Risk prediction models for recurrence after curative treatment of localised kidney cancer: a systematic review

Supplementary material

Contents

Supplementary Methods 1. Details of risk of bias assessment

Supplementary Table 1. Medline search strategy

Supplementary Table 2. Embase search strategy

Supplementary Table 3. Characteristics of included studies

Supplementary Table 4. Key study characteristics and risk of bias assessment for external validations of models predicting recurrence free survival

Supplementary Table 5. Results of meta-regression for recurrence free survival

Supplementary Table 6. Key study characteristics and risk of bias assessment for external validations of models predicting cancer specific survival

Supplementary Table 7. Key study characteristics and risk of bias assessment for external validations of models predicting overall survival

Supplementary Table 8. Multivariate meta-analysis of discrimination of risk models in Europe/US populations

Supplementary Table 9. Multivariate meta-analysis of discrimination of risk models in Asian populations

Supplementary Table 10. Discrimination of externally validated risk models without and with the addition of one or more additional prognostic markers

Supplementary Figure 1. PRISMA flow diagram

Supplementary Figure 2. Plots of the ranking for each risk score considered in the multivariate meta-analysis for recurrence free survival

Supplementary Figure 3. Plots of the ranking for each risk score considered in the multivariate meta-analysis for cancer specific survival

Supplementary Figure 4. Plots of the ranking for each risk score considered in the multivariate meta-analysis for overall survival

Supplementary Methods 1. Details of risk of bias assessment

For this systematic review we carried out a risk of bias (RoB) assessment for each included validation. Validations of different models and outcomes (CSS, OS, RFS) carried out in the same study were assessed separately. The RoB assessments were carried out by one reviewer (HH), and 10% of the assessments (for each outcome) were checked by a second reviewer (LL, LR). Reviewers were in complete agreement for >80% of studies and all discrepancies were resolved through discussion. Any issues found were checked in the remaining 90% of assessments. The overall assessment was changed for five validations (out of 228) following second review.

The assessments were carried out using the PROBAST tool, which was specifically designed to assess the applicability and RoB of studies that develop and validated clinical prediction models. The PROBAST RoB assessment tool looks at four domains of interest to clinical prediction models: population, risk factors, outcomes and analysis. Each of the four domains can receive a low, unclear or high risk of bias rating. Within each domain a series of signalling questions are used to determine if the risk of bias was minimised during the model validation (or development) and the subsequent reporting.

Signalling questions can be answered Y (Yes), PY (Probably Yes), PN (Probably No), N (No) and NI (No Information). All the signalling questions are phrased in such a way that an answer of "Y" indicates low RoB. In general, a validation is assessed as having low RoB for a domain if all the signalling questions within that domain can be answered Y or PY. However, answering a signalling question "N" does not automatically mean that the validation will receive a high RoB rating for that domain.

The reviewer is required to determine, on a case-by-case basis, if the issue highlighted by the signalling question introduces RoB. This assessment may differ between systematic reviews, depending on the type of models and their intended application.

Within a review it is important to ensure consistency across all the assessments. In the section below, we have drawn attention to common issues identified in each domain for the validations included in this systematic review. Detail of how the corresponding RoB assessment was resolved are also given. An unclear rating was given if there is not sufficient information reported in the study to conclude on the level of bias, this is typically indicated by answering "NI" to the signalling questions.

The overall RoB assessment for each validation was considered low if each of the four domains receives a low RoB score. If at least one domain receives a high risk of bias rating, the overall score was considered high. If at least one domain receives an unclear RoB rating (and no domains receive a high RoB rating), then the overall validation was rated unclear.

We did not carry out applicability assessments using the PROBAST tool. We considered all of the included studies to be highly applicable to the research question, as determined by the inclusion criteria during the screening process. In order to investigate the applicability of individual models we looked at the availability of the risk factors used, in the context of existing clinical practice. The risk factors for each model were classified as available, possibly available and not available.

Domain 1: Participants

1.1 Were appropriate data sources used?

In this systematic review, all the included validations used retrospective cohorts for their analysis. This is considered a study design with a low risk of bias; all validations were given a "Y" response for this question.

1.2 Were all inclusions and exclusions appropriate?

In this review, most of the exclusions related to the type or severity of the kidney cancer. For example, many validations excluded individuals with metastases from their analysis. Additionally, rarer or unusual forms of kidney cancer (i.e. bilateral kidney cancer) were commonly excluded. We considered these exclusions appropriate.

The exclusion criteria often also defined the minimum amount of follow-up required for an individual to be included in the study. In a small number of validations, the minimum required follow-up was different for cases and controls. For example,

"[participants were excluded for the following reasons] ...and a follow-up of less than 12 months without an event." May2009

Different inclusion and exclusion criteria for cases and controls was considered to introduce a RoB into the study. For the example above, the signalling question was answered "N" and domain 1 was assessed to have a high RoB.

Domain 2: Risk Factors

- 1.1 Were predictors defined and assessed in a similar way for all participants?
 - The risk factors were defined and assessed (for almost all validations) based on electronic health records or similar databases. These are considered suitable sources of data on risk factors, and are assumed reasonably consistent over the whole cohort. In some cases a "NI" rating is given for this signalling question if the source of risk factor data is not given for some or all of the cohort. An "NI" response for this signalling question would be sufficient to receive an unclear rating for this domain.
- 1.2 Were predictor assessments made without knowledge of outcome data? As all the validations use retrospective cohorts, this is assumed to be "Y" for all. Note an "NI" rating was given if no information was given about data sources. An "NI" response for this signalling question would be sufficient to receive an unclear rating for this domain.

1.3 Are all predictors available at the time the model is intended to be used?

We assumed that this would be true in all cases (signalling question ignored). All the models validated in the study use risk factors that could be available post-operatively – but availability may vary depending on details of setting/usage.

Domain 3: Outcome

3.1 Was the outcome determined appropriately?

We expect that validation studies describe follow-up appointments, in which appropriate imaging and medical tests will be used to test for recurrence. In some studies this was explicit ("Y"), and in others implicit ("PY"). Where no information is reported a "NI" rating is given. An "NI" response for this signalling question would be sufficient to receive an unclear rating for this domain.

3.2 Was a pre-specified or standard outcome definition used?

This was answered "Y" for all, as the placement of the validation on the data extraction spreadsheets for CSS/RFS/OS makes it clear a standard and well understood outcome definition was used.

3.3 Were predictors excluded from outcome definition?

This was assumed true in all cases (signalling question ignored). All the models validated in this study satisfy this requirement.

3.4 Was the outcome determined in the same way for all participants?

To minimise the RoB in the validation, we expect that the follow-up procedure is the same for all included individuals. Some key problems highlighted included: centres pursuing different or ad hoc follow-up strategies and different follow-up for individuals classified as low risk and high risk (in some cases this classification was carried out by the model being validated). For example,

"Information on follow-up was updated in each center by direct phone call and, alternatively, by contacting general practitioners or relatives." Cindolo 2005

"Patients who survived to discharge were prospectively followed up according to Leibovich risk stratification protocol; patients classified as low risk underwent annual ultrasound scan and chest X-ray, intermediate risk underwent 6 monthly computed tomography scan for 2 years then annually until 5 years, and those classified as high risk underwent 6 monthly computed tomography scan for 3 years and then annually until 5 years." Lamb 2012

- 3.5 Was the outcome determined without knowledge of predictor information? We felt this was an unreasonable expectation for this type of study (signalling question ignored). Typically, clinicians making a diagnosis of recurrent kidney cancer will have access to all medical records.
- 3.6 Was the interval between predictor assessment and outcome determination appropriate? We would generally expect models of this type to be validated over a follow-up period of a number of years (e.g. 5/10 years). Most of the cohorts used in this validation have a range of follow-up periods, with a small number of individuals having a very short follow-up (<12 months). Note that other studies exclude individuals with <12 months of follow-up. On the condition that variable follow-up times are appropriately handled in analysis and the median follow-up times are reasonable, this does not present an issue. All validations were given a "Y" response for this question.

Domain 4: Analysis

4.1 Were there a reasonable number of participants with the outcome?

PROBAST guidance states that at least 100 events should be included in a validation to avoid high RoB. While many of the studies did not satisfy this criterion, we decided this (in the absence of other issues in this domain) was not sufficient to merit a high RoB rating. Validations with less than 50 events automatically received a high RoB rating for this domain. Validations that did not provide event numbers ("NI") automatically received an unclear rating for this domain (if no other issues were identified).

- 4.2 Were continuous and categorical predictors handled appropriately? We assumed that all of the validations used the predictors as described by the model development studies (signalling question ignored).
- 4.3 Were all enrolled participants included in the analysis?

To answer this question we looked at the information provided by the studies on the handling of participants lost to follow-up. To minimise RoB we would expect to see the studies employing a suitable technique, such as censoring. Many of the studies simply excluded participants lost to follow-up, however - as these participants are likely to be different to those successfully

followed up - this approach introduces a RoB. Validations assessed as "N" for this signalling question automatically received a "high" RoB score for this domain.

4.4 Were participants with missing data handled appropriately?

According to PROBAST guidance, missing data should be handled using an appropriate method – such as multiple imputation. Complete-case analysis (excluding those with missing data) is explicitly stated as an approach that introduces RoB – and this signalling question has been answered accordingly. However, validations using complete-case analysis for a small amount of missing data (from medical records) were not automatically classified as "high" RoB for this domain, and could receive a "low" rating if no other issues were seen, as this was seen as an acceptable approach within the context of these types of validation. Note, that studies receiving a "NI" rating for this question did automatically receive an "unclear" rating for this domain (assuming no other issues).

4.5. Was selection of predictors using univariate analysis avoided (model development studies only)? Not applicable (signalling question ignored).

4.6 Were complexities in the data accounted for?

Given general lack of information about this in the studies included in the review, this area was not considered (signalling question ignored).

4.7 Were relevant model performance measures evaluated appropriately?

The PROBAST guidance instructs that reporting for both discrimination and calibration should be taken into account. Within this systematic review, we have focussed on the reporting of discrimination measures (c-statistic). In order to include the results from each validation in the meta-analysis, the c-statistic and its confidence intervals must be available. Where the confidence intervals are not directly reported they can be calculated if the number of events is reported. This signalling question was answered "N" if the c-statistic was reported but neither the confidence intervals nor the number of events was given. Validations assessed as "N" for this signally question automatically received a "high" RoB score for this domain.

- 4.8 Were model overfitting, underfitting and optimism accounted for (dev only)? Not applicable (signalling question ignored).
- 4.9 Do predictors and assigned weights in final model correspond to multivariate? Assumed to be true for all model validations included in this review (signalling question ignored).

Supplementary Table 1. Medline search strategy

	Search Line	Results
1.	exp Kidney Neoplasms/	72712
2.	exp Carcinoma, Renal Cell/ or renal cell carcinoma.mp.	42888
3.	((renal or kidney* or nephric) adj6 (cancer* or neoplas* or tumo?r* or carcinom*)).mp.	103746
4.	(((clear adj3 cell*) or papilla* or chromophob*) adj6 ((renal adj3 (carcinom* or cancer*)) or RCC)).mp.	9140
5.	1 or 2 or 3 or 4	106113
6.	incidence.sh. OR exp mortality/ OR follow-up studies.sh. OR prognos*.tw. OR predict*.tw. OR course*.tw.	3336655
7.	exp Neoplasm Recurrence, Local/ or recur*.mp.	693493
8.	remission.mp.	147393
9.	metastas*.mp.	439138
10.	exp Survival Rate/ or surviv*.mp. or exp Survival/ or exp Survival Analysis/	1414099
11.	exp Disease-Free Survival/	71330
12.	mortality.mp.	1098741
13.	exp Follow-Up Studies/ or follow-up.mp.	1276463
14.	(follow* adj3 up).mp.	1330627
15	6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14	5607745
16.	(Validat\$ OR Predict\$.ti. OR Rule\$) OR (Predict\$ AND (Outcome\$ OR Risk\$ OR Model\$)) OR ((History OR Variable\$ OR Criteria OR Scor\$ OR Characteristic\$ OR Finding\$ OR Factor\$) AND (Predict\$ OR Model\$ OR Decision\$ OR Identif\$ OR Prognos\$)) OR (Decision\$ AND (Model\$ OR Clinical\$ OR Logistic Models/)) OR (Prognostic AND (History OR Variable\$ OR Criteria OR Scor\$ OR Characteristic\$ OR Finding\$ OR Factor\$ OR Model\$)) OR stratification.mp. OR exp ROC Curve/ OR discrimin*.mp. OR c statistic.mp. OR Area under the curve.mp. OR AUC.mp. OR Calibration.mp. OR Indices.mp. OR Algorithm.mp. OR Multivariable.mp.	5110496
17.	ablat*.af. or exp Ablation Techniques/	182881
18.	excis*.af.	202771
19.	remov*.af.	630063
20.	surgery.af. or surgical*.af. or exp General Surgery/	3908953
21.	Pre?operative.af. or post?operative.af.	913965
22.	Nephrectomy.af.	47604
23.	17 or 18 or 19 or 20 or 21 or 22	4603014
24.	letter.pt.	1052638
25.	editorial.pt.	510362
26.	24 or 25	1562824
27.	5 and 15 and 16 and 23	8929
28.	27 not 26	8848
29.	limit 28 to yr="2000 -Current"	7709

Supplementary Table 2. Embase search strategy

	Search Line	Results
1.	((renal or kidney* or nephric) adj6 (cancer* or neoplas* or tumo?r* or carcinom*)).ti,ab.	91924
2.	(((clear adj3 cell*) or papilla* or chromophob*) adj6 ((renal adj3 (carcinom* or cancer*)) or RCC)).ti,ab.	13872
3.	renal cell carcinoma.ti,ab. or exp *kidney carcinoma/ or exp *renal cell carcinoma/ or exp *kidney tumor/	67335
4.	exp *kidney cancer/	46685
5.	1 or 2 or 3 or 4	100443
6.	exp *tumor recurrence/ or recur*.ti,ab.	707680
7.	remission.ti,ab.	156623
8.	metastas*.ti,ab.	424834
9.	exp *survival/ or exp *survival prediction/ or exp *survival analysis/ or exp *cancer specific survival/ or exp *survival rate/ or exp *overall survival/ or exp *post treatment survival/ or exp *disease free survival/ or exp *cancer survival/ or exp *recurrence free survival/ or exp *survival time/ or exp *local recurrence free survival/ or exp *metastasis free survival/ or exp *progression free survival/ or surviv*.ti,ab.	1405358
10.	exp *cancer mortality/ or exp *mortality risk/ or mortality.ti,ab. or exp *mortality/	951986
11.	follow-up.ti,ab. or exp *follow up/	1317440
12.	(follow* adj3 up).ti,ab.	1404039
13	6 or 7 or 8 or 9 or 10 or 11 or 12	3838949
14.	(Validat\$ OR Predict\$.ti. OR Rule\$) OR (Predict\$ AND (Outcome\$ OR Risk\$ OR Model\$)) OR ((History OR Variable\$ OR Criteria OR Scor\$ OR Characteristic\$ OR Finding\$ OR Factor\$) AND (Predict\$ OR Model\$ OR Decision\$ OR Identif\$ OR Prognos\$)) OR (Decision\$ AND (Model\$ OR Clinical\$ OR *Logistic Models/)) OR (Prognostic AND (History OR Variable\$ OR Criteria OR Scor\$ OR Characteristic\$ OR Finding\$ OR Factor\$ OR Model\$)) OR stratification.ti,ab. OR exp *ROC Curve/ OR discrimin*.ti,ab. OR c statistic.ti,ab. OR Area under the curve.ti,ab. OR AUC.ti,ab. OR Calibration.ti,ab. OR Indices.ti,ab. OR Algorithm.ti,ab. OR Multivariable.ti,ab.	6158460
15.	ablat*.af. or exp *radiofrequency ablation/ or exp *tumor ablation/	169184
16.	excis*.ti,ab. or exp *excision/ or exp *local excision/	179157
17.	remov*.af.	623812
18.	<pre>surgery.af. or surgical*.af. or exp *kidney surgery/ or *abdominal surgery/ or exp *elective surgery/ or exp *surgery/ or exp *cancer surgery/</pre>	4400256
19.	Pre?operative.af. or post?operative.af.	1014495
20.	nephrectomy.af. or exp *nephrectomy/ or exp *"patient history of nephrectomy"/	54967
21.	15 or 16 or 17 or 18 or 19 or 20	4984632
22.	letter.pt.	794696
23.	editorial.pt.	545429
24.	22 or 23	1340125
25.	5 and 13 and 14 and 21	11856
26.	25 not 24	11856
27.	limit 26 to yr="2000 -Current"	11461

Supplementary Table 3. Characteristics of included studies

Author year	Country	Recruitment period	Selection of cohort	N	Follow-up	Exclusions
An 2015	China	2003-2008	Single centre	191		Prior anti-cancer therapy, history of other malignant tumours, metastatic disease (N1 or M1).
Bai 2015	China	2005-2007	Single centre	271	Every 6 months for first 2 years and every 12 months thereafter.	Prior anti-cancer therapy, history of malignancy, >80% necrosis, mixed RCC histology.
Beisland 2015	Norway	1997-2013	Consecutive patients from single centre	383		Non-ccRCC, distant metastases before or at the time of surgery.
Bezan 2015*	Austria	2005-2013	Single centre	698	Clinical and laboratory examination every 3 months in the first 3 years, every 6 months in years 4 and 5, and every 12 months in years 6 and 9. Imaging included chest XR and abdominal US in patients at low risk for relapse (pT1 and G1-2) every 6 months. CT or MRI of the abdomen and chest was done every 6 months in the first 3 years in all other patients and every 12 months between years 4 and 5 postoperatively.	Non-ccRCC, metastatic disease, hereditary RCC, metachronous secondary RCC, competitive invasive cancer originating from other sites.
Brookman- Amissah 2009	Germany	1992-2006	Consecutive patients from single centre	771	and thorax every 6 months for first 2 years. Then physical	Metastatic disease, bilateral synchronous tumours, Von Hippel-Lindau syndrome, Ductus-Bellini carcinoma, death from surgical complications (within a month of surgery), follow-up of <1 year without event.
Brooks 2014	USA	TCGA: not specified; UNC cohort: 1992- 2010	Multicentre data from TCGA, single centre data from University of North Carolina	266	No details.	Non-ccRCC, metastasis.
Buti 2019	USA	2001-2015	SEER database	73217		Metastatic disease, death certificate only, autopsy cases, bilateral tumours, unknown tumour grade, lymph node status, T classification, age and follow-up data.
Capogrosso 2018	Italy	1995-2016	Single centre		12 months after surgery over the first year, then annually thereafter. Additional evaluations were performed if the patient's symptoms raised clinical suspicion of relapse.	No details.

				months):		
				669		
Capogrosso 2019	Italy	1987-2016	Single centre	730	Clinical evaluation and chest-abdomen CT scans performed at 3– 6 months and at 12 months after surgery over the first year, and annually thereafter. Additional imaging were performed if the patient's symptoms raised clinical suspicion of relapse.	No details.
Chang 2015*	China	2003-2004	Consecutive patients from single centre	194	Physical examination, laboratory studies, chest imaging and abdominal US or CT scans semi-annually for the first 2 years and annually thereafter.	Mixed types of primary RCC, N1 or M1 disease, prior history of other malignancies, death within the first month after surgery from surgical complications.
Chang 2016*	China	2008-2009	Consecutive patients from single centre	430	Physical examination, laboratory studies, chest XR, and abdominal US or CT every 6 months for the first 2 years and annually thereafter.	Non-ccRCC confirmed histopathologically, metastatic disease at diagnosis, history of previous anti-cancer therapies and other malignancies, bilateral renal cancer, perioperative mortality, preoperative routine blood parameters unavailable.
Chen 2017	China	2012-2013	Single centre	176	For locally advanced ccRCC patients, every 6 months for the first 3 years and annually thereafter. For localized ccRCC patients, imaging was performed twice in the first year and annually thereafter.	Anti-tumour therapy, other concurrent tumours, other acute or chronic concurrent non-cancer diseases (including liver disease, inflammation, and infection), concurrent distant metastasis, lost to follow-up.
	ltaly, France and Austria	1984-2002	Institutional databases	2404 (815 for RFS)	In accordance with the protocols of the centres. Information on follow-up was updated in each centre by direct phone call and, alternatively, by contacting general practitioners or relatives.	Distant metastases, lymph node metastases, pT4 tumours, benign lesions, bilateral disease and Bellini ducts carcinoma, death after surgical complications, death within 1 month, missing data.
	Italy, France and Austria	1984-2002	Institutional databases	2471	In accordance with the protocols of the centres. Information on follow-up was updated in each centre by direct phone call and, alternatively, by contacting general practitioners or relatives.	Distant metastases, lymph node metastases, benign lesions, bilateral disease and Bellini ducts carcinoma, death after surgical complications or within 1 month, missing data.
Ficarra 2008	Italy	1986-2000	Single centre	351	Abdominal imaging twice yearly with alternating US and CT, and chest XR annually for the first 5 years. Abdominal imaging and chest XR annually thereafter.	Non-ccRCC.
Fu 2014*	China	2001 and 2003-2004	Single centre	259	No details.	No FFPE tumour sample, non-ccRCC, missing follow-up information, death within 1 month of surgery, sections that easily fell off during standard ISH procedure, N1 or M1 status.
Fu 2015	China	2001-2004	Single centre	180		Deficient follow-up, unreached clinical records, poor tumour sample preservation for TMA, unqualified HE section, suspicious death (died within 1 months after surgery), extensive necrosis (> 50% or with massive haemorrhage), inadequate control staining or ambiguous marker staining, previously treated with cytokine.
Fu 2015	China	2003-2004	Consecutive patients from single centre	188	Physical examination, laboratory studies, chest imaging, and abdominal US or CT scan every 6 months for the first 2 years and annually for 5 years.	Non-ccRCC, incomplete follow-up data, bilateral disease, familial RCC, preoperative neoadjuvant and/or

						postoperative adjuvant therapy, death within 1 month after surgery.
Haddad 2017	USA	1997-2010	Single centre		Physical examination, serum chemistry, liver function tests, chest radiography and abdominal US or CT every 3 months for the first year and semi-annually thereafter.	Non-ccRCC, metastasis, incomplete immunostaining.
Han 2003	Netherland s and US	NN: 1990- 2001; MDA: 1987-2000; UCLA: 1989- 2001	Three centres	NN: 177; MDA: 399 ; UCLA: 484	No details.	Metastatic disease.
Hupertan 2006	France	1985-2000	Single centre	565	Annual abdominal US and CT abdomen.	Performance status >3 and/or metastatic disease at diagnosis, pT4, bilateral synchronous disease, preoperative lymph node invasion, benign disease, collecting duct carcinoma, tumour with unclassified histology, chronic renal insufficiency, solitary kidney, lost to follow-up.
Hutterer 2014	Austria	2000-2010	Single centre	678	Clinical and laboratory examination with chest XR and abdominal US predominantly and CT or MRI in higher risk patients every 6 months for the first 5 years and annually thereafter.	Non-ccRCC.
Jensen 2009	Denmark	1992-2001	Consecutive patients from single centre	121	No details.	Non-ccRCC, metastatic disease, recurrence of previous RCC, previous IL-2 treatment, synchronic cancers, perioperative mortality, renal transplantation, lack of tumour tissue.
Jeong 2017	South Korea	2005-2011	Consecutive patients from one centre and randomly selected patients from second centre	399	No details.	Non-ccRCC, no gross photographs available, metastatic ccRCC, multiple or bilateral masses, received preoperative chemoembolisation or targeted therapy.
Klatte 2009	USA	1989-2000	Randomly selected patients from single centre	170	No details.	Not N0M0, non-ccRCC.
Lamb 2012	UK	1997-2007	Single centre	169	Prospectively followed up according to Leibovich risk stratification protocol; low risk patients underwent annual US and chest XR, intermediate risk underwent 6 monthly CT scan for 2 years then annually until 5 years, and high risk underwent 6 monthly CT scan for 3 years and then annually until 5 years. Thereafter, annual US and chest XR.	Nodal or distant disease on preoperative CT scanning, non-ccRCC.
Lee 2018	USA	1990-2009	Single centre	1642	Chest radiograph and renal/retroperitoneal US or cross-sectional imaging every 3–6 months, depending on pathologic stage and grade. Pathologic T2 or Fuhrman grade 3–4 had more intense follow-up. For patients who chose not to obtain follow-up studies	Bilateral renal masses, familial RCC syndromes, T3c or T4 tumours, sarcomatoid elements.

					at the study centre, outside imaging was reviewed when	
					available.	
Liu 2009	China	1993-2004	Single centre	653	Annual abdominal US and CT.	Distant metastases, lymph node invasion, pT4, bilateral disease, unclassified histology or Fuhrman grade, chronic renal insufficiency, lost to follow up.
Liu 2014	China	2004	Single centre	104	No details.	Samples were necrotic and haemorrhagic in large areas, missing follow-up data, neoadjuvant or adjuvant therapy.
Liu 2014*	China	2004	Single centre	104	No details.	Metastatic disease, incomplete data, severe medical problems, adjuvant anticancer therapy.
Liu 2015*	China	Training cohort: 2003- 2004; Validation cohort: 2001	Single centre	Training cohort: 189; Validation cohort: 63		Missing follow-up data, coexisting severe medical problems and familial RCC, neoadjuvant or adjuvant therapy, death within 1 month after surgery, tumour metastasis (N1 or M1).
Liu 2015*	China	Group A: 2003- 2004; Group B: 2001	-	-	No details.	Missing follow-up data, large area of necrotic and haemorrhagic tissue in samples, neoadjuvant or adjuvant therapy.
Liu 2016	China	2001-2004	Single centre	263	No details.	Larger necrotic and haemorrhagic area hampering the obtaining of representative area in sample, preoperative neoadjuvant therapy.
Lucca 2015	Austria	2002-2014	Single centre database	430	According to guidelines.	Non-ccRCC, co-morbidities affecting systematic inflammatory response markers, missing data, bilateral disease, metastatic disease.
May 2009	Germany	1992-2006	Single centre	771	Physical examination and US every 3 months and CT abdomen and thorax every 6 months in the first 2 years. Then physical and US examination every 6 months, and CT abdomen and thorax annually. Further investigation (i.e. MRI, cranial CT, radioisotope bone scan) was carried out individually in response to existing symptoms of the patient or tumour progress.	Advanced disease, bilateral synchronous tumours, Von Hippel-Lindau syndrome, Bellini duct carcinoma, death within 1 month of surgery from surgical complications, follow-up <12 months without any defined event.
Morgan 2018	USA	2000-2009	Two centres	565	No details.	Neoadjuvant therapy, bilateral, sarcomatoid, collecting duct, node-positive tumours, any clinical evidence of metastatic disease, <37 days follow-up, insufficient tumour content or extracted RNA.
Morshaeuser 2018	Germany	1999-2004	Consecutive patients from single centre	343	No details.	Metastatic or lymph node positive disease, failed immunochemical staining.
	China	2003-2004	Two centres	162	No details.	Preoperative radiotherapy or chemotherapy, metastatic disease, died of postoperative complications.
Niu 2016*	China	2008-2009	Single centre	384	Physical examination, laboratory tests, MRI and CT scans semi- annually for the first 2 years and annually thereafter.	Non-ccRCC , T4, N1 or M1 disease, history of other malignancies, neoadjuvant therapy, perioperative mortality, bilateral disease, familial RCC.

D 2015*	Ch in a	2002 2004	Circle control	104	Even 2. A month of anth of instruction of a set the formation 2.	
Pan 2015*	China	2003-2004	Single centre	184	Every 3–4 months for the first year, every 6 months from year 2– 5, and annually thereafter. Abdominal and chest CT were alternated with abdominal US and chest radiographs. Bone and brain scans were requested only in the case of overt symptoms.	Preoperative neoadjuvant therapy, metastasis (N1 or M1 tumours) at the time of surgery.
Pichler 2011	Austria	1984-2006	Consecutive patients from single centre	1,754	Evaluation was done every 6 months for 5 years and annually thereafter for locally advanced tumour stages.	Non-ccRCC , metastatic disease at diagnosis, synchronous bilateral tumours, younger than 18 years at diagnosis.
Pichler 2012	Austria	1984-2006	Consecutive patients from single centre	1,754	Evaluation was done every 6 months for 5 years and annually thereafter for locally advanced tumour stages.	Non-ccRCC, metastatic disease at diagnosis, synchronous bilateral tumours, younger than 18 years at diagnosis.
Pichler 2013	Austria	1984-2010	Consecutive patients from single centre	2127	Routine clinical, laboratory examinations and radiological examinations.	Synchronous bilateral tumours, von Hippel-Lindau disease, lacking follow-up data. Only the first tumour was chosen for analysis in bilateral metachronous RCCs for whole cohort calculations.
Qu 2016*	China	2005-2007	Single centre	258	Physical examination, laboratory studies, chest imaging and abdominal US or CT scan every 3 months for the first 5 years and annually thereafter.	Neoadjuvant or adjuvant therapy, perioperative mortalities, mixed RCC.
Rini 2015	France	1995-2007	Two centres	626	No details.	Neoadjuvant or adjuvant therapy, synchronous or metachronous bilateral RCC, Von Hippel-Lindau disease very little tumour (<5% of the area occupied by invasive cancer cells), insufficient RNA (<167 ng for the validation study) for RT-PCR analysis, inadequate RNA quality measured by standard methods, recurrence within 6 months of surgery in the absence of adequate imaging at the time of surgery or during the 6 months following surgery.
Sekar 2017	USA	2007-2014	Single centre	314	Physical examination, laboratory studies, and imaging.	Benign tumours or mucinous tubular and spindle cell carcinoma, unavailable preoperative laboratory results, age <18 years.
Seles 2017	Austria	2005-2013	Single centre	652	No details.	No details.
Sim 2012	UK	1999-2006	Single centre	164	No details.	Non-ccRCC, Von Hippel-Lindau disease, polycystic kidney disease, T4 disease
Song 2019	China	2010-2012	Single centre	325	Routine blood tests and imaging, examination every 3 months within the first 3 years, every 6 months for the next 2 years and then annually until death.	Distant metastasis at surgery, other tumours, immune system disease, insufficient data from medical record, missing follow-up.
Sorbellini 2005	USA	Not explicit for validation cohort (recruitment period for development cohort 1989- 2002)	Single centre	200	No details.	Von Hippel-Lindau disease, hereditary papillary RCC, bilateral renal masses, distant metastases or metastatic regional lymph nodes before or at the time of operation, stage pT4 and pT3c, data lost in audit.

Suzuki 2011	Japan	1991-2004	Single centre		Clinical examination, laboratory tests, chest–abdominal CT every 6 months during the first 5 years, and yearly thereafter.	Non-ccRCC.
Tan 2010	Singapore	1990-2006	Single centre	355	No details.	Regional or nonregional lymph nodes, distant metastases.
				Kattan and Karovicz: 390; Sorbellini: 322; Liebovich: 322		Non-ccRCC, pT4, ECOG performance status >1.
Tsujino 2017	Japan	2002-2015	Single centre		Followed NCCN Clinical Practice Guidelines. CT and chest XR to detect disease progression every 3 months in the first year and every 6 months thereafter.	Metastatic disease at the time of nephrectomy, missing clinicopathological information.
Tsujino 2018	Japan	2005-2015	Single centre		CT and chest XR to detect disease progression every 3 months in the first year and every 6 months thereafter.	Did not undergo nephrectomy or had missing clinicopathological information.
Tsujino 2019	Japan	1990-2015	RCC databases from two centres		CT and chest XR to detect disease progression every 3 months in the first 2 years and every 6 months thereafter.	Did not undergo nephrectomy or had missing clinicopathological information.
Utsumi 2011	Japan	1990-2005	ссс	152; CCC:	 Clinical and laboratory examinations every 3 months. Radiological tests were carried out in accordance with the protocols of each institution. 	l Large tumour (T4), bilateral disease, tumour with unclassified histology, chronic renal insufficiency or lost to follow up.
Vasudev 2019		cohort: 2011- 2014;	multicentre (11 UK centres); Historic: single centre	Contemp orary cohort: 384; Historical cohort: 191	No details.	Known familial RCC (e.g., Von Hippel-Lindau syndrome), renal cancer acquired following and/or during renal replacement therapy, high risk or with known HIV, Hepatitis B/C or other blood-borne infectious disease, not localised ccRCC.
Verine 2018	France	1998-2014	Consecutive patients from two centres	448	No details.	<18 month follow-up without an early metastatic evolution (< 12 month), non-ccRCC.
Viers 2014	USA	1995-2008	Single centre		Quarterly for the first 2 years, semi-annually for the next 2 years, and annually thereafter for patients without evidence of recurrent disease.	Non-ccRCC, metastatic disease, no pre-treatment NLR collected within 90 days before radical nephrectomy.
Wang 2016	China	2001-2004	Single centre		Physical examination, laboratory diagnosis, chest imaging, abdominal CT scans or US twice a year for the first 2 years and annually thereafter.	Non-ccRCC, history of previous anti-cancer therapy.
Wang 2016*	China	2008-2009	Consecutive patients from single centre	416	No details.	Non ccRCC, radiotherapy/chemotherapy prior to surgery, nodal, metastatic or T4 disease.
	USA	China: 2004- 2012; USA: 1998-2010	TCGA set: 13 medical centres in the USA	China set: 410; USA/TCG A set: 441		Synchronous or metachronous bilateral RCC, inherited Von Hippel-Lindau disease, neoadjuvant therapy or adjuvant therapy

Wu 2015*	China	2001 and 2003-2004	Consecutive patients from single centre	255		Non-cRCC, tumours with necrosis >80 %, death within 1 month after surgery due to surgical complications.
Xia 2016	China	2005-2007	-	265	Every 3 months during the first 5 years and annually thereafter.	Other former malignant tumour, perioperative mortalities, adjuvant or neoadjuvant therapy, mixed RCC, bilateral renal cancer, FFPE samples necrosis area >80%.
Xia 2017*	China	2005-2007	Single centre	268		Other malignant tumours, targeted therapy prior to or following surgery, mixed RCC, bilateral renal cancer, tumour necrosis area >80%, perioperative morbidity.
Xiong 2016	China	2005-2007	Consecutive patients from single centre	254		Other malignant tumour before, adjuvant or neo-adjuvant therapies including targeted therapies, samples with over 80% necrotic or haemorrhagic area, bilateral tumours
Xu 2015*	China	2001-2004	Consecutive patients from single centre		Physical examination, laboratory studies, chest imaging, and abdominal US or CT scans every 6 months for the first 2 years and annually thereafter.	N1- or M1-stage tumours.
Xu 2017*	China	2008-2009	Single centre	410		Incomplete follow-up data, bilateral disease and familial RCC, neoadjuvant or adjuvant therapy, death within 1 month after surgery.
Yang 2015*	China	Validation cohort: 2001; Training cohort: 2003- 2004		cohort:	abdominal US or CT scans every six months for the first 2 years and annually thereafter.	Neoadjuvant treatment, death within 30 days of surgery or before discharge.
Yang 2016*	China	2001-2004	Consecutive patients from single centre		Physical examination, laboratory studies, chest imaging, and abdominal US or CT scans every 6 months for the first 2 years and annually thereafter.	Non-ccRCC, neoadjuvant or adjuvant treatments.
Zhang 2017	China	2008-2009	Single centre	585		Mixed RCC, tumours with necrosis >80%, death within 1 month after surgery due to surgical complications, N1 or M1 tumours.
Zhu 2015*	China	No details	Single centre	67	No details.	Pre-op neoadjuvant and/or post-op adjuvant therapy
Zhu 2017	China	2003-2008	-	446	No details.	N1/M1 disease, history of anticancer therapy, history of other malignant tumours, non-ccRCC.
Zhu 2019	China	2006-2013	Consecutive patients from single centre		years post-surgery, then every 6 months until 4 years, then every	Non-ccRCC, distant metastases, bilateral renal masses before or at the time of surgery, hereditary RCC or Von Hippel–Lindau disease, lost to follow up.

*studies included only for assessment of improvement in performance of previously published risk models with the addition of one or more additional prognostic markers CCC: Chiba Cancer Center; ccRCC: clear cell renal cell carcinoma; CT: computerised tomography; CUH: Chiba University Hospital; ECOG: Eastern Cooperative Oncology Group; FFPE: formalinfixed paraffin-embedded; HE: haematoxylin and eosin; ISH: in situ hybridisation; MDA: MD Anderson; MRI: magnetic resonance imaging; NCCN: National Comprehensive Cancer Network; NN: University Medical Center Nijmegen, Netherlands; RCC: renal cell carcinoma; NLR: neutrophil-lymphocyte ratio; RFS: recurrence free survival; RT-PCR: reverse transcription polymerase chain reaction; SEER: Surveillance, Epidemiology, and End Results; TCGA: The Cancer Genome Atlas; TMA: tissue microarray; UNC: University of North Carolina; UCLA: University of California, Los Angeles; US: ultrasound; XR: x-ray

Risk model	Author, year	Country	Recruitment	Median	Time	N	Event	ccRCC	Risk of bias assessment					
			period	follow-up (months)	period (years)		rate (%)	(%)	Domain 1	Domain 2	Domain 3	Domain 4	Overall	
Cindolo	Brookman-Am 09	Germany	1992-2006	67	7	771	22.4	100	High	Low	Low	Unclear	High	
	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	815	18.7	86.9	Low	Low	High	High	High	
	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High	
	Utsumi 2011	Japan (CUH)	1990-2005		5	152	25	94.1	Low	Low	Unclear	High	High	
	Utsumi 2011	Japan (CCC)	1990-2005		5	65	20	89.2	Low	Low	Unclear	High	High	
GPS	Tsujino 2019*	Japan	1990-2015	73	5	627		89.6	Low	Low	Low	High	High	
Jeong 2017	Jeong 2017	South Korea	2005-2011		5	399	23.3	100	Low	Low	Unclear	Unclear	Unclear	
Karakiewicz	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High	
	Tan 2011*	Singapore	1990 - 2006	65	5	390	25.1	86	Low	Low	Unclear	Unclear	Unclear	
Kattan	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	815	18.7	86.9	Low	Low	High	High	High	
	Hupertan 2006	France	1985-2000	60	5	565	17.9	83.2	Low	Low	Low	High	High	
	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High	
	Suzuki 2011	Japan	1991-2004	81	5	211	27.0	100	Low	Low	Low	High	High	
	Tan 2011*	Singapore	1990 - 2006	65	5	390	25.1	86	Low	Low	Unclear	Unclear	Unclear	
	Utsumi 2011	Japan (CUH)	1990-2005		5	152	25	94.1	Low	Low	Unclear	High	High	
	Utsumi 2011	Japan (CCC)	1990-2005		5	65	20	89.2	Low	Low	Unclear	High	High	
Klatte 2009	Morshaeuser 18	Germany	1999-2004	100	10	343		72.3	Low	Low	Unclear	High	High	
Leibovich	An 2015	China	2003-2008	67	5	191	19.9	100	Low	Low	Low	High	High	
	Beisland 2015	Norway	1997-2013	38.3	10	383	17.0	100	Low	Low	High	Unclear	High	
	Jensen 2009	Denmark	1992-2001	124	16	121	50.4	100	Low	Low	Unclear	Unclear	Unclear	
	Pichler 2011	Austria	1984-2006	82	10	1754	21.4	100	Low	Low	Unclear	Unclear	Unclear	
	Rini 2015	France	1995-2007	66	5	626	16	100	Low	Low	Unclear	Unclear	Unclear	
	Seles 2017	Austria	2005-2013	73	10	652	10.3	81.4	Unclear	Low	Unclear	High	High	
	Tan 2010	Singapore	1990-2006	56	5	355	22	100	Low	Low	Unclear	Unclear	Unclear	
	Tan 2011*	Singapore	1990 - 2006	65	5	322	25.2	86	Low	Low	Unclear	Unclear	Unclear	
	Vasudev 2019	UK	2011-2014	52.8	5	384		100	Low	Low	Unclear	High	High	
	Vasudev 2019	UK	1998-2006	128.4	5	191		100	Low	Low	Unclear	High	High	
	Verine 2018*	France	1998-2014	50	5	448	16.5	100	High	Low	Unclear	Low	High	
	Wang 2016	China	2001-2004	89	10	268	23.5	100	Low	Low	Low	Unclear	Unclear	
	Wei 2019	China	2004-2012	76	5	410	23.9	100	Low	Low	Unclear	Unclear	Unclear	
	Xia 2016	China	2005-2007	99	8	265	27.2	100	Low	Low	Low	Low	Low	
	Zhang 2017	China	2008-2009	67	6	585	19.32	100	Low	Low	Unclear	Unclear	Unclear	
	Zhu 2019	China	2006-2013	72	10	942	20.7	100	Low	Low	Low	High	High	
mGPS	Tsujino 2019*	Japan	1990-2015	73	5	627		89.6	Low	Low	Low	High	High	
Recurrence	Rini 2015	France	1995-2007	66	5	626	16	100	Low	Low	Unclear	Unclear	Unclear	
Sao Paulo	May-09	Germany	1992-2006	67	5	771	22.4	78.5	High	Low	Low	Unclear	High	
Sorbellini	Lee 2018	USA	1990-2009	39	5	1642	3.0	100	Low	Low	High	Unclear	High	

Supplementary Table 4. Key study characteristics and risk of bias assessment for external validations of models predicting recurrence free survival

	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High
	Sorbellini 2005	USA	No details	33	5	200	13	100	High	Low	Unclear	High	High
	Tan 2011*	Singapore	1990 - 2006	65	5	322	24.8	86	Low	Low	Unclear	Unclear	Unclear
SSIGN	Haddad 2017 (t)	USA	1997 - 2010	63.5	15	183	13.4	100	Low	Low	Low	High	High
	Haddad 2017 (v)	USA	1997 - 2010	63.5	15	184	13.4	100	Low	Low	Low	High	High
	Liu 2016	China	2001-2004	98	10	263	23.2	100	Low	Low	Unclear	Unclear	Unclear
	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High
	Lucca 2015	Austria	2002-2014	40	4	430	10.7	100	Low	Low	Unclear	High	High
	Zhang 2017	China	2008-2009	67	6	585	19.32	100	Low	Low	Unclear	Unclear	Unclear
	Zhu 2017	China	2003-2008		10	446		100	Low	Low	Unclear	Unclear	Unclear
	Xiong 2016	China	2005-2007	99	8	254	26.8	100	Low	Low	Low	Low	Low
S-TRAC trial	Capogrosso 2019	Italy	1987-2016	49	1	730		100	Unclear	Low	Low	High	High
TNM 2002	Pichler 2013	Austria	1984-2010	75	25	2127	20.8	100	Low	Low	Low	High	High
TNM 2010	Fu 2015	China	2003-2004	106	10	188	32.4	100	Low	Low	Low	Unclear	Unclear
	Pichler 2013	Austria	1984-2010	75	25	2127	20.8	100	Low	Low	Low	High	High
	Xia 2016	China	2005-2007	99	8	265	27.2	100	Low	Low	Low	Low	Low
TNM 2016	Wei 2019	China	2004-2012	76	5	410	23.9	100	Low	Low	Unclear	Unclear	Unclear
UISS	Capogrosso 2018	Italy	1995-2016		15	1429		78*	Unclear	Low	Unclear	High	High
	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	815	18.7	86.9	Low	Low	High	High	High
	Klatte 2009	USA	1989-2000	85	5	170	19.4	100	Low	Low	Unclear	High	High
	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High
	Tan 2010	Singapore	1990-2006	56	5	355	22	100	Low	Low	Unclear	Unclear	Unclear
	Tsujino 2019*	Japan	1990-2015	73	5	627		89.6	Low	Low	Low	High	High
	Wang 2016	China	2001-2004	89	10	268	23.5	100	Low	Low	Low	Unclear	Unclear
	Xia 2016	China	2005-2007	99	8	265	27.2	100	Low	Low	Low	Low	Low
	Zhang 2017	China	2008-2009	67	6	585	19.32	100	Low	Low	Unclear	Unclear	Unclear
	Zhu 2017	China	2003-2008		10	446		100	Low	Low	Unclear	Unclear	Unclear
Wei 2009	Wei 2019	China	2004-2012	76	5	410	23.9	100	Low	Low	Unclear	Unclear	Unclear
Yaycioglu	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	815	18.7	86.9	Low	Low	High	High	High
	Liu 2009	China	1993-2004	65	16	653	23.9	81	Low	Low	Low	High	High
	Utsumi 2011	Japan (CUH)	1990-2005		5	152	25	94.1	Low	Low	Unclear	High	High
	Utsumi 2011	Japan (CCC)	1990-2005		5	65	20	89.2	Low	Low	Unclear	High	High

*Details for number of participants, event rate and percentage with clear cell renal cell carcinoma (ccRCC) include participants with metastases. t – test cohort; v – validation cohort

		Univariable			Multivariab	le	
	Number of studies	Coefficient*	p value	Number of studies	Coefficient*	Unadjusted p value	Adjusted p value**
Leibovich							
Baseline year of recruitment	15	0.000040 (-0.018-0.018)	0.996	13	-0.0042 (-0.028-0.019)	0.692	0.987
Duration of prediction	16	0.010 (-0.034-0.055)	0.627		0.023 (-0.049-0.095)	0.476	0.889
Event rate	14	-0.010 (-0.029-0.0082)	0.249		-0.012 (-0.041-0.016)	0.341	0.736
Proportion of ccRCC	16	-0.016 (-0.035-0.0039)	0.107		-0.010 (-0.041-0.020)	0.454	0.861
UISS							
Baseline year of recruitment	10	-0.0064 (-0.040-0.030)	0.669	7	0.0045 (-0.089-0.099)	0.856	0.996
Duration of prediction	10	-0.039 (-0.091-0.013)	0.124		-0.046 (-0.53-0.44)	0.722	0.948
Event rate	7	-0.061 (-0.13-0.0085)	0.074		-0.042 (-0.31-0.23)	0.571	0.800
Proportion of ccRCC	10	-0.012 (-0.041-0.017)	0.367		-0.019 (-0.26-0.22)	0.765	0.971
SSIGN							
Baseline year of recruitment	8	0.0018 (-0.066-0.069)	0.951	7	0.047 (-0.23-0.32)	0.534	0.826
Duration of prediction	8	-0.014 (-0.09-0.059)	0.664		-0.016 (-0.25-0.22)	0.801	0.984
Event rate	7	0.010 (-0.049-0.069)	0.684		-0.021 (-0.14-0.094)	0.509	0.796
Proportion of ccRCC	8	-0.024 (-0.062-0.015)	0.181		-0.058 (-0.18-0.059)	0.168	0.309

*Coefficients are on the logit scale **Adjusted for multiple testing (5000 permutations)

ccRCC – clear cell renal cell carcinoma

Risk model	Author, year	Country	Recruitment	Median	Time	N	Event	ccRCC		Risk o	of bias asses	Domain 4 High High High Unclear High High Unclear High High Unclear High Unclear High	
			period	follow-up (months)	period (years)		rate (%)	(%)	Domain 1	Domain 2	Domain 3	Domain	Overall
Cindolo	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	15	86.9	Low	Low	High	High	High
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	-	High
Karakiewicz	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	-	High
	Morgan 2018	USA	2000-2009	90.8	5	565	5.7	81	Low	Low	Unclear	-	High
	Tan 2011*	Singapore	1990 - 2006	65	5	390	16.2	86	Low	Low	Unclear	-	Unclear
Kattan	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	15	86.9	Low	Low	High	High	High
	Lamb 2012	UK	1997-2007	98	4	169	20.7	100	Low	Low	High	-	High
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	-	High
	Tan 2011*	Singapore	1990 - 2006	65	5	390	16.2	86	Low	Low	Unclear		Unclear
Klatte	Morshaeuser 2018	Germany	1999-2004	100	10	343		72.3	Low	Low	Unclear	High	High
Leibovich	Hutterer 2014	Austria	2000-2010		10	678	7.2	100	Low	Low	High	-	High
	Lamb 2012	UK	1997-2007	98	4	169	20.7	100	Low	Low	High	-	High
	Tan 2010	Singapore	1990-2006	56	5	355	13	100	Low	Low	Unclear	-	High
	Tan 2011*	Singapore	1990 - 2006	65	5	322	15.8	86	Low	Low	Unclear		Unclear
mGPS	Lamb 2012	UK	1997-2007	98	4	169	20.7	100	Low	Low	High	High	High
Sao Paulo	May 2009	Germany	1992-2006	67	5	771	15.8	78.5	High	Low	Low	-	High
Sorbellini	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low		High
	Tan 2011*	Singapore	1990 - 2006	65	5	322	15	86	Low	Low	Unclear	Unclear	Unclear
SSIGN	Brooks 2014	USA	1992-2010**		16	266		100	Low	Unclear	Unclear	High	High
	Ficarra 2008	Italy	1986-2000	56	10	351	22.2	100	Low	Low	Low	Unclear	Unclear
	Fu 2015*	China	2001-2004	111	5	180	20.3	100	Low	Low	Low	Low	Low
	Lamb 2012	UK	1997-2007		4	169	20.7	100	Low	Low	High	High	High
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High
	Sim 2012	USA	1999 - 2006	85	10	164		100	Low	Unclear	Unclear	High	High
	Verine 2018*	France	1998-2014	50	5	448	11.5	100	High	Low	Unclear	Low	High
	Viers 2014	USA	1995-2008	111.6	10	827	28.2	100	Low	Low	Low	Unclear	Unclear
UISS	Brooks 2014	USA	1992-2010**		16	266		100	Low	Unclear	Unclear	High	High
	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	15	86.9	Low	Low	High	High	High
	Fu 2015*	China	2001-2004	111	5	180	20.3	100	Low	Low	Low	Low	Low
	Lamb 2012	UK	1997-2007	98	4	169	20.7	100	Low	Low	High	High	High
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High
	Tan 2010	Singapore	1990-2006	56	5	355	13	100	Low	Low	Unclear	High	High
	Verine 2018*	France	1998-2014	50	5	448	11.5	100	High	Low	Unclear	Low	High
Yaycioglu	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	15	86.9	Low	Low	High	High	High
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High
Zisman	Han 2003 (MDA)	USA	1987-2000	32	5	399	27	1.	Low	Low	Unclear	Unclear	Unclear
	Han 2003 (NN)	Netherlands	1990-2001	63	5	177	35		Low	Low	Unclear	Unclear	Unclear

Supplementary Table 6. Key study characteristics and risk of bias assessment for external validations of models predicting cancer specific survival

	Han 2003 (UCLA)	USA	1989-2001	33	5	484	22		Low	Low	Unclear	Unclear	Unclear
--	-----------------	-----	-----------	----	---	-----	----	--	-----	-----	---------	---------	---------

*Details for number of participants, event rate and percentage with clear cell renal cell carcinoma (ccRCC) include participants with metastases. **Also includes data from The Cancer Genoma Atlas (TCGA) with no date of recruitment specified.

Risk model	Author, year	Country	Recruitment	Median	Time	Ν	Event	ccRCC	Risk of bias assessment					
			period	follow-up (months)	period (years)		rate (%)	(%)	Domain 1	Domain 2	Domain 3	Domain 4	Overall	
Chen 2017	Chen 2017	China	2012-2013	42.3	12	176	13.1	100	Low	Low	High	High	High	
Cindolo	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	22.5	86.9	Low	Low	High	High	High	
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High	
CONUT	Song 2019	China	2010-2012	64	5	325	12	89.8	Low	Low	Low	High	High	
GRANT	Buti 2019	USA	2001-2015		5	73217	13.74	83.2	Low	Low	Unclear	High	High	
Karakiewicz	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High	
	Tan 2011*	Singapore	1990 - 2006	65	5	390	22	86	Low	Low	Unclear	Unclear	Unclear	
Kattan	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	22.5	86.9	Low	Low	High	High	High	
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High	
	Tan 2011*	Singapore	1990 - 2006	65	5	390	22	86	Low	Low	Unclear	Unclear	Unclear	
Leibovich	An 2015	China	2003-2008	67	5	191	15.2	100	Low	Low	Low	High	High	
	Chen 2017	China	2012-2013	42.3	12	176	13.1	100	Low	Low	High	High	High	
	Sekar 2017	USA	2007-2014		5	216		100	Low	Low	Unclear	High	High	
	Tan 2010	Singapore	1990-2006	56	5	355	20.3	100	Low	Low	Unclear	Unclear	Unclear	
	Tan 2011*	Singapore	1990 - 2006	65	5	322	21.9	86	Low	Low	Unclear	Unclear	Unclear	
	Wang 2016	China	2001-2004	89	10	268	35.82	100	Low	Low	Low	Unclear	Unclear	
	Zhang 2017	China	2008-2009	67	6	585	17.44	100	Low	Low	Unclear	Unclear	Unclear	
mGPS	Tsujino 2017	Japan	2002-2015	60	5	268	18.6	89.9	Low	Low	Low	High	High	
PNI	Song 2019	China	2010-2012	64	5	325	12	89.8	Low	Low	Low	High	High	
Sorbellini	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High	
	Tan 2011*	Singapore	1990 - 2006	65	5	322	21.7	86	Low	Low	Unclear	Unclear	Unclear	
SSIGN	Chen 2017	China	2012-2013	42.3	12	176	13.1	100	Low	Low	High	High	High	
	Liu 2016	China	2001-2004	98	10	263	35.36	100	Low	Low	Unclear	High	High	
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High	
	Na 2016	China	2003-2004		10	162	37.65	100	Low	Low	Unclear	Unclear	Unclear	
	Sim 2012	UK	1999 - 2006	85	10	164		100	Low	Unclear	Unclear	High	High	
	Tsujino 2018*	Japan	2005-2015	57	3	195	14.1	91.8	Low	Low	Low	High	High	
	Zhang 2017	China	2008-2009	67	6	585	17.44	100	Low	Low	Unclear	Unclear	Unclear	
	Zhu 2017	China	2003-2008		10	446		100	Low	Low	Unclear	Unclear	Unclear	
TNM 2010	Chen 2017	China	2012-2013	42.3	12	176	13.1	100	Low	Low	High	High	High	
	Liu 2014	China	2004		10	104	32.69	100	Low	Low	Unclear	High	High	
	Na 2016	China	2003-2004		10	162	37.65	100	Low	Low	Unclear	Unclear	Unclear	
UISS	Bai 2015	China	2005-2007	99	8	271	1.	100	Low	Low	Low	Unclear	Unclear	
	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	22.5	86.9	Low	Low	High	High	High	
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High	
	Na 2016	China	2003-2004		10	162	37.65	100	Low	Low	Unclear	Unclear	Unclear	
	Tan 2010	Singapore	1990-2006	56	5	355	20.3	100	Low	Low	Unclear	Unclear	Unclear	

Supplementary Table 7. Key study characteristics and risk of bias assessment for external validations of models predicting overall survival

	Tsujino 2018*	Japan	2005-2015	57	3	195	14.1	91.8	Low	Low	Low	High	High
	Wang 2016	China	2001-2004	89	10	268	35.82	100	Low	Low	Low	Unclear	Unclear
	Zhang 2017	China	2008-2009	67	6	585	17.44	100	Low	Low	Unclear	Unclear	Unclear
	Zhu 2017	China	2003-2008		10	446		100	Low	Low	Unclear	Unclear	Unclear
Yaycioglu	Cindolo 2005	Italy, France & Austria	1984-2002	60	10	2404	22.5	86.9	Low	Low	High	High	High
	Liu 2009	China	1993-2004	65	16	653	18.8	81	Low	Low	Low	High	High

*Details for number of participants, event rate and percentage with clear cell renal cell carcinoma (ccRCC) include participants with metastases.

Risk model	Number of external validations	Summary risk of bias	Number of patients	Events	Borrowing of strength	Mean rank	SUCRA
Recurrence free survival							
Recurrence score	1	1U	626	99	21.3	3.4	0.8
Sorbellini	2	2H	1842	76	0	3.1	0.8
Klatte 2009	1	1H	343		0	5.1	0.7
Leibovich	8	5H, 3U	4559	741**	0	4.8	0.7
UISS	3	3H	2414	185***	7.7	4.7	0.7
Sao Paulo	1	1H	771	173	0	7.4	0.5
Kattan	2	2H	1380	253	12.3	7.2	0.5
TNM 2002	1	1H	2127	443	0	7.5	0.5
S-TRAC trial	1	1H	730		0	7.7	0.4
TNM 2010	1	1H	2127	443	0	8.3	0.4
SSIGN	3	3H	797	144	0	10.2	0.2
Cindolo	2	2H	1586	325	13.3	10.3	0.2
Yaycioglu	1	1H	815	152	26.9	11.3	0.1
Cancer specific survival							
SSIGN	4	2H, 2U	1795	404	8.0	3.1	0.8
Karakiewicz	1	1H	565	32	0	3.3	0.8
Zisman	3	3U	1060	276	0	3.4	0.8
Leibovich	2	2H	847	84	14.7	4.6	0.6
mGPS	1	1H	169	35	33.4	4.6	0.6
Klatte 2009	1	1H	343		0	4.6	0.6
Kattan	2	2H	2573	395	17.4	6.9	0.4
Sao Paulo	1	1H	771	122	0	7.5	0.3
UISS	3	3H	3021	453	11.6	8.3	0.3
Cindolo	1	1H	2404	360	19.8	9.8	0.1
Yaycioglu	1	1H	2404	360	19.8	10.0	0.1

Supplementary Table 8. Multivariate meta-analysis of discrimination of risk models in Europe/US populations

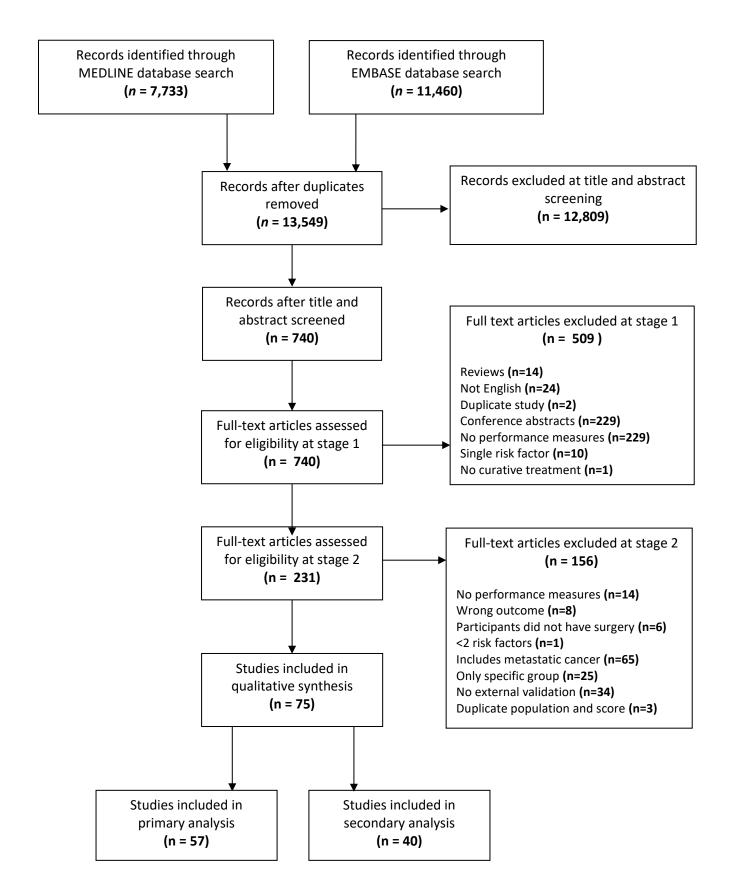
*H – High risk of bias, U – Unclear risk of bias, L – Low risk of bias

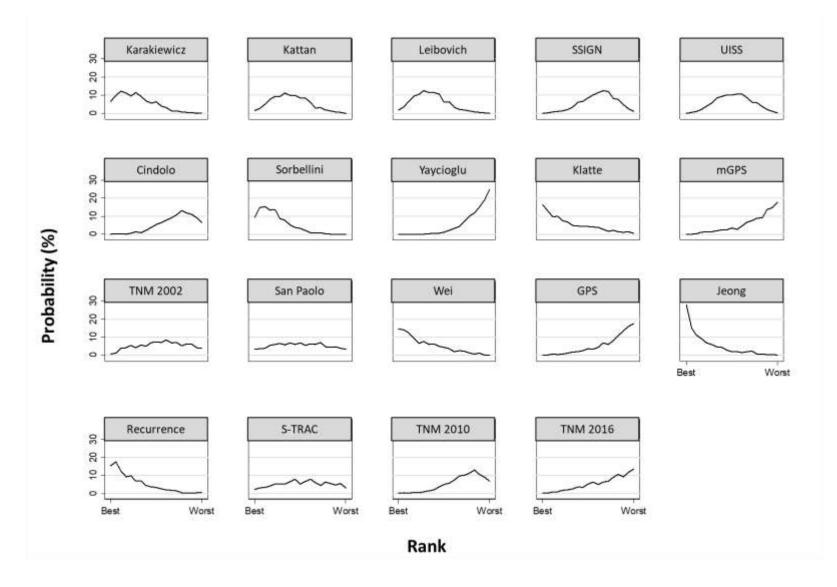
One study did not give number of events; *Two studies did not give number of events

Supplementary Table 9. Multivariate meta-analysis of discrimination of risk models in Asian p	populations
---	-------------

Risk model	Number of external validations	Summary risk of bias	Number of patients	Events	Borrowing of strength	Mean rank	SUCRA
Recurrence free survival							
Jeong 2017	1	1U	399	93	0	2.6	0.9
Wei 2009	1	1U	410	98	22.0	3.8	0.8
Karakiewicz	2	1H, 1U	1043	254	29.6	3.7	0.8
Sorbellini	2	1H, 1U	975	236	29.6	3.1	0.8
Kattan	5	4H, 1U	1471	362	13.3	4.4	0.7
Leibovich	8	3H, 4U, 1L	3338	740	10.7	5.7	0.6
SSIGN	4	1H, 2U, 1L	1755	398	18.9	7.2	0.5
Cindolo	3	3H	870	207	26.6	8.5	0.4
UISS	6	2H, 3U, 1L	2753	482**	16.9	9.5	0.3
TNM 2016	1	1U	410	98	22.0	10.4	0.3
TNM 2010	2	1U, 1L	453	133	19.0	11.4	0.2
mGPS	1	1H	627		21.4	11.7	0.2
GPS	1	1H	627		21.4	11.7	0.2
Yaycioglu	3	3H	870	207	26.6	11.4	0.2
Overall survival							
Chen 2017	1	1H	176	23	34.5	1.2	1.0
Leibovich	6	1H, 5U	1897	394	12.3	5.1	0.7
Karakiewicz	2	1H, 1U	1043	209	22.7	4.9	0.7
Sorbellini	2	1H, 1U	975	193	22.7	4.9	0.7
SSIGN	6	4H, 2U	2034	429	14.5	5.8	0.6
CONUT	1	1H	39	325	0	7.1	0.5
Kattan	2	1H, 1U	1043	209	22.6	7.0	0.5
PNI	1	1H	325	39	0	8.4	0.4
mGPS	1	1H	268	50	0	8.7	0.4
Cindolo	1	1H	653	123	31.8	7.6	0.4
TNM (2010)	3	2H, 1U	442	118	20.2	8.9	0.3
UISS	6	2H, 4U	2218	481	12.5	9.5	0.3
Yaycioglu	1	1H	653	123	31.8	11.8	0.1

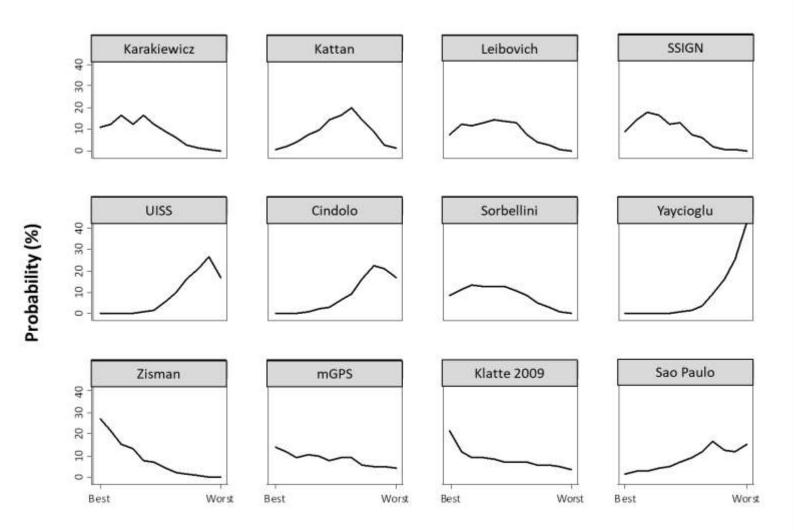
*H – High risk of bias, U – Unclear risk of bias, L – Low risk of bias **One study did not give number of events

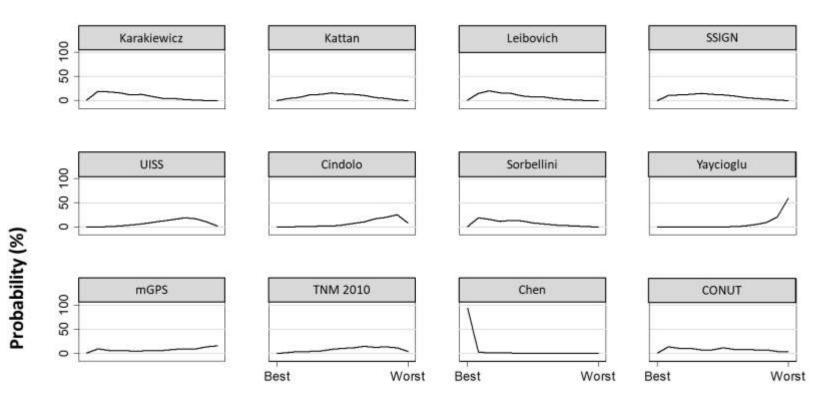

Supplementary Table 10. Discrimination of externally validated risk models without and with the addition of one or more additional prognostic markers

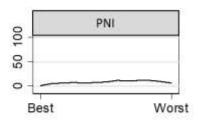

Additional	TRIPOD			C-stati	stic for model	without and	with (+) the a	dditional pred	ictor(s)			Study
predictor(s)	level*	Leibovich	Leibovich +	UISS	UISS +	SSIGN	SSIGN +	TNM	TNM +	Other	Other +	
Recurrence free survival												
Blood biomarker												
AST/ALT ratio	1a	0.77	0.81									Bezan 2015
GPS (Glasgow prognostic	1a					0.729	0.791					Lucca 2015
score) with												
MLR (monocyte to												
lymphocyte ratio)												
LMR (Lymphocyte to	1a	0.72	0.738	0.66	0.701	0.707	0.729					Chang 2016
monocyte ratio)												
MPV (mean platelet volume) -	1b	0.80	0.83									Seles 2017
3 types		(0.75-0.84)	(0.78-0.87)									
Immunohistochemistry												
CCL2 (Chemokine C-C motif	1a	0.71	0.76									Yang 2016
ligand 2)												
CCR2/CCL2 signature	1a	0.742	0.762	0.676	0.724							Wang 2016
CLEC-2 (c-type lectin-like	1b			0.638	0.682	0.631	0.672	0.608	0.664			Xiong 2016
receptor 2)												
CSF-1 (Colony stimulating	Not clear			0.638	0.678	0.71	0.718					Yang 2015
factor-1)												
CTR1 (Copper transporter 1)	1a	0.725		0.713	0.75		0.763	0.653	0.722			Xia 2017
CXCR2 (CXC Chemochine	Not clear	0.669	0.717									An 2015
receptor 2)												
Dectin-1	1b	0.718	0.762	0.713	0.760			0.658	0.708			Xia 2016
		(0.67–0.77)	(0.71–0.82)	(0.66–0.76)	(0.71–0.81)			(0.60–0.72)	(0.65–0.77)			
Dot1l (Disruptor of telomeric	1b			0.721	0.761	0.707	0.735	0.677	0.720			Qu 2016
silencing 1-like)												
Epithelial CXCR1(CXC	1a			0.696	0.723	0.709	0.725					Zhu 2017
Chemochine receptor 1)												
Five-marker risk score (N-	2a					0.626	0.797					Haddad 2017
cadherin, E-cadherin, Ki67,												
cyclin D1 and p-4EBP1)												
Gal-9 (Galectin-9)	1a			0.622	0.66	0.692	0.708	0.621	0.665			Fu 2015
GALNT10 (N-	1a			0.624	0.671	0.695	0.724	0.645	0.695			Wu 2015
acetylgalactosaminyl-												
transferase 10)												
GALNT4 (N-	1a							0.701	0.761			Liu 2014
acetylgalactosaminyl-								(0.60-0.79)	(0.67-0.84)			
transferase 4)												

ICL score (IFN-inducible	1a					0.712	0.765					Liu 2016
CXCR3 ligands score)	10					0.712	0.705					2010
IL-11	1a			0.62	0.678	0.662	0.686					Pan 2015
IL-1β/IL-18 signature	1a	0.701	0.771	0.689	0.741	0.001						Xu 2015
IL-4/IL-13 signature	1a			0.66	0.712							Chang 2015
MGAT5 (β1,6-N-	3			0.73	0.821	0.73	0.798	0.661	0.74			Liu 2015
acetylglucosaminyl-									_			
transferase V)												
MUC13 (mucin13)	1a					0.7336	0.7836					Xu 2017
MUC3A (Mucin 3A)	1a	0.815	0.847	0.724	0.779	0.756	0.812					Niu 2016
Nuclear Snail (zinc-finger	1a			A: 0.695	A: 0.749	A: 0.704	A: 0.730					Liu 2015
transcription factor)				B: 0.764	B: 0.81	B: 0.758	B: 0.809					
PAK1 (p21-activated kinase 1)	2b			0.763	0.818	0.758	0.815					Zhu 2015
PAK6 (p21-activated Kinase	1a					0.75		0.713	0.769			Liu 2014
6)								(0.62 -0.80)	(0.68- 0.85)			
ST3GAL-1 (β -galactoside α -	1a			0.63	0.68							Bai 2015
2,3-sialyltransferase 1)												
Pathology												
Intratumoural neutrophils	1a	0.74	0.8									Jensen 2009
Pathologic lymph node status	1b									S-TRAC trial	S-TRAC	Capogrosso
										0.72	trial+ 0.75	2019
										(0.68-0.76)	(0.71-0.79)	
Tumour size	1a									Sao Paulo	Sao Paulo	May 2009
										Score - 0.73	Score - 0.78	
Vascular invasion	1a		0.792									Pichler 2012
Genetic												
Recurrence score	3	0.74	0.81									Rini 2015
six-SNP- based classifier	3		China 0.791;									Wei 2019
		USA/TCGA	USA/TCGA									
		0.752	0.816									
In-situ hybridisation												
miR-125b (Tumour	1b			0.653	0.705	0.711	0.723	0.626	0.697			Fu 2014
microRNA-125b)				(0.61–0.70)	(0.65–0.76)	(0.66–0.77)	(0.67–0.78)	(0.57–0.68)	(0.64–0.75)			
Cancer specific survival												
Blood biomarker												
LMR (Lymphocyte to	1a	0.83	0.86									Hutterer
monocyte ratio)												2014
NLR (neutrophil to	1a					0.81	0.82					Viers 2014
lymphocyte ratio)												
Quantitative RT-PCR												
CCP score (Cell cycle	1b							0.84	0.87	Karakiewicz		Morgan 2018
proliferation score)									(0.82-0.92)	0.84	0.87	

										(0.82-0.92)	
Overall Survival											
Blood biomarker											
LMR (Lymphocyte to monocyte ratio)	1a	0.721	0.754	0.673	0.72	0.71	0.75				Chang 2016
Immunohistochemistry											
CCR2/CCL2 signature	1a	0.724	0.75	0.658	0.714						Wang 2016
CXCR2 (CXC Chemochine receptor 2)	2b	0.671	0.724								An 2015
Epithelial CXCR1 (CXC Chemochine receptor 1)	1a			0.683	0.718	0.673	0.704				Zhu 2017
Galectin-7	1a	0.816	0.829	0.743	0.779	0.805	0.822				Wang 2016
HMGA2 (High-mobility group AT-hook 2)	1a			0.711	0.723	0.726	0.736	0.671	0.719		Na 2016
ICL score (IFN-inducible CXCR3 ligands score)	1a					0.705	0.746				Liu 2016
IL-1β/IL-18 signature	1a	0.684	0.722	0.696	0.753						Xu 2015
IL-4/IL-13 signature	1a			0.665	0.715						Chang 2015
MUC13 (Mucin 13)	1a					0.744	0.7933				Xu 2017
MUC3A (Mucin 3A)	1a	0.82	0.859	0.723	0.781	0.768	0.83				Niu 2016
Nuclear Snail (zinc-finger transcription factor)	1a			A: 0.706 B: 0.744	A: 0.762 B: 0.801	A: 0.709 B: 0.756	A: 0.746 B: 0.819				Liu 2015
PAK1 (p21-activated kinase1)	2b			0.744	0.8408	0.756	0.8613				Zhu 2015
PAK6 (p21-activated Kinase 6)	1a					0.76		0.724 (0.63-0.81)	0.790 (0.70-0.86)		Liu 2014
ST3GAL-1 (β-galactoside α- 2,3-sialyltransferase 1)	1a			0.65	0.69			, ,			Bai 2015


* 1a – Development only; 1b – Development and validation using resampling; 2a – Random split-sample development and validation; 2b – Non-random split-sample development and validation; 3 – Development and validation using separate data; 4 – Validation study


Supplementary Figure 2. Plots of the ranking for each risk score considered in the multivariate meta-analysis for recurrence free survival


Supplementary Figure 3. Plots of the ranking for each risk score considered in the multivariate meta-analysis for cancer specific survival

Rank

Supplementary Figure 4. Plots of the ranking for each risk score considered in the multivariate meta-analysis for overall survival

Rank

References

- [1] An H, Xu L, Chang Y, Zhu Y, Yang Y, Chen L, et al. CXC chemokine receptor 2 is associated with postoperative recurrence and survival of patients with non-metastatic clear-cell renal cell carcinoma. Eur J Cancer 2015;51:1953–61. https://doi.org/10.1016/j.ejca.2015.06.125.
- [2] Bai Q, Liu L, Xia Y, Long Q, Wang J, Xu J, et al. Prognostic significance of ST3GAL-1 expression in patients with clear cell renal cell carcinoma. BMC Cancer 2015;15:1–9. https://doi.org/10.1186/s12885-015-1906-5.
- [3] Beisland C, Gudbrandsdottir G, Reisæter LAR, Bostad L, Wentzel-Larsen T, Hjelle KM. Contemporary external validation of the Leibovich model for prediction of progression after radical surgery for clear cell renal cell carcinoma. Scand J Urol 2015;49:205–10. https://doi.org/10.3109/21681805.2014.980844.
- [4] Bezan A, Mrsic E, Krieger D, Stojakovic T, Pummer K, Zigeuner R, et al. The preoperative AST/ALT (De Ritis) ratio represents a poor prognostic factor in a cohort of patients with nonmetastatic renal cell carcinoma. J Urol 2015;194:30–5. https://doi.org/10.1016/j.juro.2015.01.083.
- [5] Brookman-Amissah S, Kendel F, Spivak I, Pflanz S, Roigas J, Klotz T, et al. Impact of clinical variables on predicting disease-free survival of patients with surgically resected renal cell carcinoma. BJU Int 2009;103:1375–80. https://doi.org/10.1111/j.1464-410X.2008.08233.x.
- [6] Brooks S., Brannon A., Parker J., Fishers J., Sen O, Kattan M., et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. Eur Urol 2014;66:77–84. https://doi.org/10.1016/j.eururo.2014.02.035.ClearCode34.
- [7] Buti S, Karakiewicz PI, Bersanelli M, Capitanio U, Tian Z, Cortellini A, et al. Validation of the GRade, Age, Nodes and Tumor (GRANT) score within the Surveillance Epidemiology and End Results (SEER) database: A new tool to predict survival in surgically treated renal cell carcinoma patients. Sci Rep 2019;9:1–7. https://doi.org/10.1038/s41598-019-49250-6.
- [8] Capogrosso P, Larcher A, Nini A, Muttin F, Cianflone F, Ripa F, et al. The critical role of lymph node dissection in selecting high-risk nonmetastatic renal cancer candidates for adjuvant therapy after nephrectomy. Urol Oncol 2019;37:293.e25-293.e30. https://doi.org/10.1016/j.urolonc.2019.01.009.
- [9] Capogrosso P, Larcher A, Sjoberg DD, Vertosick EA, Cianflone F, Carenzi C, et al. Risk-based surveillance after surgical treatment of renal cell carcinoma. J Urol 2018;200:61–7. https://doi.org/10.1016/j.juro.2018.01.072.Risk-based.
- [10] Chang Y, Fu Q, Xu L, Zhou L, Liu Z, Yang Y, et al. Prognostic value of preoperative lymphocyte to monocyte ratio in patients with nonmetastatic clear cell renal cell carcinoma. Tumor Biol 2016;37:4613–20. https://doi.org/10.1007/s13277-015-4300-7.
- [11] Chang Y, Xu L, An H, Fu Q, Chen L, Lin Z, et al. Expression of IL-4 and IL-13 predicts recurrence and survival in localized clear-cell renal cell carcinoma. Int J Clin Exp Pathol 2015;8:1594–603.
- [12] Chen Z, Shao Y, Yao H, Zhuang Q, Wang K, Xing Z, et al. Preoperative albumin to globulin ratio predicts survival in clear cell renal cell carcinoma patients. Oncotarget 2017;8:48291–302. https://doi.org/10.18632/oncotarget.15162.
- [13] Cindolo L, Chiodini P, Gallo C, Ficarra V, Schips L, Tostain J, et al. Validation by calibration of the UCLA integrated staging system prognostic model for nonmetastatic renal cell carcinoma after nephrectomy. Cancer 2008;113:65–71. https://doi.org/10.1002/cncr.23517.
- [14] Cindolo L, Patard J-J, Chiodini P, Schips L, Ficarra V, Tostain J, et al. Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy. Cancer 2005;104:1362–71. https://doi.org/10.1002/cncr.21331.
- [15] Ficarra V, Novara G, Galfano A, Brunelli M, Cavalleri S, Martignoni G, et al. The "Stage, Size, Grade and Necrosis" score is more accurate than the University of California Los Angeles Integrated Staging System for predicting cancer-specific survival in patients with clear cell

renal cell carcinoma. BJU Int 2009;103:165–70. https://doi.org/10.1111/j.1464-410X.2008.07901.x.

- [16] Fu H, Liu Y, Xu L, Liu W, Fu Q, Liu H, et al. Galectin-9 predicts postoperative recurrence and survival of patients with clear-cell renal cell carcinoma. Tumor Biol 2015;36:5791–9. https://doi.org/10.1007/s13277-015-3248-y.
- [17] Fu Q, Chang Y, An H, Fu H, Zhu Y, Xu L, et al. Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: A 5-year conditional cancerspecific survival analysis. Br J Cancer 2015;113:1581–9. https://doi.org/10.1038/bjc.2015.379.
- [18] Fu Q, Liu Z, Pan D, Zhang W, Xu L, Zhu Y, et al. Tumor miR-125b predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. Cancer Sci 2014;105:1427–34. https://doi.org/10.1111/cas.12507.
- [19] Haddad AQ, Luo JH, Krabbe LM, Darwish O, Gayed B, Youssef R, et al. Prognostic value of tissue-based biomarker signature in clear cell renal cell carcinoma. BJU Int 2017;119:741–7. https://doi.org/10.1111/bju.13776.
- [20] Han KR, Bleumer I, Pantuck AJ, Kim HL, Dorey FJ, Janzen NK, et al. Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an international population. J Urol 2003;170:2221–4. https://doi.org/10.1097/01.ju.0000096049.64863.a1.
- [21] Hupertan V, Roupret M, Poisson JF, Chretien Y, Dufour B, Thiounn N, et al. Low predictive accuracy of the Kattan postoperative nomogram for renal cell carcinoma recurrence in a population of French patients. Cancer 2006;107:2604–8. https://doi.org/10.1002/cncr.22313.
- [22] Hutterer GC, Stoeckigt C, Stojakovic T, Jesche J, Eberhard K, Pummer K, et al. Low preoperative lymphocyte-monocyte ratio (LMR) represents a potentially poor prognostic factor in nonmetastatic clear cell renal cell carcinoma. Urol Oncol 2014;32:1041–8. https://doi.org/10.1016/j.urolonc.2014.04.001.
- [23] Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, Von Der Maase H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 2009;27:4709–17. https://doi.org/10.1200/JCO.2008.18.9498.
- [24] Jeong SU, Park JM, Shin SJ, Lee JB, Song C, Go H, et al. Prognostic Significance of Macroscopic Appearance in Clear Cell Renal Cell Carcinoma and Its Metastasis-Predicting Model. Pathol Int 2017;67:610–9. https://doi.org/10.1111/pin.12606.
- [25] Klatte T, Seligson DB, LaRochelle J, Shuch B, Said JW, Riggs SB, et al. Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol Biomarkers Prev 2009;18:894–900. https://doi.org/10.1158/1055-9965.EPI-08-0786.
- [26] Lamb GWA, Aitchison M, Ramsey S, Housley SL, McMillan DC. Clinical utility of the Glasgow Prognostic Score in patients undergoing curative nephrectomy for renal clear cell cancer: Basis of new prognostic scoring systems. Br J Cancer 2012;106:279–83. https://doi.org/10.1038/bjc.2011.556.
- [27] Lee BH, Feifer A, Feuerstein MA, Benfante NE, Kou L, Yu C, et al. Validation of a Postoperative Nomogram Predicting Recurrence in Patients with Conventional Clear Cell Renal Cell Carcinoma. Eur Urol Focus 2018;4:100–5. https://doi.org/10.1016/j.euf.2016.07.006.Validation.
- [28] Liu W, Liu H, Liu Y, Xu L, Zhang W, Zhu Y, et al. Prognostic Significance of p21-activated Kinase 6 Expression in Patients with Clear Cell Renal Cell Carcinoma. Ann Surg Oncol 2014;21:575– 83. https://doi.org/10.1245/s10434-014-3680-z.
- [29] Liu W, Liu Y, Fu Q, Zhou L, Chang Y, Xu L, et al. Elevated expression of IFN-inducible CXCR3 ligands predicts poor prognosis in patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2016;7:13976–83. https://doi.org/10.18632/oncotarget.7468.
- [30] Liu W, Liu Y, Liu H, Zhang W, An H, Xu J. Snail predicts recurrence and survival of patients with

localized clear cell renal cell carcinoma after surgical resection. Urol Oncol 2015;33:69.e1-69.e10. https://doi.org/10.1016/j.urolonc.2014.08.003.

- [31] Liu Y, Liu H, Liu W, Zhang W, An H, Xu J. β1,6-N-acetylglucosaminyltransferase V predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. World J Urol 2015;33:1791–9. https://doi.org/10.1007/s00345-014-1451-x.
- [32] Liu Y, Liu W, Xu L, Liu H, Zhang W, Zhu Y, et al. GALNT4 predicts clinical outcome in patients with clear cell renal cell carcinoma. J Urol 2014;192:1534–41. https://doi.org/10.1016/j.juro.2014.04.084.
- [33] Liu Z, Lv J, Ding K, Fu Q, Cao Q, Wang F. Validation of the current prognostic models for nonmetastatic renal cell carcinoma after nephrectomy in Chinese population: A 15-year single center experience. Int J Urol 2009;16:268–73. https://doi.org/10.1111/j.1442-2042.2008.02229.x.
- [34] Lucca I, de Martino M, Hofbauer SL, Zamani N, Shariat SF, Klatte T. Comparison of the prognostic value of pretreatment measurements of systemic inflammatory response in patients undergoing curative resection of clear cell renal cell carcinoma. World J Urol 2015;33:2045–52. https://doi.org/10.1007/s00345-015-1559-7.
- [35] May M, Brookman-Amissah S, Kendel F, Knoll N, Roigas J, Hoschke B, et al. Validation of a postoperative prognostic model consisting of tumor microvascular invasion, size, and grade to predict disease-free and cancer-specific survival of patients with surgically resected renal cell carcinoma: Original article: Clinical investiga. Int J Urol 2009;16:616–21. https://doi.org/10.1111/j.1442-2042.2009.02319.x.
- [36] Morgan TM, Mehra R, Tiemeny P, Wolf JS, Wu S, Sangale Z, et al. A Multigene Signature Based on Cell Cycle Proliferation Improves Prediction of Mortality Within 5 Yr of Radical Nephrectomy for Renal Cell Carcinoma. Eur Urol 2018;73:763–9. https://doi.org/10.1016/j.eururo.2017.12.002.
- [37] Morshaeuser L, May M, Burger M, Otto W, Hutterer GC, Pichler M, et al. P53-Expression in Patients With Renal Cell Carcinoma Correlates With a Higher Probability of Disease Progression and Increased Cancer-Specific Mortality After Surgery But Does Not Enhance the Predictive Accuracy of Robust Outcome Models. Urol Oncol 2018;36:94.e15-94.e21. https://doi.org/10.1016/j.urolonc.2017.11.011.
- [38] Na N, Si T, Huang Z, Miao B, Hong L, Li H, et al. High expression of HMGAGA2 predicts poor survival in patients with clear cell renal cell carcinoma. Onco Targets Ther 2016;9:7199–205. https://doi.org/10.2147/OTT.S116953.
- [39] Niu T, Liu Y, Zhang Y, Fu Q, Liu Z, Wang Z, et al. Increased expression of MUC3A is associated with poor prognosis in localized clear-cell renal cell carcinoma. Oncotarget 2016;7:50017–26. https://doi.org/10.18632/oncotarget.10312.
- [40] Pan D, Xu L, Liu H, Zhang W, Liu W, Liu Y, et al. High expression of interleukin-11 is an independent indicator of poor prognosis in clear-cell renal cell carcinoma. Cancer Sci 2015;106:592–7. https://doi.org/10.1111/cas.12638.
- [41] Pichler M, Hutterer GC, Chromecki TF, Jesche J, Groselj-Strele A, Kampel-Kettner K, et al. Prognostic value of the leibovich prognosis score supplemented by vascular invasion for clear cell renal cell carcinoma. J Urol 2012;187:834–9. https://doi.org/10.1016/j.juro.2011.10.155.
- [42] Pichler M, Hutterer GC, Chromecki TF, Jesche J, Kampel-Kettner K, Groselj-Strele A, et al. Comparison of the 2002 and 2010 TNM classification systems regarding outcome prediction in clear cell and papillary renal cell carcinoma. Histopathology 2013;62:237–46. https://doi.org/10.1111/his.12001.
- [43] Pichler M, Hutterer GC, Chromecki TF, Jesche J, Kampel-Kettner K, Rehak P, et al. External validation of the leibovich prognosis score for nonmetastatic clear cell renal cell carcinoma at a single european center applying routine pathology. J Urol 2011;186:1773–8. https://doi.org/10.1016/j.juro.2011.07.034.
- [44] Qu Y, Liu L, Wang J, Xi W, Xia Y, Bai Q, et al. Dot1l expression predicts adverse postoperative

prognosis of patients with clear-cell renal cell carcinoma. Oncotarget 2016;7:84775–84. https://doi.org/10.18632/oncotarget.12476.

- [45] Rini B, Goddard A, Knezevic D, Maddala T, Zhou M, Aydin H, et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: Development and validation studies. Lancet Oncol 2015;16:676–85. https://doi.org/10.1016/S1470-2045(15)70167-1.
- [46] Sekar RR, Patil D, Baum Y, Pearl J, Bausum A, Bilen MA, et al. A novel preoperative inflammatory marker prognostic score in patients with localized and metastatic renal cell carcinoma. Asian J Urol 2017;4:230–8. https://doi.org/10.1016/j.ajur.2017.04.002.
- [47] Seles M, Posch F, Pichler GP, Gary T, Pummer K, Zigeuner R, et al. Blood Platelet Volume Represents a Novel Prognostic Factor in Patients with Nonmetastatic Renal Cell Carcinoma and Improves the Predictive Ability of Established Prognostic Scores. J Urol 2017;198:1247– 52. https://doi.org/10.1016/j.juro.2017.07.036.
- [48] Sim SH, Messenger MP, Gregory WM, Wind TC, Vasudev NS, Cartledge J, et al. Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma. Br J Cancer 2012;107:1131–7. https://doi.org/10.1038/bjc.2012.360.
- [49] Song H, Xu B, Luo C, Zhang Z, Ma B, Jin J, et al. The prognostic value of preoperative controlling nutritional status score in non-metastatic renal cell carcinoma treated with surgery: A retrospective single-institution study. Cancer Manag Res 2019;11:7567–75. https://doi.org/10.2147/CMAR.S209418.
- [50] Sorbellini M, Kattan MW, Snyder ME, Reuter V, Motzer R, Goetzl M, et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol 2005;173:48–51. https://doi.org/10.1097/01.ju.0000148261.19532.2c.
- [51] Suzuki K, Nishiyama T, Hara N, Akazawa K, Takahashi K. Kattan postoperative nomogram for renal cell carcinoma: Predictive accuracy in a Japanese population. Int J Urol 2011;18:194–9. https://doi.org/10.1111/j.1442-2042.2010.02693.x.
- [52] Tan MH, Kanesvaran R, Li H, Tan HL, Tan PH, Wong CF, et al. Comparison of the UCLA Integrated Staging System and the Leibovich Score in Survival Prediction for Patients With Nonmetastatic Clear Cell Renal Cell Carcinoma. Urology 2010;75. https://doi.org/10.1016/j.urology.2009.07.1289.
- [53] Tan MH, Li H, Choong CV, Chia KS, Toh CK, Tang T, et al. The Karakiewicz nomogram is the most useful clinical predictor for survival outcomes in patients with localized renal cell carcinoma. Cancer 2011;117:5314–24. https://doi.org/10.1002/cncr.26193.
- [54] Tsujino T, Komura K, Hashimoto T, Muraoka R, Satake N, Matsunaga T, et al. C-reactive protein-albumin ratio as a prognostic factor in renal cell carcinoma – A data from multiinstitutional study in Japan. Urol Oncol 2019;37:812.e1-812.e8. https://doi.org/10.1016/j.urolonc.2019.04.002.
- [55] Tsujino T, Komura K, Ichihashi A, Tsutsumi T, Matsunaga T, Yoshikawa Y, et al. The combination of preoperative platelet count and neutrophil lymphocyte ratio as a prognostic indicator in localized renal cell carcinoma. Oncotarget 2017;8:110311–25. https://doi.org/10.18632/oncotarget.22688.
- [56] Tsujino T, Komura K, Matsunaga T, Yoshikawa Y, Takai T, Uchimoto T, et al. Preoperative Measurement of the Modified Glasgow Prognostic Score Predicts Patient Survival in Non-Metastatic Renal Cell Carcinoma Prior to Nephrectomy. Ann Surg Oncol 2017;24:2787–93. https://doi.org/10.1245/s10434-017-5948-6.
- [57] Utsumi T, Ueda T, Fukasawa S, Komaru A, Sazuka T, Kawamura K, et al. Prognostic models for renal cell carcinoma recurrence: External validation in a Japanese population. Int J Urol 2011;18:667–71. https://doi.org/10.1111/j.1442-2042.2011.02812.x.
- [58] Vasudev NS, Hutchinson M, Trainor S, Ferguson R, Bhattarai S, Adeyoju A, et al. UK Multicenter Prospective Evaluation of the Leibovich Score in Localized Renal Cell Carcinoma: Performance has Altered Over Time. Urology 2020;136:162–8. https://doi.org/10.1016/j.urology.2019.09.044.

- [59] Verine J, Colin D, Nheb M, Prapotnich D, Ploussard G, Cathelineau X, et al. Architectural Patterns are a Relevant Morphologic Grading System for Clear Cell Renal Cell Carcinoma Prognosis Assessment: Comparisons With WHO/ISUP Grade and Integrated Staging Systems. Am J Surg Pathol 2018;00:1–19. https://doi.org/10.1097/PAS.000000000001025.
- [60] Viers BR, Houston Thompson R, Boorjian SA, Lohse CM, Leibovich BC, Tollefson MK. Preoperative neutrophil-lymphocyte ratio predicts death among patients with localized clear cell renal carcinoma undergoing nephrectomy. Urol Oncol 2014;32:1277–84. https://doi.org/10.1016/j.urolonc.2014.05.014.
- [61] Wang J, Liu Y, Yang Y, Xu Z, Zhang G, Liu Z, et al. High expression of galectin-7 associates with poor overall survival in patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2016;7:41986–95. https://doi.org/10.18632/oncotarget.9749.
- [62] Wang Z, Xie H, Zhou L, Liu Z, Fu H, Zhu Y, et al. CCL2/CCR2 axis is associated with postoperative survival and recurrence of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2016;7:51525–34. https://doi.org/10.18632/oncotarget.10492.
- [63] Wei JH, Feng ZH, Cao Y, Zhao HW, Chen ZH, Liao B, et al. Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study. Lancet Oncol 2019;20:591–600. https://doi.org/10.1016/S1470-2045(18)30932-X.
- [64] Wu Q, Yang L, Liu H, Zhang W, Le X, Xu J. Elevated Expression of N-Acetylgalactosaminyltransferase 10 Predicts Poor Survival and Early Recurrence of Patients with Clear-Cell Renal Cell Carcinoma. Ann Surg Oncol 2015;22:2446–53. https://doi.org/10.1245/s10434-014-4236-y.
- [65] Xia Y, Liu L, Bai Q, Long Q, Wang J, Xi W, et al. Prognostic value of copper transporter 1 expression in patients with clear cell renal cell carcinoma. Oncol Lett 2017;14:5791–800. https://doi.org/10.3892/ol.2017.6942.
- [66] Xia Y, Liu L, Bai Q, Wang J, Xi W, Qu Y, et al. Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma. Sci Rep 2016;6:2–10. https://doi.org/10.1038/srep32657.
- [67] Xiong Y, Liu L, Xia Y, Wang J, Xi W, Bai Q, et al. Low CCL17 expression associates with unfavorable postoperative prognosis of patients with clear cell renal cell carcinoma. BMC Cancer 2017;17:63661–8. https://doi.org/10.1186/s12885-017-3106-y.
- [68] Xu L, Zhu Y, An H, Liu Y, Lin Z, Wang G, et al. Clinical significance of tumor-derived IL-1β and IL-18 in localized renal cell carcinoma: Associations with recurrence and survival. Urol Oncol 2015;33:68.e9-68.e16. https://doi.org/10.1016/j.urolonc.2014.08.008.
- [69] Xu Z, Liu Y, Yang Y, Wang J, Zhang G, Liu Z, et al. High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2017;8:7548–58. https://doi.org/10.18632/oncotarget.13692.
- [70] Yang L, Wu Q, Xu L, Zhang W, Zhu Y, Liu H, et al. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer 2015;15:1–11. https://doi.org/10.1186/s12885-015-1076-5.
- [71] Yang Y, Zhai C, Chang Y, Zhou L, Shi T, Tan C, et al. High expression of chemokine CCL2 is associated with recurrence after surgery in clear-cell renal cell carcinoma. Urol Oncol 2016;34:238.e19-238.e26. https://doi.org/10.1016/j.urolonc.2015.11.026.
- [72] Zhang H, Liu Y, Xie H, Fu Q, Liu Z, Zhu Y, et al. Beta-1,4-galactosyltransferase II predicts poor prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Tumor Biol 2017;39:1–11. https://doi.org/10.1177/1010428317691417.
- [73] Zhu Y, Zhao YR, Yang XF, Wei MT, Niu YJ, Chang JW, et al. Postoperative prognostic model for patients with clear cell renal cell carcinoma in a Chinese population. Int J Urol 2019;26:624–9. https://doi.org/10.1111/iju.13936.
- [74] Zhu Y, Liu Z, Wang Y, Fu H, Wang Z, Xie H, et al. High CXC chemokine receptor 1 level represents an independent negative prognosticator in non-metastatic clear-cell renal cell

carcinoma patients. Oncoimmunology 2017;6:1–9. https://doi.org/10.1080/2162402X.2017.1359450.

[75] Zhu Y, Xu L, An H, Liu W, Wang Z, Xu J. P21-Activated Kinase1 Predicts Recurrence and Survival in Patients With Non-Metastatic Clear Cell Renal Cell Carcinoma. Int J Urol 2015;22:447–53. https://doi.org/10.1111/iju.12715.