3 which is
capable of reducing the complexity to linear.
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Algorithm 3.14 Forward smoothing SMC (SMC-FS)

Where (i) or ( j) appears, the operation is performed for all i, j ∈ J1,NK.
At t = 1

1: Initialise the particle filter to obtain the weighted particle sample
(

X (1:N)
1 ,ω

(1:N)
1

)
.

2: Set T̂1

(
X (i)

1

)
:= 0.

3: for t = 2, . . . ,n do
4: Use the particle filter to update the weighted particle sample, i.e.(

X (1:N)
t ,ω

(1:N)
t

)
:= PF

(
X (1:N)

t−1 ,ω
(1:N)
t−1

)
.

5: Set

Ψ
(i, j)
t :=

ω
( j)
t−1 f

(
X (i)

t |X ( j)
t−1

)
∑

N
j=1 ω

( j)
t−1 f

(
X (i)

t |X ( j)
t−1

) .
6: Update the auxiliary function estimate

T̂t

(
X (i)

t

)
=

N

∑
j=1

Ψ
(i, j)
t

[
T̂t−1

(
X ( j)

t−1

)
+ st

(
X ( j)

t−1,X
(i)
t

)]
.

7: Update the smoothing expectation estimate

Ŝt =
N

∑
i=1

ω
(i)
t T̂t

(
X (i)

t

)
.

8: end for
Output: smoothing expectation estimate Ŝn.



Chapter 4

Anytime Parallel Tempering

4.1 Chapter overview

Developing efficient and scalable Markov chain Monte Carlo (MCMC) algorithms is in-
dispensable in Bayesian inference. To improve their performance, a possible solution is
parallel tempering, which runs multiple interacting MCMC chains to more efficiently explore
the state space. The multiple MCMC chains are advanced independently in what is known
as local moves, and the performance enhancement steps are the exchange moves, where
the chains pause to exchange their current sample amongst each other. To reduce the real
time taken to perform the independent local moves, they may be performed simultaneously
on multiple processors. Another problem is then encountered: depending on the MCMC
implementation and the inference problem itself, the local moves can take a varying and
random amount of time to complete, and there may also be computing infrastructure induced
variations, such as competing jobs on the same processors, an issue one must contend with in
a cloud computing setting, for example. Thus before the exchange moves can occur, all chains
must complete the local move they are engaged in so as to avoid introducing a potentially
substantial bias (Proposition 2.1). To solve this problem of randomly varying local move
completion times when parallel tempering is implemented on a multi-processor computing
resource, we adopt the Anytime Monte Carlo framework of Murray et al. [2016b]: we impose
real-time deadlines on the parallelly computed local moves and perform exchanges at these
deadlines without any processor idling. We show our methodology for exchanges at real-time
deadlines does not introduce a bias and leads to significant performance enhancements over
the naïve approach of idling until every processor’s local moves complete.

The work done in this chapter is the subject of a journal paper Marie d’Avigneau et al.
[2020] written in collaboration with co-authors Dr Sumeetpal Singh and Dr Lawrence
Murray and submitted for publication.
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4.2 Introduction

Consider a set of n observations y = {y1, . . . ,yn} ∈ Y following a probability model with
underlying parameters θ ∈ Θ and associated likelihood f (y1, . . . ,yn |θ) which we abbreviate
to f (y |θ). In most cases, the posterior π(θ) of interest is intractable and must be approxi-
mated using computational tools such as the commonly used Metropolis-Hastings algorithm
(Robert and Casella [2004b]) with random walk proposals. However, as models become
more complex, the exploration of the posterior using such basic methods quickly becomes
inefficient (Beskos et al. [2009]). Furthermore, the model itself can pose its own challenges
such as the likelihood becoming increasingly costly or even impossible to evaluate (Tavaré
et al. [1997]); the Lotka-Volterra predator-prey model of Section 4.5 is a concrete example.

Parallel tempering, initially proposed by Swendsen and Wang [1986] and further devel-
oped under the name Metropolis-coupled Markov chain Monte Carlo (MC)3 by Geyer [1991],
is a generic method for improving the efficiency of MCMC that can be very effective without
significantly altering the original MCMC algorithm, for example by designing more efficient
proposals. The parallel tempering algorithm runs multiple interacting MCMC chains to more
efficiently explore the state space. The multiple MCMC chains are advanced independently,
in what is known as the local moves, and the performance enhancement steps are the ex-
change moves, where the chains pause and attempt to swap their current sample amongst
each other. Parallel tempering allows for steps of various sizes to be made when exploring
the parameter space, which makes the algorithm effective, even when the distribution we
wish to sample from has multiple modes. In order to reduce the real time taken to perform
the independent local moves, they may be performed simultaneously on multiple processors,
a feature we will focus on in this work.

Let the parallel tempering MCMC chain be
(
X1:Λ

k

)∞

k=1 =
(
X1

k , . . . ,X
Λ
k

)∞

k=1 with initial
state

(
X1:Λ

0
)

and target distribution

π(x1:Λ) ∝

Λ

∏
λ=1

πλ (x
λ ), (4.1)

where the πλ ( ·) are independent marginals corresponding to the target distribution of each
of Λ chains, running in parallel at different temperatures indexed by λ . One of these chains,
say λ = Λ, is the cold chain, and its target distribution πΛ = π is the posterior of interest.
At each step n of parallel tempering (Geyer [2011]), one of two types of updates is used to
advance the Markov chain X1:Λ

k to its next state:

1. Independent local moves: for example, a standard Gibbs or Metropolis-Hastings update,
applied to each tempered chain Xλ

k in parallel.
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2. Interacting exchange moves: propose to swap the states x ∼ πλ and x′ ∼ πλ ′ of one or
more pairs of adjacent chains. For each pair, accept a swap with probability

min
{

1,
πλ (x′)πλ ′(x)
πλ (x)πλ ′(x′)

}
, (4.2)

otherwise, the chains in the pair retain their current states.

With the cold chain providing the desired precision and the warmer chains more freedom of
movement when exploring the parameter space, the combination of the two types of update
allows all chains to mix much faster than any one of them would mix on its own. This
provides a way to jump from mode to mode in far fewer steps than would be required under
a standard non-tempered implementation using, say, the Metropolis-Hastings algorithm.

A particular advantage of parallel tempering is that it is possible to perform the indepen-
dent local moves in parallel on multiple processors in order to reduce the real time taken to
complete them. Unfortunately, this gives rise to the following problem: depending on the
MCMC implementation and the inference problem itself, the local moves can take a varying
and random amount of time to complete, which depends on the part of the state space it
is exploring (see the Lotka-Volterra predator-prey model in Section 4.5 for a specific real
example). Thus, before the exchange moves can occur, all chains must complete the local
move they are engaged in to avoid introducing a potentially substantial bias (see Proposition
2.1). Additionally, the time taken to complete local moves may also reflect computing
infrastructure induced variations, for example, due to variations in processor hardware,
memory bandwidth, network traffic, I/O load, competing jobs on the same processors as
well as potential unforeseen interruptions such as system failures, all of which affect the
compute time of local moves. Local moves in parallel tempering algorithms can also have
temperature-dependent completion times. This is the case of the ABC application in Section
4.4.

Firstly, to solve the problem of randomly distributed local move completion times when
parallel tempering is implemented on a multi-processor computing resource, we adopt the
Anytime Monte Carlo framework of Murray et al. [2016b]: we guarantee the simultaneous
readiness of all chains by imposing real-time deadlines on the parallelly computed local
moves, and perform exchange moves at these deadlines without any idling, i.e. without
waiting for the slowest of them to complete their local moves. Idling has a financial cost, for
example in a cloud computing setting, and can also significantly reduce the effective Monte
Carlo sample size returned. We show that hard deadlines introduce a bias which we mitigate
using the Anytime framework (see Proposition 4.1).

Secondly, we illustrate our gains through detailed numerical work. The first experiment
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considered is a multi-modal Gamma mixture model where the biased and de-biased target
distributions can be characterised for ease of comparison with the numerical results. We then
apply our Anytime parallel tempering methodology in the context of ABC (Pritchard et al.
[1999]; Tavaré et al. [1997]). In ABC, simulation is used instead of likelihood evaluations,
which makes it particularly useful for Bayesian problems where the likelihood is unavailable
or too costly to compute. In Lee [2012], a more efficient MCMC kernel for ABC (as measured
by the effective sample size), called the 1-hit MCMC kernel, was devised to significantly
improve the probability that a good proposal in the direction of a higher posterior density is
accepted, thus more closely mimicking exact likelihood evaluations. This new MCMC kernel
was subsequently shown in Lee and Łatuszyński [2014] to also theoretically outperform
competing ABC methods. The 1-hit kernel has a random execution time that depends on the
part of the parameter space being explored, and is thus a good candidate for our Anytime
parallel tempering method. In this paper, we show that we can improve the performance
of the 1-hit MCMC kernel by introducing tempering and exchange moves, and embed the
resulting parallel tempering algorithm within the Anytime framework to mitigate processor
idling due to random local move completion times. Parallel tempering for ABC has been
proposed by Baragatti et al. [2013], but hasn’t been studied in the Anytime context as we do
for random local move completion times, nor has the more efficient 1-hit MCMC kernel been
employed. We perform a detailed numerical study of the Lotka-Volterra predator-prey model,
which has an intractable likelihood and is a popular example used to contrast methods in
the ABC literature (Fearnhead and Prangle [2012]; Prangle et al. [2017]; Toni et al. [2009]).
The time taken to simulate from the Lotka-Volterra model is random and parameter value
dependent; this randomness is in addition to that induced by the 1-hit kernel.

The Anytime parallel tempering framework can be applied in several contexts. For
example, another candidate for our framework is RJ-MCMC by Green [1995], which is a
variable-dimension Bayesian model inference algorithm. An instance of RJ-MCMC within
a parallel tempering algorithm is given in Jasra et al. [2007b], where multiple chains are
simultaneously updating states of variable dimensions (depending on the model currently
considered on each chain), and the real completion time of local moves depends on the
dimension of the state space under the current model. Additionally, in the fixed dimension
parallel tempering setting, if the local moves use any of the following MCMC kernels, then
they have a parameter dependent completion time and thus could benefit from an Anytime
formulation: the no-U-turn sampler (NUTS) (Hoffman and Gelman [2014]) and elliptical
slice sampling (Murray et al. [2010]; Nishihara et al. [2014]). Even if the local moves do not
take a variable random time to complete by design (Calderhead and Girolami [2009]; Friel
and Pettitt [2008]), computer infrastructure induced variations, such as memory bandwidth,
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competing jobs, etc. can still affect the real completion time of local moves in a parallel
tempering algorithm, such as in Rodinger et al. [2006]. In the statistical mechanics literature,
there are also parallel tempering-based simulation problems where the local move completion
time is temperature- and parameter-dependent as well as random, e.g. see Earl and Deem
[2004]; Hritz and Oostenbrink [2007]; Karimi et al. [2011]; Wang and Jordan [2003], and
thus could benefit from our Anytime formulation. Finally, the Anytime framework has
so far not been tested beyond the SMC2 example of Murray et al. [2016b], but it can be
applied to any parallelisable population-based MCMC algorithm which includes local moves
and interacting moves where all processors must communicate, such as sequential Monte
Carlo (SMC) samplers (Del Moral et al. [2006]), considered in Chapter 5, or parallelised
generalised elliptical slice sampling (Nishihara et al. [2014]).

This chapter is structured as follows. Section 4.3 develops our Anytime Parallel Temper-
ing Monte Carlo (APTMC) algorithm and then Section 4.4 extends our framework further for
the 1-hit MCMC kernel of Lee [2012] for approximate Bayesian computation. Experiments
are run in Section 4.5 and include a carefully constructed synthetic example to demonstrate
the workings and salient features of Anytime parallel tempering. Section 4.5 also presents an
application of Anytime parallel tempering to the problem of estimating the parameters of a
stochastic Lotka-Volterra predator-prey model. Finally, Section 4.6 provides a summary and
some concluding remarks.

4.3 Anytime Parallel Tempering Monte Carlo

4.3.1 Overview

Consider the problem in which we wish to sample from target distribution π(x). In a parallel
tempering framework, construct Λ Markov chains where each individual chain λ targets the
tempered distribution

πλ (x) ∝ π(x)
λ

Λ

and is associated with kernel κλ (xk |xk−1) and hold time distribution τλ (hk |xk). In this
setting, the hold time distribution is not assumed to be homogeneous across all chains, and
may be temperature-dependent. As per Corollary 2.1, each chain also has its associated
anytime distribution denoted αλ (xk). Assume that all Λ chains are running concurrently
on Λ processors. We aim to interrupt the computations on a real-time schedule of times
t1, t2, t3, . . . to perform exchange moves between adjacent pairs of chains before resuming the
local moves. To illustrate the challenge of his task, we discuss the case where Λ = 2. Let π2

be the desired posterior and π1 the ‘warm’ chain, with associated hold time distributions τ1
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and τ2, respectively. When the two chains are interrupted at some time t, assume that the
current sample on chain 1 is X1

j and that of chain 2 is X2
k . It follows from Corollary 2.1 that

X1
j ∼ α1(x) =

E [H1 |x]
E [H1]

π1(x) ̸= π1(x),

and similarly for X2
k . Exchanging the samples using the acceptance probability in Equation

4.2 is incorrect. Indeed, exchanging using the current samples X1
j and X2

k , if accepted, will
result in the sample sets

{
X1

1 ,X
1
2 , . . .

}
and

{
X2

1 ,X
2
2 , . . .

}
being corrupted with samples which

arise from their respective length-biased, anytime distributions α1 and α2, as opposed to
being exclusively from π1 and π2. Furthermore, the expressions for α1 and α2 will most
often be unavailable, since their respective hold time distributions τ1 and τ2 are not explicitly
known but merely implied by the algorithm used to simulate the two chains. Finally, we
could wait for chains 1 and 2 complete their computation of X1

j+1 and X2
k+1 respectively, and

then accept/reject the exchange
(

X1
j+1,X

2
k+1

)
→
(

X2
k+1,X

1
j+1

)
according to Equation 4.2.

This approach won’t introduce a bias but can result in one processor idling while the slower
computation finishes. We show this can result in significant idling in numerical examples.

In the next section, we describe how to correctly implement exchange moves within the
Anytime framework.

4.3.2 Anytime exchange moves

Here, we adapt the multi-chain construction devised to remove the bias present when sampling
from Λ Markov chains, where each chain λ targets the distribution πλ for λ = 1, . . . ,Λ.
Associated with each chain is MCMC kernel κλ (xλ

k |x
λ
k−1) and hold time distribution τλ (h |x).

Proposition 4.1. Let πλ (x), λ = 1 . . . ,Λ be the stationary distributions of Λ Markov chains
with associated MCMC kernels κλ (xλ

k |x
λ
k−1) and hold time distributions τλ (h |x). Assume

the chains are updated sequentially and let j be the index of the currently working chain. The
joint anytime distribution is the following generalisation of Proposition 2.1:

A(x1:Λ, l, j) =
1
Λ

E [H | j]
E [H]

α j(x j, l)
Λ

∏
λ=1,λ ̸= j

πλ (x
λ ).

The proof of Proposition 4.1 is a straightforward adaptation of the proof of Proposition 5
in Murray et al. [2016b]. Conditioning on x j, j and l we obtain

A(x1:Λ\ j |x j, l, j) =
Λ

∏
λ=1,λ ̸= j

πλ (x
λ ). (4.3)
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Therefore, if exchange moves on the conditional A(x1:Λ\ j |x j, l, j) are performed by ‘elim-
inating’ the j-th chain to obtain the expression in Equation 4.3, they are being performed
involving only chains distributed according to their respective targets πλ and thus the bias is
eliminated.

4.3.3 Implementation

On a single processor, the algorithm may proceed as in Algorithm 4.1, where in Step 3 the Λ

chains are simulated one at a time in a serial schedule. Figure 4.1 provides an illustration of
how the algorithm works.

Algorithm 4.1 Anytime Parallel Tempering Monte Carlo on one processor

1: Initialise real-time Markov jump process
(
X1:Λ,L,J

)
(0) =

(
x1:Λ

0 ,0,1
)
.

2: for i = 1,2, . . . do
3: Simulate real-time Markov jump process

(
X1:Λ,L,J

)
(t) until real time ti.

4: Perform exchange steps on the conditional in Equation 4.3.
5: end for

working

update
λ = 1

inactive
λ = 2

λ = 3

t1 t2

exchange move

Fig. 4.1 Illustration of the progression of three chains in the Anytime Parallel Tempering
Monte Carlo (APTMC) algorithm on a single processor. The green (local move) and blue
(exchange move) dots represent samples from the posterior being recorded as their respective
local and exchange moves are completed. When exchange moves occur at t1, chain λ = 1 is
currently moving cannot participate in exchange moves without introducing a bias. Therefore
it is ignored, and the exchange moves are performed on the remaining (inactive) chains.
Similarly, a time t2 chain λ = 2 is excluded from the exchange. The widths of intervals t1
and t2 are for illustrating the exchange procedure only.

When multiple processors are available, the Λ chains may be run in parallel. However,
running a single chain on each processor means that when the real-time deadline occurs, all
chains will be distributed according to their respective anytime distributions αλ , and thus be
biased as exchange moves occur. Therefore, all processors must contain at least two chains.
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The implementation is defined as described in Algorithm 4.2. Note that the multiple chain
construction eliminates the intractable densities in the acceptance ratio for the exchange step
when τ differs between processors, since exchange moves are performed between chains that
are not currently working (i.e. on the density in Equation 4.3 for a single processor and that
in Equation 4.4 for multiple processors), so the hold time distribution does not factor in.

Algorithm 4.2 Anytime Parallel Tempering Monte Carlo on multiple processors

1: On worker w, initialise the real-time Markov jump process
(
X1:C

w ,Lw,Jw
)
(0) =(

x1:C
0 ,0,1

)
.

2: for i = 1,2, . . . do
3: On each worker, simulate the real-time Markov jump process

(
X1:C

w ,Lw,Jw
)
(t) until

real time ti.
4: Across all workers, perform exchange steps on the conditional

A(xxx1:C\ jjj |xxx jjj, lll, jjj) =
W

∏
w=1

C

∏
c=1, c̸= jw

πw(xc
w), (4.4)

where xxx1:C\ jjj =
(

x1:C\ j1
1 , . . . ,x1:C\ jW

W

)
, xxx jjj =

(
x j1

1 , . . . ,x jW
W

)
, lll = l1:W and jjj = j1:W .

5: end for

Depending on the problem at hand and computing resources available, there are various
approaches to distributing the chains across workers. We distinguish three possible scenarios.
The first is an ideal scenario, where the number of processors exceeds Λ and the communica-
tion overhead between workers is negligible. In this scenario, each worker implements K = 2
chains running at the same temperature. For example, with W = Λ workers, worker w = λ

contains 2 chains targeting πλ . The second scenario arises when the number of workers
available is limited, but communication overhead is still negligible. In this case, the chains,
sorted in increasing order of temperature, are divided evenly among workers. For example,
with W = Λ

2 workers, worker w could contain two chains, one with target π2w−1 and one
with target π2w. The third scenario deals with non-negligible inter-processor communication
overhead (which only affects the exchange moves). To account for this, exchange moves are
divided into two types:

1. Within-worker exchange move: performed on each individual worker in parallel,
between a pair of adjacent chains. No communication between workers is necessary in
this case.

2. Between-worker exchange move: performed by selecting a pair of adjacent workers
and exchanging between the warmest eligible chain from the first worker and coldest
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from the second. Thus, an exchange move between two adjacent chains is effectively
being performed, except this time communication between workers is required.

4.3.4 Tuning considerations

In this section we discuss the issue of tuning Anytime parallel tempering by drawing on
various ideas from the literature. The main concerns are the selection of the number of chains
and their temperatures, the tuning of the local moves for each chain, and the selection of
appropriate deadlines for the exchange moves to occur. In our setting, the computational
budget determines the number of chains Λ, and for such a fixed budget we aim to improve
the sampling of the cold chain through the adoption of parallel tempering stages. The issue
of determining the temperature of adjacent chains has been considered in Atchadé et al.
[2011]; Kone and Kofke [2005]; Rathore et al. [2005] where it was shown that an exchange
success rate of approximately 20-25% for adjacent chains is optimal, in an appropriate sense,
and is demonstrated to confer the most benefit to sampling the coldest chain. However, the
optimality curve (Atchadé et al. [2011]; Kone and Kofke [2005]) has a broad mode, and
even 40% seems appropriate. To achieve this 25% acceptance rate of exchange moves, other
than employing pilot runs, adaptive tuning is possible and Miasojedow et al. [2013] use a
Robbins-Munro scheme to adjust the temperatures to target a 25% acceptance rate during
runtime. The next issue is local proposals, and how large a change of state one should attempt
(for the local accept/reject step). This subject has received ample attention in the literature
following the seminal paper by Roberts et al. [2001], where a 25% local move acceptance rate
is again optimal. The local proposal can be a Gaussian proposal whose mean and covariance
matrix are again tuned online (Miasojedow et al. [2013]) via a Robbins-Munro scheme to
achieve the 25% acceptance rate. Tuning of a Gaussian proposal for MCMC in general was
popularised by the seminal paper of Haario et al. [2001].

Recalling from Section 2.4.1, when performing exchange moves, rather than selecting
a single pair of adjacent chains from {(1,2),(2,3), . . . ,(Λ−1,Λ)} for an exchange move,
it is common to propose to swap multiple pairs of chains simultaneously, as the exchange
move is relatively cheap. To avoid selecting the same chain twice, they are divided into odd
{(1,2),(3,4), . . .} and even {(2,3),(4,5), . . .} pairs of indices in Lingenheil et al. [2009],
and all odd or even pairs are selected for exchange with equal probability. It is however
shown in Syed et al. [2019] that it is better to deterministically cycle between exchanging
odd and even pairs.

Although thus far we have suggested tuning the number of chains and annealing schedule
for APTMC as if one were tuning a standard parallel tempering algorithm, we highlight
the following caveats. Selecting chains for exchange moves can be applied by omitting the
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currently working chains and relabelling the indices of the remaining, inactive or eligible
chains. However, note that by the nature of the Anytime exchange moves, the Anytime
version of an optimised parallel tempering algorithm can be suboptimal, since one or more
temperature(s) might be missing from exchange moves. Considering the example in Figure
4.1 and assuming the chains are all running at increasing temperatures, at t2, chain 2 is
working, so the exchange move is performed between chains 1 and 3. In a practical example,
these chains would be further apart, which would lead to a lower exchange move acceptance
rate. Selecting adjacent chains to target a slightly higher successful exchange rate, say 40%,
would mitigate this issue; noting that even 40% is close to optimal (Atchadé et al. [2011];
Kone and Kofke [2005]). In our implementation, we only experienced a small drop in
acceptance rate caused by attempting to swap two eligible chains that are not immediately
adjacent, and this event becomes less likely as the number of chains increases.

Another important facet of tuning APTMC is the issue of determining the real-time
schedule t1, t2, . . . of exchange moves. Let δ be the real-time interval or deadline between
exchange moves, so that ti = iδ for i = 1,2, . . . We now present guidelines for calibrating δ .
Let K be the number of chains, labelled k = 1, . . . ,K, on the slowest processor ws (generally
the one containing the cold chain), our experiments have shown that exchange moves should
occur once every chain on this processor has completed at least one local move. The expected
hold time of one set of local moves on processor ws, denoted H := ∑

K
k=1E[Hk], can be

estimated by repeatedly measuring the time taken for one set of local moves to complete, and
averaging across all measurements. Using a pilot run, an estimate Ĥ of this expected hold
time can be obtained first, before setting δ = Ĥ for the APTMC algorithm run. This δ value
can also be calibrated in real time, denoted δ (t) where t is the real time. At t = 0, initialise
δ (0) = δ0 such that δ0 > 0 is an initial, user-defined guess. Similarly as before, record a hold
time sample every time a set of local move occurs on processor ws, then after every exchange
move, recompute Ĥ and update δ (t) = Ĥ. An advantage of this second approach is that δ (t)
then adapts to a potentially time-inhomogeneous hold time, due e.g. to competing jobs on
the processors starting mid-algorithm and suddenly slowing down the computation time of
local moves.

A scenario we encountered in our experiments was non-negligible communication over-
head between workers when executing the exchange moves, and this overhead was compara-
ble to the local move times which were themselves lengthy. To mitigate the communication
overhead, as described in Section 4.3.3, exchange moves are divided into within- and between-
workers. On a given worker with K chains, a set of worker-specific moves is performed before
inter-worker exchanges. These were K local moves, one (set of) within-worker exchange
moves, then K more local moves, before inter-worker communication occurs for between-
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worker exchange moves. Given that within-worker exchanges are instant, this amounts in
real time to performing 2K local moves on this worker before inter-worker communication
occurs. Therefore, the real-time deadline in the Anytime version of the algorithm for this
scenario is set to be δ = 2H and can be determined as above. See Section 4.5.4.2 for an
example.

Finally, Section 4.5.1.3 details other, empirical tools that help with tuning by assessing
the efficiency of each chain. These include evaluating the sample autocorrelation function
(acf), as well as the integrated autocorrelation time (IAT ) and effective sample size (ESS).

4.4 Application to approximate Bayesian computation
(ABC)

In this section we adapt the Anytime parallel tempering Monte Carlo framework to ABC.

4.4.1 The 1-hit MCMC kernel

The notion of ABC was developed by Tavaré et al. [1997] and Pritchard et al. [1999]. It can
be seen as a likelihood-free way to perform Bayesian inference, using instead simulations
from the model or system of interest, and comparing them to the observations available.

Let y ∈ Y be some data with underlying unknown parameters θ , where p(θ) denotes
the prior for θ ∈ Θ. Suppose we are in the situation in which the likelihood f (y |θ) is either
intractable or too computationally expensive, which means that MCMC cannot be performed
as normal. Assuming that it is possible to sample from the density f ( · |θ) for all θ ∈ Θ,
approximate the likelihood by introducing an artificial likelihood f ε of the form

f ε(y |θ) = Vol(ε)−1
∫

Bε (y)
f (x |θ)dx, (4.5)

where Bε(y) denotes a metric ball centred at y of radius ε > 0 and Vol(ε) is its volume. The
resulting approximate posterior is given by

pε(θ |y) = p(θ) f ε(y |θ)∫
p(ϑ) f ε(y |ϑ)dϑ

.

The likelihood f ε(y |θ) cannot be evaluated either, but an MCMC kernel can be constructed
to obtain samples from the approximate posterior πε(θ ,x) defined as

π
ε(θ ,x) = pε(θ ,x |y) ∝ p(θ) f (x|θ)1ε(x)Vol(ε)−1, (4.6)
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where 1ε(x) is the indicator function for x ∈ Bε(y). This is referred to as hitting the ball
Bε(y). In the MCMC kernel, one can propose θ ′ ∼ q(· |θ) for some proposal density q,
simulate the dataset x ∼ f (· |θ ′) and accept θ ′ as a sample from the posterior if x ∈ Bε(y).

The 1-hit MCMC kernel, proposed by Lee [2012] and of which a typical iteration is
described in Algorithm 4.3, introduces local moves in the form of a ‘race’: given current
and proposed parameters θ and θ ′, respectively simulate corresponding datasets x and x′

sequentially. The state associated with the first dataset to hit the ball Bε(y) ‘wins’ and is
accepted as the next sample in the Markov chain. The proposal θ ′ is also accepted if both x
and x′ hit the ball at the same time. It is proven in Lee [2012] (Proposition 1) that the 1-hit
kernel is a valid MCMC kernel targeting πε which satisfies detailed balance.

Algorithm 4.3 ABC: 1-hit MCMC kernel

Input: current state (θk,xk).
1: for i := 1,2, . . . do.
2: Propose θ ′ ∼ q(· |θk). ▷ propose a local move
3: Compute preliminary acceptance probability ▷ prior check

α(θk,θ
′) = min

{
1,

p(θ ′)q(θk |θ ′)

p(θk)q(θ ′ |θk)

}
.

4: Sample u ∼ Uniform(0,1).
5: if u < α(θk,θ

′) then
6: RACE := TRUE

7: else
8: RACE := FALSE

9: Retain (θk+1,xk+1) := (θk,xk). ▷ reject θ ′ as it is unlikely to win race
10: end if
11: while RACE do
12: Simulate x ∼ f (· |θn) and x′ ∼ f (· |θ ′).
13: if x ∈ Bε (y) or x′ ∈ Bε (y) then ▷ stop the race once either x or x′ hits the ball.
14: RACE := FALSE

15: end if
16: end while
17: if x′ ∈ Bε (y) then ▷ accept or reject move
18: Set (θk+1,xk+1) := (θ ′,x′).
19: else
20: Retain (θk+1,xk+1) := (θk,x).
21: end if
22: k := k+1
23: end for

Output: updated state (θk+1,xk+1).
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4.4.2 ABC Anytime Parallel Tempering Monte Carlo (ABC-APTMC)

Including the 1-hit kernel in the local moves of a parallel tempering algorithm is straight-
forward. Exchange moves must, however, be adapted to this new likelihood-free setting.
Additionally, the race that occurs takes a random time to complete, thus providing good
motivation for the use of Anytime Monte Carlo.

4.4.2.1 Exchange moves

Let (θ ,x) and (θ ′,x′) be the states of two chains targeting πε and πε ′ , respectively, where
ε ′ > ε . Here, this is equivalent to saying θ ′ is the state of the ‘warmer’ chain. We already
know that x′ falls within ε ′ of the observations y, i.e. x′ ∈ Bε ′(y). Similarly, we also know that
x ∈ Bε(y), and that x ∈ Bε ′(y). If x′ also falls within ε of y, then swap the states, otherwise
do not swap. The odds ratio is

πε ′(θ ,x)πε(θ ′,x′)
πε(θ ,x)πε ′(θ ′,x′)

=
p(θ) f (x |θ)Vol(ε ′)p(θ ′) f (x′ |θ ′)1ε(x′)Vol(ε)

p(θ) f (x |θ)Vol(ε)p(θ ′) f (x′ |θ ′)Vol(ε ′)

= 1ε(x′),

so the probability of the swap being accepted is the probability of x′ also hitting the ball of
radius ε centred at y. This type of exchange move is summarised in Algorithm 4.4.

4.4.2.2 Implementation

The full implementation of the ABC Anytime Parallel Tempering Monte Carlo (ABC-APTMC)
algorithm on a single processor is described in Algorithm 4.5. The multi-processor algorithm
can similarly be modified to reflect these new exchange moves.

Algorithm 4.4 ABC: exchange move between two chains

Input: ξk = ((θ ,x),(θ ′,x′)) where θ ∼ π , x ∼ f (· |θ) and θ ′ ∼ π ′, x′ ∼ f (· |θ ′).
▷ both (θ ,x) and (θ ′,x′) are outputs from Algorithm 4.3 for different ε ′ > ε

1: if x′ ∈ Bε (y) then ▷ accept or reject swap depending on whether x′ also hits the ball of
radius ε

2: Set ξk+1 := ((θ ′,x′),(θ ,x)).
3: else
4: Retain ξk+1 := ξk.
5: end if
6: k := k+1

Output: updated state ξk+1.
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Algorithm 4.5 ABC: Anytime Parallel Tempering Monte Carlo Algorithm

1: Initialise the real-time Markov jump process (θ 1:Λ,L,J) = (θ 1:Λ
0 ,0,1).

2: Set k := 0.
3: for i := 1,2, . . . do

SIMULATE THE REAL-TIME MARKOV JUMP PROCESS (θ ,L,J)(t) UNTIL REAL TIME ti
4: Perform local moves on

(
θ

j
k ,x

j
k

)
according to Algorithm 4.3.

5: j := j+1
6: if j > Λ then
7: j := 1
8: end if

PERFORM EXCHANGE STEPS ON THE CONDITIONAL:

A(θ 1:Λ |θ j, l, j) =
Λ

∏
λ=1,λ ̸= j

πλ (θ
λ ).

9: Perform exchange moves on ξk =
(
(θ λ

k ,x
λ
k ),(θ

λ ′
k ,xλ ′

k )
)

according to Algorithm 4.4.
10: end for

4.5 Numerical experiments

In this section, we first illustrate the workings of the algorithms presented in Section 4.3.3
on a simple model, in which real-time behaviour is simulated using virtual time and an
artificial hold distribution. The model is also employed to demonstrate the gain in efficiency
provided by the inclusion of exchange moves. Then, the ABC version of the algorithms, as
presented in Section 4.4, is applied to three case studies. The first case is a simple Gaussian
model and serves to verify the workings of the ABC algorithm, including bias correction.
The second case considers the problem of estimating the parameters of a moving average
problem, and serves to illustrate the performance improvements brought by the addition
of ABC exchange moves to the 1-hit ABC kernel on a single processor. The third case
is more advanced and considers the problem of estimating the parameters of a stochastic
Lotka-Volterra predator-prey model − in which the likelihood is unavailable − and serves
to evaluate the performance of the Anytime parallel tempering version of the ABC-MCMC
algorithm, as opposed to the standard versions (with and without exchange moves) on both a
single and multiple processors. The exchange moves are set up so that multiple pairs could
be swapped at each iteration. All experiments in this paper were run on MATLAB and the
code is available at https://github.com/alixma/ABCAPTMC.git.

https://github.com/alixma/ABCAPTMC.git
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4.5.1 Toy example: Gamma mixture model

In this example we attempt to sample from an equal mixture of two Gamma distributions
using the Anytime Parallel Tempering Monte Carlo (APTMC) algorithm. Define the target
π(dx) and an ‘artificial’ hold time τ(dh |x) distribution as follows:

X ∼ φ Gamma(k1,θ1)+(1−φ)Gamma(k2,θ2),

H |x ∼ ψ Gamma
(

xp

θ1
,θ1

)
+(1−ψ)Gamma

(
xp

θ2
,θ2

)
,

with mixture coefficients φ = 1
2 and ψ , where Gamma( · , ·) denotes the probability density

function of a Gamma distribution, with shape and scale parameters (k1,θ1) and (k2,θ2) for
each component, respectively, and with polynomial degree p, assuming it remains constant
for both components of the mixture.

In the vast majority of experiments, the explicit form of the hold time distribution τ it
not known, but observed in the form of the time taken by the algorithm to simulate X . For
this example, so as to avoid external factors such as competing jobs affecting the hold time,
we assume an explicit form for τ is known and simulate virtual hold times. This consists of
simulating a hold time h ∼ τ(· |x) and advancing the algorithm forward for h units of virtual
time without updating the chains, effectively ‘pausing’ the algorithm. These virtual hold
times are introduced so that what in a real-time example would be the effects of constant
(p = 0), linear (p = 1), quadratic (p = 2) and cubic (p = 3) computational complexities can
be studied. Another advantage is that the anytime distribution αΛ of the cold chain can be
computed analytically and is the following mixture of two Gamma distributions

αΛ(x) = ϕ(p,k1:2,θ1:2)Gamma(k1 + p,θ1)

+ [1−ϕ(p,k1:2,θ1:2)]Gamma(k2 + p,θ2) , (4.7)

where

ϕ(p,k1:2,θ1:2) =

(
1+

Γ(k1)Γ(p+ k2)θ
p
2

Γ(k2)Γ(p+ k1)θ
p
1

)−1

.

We refer the reader to Appendix 4.A for the proof of Equation 4.7. In the anytime distribution,
one of the components of the Gamma distribution will have an associated mixture coefficient
ϕ(p,k1:2,θ1:2) or 1−ϕ(p,k1:2,θ1:2) which increases with p while the coefficient of the
other component decreases proportionally. Note that for constant (p = 0) computational
complexity, the anytime distribution is equal to the target distribution π .
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4.5.1.1 Implementation

On a single processor, the Anytime Parallel Tempering Monte Carlo (APTMC-1) algorithm
is implemented as follows: simulate Λ = 8 Markov chains, each targeting the distribution
πλ (x) = π(x)

λ

Λ . To construct a Markov chain (Xλ
k )

∞
k=0 with target distribution

πλ (x) ∝

[
1
2

Gamma(k1,θ1)+
1
2

Gamma(k2,θ2)

] λ

Λ

for λ = 1, . . . ,Λ, use a random walk Metropolis update, i.e. symmetric Gaussian proposal
distribution N (xλ

k ,σ
2) with mean xλ

k and standard deviation σ = 0.5. Set (k1,k2) = (3,20),
(θ1,θ2) = (0.15,0.25) and use p ∈ {0,1,2,3}. The single processor algorithm is run for
T = 108 units of virtual time with exchange moves alternating between occurring on all even
(1,2),(3,4),(5,6) and all odd (2,3),(4,5),(6,7) pairs of inactive chains every δ = 5 units
of virtual time. When the algorithm is running, a sample is recorded every time a local or
exchange move occurs.

On multiple processors, the Anytime Parallel Tempering Monte Carlo (APTMC-W) algo-
rithm is implemented similarly. A number of W = Λ = 8 processors is used, where each
worker w = λ contains K = 2 chains, all targeting the same πλ for λ = 1, . . . ,Λ. The multiple
processor algorithm is run for T = 107 units of virtual time, with exchange moves alternating
between occurring on all odd (1,2),(3,4),(5,6),(7,8) and all even (2,3),(4,5),(6,7) pairs
of workers every δ = 5 units of virtual time. On each worker, the chain which was not
working when calculations were interrupted is the one included in the exchange moves.

4.5.1.2 Verification of bias correction

To check that the single and multiple processor algorithms are successfully correcting for
bias, they are also run uncorrected, i.e. not excluding the currently working chain. This
means that several exchange moves are performed on samples distributed according to α

instead of π , thus causing the algorithm to yield biased results. Since the bias is introduced
by the exchange moves (when they are performed on α), we attempt to create a ‘worst case
scenario’, i.e. maximise the amount of bias present when the single processor algorithm is
uncorrected. The algorithm is further adjusted such that local moves are not performed on
the cold chain and it is instead solely made up of samples resulting from exchange moves
with the warmer chains. The fact that exchange moves occur every δ = 5 units of virtual time
also means that a high proportion of the samples in a warmer chain come from exchange
moves. The multi-processor APTMC-W algorithm is not run in a ‘worst case scenario’, so local
moves on the cold chain of the multi-processor algorithm are therefore allowed. This means
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that the bias caused by failing to correct when performing exchange moves across workers is
still apparent, if less strongly.

Figure 4.2 shows kernel density estimates of the post burn-in cold chains resulting
from runs of the APTMC-1 and APTMC-W algorithms, uncorrected and corrected for bias.
As expected, when the hold time does not depend on x, which corresponds to the case
where p = 0, no bias is returned. On the other hand, the cold chains for the single-processor
algorithm with computational complexity p∈{1,2,3} have been corrupted by biased samples
and converged to a shifted distribution which puts more weight on the second Gamma
mixture component, instead of an equal weight. Additionally, the bias becomes stronger
as computational complexity p increases. A similar observation can be made for the cold
chains from the multi-processor experiment − which display a milder bias due to local moves
occurring on the cold chain. The green dashed densities indicate that when the algorithms
are corrected, i.e. when the currently working chain is not included in exchange moves, it
successfully eliminates the bias for all p ∈ {1,2,3} to return the correct posterior π − despite
this being the ‘worst-case scenario’ in the case of the APTMC-1 algorithm. Note that the
uncorrected density estimates do not exactly correspond to the anytime distributions. This
has nothing to do with burn-in, but with the proportion of biased samples (from exchange
moves) present in the chain.
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Fig. 4.2 Density estimates of the cold chain for bias corrected and uncorrected runs of the
single (APTMC-1) and multi-processor (APTMC-W) algorithms on various hold time distribu-
tions p ∈ {0,1,2,3}. In the single-processor case, the cold chain is made up entirely of
updates resulting from exchange moves. The solid dark grey line represents the true posterior
density π and the solid light grey line the anytime distribution α . The case p = 0 represents
an instance in which, in a real-time situation, the local moves do not take a random time to
complete, and therefore all densities are identical. The two green dashed lines represent bias
corrected densities and the red dot-dashed lines represent uncorrected densities. For p ≥ 1,
the two corrected densities are identical to the posterior, indicating that the bias correction
was successful.
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4.5.1.3 Performance evaluation

Next we verify that introducing the parallel tempering element to the Anytime Monte Carlo
algorithm improves performance. A standard MCMC algorithm is run for computational
complexities p ∈ {0,1,2,3}, applying the random walk Metropolis update described in
Section 4.5.1.1. The single and multiple processor APTMC algorithms are run again for the
same amount of virtual time, with exchange moves occurring every δ0:2 = 5 units of virtual
time for p ≤ 2 and every δ3 = 30 units when p = 3. The single processor version is run on
Λs = 8 chains, and the multi-processor on W = 8 workers, with K = 2 chains per worker, so
Λm = 16 chains in total. This time, local moves are performed on the cold chain of the single
processor APTMC-1 algorithm.

To compare results, kernel density estimates of the posterior are obtained from the post
burn-in cold chains for each algorithm using the kde function in MATLAB [2019], developed
by Botev et al. [2010]. It is also important to note that even though all algorithms run for
the same (virtual) duration, the standard MCMC algorithm is performing local moves on a
single chain uninterrupted until the deadline, while the APTMC-1 algorithm has to update
Λ = 8 chains in sequence, and each worker w of the APTMC-W algorithm has to update K = 2
chains in sequence before exchange moves occur. Therefore, by time T the algorithms will
not have returned samples of similar sizes. For a fair performance comparison, the sample
autocorrelation function (acf) is estimated first of all. When available, the acf is averaged
over multiple chains to reduce variance in its estimates. Other tools employed are

• Integrated Autocorrelation Time (IAT ), the computational inefficiency of an MCMC
sampler. Defined as

IATs = 1+2
∞

∑
ℓ=1

ρs(ℓ),

where ρs(ℓ) is the autocorrelation at the ℓ-th lag of chain s. It measures the average
number of iterations required for an independent sample to be drawn, or in other words
the number of correlated samples with same variance as one independent sample.
Hence, a more efficient algorithm will have lower autocorrelation values and should
yield a lower IAT value. Here, the IAT is estimated using a method initially suggested
in Sokal [1997] and Goodman and Weare [2010], and implemented in the Python
package emcee by Foreman-Mackey et al. [2013] (Section 3). Let

ˆIAT s = 1+2
M

∑
ℓ=1

ρ̂s(ℓ),

where M is a suitably chosen cutoff, such that noise at the higher lags is reduced. Here,
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the smallest M is chosen such that M ≥ Dρ̂s(M) where D ≈ 6. More information on
the choice of D is available in Sokal [1997].

• Effective Sample Size (ESS), the amount of information obtained from an MCMC
sample. It is closely linked to the IAT by definition:

ESSs =
Ns

IATs
,

where Ns is the size of the current sample s. The ESS measures the number of
independent samples obtained from MCMC output.

As per Foreman-Mackey et al. [2013], when multiple repeat runs of an experiment are
performed (see Section 4.5.4), the IAT for a given algorithm is obtained by averaging the
acf returned by this algorithm over the repeat runs, and the resulting ESSs of each run are
summed to obtain a cumulative ESS for this algorithm.

The resulting ESS and IAT for different algorithms and computational complexities are
computed and shown in Table 4.1. If an exchange move is accepted, the new state of the chain
does not depend on the value of the previous state. This means that the autocorrelation in a
chain containing a significant proportion of (accepted) samples originating from exchange
moves will be lower. For low p, significantly more local moves occur before each deadline,
as hold times are short, while for a higher p, the hold times are longer and hence fewer local
moves are able to occur. Therefore, higher values of p will yield a higher proportion of
samples from exchange moves, and thus a more notable increase in efficiency.

In Figure 4.3 we observe that the quality of the posterior estimates decreases as p
increases. As a matter of fact, 107 units of virtual time tend to not be enough for the some
of the posterior chains to completely converge. Indeed, while the standard MCMC algorithm
performs reasonably well for p = 0, it becomes increasingly harder for it to fully converge
for higher computational complexities. Similarly, the single processor APTMC-1 algorithm
returns reasonably accurate posterior estimates for p ≤ 2 but then visibly underestimates the
first mode of the true posterior for p = 3. In general, the multi-processor APTMC-W algorithm
returns results closest to the true cold posterior for all p.

As for efficiency, Table 4.1 displays a much lower IAT and much higher ESS for both
APTMC algorithms, indicating that they are much more efficient than the standard MCMC

algorithm. This is further supported by the sample autocorrelation decaying much more
quickly for APTMC algorithms than for the MCMC algorithm for all p in Figure 4.4. The
multi-processor APTMC-W algorithm also yields IAT values that are lower than those returned
by the single processor APTMC-1 algorithm for p < 3, and similarly yields effective sample
sizes that are higher for all p. The ESS and IAT values for chains that have not converged to
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their posterior (their resulting kernel density estimates significantly under or overestimate
modes in Figure 4.3) have been omitted from the table.

p Multi-processor Single-processor Standard
APTMC APTMC MCMC

IAT ESS IAT ESS IAT ESS

0 53.925 12049 81.156 1202.2 1739.0 287.46
1 45.942 5888.3 95.104 708.74 2818.2 64.047
2 80.871 1168.4 132.79 448.92 - -
3 131.91 116.51 - - - -

Table 4.1 Integrated autocorrelation time (IAT ) and effective sample size (ESS) for runs of
the single, multi-processor Anytime parallel tempering and standard MCMC algorithms. The
algorithms were run for 106 units of virtual time for computational complexity p = 0 and
107 units for p ≥ 1, and the resulting ESSs were scaled down for consistency with p = 0.
The ESS and IAT values for chains that have not converged to their posterior (their resulting
kernel density estimates significantly under or overestimate modes in Figure 4.3) have been
omitted.

Next, we consider an application of the APTMC framework to ABC, a class of algorithms
that are well-adapted to situations in which the likelihood is either intractable or computa-
tionally prohibitive. ABC features a real hold time at each MCMC iteration, making it an
ideal candidate for adaptation to the Anytime parallel tempering framework.

4.5.2 ABC toy example: univariate Normal distribution

To validate the results of Section 4.4.2, consider another simple example, initially featured in
Lee [2012], and adapted here within the APTMC framework. Let Y be a Gaussian random
variable, i.e. Y ∼ N (θ ,σ2), where the standard deviation σ is known but the mean θ is not.
The ABC likelihood here is

f ε(y |θ) = Φ

(
y+ ε −θ

σ

)
−Φ

(
y− ε −θ

σ

)
for ε > 0. Using numerical integration tools in MATLAB, it is possible to obtain a good
approximation of the true posterior for any ε for visualisation. Let y = 3 be an observation of
Y and σ2 = 1, and put the prior p(θ) =N (θ ;0,5) on θ . In this example, the exact posterior
distribution for θ can easily be shown to be N

(
θ ; 5

2 ,
5
6

)
.
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Fig. 4.3 Density estimates of the cold posterior for runs of the single (orange) and multiple
(blue) processor APTMC algorithms (APTMC-1 and APTMC-W, respectively) as well as the
standard (green) MCMC algorithm. The grey line represents the true posterior density π .
Each plot corresponds to a different hold time distribution p ∈ {0,1,2,3}. While the multi
processor density has successfully converged for all p − as evidenced by the perfect overlap
between the grey and dark blue lines −, the other two algorithms tend to increasingly struggle
to estimate the first mode of the posterior as p increases.
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Fig. 4.4 Plots of the sample autocorrelation function up to lag 2500 of the post burn-in
cold chain for runs of the single (orange) and multiple (blue) processor APTMC algorithms
(APTMC-1 and APTMC-W, respectively) as well as for the output of the standard Anytime
Monte Carlo (MCMC) algorithm (green). Each plot corresponds to a different computational
complexity p ∈ {0,1,2}. The two APTMC algorithms perform considerably better than
standard MCMC for all p. The sample acf plot for p = 3 has been omitted due to both the
APTMC and MCMC chains not having fully converged to their posterior.
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When performing local moves (Algorithm 4.3), use a Gaussian random walk proposal
with standard deviation ξ = 0.5. The real-time Markov jump process is run using Λ = 10
chains. The algorithm is run on a single processor for one hour or T = 3600 seconds in real
time after a 30-second burn-in, with exchange moves occurring every δT = 5×10−4 seconds
(or 0.5 milliseconds). The radii of the balls ε1:Λ are defined to vary between ε1 = 0.1 and
εΛ = 1.1.

We verify that bias correction must be applied for all chains to converge to the correct
posterior. This is done by visually comparing density estimates of each of the post burn-in
chains to the true corresponding posterior (obtained by numerical integration). When bias
correction is not applied, the ABC-APTMC algorithm does not exclude the currently working
chain j in its exchange moves. In this case, every chain converges to an erroneous distribution
which overestimates the mode of its corresponding posterior, as is visible in Figure 4.5. On
the other hand, correcting the algorithm for such bias ensures that every chain converges to
the correct corresponding posterior.

Next, we compare the performance of the ABC-APTMC algorithm to that of a standard ABC

algorithm. For that, a more applied parameter estimation example is considered, for which
the adoption of a likelihood-free approach is beneficial.

4.5.3 Moving average process

To illustrate a possible application of the ABC-APTMC algorithm, we now consider a common
parameter estimation example taken from Marin et al. [2012]. A moving average process of
order q, or MA(q) process, is used in time series analysis to model serial autocorrelation for
the stochastic process y = (yk)k∈N up to lag q. Consider the expression

yk = uk +
q

∑
i=1

θiuk−i, (4.8)

where uk
iid∼ N (0,1) for k = 1,2, . . .. In this example, we aim to estimate the posterior of the

parameters θ =
(
θ1, . . . ,θq

)
.

In time series analysis, a standard invertibility condition is the following:

Condition 4.1. The roots of the polynomial

Q(x) = 1−
q

∑
i=1

θixi

all lie outside the unit circle in the complex plane.
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Fig. 4.5 Kernel density estimates of all chains for corrected and uncorrected runs of the single
processor ABC-APTMC algorithm. In each subplot, the light grey line is fixed and represents
the cold posterior for reference, the dark grey line represents each chain’s target posterior
(obtained by numerical integration), the dot-dashed green lines are kernel density estimates
of the chain’s posterior returned by the corrected algorithm and are indistinguishable from the
dark grey line. The orange lines are kernel density estimates for the uncorrected algorithm,
and do not agree with the dark grey line, as expected.
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We can therefore define a uniform prior over the permitted range of θi’s. In the case
q = 2 this corresponds to sampling uniformly from the triangle

−2 < θ1 < 2, θ1 +θ2 >−1, θ1 −θ2 < 1.

From Hamilton [1994], the likelihood of the observed sequence y = (y1, . . . ,yn) originat-
ing from a MA(q) process with parameters θ =

(
θ1, . . . ,θq

)
is available as a multivariate

Gaussian of the form N (0,Ω) where Ω is the n×n variance-covariance matrix

Ω = E
[
y⊤y
]
=



γ0 γ1 γ2 . . . γq . . . 0

γ1 γ0 γ1
. . . γq−1

. . . ...

γ2 γ1
. . . . . . . . . γq

... . . . . . . γq−1

γq γ1
...

... . . . γ1 γ0 γ1

0 . . . γq . . . γ2 γ1 γ0


,

where setting ℓ= |r| for r =−q, . . . ,q and θ0 = 1, the covariance for lag ℓ is

γℓ =
q−ℓ

∑
i=0

θiθi+ℓ.

In practice, when n is large, the computational cost of dealing with the matrix Ω becomes
prohibitive. Other means of computing the likelihood have been devised, notably in Marin
and Robert [2007], but the use of ABC provides an easy, likelihood-free approach to estimate
the parameters θ .

Instead of evaluating the full likelihood at each iteration of local and exchange moves,
we simulate the MA(q) process (Xk)

n
k=1 and evaluate its distance to the observations (Yk)

n
k=1.

There are multiple ways to evaluate such a distance: it can for example be the raw dis-
tance between the two datasets, but in general it is better to consider the distance between
conveniently chosen summary statistics. More on the choice of summary statistics can be
found in Marin et al. [2014]. To obtain the vector ρ(y) =

(
ρ1(y), . . . ,ρq(y)

)
of summary

statistics, we evaluate the quadratic distance between the first q sample autocorrelations, i.e.
for j = 1, . . . ,q compute

ρ j(y) =
1
τ0

n

∑
k= j+1

Mykyk− j, (4.9)
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where τ0 = ∑
n
k=1 y2

k . Therefore, the vector ρ(x) ‘hitting’ the ball Bε (ρ(y)) of radius ε is here
equivalent to ∥ρ(y)−ρ(x)∥2 ≤ ε .

4.5.3.1 Methods and settings

In this example, the MA(2) process is considered for easy visualisation, i.e. q = 2. A
sample of n = 500 observations y = (y1, . . . ,yn) is simulated using parameters θ = (θ1,θ2) =

(0.6,0.2). In this case, the true likelihood can be computed without too much computational
effort, and hence the true posteriors can be approximated using numerical integration.

This example serves to illustrate a possible application of the ABC-APTMC-1 algorithm,
and especially the computational benefits of introducing ABC exchange moves. Therefore,
we include the standard version of the parallel tempering algorithm (denoted ABC-PTMC-1),
in which exchange moves are performed after a fixed amount of local moves instead of
following a real-time schedule. The ABC-APTMC-1 and standard 1-hit kernel ABC algorithm
with (ABC-PTMC-1) and without (standard ABC) exchange moves are run three times on a
single processor for T = 28800 seconds (or 8 hours) of real time after an initial tmin = 1800-
second period of burn-in. The algorithms use a Gaussian random walk proposal with
standard deviation ξ = 0.05 in the standard ABC case, and ξ 1:Λ varying between ξ 1 = 0.05
and ξ Λ = 1 in the ABC-APTMC-1 and ABC-PTMC-1 cases. Additionally, the ABC-PTMC-1 and
ABC-APTMC-1 algorithms are run on Λ = 12 chains with exchange moves occurring every 12
local moves in the standard version and every 0.07 seconds in the anytime version. These
values are chosen in order to ensure both algorithms spend the same median time performing
local moves, following the tuning guidance in Section 4.3.4. The radii of the balls ε1:Λ are
set to vary between ε1 = 0.02 and ε1 = 1. The standard ABC algorithm is run on a single
chain, with the ball radius equal to ε1, i.e. the radius corresponding to the cold chain in the
parallel tempering algorithms. We compare the efficiency of the parallel tempering ABC
algorithms to that of the standard, single-chain one. For that, a sample acf plot averaged over
all runs is drawn in Figure 4.7 and the IAT and cumulative ESS over all runs are computed
in Table 4.2 for comparison.

4.5.3.2 Performance evaluation

The scatter plots in Figure 4.6 illustrate the workings of the ABC-APTMC-1 algorithm, with
each chain targeting a distribution increasingly close to the true posterior as ε decreases.
An equivalent set of plots can be obtained for the ABC-PTMC-1 algorithm as well. As was
already the case in Marin et al. [2012], the ABC approximation fails to reconstruct the
posterior perfectly, even for ε as low as 0.02. Several ways to improve results are discussed
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in Marin et al. [2012], including decreasing ε further and considering alternative summary
statistics for comparison with the observations, as well as applying corrections to the ABC
output such as in Beaumont et al. [2002]. After running for 8 hours, all three algorithms
return indistinguishable posteriors. What remains to be compared is the performance of each
algorithm.

Fig. 4.6 Scatter plots of post burn-in chains for a run of the single processor ABC-APTMC-1 algorithm.
In each subplot, the black contour lines represent the level sets of the true posterior and the multi-
coloured contour lines a bivariate Gaussian kernel density estimate from the samples returned for each
chain by the algorithm, obtained using the gkde2 function in MATLAB. The green star represents
the true value θ = (0.6,0.2) and the triangle is the range of acceptable values of θ . These plots
illustrate the workings of ABC parallel tempering algorithms, with each chain targeting a distribution
increasingly close to the true posterior as ε decreases.

It should be noted that while all three algorithms run for the same amount of time, the
standard ABC algorithm only has one chain to update while the parallel tempering algorithms
must perform local moves on 12 chains in sequence, and will hence return a cold chain with
fewer samples despite the addition of exchange moves. This means that algorithms must
be carefully tuned so that any improvement in performance is not offset by the reduction
in the number of cold chain samples returned. Here again, a relevant comparison tool is
the integrated autocorrelation time (IAT ), and it is also important to verify that the parallel
tempering algorithms return larger average effective sample sizes (ESS) after running for 8
hours.

As evidenced by the IAT values for both θ1 and θ2 in Table 4.2, the most inefficient of
the three algorithms is the standard ABC algorithm, as it needs on average 1.5 to 2.9 times
more samples to obtain the equivalent of an independent draw than are needed for the parallel
tempering algorithms. This is further supported by the sample acf plots in Figure 4.7, which
display a steeper decay in sample acf for the two parallel tempering algorithms. As a result,
Table 4.2 also indicates that in three 8-hour runs, the addition of exchange moves has allowed
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the ABC-PTMC-1 and ABC-APTMC-1 algorithms to double the ESS output compared to the
standard ABC algorithm.

ABC-APTMC-1 ABC-PTMC-1 Standard ABC

IAT ESS IAT ESS IAT ESS

θ1 16.448 64549 8.0068 63901 20.043 38023
θ2 21.45 49497 11.139 45933 36.306 20991

Table 4.2 Effective sample size (ESS) and integrated autocorrelation time (IAT ) over three
8-hour runs of the standard ABC and single processor ABC-APTMC-1 and ABC-PTMC-1 al-
gorithms to estimate the posterior distributions of the parameters θ = (θ1,θ2) of a MA(2)
process. The addition of exchange moves has effectively doubled the ESS for both compo-
nents of θ .

This example serves to illustrate the improvements in performance brought by the
addition of exchange moves. Indeed, the benefits of the Anytime framework are most
evident in a multi-processor setting. In this single processor experiment, the ABC-PTMC-1

and ABC-APTMC-1 parallel tempering algorithms returned a similar ESS in Table 4.2, though
the IAT for the ABC-APTMC-1 algorithm is slightly higher. This is due to the fact, mentioned
in Section 4.3.4, that Anytime algorithms cannot always exchange the samples of adjacent
chains, because they must exclude the chain that is currently computing; this causes a slightly
higher rejection rate compared to the standard version. Fortunately the nature of the Anytime
framework also allows the algorithm to return more samples, thus still enabling the algorithm
to return a higher overall ESS. We note that the higher exchange move rejection rates issue
can be mitigated by increasing the number of chains.

The multi-processor parallel tempering algorithms were not considered in this example.
The next section considers a more advanced case study in which the likelihood is unavailable,
and the benefits of performing exchange moves within the Anytime framework are illustrated
both on a single and multiple processors.

4.5.4 Stochastic Lotka-Volterra model

In this section, we consider the stochastic Lotka-Volterra predator-prey model (Lotka [1926],
Volterra [1927]), a model which has been explored in the past (Boys et al. [2008]; Wilkinson
[2011]), including in an ABC setting (Fearnhead and Prangle [2012]; Lee and Łatuszyński
[2014]; Prangle et al. [2017]; Toni et al. [2009]). Let X1:2(t) be a bivariate, integer-valued
pure jump Markov process with initial values X1:2(0) = (50,100), where X1(t) represents
the number of preys and X2(t) the number of predators at time t. For small time interval ∆t,
we describe the predator-prey dynamics in the following way:
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Fig. 4.7 Plots of the average sample autocorrelation function up to lag 100 of the post burn-in cold
chain for eight 3-hour long runs of the standard ABC (red) and single processor ABC-PTMC-1 (green)
and ABC-APTMC-1 (blue) algorithms to estimate the posterior distributions of the parameters θ =
(θ1,θ2) of a MA(2) process. The two parallel tempering algorithms (ABC-PTMC-1 and ABC-APTMC-1)
display a steeper acf decay as opposed to the standard 1-hit kernel (standard ABC).

P{X1:2(t +∆t) = z1:2 |X1:2(t) = x1:2}=


θ1x1∆t +o(∆t), if z1:2 = (x1 +1,x2),

θ2x1x2∆t +o(∆t), if z1:2 = (x1 −1,x2 +1),

θ3x2∆t +o(∆t), if z1:2 = (x1,x2 −1),

o(∆t), otherwise.

In this example, the only observations available are the number of preys, i.e. X1 at 10 dis-
crete time points. Following theory in Wilkinson [2011] (Chapter 6), the process can
be simulated and discretised using the Gillespie [1977] algorithm, in which the inter-
jump times follow an exponential distribution. The observations employed were sim-
ulated in Lee and Łatuszyński [2014] with true parameters θ = (1,0.005,0.6), giving
y = {88,165,274,268,114,46,32,36,53,92} at times {1, . . . ,10}.

This case study presents various challenges. The first challenge is that the posterior is
intractable, and some of the components of the parameters θ := θ1:3 (namely θ2 and θ3)
exhibit strong correlations. For ABC, the ‘ball’ considered takes the following form for ε > 0

Bε(y) = {X1(t) : |log [X1(i)]− log [y(i)]| ≤ ε,∀i = 1, . . . ,10} ;
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therefore, a set of simulated X1(t) is considered as ‘hitting the ball’ if all 10 simulated data
points are at most eε times (and at least e−ε times) the magnitude of the corresponding
observation in y.

In Lee and Łatuszyński [2014] (Algorithm 3), the 1-hit MCMC kernel (ABC), is shown
to return the most reliable results by comparison with other MCMC kernels which are not
considered here. The second challenge is that while this algorithm can be reasonably fast, it
is highly inefficient as it has a very low acceptance rate, and thus the autocorrelation between
samples for low lags is very high.

We have established that the race step in Algorithm 4.3 takes a random time to complete.
In addition to that, its hold time distribution for the Lotka-Volterra model is a mixture between
quick and lengthy completion times, as the simulation steps within the 1-hit kernel race are
capable of taking a considerable amount of time despite often being almost instant. Indeed,
when simulating observations using the discretised Gillespie algorithm, if the number of
predators is low, prey numbers will flourish and the simulation will take longer. Hence,
the third challenge in this particular model is that the race can sometimes get stuck for
extended periods of time if the number of preys to simulate is especially high. Therefore,
we aim to first of all improve performances by introducing exchange moves on a single
processor (ABC-PTMC). Then − and most importantly − we further improve the algorithm
by implementing it within the Anytime framework (ABC-APTMC), a method which works
especially well on multiple processors.

4.5.4.1 One processor

The first part of this case study is run on a single processor and serves to demonstrate the
gain in efficiency introduced by the exchange moves described in Algorithm 4.4. Departing
slightly from the example in Lee and Łatuszyński [2014], define the prior on θ ∈ [0,∞)3 for
the single processor experiment to be p(θ) = exp{−θ1 −θ2 −θ3}, i.e. three independent
exponential priors, all with mean 1. The proposal distribution is a truncated normal, i.e.
θ ′ |θ ∼ TN (θ ,Σ), θ ′ ∈ (0,10) with mean θ and covariance Σ = diag(0.25,0.0025,0.25).
The truncated normal is used in order to ensure that all proposals remain non-negative. For
reference, 2364 independent samples from the posterior are obtained via ABC rejection
sampling with ε = 1 and the density estimates in Figure 6 of Lee and Łatuszyński [2014] are
reproduced. To obtain these posterior samples, 107 independent samples from the prior were
required, yielding the very low 0.024% acceptance rate. This method of sampling from the
posterior is therefore extremely inefficient, and the decision to resort to MCMC kernels in
order to improve efficiency is justified.

On a single processor, the three algorithms considered are the vanilla 1-hit MCMC
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kernel (ABC) defined in Algorithm 4.3, the single-processor version of the algorithm with
added exchange moves (ABC-PTMC-1) and the same but within the Anytime framework
(ABC-APTMC-1). They are run nine times for 100800 seconds (28 hours) − after 3600
seconds (1 hour) of burn-in − and their main settings are summarised in Table 4.3.

Given the aim is to compare the performance of these algorithms, it is also important
to note that the parallel tempering algorithms, having to deal with updating multiple chains
sequentially, are likely to return cold chains with fewer samples. The algorithms must
therefore be properly set up such that the gain in efficiency introduced by exchange moves
is not overshadowed by the greater number of chains and computational cost of having to
update them all. In this experiment, the parallel tempering algorithms are run on Λ= 6 chains,
each targeting posteriors associated with balls of radii ε1:6 = {1,1.1447,1.3104,1.5,11,15}
and the proposal distribution has covariance Σ1:6 where Σλ = diag

(
σλ ,σλ 10−2,σλ

)
and

σ1:6 = {0.008,0.025,0.05,0.09,0.25,0.5}. Exchange moves are performed as described in
Algorithm 4.4 and alternate between odd (1,2),(3,4),(5,6) (excluding (5,6) in the Anytime
version) and even (2,3),(4,5) pairs of eligible chains. As per Section 4.3.4, exchange moves
for the ABC-PTMC-1 algorithm are performed every Λ = 6 local moves, and the real-time
deadline δ for exchange moves in the ABC-APTMC-1 algorithm is determined by repeatedly
measuring the times taken by the ABC-PTMC-1 algorithm to perform these 6 moves and
setting δ to be the median over all measured times.

Label Workers Chains Chains per Exchange moves Anytime
W Λ worker K (every)

ABC 1 1 1 none No
ABC-PTMC-1 1 6 6 6 local moves No
ABC-APTMC-1 1 6 6 2.59 seconds Yes

Table 4.3 Algorithm information and settings for the estimation of the parameters of a
stochastic Lotka-Volterra predator-prey model by ABC on a single processor.

4.5.4.2 Multiple processors

Next, we demonstrate the gain in efficiency introduced by running the parallel tempering
algorithm within the Anytime framework on multiple processors. The algorithms considered
are the multi-processor ABC-PTMC-W and ABC-APTMC-W algorithms and their single processor
counterparts ABC-PTMC-1 and ABC-APTMC-1. This time, instead of relying on an informative,
exponential prior on θ , we define a uniform prior between 0 and 3. The proposal distribution
is still a truncated normal, but with tighter limits (corresponding to the prior) i.e. θ ′ |θ ∼
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TN (θ ,Σ), θ ′ ∈ (0,3). Again, 1988 independent samples from the posterior are obtained
for reference. They are generated via ABC rejection sampling with ε = 1. To obtain these
posterior samples, 108 independent samples from the prior were required, yielding the even
lower 0.002% acceptance rate.

The two algorithms are run on Λ = 20 chains, each targeting posteriors associated with
balls of radii ranging from ε1 = 1 to ε20 = 11 and proposal distribution covariances Σ1:21

where Σk = diag
(
σ k,σ k10−2,σ k) for chain k and where values range from σ1 = 0.008 to

σ20 = 0.5. These are tuned so that the acceptance rates of exchange moves between adjacent
chains remain on average greater than 70%. The algorithms are run four times for 864000
seconds (24 hours) and their main settings are summarised in Table 4.4. Given the non-
negligible 1.1 second communication overhead, this experiment is run according to the third
scenario from Section 4.3.3, i.e. dividing exchange moves into within- and between-worker
exchange moves. As described in Section 4.3.4, a full set of worker-specific moves here
consists of K = 5 local moves, followed by within-worker exchange moves between a pair of
adjacent chains selected at random, followed by 5 more local moves. The between-worker
exchange moves are performed after a full set of parallel moves on the master by selecting a
pair of adjacent workers at random and exchanging between the warmest eligible chain from
the first worker and coldest from the second so that they are adjacent.

Label Workers Chains Chains per Communication Exchange moves (every) Anytime
W Λ worker K overhead

ABC-PTMC-1 1 20 20 - 20 local moves No
ABC-APTMC-1 1 20 20 - 11 seconds Yes
ABC-PTMC-W 4 20 5 1.1 seconds 5 local moves No
ABC-APTMC-W 4 20 5 1.1 seconds 5 local moves (within workers) Yes

15.3 seconds (between workers)

Table 4.4 Algorithm information and settings for stochastic Lotka-Volterra predator-prey
model on multiple processors.

4.5.4.3 Performance evaluation

All algorithms returned density estimates that were close to those obtained via rejection
sampling. In order to compare the performance of the algorithms, as stated above, all
algorithms compared are set to run for the same real time period. The IAT and cumulative
ESS over all repeat runs are computed for all algorithms. While the IAT and sample
autocorrelation plots are good tools for comparing efficiency, they do not take into account
the computational cost of running 6 chains instead of a single chain. The ESS, on the other
hand, gives us how many effective samples the different algorithms can return within a fixed
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time frame. For example, a very fast algorithm could still return a higher ESS even if it
has a much higher IAT . Additionally, to illustrate how the Anytime version of the parallel
tempering algorithms works compared to standard ABC-PTMC, the real times all algorithms
take to perform local and exchange moves are measured and their timelines plotted in Figure
4.9.

One processor Both the ABC-PTMC-1 and ABC-APTMC-1 algorithm display an improve-
ment in performances: they return IAT s that are respectively 3.2 and 1.6 times lower on
average than those of the standard ABC algorithm in Table 4.5, and display a steeper decay
in sample autocorrelation in Figure 4.8. In the 28 hours (post burn-in) during which the
algorithms ran, both parallel algorithms also yielded an increased ESS. The effect of the
Anytime framework on the behaviour of the parallel tempering algorithm is demonstrated in
Figure 4.9. The timeline of local moves for the ABC-PTMC-1 algorithm illustrates the fact that
local moves take a random amount of time to complete. This is mitigated since a deadline
was implemented in the Anytime version of the algorithm. As a result, the bottom plot in
Figure 4.9 displays more consistent local move times.

Note that in Table 4.5, while the improvement in IAT is significant, the increase in ESS
after 28 hours is not particularly large. This is due to the previously mentioned erratic
behaviour of the hold time distribution for this example. Other examples explored such as
the moving average example of Section 4.5.3 yielded a much more significant increase in
ESS after introducing exchange moves. We also note that in this example, the ABC-PTMC-1
algorithm returned a lower IAT than its Anytime counterpart. There are two potential reasons
to account for the IAT . The first is the many swaps which are cycling the same samples
among the held chains in the Anytime case. The second, as mentioned in Section 4.3.4, is
that Anytime algorithms cannot always exchange the samples of adjacent chains, because
they must exclude the chain that is currently computing; this causes a slightly higher rejection
rate compared to the standard version (in the multi-processor example with more chains,
this is mitigated). However, the many more exchange moves of the Anytime algorithm do
then result in more returned samples, which leads to a higher ESS. The single-processor
experiment was mainly designed to demonstrate the performance improvements brought by
adding exchange moves to the 1-hit MCMC kernel (referred to as standard ABC) and to show
that Anytime does match the performance of parallel tempering on a single processor. Since
a single processor is never idling, the strength of the Anytime framework is best illustrated in
a multi-processor setting.
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Standard ABC ABC-PTMC-1 ABC-APTMC-1

IAT ESS IAT ESS IAT ESS

θ1 69.476 7018.1 22.404 7618.6 44.071 7963.8

θ2 122.73 3973 35.381 4824.2 69.803 5028

θ3 150.74 3234.6 50.035 3411.3 98.929 3547.7

Table 4.5 Integrated autocorrelation time (IAT ) and cumulative effective sample size (ESS)
over nine 28-hour runs of the ABC, ABC-PTMC-1 and ABC-APTMC-1 algorithms to estimate
the posterior distributions of the parameters θ = (θ1,θ2,θ3) of a stochastic Lotka-Volterra
model. Improvements in performance are modest in this example.
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Fig. 4.8 Plots of the sample autocorrelation function up to lag 200 of the cold chain for
runs of the standard ABC (green), single processor ABC-PTMC-1 (blue) and multi-processor
ABC-PTMC-1 (orange) algorithms to estimate the posterior distributions of the parameters
θ = (θ1,θ2,θ3) of a stochastic Lotka-Volterra model. The inclusion of exchange moves
boosts efficiency and leads to a steeper decay in the parallel tempering algorithms.
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Fig. 4.9 Timeline of local and exchange moves for the ABC-PTMC-1 and ABC-APTMC-1

algorithms for the first 300 seconds. The exchange moves are represented by the white and
red lines and the local moves by the dark blue and orange coloured blocks. Local moves take
a random amount of time to complete, as illustrated by the times consumed by local moves
for the ABC-PTMC-1 algorithm. The anytime (ABC-APTMC-1) version effectively implements
a hard deadline for the exchange moves (without introducing a bias), as can be seen by the
regularity of local move times in the bottom figure.

Multiple processors In the multi-processor case study, both the ABC-PTMC-1 and
ABC-PTMC-W were set so that on each worker, an exchange move occurred after all chains
had been updated locally once, as described in Table 4.4. The total number of samples
returned by the ABC-PTMC-W algorithm is higher for all chains (see Table 4.7). However,
the ABC-PTMC-W algorithm is just as affected by the distribution of the hold times being a
mixture of quick and lengthy completion times as its single processor counterpart, and is just
as prone to getting stuck in a race for an extended period. During this time, all processors
sit idle while waiting for the race to complete, as illustrated in Figure 4.10. Therefore, the
ABC-PTMC-W algorithm struggles to properly boost the total sample size output by the cold
chain, and the ESS is not markedly higher on average in Table 4.6. On the other hand, thanks
to the real time deadlines implemented, the ABC-APTMC-W algorithm is able to more than
double the total size of the samples output (see Table 4.7), and the ESSs for the cold chain
returned in Table 4.6 are on average 3.41 times higher than those of the single processor
version.

As for the main comparison − namely Anytime vs standard ABC with exchange moves
− both single and multi-processor Anytime algorithms return an ESS larger than their
respective standard versions in Table 4.6. While the improvement on a single processor is
not significantly large, the ESS has more than quadrupled on multiple processors. Figures
4.10 and 4.11 illustrate well the advantage of implementing a real-time deadline to local
moves. At most local moves, the issue in which all workers sit idle waiting for the slowest
to finish arises for the ABC-PTMC-W algorithm. On the other hand, Figure 4.11 shows that
the Anytime version of the algorithm is making better use of the allocated computational
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resources. The Anytime framework ensures that none of the workers need to wait for the
slowest among them to finish, allowing for more exploration of the sample space in the
faster workers. Additionally, the real time deadline ensures that even if chain k on Worker w
remains stuck in a race for an extended period of time, the other workers are still updating.
Therefore, while the remaining four chains on Worker w wait for chain k to complete its race,
they also continue to be updated at regular intervals thanks to the exchange moves with other
workers.

The addition of ABC exchange moves in his case study proved fruitful, as the effective
sample size for the parameters of the Lotka-Volterra model was increased. However this
required fine-tuning of the settings. The benefits of ABC parallel tempering will be stronger
and more easily visible in a problem in which the parameters to be estimated have a multi-
modal distribution, as a single chain may get stuck in local optima while multiple tempered
chains will explore more of the sample space. Nonetheless, the introduction of the Anytime
framework is a significant an important improvement. It ensures the various chains in ABC
parallel tempering continue to be updated (via exchange moves) even when one of them is
stuck performing local moves for longer than expected and encourages the algorithm to make
better use of its allocated resources on multiple processors.

One processor Multiple processors
ABC-PTMC-1 ABC-APTMC-1 ABC-PTMC-W ABC-APTMC-W

IAT ESS IAT ESS IAT ESS IAT ESS

θ1 39.535 269.89 72.475 362.62 48.621 266.7 39.898 1452.5

θ2 72.908 146.35 88.446 297.14 67.395 192.4 72.79 796.14

θ3 82.464 129.39 138.56 189.68 87.635 147.97 101.57 570.57

Table 4.6 Integrated autocorrelation time (IAT ) and cumulative effective sample size (ESS)
over four 24-hour runs of the ABC-PTMC-1, ABC-APTMC-1, ABC-PTMC-W and ABC-APTMC-W

algorithms to estimate the posterior distributions of the parameters θ = (θ1,θ2,θ3) of a
stochastic Lotka-Volterra model.

4.6 Conclusion

In an effort to increase the efficiency of MCMC algorithms, in particular for use on distributed
computing, and for situations in which the likelihood is unavailable and/or compute times
of the algorithms depend on their current states, the APTMC algorithm was developed for
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the fist time. The algorithm combines the enhanced exploration of the state space, provided
by the between-chain exchange moves in parallel tempering, with control over the real-time
budget and robustness to interruptions available within the Anytime Monte Carlo framework.

Initially, the construction of the Anytime Monte Carlo algorithm with the inclusion
of exchange moves on a single and multiple processors was verified on a toy Gamma
mixture example. The performance improvements they brought were then demonstrated
by comparing the algorithm to a standard MCMC algorithm. Subsequently, the exchange
moves were adapted for pairing with the 1-hit ABC-MCMC kernel, a simulation-based
algorithm within the ABC framework, which provides an attractive, likelihood-free approach
to MCMC. The construction of the adapted ABC algorithm was verified using a simple
univariate normal example. Then, the increased efficiency of the inclusion of exchange moves
was demonstrated in comparison to that of a standard ABC algorithm on two parameter
estimation problems. The first problem involved the parameters of a moving average process
and demonstrated a significant increase in effective sample size brought by introducing
exchange moves to the ABC 1-hit kernel. The second problem considered the estimation
of the parameters of a stochastic Lotka-Volterra predator-prey model based on partial and
discrete data, and the likelihood of this model is intractable. On a single processor, it was
shown that introducing exchange moves provides an improvement in performance and an
increase in the ESS compared to that of the standard, single chain ABC algorithm. The
Anytime results for a single processor match the efficiency of standard parallel tempering,
which is to be expected since the single processor is never idling in both the Anytime and
standard versions. The ESS gains of Anytime become significant in a multi-processor setting,
since one slow processor will lead to all the others idling in standard parallel tempering.

One major class of applications with local moves that have state-dependent real comple-
tion times and would benefit from the APTMC framework are transdimensional applications,
such as RJ-MCMC (Green [1995]), implemented by Jasra et al. [2007b] within a parallel
tempering algorithm. The performance of parallel tempering algorithms with temperature-
dependent completion times, as addressed in Earl and Deem [2004], can also be improved by
the Anytime framework. Examples of such algorithms occur in Hritz and Oostenbrink [2007];
Karimi et al. [2011]; Wang and Jordan [2003]. From a purely computing infrastructure re-
lated perspective, exogenous factors such as processor hardware, competing jobs, memory
bandwidth, network traffic or I/O load also affect the completion time of local moves even if
they are not state-dependent within the algorithm itself. This is the case in Rodinger et al.
[2006]. In a more general setting, any population-based MCMC algorithm such as parallel
tempering, SMC samplers (Del Moral et al. [2006]) considered in Chapter 5, or parallelised
generalised elliptical slice sampling (Nishihara et al. [2014]), which combines a parallel
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updates step (e.g. local moves) and an inter-processor communication step (e.g. exchange
moves, resampling) can benefit from the APTMC framework in future implementations.

Conversely, as noted above, in our single-processor experiments, the Anytime results
only matched the efficiency of standard parallel tempering, which is expected since there
is no idling of the processor. Therefore, ESS gains of the Anytime framework are only
truly significant in a multi-processor setting. Additionally, if communication overhead is
negligible and one has access to a large number of high performance, uncontested processors,
parallel tempering algorithms which do not include state-dependent local move completion
times such as in Calderhead and Girolami [2009]; Friel and Pettitt [2008] will not benefit as
much from the Anytime framework. Finally, embarrasingly parallel algorithms which do
not require any inter-processor communication before completion will also only marginally
benefit from the Anytime framework.
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Fig. 4.10 Timeline of local and exchange moves for the ABC-PTMC-W algorithm for the first
300 seconds. Within and between worker exchange moves are represented by the white
lines on the Global timeline and blue lines on the various Worker timelines, respectively.
Local moves on each worker are represented by the light blue coloured blocks and the dark
blue coloured blocks correspond to the global time all workers spend running in parallel,
including communication overhead. Significant idle time is apparent on all workers as they
always have to wait for the slowest among them to complete its set of local moves.

Fig. 4.11 Timeline of local and exchange moves for the ABC-APTMC-W algorithm for the first
300 seconds. Within and between worker exchange moves are represented by the red lines.
Local moves on each worker are represented by the various orange coloured blocks, with
the brighter blocks corresponding to the global time all workers spend running in parallel,
including communication overhead. The significant idle time from Figure 4.10 has been
greatly reduced thanks to the deadlines implemented.
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Chain k εk σ k
ABC-PTMC-1 ABC-PTMC-W ABC-APTMC-1 ABC-APTMC-W

1 1 0.008 2667.5 3241.8 6570.3 14488
2 1.046 0.009 2790 3564.8 6934.8 16902
3 1.094 0.011 2796.8 3567.5 6941 16837
4 1.145 0.012 2797.3 3604.5 6924.8 17264
5 1.197 0.014 2793.8 3719.8 6931.3 15710
6 1.253 0.016 2786.3 3748.8 6951.5 17157
7 1.31 0.019 2784.8 3629.3 6961.3 18947
8 1.371 0.022 2795.5 3615 6941.5 18551
9 1.434 0.025 2805.5 3608.5 6950.8 18759

10 1.5 0.029 2803.5 3711.5 6962.8 17276
11 1.661 0.034 2798.5 3799.8 6962.3 46350
12 1.84 0.039 2803.3 3693.3 6983 53716
13 2.038 0.045 2814.8 3656.5 6995.3 53289
14 2.257 0.052 2799 3658.3 7008.8 53458
15 2.5 0.06 2783.5 3796.3 7029.8 46597
16 3.362 0.092 2787.5 4054.5 7038.5 68953
17 4.522 0.14 2783.8 3936.5 7009.5 79231
18 6.082 0.214 2781 3912.5 6982.5 78917
19 8.179 0.327 2780.8 3919.5 7002.8 79038
20 11 0.5 2665.8 3598.5 6604.3 67725

Table 4.7 Average sample sizes per chain returned over four 24-hour runs of the ABC-PTMC-1,
ABC-APTMC-1, ABC-PTMC-W, ABC-APTMC-W algorithms to estimate the posterior distributions
of the parameters θ of a stochastic Lotka-Volterra model on multiple processors in Sec-
tion 4.5.4.3. The ball radius εk and proposal distribution covariance diag

(
σ k,σ k10−2,σ k)

associated with each chain k are displayed for information.
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Appendix 4.A Anytime distribution of the cold chain

To obtain the anytime distribution in the Gamma mixture example in Section 4.5.1, compute
the three components of the expression in Equation 4.7:

1. The density of X

π(x) =
xk1−1

2Γ(k1)θ
k1
1

e−
x

θ1 +
xk2−1

2Γ(k2)θ
k2
2

e−
x

θ2 ,

where Γ( ·) is the gamma function.

2. The expectation of H |x given by

E [H |x] = ψxp +(1−ψ)xp = xp.

The ψ factors cancel out, meaning that the anytime distribution is independent of ψ

and therefore its value can be chosen to be 1 for convenience.

3. To compute E [H], use a property of conditional expectation and the honesty conditions
of the Gamma(k1 + p,θ1) and Gamma(k2 + p,θ2) distributions:

E [H] = E [E(H |x)] = E [xp]

=
∫ xp+k1−1

2Γ(k1)θ
k1
1

e−
x

θ1 dx+
∫ xp+k2−1

2Γ(k2)θ
k2
2

e−
x

θ2 dx

=
Γ(k2)Γ(p+ k1)θ

p
1 +Γ(k1)Γ(p+ k2)θ

p
2

2Γ(k1)Γ(k2)

=
C

2Γ(k1)Γ(k2)
,

letting C = Γ(k2)Γ(p+ k1)θ
p
1 +Γ(k1)Γ(p+ k2)θ

p
2 .
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Combining the three components,

α(x) =
2Γ(k1)Γ(k2)

C

(
xp+k1−1

2Γ(k1)θ
k1
1

e−
x

θ1 +
xp+k2−1

2Γ(k2)θ
k2
2

e−
x

θ2

)

=
Γ(k2)Γ(p+ k1)θ

p+k1
1

Cθ
k1
1︸ ︷︷ ︸

ϕ(p,k1:2,θ1:2)

xp+k1−1

Γ(p+ k1)θ
p+k1
1

e−
x

θ1︸ ︷︷ ︸
Gamma(p+k1,θ1)

+
Γ(k1)Γ(p+ k2)θ

p+k2
2

Cθ
k2
2︸ ︷︷ ︸

ϕ ′(p,k1:2,θ1:2)

xp+k2−1

Γ(p+ k2)θ
p+k2
2

e−
x

θ2︸ ︷︷ ︸
Gamma(p+k2,θ2)

.

And now substituting back the expression C in ϕ:

ϕ(p,k1:2,θ1:2) =
1

1+ Γ(k1)Γ(p+k2)θ
p
2

Γ(k2)Γ(p+k1)θ
p
1

.

Similarly, we can obtain ϕ ′(p,k1:2,θ1:2) = 1−ϕ(p,k1:2,θ1:2). Therefore, the anytime distri-
bution α(dx) is the following mixture of two Gamma distributions:

α(dx) = ϕ(p,k1:2,θ1:2)Gamma(k1 + p,θ1)+ [1−ϕ(p,k1:2,θ1:2)]Gamma(k2 + p,θ2) .



Chapter 5

A General Anytime Sequential Monte
Carlo Sampler for Changepoint Models
using Reversible Jump MCMC

5.1 Chapter overview

Multiple changepoint problems are very useful for modelling the heterogeneity of observed
data, as the changepoints divide the data into multiple segments corresponding to different
models and/or latent parameters. A commonly used and easily adaptable approach to
changepoint detection and inference is reversible jump MCMC (RJ-MCMC). However,
RJ-MCMC can suffer from slow mixing, and in any MCMC algorithm, the need to assess
whether the Markov chain has converged arises. To mitigate this issue, the RJ-MCMC
algorithm is integrated into an SMC sampler, in which a population of particles is propagated
through the data, improving efficiency and eliminating the need to assess convergence. As in
any particle filter, distributed computing can be used to update the particles via RJ-MCMC
in parallel on separate workers, but every once in a while, all workers must communicate
for the resampling step. The transdimensional nature of RJ-MCMC can lead to parallel
updates taking varying and random amounts of real time to complete, as they contain
differing numbers of changepoints. This is accentuated when a latent parameter of interest is
particularly expensive to update (See Section 5.6). As we explored in the previous chapter,
the Anytime framework can be employed to ensure that all workers are synchronised for the
resampling step and no idling occurs. In this chapter, we formulate a new general framework
for changepoint detection using an RJ-MCMC algorithm within an Anytime SMC sampler.
We present an application of the methodology to provide new insights and demonstrate the
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gain in efficiency brought by employing the Anytime framework on a complex changepoint
model.

5.2 Introduction

Multiple changepoint models are widely used in the literature to model the heterogeneity
of data, with many applications (Aminikhanghahi and Cook [2017]), including biology
(Fearnhead and Vasileiou [2009]; Xing et al. [2012]), signal processing (Chowdhury et al.
[2012]; Punskaya et al. [2002]; Ureten and Serinken [2005]), physical sciences (Jarrett [1979];
Ó Ruanaidh and Fitzgerald [1996]; Raftery and Akman [1986]), climate analysis (Itoh and
Kurths [2010]) and finance Dias and Embrechts [2002]. Indeed, in many applications, the
observed data do not follow a single model but are divided into an often unknown number of
segments, where each segment follows a different model. The changepoints correspond to
the locations in the data at which the current model switches to the next (see Figure 5.2 for
an illustration).

Often, a Bayesian approach is employed to estimate the number and position of the
changepoints, as well as any latent parameters of the models describing the data in each
segment. A variety of such approaches have been developed to estimate the changepoint
posterior. For example, Chib [1998] employs Bayes factors to compare various changepoint
configurations, Fearnhead [2006]; Fearnhead and Liu [2007] derive the commonly used
filtering recursions to sample exactly from the changepoint posterior, and Lavielle and
Lebarbier [2001] use Markov chain Monte Carlo (MCMC) along with a binary sequence of
indicator variables to estimate the posterior changepoint number and locations. A commonly
used and flexible method introduced in Green [1995] and applied in Benson et al. [2018];
Boys and Henderson [2004]; Wyse and Friel [2010] makes use of RJ-MCMC updates to
explore the various changepoint configurations.

The RJ-MCMC algorithm tends to suffer from slow mixing (Brooks et al. [2003]), and as
for any MCMC method, the need to assess whether the Markov chain has converged to its
stationary distribution (i.e. the posterior of interest) arises. To mitigate both issues, Del Moral
et al. [2006] developed sequential Monte Carlo (SMC) samplers, in which a population of
particles evolves through the data, thus allowing to sequentially approximate the posterior
of interest. An SMC sampler naturally progresses through the data like a particle filter, and
can therefore be run in a distributed computing environment (Lee et al. [2010]), where the
RJ-MCMC updates are performed in parallel on multiple processors. Another issue then
arises: all processors must be synchronised before the resampling step can occur, but the
time taken by some of the RJ-MCMC updates to complete depends on the current number of



5.3 Multiple changepoint model specification 101

changepoints on a given particle. As a result, the processors will sit idle until the slowest
among them finishes working. To address this issue, just like in Chapter 4, the Anytime
Monte Carlo framework introduced in Murray et al. [2016b] can be employed. In this chapter,
we present a general method for changepoint inference using RJ-MCMC updates within an
Anytime SMC sampler.

The chapter is organised as follows. In Section 5.3, we formally introduce multiple
changepoint models in a general setting. In Section 5.4, the common changepoint inference
aims are presented, as well as a quick overview of some of the main approaches to sample
from the changepoint posterior, including RJ-MCMC. Section 5.5 introduces the focus of
this chapter: an Anytime SMC sampler that uses RJ-MCMC for changepoint inference. In
Section 5.6, we illustrate how to apply the algorithm for a complex changepoint model, and
demonstrate the gain in efficiency brought by employing the Anytime framework. Finally,
conclusions are discussed in Section 5.7.

5.3 Multiple changepoint model specification

5.3.1 Model overview

Consider a set of n ∈ N sequential observations y := {y1, . . . ,yn} obtained during the time
interval [0,L], and taking values in Y such that each observation y j depends on an unobserved
parameter φ j ∈ Φ ⊂ R for j = 1, . . . ,n. Let ζ := {ζi}m+1

i=1 , m+ 1 < n denote a process of
unobserved latent states taking values in the set Z and let τ := {τi}m

i=1 denote the T -valued
changepoint locations τ0 := 0 < τ1 < .. . < τm < n =: τm+1 such that the latent state ζi

corresponds to the interval (τi−1,τi] for i = 1, . . . ,m+ 1. The changepoint locations are
the instances at which the values of the parameters φ j change, i.e. the value of φ j at any
observation index j can be given by the following step function

φ j =
m+1

∑
i=1

ϕi1(τi−1,τi]( j), j = 1, . . . ,n,

where 1(τi−1,τi]( j) denotes the indicator function for j ∈ (τi−1,τi] and ϕi corresponds to the
value of the latent parameters in the i-th interval. For the rest of this chapter, we refer to
ϕ := {ϕi}m+1

i=1 as the latent parameters. The latent states ζ may or may not be present, and
generally provide more information on the state of the corresponding segment. For example,
in Fearnhead and Vasileiou [2009]; Yıldırım et al. [2013], ζi corresponds to the family or
model to which the i-th segment belongs, and therefore we have Z = J1,KK where K is the
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total number of families. The observations can be partitioned into m+1 disjoint segments{
y1:T (τ1),yT (τ1)+1:T (τ2), . . . ,yT (τm−1)+1:T (τm),yT (τm)+1:n

}
,

where the i-th segment yT (τi−1)+1:T (τi) :=
{

yT (τi−1)+1, . . . ,yT (τi)

}
depends on the latent pa-

rameter ϕi for i = 1, . . . ,m+ 1 and T (τi) corresponds to the maximum observation index
before the changepoint at τi occurs, i.e. map τi to the integers by defining the function
T : T → J0,nK which finds its largest integer part as follows:

T (τi) = max
j∈J0,nK

{ j ≤ τi} , i = 0, . . . ,m+1. (5.1)

Note that if the changepoint locations are assumed to be discrete as in Benson et al. [2018];
Fearnhead [2006], then T (τi) = τi. Deciding whether to assume the changepoint locations
are discrete or continuous depends on the model and algorithms employed for inference, as
both approaches are able to simplify different aspects of the implementation slightly. For
example, assuming continuous changepoint locations makes it straightforward to propose
candidate locations for new changepoints in RJ-MCMC moves (see Section 5.4.2) without
running the risk of selecting the location of an already existing changepoint, while assuming
discrete changepoint locations makes the task of evaluating the likelihood easier.

Example 5.1. From Fearnhead and Vasileiou [2009]. Let y = (y1, . . . ,yn) be the real-valued
(Y = R) data obtained in the interval [0,n]. The data are divided into m+ 1 segments
separated by m discrete-valued (T = N) changepoints τ0 < τ1 < .. . < τm < τm+1 where
τ0 := 0 and τm+1 := n. The i-th segment contains observations

(
yτi−1+1, . . . ,yτi

)
and is

associated with family ζi ∈Z = J1,KK and latent parameters ϕi = (µi,σ
2
i )∈ Φ =R×(0,∞).

Figure 5.1 illustrates the observed data.
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Fig. 5.1 Observed data (light blue line) simulated according to the changepoint model from
Fearnhead and Vasileiou [2009]. The true mean µ parameter is displayed (dashed red line),
as well as the true changepoint locations τ (dark blue stars) and the true families ζ to which
each segment of the data belongs (pink line for ζ = 1, turquoise line for ζ = 2, purple line
for ζ = 3).

Let θ denote the hyperparameters of the model, and define a prior on the latent states
and changepoint locations pθ (τ,ζ ). Assume that the latent parameters ϕ for each segment
are conditionally independent given the latent states ζ with their density defined as pθ (ϕ|ζ ),
and that the observations Y :=

{
Y j
}n

j=1 are conditionally independent within a segment
given the latent parameter and latent process values for that segment. The likelihood of the
observations across all segments is then defined as

g(y|ϕ,τ,ζ ) =
m+1

∏
i=1

T (τi)

∏
j=T (τi−1)+1

g(y j|ϕi,ζi),

and the joint density is defined as

pθ (y,ϕ,τ,ζ ) = pθ (τ,ζ )pθ (ϕ|ζ )g(y|ϕ,τ,ζ ) (5.2)

= pθ (τ,ζ )
m+1

∏
i=1

pθ (ϕi|ζi)
T (τi)

∏
j=T (τi−1)+1

g(y j|ϕi,ζi).

It is often possible to integrate or ‘collapse’ out dependence on the latent parameters ϕ . Given
latent state ζi and corresponding current segment (τi−1,τi], let ys:t be a set of observations
such that τi−1 < s ≤ t ≤ τi belong to the segment with latent parameter ϕi. Integrate (or
collapse) out the latent parameter to define the evidence function Rθ : J1,nK2 ×Z → [0,∞)

as

Rθ (s, t,ζi) =
∫

Φ

t

∏
j=s

g(y j|ϕi,ζi)pθ (ϕi|ζi)dϕi. (5.3)
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From this, we can also define the potential function Gθ
i : T 2×Z → [0,∞) of the i-th segment

as follows:

Gθ
i (τi−1,τi,ζi) := Rθ (T (τi−1)+1,T (τi),ζi) =

∫
Φ

T (τi)

∏
j=T (τi−1)+1

g(y j|ϕi,ζi)pθ (ϕi|ζi)dϕi.

(5.4)
The potential function Gθ

i essentially corresponds to the probability of the data observed in
the i-th segment. Using Equation 5.2, the collapsed joint density of y, ζ and τ can be written
as

pθ (y,τ,ζ ) = pθ (τ,ζ )
m+1

∏
i=1

Gθ
i (τi−1,τi,ζi). (5.5)

5.3.2 Choice of priors

The priors selected for the changepoint locations τ and latent states ζ depend on the inference
aims, type of data and model specification. Assume first that either there is no latent state
i.e. ζ = /0 or the latent state and changepoint locations are independent, i.e. pθ (τ,ζ ) =

pθ (τ)pθ (ζ ). If the changepoint locations τ are assumed to be discrete (Benson et al. [2018];
Fearnhead [2006]; Fearnhead and Vasileiou [2009]), a common choice of prior is

pθ (τ) = [1−Fθ (n− τm)]υθ (τ1)
m

∏
i=2

fθ (τi − τi−1), (5.6)

where the density Fθ (t) = ∑
t
j=1 fθ ( j) corresponds to the distance in time between successive

changepoints, υθ is the density of the time to the first changepoint τ1 and the density fθ

follows the negative binomial distribution given by

fθ (t) =

(
t − s
s−1

)
λ

s(1−λ )t−s, υθ =
1
s

s

∑
i=1

(
t − i
i−1

)
λ

i(1−λ )t−i. (5.7)

A few observations can be made. First, note that if the hyperparameter s = 1, Equation 5.7
becomes the probability mass function for the geometric distribution, as used in Fearnhead
and Vasileiou [2009]; Yao [1984]. We also note that setting a prior on the distance between
two changepoints also implies a prior on the total number m of changepoints (Fearnhead and
Liu [2007]). If the changepoints are assumed to occur at continuous time points (Del Moral
et al. [2006]; Green [1995]), their prior is generally defined conditional on the number of
changepoints m. In this case, a prior is also defined on the number of changepoints, i.e.
pθ (m). In Green [1995], given m changepoints, the changepoint locations are distributed as
even-numbered order statistics from 2m+1 points uniformly distributed on the observation
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interval [0,L]. In Del Moral et al. [2006] a similar order statistic from m points uniformly
distributed on the observation interval is employed. Order statistic based priors can also be
straightforwardly employed for discrete-valued changepoints. An advantage of employing
order statistics as priors is that even when assuming discrete-valued changepoint locations, it
avoids the instance of two adjacent observations being selected as changepoints.

Relaxing the assumption that the changepoint locations and latent state are independent,
we can instead assume that the changepoint locations depend on the latent states. In this case,
define the prior as follows:

pθ (τ,ζ ) = pθ (τ|ζ )pθ (ζ )

and, for example, rewrite the density in Equation 5.6 as

pθ (τ|ζ ) = [1−Fθ (n− τm|ζm+1)]υθ (τ1|ζ1)
m

∏
i=2

fθ (τi − τi−1|ζi),

where the density fθ in Equation 5.7 is given by

fθ (τi − τi−1 = t|ζi = k) =

(
t − s
s−1

)
λ

s
k (1−λk)

t−s,

and the densities Fθ and υθ are rewritten similarly.
As for the latent parameters ϕ , in order to ensure that the integral in Equation 5.4 is

tractable, an appropriate conjugate prior should be selected for the latent parameters ϕ .
In the case that a conjugate prior is unavailable, Fearnhead [2006] suggests that if ϕ is
low-dimensional, the integral can be calculated numerically.

5.4 Bayesian changepoint inference

The first aim of changepoint inference is to identify the number and location of the change-
points τ . In order to achieve this, the posterior probability density function of τ and ζ given
the observations Y must be estimated. The posterior is given by pθ (τ,ζ |y) ∝ pθ (y,τ,ζ )
where pθ (y,τ,ζ ) is the joint density defined in Equation 5.5. In more complex models, the
latent states ζ are also of particular interest, such as in Fearnhead and Vasileiou [2009];
Yıldırım et al. [2013] where ζi represents the model to which the segment (τi−1,τi] belongs.
We take a closer look at the most commonly used methods to estimate the latent state posterior
density pθ (τ,ζ |y), namely filtering distributions by Fearnhead [2006] and RJ-MCMC by
Green [1995].
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5.4.1 Filtering recursions

We give a brief overview of a popular approach to changepoint analysis presented in Fearn-
head [2006]; Fearnhead and Liu [2007] that enables exact sampling from the posterior
pθ (τ,ζ |y). Similar work has also been done by Barry and Hartigan [1992]; Liu and Lawrence
[1999]. First of all, assume that the integral for the evidence function Rθ in Equation 5.3 is
tractable or cheap to compute numerically. For simplicity, we also assume that the change-
points occur at discrete time points, i.e. T (τi) = τi where T is defined in Equation 5.1 and
that their prior is given by the negative binomial in Equation 5.7. To illustrate the filtering
recursion method, we solely focus on sampling from the posterior pθ (τ|y) for simplicity,
but Fearnhead and Liu [2007, 2011] extended the definition of the filtering recursions to
the possibility of including ζ as a parameter labelling the model or family of each segment.
Define the probability

Hθ ( j) = Pθ (y j:n|changepoint at j−1).

A backward recursion can be derived to obtain the probabilities Hθ ( j) as follows (more
details in Fearnhead [2006]). For j = 1, . . . ,n,

Hθ ( j) =
n−1

∑
k= j

Rθ ( j,k)Hθ (k+1) fθ (k+1− j)+Rθ ( j,n)(1−Fθ (n− j)),

where fθ is the negative binomial density defined in Equation 5.7 and Rθ the evidence
function defined in Equation 5.3. Then, it is possible to obtain the posterior density of τi

given the previous changepoint τi−1 as

pθ (τi|τi−1,y) =
Gθ

i (τi−1,τi)Hθ (τi +1) fθ (τi − τi−1)

Hθ (τi−1 +1)
. (5.8)

It is therefore possible to recursively sample exactly from the posterior density of the change-
points pθ (τ|y). A similar method can also be applied if a prior conditional on the number of
changepoints is defined instead of the negative binomial. Sampling the changepoints one at a
time would make the complexity of the algorithm O(n2), but fortunately, Fearnhead [2006]
devised an efficient algorithm that reduces the complexity so that it is linear in n.

Filtering recursions are an attractive approach to changepoint inference, as they allow
for independent sampling from the posterior. However, Benson et al. [2018]; Wyse and
Friel [2010] comment on a few drawbacks, such as the fact that the hyperparameters θ are
fixed, and including a hyperprior would render the algorithm O(n2) again, that reducing the
algorithm complexity to linear makes it inexact, and that the transition densities in Equation
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5.8 can become unstable for large datasets. Additionally, we note that the recursion relies
on the assumption that the integral in Equation 5.3 is either tractable or cheap to compute
numerically, which is not always the case (Quan et al. [2019]), and as of yet no method
has been developed to sample from pθ (τ,ζ |y) for a general ζ . Finally, each iteration of
the filtering recursion takes the same real time to complete, meaning that this algorithm
construction will not benefit as much from the Anytime framework. As a result, an alternative,
RJ-MCMC approach to changepoint inference is preferred by some, which benefits from the
performance improvements brought by the Anytime framework.

5.4.2 Reversible jump Markov chain Monte Carlo (RJ-MCMC) for
changepoint inference

In Green [1995], an RJ-MCMC scheme was developed to obtain samples from the posterior
in Equation 5.5. Depending on inference aims and whether the integral in Equation 5.4 is
tractable, five possible updates can occur: add a changepoint (birth, Mm→m+1), remove a
changepoint (death, Mm→m−1), change the positions τ of the changepoints (Mτ ), update
the latent states ζ (Mζ ) and finally, update the latent parameters ϕ (Mϕ ). The birth and
death updates are transdimensional, or between-model updates, as they affect the number
of changepoints, while the Mτ , Mζ and Mϕ updates are within-model moves, where the
number of changepoints remains fixed. A typical iteration of the RJ-MCMC algorithm
follows a Metropolis-within-Gibbs (Gilks et al. [1995]) scheme described in Algorithm 5.1.

Algorithm 5.1 RJ-MCMC moves for changepoint inference

Input: current sample
(

τk
1:mk ,ζ

k
1:mk+1,ϕ

k
1:mk+1

)
in the Markov chain.

1: (Mϕ ) Update the latent parameters: ϕ
k+1
1:mk ∼ pθ

(
·|τk

1:mk ,ζ
k
1:mk+1,y

)
.

2: (Mζ ) Update the latent state: ζ
k+1
1:mk ∼ pθ

(
·|ϕk+1

1:mk+1,τ
k
1:mk ,y

)
.

3: (Mτ ) Update the changepoint locations: τ
k+1
1:mk ∼ pθ

(
·|ϕk+1

1:mk+1,ζ
k+1
1:mk+1,y

)
.

4: With probability bmk , perform a birth move, otherwise, perform a death move, i.e
Mmk→mk+1 update where

mk+1 =

{
mk +1 with probability bmk ,

mk −1 with probability 1−bmk .

Output: updated sample
(

τ
k+1
1:mk+1 ,ζ

k+1
1:mk+1+1,ϕ

k+1
1:mk+1+1

)
.

Note that the latent states ζ may not be present, in which case the Mζ update can be
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skipped. To update τ , we proceed by proposing to move c changepoints τC where C is the c-
dimensional set of indices of the changepoints selected. While the existence and construction
of the updates in Steps 1 and 2 of the algorithm depends on the model specification and
inference aims (see Section 5.4.3 for more details and Section 5.6.3.3 for an example of Step
2), the updates in Steps 3 and 4 generally follow the same pattern, described next.

5.4.2.1 Moving a changepoint

The simplest way of updating the changepoint locations (update Mτ ) is by a local Metropolis
update. Let τ := τ1:m be the current set of changepoints, ζ := ζ1:m+1 the current set of latent
states and ϕ := ϕ1:m+1 the current set of latent parameters. If τi is a changepoint we wish
to move, propose a new location as follows: sample τ ′i uniformly from the set (τi−1,τi+1) if
τi is continuous-valued and from the set Jτi−1 +1,τi+1 −1K\ τi if it is discrete. Denote the
proposed set of changepoint locations τ ′ := (τ1, . . . ,τ

′
i , . . . ,τm). Then, accept the move with

probability min{1,Aτ} where the acceptance ratio is given by

Aτ =
pθ (τ

′,ζ )

pθ (τ,ζ )

Pg(τi−1,τ
′
i ,ζi,ϕi)

Pg(τi−1,τi,ζi,ϕi)

Pg(τ
′
i ,τi+1,ζi+1,ϕi+1)

Pg(τi,τi+1,ζi+1,ϕi+1)
, (5.9)

where Pg(τi−1,τi,ζi,ϕi) =∏
T (τi)
j=T (τi−1)+1 g(y j|ϕi,ζi). If the integral in Equation 5.4 is tractable

or cheap to compute numerically, the acceptance ratio in Equation 5.9 takes a different,
simplified form, given by

Aτ =
pθ (τ

′,ζ )

pθ (τ,ζ )

Gθ
i (τi−1,τ

′
i ,ζi)

Gθ
i (τi−1,τi,ζi)

Gθ
i (τ

′
i ,τi+1,ζi+1)

Gθ
i (τi,τi+1,ζi+1)

.

5.4.2.2 Birth and death of a changepoint

Let τ := τ1:m be the current set of m changepoints, ζ := ζ1:m+1 the current set of latent states
and ϕ := ϕ1:m+1 the current set of latent parameters. A typical transdimensional move is
accepted with probability min{1,A} where the acceptance ratio

A = proposal ratio×prior ratio× likelihood ratio× Jacobian.

We first define the proposal ratio. Let bm be the probability of a birth move occurring,
and dm = 1− bm the probability of a death occurring. In both updates, the changepoint
location τ∗ will be selected with probability rm(τ

∗). For a birth move, the new changepoint
is selected at random from a set of available changepoint locations, e.g. rm(τ

∗) = 1
n−m−1 .

So that the dimensions of the ratios match, a new ζ ∗ and ϕ∗ must be proposed as well,
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which involves sampling random variables u with density q(u) and performing a change of
variable to obtain ζ ∗ and ϕ∗. The purpose of the Jacobian |J| is to take into account this
change of variable, see Green [1995]; Richardson and Green [1997] and Section 2.8 for more
details. For a death move, τ∗ is similarly selected from the set of existing changepoints,
e.g. rm(τ

∗) = 1
m . Thus, the (unnormalised) proposal density for adding a changepoint

is given by Q(m,m+ 1) = bmrm(τ
∗)q(u) and the density for removing a changepoint is

Q(m,m−1) = dmrm(τ
∗).

If a new changepoint is proposed at τ∗ such that τi−1 < τ∗ < τi, as well as a new ζ ∗

and ϕ∗, relabel the proposed set of changepoint locations τ ′ := τ ′1, . . . ,τ
′
m+1 so that τ ′i = τ∗

and τ ′i+1 = τi. Similarly relabel the proposed set of latent states ζ ′ := ζ ′
1, . . . ,ζ

′
m+2 and

parameters ϕ ′ = ϕ ′
1, . . . ,ϕ

′
m+2. The opposite relabelling occurs for a death move. The prior

and likelihood ratio are straightforward to obtain, and the acceptance ratio for a birth move is
given by

Ab :=
Q(m,m+1)
Q(m+1,m)

× pθ (τ
′,ζ ′)

pθ (τ,ζ )

pθ (ϕ
′
i |ζ ′

i )pθ (ϕ
′
i+1|ζ ′

i+1)

pθ (ϕi|ζi)
(5.10)

×
Pg(τ

′
i−1,τ

′
i ,ζ

′
i ,ϕ

′
i )Pg(τ

′
i ,τ

′
i+1,ζ

′
i+1,ϕ

′
i+1)

Pg(τi−1,τi,ζi,ϕi)
×|J| .

If the integral in Equation 5.4 is tractable or cheap to compute numerically, the acceptance
ratio in Equation 5.10 takes the following different, simpler form:

Ab :=
Q(m,m+1)
Q(m+1,m)

× pθ (τ
′,ζ ′)

pθ (τ,ζ )
×

Gθ (τ
′
i−1,τ

′
i ,ζ

′
i )Gθ (τ

′
i ,τ

′
i+1,ζ

′
i+1)

Gθ (τi−1,τi,ζi)
×|J| .

The acceptance ratio for a death move can similarly be obtained and is given by Ad := A−1
b .

5.4.2.3 Viability for the Anytime Monte Carlo framework

The fact that the total number of changepoints m is random due to the inclusion of the
transdimensional moves in RJ-MCMC means that performing the updates Mζ , Mϕ and
Mτ (in the case where a location change is proposed for all changepoints) is an O(m)

task. As a result, every iteration of the RJ-MCMC algorithm will take a random amount
of time to complete depending on the state of τ at the beginning of the iteration, thus
making it an ideal candidate for the Anytime Monte Carlo framework. Additionally, being an
MCMC algorithm, RJ-MCMC can easily be incorporated into parallelisable algorithms. For
changepoint models, as we’ll see in Section 5.5, it is possible to improve the performance of
the RJ-MCMC algorithm by applying it within an SMC sampler.
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5.4.3 Parameter inference

Most of the time, the latent parameters ϕ are also of interest. For example, in the case
of the coal-mining disaster data introduced in Jarrett [1979] and widely explored in the
literature (Del Moral et al. [2006]; Green [1995]; Wyse and Friel [2010]), the data consist of
events occurring sequentially during a fixed timeline, and are presented as an inhomogeneous
Poisson process, where the rate of the i-th segment (τi−1,τi] is λi, so we have ϕi = λi for
i = 1, . . . ,m+ 1. Similarly, in Gaussian changepoint models such as the Well-log data
(Benson et al. [2018]; Fearnhead [2006]; Ó Ruanaidh and Fitzgerald [1996]) or DNA
sequence segmentation models (Boys and Henderson [2004]; Fearnhead and Vasileiou
[2009]; Yıldırım et al. [2013]), a given data point y j in the segment (τi−1,τi] ∋ j is assumed
to be Gaussian distributed with mean µi and variance σ2

i . In this case, ϕi = (µi,σ
2
i ) for

i = 1, . . . ,m+ 1. The second aim in both these types of models is to estimate the latent
parameter posterior density pθ (ϕ|y,ζ ) of the latent parameters ϕ given the latent states ζ

and the observations Y . It may be possible to sample directly from the posterior (Boys and
Henderson [2004]; Fearnhead and Vasileiou [2009]) if the prior pθ (ϕ|ζ ) is defined to be
conjugate. Otherwise, methods such as Metropolis-Hastings (Del Moral et al. [2006]; Green
[1995]; Quan et al. [2019]), as described in the previous section, may be employed.

Finally, depending on the case study, the hyperparameters θ may also need to be estimated.
One possible method to estimate them is maximum likelihood estimation (MLE) (Eckley et al.
[2011]). For example, in Yıldırım et al. [2013], an online expectation-maximization (EM)
algorithm was developed to obtain maximum likelihood estimates of the hyperparameters
in a long sequence of observations. Alternatively, the hyperparameters can be estimated as
in Boys and Henderson [2002]; Quan et al. [2019]; Wyse and Friel [2010], by defining a
hyperprior p(θ) and obtaining their posterior distribution p(θ |τ,ζ ,y) in a similar fashion as
for the latent parameters ϕ .

Next, we present a novel changepoint detection algorithm which makes use of SMC
samplers within the Anytime framework.

5.5 An Anytime sequential Monte Carlo (SMC) sampler
for changepoint detection

Developing RJ-MCMC algorithms that mix well is not a straightforward task, as discussed in
Brooks et al. [2003]. The transdimensional jumps presented in Section 5.4.2.2 are known as
nested jumps, in which the proposal only has one additional or one fewer changepoint. This
ensures that the probability that the Markov chain moves is not prohibitively small. However,
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it is still necessary to assess whether the chain has reached its stationary distribution, and for
example, a lack of prior knowledge on the true number of changepoints may lead to slow
mixing, especially if the number of changepoints is very different from any initial estimates.
In Del Moral et al. [2006], SMC samplers were developed that circumvent the need to assess
convergence.

5.5.1 The sequential Monte Carlo (SMC) sampler

Sequential Monte Carlo (SMC) samplers, described in Section 2.5, were first introduced
in Del Moral et al. [2006] as a method to sample sequentially from a series of probability
distributions over a single space (or a sequence of nested transdimensional spaces). To
approximate these distributions, a population of weighted samples or particles evolves over
the data like a particle filter.

For notational simplicity we drop the index θ representing dependence on the hyperpa-
rameters, we also define x := (τ1:m,ζ1:m+1,ϕ1:m+1). In changepoint inference, the posterior
of interest is πn(x) := p(x|y1:n). Define a sequence of target distributions {πt(x)}n

t=1, where
π0(x) = p(x) corresponds to the prior and πt(x) ∝ p(x|y1:t) for t = 1, . . . ,n. The distributions
are defined over a sequence of nested transdimensional spaces

Et =
⋃

mt∈J1,tK

[
{mt}×T mt ×Z mt+1 ×Φ

mt+1] ,
where mt is the number of changepoints at step t and we have Et−1 ⊂ Et for t = 1, . . . ,n. Let
κt denote the RJ-MCMC kernel targeting distribution πt . Each target distribution πt can be
approximated by a population π̂t of N weighted samples as follows:

π̂t(x) =
N

∑
i=1

ω
(i)
t δ

X (i)
t
(x),

where X (i)
t := (τ

(i)
1:mt

,ζ
(i)
1:mt+1,ϕ

(i)
1:mt+1) is the i-th particle in the population at step t, and ω

(i)
t is

its corresponding normalised weight. A typical step t of a basic SMC sampler for changepoint
inference is given in Algorithm 5.2. As discussed in Lee et al. [2010]; Murray [2013], Steps 1
and 4 of the algorithm are straightforward to implement on parallel processors. However, the
resampling step (Step 3) still requires all the processors to communicate. Before resampling
can occur, all processors must be synchronised, but as observed in Section 5.4.2.3, the
real time taken for RJ-MCMC updates to complete for a given particle depends on the
current number of changepoints on that particle. As a result, idle time becomes apparent,
as resampling cannot take place before the slowest processor has finished computing. To
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suppress this idle time, the SMC algorithm can be run within the Anytime framework (Murray
et al. [2016b]).

Algorithm 5.2 SMC sampler with RJ-MCMC moves for changepoint inference

Where (i) appears, the operation is performed for all i ∈ J1,NK.
Input: weighted particle population

(
X (1:N)

t−1 ,ω
(1:N)
t−1

)
from step t −1.

1: Compute the incremental weights

w̃
(

X (i)
t−1

)
=

πt

(
X (i)

t−1

)
πt−1

(
X (i)

t−1

) ∝ pθ

(
yt |X (i)

t−1,y1:t−1

)
.

2: Update and normalise the weights

ω
(i)
t =

ω
(i)
t−1w̃

(
X (i)

t−1

)
∑

N
j=1 ω

( j)
t−1w̃

(
X ( j)

t−1

) .
3: Resample

(
ι
(1:N)
t ,ω

(1:N)
t

)
:= resample

(
ω

(1:N)
t

)
according to Algorithm 3.6 and then

set X (i)
t := X

(
ι
(i)
t

)
t−1 .

4: Update X (i)
t for rt RJ-MCMC iterations according to Algorithm 5.1, i.e.

X (i)
t ∼ κt

(
·|X (i)

t

)
, for rt iterations.

Output: updated particle population
(

X (1:N)
t ,ω

(1:N)
t

)
.

5.5.2 The Anytime SMC sampler

The adaptation of SMC samplers to the Anytime framework was introduced in Murray et al.
[2016b]. At step t, in the updating part of the SMC algorithm (Algorithm 5.2, Step 4),
each particle X (i)

t is updated for a fixed number rt of iterations of the RJ-MCMC algorithm
(Algorithm 5.1). In the Anytime version of the algorithm, this is replaced with a real-time
budget at . Additionally, as seen in the previous chapter (Chapter 4), the Anytime framework
is at its most useful when implemented on distributed computing.

Define the anytime distribution αt associated with target πt and RJ-MCMC kernel κt .
At step t, we wish to resample our particle population (X (1:N)

t ,ω
(1:N)
t ). To illustrate the

problem, assume that the N particles are distributed across P := N
D different processors,
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i.e. D particles per processor denoted {X (p,d)
t }D

d=1 for processors p = 1, . . . ,P. When the
RJ-MCMC updates are interrupted at the real-time deadline at , denote by j the index of
the particle that was computing on each processor, meaning that we have X (p,d)

t ∼ πt for
d ∈ J1,DK\ j and X (p, j)

t ∼ αt ̸= πt for all p = 1, . . .P. Therefore, if particle X (p, j)
t is selected

for resampling, a length bias is introduced in the particle population. In Murray et al. [2016b],
multiple ways are suggested to correct for the length bias. A straightforward method to
implement is to discard particle X (p, j)

t from every processor p = 1, . . .P and draw a new
X (p, j)

t+1 from π̂t . In practice, this is done by sampling N indices from the population of N −P
unbiased samples. A typical step of the Anytime SMC samplers on multiple processors for
changepoint inference is detailed in Algorithm 5.3.

Algorithm 5.3 Anytime SMC sampler with RJ-MCMC moves for changepoint inference

Input: weighted particle population
(

X (1:N)
t−1 ,ω

(1:N)
t−1

)
from step t −1.

1: On each processor p, discard the currently working particle X (p, j)
t−1 and compute the

remaining incremental weights

w̃
(

X (p,d)
t−1

)
=

πt

(
X (p,d)

t−1

)
πt−1

(
X (p,d)

t−1

) ∝ pθ

(
yt |X (p,d)

t−1 ,y1:t−1

)
,

for d ∈ J1,DK\ j.
2: Collectively update and normalise the weights

ω
(i)
t =

ω
(i)
t−1w̃

(
X (i)

t−1

)
∑

N
k=1 ω

(k)
t−1w̃

(
X ( j)

t−1

) ,
for all i ∈ ND where ND is the set of all eligible (not currently working) particles, i.e.
ND := J1,NK\{l(p, j)}P

p=1 where l(p, j) = (p−1)D+ j.

3: Collectively resample
(

ι
(1:N)
t ,ω

(1:N)
t

)
:= resample

(
ω

(ND)
t

)
and set X (i)

t := X

(
ι
(i)
t

)
t−1 for

all i = J1,NK.
4: On each processor p, update X (p,d)

t according to the RJ-MCMC kernel (Algorithm 5.1)
for some real time at , i.e.

X (p,d)
t ∼ κt

(
·|X (p,d)

t

)
until real-time deadline at ,

for all d ∈ J1,DK.
Output: updated population

(
X (1:N)

t ,ω
(1:N)
t

)
.
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Since updates on all the processors are interrupted at each step t following the same real-
time budget at , the idle time is suppressed and all processors are automatically synchronised
for the resampling step. This results in a more efficient, and often faster algorithm. The
improvements in performance are demonstrated in the next section.

We now offer some guidance on how to distribute our particle population (X (1:N)
t ,ω

(1:N)
t )

between processors. Assume that we have access to P processors. For convenience, we
recommend dividing the total number of particles N evenly among the processors. This means
that N should be a multiple of P. By the nature of Anytime Monte Carlo, each processor must
contain at least two particles for bias correction, but the total number N of particles required
to efficiently explore the state space and obtain a good approximation of the posterior depends
on the problem at hand and resources available (see Jasra et al. [2007a] for guidance on
the choice of N). We observed in numerical experiments that the more particles are spread
across processors, the more variation there is between real completion times of RJ-MCMC
moves, and hence the more the algorithm will benefit from the Anytime framework. This
means that an SMC sampler run on a large number P of processors, with N = 2P particles
will be more efficient and benefit far more from the Anytime framework than if only a single
processor is available, i.e. P = 1, in which case no idling occurs and the benefits of the
Anytime framework are not as significant. Note that by the nature of SMC samplers, each
step t of the algorithm considers an increasing sample of observations y1:t . This means that
the real time budget at increases linearly over time (see Section 5.6.5 for an example), and
apart from very low t, it is generally safe to assume that communication overhead between
processors is negligible. Note also that while in Chapter 4, parallel tempering exchange
moves occurred between chains running at adjacent temperatures, such specific moves do
not occur in SMC samplers, so the particles on a given processor do not need to be sorted in
any particular order.

Finally, the increment for t does not need to be 1. In other words, for a dataset of size n,
it is possible to progress through the data faster than one data point at a time. For example, if
progressing through the data ∆ data points at a time, we have t = ∆,2∆,3∆, . . . ,(N∆ −1)∆,n
where N∆ = ⌈n/∆⌉ is the number of target distributions in the SMC sampler. In this case,
Algorithms 5.2 and 5.3 can be adjusted by replacing t −1 by t −∆ where relevant.

5.6 Illustration

In this section, we demonstrate the gain in efficiency brought by applying the SMC algorithm
from the previous section within the Anytime framework on a complex changepoint detec-



5.6 Illustration 115

tion model explored in Fearnhead and Vasileiou [2009]; Yıldırım et al. [2013] and briefly
presented in Example 5.1.

Let y = (y1, . . . ,yn) be the real-valued (Y = R) data obtained in the interval [0,n] and let
y1:t be the data observed up to t where 1 ≤ t ≤ n. At step t, the data are divided into mt +1
segments separated by mt discrete-valued (T =N) changepoints τ0 < τ1 < .. . < τmt < τmt+1

where τ0 := 0 and τmt+1 := n. The i-th segment contains observations
(
yτi−1+1, . . . ,yτi

)
and is associated with family ζi ∈ Z = J1,KK and latent parameters ϕi = (µi,σ

2
i ) ∈ Φ =

R× (0,∞). The main application of this model is segmentation and estimation of mean GC
(Guanine+Cytosine) content in a string of DNA. The main inference aims are therefore to
estimate the mean µ of the data over time and to identify the family ζ to which each segment
belongs.

5.6.1 Prior specification

Define the joint prior on the family of the segments and position of the changepoints up to
step t as follows:

pθ (τ1:mt ,ζ1:mt+1) = pθ (ζ1)pθ (τmt+1 |τmt ,τmt+1)
mt

∏
i=1

pθ (τi |τi−1,ζi)pθ (ζi+1 |ζi),

where conditional on the family ζi = k, the length of the i-th segment follows a Geometric
distribution with density given by

pθ (τi |τi−1,ζi = k) = fθ (τi − τi−1|ζi = k) = λk(1−λk)
τi−τi−1−1,

and the segment families evolve according to the K ×K Markov transition matrix P so that
pθ (ζi = l|ζi−1 = k) = Pkl . Finally, conditional on the family ζi = k, the priors on latent
parameters (µi,σ

2
i ) for the i-th segment are given by

µi |σ2
i ,ζi = k ∼ N

(
ξk,

σ2
i

δk

)
, σ

2
i ∼ Gamma−1 (ν ,γ) , (5.11)

where N (·, ·) denotes the Gaussian distribution and Gamma−1(·, ·) the Inverse Gamma
distribution.

5.6.2 Likelihood

The model at hand is a Gaussian changepoint model, so within the i-th segment of family ζi,
between the changepoints τi−1 and τi, the likelihood of observations y j conditional on the
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latent parameters (µi,σ
2
i ) is given by

y j |µi,σ
2
i ∼ N (µi,σ

2
i ) for j ∈ Jτi−1 +1,τiK. (5.12)

The prior defined in Equation 5.11 is conjugate, so within a single segment of family
ζi = k, the latent parameters can be collapsed out following Equation 5.3 as follows. Let
τi−1 +1 ≤ s ≤ t ≤ τi, then the evidence function for this interval is given by

Rθ (s, t,k) = π
− n(s,t)

2

√
δk

δ ′
k

Γ(ν ′)

Γ(ν)

(2γ)ν

(2γ ′)ν ′ , (5.13)

where n(s, t) = t − s+1 corresponds to the number of observations in the interval, ν ′ = ν +
n(s,t)

2 , δ ′
k = n(s, t)+δk and 2γ ′ = 2γ +B2(s, t)+δkξ 2

k − (B1(s,t)+δkξk)
2

δ ′
k

. The proof of Equation
5.13 is given in Appendix 5.A. As pointed out in Benson et al. [2018], the computations of
the sums B1(s, t) = ∑

t
i=s yi and B2(s, t) = ∑

t
i=s y2

i can be sped up by noting that B1(s, t) =
B1(1, t)−B(1,s−1) and similarly for B2(s, t). By precomputing B1(1, j) and B2(1, j) for
j = 1, . . . ,n, the computational and storage costs of evaluating the evidence function are
greatly reduced. From Equation 5.13, we can obtain the potential function for the i-th
segment

Gθ
i (τi−1,τi,ζi) = Rθ (τi−1 +1,τi,ζi). (5.14)

5.6.3 RJ-MCMC updates

In this section, we describe how the various within-model and between-model updates
introduced as part of the RJ-MCMC sampler in Section 5.4.2 are carried out for this particular
model. Denote by τ1:mt and ζ1:mt+1 the changepoint locations and segment families given
there are mt changepoints at step t ∈ J1,nK of the SMC sampler. The fact that the latent
parameters have a conjugate prior means that they are not necessary to update τ1:mt and
ζ1:mt+1 or perform any of the transdimensional moves, as they have been integrated out of
the potential function in Equation 5.14. As a result, when performing RJ-MCMC updates,
we are sampling from the collapsed posterior pθ (τ1:mt ,ζ1:mt+1|y1:t) ∝ pθ (y1:t ,τ1:mt ,ζ1:mt+1)

where pθ (y1:t ,τ1:mt ,ζ1:mt+1) is defined in Equation 5.5.

5.6.3.1 Birth and death of a changepoint

Recall that a birth move (Mmt→mt+1) is proposed with probability bmt and a death move
(Mmt→mt−1) with probability dmt = 1−bmt . The birth move is performed as follows: first of
all, select a data point index τ∗ uniformly at random from the indices that are not changepoints
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(and excluding t), i.e. from the set J1, tK\ τ1:mt+1 where τmt+1 := t. The candidate location
τ∗ is such that it lies between two existing changepoints, i.e. τi−1 < τ∗ < τi. Then, propose
new families ζ ′

i−1 and ζ ′
i on the sub-intervals [τi−1 +1,τ∗] and [τ∗+1,τi], respectively by

defining the following change of variables:

(ζ ′
i ,ζ

′
i+1) = (ζi,u),

where the new family u is sampled uniformly from the set J1,KK. The resulting Jacobian is 1.
Finally, accept the birth move with probability min{1,Amt→mt+1} where

Amt→mt+1 =
Gθ

i (τi−1,τ
∗,ζi)Gθ

i (τ
∗,τi,u)

Gθ
i (τi−1,τi,ζi)

likelihood ratio

×
PζiuPuζi+1

Pζiζi+1

λu(1−λu)
τi−τ∗−1

(1−λζi)
τi−τ∗ prior ratio

× dmt+1K(t −mt −1)
bmt (mt +1)

proposal ratio and Jacobian.

The death of a changepoint must be constructed so that it satisfies detailed balance with the
corresponding birth move. Select a changepoint τi to delete uniformly at random from the
set of existing changepoints τ . The new segment becomes [τ ′i−1 +1,τ ′i ] = [τi−1 +1,τi+1]. To
propose a new family ζ ′

i on the segment [τ ′i−1 +1,τ ′i ], reverse the birth move calculation by
inverting the previous change of variables, i.e. ζ ′

i = ζi. Finally, accept the death move with
probability min{1,Amt→mt−1} where

Amt→mt−1 =
Gθ

i (τi−1,τi+1,ζi)

Gθ
i (τi−1,τi,ζi)Gθ

i (τi,τi+1,ζi+1)
likelihood ratio

×
Pζiζi+2

Pζiζi+1
Pζi+1ζi+2

(1−λζi)
τi+1−τi

λζi+1
(1−λζi+1

)τi+1−τi−1 prior ratio

× bmt−1mt

dmt (t −mt)K
proposal ratio and Jacobian,

and note that Amt→mt+1 = A−1
mt+1→mt

is satisfied.

5.6.3.2 Updating the changepoint locations

As described in Section 5.4.2.1, it is straightforward to update the changepoint locations
conditional on all other parameters (update Mτ ). In the i-th segment, draw the candidate
location τ ′i uniformly from the set Jτi−1+1,τi+1K\τi and accept to move to the new locations
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with probability min{1,Aτ} where

Aτ =

(
1−λζi

1−λζi+1

)τ ′i−τi

×
Gθ

i (τi−1,τ
′
i ,ζi)Gθ

i (τ
′
i ,τi+1,ζi+1)

Gθ
i (τi−1,τi,ζi)Gθ

i (τi,τi+1,ζi+1)
.

In this example, all the changepoint locations are updated sequentially at each iteration of
the RJ-MCMC algorithm.

5.6.3.3 Updating the families by forward-filtering backward simulation for a finite
state space model (F-FFBSi)

Updating the segment families ζ1:mt+1 conditional on all other parameters (update Mζ )
is not as straightforward as the previous moves. To be able to sample from the posterior
pθ (ζ1:mt+1|y1:t ,τ1:mt ) at step t of the SMC sampler, we must reformulate this particular
problem as a finite state space model conditional on the changepoint locations. Then,
filtering and smoothing methods can be employed. These include forward-filtering backward
smoothing or simulation (Baum et al. [1970]) for finite state space models, a combination of
both (Scott [2002]), or forward smoothing methods (Del Moral et al. [2010]).

We now detail how to sample from pθ (ζ1:mt+1|y1:t ,τ1:mt ). Given the state space is finite,
this can be done using an exact version of the forward-filtering backward simulation algorithm
(Algorithm 3.12) for finite state space models, presented in Scott [2002] and denoted F-
FFBSi, for this example. Conditional on the changepoint locations τ1:mt , denote as zi the i-th
segment of the data, i.e. zi := (yτi−1+1, . . . ,yτi). Define the following finite state space model
with Markov transition density

f (ζi|ζi−1) := Pζi−1ζi, f (ζ1) := ρζ1
,

where the vector ρ is the initial distribution of ζ1. Often, ρ is defined as the stationary
distribution of the matrix P. Define the potential function

Gi(ζi) := Gθ
i (τi−1,τi,ζi),

where Gθ
i is defined in Equation 5.14. The joint density is given by

p(z1:mt+1,ζ1:mt+1) = f (ζ1)G1(ζ1)
mt+1

∏
i=1

f (ζi|ζi−1)Gi(ζi).

The aim is to obtain a sample from the posterior p(ζ1:mt+1|z1:mt+1). To achieve this, we first
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introduce the matrix density ai(ζi−1,ζi) := p(ζi−1,ζi|z1:i) and its marginal, known as the
forward density, αi(ζi) := p(ζi|z1:i). The following recursion is straightforward to establish

ai(ζi−1,ζi) =
Gi(ζi) f (ζi|ζi−1)αi(ζi−1)

∑ζi−1:i∈Z 2 Gi(ζi) f (ζi|ζi−1)αi(ζi−1)
,

αi(ζi) = ∑
ζi−1∈Z

ai(ζi−1,ζi),

for i = 2, . . . ,mt + 1 (see Scott [2002]). The recursion is initialised at α1(ζ1) =
G1(ζ1) f (ζ1)

∑ζ1∈Z G1(ζ1) f (ζ1)
. To sample from the posterior, a backward simulation step is performed

starting from the last segment mt +1 as follows: initialise by drawing ζ ′
mt+1 ∼ αmt+1(·), then

for i = mt , . . . ,1, sample the previous segment family from the ζ ′
i+1-th column of the matrix

ai+1, i.e. ζ ′
i ∼ ai+1(·,ζ ′

i+1).
The F-FFBSi algorithm performs both a forward and backward pass through the segments,

and its complexity is O(K2mt) where K is the total number of possible segment families. As
a result, the Mζ update is the most computationally expensive and will have a strong effect
on the different times taken by each processor to complete RJ-MCMC updates.

5.6.4 Estimating the latent parameters

For this changepoint model, recall the fact that the prior in Equation 5.11 for the latent
parameters (µ1:mt+1,σ

2
1:mt+1) is conjugate. This means that they are not required for any of

the RJ-MCMC updates. In a standard RJ-MCMC algorithm, we would still need to sample
from the latent parameters posterior at each iteration by sampling from the sequence of
densities

µi|σ2
i ,yτi−1+1:τi,ζi = k ∼ N

(
B1(τi−1 +1,τi)+δkξk

δ ′
k

,δ ′
k

)
,

σ
2
i |yτi−1+1:τi ∼ Gamma−1 (

ν
′,γ ′
)
,

for i = 1, . . . ,m + 1, where δ ′
k, ν ′, γ ′ and B1 are defined in Section 5.6.2 and m is the

total number of changepoints in the data at the current RJ-MCMC iteration. However,
given the construction of the SMC samplers, a particle approximation of the posterior
pθ (τ1:mn,ζ1:mn+1|y1:n) is obtained at the final, n-th step of the algorithm. As a result, to
obtain a particle approximation of the latent parameters posterior, it suffices to sample
from pθ (τ1:mn,ζ1:mn+1|y1:n) for each particle once the SMC sampler has completed its pass
through the data.
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5.6.5 Numerical experiments

In order to compare the performance of the SMC sampler with RJ-MCMC updates for
changepoint detection with and without anytime moves, an experiment is run on a sample
of 1000 data points simulated according to the changepoint model presented in this section.
There are K = 3 segment families and the true hyperparameter values are as follows: λ1:3 =

(0.02,0.05,0.07), Pkl = 0.5 for k, l = 1,2,3, ξ1:3 = (0.18,0.34,0.55), δ1:3 = (1.5,0.7,0.4),
ν = 5 and γ = 0.007. To facilitate visual comparison with posterior results, an overview of
the data is available again in the top plot of Figure 5.2.

We first run the standard SMC sampler (RJMCMC-SMC) with rt = 5 RJ-MCMC iterations
per particle for each SMC step. Then, we run the SMC sampler with anytime RJ-MCMC
updates (RJMCMC-ASMC), setting a linearly increasing budget (as suggested in Murray et al.
[2016b]) of a+C ≈ 178 minutes as follows:

at =C+
2t

N∆(N∆ +1)
a,

where N∆ is the number of target distributions in the SMC sampler, C roughly corresponds
to the time taken by the RJMCMC-SMC algorithm to complete its first SMC step, and the
parameter a corresponds to the overall, user-defined compute budget. In this experiment, a
is selected by trial and error so that the real-time budget follows a similar (linear) trend as
the standard algorithm, as evidenced in Figure 5.4. The algorithms are both run using 1005
particles distributed across 15 CPU workers (so 67 particles per worker) with no contesting
processes. For a fair comparison, the particles are resampled at every iteration instead of
only when their effective sample size is below a certain threshold (Del Moral et al. [2006]).

Both algorithms are able to recover an accurate posterior estimate of the mean µ and
segment families ζ as evidenced in the bottom plot of Figure 5.2. Compute profiles for both
runs are given in Figure 5.3 and display the working and idle times of the 15 workers while
the algorithms were running. The top plot, corresponding to the RJMCMC-SMC algorithm,
displays visible idle times on all processors throughout its run. The compute profile for the
bottom plot, on the other hand, shows that the introduction of anytime moves has significantly
reduced all the waiting times. This is further evidenced in Figure 5.4. Indeed, while the
compute times of local RJ-MCMC moves on the workers follow a similar increasing trend
for both algorithms, all workers took the same time to complete their RJ-MCMC moves for
the RJMCMC-ASMC algorithm, as expected, while there is significant variation in the compute
times of the RJ-MCMC moves for the RJMCMC-SMC algorithm. As a result, the RJMCMC-ASMC
algorithm makes better use of its allocated resources and is able to save nearly an hour of
computation time. Note that increasing the number of particles and processors would lead to
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even more variation in the compute times of RJ-MCMC moves in the RJMCMC-SMC algorithm,
and it would benefit even more from the Anytime framework.
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Fig. 5.3 Compute profiles for runs of the standard RJMCMC-SMC (top plot) and Anytime
RJMCMC-ASMC (bottom plot) algorithms showing working time (white) and idle time (black)
on each of 15 workers (corresponding to each row). The RJMCMC-SMC (top) displays visible
idle times throughout its run, which are greatly reduced once anytime moves are intro-
duced (bottom). As a result, the RJMCMC-ASMC algorithm is able to save nearly an hour of
computation time.
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Fig. 5.4 Compute times of RJ-MCMC moves for each worker at each step of the standard
RJMCMC-SMC (blue) and Anytime RJMCMC-ASMC (orange) algorithms. Each dot corresponds
to the time taken by one of 15 workers to complete its set of RJ-MCMC moves. While
overall the compute times follow a similar increasing trend for both algorithms, a real-time
budget forced all workers to take the same time to complete their RJ-MCMC moves for
the RJMCMC-ASMC algorithm, while there is significant variation in the compute times of the
workers for the RJMCMC-SMC algorithm.

5.7 Discussion

In this chapter, we presented a general method for multiple changepoint inference using
RJ-MCMC updates within an SMC sampler that makes use of the Anytime framework in a
parallel computing environment. We illustrated how it can be implemented on a complex
changepoint model with some expensive update moves – for instance, the use of forward-
filtering backward simulation for a finite state space model (F-FFBSi) in Section 5.6.3.3
to sample the segment families (Mζ update) – and demonstrated that the addition of the
Anytime framework minimises idling and makes the algorithm faster and more efficient.
Previously, Anytime SMC samplers had been introduced in Murray et al. [2016b], as well
as SMC samplers which employ RJ-MCMC for changepoint inference in Del Moral et al.
[2006], and RJ-MCMC algorithms for similar, complex applications in Boys and Henderson
[2004]. In this chapter, all these elements were combined into a single algorithm for the first
time. Additionally, while the illustrative model of this chapter was considered in Fearnhead
and Vasileiou [2009]; Yıldırım [2012], they performed parameter inference via filtering
recursions instead of RJ-MCMC. As a result, the RJ-MCMC updates for this model were
derived for the fist time in this chapter.

It is nonetheless important to note that the expensive Mζ update in the featured model
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could have been only performed once the SMC sampler completed its pass through the
whole data, in a similar fashion to the latent parameters (µ,σ2) update. Indeed, additional
experiments showed that not updating ζ every time RJ-MCMC updates were performed did
not significantly negatively affect the algorithm’s ability to correctly locate the changepoints.
However, the algorithm construction was kept that way in order to properly demonstrate the
benefits of the Anytime framework for a changepoint model where expensive RJ-MCMC
updates are unavoidable. For example, in Quan et al. [2019], the data are distributed
according to a Student t-distribution (Prince [2012]) with latent parameters (µ,σ2,v) instead
of a Gaussian, which means that it is impossible to collapse out the latent parameters, as the
t-distribution does not belong to the exponential family. As a result, letting mt be the number
of changepoints at step t of the SMC sample, the parameters (µ1:mt+1,σ

2
1:mt+1,v1:mt+1) must

all be updated sequentially for all segments via Metropolis-Hastings at each iteration of the
RJ-MCMC updates. The case study in Quan et al. [2019] however only considers a single
changepoint, so would only moderately benefit from the Anytime framework. Additionally,
we did not estimate the hyperparameters of the featured model, as their estimation is not
affected by Anytime moves being present or not. They can, however, be straightforwardly
estimated by setting hyperpriors and updating them via MCMC (Boys and Henderson [2004];
Wyse and Friel [2010]). If an expectation-maximization (EM) approach is preferred, this has
been covered in detail in Yıldırım et al. [2013].

To summarise, this chapter presented new insights and a general method to performing
changepoint inference using RJ-MCMC within an Anytime SMC sampler, and can serve as a
guide for dealing with any particularly complex changepoint models in the future, such as
models in which the compute times of RJ-MCMC moves exhibit a heavy-tail behaviour.
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Appendix 5.A Marginal likelihood

To obtain evidence function R(s, t,k) of observations ys:t given in Equation 5.13, conditional
on them belonging to the same family ζi = k (i.e. between change points τi−1 and τi), it
suffices to integrate out the latent parameters µi and σ2

i as follows:
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where for simplicity we set l := s− t + 1, B1 := ∑
t
j=s y j, B2 := ∑

t
j=s y2

j , and the posterior

parameters are given by δ ′
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.



Chapter 6

Particle Smoothing for Parameter
Inference on Dynamic Single Molecules
with Stochastic Trajectories

6.1 Chapter overview

Parameter inference is a major aspect of single-molecule microscopy. It allows for the
estimation of the parameters that best fit the models describing the behaviours of single
molecules in a cellular environment, which emit photons onto a detector. In this chapter, we
investigate parameter inference for molecules whose trajectories are described by stochastic
differential equations (SDEs), in which the drift and diffusion are parameters of interest.
However, the photon detection process makes parameter inference difficult. Indeed, not only
are both the time and location at which photons arrive on the detector random but according to
optical diffraction theory, the photon detection locations are distributed according to complex
profiles such as the Airy profile and the Born and Wolf model. In the past, a Gaussian
approximation has been employed to simplify the problem, but this is not always accurate.

Another important aspect of parameter inference is the need to assess the quality of
parameter estimates. The variance of the estimates is bounded below by the Cramér-Rao
lower bound (CRLB), which is the inverse of the Fisher information matrix (FIM). While it is
possible to obtain analytic expressions for the FIM for a static molecule (Ober et al. [2020a]),
evaluating the FIM for stochastically moving molecules is difficult. Vahid et al. [2020] were
able to obtain an analytical solution, but only for Gaussian measurements and for a specific
set of observed photon detection times.

In this chapter, we address the problem of estimating model parameters and characterising
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their precision via the CRLB, in order to bring new insights into parameter inference for
non-static molecules with general motion and observation models. We also consider the
separation distance estimation problem for two moving molecules, and similarly characterise
the precision limits for estimating the separation distance between two molecules with
stochastic trajectories, thus allowing for the generalisation of results in Ram et al. [2013].
To achieve all this, we discretise the observation interval while still taking into account the
random photon detection times through the introduction of missing observations. This allows
us to formulate the problem as a straightforward state space model. From this, standard
particle filtering and smoothing algorithms can be employed for parameter inference. Most
importantly, we are able to estimate the FIM for the Airy profile and Born and Wolf model,
which could not be done before. This is achieved by estimating the score and observed
information matrix (OIM) via particle smoothing.

The work done in this chapter is the subject of a journal paper Marie d’Avigneau et al.
[2021] written in collaboration with co-authors Dr Sumeetpal Singh and Prof Raimund Ober
and submitted for publication.

6.2 Introduction

In recent years, single-molecule microscopy has become a powerful tool in cell biology
(Saxton [1997]; Saxton and Jacobson [1997]). Indeed, it has allowed significant insight to be
gained into the behaviour of single molecules in cellular environments using fluorescence
microscopy, which was not available in previous studies where molecules were observed in
bulk (Dange et al. [2008]; Ober et al. [2004a,b]; Ram et al. [2006b]; Yu et al. [2006]). Single-
molecule fluorescence microscopy (see Moerner and Fromm [2003]; Shashkova and Leake
[2017] for reviews) consists of using a suitable fluorophore to label the molecule of interest,
exciting said fluorophore with a specific light source and capturing the fluorescence emitted
by the molecule through a microscope system onto a detector during a fixed acquisition time.

One of the main aims of the analysis of single-molecule microscopy data is to infer on
the parameters of interest relating to the model describing the movement of a molecule, as
well as on its state. In the case of single-molecule tracking, as in Deschout et al. [2014];
Small and Stahlheber [2014], a natural example of states that can be estimated over time
are its positional coordinates. This can be done using particle or Kalman filtering methods
(Ashley and Andersson [2015]; Calderon [2016]; Vahid et al. [2020]). The motion of an
object in a cellular environment is affected by a multitude of deterministic, as well as random
factors (Briane et al. [2018]). In many applications, such as Calderon [2016]; Vahid et al.
[2020], the trajectory of a molecule is modelled by stochastic differential equations (SDEs)
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(see Oksendal [2013] for an introduction). Therefore, another example of parameters of
interest − also known as hyperparameters − are the drift and diffusion of the SDE describing
the motion of the molecule. These parameters are generally estimated using maximum
likelihood (ML) estimation techniques (Calderon [2016]; Relich et al. [2016]; Vahid et al.
[2020]). In Ashley and Andersson [2015], the ML estimates of the hyperparameters are
obtained using expectation-maximization (EM) methods within a particle filter, or sequential
Monte Carlo algorithm in what is known as the SMC-EM algorithm (Cappé et al. [2006];
Kantas et al. [2015], and Del Moral et al. [2010] for an online implementation). The
particle filtering and smoothing methods employed in Ashley and Andersson [2015] to
approximate the expectation step of the EM algorithm are sequential importance resampling
(SIR) (Doucet and Johansen [2009]) coupled with the forward-filtering backward-smoothing
(FFBS) algorithm (Lindsten and Schön [2013]). In this chapter, we describe a more general
and efficient particle smoothing approach to obtain approximations of expectations of interest,
including for parameter estimation purposes.

Throughout this chapter, we consider the ideal, fundamental data model (Ober et al.
[2004b]; Ram et al. [2006b]), which is crucial in that it provides accessible lower bounds for
the limits of accuracy of more realistic practical models, where factors such as pixelisation
and readout noise come into play and make inference more challenging. According to this
model, a process which affects parameter inference is the detection process of the photons
emitted by the molecule. The detection process is intrinsically random both in time and
location. Indeed, while many methods such as Calderon [2016]; Calderon and Bloom [2015];
Calderon et al. [2013] have assumed that the arrival times of the photons on the detector were
uniformly distributed, Ober et al. [2004b]; Ram et al. [2006b] suggest that the arrival times
of photons follow a Poisson process instead. As for the arrival location of these photons
on the detector, a wide range of measurement models exist − corresponding to the various
types of detector. The typical measurement model used for an in-focus source is the Airy
profile (Chao et al. [2016]; Vahid et al. [2020]). If the molecule is out of focus, 3D models
are generally used instead, such as the Born and Wolf model (Born and Wolf [2013]). Often,
these models make parameter inference difficult, and researchers have often opted for a
Gaussian approximation to these models, such as in Berglund [2010]; Michalet and Berglund
[2012]; Relich et al. [2016]. However, Vahid et al. [2020] argue that in practice, assuming
Gaussian distributed photon locations on the detector is not an accurate approximation of the
underlying model.

In addition to making sure any estimate of the parameters of interest is unbiased, it is
vital that they be accurate, as otherwise, the biological process being investigated may be
misrepresented (Liu et al. [2013]; Michalet [2010]). In estimation theory, the Cramér-Rao
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lower bound (CRLB) derived by Cramér [1999]; Darmois [1945]; Fréchet [1943]; Rao [1992]
establishes a lower bound on the variance of unbiased estimates, and is therefore often used
as a benchmark for the quality of a given estimator. The CRLB is equal to the inverse of
the Fisher information matrix (FIM) (see Ly et al. [2017] for a tutorial). The mathematical
framework for obtaining the Fisher information in the context of single-molecule microscopy
was developed in Ober et al. [2004b]; Ram et al. [2006b] and further explored in Chao et al.
[2016], in the context of a stationary molecule, where expressions for the FIM were derived
for various detector types. In Vahid et al. [2020], a method was developed to obtain the FIM
for a moving molecule whose trajectory is described by a linear SDE. For a 2D Gaussian
approximation of the photon detection process, the authors take advantage of the Kalman
filter formulae to obtain an analytical form for the FIM for a specific set of photon detection
times. However, if the Airy profile is used instead, the computational cost of performing
numerical integration becomes prohibitive for more than a single photon. Among other
things, we build on Vahid et al. [2020] and develop a framework which enables the estimation
of the FIM for the hyperparameters of the Airy and Born and Wolf profiles.

In this chapter, we develop a general framework to obtain particle approximations
of expectations of interest, including for complex photon detection models such as the
Airy profile and Born and Wolf model. The ability to approximate these expectations is
important for two things: estimating the score and observed information matrix (OIM) for
the hyperparameters of the latent process describing the molecule trajectory, and obtaining
ML estimates of said hyperparameters. Access to the score and/or OIM is vital in order to
be able to estimate the FIM. To achieve this, the observation interval is first discretised and
the problem reformulated as a discrete-time state space model, which takes into account the
random arrival times of photons on the detector. Then, the auxiliary particle filter (APF)
from Pitt and Shephard [1999] is employed in conjunction with forward smoothing methods
(Del Moral et al. [2010]; Olsson et al. [2017]) to obtain particle approximations of the
expectations of interest. Ashley and Andersson [2015] similarly employed time discretisation
of the observation interval but did not attempt to estimate the FIM for hyperparameters.

The numerical experiments in this chapter consist of applying the methodology to estimate
the limit of accuracy, i.e. the square root of the CRLB, for the 2D Gaussian, Airy profiles
and Born and Wolf model by using estimates of the score and OIM obtained by forward
smoothing. This is repeated for various expected mean photon counts in order to verify that
for molecules with stochastic trajectories, the limit of accuracy exhibits an inverse square
root decay with respect to mean photon count, i.e. the uncertainty of the hyperparameter
estimates decreases as the expected number of photons increases. This has already been
proven for a static molecule (Ober et al. [2020a]). Then, the methodology is applied to the
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problem of assessing the limit of accuracy for the mean separation distance between two
closely spaced molecules.

This chapter is structured as follows. In Section 6.3, the model is presented, including
the molecule trajectory, described by a SDE, and the photon detection time and location
processes. Section 6.4 formulates the model as a discrete-time state space model with a
discretised observation interval. Then, Section 6.5 establishes the main parameter inference
aims and methods, which consist of particle filtering and smoothing of additive functionals
in order to estimate the score and OIM for hyperparameters, as well as their ML estimates,
and methods to estimate the FIM from the score and observed information. Numerical
experiments are run in Section 6.6 to first estimate the limit of accuracy for the drift and
diffusion coefficients of the SDE for all photon detection profiles and then estimate the limit
of accuracy for the separation distance between two dynamic molecules. Section 6.7 provides
concluding remarks and an overview of future work.

6.3 Model specification

For the purpose of this chapter, a basic optical system is considered, also known in Chao
et al. [2016]; Vahid et al. [2020] as the fundamental data model. See Figure 6.1 for an
overview of the optical system. Under the fundamental model, we assume that the photons
are observed under ideal conditions, in which the detector Y = R2 is non-pixelated. This
model does not describe image data obtained from actual microscopy experiments the way
more realistic, or practical models do. However, the fundamental model is crucial, in that it
offers an obtainable lower bound to the CRLB of parameters of the more realistic practical
model, which is much more difficult to obtain. In this section, the various aspects of the
model are described. These include the true molecule trajectory, occurring in the object
space, the photon detection locations in the image space, and the times at which photons
arrive on the detector.
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Fig. 6.1 Illustration of an optical microscope. At time t ≥ t0, the molecule is located at X(t)
in the object space and might be moving along the object plane. If the molecule is out of
focus, it will instead move along a plane parallel to the object plane but displaced along the
optical axis. The molecule emits photons through the lens system into the image space and
its image is acquired on the planar detector Y located on the image plane. The location of
the detected photons at time t is denoted by Y (t).

6.3.1 Molecule trajectory

For notational simplicity, let Xt := X(t) ∈ Rd denote the true, d-dimensional location of the
molecule at time t. Given hyperparameters θ , let f θ

s,t(xt |xs) denote the probability density
function of Xt given the previous location Xs. Assume that the molecule trajectory (Xt)t0≤t≤T

follows a linear stochastic differential equation (SDE)

dXt = b(t,Xt)dt +σ(t,Xt)dBt , (6.1)

where b(t,Xt) := b0+b(t)Xt and σ(t,Xt) :=σ(t) represent the drift and diffusion coefficients,
respectively, b0 is the zero order drift coefficient, and (dBt)t0≤t≤T is a Wiener process with
E
[
dBtdB⊺

t
]
= Id×d . According to Evans [2012]; Jazwinski [2007] the solution to the SDE in

Equation 6.1 at discrete time points t0 < t1 < .. . is given by

Xti+1 = Φ(ti, ti+1)Xti +a(ti, ti+1)+Wg(ti, ti+1), (6.2)

where the fundamental matrix function Φ ∈ Rd×d satisfies the following for all s, t,u ≥ t0

dΦ(s, t)
dt

= b(t)Φ(s, t), (6.3)

Φ(t, t) = Id×d, Φ(s, t)Φ(t,u) = Φ(s,u),
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the vector a(ti, ti+1) ∈ Rd is given by

a(ti, ti+1) =
∫ ti+1

ti
b0Φ(ti, t)dt,

and finally the process
(
Wg(ti, ti+1) =

∫ ti+1
ti Φ(ti, t)σ(t)dBt

)∞

i=1 is a white noise sequence with
mean zero and covariance

R(ti, ti+1) =
∫ ti+1

ti
Φ(ti, t)σ(t)σ⊺(t)Φ⊺(ti, t)dt. (6.4)

Therefore, the transition density f θ
ti+1,ti(x

′|x) can be expressed as a Gaussian with mean
µ(x, ti, ti+1) = Φ(ti, ti+1)x+a(ti, ti+1) and covariance R(ti, ti+1), i.e.

Xti+1|(Xti = x)∼ N (µ(x, ti, ti+1),R(ti, ti+1)) . (6.5)
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Example 6.1. Let the trajectory of a molecule be given by the following SDE

dXt = bId×dXtdt +
√

2σdBt , (6.6)

where in the drift term b∈R, in the diffusion term σ > 0, and (dBt)t0≤t≤T is a Wiener process
and let θ = (σ ,b). Assuming the time points t0, t1, . . . are equidistant, i.e. ti+1 − ti = ∆ for
all i = 0,1, . . ., let the fundamental matrix Φ∆ := ϕθ

∆
Id×d where ϕθ

∆
∈ R and the covariance

matrix R∆ := rθ
∆
Id×d where rθ

∆
> 0. Then, by solving Equation 6.3 and plugging the result

into Equation 6.4, it is straightforward to obtain

ϕ
θ
∆ =

eb∆ if b ̸= 0,

1 if b = 0,
and rθ

∆ =

σ

b

(
e2b∆ −1

)
if b ̸= 0,

2σ∆ if b = 0.

The initial distribution Xt0 ∼ N (x0,P0) has covariance matrix P0 = p0Id×d where p0 ∈ R.
In a 2-dimensional setting (i.e. d = 2), let the drift b = −10 s−1, the diffusion σ =

1 µm2/s and the initial covariance p0 = 10−2 µm2 and mean x0 = (4.4,4.4)⊺ µm. By
simulating the molecule trajectory for the time interval [0,0.1] seconds, we obtain the
trajectory in Figure 6.2.
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Fig. 6.2 Trajectory of a molecule in the object space with stochastic trajectory described
in Equation 6.6 and with diffusion and drift coefficients σ = 1 µm2/s and b = −10 s−1,
respectively. The molecule moves during an interval of [0,0.1] seconds and its initial location
is Gaussian distributed with mean x0 = (4.4,4.4)⊺ µm and covariance P0 = 10−2I2×2 µm2.
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6.3.2 Photon detection locations

The true molecule trajectory cannot be observed directly. Instead, a fluorescence microscope
is used: the molecule of interest is labelled using a suitable fluorophore, magnified through a
lens system and the photons it emits arrive on a detector Y := R2 for a fixed time period
(see Figure 6.1). The arrival location of a photon on the detector is random, and using the
typical approximation of the optical microscope from Goodman [2005], it can be described
as follows. Let Y ∈ Y denote the observed location of a detected photon. For an object
located at (x0,1,x0,2,z0) ∈ R3 in the object space, its photon distribution profile (Ram et al.
[2006b]) is given by the density

gθ (y|x) :=
1
|M|

qz0

(
M−1y− (x0,1,x0,2)

⊺) , y ∈ R2, (6.7)

where M ∈ R2×2 is an invertible lateral magnification matrix and the image function qz0 :
R2 → R describes the image of an object in the detector space when that object is located
at (0,0,z0) in the object space. Note that the subscript θ is used in the left-hand side of
Equation 6.7 to include dependence on hyperparameters. In this case, the hyperparameter of
interest will generally be z0.

Three types of image functions are considered, and their densities are plotted in Figure
6.3. First of all, according to optical diffraction theory from Born and Wolf [2013], an
in-focus point source (i.e. when z0 = 0) will typically generate an image that follows the
Airy profile

q(x1,x2) =
J2

1

(
2πnα

λe

√
x2

1 + x2
2

)
π(x2

1 + x2
2)

, (x1,x2) ∈ R2, (6.8)

where nα is the numerical aperture of the objective lens, λe is the emission wavelength of the
molecule and J1(·) represents the first order Bessel function of the first kind.

Often, to simplify the problem, the 2D Gaussian approximation to the Airy profile has
been used instead (see Cheezum et al. [2001]; Stallinga and Rieger [2010]; Thompson et al.
[2002]; Zhang et al. [2007])

q(x1,x2) =
1

2πσ2
a

exp
[
−

x2
1 + x2

2
2σ2

a

]
, (x1,x2) ∈ R2, (6.9)

If the point source of interest is out of focus, then a 3D Born and Wolf model, developed by
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Born and Wolf [2013], is used instead

qz0(x1,x2) =
4πn2

α

λ 2
e

∣∣∣∣∫ 1

0
J0

(
2πnα

λe

√
x2

1 + x2
2ρ

)
exp
(

jπn2
αz0

noλe
ρ

2
)

ρdρ

∣∣∣∣2 , (x1,x2) ∈ R2,

(6.10)
where z0 ∈ R is the location of the object on the optical axis, no is the refractive index of the
objective lens immersion medium and J0(·) is the zero-th order Bessel function of the first
kind. Note that the Airy profile is simply a special case of the Born and Wolf model. Indeed,
if the object is in focus, then z0 = 0 on the optical axis and Equations 6.8 and 6.10 coincide.
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Fig. 6.3 Illustration of the image functions considered. The Airy (left) and 2D Gaussian
(middle) profiles, given in Equations 6.8 and 6.9 respectively, describe an in-focus point
source and the Born and Wolf model (right) given in Equation 6.10 describes an out of focus
point source with optical axis location z0 = 1 µm.

6.3.3 Photon detection times

Just like the photon detection locations, the times at which the photons arrive on the detector
Y are random. More specifically, in Chao et al. [2016]; Vahid et al. [2020], the arrival of the
photons on the detector, or photon detection process, can be modelled as a Poisson process.
Let N(t) be the number of photons detected at time t ≥ t0 for initial time t0 ∈ R and let λ (t)
be the photon detection rate, representing the rate at which the photons emitted by the object
hit the detector at any given time t. For example, the detection rate of an object that has high
photostability will simply be constant, while an exponentially decaying λ (t) can indicate
that the object image is photobleaching, or fading over time. The arrival times of the photons
on the detector Y are denoted t1, t2, . . . where ti denotes the arrival time of the i-th photon.
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6.3.4 The observed data

Let np = N(T )−N(t0) be the number of photons detected in the interval [t0,T ]. We have
now established the two aspects of the data that can be observed in a basic optical system
during this interval, namely the detection times t1, t2, . . . , tnp of photons and the location of
those detected photons Yt1,Yt2, . . . ,Ytnp

on the detector Y . Assume that, conditionally on the
current object location Xti , the location of the i-th detected photon Yti at time ti is independent
of the previous locations and time points of the detected photons, i.e. for xti ∈ X ,

pθ (yti|xti,yti−1, . . . ,yt0) = pθ (yti|xti) =: gθ (yti|xti), yti ∈ Y , (6.11)

where the density gθ is the photon distribution profile from Equation 6.7. This is a reasonable
assumption, as at any given time, processes such as photon emission and image formation
only depend on the state of the emitting fluorescent molecule at that time, and not on any
prior event.

Example 6.2. Let the trajectory of a molecule be given by the SDE in Example 6.1 and
simulated using the same parameters and for the same time interval. Let Y be a non-pixelated
detector. Then, let the photon detection rate be constant such that the mean number of photons
is 500, and the photon distribution profile be given by Equation 6.7, where the magnification
matrix M = mI2×2 with m = 100. The image functions for the Airy, 2D Gaussian and Born
and Wolf profiles are given by Equations 6.8, 6.9 and 6.10 respectively, where nα = 1.4,
λe = 0.52 µm, no = 1.515, σa = 7×10−2 µm and z0 = 1 µm. By simulating the detected
photon locations based on the same molecule trajectory and according to these three models,
we obtain the observed photon trajectories in Figure 6.4. Note that the parameters of the Airy
and 2D Gaussian profiles have been chosen so that the Gaussian profile approximates the
Airy profile.
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Fig. 6.4 Detected photon locations of a moving molecule with stochastic trajectory for the
2D Gaussian (left), Airy (middle) profiles and Born and Wolf model (right)

6.4 The model as a state space model

It is possible to reformulate this model as a discrete state space model that takes into account
the random arrival times of photons. This is achieved by discretising the time interval during
which photons are recorded.

6.4.1 Reformulation

For simplicity, assume that the photon detection rate is constant, i.e. λ (t) = λ ∈ [0,1] for all
t ≥ t0. First of all, let Xt = (xt,1,xt,2) ∈ X where X :=R2 denotes the state of the molecule
at time t ≥ t0, which includes its location xt,1:2 on the object plane. The location of the object
on the optical axis is assumed to be constant and equal to the initial location parameter, i.e.
z0 for all t ≥ t0. The probability of recording an observation, i.e. detecting a photon in the
small interval (t, t +h] is

P [N(t +h)−N(t)> 0] = λh+o(t), λ ∈ [0,1], t ≥ t0.

Let ti denote the arrival time of the i-th photon on a detector Y for i = 1,2, . . . and Yti ∈ Y

be the location of the captured photon on the detector. Assume the location of a detected
photon is distributed according to the probability density function

Yti|(Xti = x)∼ gθ (·|x), i = 1,2, . . . ,

where gθ is the photon distribution profile given in Equation 6.7. The recorded data in the
time interval [t0,T ], 0 ≤ t0 < T comprises of n observations with arrival times t0 < t1 < .. . <
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tnp ≤ T and photon locations yt1, . . . ,ytnp
. The inference objective is to estimate the trajectory

of the molecule (Xt)t0≤t≤T given data (ti,yti), i = 1, . . . ,np. As seen in Section 6.3.1, the
molecule evolves according to the probability density function

Xti+1|(Xti = x)∼ f θ
ti,ti+1

( · |x), i = 1,2, . . . ,np,

where θ denotes the model parameters and f θ
s,t for t > s ≥ t0 is the homogeneous continuous

time Markov transition density given by the 2D version of the Gaussian distribution in
Equation 6.5 for d = 2.

6.4.1.1 Non-constant photon detection rate

If the photon detection rate λ (t) is not assumed to be constant, then we redefine the state
of an object at time t ≥ t0 as Xt = (xt,1,xt,2,λt) ∈ X where X := R2 × [0,1]. The state at
time t now includes the location of the molecule (xt,1,xt,2) as well as the probability λt of
detecting a photon it emits. The Markov transition density pθ (x′|x) can be defined as follows

pθ (xti+1 |xti) = f θ
ti,ti+1

(xti+1,1:2|xti,1:2)lθ (λti+1 |λti), xti+1,xti ∈ X

where ti and ti+1 denote the arrival times of the i-th and (i+1)-th photons, respectively, f θ
ti,ti+1

is the Markov transition density for the object location defined above and lθ is the Markov
transition density for the photon detection rate.

6.4.2 Time discretisation

Let (t1,yt1), . . . ,(tnp,ytnp
) be a realisation of the photon arrival times and locations observed

in the time interval [t0, . . .T ]. Setting t0 := 0 for convenience, we adopt a discrete-time
formulation where the time interval [0,T ] is divided into segments of length ∆. Let xk ∈ X

denote the state of the molecule at time t = (k−1)∆ where k = 1, . . . ,n for n := ⌈T/∆⌉. We
assume the discretisation is fine enough so that an interval (k∆,k∆+∆] contains at most one
arrival time ti. Then, for k = 1, . . . ,n, let

yk =

 /0, if ti /∈ (k∆−∆,k∆], ∀i = 0,1, . . . ,np,

yti, if ti ∈ (k∆−∆,k∆],

where yti ∈ Y denotes the location of the i-th detected photon on the detector Y . The vector
yk is assigned /0 to indicate the absence of an observation in the corresponding interval. If
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x = (x1,x2,λ ) ∈ X , let

Gθ
k (x) =

1−∆λ , if yk = /0,

λgθ (yti|x1:2), if yk = yti,

then Gθ
k (x) is the so called potential function.

It is also straightforward to establish that for k = 1 . . . ,n the probability density function
of Xk+1 given the previous state Xk is f θ

∆
(xk+1|xk) := f θ

k∆,k∆+∆
(xk+1|xk) from Equation 6.5,

thus transforming Equation 6.2 into

Xk+1 = Φ∆Xk +a∆ +Wx, Wx ∼ N (0,R∆) ,

where Φ∆ = Φ(k∆,k∆+∆) is now constant and similarly for a∆ and R∆.
To summarise, (Xk)

∞

k=1 and (Yk)
∞

k=1 are X - and Y -valued stochastic processes where the
molecule trajectory in the object space (Xk)

∞

k=1 corresponds to the unobserved latent Markov
process with Markov transition density f θ

∆
(x′|x) and initial density νθ (x), and the photon

detection locations (or lack of) (Yk)
∞

k=1 represent the observed process with conditional
density or potential function Gθ

k (x), i.e.

X1 ∼ νθ (·), Xk+1|(Xk = x)∼ f θ
∆ (·|x), (6.12)

Yk|(Xk = x)∼ Gθ
k (x), k = 1,2, . . . . (6.13)

Note that if the object is static, so that the drift and diffusion coefficient in Equation 6.1
are zero, the model simplifies from a state space model to a basic inference problem with
independent observations. The observed process is still described by Equation 6.13 but the
location of the object x0 becomes part of the hyperparameters.

6.5 Parameter inference

6.5.1 Inference aim

Now that we have formulated the problem in Equations 6.12 and 6.13 as a state space
model, the first aim is going to be to estimate the posterior probability density function of
X1:n := {X1, . . . ,Xn}, n ∈ N, given the observations Y1:n, also known as the joint smoothing
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distribution, which is given by

pθ (x1:n|y1:n) =
pθ (x1:n,y1:n)

pθ (y1:n)
, (6.14)

where the numerator represents the joint density

pθ (x1:n,y1:n) = νθ (x1)
n

∏
k=2

f θ
∆ (xk|xk−1)

n

∏
k=1

Gθ
k (xk), (6.15)

where νθ (x1) is the initial distribution of X1, and the denominator represents the marginal
likelihood of the observed data

pθ (y1:n) =
∫
X n

pθ (x1:n,y1:n)dx1:n. (6.16)

Estimating pθ (x1:n|y1:n) is what allows the molecule to be tracked and is done using a particle
filter. The second aim is to obtain particle approximations of smoothed additive functionals,
which in turn will allow for ML estimation of the hyperparameters θ via gradient ascent and
Expectation-Maximization (EM), as well as the estimation of their score and OIM. Finally,
the third aim is to use the estimates of the score and OIM of the hyperparameters to obtain
an approximation of their FIM.

6.5.2 Tracking the molecule using a particle filter

6.5.2.1 The auxiliary particle filter

The particle approximation of the marginal posterior of X1, . . . ,Xn defined in Equation 6.14
is given by

p̂(x1:n|y1:n) =
N

∑
i=1

ω
(i)
n δ

X (i)
1:n
(x1:n),

where X (1:N)
1:n are the particles and ω

(1:N)
n their corresponding normalised importance weights,

i.e. ∑
N
i=1 ω

(i)
n = 1. To obtain this particle approximation, we employ sequential Monte Carlo

(SMC) methods in the form of the auxiliary particle filter (APF), developed by Pitt and
Shephard [1999] and extensively used in the literature, e.g. by Carpenter et al. [1999];
Fearnhead et al. [2008]; Papaspiliopoulos [2010]; Poyiadjis et al. [2011]. Define the auxiliary
density

hθ (xk,yk|xk−1) = hθ (xk|yk,xk−1)hθ (yk|xk−1) (6.17)
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as a non-negative function where it is easy to sample from the proposal distribution
hθ (xk|yk,xk−1) and it is easy to evaluate hθ (yk|xk−1) for any xk−1 ∈ X , yk ∈ Y . The
particle filter then proceeds as in Algorithm 3.9. The APF is chosen here for its generality,
but is only one of the possible particle filters that could be applied to track the particles.

6.5.2.2 Choices of auxiliary density

When the exact form of the posterior density pθ (xk|yk,xk−1) of the state Xk given the ob-
servation Yk and previous state Xk−1 is available, the suggested optimal choice of auxiliary
density in Pitt and Shephard [1999] is

hθ (xk|yk,xk−1) = pθ (xk|yk,xk−1), and hθ (yk|xk−1) = pθ (yk|xk−1),

where the proposal distribution pθ (xk|yk,xk−1), being the target density, is optimal. This is
the case when the 2D Gaussian approximation to the Airy profile (Equation 6.9) is used to
describe the photon distribution. The auxiliary density can then be derived exactly and the
components of Equation 6.17 are

hθ
∆(xk|yk,xk−1) :=

N (Φ∆xk−1 +a∆,R∆) , if yk = /0,

N (µ∆,Σ∆) , otherwise,

where for Σa = σaI2×2, we have

µ∆ = (R−1
∆

+Σ
−1
a )−1(R−1

∆
(Φ∆xk−1 +a∆)+Σ

−1
a M−1yk), and Σ∆ = (R−1

∆
+Σ

−1
a )−1,

and

hθ
∆(yk|xk−1) :=

1−∆λ , if yk = /0,

λN (ξ∆,Ξ∆) , otherwise,

where
ξ∆ = M(Φ∆xk−1 +a∆), and Ξ∆ = M(Σa +R∆)M⊺.

See Appendix 6.A for the full derivation. Conversely, when it is impossible to directly sample
from the target density − which is the case when using the Airy or Born and Wolf profiles
(Equations 6.8 and 6.10) directly − one can approximate the quantities in Equation 6.17. A
common choice is

hθ
∆(xk|yk,xk−1) := f θ

∆ (xk|xk−1), and hθ
∆(yk|xk−1) := hθ (yk),
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where f θ
∆

is the Markov transition density and hθ (yk) is a strictly positive arbitrary function.
In this case, by choosing hθ (yk) ∝ 1, the auxiliary particle filter becomes the well-known
bootstrap filter, introduced in Gordon et al. [1993] and summarised in Algorithm 3.8. Given
weighted particle sample (X (1:N)

k−1 ,ω
(1:N)
k−1 ) at step k, we denote an instance of running the

particle filter as (
X (1:N)

k ,ω
(1:N)
k

)
:= PF∆

(
X (1:N)

k−1 ,ω
(1:N)
k−1

)
.

For this particular problem, we must also take into account the missing observations in-
troduced by the time discretisation. Since a lack of observation does not bring any new
information, it suffices to only run the particle filter at segments which contain an observation.
A typical iteration of this approach is summarised in Algorithm 6.1. The interval counter is
initialised at c0 := 1 and counts the number of discrete intervals since (and including) the
last observation.

Algorithm 6.1 Particle filter for SDE with missing observations

Input: weighted particle sample
(

X (1:N)
k−1 ,ω

(1:N)
k−1

)
and interval counter ck−1 at step k−1.

1: if yk = /0 then
2: ck := ck−1 +1
3: Do not run the particle filter(

X (1:N)
k ,ω

(1:N)
k

)
:=
(

X (1:N)
k−1 ,ω

(1:N)
k−1

)
.

4: else
5: Run the particle filter with updated interval length, i.e.(

X (1:N)
k ,ω

(1:N)
k

)
:= PFck∆

(
X (1:N)

k−1 ,ω
(1:N)
k−1

)
.

6: ck := 1
7: end if

Output: updated particle sample
(

X (1:N)
t ,ω

(1:N)
t

)
.

Example 6.3. Let the trajectory of a molecule be given by the SDE in Example 6.1 and
simulated three times (one for each measurement model) using the same parameters and
for the same time interval. Observations are generated as per in Example 6.2 for the 2D
Gaussian, Airy profiles and Born and Wolf model and the molecules are tracked using the
particle filter. The resulting estimated trajectories for each measurement model are given in
Figure 6.5.
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Fig. 6.5 Estimated molecule trajectories for the 2D Gaussian (left), Airy (middle) profiles
and Born and Wolf model (right). The scaled observations (i.e. divided by m) for each
measurement model are displayed for information.

6.5.3 Particle approximations of expectations of additive functionals

Recall that the second inference aim is to obtain ML estimates of the hyperparameters θ , as
well as estimates of their score and OIM. To achieve these aims, we make use of smoothed
additive functionals.

Assume that there exists a real-valued function Sθ
k , k ≥ 0 such that it is an additive

functional given by

Sθ
k (x1:k) =

k

∑
j=1

sθ
j (x j−1,x j), (6.18)

where sθ
1 (x0,x1) := sθ

1 (x1) and
{

sθ
k

}
k≥0 is a sequence of sufficient statistics which may

depend on the value of the observations y0:k. The main aim is to compute the posterior or
smoothing expectation, given by

Sk(θ) := Eθ

[
Sθ

k (X1:k) |y1:k

]
=
∫
X

Sθ
k (x1:k) pθ (x1:k|y1:k)dx1:k. (6.19)

If the model in question is linear and Gaussian or the state space X is finite, then the
expectation Sk(θ) can be computed exactly by recursion. However, this is not the case if the
Airy or Born and Wolf profiles are used to describe photon distribution. In this case, SMC
methods can again be employed to approximate the expectation as follows

Ŝk(θ) :=
N

∑
i=1

ω
(i)
k Sθ

k

(
X (i)

1:k

)
,
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where the weighted sample (X (1:N)
1:k ,ω

(1:N)
k ) is a particle approximation of the joint smoothing

distribution pθ (x1:k|y1:k) obtained using a particle filter.
A simple way of estimating the smoothing expectation Sn(θ) for a set of n observations

y1:n is to run the desired particle filter in a ‘forward pass’ through the whole data to obtain the
particle approximation (X (1:N)

n ,ω
(1:N)
n ) at step n, followed then by a ‘backward smoothing’

pass through the data, starting from the latest sample yn. This is the case of algorithms such
as the fixed-lag smoother by Kitagawa and Sato [2001]; Olsson et al. [2008, 2011], forward-
filtering backward smoothing (FFBSm) by Doucet et al. [2000]; Hürzeler and Künsch [1998];
Kitagawa [1996] and forward-filtering backward simulation (FFBSi) by Godsill et al. [2004].
See Section 3.4 for more details on these algorithms.

However, if one wishes to avoid multiple passes through the data, it is also possible to
take advantage of the form of the additive functional in Equation 6.18 to estimate Sk(θ) in
an online or ‘forward-only’ fashion, as proposed in Del Moral et al. [2010]. Introducing the
auxiliary function

T θ
k (xk) :=

∫
X k−1

Sθ
k (x1:k)pθ (x1:k−1|y1:k−1,xk)dx1:k−1,

the following recursion is then created

T θ
k (xk) =

∫
X

[
T θ

k−1(xk−1)+ sθ
k (xk−1,xk)

]
pθ (xk−1|y1:k−1,xk)dxk−1, (6.20)

where T θ
0 := 0 and its particle approximation given the weighted sample (X (1:N)

1:k ,w(1:N)
k ) and

previous state particle approximation T̂ θ
k−1(X

(1:N)
k−1 ) is given by

T̂ θ
k

(
X (i)

k

)
=

N

∑
j=1

Ψ
θ
k (i, j)

[
T̂ θ

k−1

(
X ( j)

k−1

)
+ sθ

k

(
X ( j)

k−1,X
(i)
k

)]
(6.21)

for all i ∈ J1,NK, and where

Ψ
θ
k (i, j) :=

ω
( j)
k−1 f θ

∆

(
X (i)

k |X ( j)
k−1

)
∑

N
j=1 ω

( j)
k−1 f θ

∆

(
X (i)

k |X ( j)
k−1

) . (6.22)

Finally, using the recursion on the auxiliary function T θ
k , the smoothing expectation in

Equation 6.19 can be rewritten as

Sk(θ) =
∫
X

T θ
k (xk)pθ (xk|y1:k)dxk, (6.23)
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and its particle approximation is

Ŝk(θ) =
N

∑
i=1

ω
(i)
k T̂ θ

k

(
X (i)

k

)
.

This algorithm is known as Forward smoothing SMC (SMC-FS) and is summarised in
Algorithm 3.14. The complexity of this algorithm is O

(
N2) as it involves, among other

things, evaluating f θ
∆

and sθ
k over all combinations {(X ( j)

k−1,X
(i)
k )}(i, j)∈J1,NK2 , and computing

the particle approximation of the recursion in Equation 6.21 is a particularly expensive task.
To reduce computation time, the particle-based, rapid incremental smoother (PaRIS) by
Olsson et al. [2017] employs a user-defined sample size Ñ ∈ N, also known as the precision
parameter, and introduces an additional resampling step as follows: sample Ñ indices, i.e.

I(i)k ∼ P
({

Ψ
θ
k (i, j)

}N

j=1

)
, for all i ∈ J1, ÑK, (6.24)

where Ψθ
k (i, j) is defined in Equation 6.22, and update the auxiliary statistic by replacing

Equation 6.21 with the following:

T̂ θ
k

(
X (i)

k

)
=

1
Ñ

Ñ

∑
j=1

T̂ θ
k−1

(
X
(I( j)

k )

k−1

)
+ sθ

k

(
X
(I( j)

k )

k−1 ,X (i)
k

)
, for all i ∈ J1, ÑK. (6.25)

This already speeds up the algorithm, as the sufficient statistic sθ
k is now only evaluated

N × Ñ times and the precision parameter can be as low as Ñ = 2 and still return accurate
estimates. It is also possible to apply an accept-reject technique suggested in Douc et al.
[2011] and described in Algorithm 3.13 to further reduce the complexity of the algorithm
to linear, or O (N). Note that if considering the 2D Gaussian photon detection profile,
while for the purpose of this chapter we apply the SMC-FS algorithm to obtain estimates of
additive functionals, exact Kalman filtering and smoothing techniques can also be employed
in practice, as per Section 3.2.2

Next, we establish the specific additive functionals T θ
k and sufficient statistics sθ

k required
to estimate the hyperparameters θ and their score and OIM.

6.5.4 Estimation of the score and observed information matrix (OIM)

The score and OIM have important applications to ML estimation, e.g. see Le Gland
and Mevel [1997]; Poyiadjis et al. [2011]. They can also be instrumental in assessing the
performance of such an estimator, either directly, as argued by Efron and Hinkley [1978], or
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as tools to estimate the FIM when the latter cannot be computed exactly, as we will see in
this section. We aim to compute, recursively in time, the score vector Gk(θ) := ∇ log pθ (y1:k)

and OIM Hk(θ) :=−∇2 log pθ (y1:k) where pθ (y1:k) denotes the marginal likelihood at time
step 1 ≤ k ≤ n defined in Equation 6.16, ∇ denotes the gradient and ∇2 the Hessian.

6.5.4.1 Establishing the sufficient statistics

First of all, assume that the regularity conditions allowing for differentiation and integration
to be switched around in expressions are satisfied. Let us establish the Fisher and Louis
identities for the score and observed information matrix, respectively, from Cappé et al.
[2006]; Douc et al. [2014]:

Gk(θ) =
∫
X

∇ log pθ (xk,y1:k)pθ (xk|y1:k)dxk, (6.26)

Hk(θ) = ∇ log pθ (y1:k)∇ log pθ (y1:k)
⊺− ∇2 pθ (y1:k)

pθ (y1:k)
,

where

∇2 pθ (y1:k)

pθ (y1:k)
=
∫
X

∇ log pθ (xk,y1:k)∇ log pθ (xk,y1:k)
⊺pθ (xk|y1:k)dxk

+
∫
X

∇
2 log pθ (xk,y1:k)pθ (xk|y1:k)dxk, (6.27)

and note that Equations 6.26 and 6.27 can be rewritten as

∇ log pθ (y1:k) = E
[
α

θ
k (Xk)|y1:k

]
,

∇2 pθ (y1:k)

pθ (y1:k)
= E

[
α

θ
k (Xk)α

θ
k (Xk)

⊺|y1:k

]
+E

[
β

θ
k (Xk)|y1:k

]
,

where the expectations are with respect to the density p(xk|y1:k), and the functions αθ
k (xk) :=

∇ log pθ (xk,y1:k) and β θ
k := ∇2 log pθ (xk,y1:k) are the additive functionals of interest. A

recursion for αθ
k and β θ

k is straightforward to obtain, more details in Poyiadjis et al. [2011].
For αθ

k and β θ
k , Equation 6.20 becomes

α
θ
k (xk) =

∫
X

[
α

θ
k−1(xk−1)+ sα

k (xk−1,xk)
]

pθ (xk−1|y1:k−1,xk)dxk−1,

β
θ
k (xk) =

∫
X

[
β

θ
k−1(xk−1)+ sβ

k (xk−1,xk)
]

pθ (xk−1|y1:k−1,xk)dxk−1 −α
θ
k (xk)α

θ
k (xk)

⊺,
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where the sufficient statistics are given by

sα
k (xk−1,xk) := ∇ logGθ

k (xk)+∇ log f θ
∆ (xk|xk−1), (6.28)

sβ

k (xk−1,xk) :=
[
α

θ
k−1(xk−1)+ sα

k (xk−1,xk)
][

α
θ
k−1(xk−1)+ sα

k (xk−1,xk)
]⊺

+∇
2 logGθ

k (xk)+∇
2 log f θ

∆ (xk|xk−1). (6.29)

Finally, to approximate the score and OIM, adapt the particle approximation in Equation 6.21
or 6.25 to the recursions in Equations 6.28 and 6.29 to obtain the score estimate

Ĝk(θ) =
N

∑
i=1

ω
(i)
k α̂

θ
k

(
X (i)

k

)
,

and OIM estimate

Ĥk(θ) = Ĝk(θ)Ĝk(θ)
⊺−

N

∑
i=1

ω
(i)
k

[
α̂

θ
k

(
X (i)

k

)
α̂

θ
k

(
X (i)

k

)⊺
+ β̂

θ
k

(
X (i)

k

)]
.

Next, we apply this framework to a possible application of the single-molecule tracking
model. We focus on the case where the photon distribution is described by the Airy or 2D
Gaussian profile.

Example 6.4. Let the trajectory of a molecule be given by the following SDE

dXt = bI2×2Xtdt +
√

2σdBt ,

where in the drift term, b ̸= 0, in the diffusion term, σ > 0, and (dBt)t0≤t≤T is a Wiener
process. Let the photon detection process be described by the Airy or 2D Gaussian profile.
Then, the parameters of interest are θ = (σ ,b). Recall from Section 6.4.2 and Example 6.1
that the solution to the SDE can be written as

Xk = eb∆Xk−1 +Wx, Wx ∼ N
(

0,
σ

b

(
e2∆b −1

)
I2×2

)
, (6.30)

and since the potential function Gk does not depend on θ in this case, it can be dropped from
Equations 6.28 and 6.29 and the components of the sufficient statistic sα

k (xk−1,xk) for the
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additive functional αθ
k are

∂

∂σ
log f θ

∆ (xk|xk−1) =− 1
σ
+

b
∥∥xk − eb∆xk−1

∥∥2

2σ2
(
e2b∆ −1

) ,

∂

∂b
log f θ

∆ (xk|xk−1) =
1
b
− 2∆e2∆b(

e2∆b −1
) − ∥∥xk − e∆bxk−1

∥∥2

2σ(e2∆b −1)

+
∆be∆b(xk − e∆bxk−1)

⊺xk−1

σ(e2∆b −1)
+

∥∥xk − e∆bxk−1
∥∥2

∆be2∆b

σ(e2∆b −1)2 .

The components of the sufficient statistic sβ

k (xk−1,xk) for β θ
k are given in Appendix 6.B.

Note that these derivatives can be evaluated for any value of ∆, and it is therefore possible to
adapt them in order to only compute sufficient statistics when an observation is recorded, as
in Algorithm 6.1.

6.5.5 Estimating the Fisher information matrix (FIM)

The Fisher information matrix (FIM) is widely used in estimation problems as an indicator
of the performance of a given estimator. Indeed, it is a key element of the Cramér-Rao
inequality, or Cramér-Rao Lower Bound (CRLB) derived by Cramér [1999]; Darmois [1945];
Fréchet [1943]; Rao [1992], which states that for an unbiased estimate θ̂ of the parameter θ ,
its covariance has lower bound

Cov(θ̂)⪰ In(θ)
−1,

where given matrices A and B, the inequality A ⪰ B indicates that A−B is a positive semi-
definite matrix, and In(θ) denotes the FIM in a random sample Y1, . . . ,Yn of size n (DeGroot
and Schervish [2012]) as

In(θ) = Eθ [∇ log pθ (Y1:n)∇ log pθ (Y1:n)
⊺] (6.31)

= Eθ

[
−∇

2 log pθ (Y1:n)
]
, (6.32)

where the second equality is proven in Duchi [2016]. When the expectations in Equations
6.31 and 6.32 are intractable − which is the case when the Airy profile is used to describe
the photon detection locations in the single-molecule tracking model − there are two ways
one can go about estimating the FIM.
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6.5.5.1 Estimating the FIM for a large sample

Firstly, note that from Equation 6.32, the relationship between the FIM and OIM is simply

In(θ) = Eθ [Hn(θ)] ,

where Hn(θ) =−∇2 log pθ (y1:n) denotes the OIM. Then, for a general state space model,
Bickel et al. [1998] proved that under mild assumptions,

1
n
Hn(θ)→ I (θ) as n → ∞,

where I (θ) is the asymptotic FIM. So for a large enough sample size n, the OIM and FIM
can be used interchangeably, i.e. for n ≫ 1,

Hn(θ)≈ In(θ). (6.33)

See Figures 6.6 and 6.15 for an illustration. Therefore, the first way of estimating the
asymptotic FIM in the single-molecule tracking model is simply to obtain the OIM for a
large sample size.

6.5.5.2 Estimating the Fisher information matrix for short samples

If the size n of the sample of interest is not large enough to estimate the FIM using the
OIM, it is also possible to instead obtain a particle approximation of the expectation in
Equation 6.31 using the score as follows: generate D datasets y(1:D)

1:n of (smaller) size n where
y(d)1:n := {y(d)1 , . . . ,y(d)n }, and according to the same parameters θ . The outer product of the
score can then be used in the estimate of the Fisher information matrix as follows

În(θ) =
1
D

D

∑
j=1

G
(d)
n (θ)G

(d)
n (θ)⊺, (6.34)

where for d = 1, . . . ,D, the vector G
(d)
n (θ) := ∇ log pθ (y

(d)
1:n) is the score for the d-th dataset

of size n. The OIM can similarly be averaged over D datasets to estimate the FIM.
Now that the method for estimating the FIM has been established, it can be used in an

experimental design setting to plan experiments with the aim of returning the most accurate
parameter estimates. Next, we focus on how these estimates can be obtained.

Example 6.5. To verify these approaches to estimate the FIM, consider the straightforward
special case of estimating the FIM for the location x0 = (x0,1,x0,2) parameters of a static
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molecule emitting photons at a constant rate. In Chao et al. [2016]; Ober et al. [2004b], the
analytical expression for the FIM is derived for both the Gaussian and Airy profiles, and its
diagonal components given observations y1:n they are given by

I Gauss
n (x0,1) = I Gauss

n (x0,2) =
Nphot

σ2
a

,

I Airy
n (x0,1) = I Airy

n (x0,2) = Nphotα
2,

where α = 2πna
λe

, Nphot denotes the expected photon count, I Gauss(x0,i) denotes the (i, i)-th
element of the FIM, corresponding to parameter component xi, for the Gaussian profile, and
I Airy(x0,i) denotes the same for the Airy profile. As mentioned in Section 6.4.2, having
a static molecule simplifies the model. Since we have independent data, the true values of
score G and OIM H can be derived as follows. Given a set of observations y1:n distributed
according to the 2D Gaussian profile,

G Gauss
n (x0) =

n

∑
k=1

Σ
−1
a (M−1yk − x0)1yk ̸= /0, H Gauss

n (x0) = Σ
−1
a

n

∑
k=1

1yk ̸= /0,

where Σa = σ2
a I2×2 and 1yk ̸= /0 indicates there isn’t a missing observation at interval k. Simi-

larly, the score and OIM for the Airy profile can be derived exactly

G Airy
n (x0) =

n

∑
k=1

γk(M−1yk − x0)1yk ̸= /0,

H Airy
n (x0) =

n

∑
k=1

(
χk(M−1yk − x0)(M−1yk − x0)

⊺+ γkI2×2
)
1yk ̸= /0,

where

γk =
2α

r
J2(αrk)

J1(αrk)
, χk =−2α2

r2
k

[
J3(αrk)

J1(αrk)
−

J2
2(αrk)

J2
1(αrk)

]
,

and rk =
√

(M−1yk − x0)⊺(M−1yk − x0). See Appendix 6.C for the full derivation.
Using the same settings as in Example 6.2, we simulate Dl = 40 ‘large’ datasets according

to the Airy and Gaussian profiles consisting of observations obtained during the interval
[0,0.2] seconds. We also simulate Ds = 400 ‘short’ datasets consisting of observations
obtained during the shorter interval [0,0.02] seconds. The score and OIM are obtained for all
datasets and the FIM for the large and short datasets is estimated in three ways: (i) using the
OIM returned from a single dataset selected at random (Equation 6.33), (ii) using the mean
outer product of the score (Equation 6.34) over all datasets and (iii) using the mean OIM
across all datasets. Finally, the square root of the CRLB, also known as the limit of accuracy
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and denoted
δϑ =

√
CRLBϑ

for parameter ϑ is obtained. This is repeated for various expected photon counts in order to
compare the evolution of the estimated limit of accuracy as the expected number of photons
increases to the true limit of accuracy obtained using the true FIM. In Figures 6.6 (and 6.15
in Appendix 6.C), it is evident that, apart from very low photon counts, all approaches are
able to return accurate estimates of the limit of accuracy. Comparing Figures 6.6a and 6.6b
(and similarly comparing Figures 6.15a, 6.15b in the appendix), it also becomes apparent
that for long datasets, approach (i) is slightly more accurate than (ii), and the opposite is
true for short datasets. Similar results can be obtained for the Born and Wolf model, as an
analytical expression for the FIM is also available for a static object.

6.5.6 Parameter estimation

Being able to estimate the biophysical parameters of the molecular interactions is very
important in single-molecule tracking. In this section, we present two maximum likelihood
(ML) estimation methods that make use of smoothed additive functionals.

6.5.6.1 By gradient ascent

Given observations y1:n of size n∈N, the marginal log-likelihood of the observations pθ (y1:n)

may be maximised via the steepest ascent algorithm Cauchy [1847]; Lemaréchal [2012]:

θi+1 = θi + γi+1Gn(θi), (6.35)

where Gn(θi) = ∇ log pθ (y1:n)|θ=θi is the score vector evaluated at the current estimate θi,
and the step-size sequence {γi}∞

i=1 consists of small positive numbers and satisfies ∑i γi = ∞

and ∑i γ2
i < ∞; for example, take γi = i−a where 0.5 < a < 1. One can also include the

observed information matrix in order to follow the Newton-Raphson algorithm described in
Nocedal and Wright [2006]. In this case, Equation 6.35 becomes

θi+1 = θi − γi+1Hn(θi)
−1Gn(θi),

where Hn(θi) = ∇2 log pθ (y1:n)|θ=θi is the observed information matrix evaluated at the
current estimate θi.
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(a) Many short datasets, 2D Gaussian profile (b) Few long datasets, 2D Gaussian profile

Fig. 6.6 True and estimated limit of accuracy for mean photon counts ranging from (a) 1 to
150 (b) 10 to 1500. The limit of accuracy is estimated for the location parameters (x1,x2)
of a static in-focus molecule. The estimates are obtained by taking the square root of the
inverse of the FIM, obtained for (a) 400 ‘short’ and (b) 40 ‘long’ simulated datasets using
approaches (i) ⋆, (ii) × and (iii) + for comparison purposes. To generate each dataset,
the photon detection times are simulated according to a Poisson process with constant rate
corresponding to the expected mean photon count for (a) [0,0.02] and (b) [0,0.2] seconds
and the intervals are discretised. The photon detection locations are generated according to
the 2D Gaussian profile, with parameters as in Example 6.2. The true limit of accuracy (blue
solid line) is also computed as it is available analytically (Ober et al. [2020c]). Estimates
of the limit of accuracy based on a single dataset (approach (i)) are more accurate when the
dataset is long, while taking the mean outer product of the score over all datasets (approach
(ii)) yields more accurate estimates for a large number of short datasets. Approach (iii)
provides a good balance between the two. More generally, estimates of the limit of accuracy
are relatively poor for very low mean photon counts but quickly improve as it increases.
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6.5.6.2 By expectation-maximization (EM)

Another approach to obtaining ML estimates of the hyperparameters θ is to use the
expectation-maximization (EM) algorithm by Dempster et al. [1977]; Wu [1983] defined as
follows:

• Expectation step: given the current parameter estimate θi and observations y1:n,

Q(θ ,θi) = Eθi [log pθ (X1:n,y1:n)|y1:n] ,

where the joint density pθ (x1:n,y1:n) is defined in Equation 6.15 and the expectation is
with respect to the posterior pθi(x1:n|y1:n).

• Maximisation step:
θi+1 = argmax

θ∈Θ

Q(θ ,θi).

Recall that the Expectation step cannot be done exactly when using the Airy or Born and Wolf
profile. In this case, the posterior expectation can be estimated using particle approximations
of smoothed additive functionals. First of all, let Sθ

k (x1:k) := log pθ (x1:k,y1:k) denote the
additive functionals of interest at step k. Their corresponding sufficient statistics such that
Sθ

k (x1:k) = ∑
n
k=1 sθ

k (xk−1,xk) are given by

sθ
k (xk−1,xk) := log f θ

∆ (xk|xk−1)+ logGθ
k (xk),

where for notational simplicity, f θ
∆
(x1|x0) := νθ (x1). In the Maximisation step, define the

function Λ to obtain the maximising argument of Q(θ ,θi) as

θi+1 = Λ

(
n−1E

[
Sθi

n (X1:n)|y1:n

])
.

Example 6.6. Building on Example 6.4, note that given the model specification in Equation
6.30, it is impossible to compute the maximum of Q(θ ,θi) for the parameter b ̸= 0 directly.
However, as seen previously, the equation can also be written such that we simply have

Xk = ϕθ Xk−1 +Wx, Wx ∼ N (0,rθ I2×2) ,

where the auxiliary parameters are given by

ϕθ := eb∆ and rθ :=
σ

b

(
e2b∆ −1

)
.

It is straightforward to maximise Q(θ ,θi) for the auxiliary parameters ϕθ and rθ as follows:
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let
{

Sl,k(x1:k)
}3

l=1 denote the additive functionals of interest at time k and
{

sl,k(xk−1,xk)
}3

l=1
their corresponding sufficient statistics. Luckily, the sufficient statistics are easily obtained,
since for the Gaussian and Airy profiles, the likelihood Gk does not depend on θ :

s1,k(xk−1,xk) = x⊺k xk−1, s2,k(xk−1,xk) = x⊺k−1xk−1, s3,k(xk−1,xk) = x⊺k xk.

The maximisation function is given by

Λ(c1,c2,c3) =

(
c3

2
−

c2
1

2c2
,
c1

c2

)
.

Finally, to obtain ML estimates for b and σ , simply use the following transformation

b = ∆
−1 logϕθ and σ =

rθ logϕθ

∆(ϕ2
θ
−1)

.

Note that when dealing with measurements distributed according to the Born and Wolf model,
we must also estimate the optical axis location parameter z0, which is done via gradient
ascent.
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Fig. 6.7 Estimates of the diffusion (σ ) and drift (b) coefficient over 150 EM iterations
or passes through the data. The blue and red dashed lines represent the true parameter
values σ = 1 µm2/s and b = −10 s−1, respectively. The red and blue solid lines and
bands correspond to the mean estimates and their corresponding 95% confidence intervals
over 50 datasets generated during the time interval [0,0.2] seconds, with initial location
x0 = (5.5,5.5)⊺ µm and a mean photon count of 1000. The observations were generated
according to the Airy profile with parameters as in Example 6.2 and the sufficient statistics
were estimated using the PaRIS algorithm.
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6.6 Numerical experiments

In this section, we apply the particle smoother known as SMC-FS to estimate the FIM,
and thus the limit of accuracy, of the diffusion and drift coefficients in the context of a
moving molecule with a stochastic trajectory. Experiments are first run with photon detection
locations described by the Gaussian and Airy profiles, and then the Born and Wolf model,
where an additional hyperparameter, namely the optical axis location, must be considered as
well. The methodology is then applied to the problem of assessing the limit of accuracy for
the mean separation distance between two closely spaced molecules.

6.6.1 Limit of accuracy of drift and diffusion coefficients for the Gaus-
sian and Airy profiles

Consider a molecule with trajectory described by the SDE in Example 6.1. In Vahid et al.
[2020], the authors took advantage of the Kalman filter formulae to evaluate the FIM for the
diffusion (σ ) and drift (b) coefficients. However, it was only possible to obtain an analytic
solution for a particular set of detection times t1, t2, . . . and for the 2D Gaussian photon
distribution profile. Otherwise, the computational cost of performing numerical integration
was too high for more than one photon.

In our particle filtering framework, it is also possible to take advantage of the Kalman
filter formulae in order to obtain an accurate approximation of the true score and OIM by
numerical differentiation, and for any detection times schedule. An estimate of the FIM
is therefore obtained by evaluating the true OIM for 3000 datasets and taking their mean,
as described in Section 6.5.5. The molecule trajectories are simulated for [0,0.2] seconds,
with diffusion coefficient σ = 1 µm2/s, drift coefficient b =−10 s−1, and initial location
Gaussian distributed with mean x0 = (5.5,5.5)⊺ µm and covariance P0 = 10−2I2×2 µm2. The
observations are generated according to the Gaussian profile (Equation 6.9) with parameters
as in Example 6.2. Of course, it is not possible to employ the Kalman filter formulae for the
Airy and Born and Wolf profiles, and we must resort to using the SMC-FS algorithm instead.
First of all, to evaluate the performance of the SMC-FS algorithm, the algorithm is employed
using 500 particles to estimate the score and OIM for the same 3000 Gaussian datasets, and
we similarly take the mean OIM over all datasets to estimate the FIM.

Next, we move on to the Airy profile, for which it was too computationally costly in
Vahid et al. [2020] to obtain the FIM for more than a single photon. We estimate the OIM for
the diffusion and drift coefficients using the SMC-FS algorithm with 500 particles for 2040
datasets, where the molecule trajectories are simulated using the same parameters as for the
Gaussian profile, and the observations are generated according to the Airy profile (Equation



6.6 Numerical experiments 157

6.8) with parameters as in Example 6.2. This is repeated for various mean photon counts
ranging from 10 to 1250. Then, the limit of accuracy, denoted δϑ for hyperparameter ϑ , is
computed, and the results are displayed in Figure 6.8.

Both Figures 6.8a and 6.8b display an inverse square root decay of the limit of accuracy
with respect to the mean photon count. This is consistent with the results for a static molecule
from Example 6.5, and means that the quality of diffusion and drift estimates improves
as the mean photon count increases. In addition to that, comparing the limit of accuracy
obtained from the estimated and true OIM for the Gaussian profile in Figure 6.8a indicates
that the SMC-FS algorithm is able to return accurate estimates of the score and FIM for
a stochastically moving molecule. Indeed, apart from a very slight discrepancy for very
low photon counts for the drift coefficient, the estimates of the limit of accuracy are almost
indistinguishable.

6.6.2 Limit of accuracy of drift, diffusion and optical axis location for
the Born and Wolf model

When the molecule is out of focus, which means the photon detection locations are distributed
according to the Born and Wolf model (Equation 6.10), the FIM components for the diffusion
and drift coefficients can be obtained as for the Airy and Gaussian profiles. However,
a new hyperparameter must be considered, namely the optical axis location, denoted z0.
While previously, differentiating the log potential function was not needed, the vector of
hyperparameters is now θ = (σ ,b,z0), and Gθ

k (xk) depends on z0 for k = 1, . . . ,n.
While it requires quite a bit of numerical integration, differentiating logqz0(x1,x2) for

a given x = (x1,x2) ∈ R2 with respect to z0 is not impossible. For notational simplicity, let

α = 2πnα

λe
, r =

√
x2

1 + x2
2 and W =

πn2
α

noλe
and note that we can rewrite Equation 6.10 as

qz0(x1,x2) =
α2

π

(
U2

z0
+V 2

z0

)
,

where

Uz0 :=
∫ 1

0
J0 (αrρ)cos

(
Wz0ρ

2)
ρdρ, Vz0 :=

∫ 1

0
J0 (αrρ)sin

(
Wz0ρ

2)
ρdρ.

The first derivative was derived in Ober et al. [2020b] and is given by

∂ logqz0(x1,x2)

∂ z0
= 2

Uz0U̇z0 +Vz0V̇z0

U2
z0
+V 2

z0

,
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(a) 2D Gaussian profile
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(b) Airy profile

Fig. 6.8 Evolution of the estimated limit accuracy for mean photon counts ranging from 10
to 1250. The limit of accuracy is estimated for the diffusion (σ ) and drift (b) coefficients
for an in-focus molecule with stochastic trajectory. The estimates are obtained by taking the
square root of the inverse of the FIM, obtained by estimating the OIM using the SMC-FS
algorithm with 500 particles for (a) 3000 and (b) 2040 simulated datasets. To generate each
dataset, the molecule trajectories are simulated according to the SDE in Example 6.1 for
[0,0.2] seconds, with σ = 1 µm2/s, b =−10 s−1, and initial location Gaussian distributed
with mean x0 = (5.5,5.5)⊺ µm and covariance P0 = 10−2I2×2 µm2. The observations are
generated according to the (a) 2D Gaussian and (b) Airy profiles, with parameters as in
Example 6.2. For the (a) 2D Gaussian profile, the limit of accuracy is also estimated by
using the true OIM obtained using numerical differentiation applied to the Kalman filter. An
inverse square root curve (orange and green dashed) is fitted to the resulting estimated limits
of accuracy for comparison.
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where

U̇z0 :=
∂Uz0

∂ z0
=
∫ 1

0
J0 (αrρ)cos

(
Wz0ρ

2)Wρ
3dρ,

V̇z0 :=
∂Vz0

∂ z0
=−

∫ 1

0
J0 (αrρ)sin

(
Wz0ρ

2)Wρ
3dρ.

The second derivative with respect to z0 is given by

∂ 2 logqz0(x1,x2)

∂ z2
0

= 2
Uz0Üz0 +U̇2

z0
+Vz0V̈z0 +V̇ 2

z0

U2
z0
+V 2

z0

−
(

∂ logqz0(x1,x2)

∂ z0

)2

,

where

Üz0 :=
∂ 2Uz0

∂ z2
0

=−
∫ 1

0
J0 (αrρ)cos

(
Wz0ρ

2)W 2
ρ

5dρ,

V̈z0 :=
∂ 2Vz0

∂ z2
0

=−
∫ 1

0
J0 (αrρ)sin

(
Wz0ρ

2)W 2
ρ

5dρ.

Fortunately, the potential function only depends on z0, so any cross terms in the FIM and
OIM between z0 and either σ or b will be zero.

The OIM is estimated for the diffusion, drift coefficients and optical axis location using
the SMC-FS algorithm with 500 particles for 2040 datasets, where the molecule trajectories
are simulated using the same parameters as for the Gaussian and Airy profiles, and the
observations are generated according to the Born and Wolf model with parameters as in
Example 6.2. Then, the limit of accuracy for mean photon counts ranging from 10 to 1250
is computed, and the results are displayed in Figure 6.9. Once again, there is an inverse
square root decay of the limit of accuracy with respect to the mean photon count for all
hyperparameters considered.
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Fig. 6.9 Evolution of the estimated limit accuracy for mean photon counts ranging from 10 to
1250. The limit of accuracy is estimated for the diffusion (σ ), drift (b) coefficients and optical
axis location (z0) for an out of focus molecule with stochastic trajectory. The estimates are
obtained by taking the square root of the inverse of the FIM, obtained by estimating the OIM
using the SMC-FS algorithm with 500 particles for 2040 simulated datasets. To generate
each dataset, the molecule trajectories are simulated according to the SDE in Example 6.1 for
[0,0.2] seconds, with σ = 1 µm2/s, b =−10 s−1, and initial location Gaussian distributed
with mean x0 = (5.5,5.5)⊺ µm and covariance P0 = 10−2I2×2 µm2. The observations are
generated according to the Born and Wolf model with parameters as in Example 6.2, where
z0 = 1 µm. An inverse square root curve (orange) is fitted to the resulting estimated limits of
accuracy for comparison.
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6.6.3 Limit of accuracy of the separation distance between two
molecules for the Airy profile

Being able to estimate the distance of separation between two closely spaced molecules is
an important aspect of single-molecule microscopy. In the past, Rayleigh’s criterion (Born
and Wolf [2013]) has been used to define the minimum distance between two point sources
such that they can be distinguished in the image. However, Ram et al. [2006a] developed
a resolution measure which predicts that increasing the photon count makes it possible
to estimate a separation distance between two molecules that is shorter than Rayleigh’s
criterion. This resolution measure is simply defined as the limit of accuracy for the separation
distance. In Ram et al. [2013], further research was carried out in order to develop analytical
formulations of the FIM – and hence limit of accuracy – for the separation distance under
various detection scenarios. So far, the limit of accuracy has only been derived for static
molecules. In this experiment, we apply our methodology to estimate the limit of accuracy for
the locations and separation distance between two molecules that are not static, but diffusing
independently at their respective stationary distributions, as illustrated in Figure 6.10.
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Fig. 6.10 Examples of two molecules diffusing independently at a mean separation distance
of 0.01 µm with diffusion coefficient σ = 10−4 µm2/s (left) and of 0.1 µm with σ = 10−3

µm2/s (right). For an Airy distributed photon detection profile with nα = 1.4 and λe =
0.52 µm, Rayleigh’s resolution limit is ≈ 0.227 µm. Note that increasing value of the
diffusion coefficient σ leads to the molecule trajectories overlapping even if their stationary
distributions are further apart.

Let Xt = (Xt,1,Xt,2)
⊺ be the cartesian coordinates of a moving molecule with stationary
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distribution N (x0,σI2×2) for all t. The continuous time dynamics are given by

dXt = (x0 −Xt)dt +
√

2σdBt . (6.36)

From Section 6.3.1, it is straightforward to establish the solution to this SDE, which yields
the conditional pdf f x0

∆
of Xk+1 at the (k+1)-th discrete segment, given Xk = x at the k-th

segment, as
Xk+1|(Xk = x) = Φ∆x+a∆ +Wx, Wx ∼ N (0,R∆),

where Φ∆ = e−∆, a∆ =−x0(e−∆ −1) and R∆ =−σ(e−2∆ −1)I2×2.
In this experiment, consider two independently diffusing molecules whose states are

(Xt ,Zt), where Xt is the state of the first molecule and Zt is the state of the second.
The molecules are initialised at their respective stationary distributions, N (x0,σI2×2)

and N (z0,σI2×2), and the conditional pdf of (Xk+1,Zk+1) given (Xk,Zk) = (xk,zk) is
f x0
∆
(xk+1|xk) f z0

∆
(zk+1|zk) owing to their independent motions.

Assume that the mean location of the molecules (x0,z0) =: θ = (θ1,θ2,θ3,θ4)
⊺ is non-

random but unknown and to be estimated. Let θ̂ =
(
θ̂1(Y1:n), θ̂2(Y1:n), θ̂3(Y1:n), θ̂4(Y1:n)

)⊺
denote an estimate of θ given observations Y1:n. Recall that the FIM, denoted In(θ), is given
by

In(θ) = E
[
∇ log pθ (Y1:n) ∇ log pθ (Y1:n)

T ] ,
where

∇ log pθ (Y1:n) = pθ (Y1:n)
−1


∂

∂θ1
log pθ (Y1:n)

...
∂

∂θ4
log pθ (Y1:n)

 .

For any scalar-valued function D(θ) ∈ R, we can estimate D(θ) using D(θ̂) where θ̂ is the
estimate of θ . Assuming the estimate is unbiased, we have the following CRLB for the
function D,

E
[(

D(θ̂)−D(θ)
)2
]
≥ ∇D(θ)⊺In(θ)

−1
∇D(θ), (6.37)

where ∇D(θ) := (∂D/∂θ1, . . . ,∂D/∂θ4)
⊺. For example, to estimate the separation between

the two molecules we have D(θ) =

√
(θ1 −θ3)

2 +(θ2 −θ4)
2, and as a result

∇D(θ) =
1

D(θ)


θ1 −θ3

θ2 −θ4

−(θ1 −θ3)

−(θ2 −θ4)

 .
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This experiment is essentially the dynamic version of the experiments on estimating the
separation of two static molecules by Ram et al. [2013]. The key difference here is that the
molecules are diffusing. The observations Y1:n are generated as in Ram et al. [2013], i.e.
according to the following mixture

Gk(xk,zk) =

1−∆λθ , if yk = /0,

λθ [εxg(yk|xk)+ εzg(yk|zk)] , otherwise,

=

1−∆λθ , if yk = /0,

λxg(yk|xk)+λzg(yk|zk), otherwise,
(6.38)

where g is the photon distribution profile given in Equation 6.7, εx := λx
λθ

for λθ = λx+λz and
similarly for εz. The measurement model considered in this experiment is the Airy profile
(Equation 6.8), but it is straightforward to also apply the methodology to the 2D Gaussian
profile and Born and Wolf model.

In the first part of the experiment, we replicate results similar to those in Ram et al. [2013]
for two static molecules, and observe how introducing diffusion affects the progression of
the limit of accuracy for the mean location θ , denoted δθ , as well as the limit of accuracy
δD(θ) for the separation distance (obtained using Equation 6.37), as this separation distance
between the two molecules increases. We set λx = λz = λ for simplicity. Estimating δθ

for the static case is performed as in Example 6.5. The molecules are observed during
an interval of [0,1] seconds with a mean photon count, denoted Nphot , of 3000, and the
parameters of the Airy profile are unchanged (i.e. nα = 1.4, λe = 0.52 µm), as is the lateral
magnification matrix (M = 100I2×2). For the dynamic case, the molecules are observed for
the same interval and mean photon count, and for diffusion coefficients σ varying from 10−3

to 10−4 µm2/s. The estimate of the limit of accuracy is obtained by estimating the OIM via
the SMC-FS algorithm for approximately 100 datasets. The resulting estimated limits of
accuracy δ̂θ and δ̂D(θ) are given in Figure 6.11.

The second part of the experiment involves similarly estimating the limits of accuracy
δθ and δD(θ) for various separation distances, but this time the diffusion coefficient remains
fixed, i.e. σ = 10−4 µm2/s, and the mean photon count Nphot is set to vary between 100 and
4500. The resulting estimated limits of accuracy are given in Figure 6.12.

As the separation distance D(θ) gets closer to zero, the limit of accuracy increases,
indicating that estimates would become less accurate. Additionally, an inverse square root
curve was fit to each set of estimated limits of accuracy in Figures 6.11 and 6.12. This is
consistent with results in Ram et al. [2006a] that showed an inverse square root relationship
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between separation distance and δ static
D(θ) for two static molecules, and indicates that these

results can be generalised to dynamic molecules.
In Ober et al. [2004b], it is suggested that the limit of accuracy for the location of a static

molecule, known as localisation accuracy and denoted δ loc, is of the form σa√
Nphot

where

Nphot is the mean photon count and σa the standard deviation of the photon detection profile,
though the authors point out the expression may vary for a non-Gaussian measurement model.
The interpretation for this is that the quality of location estimates of a single static molecule
deteriorates as the measurement uncertainty σa increases. Now in Ram et al. [2013], it is
shown that the limit of accuracy for the separation distance between two molecules δ static

D(θ)

and the localisation accuracy for each of these molecules are related as follows

lim
D(θ)→∞

δ
static
D(θ) =

√(
δ loc

1
)2

+
(
δ loc

2
)2
,

where δ loc
1 and δ loc

2 denote the localisation accuracy for the first and second molecule,
respectively. This means that δ static

D(θ) is similarly affected by measurement uncertainty σa as
are the localisation accuracies for the two molecules.

In this experiment, the introduction of diffusion negatively affects the improvement in
estimation accuracy as the mean distance of separation between the two molecules increases.
This is evidenced in Figure 6.11 by the more and more slowly decaying limits of accuracy as
the value of the diffusion coefficient σ increases, and in Figure 6.13 by the increasing trend
in δ̂D(θ) for all values of D(θ) as σ increases. As a result, the diffusion coefficient in the
dynamic model can be translated into additional observation uncertainty which affects δD(θ)

in a way reminiscent of how σa affects δ static
D(θ) in the static case. Future work will include

analytical investigations with the aim of obtaining further insights and developing explicit
expressions for the links between δD(θ) and the diffusion coefficient σ which support the
results of this experiment and formally generalise results from Ober et al. [2004b]; Ram
et al. [2013] for dynamic molecules. This will also include analytical research into the
link between δD(θ) and the limit of accuracy for the mean location x0 of a single dynamic
molecule, which can be translated as mean localisation accuracy for dynamic molecules.

While the introduction of diffusion leads to less accurate estimates, Figure 6.12 displays
a stronger decay in the limit of accuracy as the mean photon count Nphot increases, thus
indicating that increasing the mean photon count Nphot improves those estimates. This is
reinforced in Figure 6.14, which also suggests that the relationship between δD(theta) and
Nphot is an inverse square root. This is a generalisation to the dynamic case of results in Ram
et al. [2006a] which showed an inverse square root relationship between δ static

D(θ) and Nphot for
two static molecules.
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In summary, this experiment employs the framework developed in this chapter for
estimating the FIM of parameters of dynamic molecules using SMC in order to gain insight
into generalising results from Ram et al. [2006b, 2013] about the effects of separation
distance, measurement uncertainty and mean photon count to a context in which the two
molecules considered follow a SDE rather than being static.
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Fig. 6.11 Comparison of the evolution of the estimated limit accuracy for separation distances
ranging from 20× 10−3 to 300× 10−3 µm for various diffusion coefficient σ values. The limit
of accuracy δθ is estimated for the location (in the static case) or mean location (in the dynamic
case) θ = (θ1,θ2,θ3,θ4) of two molecules. The estimates are obtained by taking the square root of
the inverse of the FIM, obtained by estimating the OIM directly for 400 simulated datasets (in the
static case) or by running the SMC-FS algorithm with 500 particles for approximately 100 simulated
datasets (in the dynamic case). For the static case, the photon detection times are simulated according
to a Poisson process with constant rate corresponding to the expected mean photon count Nphot = 3000
during an interval of [0,1] seconds. For the dynamic case, the molecule trajectories are initialised at
their stationary distributions N (θ1:2,σI2×2) and N (θ3:4,σI2×2) and each is propagated according
to its corresponding SDE (Equation 6.36) for the same time interval and mean photon count. The
observations are generated according to a mixture of Airy profiles (Equation 6.38) with parameters
as in Example 6.2. In the dynamic case, this is repeated for σ varying from 10−3 to 10−4 µm2/s.
The limit of accuracy for the separation distance estimate δ̂D(θ) is obtained using the square root of
the CRLB obtained using Equation 6.37. Finally, an inverse square root curve is fitted to each of
the resulting sets of estimated limits of accuracy for comparison purposes. Note that the pink set of
estimates and their corresponding solid fitted curve coincide with those in Figure 6.12.
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Fig. 6.12 Comparison of the evolution of the estimated limit accuracy for separation distances
between two dynamic molecules ranging from 20× 10−3 to 300× 10−3 µm for various
mean photon counts Nphot . The limit of accuracy δθ is estimated for the mean location
θ = (θ1,θ2,θ3,θ4) of two molecules. The estimates are obtained by taking the square root
of the inverse of the FIM, obtained by estimating the OIM using the SMC-FS algorithm
with 500 particles for approximately 100 simulated datasets. The molecule trajectories are
initialised at their stationary distributions N (θ1:2,σI2×2) and N (θ3:4,σI2×2) and each is
propagated according to its corresponding SDE (Equation 6.36) with σ = 10−4 µm2/s during
an interval of [0,1] seconds. The observations are generated according to a mixture of Airy
profiles (Equation 6.38) with parameters as in Example 6.2. This is repeated for Nphot varying
from 100 to 4500. The limit of accuracy for the separation distance estimate δ̂D(θ) is obtained
using the square root of the CRLB obtained using Equation 6.37. Finally, an inverse square
root curve is fitted to each of the resulting sets of estimated limits of accuracy for comparison
purposes. Note that the pink set of estimates and their corresponding solid fitted curve are
identical to those in Figure 6.11. Any variation in estimates for low separation distances is
due to Monte Carlo error, and can be reduced by increasing the number of simulated datasets.
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Fig. 6.13 Evolution of the estimated limit of accuracy for the separation distance δD(θ)

between two molecules for diffusion coefficient ranging from 10−4 to 10−2 µm2/s. Estimates
are obtained through the same algorithm and parameters as in Figure 6.11, with separation
distances ranging from 20×10−3 to 300×10−3 µm.
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Fig. 6.14 Evolution of the estimated limit of accuracy for the separation distance δD(θ)

(obtained using Equation 6.37) between two molecules for mean photon counts ranging from
100 to 4500. Estimates are obtained through the same algorithm and parameters as in Figure
6.12, with separation distances 150× 10−3 (brown) and 300× 10−3 µm (olive). Inverse
square root curves are fitted to the resulting estimates δ̂D(θ) for comparison.
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6.7 Conclusion

In this chapter, we introduced an SMC approach to performing parameter inference when
tracking a molecule with stochastic trajectory for a fixed time interval. Recall the three main
aspects of this type of single-molecule microscopy, namely the true location of the molecule
in the object space, which follows a linear SDE, the Poisson distributed arrival process of the
photons it emits on the detector in the image space, and the arrival location of those photons
on the detector, which follows either a 2D Gaussian, Airy profile, or Born and Wolf model.

First of all, we discretised the time interval in order to formulate the problem as a simple
state space model, in which all states are equally spaced in time, but a number of observations
are marked as missing. From this, it was possible to employ particle filters to track the
molecule, and particle smoothers for parameter inference, such as parameter estimation via
gradient descent or EM. Most importantly, a forward smoothing algorithm was employed in
order to estimate the score and OIM of the data regardless of the distribution of the photon
locations. For the first time, this allowed for the estimation of the FIM and hence the limit of
accuracy (square root of the CRLB), which could not be done before for the Airy profile and
Born and Wolf model, and could only be achieved analytically for a specific set of photon
detection times for the 2D Gaussian profile. The methodology was subsequently applied to
characterise the precision limits for estimating the separation distance between two moving
molecules, thus providing new insights into results for the static case from Ram et al. [2013].

Although for the first time a method has been described to estimate the limit of accuracy
for the hyperparameters of dynamic single molecules with non-uniform observation times
and complex measurement models, such as the Airy profile or Born and Wolf model, there is
scope to use the techniques developed here to provide a wider range of more computationally
efficient approaches. Indeed, an advantage of the straightforward state space model formula-
tion of the problem is access to the vast range of filtering and smoothing algorithms available.
While we employed forward smoothing, any kind of particle smoothing algorithm would
be suitable, and indeed, the SMC-FS algorithm of Del Moral et al. [2010] employed for
forward smoothing, even though it mitigates issues related to path degeneracy, is of O(N2)

complexity. It was mentioned that the PaRIS algorithm of Olsson et al. [2017] can reduce the
complexity of the algorithm to linear. Further work into making the particle smoother more
efficient will include investigating using the accept-reject approach (see Algorithm 3.13) in
order to speed up the PaRIS algorithm, as well as employing the fixed-lag smoother. As for
the model itself, the next steps include moving away from the ideal fundamental model into
more complex but realistic models which take into account pixelisation and the size of the
detector, as well as treating the arrival rate of photons as non-constant (see Section 6.4.1.1),
thus making the photon arrival process an inhomogeneous Poisson process.
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Appendix 6.A Derivation of the auxiliary density for the
2D Gaussian profile

To derive the optimal auxiliary density p(xk,yk|xk−1) for the APF (Section 6.5.2.2) in the
d-dimensional Gaussian case, we first state the state space model at hand.

Xk = Φ∆Xk−1 +a∆ +Wx, Wx ∼ N (0,R∆) ,

Yk =

 /0, if no observation was recorded,

MXk +Wy, Wy ∼ N (0,Σ) , otherwise,

where Σ = MTΣaM and Σa = σaId×dd . Recall that the optimal auxiliary density is given by

pθ (xk,yk|xk−1) = pθ (xk|yk,xk−1)pθ (yk|xk−1).

Their respective probability density functions are, for dimension n,

f θ
∆ (xk|xk−1) = (2π)−

d
2 |R∆|−

1
2 exp

[
−1

2
(xk −Φ∆xk−1 −a∆)

TR−1
∆
(xk −Φ∆xk−1 −a∆)

]
,

Gθ
k (xk) =

1−∆λ , if yk = /0,

∆λ (2π)−
d
2 |Σ|− 1

2 exp
[
−1

2(yk −Mxk)
TΣ−1(yk −Mxk)

]
, otherwise.

We first consider the situation in which no observation was recorded in the k-th discrete
interval. It is straightforward to see that

pθ (xk,yk|xk−1) = f θ
∆ (xk|xk−1)(1−λ∆).

Now, if instead an observation was recorded, we have

p(xk,yk|xk−1)∝ exp
[
−1

2
(xk −Φ∆xk−1 −a∆)

TR−1
∆
(xk −Φ∆xk−1 −a∆)

]
exp
[
−1

2
(yk −Mxk)

T
Σ
−1(yk −Mxk)

]
.
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Taking the log and multiplying by −2 for simplicity, if .
= denotes equality up to an additive

constant, we obtain

−2log p(xk,yk|xk−1)
.
= xT

k (R
−1
∆

+MT
Σ
−1M)︸ ︷︷ ︸

Σ
−1
∆

xk −2xT
k (R

−1
∆
(Φ∆xk−1 +a∆)+MT

Σ
−1yk)

+(Φ∆xk−1 +a∆)
TR−1

∆
(Φ∆xk−1 +a∆)+ yT

k Σ
−1yk

= xT
k Σ

−1
∆

xk −2xT
k Σ

−1
∆

Σ∆(R−1
∆
(Φ∆xk−1 +a∆)+MT

Σ
−1yk)︸ ︷︷ ︸

µ∆

+µ
T
∆ Σ

−1
∆

µ∆

− (R−1
∆
(Φ∆xk−1 +a∆)+MT

Σ
−1yk)

T
Σ∆(R−1

∆
(Φ∆xk−1 +a∆)+MT

Σ
−1yk)

+(Φ∆xk−1 +a∆)
TR−1

∆
(Φ∆xk−1 +a∆)+ yT

k Σ
−1yk

= (xk −µ∆)
T

Σ
−1
∆

(xk −µ∆)+ yT
x (Σ

−1 −Σ
−1MΣ∆MT

Σ
−1)︸ ︷︷ ︸

Ξ
−1
∆

yx

−2(Φ∆xk−1 +a∆)
T(R−1

∆
Σ∆MT

Σ
−1)+(Φ∆xk−1 +a∆)

T(R−1
∆

−R−1
∆

Σ∆R−1
∆
)(Φ∆xk−1 +a∆).

Therefore, the auxiliary density is given by

p(xk,yk|xk−1) ∝ exp
[
−1

2
(xk −µ∆)

T
Σ
−1
∆

(xk −µ∆)

]
exp
[
−1

2
(yk −ξ∆)

T
Ξ
−1
∆
(yk −ξ∆)

]
,

where plugging in Σ = MΣaMT, the parameters of its components are

µ∆ = (R−1
∆

+Σ
−1
a )−1(R−1

∆
(Φ∆xk−1 +a∆)+Σ

−1
a M−1yk),

Σ∆ = (R−1
∆

+Σ
−1
a )−1,

ξ∆ = M(Φ∆xk−1 +a∆),

Ξ∆ = M(Σa +R∆)MT.
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Appendix 6.B Sufficient statistic for estimating the OIM
by forward smoothing

In Example 6.4, recall that the molecule trajectory is described by the following SDE in
d-dimensional space

dXt = bId×dXtdt +
√

2σdBt ,

where in the drift term, b ̸= 0, in the diffusion term, σ > 0, and (dBt)t0≤t≤T is a Wiener
process. The log transition density can be written as

log f θ
∆ (xk|xk−1) =−d

2
log(2πσ)+

d
2

log(b)− d
2

log
(

e2∆b −1
)
−

b
∥∥xk − e∆bxk−1

∥∥2

2σ(e2∆b −1)
.

(6.39)
To obtain the sufficient statistics in Equations 6.28 and 6.29, if the photon location process is
distributed according to the Airy or 2D Gaussian profiles, it suffices to take the gradient and
hessian of the log transition density in Equation 6.39 with respect to the diffusion σ and drift
b coefficients, i.e.

∇ log f θ
∆ (xk|xk−1) =

(
g1

g2

)
, ∇

2 log f θ
∆ (xk|xk−1) =

(
H11 H12

H21 H22

)
,

where

• Gradient w.r.t σ

g1 :=− d
2σ

+
b
∥∥xk − eb∆xk−1

∥∥2

2σ2
(
e2b∆ −1

) .

• Gradient w.r.t b

g2 :=
d
2b

− d∆e2∆b(
e2∆b −1

) − ∥∥xk − e∆bxk−1
∥∥2

2σ(e2∆b −1)

+
∆be∆b(xk − e∆bxk−1)

Txk−1

σ(e2∆b −1)
+

∥∥xk − e∆bxk−1
∥∥2

∆be2∆b

σ(e2∆b −1)2 .
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• Hessian w.r.t σ then σ

H11 :=
d

2σ2 −
b
∥∥xk − eb∆xk−1

∥∥2

σ3
(
e2b∆ −1

) .

• Hessian w.r.t b then σ and vice versa

H12 = H21 :=

∥∥xk − e∆bxk−1
∥∥2

2σ2(e2∆b −1)

− ∆be∆b(xk − e∆bxk−1)
Txk−1

σ2(e2∆b −1)
−
∥∥xk − e∆bxk−1

∥∥2
∆be2∆b

σ2(e2∆b −1)2 .

• Hessian w.r.t b then b

H22 :=− d
2b2 −

2d∆2e2∆b

e2∆b −1
+

2d∆2e4∆b(
e2∆b −1

)2

+
xT

k xk

σ

[
2∆e2∆b +2∆2be2∆b

(e2∆b −1)2 − 4∆2be4∆b

(e2∆b −1)3

]
+

xT
k xk−1

σ

[
2∆e∆b +∆2be∆b

e2∆b −1
− 4∆e3∆b +8∆2be3∆b

(e2∆b −1)2 +
8∆2be5∆b
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]
−

xT
k−1xk−1

σ

[
2∆e2∆b +2∆2be2∆b

e2∆b −1
− 2∆e4∆b +6∆2be4∆b

(e2∆b −1)2 +
4∆2be6∆b

(e2∆b −1)3

]
.
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Appendix 6.C Score and OIM for static molecule observed
via Airy profile

In Example 6.5, we consider the problem of estimating the FIM for the location parameters
(x1,x2) of an in-focus static molecule. This is achieved by computing the score and OIM for
the observed data. If the photon detection locations are described by the 2D Gaussian profile,
the differentiation is straightforward, but in the case of the Airy profile (Equation 6.8), the
computations are more involved.

Given observation y ∈ R2 and invertible lateral magnification matrix M ∈ R2×2, for
notational simplicity let v = M−1y, r =

√
(v1 − x1)2 +(v2 − x2)2 and α = 2πnα

λe
. The log

photon distribution profile (Equation 6.7) is given by

logg(y) =− log(|M|)+ logq(y),

where the image function is

q(y) =
J2

1(αr)
πr2 .

First of all, use the relation ∂

∂xx−nJn(x) = −x−nJn+1(x) for n ∈ N in order to obtain the
gradient and hessian of q(y). Where the subscript i appears, the result is valid for i = 1,2.

∂q(y)
∂xi

=
2α

π
(vi − xi)

J1(αr)
r

J2(αr)
r2 ,

∂ 2q(y)
∂x2

i
=

2α2

πr4 (vi − xi)
2 [J1(αr)J3(αr)+ J2

2(αr)
]
− 2α

π

J1(αr)
r

J2(αr)
r2 ,

∂ 2q(y)
∂x1∂x2

=
2α2

πr4 (v1 − x1)(v2 − x2)
[
J1(αr)J3(αr)+ J2

2(αr)
]
.

To derive the components of the gradient and hessian of logq(y), we make use of the
following identities

∇ logq(y) =
∇q(y)
q(y)

, ∇
2 logq(y) =

∇2q(y)
q(y)

− [∇ logq(y)]2 .

Therefore, for i = 1,2, the components of the log gradient are given by

∂ logq(y)
∂xi

=
2α

r
J2(αr)
J1(αr)

(vi − xi) ,
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and the diagonal components of the log hessian are

∂ [logq(y)]2

∂x2
i

=
2α2

r2 (vi − xi)
2
[

J3(αr)
J1(αr)

−
J2

2(αr)
J2

1(αr)

]
− 2α

r
J2(αr)
J1(αr)

.

And finally, the cross terms are given by

∂ [logq(y)]2

∂x1x2
=

2α2

r2 (v1 − x1)(v2 − x2)

[
J3(αr)
J1(αr)

−
J2

2(αr)
J2

1(αr)

]
.

To summarise, the log gradient and negative log hessian for the Airy profile are

∇ logg(y) = γ(M−1y− x), γ =
2α

r
J2(αr)
J1(αr)

,

−∇
2 logg(y) = χ(M−1y− x)(M−1y− x)⊺+ γI2×2, χ =−2α2

r2

[
J3(αr)
J1(αr)

−
J2

2(αr)
J2

1(αr)

]
.
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(a) Many short datasets, Airy profile (b) Few long datasets, Airy profile

Fig. 6.15 True and estimated limit of accuracy for mean photon counts ranging from (a) 1 to
150 (b) 10 to 1500. The limit of accuracy is estimated for the location parameters (x1,x2)
of a static in-focus molecule. The estimates are obtained by taking the square root of the
inverse of the FIM, obtained for (a) 400 ‘short’ and (b) 40 ‘long’ simulated datasets using
approaches (i) ⋆, (ii) × and (iii) + for comparison purposes. To generate each dataset, the
photon detection times are simulated according to a Poisson process with rate corresponding
to the expected mean photon count for (a) [0,0.02] and (b) [0,0.2] seconds and the intervals
are discretised. The photon detection locations are generated according to the Airy profile,
with parameters as in Example 6.2. The true limit of accuracy (blue solid line) is also
computed as it is available analytically. Similarly as for the 2D Gaussian profile, estimates
of the limit of accuracy based on a single dataset (approach (i)) are more accurate for long
datasets while taking the mean outer product of the score over all datasets (approach (ii))
yields more accurate estimates for a higher number of short datasets. Approach (iii) provides
a good balance between the two.



Chapter 7

Conclusions

The research in this thesis presented new and efficient Monte Carlo methods for Bayesian
inference with the aim of tackling particularly complex models, and a significant portion of
the thesis has been geared towards increasing the computational efficiency of these algorithms
for use in parallel computing architectures. Additionally, there is scope to further explore the
novel methods and algorithms presented in this thesis, and to employ them in a wide range
of applications and computing environments. We summarise the contributions of this thesis
and provide some insights into future directions.

7.1 Thesis contributions

In Chapter 4, we developed a novel algorithm known as Anytime Parallel Tempering
Monte Carlo (APTMC) which combines the features of parallel tempering and Murray
et al. [2016b]’s Anytime Monte Carlo framework. This framework is particularly useful for
running algorithms in which local moves take a random and varying time to complete in a
distributed computing setting, as it significantly reduces idling and improves performance.
As part of this chapter, we applied the framework in an approximate Bayesian computa-
tion (ABC) setting, making use of Lee [2012]’s efficient 1-hit MCMC kernel, for which
we developed a new kind of exchange moves in order to adapt the algorithm to parallel
tempering.

Our contributions in Chapter 5 included developing a new and general Anytime SMC
sampler which makes use of RJ-MCMC to perform changepoint inference, where the Anytime
framework ensures any idling between processors remains minimal. A general framework
for performing changepoint inference with this algorithm was described and will be helpful
in the future for particularly complex changepoint problems. This was illustrated with a
complex model by Fearnhead and Vasileiou [2009] in which the model or family of each
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segment must also be estimated as part of the RJ-MCMC updates. We also derived the various
RJ-MCMC updates for this particular model as they did not exist yet. Previously, Anytime
SMC samplers had been presented in Murray et al. [2016b], as well as SMC samplers which
employ RJ-MCMC for changepoint inference in Del Moral et al. [2006], and RJ-MCMC
algorithms for similar, complex applications in Boys and Henderson [2004]. In Chapter 5,
all these elements were combined into a single algorithm for the first time.

Chapter 6 first formally introduced a new approach to parameter inference in single-
molecule microscopy, which had only been touched upon before in Ashley and Andersson
[2015]. This approach discretises the observation interval of photons emitted by a stochasti-
cally moving molecule arriving on a detector. This meant that the model could be formulated
as a straightforward state space model, so that any particle filtering and smoothing algorithm
could be applied to it for tracking and parameter inference purposes. As a result, the second
major contribution of this chapter was the framework developed for estimating the FIM,
and hence its inverse the CRLB, for complex photon detection location profiles such as the
Airy profile and Born and Wolf model, and for a molecule whose trajectory is described by
an SDE, which could not be done before. A consequence of this was that it enabled us to
observe the inverse square root decay of the limit of accuracy (square root of the CRLB)
of various hyperparameters such as the drift and diffusion coefficients of the SDE as the
expected photon count increases. Finally, the methodology was applied to estimate the limit
of accuracy for estimating the separation distance between two moving molecules, thus
providing new insights into results for the static case from Ram et al. [2013].

7.2 Future directions

In Chapter 4, we saw that the fact that there is no upper limit on the time the 1-hit ABC kernel
race takes to complete can lead to standard ABC algorithms being stuck for extended periods.
The Lotka-Volterra predator-prey model considered was particularly affected by this issue.
As a result, the improvements in effective sample size brought by adding exchange moves
were only modest. This was less the case for the moving average example of Section 4.5.3,
but it remains a model in which the likelihood is available anyway, if expensive for large
datasets. In this case, scalable approaches such as pseudo-marginal MCMC or subsampling
(see Section 2.4.2) are able to improve performance without needing to resort to ABC. Future
work on Anytime parallel tempering involving ABC could include finding applications which
require ABC and will strongly benefit from exchange moves, such as a problem with an
intractable but multimodal posterior

In Chapter 5, the RJ-MCMC Anytime SMC sampler for changepoint inference was
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presented in a general fashion, and the illustrated problem could have been implemented in a
way that didn’t benefit as much from Anytime. However, the framework presented should be
of use in the future for anyone encountering a particularly challenging real-life changepoint
problem, where for example it is impossible to collapse out the latent parameters from the
likelihood and/or completion times of RJ-MCMC moves differ widely between the various
numbers of changepoints.

More generally, the Anytime framework can be employed in several other applications,
whether it be Anytime parallel tempering, an Anytime SMC sampler or a new algorithm
construction. Other algorithms whose completion times depend on the current state of the
chain include the No-U-Turn sampler (NUTS) (Hoffman and Gelman [2014]), elliptical slice
sampling (Murray et al. [2010]), and the accept-reject sampling scheme of Algorithm 3.13.

Future work that will be carried out, building on Chapter 6, will involve moving away
from the convenient fundamental model into more realistic models which take into account
pixelation and finite-sized detectors (Vahid et al. [2019]). Another important aspect will
be to deal with potentially inhomogeneous photon detection rates, as outlined in Section
6.4.1.1. Future work will also include investigating and comparing the efficiency of different
particle filters and smoothers for estimating the FIM. Indeed, in the scenarios considered
in the experiments, particle path degeneracy must be addressed, but in order to obtain an
accurate estimate of the FIM, the particle smoother must be run several times, so it would be
beneficial for its complexity to be only linear. New particle smoothers to consider are the
fixed-lag smoother (Section 3.5.1) and the PaRIS algorithm with accept-reject sampling.
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