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Abstract

Objectives: The causal impact method (CIM) was recently introduced for evaluation of binary interventions
using observational time-series data. TheCIM is appealing for practical use as it can adjust for temporal trends
and account for the potential of unobserved confounding. However, the method was initially developed for
applications involving large datasets and hence its potential in small epidemiological studies is still unclear.
Further, the effects that measurement error can have on the performance of the CIM have not been studied
yet. The objective of this work is to investigate both of these open problems.
Methods: Motivated by an existing dataset of HCV surveillance in theUK,we perform simulation experiments
to investigate the effect of several characteristics of the data on the performance of the CIM. Further, we
quantify the effects of measurement error on the performance of the CIM and extend the method to deal with
this problem.
Results: We identify multiple characteristics of the data that affect the ability of the CIM to detect an inter-
vention effect including the length of time-series, the variability of the outcome and the degree of correlation
between the outcome of the treated unit and the outcomes of controls. We show that measurement error can
introduce biases in the estimated intervention effects and heavily reduce the power of the CIM. Using an
extended CIM, some of these adverse effects can be mitigated.
Conclusions: The CIM canprovide satisfactory power in public health interventions. Themethodmayprovide
misleading results in the presence of measurement error.
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Introduction
The problem of assessing the causal effect of an intervention is very frequently encountered in the fields of
public health and epidemiology, see for example Rothman and Greenland (2005) and Glass et al. (2013). Ran-
domised controlled trials have long been considered the gold standard for causal effect evaluations, but such
trials may be impossible to conduct, due to either cost restrictions or ethical concerns. Therefore, researchers
often rely on observational studies in order to conduct their investigations. The data from observational
studies are often in the form of aggregate time-series, where the outcome of interest is measured at multiple
time points before and after the intervention (e.g. incidence rate of a disease within a geographical region)
and there is single treated unit (or a few treated units).

Causal inference in the setup outlined above is not straightforward. First, it is important to account
for the potential of unobserved confounding using the data on the control units. For instance, assume that
the outcome of all units (both treated and controls) decreases during the post-intervention period due to
an unobserved environmental factor. If one ignores the data on the control units, the conclusion will be
that the intervention led to the decrease in outcomes. Therefore, it is essential to adjust for the fact that
control units, in particular ones whose outcomes are strongly related to the outcome of the treated unit, also
showed a decrease in the post-intervention outcomes. Second, it is important to account for temporal trends
in the data. For example, assume that the outcome of interest is increasing over time. A pre/post-intervention
comparison of the outcome in the treated unit without accounting for this trend, will suggest erroneously that
the intervention had a positive effect, even if there is no treatment effect.

To overcome these challenges, several methods have been proposed, see Samartsidis et al. (2019) for a
recent review. In most of these methods, following ideas first presented in Abadie and Gardeazabal (2003),
the intervention effect in the treated unit is estimated as the difference between the observed outcome in
the post-intervention period and the estimate of its untreated counterfactual: the outcome that would have
been observed had no intervention taken place in the treated unit. Untreated counterfactuals are estimated
as follows. First, a model that expresses the relationships between the observations in the treated and control
units is chosen and fit to the data in the pre-intervention period. Then, by assuming that the same model
would hold in the post-intervention period in the absence of the intervention, the untreated counterfactual is
estimated using the parameters estimated from the pre-intervention period and the post-intervention data in
control units.

In the causal impact method (Brodersen et al. 2015, CIM), the model that is fit to the data in the pre-
intervention period is a Bayesian structural time-series model. More specifically, the outcome of the treated
unit is represented as the sum of three components: a regression component that relates the outcome on the
treated unit to the outcomes on controls; a time-series component that represents temporal patterns in the
data; and an error component that accounts for any unexplained variability. The regression component of the
CIM can provide a safeguard against some forms of unobserved confounding.1 The time-series component is
essential to reduce biases that are purely due to temporal trends. Because of its several components, the CIM
allows for extremely flexible models to be fit.

The CIM generalises several existing approaches that are used for causal inference based on time-series
data. More specifically, if the data on the control units are not included as covariates in CIM’s regression
component, then it reduces to an interrupted time-series (Bernal, Cummins, and Gasparrini 2016, among
others) model. If the time-series component of CIM is set to zero, then CIM is akin to synthetic-control type
approaches, see e.g. Abadie, Diamond, and Hainmueller (2010), Hsiao, Ching, and Wan (2012) and Amjad,
Shah, and Shen (2018).

1 This is due the fact that the CIM can be viewed as a generalisation of the synthetic control Abadie, Diamond, and Hainmueller
(2010) method which, as shown by (Abadie, Diamond, and Hainmueller 2010), allows for the presence of multiple, time-constant
unobserved confounders whose effect on the outcome of interest can vary over time.
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Despite being only recently introduced, the CIM has been employed in several applications. Brodersen
et al. (2015) use the CIM to assess howmuch an advertising campaign contributed to the number of visits of a
website. Bruhn et al. (2017) assess the impact of pneumonococcal conjugate vaccines on pneumonia-related
hospitalisations in South American countries. de Vocht et al. (2017) estimate the impact of imposing stricter
alcohol licensing policies on the total number of alcohol-related hospitalisations in England. Finally, deVocht
(2016) evaluates the impact of mobile phone use on selected types of brain cancer.

Despite its strengths, there are limitations to the use of the CIM. In particular, the underlying time-series
model typically includes several unknown parameters and therefore a large amount of data is required to
estimate these parameters (and hence the untreated counterfactual). Further, the performance of the CIM
can be affected when the outcome of interest is measured with error. These limitations were not of great
concern in the aforementioned applications. However, they can possibly undermine the utility of the CIM
in epidemiological applications where the amount of data is limited and/or the outcomes of interest is the
prevalence of disease which cannot be measured directly, but is instead estimated based on a small sample
of individuals.

In this work, we perform a series of simulation experiments to evaluate the potential of the CIM for
evaluating the effectiveness of a new strategy against the hepatitis C virus (HCV) namely treatment as
prevention (TasP). Our experiments are designed to identify the characteristics of the data that mostly affect
the performance of the CIM. Further, by conducting these experiments we are able to assess the implications
that inability to measure the HCV prevalence without error has on the properties of the CIM. Since our
simulated data are generated following existing HCV surveillance data in the UK, we expect that our findings
are indicative of the performance of the CIM in more settings where one wants to evaluate HCV treatment as
prevention, as well as potentially other public health applications.

The remainder of this manuscript is structured as follows. Section 2 introduces the motivating problem.
Section 3 presents a series of simulations to assess the quality of the causal estimates provided by the CIM,
when the prevalence is known. Section 4 includes a simulation study to investigate the effect that estimating
the prevalence based on a finite sample of individuals has on the performance of the CIM and proposes an
extension to the CIM that can be used to deal with this issue. Finally, Section 5 summarises the main findings
of the paper and discusses some of the strengths and limitations of our work.

Motivating dataset: HCV treatment as prevention (TasP)
HCV is a blood borne virus, a leading cause of liver disease, and one of the few causes that is curable
(Williams et al. 2014) in over 90% of cases through highly effective, tolerable, short-course direct acting
antiviral therapies (DAAs) (Dore and Feld 2015; Gogela et al. 2015; Walker et al. 2015). In the UK and many
developing countries the majority of people infected with HCV are people who inject or have injected drugs
(PWID), and more than 90% of new infections occur among PWID (De Angelis et al. 2009; Harris et al.
2019; Hutchinson et al. 2006; Prevost et al. 2015). Prevention of HCV transmission among PWID is critical to
strategies to ‘eliminate’ HCV as a public health problem.

There is good theoretical modelling evidence that introducing and scaling up HCV treatment among
those at risk of HCV transmission could reduce HCV chronic prevalence among PWID at a population level
(Cousien et al. 2014; Durier, Nguyen, andWhite 2012; De Vos and Kretzschmar 2014; Hellard et al. 2014;Martin
et al. 2011; Martin, Miners, and Vickerman et al. 2012a, Martin et al. 2012b, Martin et al. 2013a, 2013b; Martin et
al. 2016a, 2016b, 2016c; Rolls et al. 2013; Vickerman, Martin, and Hickman 2011; Zeiler et al. 2010). However,
there are no ongoing randomised trials of HCV TasP in the community that we know of, and direct empirical
evidence is yet to emerge (Hickman et al. 2015; Martin et al. 2015). In part this has been because in most
settings HCV treatment rates in PWID have been too low and surveillance data are too imprecise to detect
changes in HCV transmission or chronic HCV prevalence. The current scale-up of HCV treatment in some
settings compared to others provides an opportunity to establish empirical evidence, if there are sufficient
data available prior and after the intervention scale-up. An additional complexity with evaluating HCV TasP
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is that the outcome of interest is chronic HCV prevalence among PWID in the community, which requires
ongoing surveillance of PWID. As PWID are a hidden population, there will be uncertainty in prevalence of
chronic HCV, prevalence of PWID, and exposure (HCV treatment per chronically infected PWID) that will need
to be addressed.

The UK has ongoing surveillance of HCV in PWID in place. For example, in Scotland the needle
exchange surveillance initiative (NESI) has been conducted on 5 occasions (years 2008–2009, 2010, 2011–2012,
2013–2014 and 2015–2016). The estimatedHCVprevalence among PWID in Tayside, GlasgowandRest of Scot-
land (which averages data from 5 other sides where NESI was carried out) is shown in Table 1. We consider
a setting where HCV treatment is scaled-up in Tayside, which we expect could affect subsequent HCV preva-
lence in that region. Our objective is to evaluate under what conditions the CIM could be used to infer the
magnitude of HCV TasP in Tayside.

Evaluation of HCV TasP using the CIM

Let t index the various waves of NESI, where t = 1 corresponds to the 2008–2009 swap, t = 2 to 2010, etc, and
let i = 0,… , n index the various units, where i = 0 is the treated unit. In future NESI surveys (t > 5) it could
be possible to evaluate the effect that HCV treatment scale-up had on virus prevalence by comparing p(1)0t , the
prevalence at time t under the intervention in the treated site, to an estimate of the counterfactual p(0)0t , the
prevalence that we would observe in the treated site if no intervention took place. That is, 𝜃t = p(1)0t − p(0)0t ,
where 𝜃t is the causal effect of HCV TasP on prevalence at time t (t > 5).

The CIM makes use of the data in the pre-intervention period (t ≤ 5) and post-intervention data in the
control sites to obtain estimates p̂(0)0t of the counterfactuals for t > 5. It fits a Bayesian structural time-series
model to the outcome in the pre-intervention period. Following standard modelling practice with prevalence
data we choose to model y(0)0t = log p(0)0t

1−p(0)0t
instead of p(0)0t directly, and further assume that

y(0)0t = 𝜇t + 𝜷⊤yt + 𝜖t (1)

𝜇t = 𝜇t−1 + 𝛿t, (2)

Table 1: The NESI dataset.

NESI dataset summary

Unit 2008/9 2010 2011/12 2013/14 2015/16

Estimated HCV prevalence

Tayside 30.2 40.2 38.5 46.7 43.6
Greater Glasgow 66.1 63.6 60.1 65.9 60.8
Rest of Scotland 43.9 45.3 43.8 45.0 48.0

Sample size

Tayside 189 219 117 169 195
Greater Glasgow 905 1336 858 813 812
Rest of Scotland 1335 1403 1048 1130 1320

Table presents the estimated HCV prevalence among PWID for the 3 sites and 5 occasions in which NESI was carried out. The
sample size based on which these estimates were obtained is shown in the bottom panel.
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where 𝜇t is the temporal local level component, yt = (y1t, y2t)
⊤ is the outcome (logit-prevalence) on control

sites at time t,2 𝜷 = (𝛽1, 𝛽2)
⊤ are the regression coefficients, 𝜖t ∼ N(0, 𝜎2

𝜖
) and 𝛿t ∼ N(0, 𝜎2

𝛿
). In the model

of Eqs. (1) and (2), the local level component 𝜇t induces temporal correlations in y(0)0t , and the regression
component exploits correlations of y(0)0t with outcomes on the control sites.

The parameters of model (1) and (2) are estimated using Markov chain Monte Carlo (MCMC) techniques
(Brodersen et al. 2015). Posterior simulations are simplified using the following conditionally conjugate prior
distributions. We let 𝜎−2

𝜖
, 𝜎−2

𝛿
∼ Gamma( 𝜈2 ,

s
2 ). Brodersen et al. (2015) explain that 𝜈 can be thought of as

prior sample size and s can be chosen such that s∕𝜈 is a guess for the variance. In practice, we can set
s = 𝜈(1− R2)�̂�2

y, where �̂�2
y is the sample variance of y(0)0t and R2 is the proportion of the variability in y(0)0t we

expect to be explained by the regression component.
For𝜷, a spike-and-slab prior (Chipman, George, andMcCulloch 2001; George andMcCulloch 1993, among

others) is used. This prior assumes that for each 𝛽 i, there is a binary 𝛾 i such that 𝛽 i ≠ 0 when 𝛾 i = 1 and
𝛽 i = 0 otherwise.We let each 𝛾 i ∼ Bernoulli(qi), where qi is the prior probability that the coefficient of unit i is
non-zero. The expected number of units with 𝛾 i ≠ 0 using this prior is∑n

i=1qi. Hence, we can set qi = k∕n for
all i to encourage only k control unitswith 𝛾 i = 1 (𝛽 i ≠ 0). Conditionally on 𝜸 = (𝛾1,… , 𝛾n)

⊤, let𝜷𝜸 include the
elements of 𝜷 for which 𝛾 i = 1. We assume that 𝜷𝜸 ∼ N

(
0, 𝜎2

𝜖
Σ𝜷

)
, where 𝚺𝜷 is some prior covariance matrix

(e.g. the identitymatrix). Theuseandcareful tuningof the spike-and-slabprior is important inepidemiological
applications for two reasons. Firstly, by setting some 𝛾 i = 0 at each MCMC iteration, the method excludes
controls whose data are not predictive of y(0)0t , and thus reduces the total number of parameters that need to
be estimated. This is useful since the total number of pre-intervention time points is typically similar (or even
smaller) than the total number of control units. Secondly, by calculating the posterior inclusion probability
(the posterior mean of 𝜌i) for each control unit, it allows us to identify the ones that mostly contribute to the
estimation of the counterfactual.

As additional data (t > 5) become available, counterfactuals can be obtained by extrapolating themodel
of Eqs. (1) and (2). Let �̂�5, �̂�, �̂�

2
𝜖
, �̂�2

𝛿
be a sample from the posterior distribution of parameters 𝜇5,𝜷, 𝜎

2
𝜖
, 𝜎2

𝛿
,

respectively. A sample from the posterior predictive distribution of p(0)06 , the counterfactual prevalence in the

first post-intervention survey, will be p̂(0)06 =
exp

(
ŷ(0)06

)

1+exp
(
ŷ(0)06

) , where

ŷ(0)06 = �̂�5 + �̂�6 + �̂�⊤y6 + �̂�6, (3)

with �̂�6 ∼ N(0, �̂�2
𝛿
) and �̂�6 ∼ N(0, �̂�2

𝜖
). Assume that we draw L such samples, p̂(0)06,𝓁 (𝓁 = 1,… , L). Then, L

samples from the posterior distribution of the causal effect at t = 6 will follow as �̂�6,𝓁 = p(1)06 − p̂(0)06,𝓁, from
which we obtain a point estimate (the mean of �̂�6,𝓁) and a credible interval (the 2.5 and 97.5% percentiles of
�̂�6,𝓁).

Evaluating the CIM using the HCV TasP dataset

Setting

Our objective is to assess the potential of the CIM for estimating the effect of HCV TasP using the existing
UK HCV data (Section 2) combined with post-intervention data that will be collected. More specifically, we
investigate the performance of the estimator of the causal intervention effect provided by the CIM method
and identify the characteristics of the data that most affect the quality of the estimates of �̂�t. Our evaluation

2 Note that for the control units i > 0,wedonotneed todefineboth y(0)it and y(1)it since theseunits arenot subject to the intervention:
for the controls units we have that yit = y(0)it for every t.
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will also inform the potential of CIM for similar datasets. To achieve these goals, we performed a series of
simulations.

First, we note that the performance of the estimator of 𝜃t depends solely on the performance of the
estimator of p̂(0)0t , since 𝜃t = p(1)0t − p(0)0t and p(1)0t is observed. More specifically, if p̂

(0)
0t is an unbiased estimate

of p(0)0t , then �̂�t is an unbiased estimate of 𝜃t. Furthermore, then the 95% CI of 𝜃t will also include the true
intervention effect if and only if the 95% CI of p(0)0t includes the untreated counterfactual. Therefore, it suffices
to evaluate p̂(0)0t . We did this by considering the following performance measures at each post-intervention
time point: (i) the mean (over simulated datasets) of the prediction error (MPE),3 where in each simulated
dataset the prediction error is defined as the difference p(0)0t − p̂(0)0t ; (ii) the standard deviation (over simulated
datasets) of the prediction error (sd-PE)); (iii) the mean (over simulated datasets) width of credible intervals
of p(0)0t (CIW); (iv) the % false discovery rate (over simulated datasets) (FDR), where in each dataset a false
detection occurred when p(1)0t = p(0)0t (i.e. 𝜃t = 0) and the 95% CI of p(0)0t did not include p(1)0t ; and (v) the %
detection rate (over simulated datasets) (power), where in each dataset a detection occurred when p(1)0t < p(0)0t
(i.e. the intervention reduced prevalence) and the lower bound of the 95% CI of p(0)0t was higher than p(1)0t .

We simulated 10,000 datasets, each consisting of HCV logit-prevalence measurements yit for n+ 1

units and T times points. At each time point t, we drew yt =
(
y(0)0t , y1t,… , ynt

)⊤

∼ MVN (m, S) that is the
mean, variance and correlation of the outcomes remained constant over time. We drew the elements of
m from a Uniform (mmin,mmax); mmin/mmax is the minimum/maximum logit-prevalence found in the NESI
dataset presented in Section 2. We set S11 = 𝜎2

y . The remaining diagonal elements of S are drawn from a
Uniform

(
s2min, s

2
max

)
; s2min /s2max is the minimum/maximum over all i of s2i , where s

2
i is the sample variance of

the time-series of unit i in the NESI dataset. To obtain the off-diagonal elements of S, it suffices to pick the
values of 𝜌ij, the degree of correlation between the data on units i and j, where i, j ∈ {0,… , n} and i ≠ j. We
set 𝜌0j = 𝜌 for all 1 ≤ j ≤ k2 and 𝜌0j = 0 when j > k2. That is, the treated unit is only correlated to the first
k2 controls units. Further, for all i, j such that 1 ≤ i, j ≤ k2 and i ≠ j, we set 𝜌ij = 0.8𝜌. Finally, for i > k2 (i.e.
the k1 = n− k2 control units that are not correlated to the treated unit), we have that 𝜌ij = 0 for all j ≠ i i.e.
these units are not correlated to any other unit in the dataset. For each simulated dataset, we introduced
intervention effects (i.e. obtained p(1)0t ) by reducing p(0)0t in the post-intervention period by a certain %. More
specifically, we introduced 21 different effects from 0 to 50% with increments of 2.5%.

We attempted to generate data that mimic the HCV TasP application of Section 2. Therefore, we used
the following simulation parameters in our baseline setup. The variance 𝜎2

y was set equal to the variance
of the logit-prevalence measurements of the treated unit in the motivating dataset. Let T = t1 + t2, where t1
is the total number of pre-intervention data points per unit and t2 is the total number of post-intervention
observations. We set t1 to be 6 and 12, t2 = 3 and n = 8. In practical applications, we expect that only a small
proportion of the control units to be correlated with the treated unit. Hence, in the baseline simulation we set
k1 = 6 and k2 = 2. For the k2 ‘useful’ controls, we assumed that 𝜌 = 0.8.

In order to identify the features of the data that mostly affect the quality of causal estimates provided
by the CIM, we performed several sensitivity analyses. In each sensitivity analysis we repeated the baseline
simulation altering a single characteristic of the dataset and re-evaluated the five performance measures.
The characteristics that we considered are (I) the variability of the outcome, of the treated unit 𝜎2

y; (II)
the total number of observations in the pre-intervention period, t1; (III) the total number of control units
whose outcomes are not correlated with the outcome of the treated unit, k1; (IV) the total number of useful
controls, k2; (V) the level of correlation between y0t and the outcomes of the useful controls, 𝜌; and (VI)
the hyperparameters of the spike-and-slab prior on the regression coefficients 𝜷. The values that we use for
characteristics I–V are shown in Table 2.

3 We choose not to use the term ‘bias’ because the estimand is different for each dataset.



P. Samartsidis et al.: Evaluation the CIM power for HCV treatment as prevention | 7

Table 2: Feature values used for the sensitivity analyses.

Characteristic Values considered

𝜎2
y 0.005, 0.04, 0.75

t1 6, 9, 12, 24
k1 6, 12, 24
k2 2, 4, 6
𝜌 0.6, 0.7, 0.8
Prior Uninformative, Calibrated

The values used in the baseline simulations appear in bold.

Results

The MPE, sd-PE, CIW and FDR for the baseline simulations are shown in Table 4 of Appendix A. As can be
seen in Table 4, the MPE at each post-intervention time point in the baseline setup was negligible (compared
to the sd(MPE)), for both t1 = 6 and t1 = 12. This fact implies that, over the 10,000 simulated datasets, the
estimates p̂(0)0t coincided on average with the corresponding ‘true’ values p(0)0t . It is confirmed in Figure 4 of
Appendix A,wherewe plot the simulated values of p(0)0t against the estimated causal effect �̂�t. However, we see
that there is positive correlation between p(0)0t and �̂�t i.e. the effect of the intervention is overestimated when
the prevalence in the treated unit is high and underestimated when it is low. This correlation is expected due
to the use of the logit transformation and drops with higher t1. We also see that the FDR is very close to the
nominal 5% for t1 = 12, and slightly inflated for t1 = 6.

The power thatwe obtained at each t > t1 in the baseline simulations can be seen in Figure 1. As expected,
the power increased with the % decrease in prevalence due to the intervention, and reached 100% when the
intervention reduced prevalence by half. Lower drops in prevalence were associated with lower power. For
example, a 10%decrease inHCVprevalence is onlydetectedwithprobability 25 and30%for t1 = 6and t1 = 12,
respectively. The power achieved was comparable at all three post-intervention time points. Nonetheless, it
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Figure 1: Baseline simulations results. The plots shows the power of detecting an intervention effect obtained by the CIM, as a
function of the intervention effect magnitude. The left panel shows results for t1 = 6 and the right panel for t1=12. All results are
based on 10,000 simulated datasets.
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decreased with t. This decrease is due to fact that the variance of the random walk component is (t − t1)𝜎2
𝛿

(t > t1) which leads to wider credible intervals as t increases. Generally, in practical applications we expect
that the uncertainty in the estimates of p(0)0t provided by the CIM will increase with t unless the time-series
component has no contribution (this could be the case, for example, when all of the variability is attributed
to the regression component).

One of the advantages of the Bayesian approach is that several quantities of interest can be calculated
directly from the posterior distribution of the model parameters. For example, rather than testing if 𝜃t is zero
at each t > t1, one can use a summary to test for an overall effect. We examined the average causal effect in
the post-intervention period defined as

𝜗 = 1
t2

T∑

t=t1+1
𝜃t. (4)

A credible interval for 𝜗 that excluded zero was considered as evidence of an overall intervention effect in
the entire post-intervention period. Figure 1 presents the power that we obtained when we tested an overall
intervention effect, when this effect was constant (i.e. 𝜃t = 𝜃 for all t > t1). As expected, there were big
gains in power when we summarised the information across all t2 = 3 post-intervention times. For example,
for t1 = 6, a prevalence decrease of 20% was detected with probability 80% when we used 𝜗 to test for it
but only with probability 60% when we examined each post-intervention time point individually. Hence, in
practical applications, it is worth monitoring the outcome of the treated units on multiple time points after
the intervention is introduced, as this can increase the chances to detect an intervention effect. Moreover, it
might be worth considering the average effect only in the last s < t2 post-intervention time points since some
interventions might not be effective immediately after introduction.

The results of our sensitivity analyses are summarised in Table 4 of Appendix A, Figure 2 and Figures 5
and 6 of Appendix A. Figures 2, 5, and 6 plot the power achieved by the CIM against the magnitude of the
intervention effect at post-intervention times t1 + 1, t1 + 2 and t1 + 3, respectively. The MPE was negligible
(compared to its standard error) across all sensitivity analyses and therefore is not further discussed. For
the remaining performance measures, the results that we obtained for t = t1 + 1 were similar to the results
obtained for t = t1 + 2 and t = t1 + 3. Hence, for the remainder of this section we focus attention to the first
post-intervention time point.

The value of t1 largely affected the performance of the CIM. As expected, increasing t1 caused all sd-PE
and CIW to decrease (Figure 2(a)), since the parameters were estimated with higher accuracy. Further, the
FDR was inflated for low values of t1. One possible explanation is that when t1 was low, it was more likely
to observe strong correlations between the treated and a control unit by chance, thus assigning non-zero
regression coefficients to control units whose outcomeswere not truly correlated to the outcome of the treated
unit. As expected, the variance of the outcome 𝜎2

y was crucial for the performance of the CIM. Larger outcome
variance led to larger sd-PE and CIW (Table 4), and to a substantial drop in power (Figure 2(b)). Nonetheless,
for fixed t1, the values of the FDR were similar across all values of 𝜎2

y considered.
The sd-MPE, CIW and power were not very sensitive the total number of ‘unrelated’ controls k1 (Figure

2(c)). With increasing k1, sd-PE and CIW increased, whereas the power dropped. The reason could be that
there was a need to estimate more regression parameters as k1 increased. This effect was more prominent
when t1 = 6. However, this drop in performancewas negligible.We believe that this robustness to the addition
of controls whose outcomes are not informative of the outcome of the treated unit is due to the spike-and-slab
prior which successfully identifies these controls and, on average, set their coefficients to zero. This finding
suggests that in real problems, since the expected drop in power is negligible, it is preferable to include all
the available control units and allow the CIM to identify the ones that are important.

Increasing k2 slightly improved power but the gains were small, since each additional control could
only explain a small proportion of the variability in y(0)0t that was not already explained by the existing
‘useful’ controls. Another factor that affected the quality of the causal estimates was the level of correlation
between the outcome of the treated unit and the outcomes of ‘useful’ controls. This is expected since the
method uses the regression component to exploit linear relationships in the data. Therefore, the stronger
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these relationships were, the higher was the proportion of the variability of y(0)0t explained by the regression
component. As a result, sd-PE and CIW decreased, leading to an increased power. For small intervention
effects, satisfactory power was only achieved for large values of 𝜌 (Figure 2(e)).

Our final sensitivity analysis aimed to demonstrate the effects of the specification of the prior. Therefore,
we repeated the baseline simulations, using a different spike-and-slab prior for the regression coefficients 𝜷.
To this end, the informative spike-and-slab prior presented in Section 2 was replaced by the software default.
Figure 2(f) presents the power under the two prior distributions. The power to detect an effect substantially
dropped under the software default prior. This was the case because this prior was less informative compared
to the prior that we initially used, and thus led to greater posterior uncertainty and therefore wider credible
intervals for the untreated counterfactuals.

Measuring the outcome with error

Effect on the performance of the CIM

The CIM assumes that the outcome of interest is observed without error in both the treated and the control
units. This assumption is plausible in many real life problems, e.g. the one considered by Brodersen et al.
(2015) where the outcome of interest is the total number of daily visits in various web-pages (the units) which
can be precisely enumerated. Other examples of outcomes that can be measured without error (or estimated
very precisely) include the daily sales of a product in a geographical region, the total number of deaths due
to a disease in a hospital and the annual GDP of a country. However, in many epidemiological studies, it
might not possible to observe the outcome without some error. For example, in the motivating application of
Section 2, the true HCV prevalence in each unit is unknown and it is estimated through surveillance data as
p̃it = kit

Nit
, where kit and Nit represent the total number of infected individuals and the total sample size from

the surveillance study in unit i at time t, respectively. Note that we refer to p̃it as imprecise prevalence in order
to distinguish it from the estimated prevalence p̂(0)it obtained from the CIM.

To assess the impact that the use of imprecise outcomes (instead of the true, unknown outcomes) had
on the performance of the CIM, we re-analysed the same 10,000 simulated datasets that we analysed for the
baseline simulation of Section 3, when t1 = 12 and t1 = 24. Instead of implementing the CIM to yit = log pit

1−pit
,

we implemented it to ỹit = log p̃it
1−p̃it

, where p̃it = kit
Nit

and kit were simulated from a Bin (Nit, pit) distribution.
We evaluated the performance considering the same performance measures as in Section 3. We only present
the power at the first post-intervention time point because we found that the results were very similar in the
remainingpost-intervention timepoints.Weartificially introduced the intervention effects thatwerenon-zero,
by drawing the k0t from a Bin

(
Nit, p∗0t

)
, where p∗0t were obtained by reducing the original prevalence p0t. The

sample size across units and time points was constant, i.e. Nit = n for all units i and times t. We simulated
n = 50, n = 50 and n = 150.

Table 3 (sd-PE, CIW and FDR) and Figure 3 (power) summarise the results for t1 = 12; the results for
t1 = 24 are similar and therefore not shown. For comparison, we also show the results that we obtained in
the baseline simulation when we assumed outcomes were measured without error. As expected, the use of
the imprecise outcomes p̃it instead of the perfectly measured outcomes pit degrades the performance of the
CIM substantially. Table 3 shows that both the sd-PE and CIW increase when the CIM is implemented using
p̃it. For example, the CIW obtained when the sample size n = 50, was approximately twice the width that we
obtained using the original data. As a result, there was also reduced power to detect an intervention effect
(Figure 3). For instance, the power to detect a 25% decrease using the approximated outcomes and n = 50
was roughly 37%, as opposed to 75% for the exact prevalence outcomes.

The increase in uncertainty (and therefore loss of power) occurred because ỹit are noisy observations of yit
and therefore the correlations between ỹ0t and ỹit (i > 0)wereweaker than the correlations between y0t and yit
in the original simulation study. As a result, the estimates of regression coefficients of the k1 predictive control
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Table 3: Effect of measurement error on the performance of the CIM.

Method n sd-PE CIW FDR

CIM ∞ 4.30 4.26 4.26 0.17 0.18 0.19 0.059 0.047 0.043
CIM 50 7.82 7.78 7.70 0.29 0.30 0.32 0.173 0.153 0.136
CIM 100 7.00 7.04 7.03 0.25 0.26 0.27 0.161 0.142 0.130
CIM 150 6.63 6.57 6.67 0.23 0.24 0.25 0.154 0.139 0.122
EIV 50 6.73 6.72 6.67 0.37 0.37 0.37 0.057 0.055 0.049
EIV 100 6.25 6.26 6.26 0.29 0.29 0.29 0.075 0.069 0.074
EIV 150 6.00 5.97 5.98 0.25 0.25 0.26 0.088 0.084 0.083

The table presents standard deviation of the prediction error (sd-MPE), mean credible interval width (CIW), and false discovery
rate (FDR) in the baseline setting with t1=12, when the CIM and CIM-EIV methods are applied to the imprecise outcomes p̃0t . For
reference, we show results for the CIM implemented to the true outcomes p0t (CIM, n=∞). For each performance measure, the
three columns correspond to the three post-intervention time points. The values of sd-PE are multiplied by 102. Results are
based on 10,000 simulated datasets.
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Figure 3: Effect of measurement error on the performance of the CIM. The figure presents the power achieved for t = t1 + 1 when
the CIM and CIM-EIV are applied to the imprecise outcomes p̃0t . For reference, we show results for the CIM when implemented to
the true outcomes (CIM, n = ∞). The left and right panels correspond to t1 = 12 and t1 = 24, respectively. Results are based on
10,000 simulated datasets.

units were biased downwards and the estimates of 𝜎2
𝜀
were biased upwards. In the classic linear regression

setting this phenomenon is known as regression dilution, see e.g. Frost and Thompson (2000).
In addition to the increased uncertainty in the estimates of the causal effect, the use of imprecise

measurements also led to an increased FDR (Table 3). More specifically, for n = 50, the FDR at t = t1 + 1
was roughly 16%, more than triple the desired nominal level of 5%. A potential explanation is that some
control units appeared to be highly correlated with the treated unit in the pre-intervention period by chance,
because of the error in p̃it. As a result, the coefficients of these unitswere over-estimated, leading to inaccurate
prediction of the untreated counterfactual in the post-intervention period.

Both of these problems, i.e. increased uncertainty in the causal estimate and increased false positive
rate, became more profound when the sample size n was reduced. The reason is that as n decreased, the ỹit
become more variable (i.e. the measurement error increased).
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An errors-in-variables causal impact method

The simulation study of Section 4.1 shows that measurement error has an adverse impact on the performance
of the CIM, reducing power and increasing the false positive rate. The former is expected and inevitable when
it is not possible tomeasure the outcome precisely. However, an increased false positive rate is an undesirable
property which can reduce the reliability of a significant finding obtained using the CIM, especially when
the estimated intervention effect is small. In this section, we extend the CIM in an attempt to deal with this
problem.

We propose a two-level Bayesian hierarchical. At the first level, we have the data. Let k(0)0t be the total
number of infected individuals in the treated units when there is no intervention. We have that k(0)0t = k0t
when t ≤ t1 and missing for t > t1. Further, let k

(1)
it = kit (t > t1) be the total number of infected individuals in

the treated unit when the intervention is in effect. We assume that

k(0)0t ∼ Bin
⎛
⎜
⎜
⎝
N0t,

exp
(
y(0)0t

)

1+ exp
(
y(0)0t

)
⎞
⎟
⎟
⎠
,

k(1)0t ∼ Bin
(
N0t, p

(1)
0t

)
(t > t1),

kit ∼ Bin
(
Nit,

exp (yit)
1+ exp (yit)

)
(i > 0). (5)

Equation (5) relates the logit-prevalence to theobserveddata thusacknowledging that there is uncertainty
regarding its true value. The smallerNit is, the larger the uncertainty regarding the true value of yit. Depending
on the application, one might need to adopt observation Eq. (5) in order to account for more complex
relationships between the observed data and the logit-prevalence (e.g. when there are data from multiple
sub-populations of individuals).

At the second level, we have the unknown prevalence parameters. Similar to the CIM, we assume that
the untreated logit-prevalence y(0)0t in the treated unit can be written as

y(0)0t = 𝛼t + 𝜷⊤yt + 𝜀t, (6)

where 𝜀t ∼ Normal(0, 𝜎2
𝜀
) for all t. For the treated prevalence p(1)0t in the treated unit we a priori assume that

p(1)0t ∼ Beta(1, 1) for all t > t1. For 𝜎2
𝜖
and 𝜷 we use the same prior specifications as in Section 2.1. The intercept

𝛼t arises from an AR(1) process i.e.
𝛼t = 𝜇 + 𝜙(𝛼t−1 − 𝜇)+ 𝜂t, (7)

where 𝜙 ∈ (−1, 1) is the persistent parameter and 𝜂t ∼ N(0, 𝜎2
𝜂
). For the AR hyperparameters 𝜇, 𝜎2

𝜂
and 𝜙

we use similar priors as Kastner and Frühwirth-Schnatter (2014). More specifically, we let 𝜇 ∼ n(0, 103),
𝜎2
𝜂
∼ Gamma(0.5, 0.5

(1−R2)�̂�2
y0
) and 𝜙+1

2 ∼ Beta(1, 1), where R2 and �̂�2
y are defined as in Section 2.1.

Samples 𝜃t,𝓁 (𝓁 = 1,… , L and t > t1) from the posterior distribution of the causal effects are obtained
as p(1)0t,𝓁 − p(0)0t,𝓁. The p(1)0t,𝓁 are drawn from their Beta(1+ k0t, 1+ n0t − k0t) posterior distributions. The p(0)0t,𝓁
are drawn from their posterior predictive distributions via MCMC. The proposed algorithm is a block Gibbs
sampler that is on each iteration, one parameter (or block of parameters) is drawn from its full conditional
distribution given the remaining parameters and data. The indicator variables 𝛾 i are drawn one at a time,
see e.g. Sutton (2020). The AR hyperparameters 𝜇, 𝜎2

𝜂
and 𝜙 are jointly updated using a Metropolis-Hastings

step (Kastner and Frühwirth-Schnatter 2014). The unknown logit-prevalence yi =
(
yi1,… , yit1

)⊤ are drawn
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one at a time from their normal full conditionals; for this to be possible we make use of the Pólya–Gamma
representation of the Binomial likelihood as proposed by Polson, Scott, and Windle (2013). The remaining
model parameters 𝜶 =

(
𝛼1,… , 𝛼t1

)⊤, 𝜷 and 𝜎2
𝜀
have conjugate prior distributions and are therefore easy to

update. The code that we used has been made publicly available.4
In the model of Eqs. (5)–(7), the covariates yt are random variables. Hence, the model is similar in spirit

to errors-in-variables (EIV) models often used to deal with the problem of regression dilution in practice,
see for example Dellaportas and Stephens (1995). We therefore refer to this model as the CIM-EIV approach.
However, it is more general than an EIV model as it allows for the response variable y0t to be measured with
error as well.

Application to the simulated data

We applied the proposed CIM-EIV method to the data that we simulated for the experiment of Section 4.1.
We used the same R2 and �̂�2

y (for the priors on the variance parameters) as we did for the CIM. The prior
distributions for the spike-and-slab parameters were the same as for the CIM with the exception that 𝚺𝜷 was
set to 103I.

The sd-PE,CIWandFDRarepresented inTable3.Wesee that forfixedn, the sd-PEobtainedby theCIM-EIV
was lower compared to the one obtained by the CIM. However, the proposedmethod successfully adjusted for
theuncertainty regarding the true values of the prevalence thus leading towider credible intervals. As a result,
we see that the proposed EIV approach reduced the FDR compared to the CIM, and that the benefits were
more apparent when n was small. When we increased n, the magnitude of the difference ỹit − yit decreased
and therefore the CIM-EIV did not improve much compared to the CIM (whose performance in terms of the
FDR was already satisfactory). Therefore, we recommend that the CIM-EIVmethod is used especially in cases
where the problem of dilution is expected to be high.

Note that the power of the CIM-EIV method was lower compared to the power of the CIM (see Figure 3).
This is expected, since the CIM-EIV relaxes the assumption of the CIM that the outcomes are known precisely.
In order to increase the power, one can combine post-intervention time-points as explained in Section 3.

Discussion

Main findings

Using an HCV treatment as prevention intervention as a case study, our paper presents a series of simulations
studies to investigate the potential of the CIM for use in observational epidemiological/public health studies
aiming to estimate the causal effect of an intervention on an outcome of interest using aggregate time-series
observational data. Overall, our experiments show that if the untreated outcome of the treated unit is linearly
related to the (untreated) outcomes of some of the controls units and the effect of the intervention is effective,
then the method will provide satisfactory power. We have found that the main characteristics of the data that
affect the ability of the CIM to detect a non-zero intervention effect are the length of the time-series in the
pre-intervention period, the variability of the outcome and the strength of the linear relationships between
the pre-intervention data on the treated unit and the control units.

This work has demonstrated some of the potential merits of adopting a Bayesian approach for this
problem. In particular, we have shown that it is possible to improve power by summarising information
from all post-intervention time points rather than considering each one separately. Moreover, our simulation
experiments suggest that if the prior distributions for the CIM model parameters are not chosen carefully

4 https://osf.io/4cwps/?view_only=0f6071a38d5e472dbcabc20d99dcb2e6.

%20https://osf.io/4cwps/?view_only=0f6071a38d5e472dbcabc20d99dcb2e6
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then the method may provide misleading results. Finally, we have studied the implications of prevalence
being measured with error on the performance of the CIM. Specifically, our simulations show that when the
prevalence is estimated based on a small sample of individuals, the power of the method drops substantially
and the false positives rates are inflated. In such cases, it might be preferable to use the proposed CIM-EIV
approach.

Our work has important implications for HCV elimination initiatives and HCV TasP researchers. Theoret-
ical modelling studies have shown the substantial potential benefits of scaled-up HCV treatment for PWID
on reducing HCV chronic prevalence and incidence (Cousien et al. 2014; Durier, Nguyen, and White 2012;
De Vos and Kretzschmar 2014; Hellard et al. 2014; Martin et al. 2011; Martin, Miners, and Vickerman 2012a;
Martin et al. 2013a, 2013b;Martin et al. 2016a, 2016b, 2016c; Rolls et al. 2013; Vickerman,Martin, andHickman
2011; Zeiler et al. 2010). However, empirical studies are needed to confirm that HCV treatment as prevention
expansion can yield population declines in prevalence and incidence. As randomized controlled trials test-
ing HCV TasP may be logistically difficult, prohibitively expensive, or ethically questionable, observational
studies may provide alternative evidence for a TasP effect. Our findings, that the CIM method is a robust
method for detecting a TasP intervention effect using surveillance data from the UK, provide an important
methodological tool for use in empirical evaluations of HCV TasP using observational data. Indeed, ongoing
observational studies of HCV treatment expansion among PWID such as occurring in Dundee and across the
UKas part of the EPiTOPE (Hickman et al. 2019) studywill, when combinedwith CIMmethods, shed important
new information on the effectiveness of HCV TasP in the real-world.

Since our simulated data have been generated based on an existing UK HCV dataset regarding the
effectiveness of TasP against the HCV, we expect that our conclusions will be relevant to other public health
applications in clinical practice.

Limitations and future research

This work has limitations. First, in our simulation experiments we have assumed that the mean untreated
logit-prevalence remains constant over time in both control and treated units. Further, we have assumed that
the correlation between the logit-prevalence of the treated unit and the logit-prevalence of control units lalso
remains constant. Hence, in the future, it is worth studying the performance of the CIM (in terms of both bias
and power) under data generating mechanisms where these assumptions do not hold. This could be done,
for example, by introducing a declining trend in a subset of the units. Second, in future research, it is worth
comparing the performance of the CIM with other existing methodologies, such as difference-in-differences
and generalised linear mixed models, since the results from existing comparative studies (Gobillon and
Magnac 2016; Kinn 2018; O’Neill et al. 2016; O’Neill et al. 2020) may not generalise to the type of data that we
consider.

There are many ways in which the proposed CIM-EIV approach can be improved. One idea is to account
for the fact the unknown prevalence in control units is likely to show serial correlations. For example, one
could assume that the logit-prevalence in control units is an AR(1) process. Another option is to account for
correlations between controls units. Both of these extensions are likely to improve the precision of the causal
estimates provided by the method.

Finally, we note that we use UK surveillance data to construct our case study, which incorporates regular,
routine surveillance among PWID. In many settings, surveillance among PWID occurs more sporadically, or
among fewer sites, or does not occur at all. In these settings, CIMmethods may not generate sufficient power
to detect an intervention effect, or the observational period may need to be lengthened. Further studies in
different settings with alternative surveillance systems are warranted.

Research funding: This study was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.,
Kenilworth, NJ, USA, and the National Institute for Health Research (NIHR) Programme Grants for Applied
Research programme (Grant Reference Number RP-PG-0616-20008). The study was further supported by the
National Institute for Health Research Health Protection Unit on Evaluation of Interventions. NNM and VDG
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Disease (NIAID). DDA was funded by the UK Medical Research Council grant MC_UU_00002/11. The views
expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and
Social Care.

Appendix A: Supplementary simulation results
In this sectionweprovide further results for the simulationstudyofSection3. Table4presentsmeanprediction
error (MPE) of the causal estimates, standard error of the PE (sd-PE), mean credible interval width (CIW) and
false discovery rate (FDR) in all baseline settings and sensitivity analyses. Figure 4 shows simulated p(0)0t
against estimates �̂�t obtained in baseline simulations, for all three post-intervention times. Figures 5 and 6
show the power achieved by the CIM in all baseline settings and sensitivity analyses, at t1 + 2 and t1 + 3,
respectively.
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