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Abstract

Daniel James

Computational Methods For The Measurement

Of Protein-DNA Interactions

It is of interest to know where in the genome DNA binding proteins act in

order to effect their gene regulatory function.

For many sequence specific DNA binding proteins we plan to predict the

location of their action by having a model of their affinity to short DNA

sequences. Existing and new models of protein sequence specificty are

investigated and their ability to predict genomic locations is evaluated.

Public data from a micro-fluidic experiment is used to fit a matrix model

of binding specificity for a single transcription factor. Physical association

and disassociation constants from the experiment enable a biophysical in-

terpretation of the data to be made in this case. The matrix model is

shown to provide a better fit to the experimental data than a model ini-

tially published with the data.

Public data from 172 protein binding micro-array experiments is used to

fit a new type of model to 82 unique proteins. Each experiment provides

measurements of the binding specificity of an individual protein to approx-

imately 40000 DNA probes. Statistical, ‘DNA word’, models are assessed

for their ability to predict held back data and perform very well in many

cases.

Where available, ChIP-seq data from the ENCODE project is used to

assess the ability of a selection of the DNA word models to predict ChIP-

seq peaks and how they compare to matrix models in doing so. This in

vitro data is the closest proxy to the true sites of the proteins’ regulatory

action that we have.
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Chapter 1

Introduction

In the author’s opinion the study of protein-DNA interactions is an interesting

problem because we would like to mimic some of the engineering feats of Nature.1

Whilst RNA may be able to replicate in the absence of proteins under certain

conditions, anything more complicated, e.g. the simplest viruses, require some

protein DNA interactions in order to function.

In this introduction there is a brief characterisation of the central objects in

this thesis, namely DNA and DNA binding proteins. A brief overview of some

historical papers that are of significance to the study of DNA protein interactions

is then given. From this historical summary an idea of progress can be had. On

the one hand it is remarkable to think that 50 years ago the molecular structures

and basic functions of DNA and binding proteins were only just becoming avail-

able. On the other it is interesting to observe that certain questions, asked early

on, appear to be have been left unanswered whilst others have been re-visited

again and again.

1Richard Feynman famously said, ‘What I cannot create, I do not understand.’ Therefore,

in order to understand the most basic cell or virus we must be able to create it. As another

point of trivia, Craig Venter et al recently encoded the words, ‘What I cannot build, I cannot

understand.’ in a synthetic genome.
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1.1 DNA

DNA is a composition of the four nucleobases adenine, cytosine, guanine and

thymine in two linear sequences, each linear sequence twisted around the other

to form a double helical, macro-molecular structure. The composition and local

structure is well described but the three dimensional dynamic structure of the

macro-molecule is not as simple.

Cellular DNA is often thought to be found in the B-DNA structure, as pub-

lished by James Watson and Francis Crick in 1953 but sometimes, if not fre-

quently, DNA may occur in single stranded ‘bubbles’ [1], sometimes in families

of large, three dimensional, structures known as g-quadruplexes [2] sometimes in

alternative A-DNA, C-DNA or Z-DNA helical forms.

More recently an abundance of geometrical configurations of DNA have been

engineered in vitro, some of these are beginning to have applications in vivo [3,

4]. Together with structural proteins, DNA in vivo is further folded and packed

resulting in the objects we call chromosomes.

An example of the tertiary structure of DNA in prokaryotes is super-coiling

induced by bends, created by the bacterial DNA binding protein HU [5].

In eukaryotes there are several levels of DNA organisation within the nu-

cleus [6]. In recent years it has become possible to speak of the topology of the

eukaryotic genome [7, 8]. The organisation of chromosomes within the nucleus

can vary during the cell life cycle, we are beginning to understand the significance

of chromosome topology.

All this being said, for the rest of this thesis, what we will understand DNA

to be is a B-DNA molecule; uniform and still, in all its glorious symmetry. Just

like the model in the atrium of your local genomics institute.

1.2 DNA binding proteins

There are many proteins that interact with DNA for many different purposes. For

packing, bending, winding, cutting, joining, copying and annotating DNA there

are histones, topisomerases, nucleases, ligases, polymerases and methyl trans-

ferases, all of which interact proximally with the DNA molecule and have func-
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tions concerned with the processing of information stored in DNA [6, 9–11].

In order to describe what a DNA binding protein is we will need to agree on

what we mean by bind. The word ‘bind’ implies some physical interaction but

are all interactions significant? For instance, the sugar-phosphate backbone of

DNA is negatively charged and hydrophilic and so we might call a DNA binding

protein ‘any protein with a positively charged residue’ or ‘any protein able to

make polar bonds’.

In section 1.2.1 some historical context for the expression ‘sequence specific

DNA binding protein’ is given. Following this (Section 1.2.2) are descriptions of

some well known transcription factors and methods used to characterise them.

An effort has been made to include several of the transcription factors that appear

later in this thesis.

1.2.1 Early bio-physical models of DNA protein interac-

tions

In von Hippel and McGhee’s 1972 review, ‘DNA-protein interactions’, the authors

firstly categorise DNA interacting proteins between those that promote the flow

of information and those that repress the flow of information [12]. The authors

proceed to sub-categorise DNA-interacting proteins into those that interact with

specific nucleotide sequences and those that interact with DNA ‘non-sequence

specifically’. In their review several potential complexities of DNA protein inter-

actions are discussed, some of these are listed next,

• The interaction of a number of functional groups of both the protein and

DNA molecule must be involved in order to allow sufficient free energy

change for the tightness of observed interactions.

• Groups must be positioned, at least temporarily, in specific conformational

ways that permit thermodynamically favourable interactions.

• Recognition of specific binding sites can be a compound process where both

DNA melting and specific nucleotide occurrences are required or denied.

3
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• The ready inter-conversion of B form to A and C form double helix sug-

gests that the predominant B form might easily be deformed into structural

perturbants in solution.

• Cross-groove phosphate-phosphate spacings vary, providing local conforma-

tion distortions that can be recognised by a protein.

• Proteins may recognise base tilt or twist relative to the helical axis.

• Proteins may recognise pitch and stacking differences.

• Chemical modifications such as methylation, glucosylation and single strand

‘nicks’ may be recognised by a DNA binding protein.

• The pathways used by a protein in searching for an interaction site are likely

more complicated than a simple 3D diffusion.

• Protein protein interactions for proteins of the same type and different

types can affect binding affinity. Those of the same type may aggregate if

the binding affinity is increased by their cooperation.

Von Hippel and McGhee’s review was written at a time when the sequence of

the Lac operon had yet to be determined and the only other gene regulatory pro-

tein identified was the λ-repressor. Already though, the authors have described

a formidable set of physical parameters that should be quantified in a realistic

physical model of transcription factor activity. Apart from in a small number

of cases, many of the parameters described in the review are still hard to mea-

sure accurately. The parameter that is often given in a physical measurement of

protein-DNA interaction is the association constant. A short review of measure-

ments of constants for the lac repressor is given in the introduction of the next

chapter of this thesis (Chapter 2.1).

The archetypal ‘sequence specific’ DNA binding protein must originate from

the early 1960s and the work on gene regulatory mechanisms by Jacob and Monod
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on the lac repressor1 and that of Mark Ptashne and others on the λ-phage re-

pressor [13, 14]. It was established that the lac repressor was a protein and that

it bound to the DNA of the lac operator [14, 15]. A quantitative description

of the interaction between the lac repressor and the lac operator was given by

means of an assay that records the amount of repressor-bound operator DNA

stuck to a nitrocellulose filter. Thermodynamic and kinetic parameters were ob-

tained. Thermodynamic means ‘association constant’ and kinetic means ‘on and

off rates’; values for these parameters will be discussed further in chapter 2. At

this early stage, in 1968, it was also discovered that a mutated operator sequence

bound the repressor protein less well, i.e. had a smaller association constant [16].

A nucleotide sequence for the lac operator was not published until 1973 [17].

Several years later again, in 1980, it was found that the repressor actually bound

to other nucleotide sequences in the E. coli genome [18]. By the mid 1980s large

collections of nucleotide sequences that were candidate protein interaction targets

were becoming available. An early example described in 1983 was for sequence

differences at the −10 positions for 168 E. coli promoters [19]. The necessity of

computers for the processing of such data-sets was becoming apparent [20].

In the mid 1980s Stormo provided commentary on ways to present sequence

statistics, ways to parametrise models of protein-DNA interaction and links be-

tween the sequence statistics and physical parameters [21, 22]. Links between

sequence statistics and physically measurable quantities were being discussed by

others [23] during the same period.

Throughout the 1980s and 1990s several new families of DNA binding proteins

were discovered. Some of these are described in section 1.2.2. With growing

libraries of nucleotide sequences, the early 2000s saw a large number of algorithms

described for the inference of DNA binding loci in sequence data. A selection of

these algorithms are described in section 1.5.

1In their early publication, studying the Lac repressor of E. coli it was not understood that

the ‘repressor’ responsible for regulating the β-galactosidase gene was necessarily a protein, the

authors speculated that this ‘repressor’ might in fact be an RNA molecule. This was speculated

to be the repressor transcript.
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Polymerase 1099
Helix turn helix 537
Zinc finger 406
Homeodomain 213
Helix loop helix 161
Histone 159
High mobility group 114
Ribosome 81
Topoisomerase 73
Leucine Zipper 51
Forkhead 14

Table 1.1: PDB DNA binding structures by type or domain keyword.

Homo sapiens 754
Mus musculus 171
Escherichia 374
Saccharomyces 151
Drosophila 49

Table 1.2: PDB DNA binding structures by organism keyword.

1.2.2 Sequence specific DNA binding proteins

In the early 1980s crystal structures of DNA protein complexes were established.

The λ-phage proteins, Cro and cI, and the CAP protein of E. coli, were the first

to be described. For the first time researchers had a validated visual model for

how sequence specific, gene regulatory, proteins might perform their function. It

took longer to obtain a crystal structure for the lac repressor. The lac repressor

is a tetrameric protein that apparently yielded less easily to crystalisation [24].

The first structures were all of the helix turn helix variety.

At the time of writing, a search in the PDB for entries that include protein

and DNA reveals 2903 structures. Refining the search with keywords provides

the results in tables 1.1 and 1.2. The key-word ribosome turns up because of

many results for structures containing DNA and protein.

Perhaps the largest net that can be cast to catch ‘transcription factors’ is

via sequence homology. Any part of the genome that contains a candidate pro-

tein coding sequence can be assessed for containing a DNA binding domain. We
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can then classify all such candidate proteins as transcription factors. Pfam of-

fers a catalogue of protein domains including DNA binding domains [25]. The

number of ‘transcription factors’ is estimated to be 300 for E. coli and 3000 for

humans, based upon homology of DNA binding domains taken from amino-acid

sequences [26].

DNA binding proteins can be grouped into protein families [25, 27]. These

families can be constructed using structural similarity, amino acid sequence sim-

ilarity and nucleic acid sequence similarity. Proteins can be structurally, func-

tionally or evolutionarily related. A selection of sequence specific DNA binding

proteins will be described next with some reference to their families and when

they were first studied. Since the classification of these proteins into families is in

part a subjective exercise, historical context is useful to understand how they have

come about. Representative crystal structures from these families are drawn, all

of which have been taken from the protein data bank [28]. Physical structures

guide our physical intuition about the dynamics of the molecular interactions in-

volved in the DNA protein interaction and remind us that these interactions are

likely to be complicated. Looking at the complexity and diversity of the shapes

of these proteins convinces us that a ‘simple recognition sequence’ view of DNA

binding is unlikely to well describe all the interesting behaviour.

1.2.2.1 Helix turn helix

The lac repressor and cro repressor both have DNA binding domains of this type.

The cro repressor was the first DNA binding protein complex to be crystalised

and so was also the first protein DNA binding interaction to ‘have its picture

taken’ [24]. The helix turn helix family contains the Homeo domain, the Myb

DNA binding domain and the POU DNA binding domains [25] (Figure 1.1).

1.2.2.2 Basic helix loop helix

This family of DNA binding domains includes the transcription factors that are

under discussion in the first chapter. This domain is characterised by two α-

helices connected by a loop. The protein forms homo and hetero-dimeric com-

plexes when binding to DNA. The DNA binding domain is associated with an

7



1. INTRODUCTION

Figure 1.1: DNA protein structure for the lambda repressor. This helix-turn-
helix domain is shown as part of PDB structure 3bdn.
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Figure 1.2: DNA protein structure for SREBP-1A. This helix-loop-helix domain
is PDB entry 1am9.
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‘E-box’ consensus sequence of CACGTG. This domain is sometimes found in tan-

dem with another, such as the leucine zipper domain, that aids dimerisation [29].

The first examples of this type of binding domain were discovered in the late

1980s as mouse transcription factors [30]. The SREBP, Myc, Max and Clock

proteins have domains of this type (Figure 1.2).

1.2.2.3 Basic leucine zipper

This protein often forms dimers that recognise palindromic DNA sequences. This

family includes the Fos, Jun, Cebpb, Atf and Nrf2 proteins [25] (Figure 1.3). The

‘leucine zipper’ describes the periodic placement of leucine residues that ‘zip’

the protein into its dimeric form. This appears to have been first proposed in

1988 [31].

1.2.2.4 Forkhead domain

The first forkhead protein was identified from mutations of the forkhead gene

of Drosophila in 1989 [32] (Figure 1.4). These are described as pioneer proteins

because they are capable of directly decondensing chromatin [33].

1.2.2.5 High mobility group domain

These are the DNA binding domain of the chromatin associated high-mobility

proteins. These proteins bind to DNA in forms other than the B-DNA form.

Proteins containing this domain include the SRY, SOX and TCF factors [34] (Fig-

ure 1.5). The HMG proteins were originally discovered in the mid 1970s but their

DNA binding characteristics were not established until the early 1990s [35].

1.2.2.6 Zinc finger

The first eukaryotic transcription factor to be described was a member of a new

family of DNA interacting proteins, now known as zinc finger proteins [36] (Fig-

ure 1.6). Unlike the helix turn helix motif of the lac repressor and cro repressor

the zinc finger proteins have repeating ‘fingers’, each containing a zinc ion. The

structure and functionality of one of these proteins was first described in the mid

1980s [37].
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Figure 1.3: DNA- protein structure for the JUN BZIP homo-dimer. This basic
leucine zipper protein is PDB entry 2h7h.
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Figure 1.4: DNA- protein structure for Foxo4 DNA binding domain. This basic
forkhead box domain is PDB entry 3l2c.
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Figure 1.5: DNA-protein structure for the high mobility group D protein bound
to DNA. This is PDB entry 2nm9.
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Figure 1.6: DNA-protein structure for a zinc finger protein bound to DNA.
This is PDB entry 1tf6.
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By the mid 1990s this class of sequence specific DNA binding proteins, en-

gineered to carry nuclease machinery, had become an essential tool in genome

manipulation.

It is now possible to design zinc finger proteins to match unique genomic

sequences and so target attached machinery to a specific target [38].

Genome editing is currently a hot topic, particularly the CRISPR-Cas9 sys-

tem [39]. Specificity is a major hurdle to therapeutic applications, libraries of

zinc-finger proteins could offer what is needed [40].

1.3 Experiments that identify sequence specific

DNA interactions

The discovery of sequence specific DNA binding proteins developed along with

the techniques to determine their sequence specificity experimentally. These tech-

niques will be the subject of this section. The following are chosen to demonstrate

the major techniques and also some of the breadth of technologies that have been

used.

ChIP-chip

The ‘ChIP’ here stands for Chromatin ImmunoPrecipitation and the ‘chip’

means chip as in microarray.

In ChIP-chip covalent cross-links are made between proteins and DNA in

vivo. An antibody for the protein of interest is used to immunoprecipitate

the protein-DNA fragments.

The DNA fragments are then labelled in an amplification reaction and then

hybridized to a DNA micro-array in order to identify the fragments [41].

The availability of an antibody for the immunoprecipitation step is a con-

straint and also the specificity of the antibody is not guaranteed due to

their variability.

The distribution of DNA fragments can be biased by the immunoprecipita-

tion, amplification or labelling steps. For example, protein-protein interac-
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tions could cause the immunoprecipitation of DNA fragments that are not

directly interacting with the DNA.

The region of genomic DNA that is mapped to the fragment will be of

greater length than a transcription factor binding site typically. Further

statistical inference is therefore needed in order to determine protein-DNA

sequence specificity.

ChIP-seq

As with ChIP-chip, DNA fragments are immunoprecipitated after cross-

linking. In contrast to ChIP-chip, after amplification the DNA fragments

are directly sequenced, rather than being hybridized to an array [42]. This

offers the detection of any sequence rather than being limited to a sub-

set of probes chosen for an array. Motif finding algorithms are applied to

the sequenced fragments to localise binding sites [43] since the sequenced

fragments will typically be orders of magnitude longer than a transcription

factor binding domain.

DamID

In this experimental approach a fusion protein is made between the protein

of interest and Dam. The Dam protein methylates GTAC sequences in the

vicinity of the protein of interest. The fusion protein is introduced in vivo

via a plasmid. No antibody is required in this case, which is an advantage

over ChIP-seq. Genomic sequence from a control experiment is compared

to that of the methylated sequences to determine binding loci [41].

DNase I footprinting

This method of binding site identification was first described in1978 [44].

In brief, regions of DNA that have bound proteins are protected from a

DNase enzyme allowing the inference of bound sequences.

More recently this technique has been made genome wide and used to yield

hundreds of thousands of base pair resolution footprints [45].

SELEX
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The acronym is Systematic Evolution of Ligands by EXponential enrich-

ment. A target protein is exposed to a library of DNA oligonucleotides. A

sequence of rounds of gel shifting with bound protein and PCR amplifica-

tion of bound DNA segments results in a collection of DNA segments that

are biased towards those bound by the protein. SELEX has long been used

to test a protein’s affinity to synthesised sequences [46]. A high throughput

version of SELEX is now also available [47].

Electromobility shift assay (EMSA)

The essence of the experiment is to separate unbound DNA fragments

from complexes by electrophoresis in polyacrylamide gels [48]. Initially this

method allowed the estimation of association constants for the CAP protein

from the lac system in E. coli that had not been successfully obtained via

the nitrocellulose filter assay. In this early experiment the half life of the

CAP protein, bound to its lac operator site, was estimated to be more than

an hour. For the experiment to be successful the disassociation rate of the

protein from the DNA must be longer than the time taken to separate the

unbound DNA from the bound.

ELISA

The acronym is ‘enzyme-linked immuno-absorbent assay’. This assay has

many applications including the measurement of DNA-protein interactions.

A recent publication describes the ability to measure the interaction of a

protein with 341 dsDNA probes [49]. The dsDNA probes are secured on a

micro-titer plate before adding the protein under study. Bound protein is

detected via the binding to an antibody that can be fluorescently detected.

The exact position of binding has to be inferred afterwards in much the

same way as for the protein binding micro-arrays discussed below.

Surface Plasmon Resonance

Protein is secured to a metal surface and real-time measurement of plas-

mons, detected via shifts in the reflection of a light source, gives infor-

mation on binding kinetics and binding constants [50]. The measurement
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of on-rates and off-rates makes this technique particularly interesting for

quantitative research.

Microfluidics

Chapter 2 gives a more detailed description of a particular microfluidic

device [51]. This type of experiment represents an attempt to obtain equi-

librium constants with high sensitivity and minimal bias.

DNA arrays

Different types of micro-array have been used for the direct measurement

of DNA-protein interaction, these are reviewed by Bulyk [41]. One ap-

proach [52] used to measure DNA-protein affinity is an experiment where

large sections of genomic DNA are ‘tiled’ onto arrays. These arrays are

sometimes described as protein binding micro-arrays but are different from

those that shall be referred to as protein binding micro-arrays hereafter.

Protein binding micro-array

A protein binding micro-array, (PBM), assay is described by Berger & Bu-

lyk [53]. This assay is the model for the production of the data used in the

final chapters of this thesis. This type of array seems to have been first

described in 1999 [54]. In brief, every possible sequence of a certain length,

(ten base pairs in our case), are represented as DNA probes on an array, a

transcription factor protein or binding domain is then added to the array

and differential binding between the probes is measured.

1.4 Models of sequence specificity and their uses

The different types of experiment described in the previous section produce a

variety of types of data. However all describe interactions between DNA and

protein. This section describes the various approaches that have been developed

to create standardised computational models.

For any model of sequence specific protein DNA interaction we should have

a measure, for any nucleotide sequence of a suitable length, of sequence affinity.
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We can thereby obtain a number for every locus in a genome and this gives us a

‘genome annotation’.

If we are able to predict the affinity of a binding protein for any given nu-

cleotide sequence then we would be a step closer to engineering molecular systems

with desired behaviour.

Some limitations to be noted are,

• At present most of the models described can, at best, give a value for an

association constant of binding. This will be an equilibrium value that does

not tell us about on rates and off rates for instance.

• It is also not clear that expressions used to derive binding probabilities,

using concentrations, are applicable in non-equilibrium states and without

taking into account chemical activities.

• Protein-protein interactions and protein-ligand interactions are not repre-

sented by a model of protein-DNA affinity. These sorts of interactions will

likely be important in constructing even the simplest molecular systems.

Next follows descriptions of some of the notations used when describing a

model of sequence specificity. The word ‘matrix’ appears a lot in these descrip-

tions and it might be worth noting that these are not matrices in the sense that

is often meant, i.e. they are not linear maps between vector spaces over a field.

What they are is a way to define a function from DNA sequences of fixed length

to a single number, integer or real.

1.4.1 Consensus sequence

Fifty years ago, when it was difficult to determine even a single sequence that

was bound by a single protein, there was only one way to represent a protein’s

sequence specificity, namely, to write it down.

Given a handful of sequences a particularly simple approach is to start from

a multiple alignment, record the most frequent nucleotide at each of the loci, and

to call this the ‘consensus sequence’.
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If we have sequences s1, s2, . . . , sN , each of length m, then denote the jth

nucleotide of the ith sequence as sij. The counting function fij gives the number

of nucleotides of each type at position j (Equation 1.1).

f1j =
N∑
i

1{sij=A}

f2j =
N∑
i

1{sij=C}

f3j =
N∑
i

1{sij=G}

f4j =
N∑
i

1{sij=T}

(1.1)

In each case, here and elsewhere, we identify the nucleobases {A,C,G, T}
with the indices {1, 2, 3, 4} respectively.

The consensus sequence at position j is then the maximum of f1j, f2j, f3j, f4j.

Extensions to this scheme that use extra letters of the alphabet to stand for one

of two different bases are also sometimes used.

1.4.2 Position Frequency Matrix

A refinement on the consensus sequence is to record the frequencies of each nu-

cleotide, at each position, in a matrix. We can call this a position frequency

matrix, (PFM). Using the notation of equation 1.1, the PFM can be written as,

(fij) i = 1, 2, 3, 4 j = 1, 2, . . . , n (1.2)

Information on the joint distribution of nucleotides has been lost in this case

but it is often thought that there is a reasonable degree of independence be-

tween positions. Under this assumption the position frequency matrix retains

the information available in the original alignment.
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1.4.3 Position Probability Matrix

If we normalise the columns of the PFM, to give probability distributions, we

have,

(pij) i = 1, 2, 3, 4 j = 1, 2, . . . , n (1.3)

This representation actually contains less information than the PFM since we do

not know how many observations were made in the creation of the matrix. We

will call the normalised version the position probability matrix, (PPM).

1.4.4 Position weight matrix

In 1986 stormo described using weight matrices to model the specificity of a col-

lection of E. coli promoter sequences [22]. The matrix is essentially a function

from nucleotide sequences to real numbers. Using a PPM or a PWM we can score

a sequence by reading a value from each column. With a PPM we multiply prob-

abilities but with a PWM the values are added, having moved to the logarithmic

scale.

The biases in the genome for particular nucleotides can be considered when

doing the prediction and for this the following strategy is often employed. The

occurrence of a given n-tuple nucleotide sequence, a = (a1, a2, . . . , an), is modelled

as the realisation of a product of n, independent, multinomial random variables,

each with parameters taken from a column of the PPM.

mi ∼ Multinomial(1; p1i, p2i, p3i, p4i), i = 1, 2, . . . , n

m ∼
n∏
i

mi

M = {a is a sample from m}

P(M) =
n∏
i=1

paii

(1.4)
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Where ai is taken to be an integer index in the natural way.

Similarly, given a genomic frequency distribution (q1, q2, q3, q4) of {A,C,G, T},
we can write,

b ∼ Multinomial(1; q1, q2, q3, q4)

B = {a is a sample from b}

P(B) =
n∏
i=1

qai

(1.5)

The ‘score’ of an n-mer sequence can then be calculated as,

S(a) := log
n∏
i=1

paii
qai

=
n∑
i=1

log
paii
qai

(1.6)

In statistics this would be called the likelihood ratio of the sequence, a, being a

sample from the matrix distribution, m, over the null hypothesis, which is that

a is a sample from the background distribution, b.

Since the availability of massive amounts of genomic sequence data, matrix

models have been derived from promotor sequences or enhancer regions of an

organism’s genome [55–57]. These probablistic models have as their output a

PPM or PWM.

1.4.5 Energy matrix model

The following chapter of this thesis will give more details of this approach and so

just a summary will be given here. It is worth noting that there is a correspon-

dence between position weight matrices and energy matrices that follows from

statistical thermodynamics, i.e. by taking logarithms of probabilities we ‘move

to an energy scale’.

A protein DNA interaction can be described by a change in Gibbs free energy

that results from a change in molecular conformation. This quantity is commonly

given the symbol ∆G. If we fix the value of ∆G for a particular sequence then

we can then speak of ‘changes in the change’ in Gibbs free energy, or ∆∆G, by

changing nucleotides in the sequence. Any change in nucleotide sequence will

have its own corresponding ∆∆G, the original sequence will have a ∆∆G of zero.
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In this case, assuming that individual nucleotides contribute additively to

the total binding energy, we will use the matrix in equation 1.7 to represent

the function from nucleotide sequences to the values of ∆∆G analogously to the

position weight matrix,

(εij) i = 1, 2, 3, 4 j = 1, 2, . . . , n

∆∆G(a) =
n∑
i=1

εaii
(1.7)

1.4.6 Extended matrix models

Energy matrix models can be extended to allow for dependencies between neigh-

bouring pairs of nucleotides. In this case, rather than having 4 rows, an energy

matrix could have 16 rows, i.e. one row for each pair of nucleotides. An idea

behind this extension is that it retains some relevant information on the physical

effects of neighbouring nucleotide interactions. The same extension can be made

for a position weight matrix. In the latter case a distribution can be calculated

for di-nucleotide frequencies [58].

1.4.7 Mutual information

A further extension to a matrix model is to use mutual information. This is a

way to measure the degree of dependence between different distributions. The

joint probability distributions of pairs of positions are used, the independence

of columns would be described as their having zero mutual information. How-

ever this approach requires enough data to reliably estimate the joint probability

distributions from which the mutual information is calculated [59].

1.4.8 Weighted words model

Rather than adding or multiplying values for each position, via a matrix rep-

resentation, we might choose to assign a value to each of a large set of longer

‘DNA words’. This approach has been used previously together with special data

structures and clustering methods [60, 61]. The number of possible words grows
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very quickly with length, i.e. 4l where l is the length of the longest possible word.

In order to create a model of binding in this some sort of sparsity in the set of

possible parameters is wanted. Also, plenty of data is required in order to esti-

mate the parameters. Such a method, which is the subject of the later chapters

of this thesis, is described in section 4.2.2.1.

1.5 Algorithms used to identify sequence spe-

cific DNA interactions

There have been many algorithms published that obtain matrix models of DNA

protein binding. The differences between these algorithms often appear small on

close inspection [57, 62]. The below is a collection of popular such algorithms

that the author has investigated in some detail.

Multiple sequence alignment algorithms

A multi-species multiple alignment can give evidence for sequence conser-

vation. Sequence conservation might imply functional importance; a con-

served, non-coding, region of the genome could be inferred to have some

function, possibly interacting with proteins. The latter point suggests that

multiple sequence alignments can be used to guide motif finding or to weight

predictions of protein binding.

On the other hand a lack of sequence conservation might not imply a lack of

functional importance. For example species such as human and mouse have

a degree of phenotypic variation that is not well explained by variation

in protein coding genes. We therefore expect to see greater variation in

regulatory regions of the genome and hence transcription factor binding

sites may not be well conserved within a multiple sequence alignment [63].

MEME

MEME, or Multiple EM for Motif Elicitation is a popular algorithm for the

inference of statistically significant subsequences in a collection of larger

sequences [55]. The input sequences do not need to be aligned when using

this approach.
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Expectation maximisation, EM, is a method for maximising a likelihood

function by integrating over data that enables the calculation of conditional

expectation.

MatrixREDUCE

This algorithm describes being able to determine bio-physical constants

from either ChIP-seq of protein binding micro-array data. An energy matrix

is obtained by optimising an objective function over the elements of the

matrix [64]. The objective function is very similar to that of NestedMICA.

NestedMICA

This algorithm describes its ability to use a background model of genomic

sequences to improve its ability to find sequence motifs [65]. The motifs

are obtained by the maximisation of a likelihood function similar to that of

MatrixREDUCE.

1.6 Objectives and achievements of this thesis

The objective of this thesis is to see if protein binding micro-array data, together

with an alternative to the PWM model, can improve the performance of genomic

binding site prediction. Our best proxy information on genomic binding sites at

present is ChIP-seq data, therefore we will use ChIP-seq data from the ENCODE

project as our gold-standard.

A binding site prediction algorithm would ideally tell us every position in the

genome where a transcription factor binds and indicate none where it does not.1

In vivo, other mechanisms that might affect binding site occupancy include,

• Epigenetic modifications can exclude DNA sequences. Chromatin structure

can obstruct binding, and whilst the mechanism is unclear, the methylation

of DNA also appears to play an important role in gene regulation [11].

1We might actually like to know the bound locations that have a functional effect, which

might be a subset of those that are actually bound.
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• Cooperative binding between several factors might be necessary to provide

sufficient affinity [66].

These mechanisms could function independently of local DNA sequence compo-

sition. Although, local DNA sequence composition could still carry information

on local chromatin structure and methylation.

In this thesis we restrict ourselves to trying to predict binding on a ‘sequence

specific basis’. We approach this task using protein binding micro-array data.

This data provides unbiased sampling of all sequences up to a length of 10bp.

Next is a brief overview of the chapters that form the rest of this thesis.

For each chapter a description of the motivation, objectives and achievments are

given.

1.6.1 Chapter 2

The work described in chapter 2 is part of that done during the first year of a

PhD program starting in 2009. This chapter uses direct measurements of binding

affinities for the yeast transcription factor cbf1 made available in Maerkl & Quake

[51].

1.6.1.1 Objectives

Modelling of transcription factor binding using biophysical principles could help

improve our ability to predict binding locations and action.

The objective of this work is to show an improved fit to the experimental

data using an improved model justified by biophysical principals. In particular a

parameter is added to account for non-specific binding.

1.6.1.2 Achievments

The improved model improves the fit to the data. It was intended to publish this

result but this was done elsewhere [67] before the investigation was finished.

The modelling of non-specific binding, and perhaps diverse modes of binding,

is a subject that will feature later in this thesis (Section 5.5.1). Whilst only

a single parameter is added in this chapter, adding further parameters in later

26



1. INTRODUCTION

chapters enables us to capture more complicated non-specific binding and helps

in ChIP-seq peak prediction.

1.6.2 Chapter 3

Chapter 3 introduces the protein binding micro-arrays that are the subject of

much of the rest of this thesis.

1.6.2.1 Objectives

The protein binding micro-array data is noisy, and whilst methods have already

been described to remove this noise, it was decided that a method to model

the noise more carefully, including being able to visualise the noise, would help

obtain the best possible signal from the arrays overall and from individual probes

of interest.

The objectives of the work in this chapter are to create improved software

and statistics for modelling the noise component of the data and a tool for the

visualisation of this noise component and its removal. A completely automated

approach to data-normalisation is desirable, but building an intuition for the data

is also vital.

1.6.2.2 Achievments

A system that allows detailed visualisation and efficient manual curation of the

data was constructed.

A novel application of B-splines to protein binding micro-array data is de-

scribed and implemented. The efficiency and applicability of this approach to

data of this scale and type is established. Performance of this approach is shown

to be least as good at noise removal as several other methods.

An improved approach to quantile normalisation of saturated protein bind-

ing micro-array probes is described, implemented and shown to offer significant

improvements over methods described elsewhere.
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1.6.3 Chapter 4

Chapter 4 turns to the investigation of the protein binding micro-array probes

and the construction of the ‘model matrix’ used in subsequent parts of this thesis.

The protein binding micro-arrays have probes from either the HK design or the

ME design. These designs are introduced in detail in chapter 4.

1.6.3.1 Objectives

A detailed understanding of the composition of the probe sequences aids the

development of computational methods that allow efficient exploration of the

data. More efficient computational methods allow a larger parameter space to

be explored. Better understanding of the statistics of the sequences allows better

insight into the behaviour of the model.

A detailed and mathematically complete description of the DNA sequences

that make the probes on the protein binding micro-arrays is sought and also a

comparison between the HK and ME designs. An efficient way of computing over

a model of the probes is a further objective.

1.6.3.2 Achievments

Differences are shown between the probes of the ME array and the method pub-

lished in Mintseris & Eisen [68]. The impossibility of the construction described

in the publication is demonstrated for certain sequences. This result was the

subject of a publication shortly after the completion of this thesis [69].

An algorithm for reverse engineering and hence the production of the HK

design is described. The sequences on the HK array are verified to be from a

generator polynomial in this design’s case, the polynomial is derived.

A method to efficiently locate subsequences within probes, a novel application

of a approach already known in the mathematical literature to this research area

is suggested, though not implemented.

An efficient model matrix construction is described and implemented that

allows the handling of parameter sets larger that suggested possible in previous

publications [70].
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Using the ability to over-parametrise, extended feature sets are suggested and

constructed, including reverse complement sequences and probe position features.

1.6.4 Chapter 5

The learning of a predictor and prediction of readings from counterpart arrays

presented in chapter 5 was first attempted as part of the DREAM5 challenge [71],

see section 5.2 for a full background.

1.6.4.1 Objectives

The protein binding micro-array data from Weirauch et al. [71] allow an indepen-

dent and non-biased set of sequences on which to train a predictor of transcription

factor binding.

The objective of the work in this chapter is to build a new type of sparse

predictor for each of the transcription factors available in the data set.

1.6.4.2 Achievments

A simple multiple sequence alignment approach shows a bias in the position of

binding sequences within probes.

Predictions of counterpart protein binding micro-array intensities, using the

sparse models, are shown to perform at least as well as those published elsewhere.

The sparsest models provide interesting observations, including evidence of

multiple binding to individual probes, this has not been shown elsewhere.

Models restricted to short length DNA words are presented including sur-

prising results on their performance as predictors. The substantial differences in

the predictability of transcription factors using these reduced models offers new

insight.

It is observed that reverse complement features appear to have little or no

significant affect when added to the model matrix whilst probe position infor-

mation does contribute to predictor performance. These properties of extended

word models have not been described elsewhere.

29



1. INTRODUCTION

1.6.5 Chapter 6

In chapter 6 the predictors trained in chapter 5 are used to predict the binding

locations in genomic DNA.

1.6.5.1 Objectives

The ability to accurately predict the location of transcription factor binding would

provide insight into gene regulation and disease aetiology. Relative performance

of different models can suggest the validity of modelling assumptions.

In this chapter predictions of genomic binding locations, of the available tran-

scription factors, is sought. A comparison between the performance of PWMs

and the sparse word models developed in the previous chapter is sought. Models

for three transcription factors have predictions assessed via ChIP-seq data from

the ENCODE project. Mouse DNA is scanned and compared to the ChIP-seq

gold standard.

1.6.5.2 Achievments

A naive and then refined ROC procedure is used to interpret the scan results

effectively. The sparse models trained on micro-array data perform comparably

to PWM models trained on ChIP-seq data. The results of this chapter are a

useful proof of concept of a hard objective. Though a lack of high quality data

prevents a thorough assessment or any definitive conclusions.

1.6.6 Chapter 7

A review of the previous chapters is given and some suggestions for further in-

vestigation are made.

1.6.7 Appendix A

Some pictures and descriptions of functions of a GUI data viewer are presented.
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Chapter 2

Biophysical Binding Model

This chapter deals with direct measurements of physical quantities. We discuss

the application of a simple biophysical model fitted to some experimental data

for the yeast transcription factor cbf1. This investigation addresses the question

of whether the modelling of a transcription factor with a position weight matrix

can be justified given biophysical measurements.

In the background (Section 2.1) there is a discussion of early modelling of

physical binding, the constants used and their units, and an introduction to some

more recent measurements made using a micro-fluidic platform.

In the methods section the model and algorithm used to obtain an energy

matrix for a yeast transcription factor are described.

In the results section the fitting of an energy matrix using micro-fluidic data

is described.

In the conclusion section there is a discussion of the validity and usefulness of

the biophysical models described here.

2.1 Background

2.1.1 Constants for the lac repressor

The lac repressor is probably the best studied DNA binding protein and is perhaps

the archetypal, sequence specific, transcription factor. It continues to be the

subject of quantitative research on protein DNA interactions [72, 73].
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2. BIOPHYSICAL TF BINDING

In Riggs et al. [16], estimates of the affinity of the lac repressor were made

and given in terms of a Michaelis constant, Km. Michaelis Menton kinetics, from

which the constant gets its name, is a model used to describe the kinetics of

enzyme substrate reactions. The Michaelis constant Km is the concentration of a

substrate at which the rate of production of the product will be at half maximum

rate. Therefore the units of this constant are m. Riggs et al.’s early estimates

of the affinity of the lac repressor to the lac operator was a Km value of 2 to

4× 10−10 m, and 2 to 4× 10−9 m for non-operator DNA [16].

Association and dissociation constants are the ratios of on and off-rates of

DNA-protein binding, one being the reciprocal of the other. For the lac repres-

sor on and off rate constants are given as 1.0× 1010 m−1 s−1 and 1.0× 10−3 s−1

respectively. These numbers imply that the half life for a bound lac repressor

is about 20 minutes. The ratio of these constants agrees with the association

constant given before. It is of note that the on rate is much faster than might be

expected from simple diffusion [73]. The authors of this publication describe a

motion of a DNA binding protein along a molecule that they describe as ‘linear

search’. A physical description of this type of interaction presumably requires

more than a site-specific model of binding.

An important aspect of a protein’s interaction with DNA is that of ‘non-

specific binding’. For the lac repressor this was addressed in Revzin & Von

Hippel [74]. The lac repressor binds to non-operator DNA preferentially to single

stranded DNA and the dissociation constant is estimated as 1.0× 109 m−1, its on

rate as, 1.0× 107 m−1 s−1 and off rate as 1.0× 10−2 s−1, all at concentrations of

0.01m Na+. Binding constants to non operator containing DNA vary considerably

depending upon base composition too; more AT rich sequences compete more

effectively.

2.1.2 Micro-fluidic binding affinity measurements

When dissociation rates are high many assays struggle to measure the association

constant. The micro-fluidic apparatus mechanically traps protein bound DNA to

get around this problem [51]. The method’s authors note the difficulty that
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2. BIOPHYSICAL TF BINDING

protein binding micro-arrays1 have in this respect due to the washing that any

bound protein has to endure [51]. Off rates of bHLH family proteins are above

10 s−1. The authors describe how a series of concentrations are used to estimate

dissociation constants for the protein’s interaction with 2400 DNA templates.

Dissociation constants, Kd are related to Gibbs free energy via the expression,

∆∆G = RT ln
Kd

Kref

(2.1)

where Kref is set to the dissociation constant of the highest affinity binding

sequence.

2.1.3 An energy matrix for a physical binding model

It was described in the introduction how we can use a rectangular array of num-

bers to describe changes in Gibbs free energy corresponding to changes in nu-

cleotide composition of a DNA-protein interaction site (Section 1.4.5).

An analogy between position weight matrices and energy matrices is often

made and an example of this is the figure 2.1 taken from Maerkl & Quake [51].

Maerkl & Quake [51] acknowledge that non-specific binding is partly responsible

for the apparent failure of their PWM to predict the experimental results for

large values of ∆∆G. Our method to account for the non-specific binding, which

is the main subject of this chapter, is given in section 2.2. The idea behind this

method is to classify binding as one of the following,

Specific binding

In this case the protein has assumed an energetically favourable conforma-

tion closely interacting with a specific sequence on the DNA double helix

through hydrogen bonds.

Non-specific binding

1This, along with variation in non-specific binding, is of relevance to later chapters in this

thesis though it is not discussed much further due to limitations in what was achievable with

the protein binding micro-array data that was available. These limitations are discussed further

in later chapters.
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2. BIOPHYSICAL TF BINDING

In this case the protein is attracted to the DNA in a non-specific manner

and can be thought to move along the double helix ‘searching’ for a sequence

with which it may interact in a more energetically favourable way. The type

of bonding is a non-sequence specific electrostatic interaction.

The probability of the protein being in either of these states, given that it is in

one of them, is then,

P(Specifically bound) =
e−Esp(a)

e−Esp(a) + e−Ens
(2.2)

P(Non-specifically bound) =
e−Ens

e−Esp(a) + e−Ens
(2.3)

where Ens is the non-specific binding energy and Esp(a) is the specific binding

energy and is a function of the sequence a. Esp(a) could be any function of a but

we will restrict ourselves to an additive model,

Esp(a) =
n∑
i=1

εi(ai) (2.4)

The binding affinity of any n-mer sequence can then be calculated using the 4×n
parameters {εNi}where N ∈ {A,C,G, T} i = 1, 2, . . . , n and the parameter

Ens.

2.1.4 The Cbf1p DNA binding protein

Cbf1p is a member of the basic helix-loop-helix, (bHLH), family of transcrip-

tion factors, (TFs). It is known to bind to the centromeric DNA of S. cerevisae

and plays an important role in chromosome segregation. It also has a role in

the regulation of biosynthesis of L-methionine and is part of other transcription

activation complexes [75]. In common with other bHLH TFs, basic residues on

the α-helices make contact with the major groove of the DNA double helix (Fig-

ure 2.2). The 6-tuple consensus sequence is CACGTG and is known as the E-box.

The TF Pho4p is a similar bHLH protein but regulates distinct pathways; bind-

ing is thought to be prevented by a thymidine residue immediately flanking the
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Figure 2.1: This image is taken from Maerkl & Quake [51] and shows an appli-
cation of a matrix model to binding energy. It is observed that for large ∆∆G the
modelled values exceed the measured ones. It should be noted that this plot is
for the MAX transcription factor, the equivalent plot for Cbf1p was not given in
the publication. The purpose of this illustration is to show the disparity between
the data and the type of model used in the paper.
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2. BIOPHYSICAL TF BINDING

E-box in this case. It is of interest to obtain an accurate and sensitive model of

the binding preferences of Cbf1p.

Figure 2.2: Structure 1A0A from the PDB is the close relative Pho4 of Cbf1.
This homodimeric protein interacts with its target DNA making contact with the
core E-box recognition sequence, (the consensus CACGTG).
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2.2 Methods

2.2.1 Fitting the energy matrix model

Binding affinity measurements are available from a micro-fluidic experiment that

tested Cbf1p’s interaction with all permutations of certain oligonucleotide tem-

plates [51].

Raw data is available from the url1 and the templates were,

TTGT CACNNN ACTT (1)

TTTT CACGTG NNNT (2)

The positions marked with Ns are independently permuted over all possible nu-

cleotides giving a total of 43 + 43 = 128 possible patterns, the spaces demark the

central E-box 6-mer. The binding affinity of the protein to CACGTG is set to

have a baseline energy of zero. For this reason, and working under the assump-

tion of independent contributions from each nucleotide, we may add the energy

contributions from each pattern to obtain energies for all possible 46 patterns of

the form CACNNN NNN, (starting from the left side of the E box).

The reverse complement of this pattern gives us all patterns of the form, NNN

NNNGTG. In this way we have an energy reading for each of the 512 possible

12-mer patterns centered on the E-box, (again by adding the contributions from

each of the four contributing patterns). The best binding energy will then be

zero and any deviations from this ‘consensus’ will have higher energy.

For instance, to obtain an energy for the pattern AAC CGG TTA ACC we

would find the reverse complement of the first two triples, AAC and CGG, from

patterns 2 and 1 above, in that order:

TTTT CACGTG GTTT (2)

TTGT CACCCG ACTT (1)

1http://lbncm1.epfl.ch/twiki/bin/view/MaerklLab/Projects/

BindingEnergyLandscapes
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The energies of these two give us the energy contribution of the first half of our

pattern.

For the third and fourth triples of our pattern, TTA and ACC, we can add

the energies from patterns 1 and 2 above without making any transformations.

i.e. we would use,

TTGT CACTTA ACTT (1)

TTTT CACGTG ACCT (2)

to find the energy contribution of the second half.

For any 12-mer, a, we now have the experimentally derived energy, Edata(a).

This energy is a measurement of both specific and non-specific binding and since

we are primarily interested in a model of sequence specific binding we must sep-

arate the contributions from each. Each of the energy states, specific and non-

specific, are modelled as a canonical ensemble of states at equilibrium. Consid-

ering the partition function1 leads us to the following decomposition,

e−Edata(a) = e−Esp(a) + e−Ens (2.5)

which is the denominator in equations 2.2 and 2.3.

To learn the parameters εNi and the single parameter Ens (Equation 2.5)

a C/C++ language implementation of the Levenberg-Marquardt algorithm was

used [76]. This non-linear least squares minimisation routine returned optimal

values that were consistent across 1000 random starting points. The objective

function is the mean squared error between the measured energies and the model

(Equation 2.5) parametrised over a,∑
a∈{A,C,G,T}6

(Edata(a)− log(e−Esp(a) + e−Ens))2 (2.6)

Exploiting the symmetry in the problem we in fact only need to learn parameters

1the partition function is motivated as the maximum entropy distribution of states having

a given mean.
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for a 4×6 matrix that we can afterwards transform and append to create the final

4× 12 matrix. It is worth noting that learning two 4× 3 matrices independently,

one for each of the patterns, and afterwards appending one to the other, would

not be satisfactory since the non-specific parameter must be the same in both

cases.

2.3 Results

The learned energy matrix is as follows,
1.44 1.22 3.14 0 0.38 0.37

2.12 1.07 2.20 0.37 0.04 0

0 1.35 0 0.71 0.25 0.16

3.06 0 1.60 1.00 0 0.09


The non-specific parameter was simultaneously learned as stated in the meth-

ods section (Section 2.2.1). Since it is a constant value on an arbitrary scale it is

not included here.

The most energetically favourable nucleotide is read from the row containing 0

in each of the columns. The most energetically favourable sequence is GTG ATC.

We use the reverse complement to obtain the most energetically favourable 12-mer

sequence, GAT CAC GTG ATC. Figure 2.3 shows the fit when using a position

weight matrix with an assumption of independent columns, this is analagous to

figure 2.1. Figure 2.4 shows the close agreement between the energies as measured

and those using the additive model with non-specific binding parameter. This

tells us the additive model is a good fit to the data. A more complicated, non-

additive, model involving di-nucleotide correlations might not be justified in this

case.

In contrast to figure 2.1 we see good agreement between values from our energy

matrix model and the experimental data.

39



2. BIOPHYSICAL TF BINDING

Figure 2.3: Correlation between actual and modelled values for energy. Energies
from each of the templates are colour coded and a line of best fit is drawn. The
correlation coefficient is 0.890. This graph is analagous to figure 2.1

40



2. BIOPHYSICAL TF BINDING

Figure 2.4: Correlation between actual and modelled values for energy. Energies
from each of the templates are colour coded and a line of best fit is drawn. The
correlation coefficient is 0.969. This fit, using the extra non-specific binding
parameter, is clearly improved for the higher energy values.
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2.4 Conclusions

In this chapter a method to model physically measured association constants

using an additive model has been demonstrated and was shown to be a better

fit for the data than a simpler approach made in the paper accompanying the

original data.

The model presented uses dissociation constants obtained from experiments

that use a series of concentrations in order to determine them. Once we have these

constants the model presented in equations 2.2, 2.3 and 2.5 appears to work well

in fitting the data.

Given the success of this approach we would like to apply this model to the

protein binding micro-arrays that are described later in this thesis but it is not

clear how to obtain the dissociation constants from the protein binding micro-

array data. Repeated experiments at different concentrations were not available.

The scale and locations of intensity distributions appear to change significantly

under replicate experiments at apparently the same experimental conditions and

so it seems unlikely that robust parameters could be obtained.
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Chapter 3

Array Data Normalisation

As stated in section 1.6, the objective of this thesis is to examine whether the use

of data that better captures DNA protein interactions can be used to construct

better predictive models. Starting with this chapter, a set of PBM datasets are

described along with methods to normalise their data. The objective in this

chapter is to evaluate different approaches and select the best to curate a dataset

that is used in the next chapters.

In the background (Section 3.1) there is an introduction to the ‘DREAM5

data-set’. This data-set is the focus of much of the rest of this thesis. In sec-

tion 3.1.1 details are given of the type of protein binding micro-array experiment

whose data comprise the DREAM5 data-set. An outline of some important steps

in the protocol are given. In section 3.1.1.3 some closer attention is given to

the in situ double stranding stage of the protocol. This stage appears to be one

of the more critical. The quality and origins of the DREAM5 data-set will be

discussed along with some of the consequences. The presence of spatial artefacts

is discussed in section 3.1.2. The lack of availability of certain desirable data is

talked about in section 3.1.3.

Section 3.2 is the methods section. First, in section 3.2.1, there is a discussion

of the initial stage of the data normalisation process; the exclusion of outlying

data. In the same section, a tool developed to visualise the protein binding micro-

array data is introduced and its utility for the specific task of outlier exclusion

is shown, there are further details in the appendix. In section 3.2.2, details

are presented on the modelling of, and compensation for, spatial artefacts. The
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DREAM5 data-set has clear evidence of spatial artefacts. These artefacts can

be seen upon visual inspection of the distribution of intensities across their grid

layout. Saturation at the highest intensity readings can also be observed on

several of the DREAM5 micro-arrays. In section 3.2.3, methods are discussed

that were used to deal with the saturation of signals at high intensities.

Section 3.3 is the results section. In section 3.3.1, measurements that assess

the performance of spatial artefact removal are presented. In section 3.3.2, some

measurements to assess the benefit of the correction of saturation artefacts are

given.

In the conclusion (Section 3.4) there is a discussion of the usefulness of the

techniques described in the preceding chapters.

3.1 Background

The DREAM51 protein binding micro-array data-set was made available by the

organisers of the DREAM5 conference [71]. In aggregate, it consists of data for

172 protein binding micro-array experiments. Half of the experiments are per-

formed on an array with a set of probes from one de Bruijn sequence, hereafter

referred to as the ‘HK design’. The other half of the experiments were performed

on arrays with a set of probes taken from a different de Bruijn sequence, here-

after referred to as the ‘ME design’. Over the 172 arrays a total of 82 proteins

had binding characteristics measured. Every protein was characterised on each

array design, HK and ME. Only a handful of proteins were afforded replicate

experiments on the same array design. Two proteins, were afforded replicate ex-

periments and a single protein was afforded triplicate experiments. Distributions

of the latter are shown in figure 7.4. The aggregate of 172 protein binding micro-

arrays is what will be referred to as the DREAM5 data-set for the rest of this

thesis.

1DREAM is an acronym for ‘Dialogue for Reverse Engineering Assessments and Methods’.

The number 5 refers to it being the fifth such competition bearing this name. The evaluation

meeting took place in November of 2010 in New York.
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3.1.1 The protein binding micro-array experimental pro-

tocol

The type of protein binding micro-array technology under discussion here is an

adaptation of gene expression array technology and was first described in Bulyk

et al. [54].

A protocol for a protein binding micro-array experiment is detailed in Berger

& Bulyk [53]. The protocol described there is not assumed to be significantly

different from the protocol used for the production of the DREAM5 data-set.

3.1.1.1 Protein binding micro-array probe specification

The same Agilent 4× 44K oligonucleotide arrays, with customer specified probe

sequences, are used for all experiments [77]. These single stranded oligonucleotide

arrays have their single stranded DNA probes converted to double stranded

probes in a solid phase primer extension reaction. The probe spot diameter

is approximately 50 µm. The length of a probe is 60bp and so would be ap-

proximately ‘20 nm high’ above the array [78]. Our picture, therefore, should be

of each spot on the protein binding micro-array being a lawn of double stranded

DNA probes.1 Each probe contains a segment of a de Bruijn sequence. De Bruijn

sequences and their application to protein binding micro-arrays is discussed at

length in section 4.1.1.2.

The primer extension reaction used in creating the double stranded probes

from the single stranded oligonucleotide arrays is described as being carefully

optimized and yet remaining sensitive to temperature [53]. It is stated by the

designers of the protocol that “it is important to monitor the accuracy of each

primer extension reaction before using a micro-array in a protein-binding ex-

periment”2. Unfortunately, the necessary data to perform or refine this step is

mostly unavailable in the DREAM5 data-set, i.e. for only 8 of 172 arrays. Further

discussion is in section 3.1.1.3.

Imaging of the array after the DNA binding protein has been added is done

1An analogous and well mown lawn, with blades of grass half a centimeter high, would have

a diameter of about 12.5 meters.
2Emphasis added here.
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using a sequence of increasing laser intensities. This sequence of measurements

is combined using an algorithm ‘Masliner’ [79]. Unfortunately, the raw data to

perform or refine this procedure is not available for the DREAM5 data-set. It

is actually unclear whether this step has been performed. If this integration has

not been performed, it is unclear which of the sequence of laser illuminations was

chosen.

3.1.1.2 Preparation of the DNA binding protein

To investigate a DNA binding protein’s affinity, the authors of the protocol [80]

suggest it is adequate to clone only the binding domain of the protein. This

amino acid sequence is combined with a GST tag that will later pair with the

fluorescent Alexa 488 conjugated anti-GST. The authors suggest that purification

from cellular lysate1 is not always necessary since only the tagged proteins will

emit a signal when excited by the laser illumination.

The authors state they have observed no difference between in vitro transla-

tion and the use of clones expressed in E. coli, and that the former allows the

generation of more data, and so this is their preferred technique. It is stated that

a few hundred nanograms of protein is sufficient and its concentration should be

accurately estimated by Western blot or another method.

The authors of the protocol say that they use standard concentrations of

protein i.e. 100 nmol l−1. The authors suggest that using rank based statistics

makes the standardisation of protein concentration and salt concentration less

important. They qualify this by stating that this might not be the case if a

protein is ‘particularly sensitive’ to these parameters or to the presence of co-

1After over-expression in E. coli for instance.
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factors1.

3.1.1.3 Measuring the success of in situ double stranding through

Cy3 incorporation

Each protein binding micro-array probe is attached to a glass slide. The locations

of the spots on the glass slide are determined by inkjet printing initial nucleo-

sides onto the slide. The initial nucleosides create an -OH bond with the slide

substrate [77].

At the attached end of the 60bp probe a 25bp primer sequence is synthesised.

This sequence is 25 base pairs long and is as follows,

CCTGTGTGAAATTGTTATCCGCTCT

It is the same on both array designs, i.e. the HK design and the ME design

(Sections 4.1.1.3 and 4.1.1.4) and for every probe. The subsequent 35bp of a

probe is specified uniquely for each array design.

The protocol dictates the addition of a small quantity of Cy3-conjugated

dUTP to the primer extension reaction. The purpose of this is to indicate the

quality of the double-stranding process. The amount of Cy3 incorporated into a

double stranded probe should be in proportion to the number of adenine residues

in the template strand. It was determined that the sequence context of an ade-

nine residue on the template strand had a significant effect on the measured Cy3

signal. A linear regression upon all triplets was performed to create a model of

expected Cy3 intensity for any given probe. A natural question that arises is,

1A simple biophysical model of binding says that the probability a probe is bound by a DNA

binding protein, any given instant, depends upon the concentration of the protein compared to

the concentration of potential binding sites. The experimental protocol here appears to dictate

that high concentrations of protein compared to potential binding sites be used, i.e. there

should be many protein molecules per array probe. The suggested importance of measuring

protein concentration, and its standardisation at a fixed value, appears to be motivated by a

desire to ensure a high enough concentration whilst using a minimal quantity of protein. This

approach appears to be motivated by the desire to create a catalogue of protein binding micro-

array data for a large number of DNA binding proteins. In this case the standardisation of such

parameters seems sensible and perhaps necessary for reasons of economy.
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does the sequence context of adenine residues determine measured Cy3 intensity

by,

• affecting the proportion of Cy3 labelled dUTP vs. dTTP being incorporated

into the probe, or,

• affecting the variation in measured Cy3 intensity due to, a more problem-

atic, failure of the double stranding process.

An experiment to address this question was described in same paper as the de-

scription of the protocol [53]. Probes were prepared with a Zif268 binding site

furthest from the array surface. The probe segments between the binding sites

and the array were then varied in their di-nucleotide content whilst keeping mono-

nucleotide proportions constant. 20 such probes were prepared and replicated on

an array 16 times each. Since the measured amounts of Zif268 binding remained

comparable, the authors concluded that it was incorporation of dUTP vs. dTTP,

rather than failure of the double stranding process, that created the observed

sequence dependencies of Cy3 signal. Despite this, the authors suggest that if a

probe’s measured Cy3 signal is above twice or below half its fitted value then it

should be excluded from later analysis.

It is also suggested that “a run of five or more consecutive guanines are delete-

rious for primer extension reactions”. The workaround for this is to replace each

probe sequence containing such runs of guanines with its reverse complement.

Whilst it is not mentioned in the protocol text it is clear that the probe sequence

containing the 10-mer GGGGGCCCCC will pose a problem for this approach.

This is discussed further in section 4.1.1.2. The relative merits of the different

array designs are discussed in sections 4.1.1.3 and 4.1.1.3.

The DREAM5 data set includes information on the Cy3 readings for only1 8

of the 172 protein binding micro-arrays. Therefore the direct modelling of Cy3

effects has not been attempted in work described hereafter.

1It is unclear how the subset was chosen, it does not appear to be randomly selected though.
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3.1.2 The presence of spatial artefacts

The grid layout of probes for each of the two micro-array designs is available for

the DREAM5 data-set. The basic layout dimensions are given in table 3.1. Every

probe has a location specified on a grid by pairs of integer indices. Figure 3.5

is an image of a section of a protein binding micro-array made after the laser

excitation of fluorophores. This shows the regularity of the grid of spots and

the distances between spots. Similar images for the protein binding micro-arrays

in the DREAM5 data-set are not available. Figures 3.1, 3.2, 3.3 and 3.4 show

Table 3.1: Grid layout of protein binding micro-arrays.

Design Number of Probe Spots Empty spots Spots up Spots across
HK 40630 300 478 85
ME 40630 104 478 85

images that represent the sorts of spatial artefacts that can be seen for the protein

binding micro-array foreground intensity readings. The images have been made

by giving a colour to each probe according to its intensity reading and plotting

that at its grid location. Each grid location is shown as a single pixel, though

this may not be an accurate spatial representation in terms of proportions of the

actual array. Pixels are displayed on a rectangular grid whereas a hexagonal grid

is observed in figure 3.5. If the spots on the glass slide are distributed uniformly

with gaps between spots of the same order of magnitude as the spot width, i.e.

approximately 50 µm, then the images should be a reasonable representation. In

any case, the presence of spatial artefacts is clearly observable. Stripes that run

the length of the array are observed frequently, these are usually parallel to the

edges of the array. Larger depressed or elevated regions can be observed, these

are seen as broad regions of different colour. These regions may take up half of

an array, perhaps with a gradient from one end to the other. Often the corners

or ends of arrays have elevated or depressed regions.

The colour gradients in figures 3.1, 3.2, 3.3 and 3.4 have been chosen to high-

light any spatial patterns. It should be noted that the range of probe intensity

values that causes a spatial pattern in one of these images might be within the

noise threshold of the array. That is to say, modelling and compensating for
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these spatial patterns is not necessarily important given particular research ob-

jectives. Where curved lines are observed it could be speculated that uneven

drying during one of the steps in the experimental protocol is to blame. For the

straight edged spatial features it seems possible that the normalisation algorithm,

‘Masliner’ [79] could have introduced artefacts, i.e. when combining images from

illumination with different laser intensities. It is unfortunately not possible to

test these hypotheses given the absence of the raw data.

The pseudo randomness of the de Bruijn sequences from which the probes

are constructed, together with the heterogeneous nature of the spatial artefacts,

strongly suggests that the patterns observed are not related to the sequence con-

tent of the probes as arranged across the arrays1.

It certainly seems reasonable that we should seek to remove any spatial biases,

wherever possible, since they are unlikely to offer any information on the sequence

specificity of the DNA binding protein being tested.

3.1.3 Availability of extra probe intensity information

The reading given for probe intensity is not raw data, it is a statistic obtained

from a collection of data points for each probe spot on an array. The raw data

would be the values from the imaging device that would comprise some number

of pixels for every probe spot. A close look at figure 3.5 shows variation in pixel

colour within array spots. This is the pixel data with which the foreground and

background measurements are calculated. A selection of central pixels is used for

the foreground signal and surrounding pixels are used for the background signal.

Both mean and median statistics are available.

Of the 172 protein binding micro-arrays in the DREAM5 data-set only 106

have the foreground and background signal intensity readings available2. Un-

fortunately, raw images, similar to those in figure 3.5, are not available. Extra

information would likely have been obtainable from these images.

1Neighbouring probes are not neighbouring segments of the de Bruijn sequence from which

they are taken. They appear to have been randomised over the layout as one would expect.
2The background signal intensity readings are missing for 66 of the arrays since the data for

these 66 arrays was provided only as the ‘correct answers’ for the foreground signal prediction

challenge.
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Figure 3.1: Images constructed using a single pixel for each array spot. Spot
intensity is shown using a colour gradient.

(a) A narrow, dark stripe parallel to the
array edges together with a broad region
to the left of the image that is consistently
depressed relative to the rest of the array.

(b) Patterns of higher and lower intensity
are observed that follow curves that are sug-
gestive of artefacts formed in a liquid phase
of the experiment.
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Figure 3.2: Images constructed using a single pixel for each array spot. Spot
intensity is shown using a colour gradient.

(a) Arcs are seen perpendicular to the long
axis of the array. These arcs are reminiscent
of a wave perhaps created in a viscous stage
of the arrays drying process.

(b) A combination of artefacts including
spots in the lower corners of the array.
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Figure 3.3: Images constructed using a single pixel for each array spot. Spot
intensity is shown using a colour gradient.

(a) Dark green spots are regions of low in-
tensity.

(b) The bottom third of this array has a
consistently lower signal that the top two
thirds.
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Figure 3.4: Images constructed using a single pixel for each array spot. Spot
intensity is shown using a colour gradient.

(a) An elliptically shaped artefact and also
broad difference in intensity from the top
left to bottom right of the array.

(b) This array shows some unusual pattern-
ing that might perhaps be better explained
by physical contact rather than liquid dry-
ing phenomena as elsewhere.
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Figure 3.5: Digital images of protein binding micro-array spots after laser ex-
citation of Cy3 and Alexa488 fluorophores. Taken from Berger & Bulyk [53].

3.2 Methods

A number of methods that have been developed to improve data normalisation

and are described next.

3.2.1 Flagging of outlying probes

For several arrays there are probes that appear to be part of low intensity, spatial,

artefacts. A method to exclude these is described by Annala et al. [70]. This paper

accompanied an entry to the DREAM5 prediction challenge that produced the

best predictions over an average of 6 metrics.

This method excludes probes, lying in histogram bins, that are to the left of

the mode of the histogram (Figure 3.6). The mode of the histogram of intensities

is located and then, after moving backwards towards lower intensities, a vertical

line is drawn where the count has dropped below 0.005 of the peak count. All

probes with lower intensity than this are excluded. This approach seems to work

well in practice but does not give any intuition as to what sort of spatial artefacts

might be being excluded. It is possible to gain an appreciation of this using the

3D data visualisation tool that was created as part of this work (Figure 3.7). The
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red plane is adjusted so that points to be excluded are below it and these are then

flagged in the data base by clicking in a GUI, see Appendix for more information

on this. The 172 arrays in the DREAM5 data set all had low intensity ‘clouds’

of points removed using the 3D viewer. In each case, the values at which the

cut-off plane was set were compared to the values determined by the algorithm

in Annala et al. [70] and were similar. The latter method often excluded a little

more data from the low tail of the distribution but the differences are small. It

is also worth noting that a bi-modal distribution could cause a blind application

of the algorithm to go badly wrong, potentially excluding a large fraction of the

data. It is necessary to look at the data.

Figure 3.6: Images showing low intensity probes excluded by method from An-
nala et al. [70].

(a) Low intensity probes excluded
from Rorb protein binding micro-
array.

(b) Low intensity probes excluded
from srebf protein binding micro-
array.

3.2.2 Methods to remove spatial artefacts

3.2.2.1 A moving window method to correct spatial artefacts

A method employed on the DREAM5 data-set was a 7×7 moving-median-window

smoothing algorithm. This is computationally simple and has a positive effect on
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Figure 3.7: 3D view of Sox14 protein binding micro-array. Some outlying values
can be observed to the lower right corner in this view of the point cloud. The
low intensity outliers can be clipped using the red plane and flagged in the sqlite
database that backs the visualiser from this view.

the performance of a predictor, subsequently learned, for several DREAM5 arrays.

A full list of before and after measurements is given in the supplementary material

of Annala et al. [70]. Figure 3.8 is taken from this publication and illustrates

the details of this method. A suite of software for protein binding micro-array

processing, (perl scripts), is available from the Bulyk lab [53]. Amongst the

routines is what appears to be an analogous moving window method.

Probes that are within three rows or columns of the edge of an array are

corrected by the same amount as their nearest neighbour towards the interior of

the array. Probes that have fewer than 25 other probes within their 7×7 moving

window are excluded.

This method was re-implemented1 and used to generate statistics for every

array in the DREAM5 data-set. Two potential shortcomings for the moving

window method are,

• the effect on values at the edges does not use information in one of the most

1The perl routine runs to 160 lines of code and takes a little under 30 s to complete the

normalisation of a single array on a 2009 Apple Mac Book Pro (MBP). An implementation in the

C++ language, using the Eigen linear algebra library [81] uses 60 lines of easily understandable

code and takes 30 s to process 66 arrays in the DREAM5 data-set.
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Figure 3.8: 7× 7 median moving window approach to spatial artefact removal.
Figure taken from Annala et al. [70]. A shows the model used to smooth the
array. B shows before and after images for two selected arrays. The calculations
shown are using intensity values that have not been log transformed.
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critical places for spatial normalisation; some of the more severe spatial

artefacts occur at the edges1.

• a 2D contour plot is the only readily available way to view the effect of the

normalisation. It is hard to compare this to the data and thereby gain a

physical intuition of what is being affected.

A notable effect of this method is that, approximately, 1/49 probes will all have

their corrected intensity set to the same value; that of the overall array median.

To understand why this is true consider that roughly one out of 49 times the

value fi,j will equal mi,j in equation 3.1, (taken from figure 3.8). Therefore di,j is

set to mglobal for about 2% of the data.

di,j = fi,j
mglobal

mi,j

(3.1)

If we believe that there is useful information in most probe measurements then

this seems undesirable.

3.2.2.2 LOWESS correction of spatial artefacts

Another method that obtains point estimates and is popular in micro-array anal-

ysis [82] is LOWESS [83]. LOWESS is a weighted linear regression method that

fits a polynomial smooth of the data to each point with a weight function that

has a local cutoff (Equation 3.2). The parameter λ controls the number of neigh-

bouring points that contribute to the point x0’s value.

w(x) = (1− |x− x0|3)3
1{|x− x0| < λ} (3.2)

Calculating the kd-tree necessary for a LOWESS fit is expensive computationally

and makes interactive exploration of fits difficult. The LOWESS method offers

only a single parameter that can be adjusted in contrast to spline approaches

1The edges of the arrays present a problem for any method since the data there seem to be

some of the most prone to spatial artefacts and, at the same time, there is less local information

available from neighbouring probes to use for normalisation.
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described next. For these reasons only exploratory images were made using this

method.

3.2.2.3 Splines for correction of spatial artefacts

Splines are a standard method used to obtain compact and efficient representa-

tions for smooth functions, including surfaces of physical objects [84]. Their use

is ubiquitous in the modelling and computer aided design.

Splines are polynomial approximations to functions that are specified to be

differentiable to some degree, often they are designed to have continuous third

or second derivatives. A spline of degree 1 is simply a linear, or piecewise linear

function.

Because splines are differentiable functions it is possible to calculate tangents

and normals to surfaces and lines and also to select a particular parametrisation

that has desired tangents and normals. B-splines have been used for normalising

data in the micro-array context with reported success [85, 86].

In greater generality we can describe a function1, f , as a linear combination

of basis functions hi (Equation 3.3). The weights, βi are to be determined by

an optimisation method such as minimising squared errors. The particular basis

functions are chosen to simplify the task at hand.

f(x) =
n−1∑
i=0

βihi(x) (3.3)

An important difference between choices of basis function is whether they are

local or global in their support2. Thin plate splines, and natural splines are both

examples where the basis functions have global support. Thin plate splines and

natural splines do provide a differentiable function with the desired smoothness

properties but have trouble modelling the rather heterogeneous and locally vari-

1When modelling spatial artefacts on a protein binding micro-array the function we are

interested in defines a surface, f(x, y) = z. (x, y) is the location of a probe and z is its intensity

at this location.
2What is meant by local support is that each basis function is non-zero between only a few

adjoining knots. Having global support means each basis function is non-zero on the entire

domain.
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able artefacts of the protein binding micro-arrays. For this reason, after some

exploratory work these methods were abandoned in favour of B-splines.

A B-spline basis is local yet the result of fitting to the data is a continuous

and differentiable function parameterised over a unit interval or square in the case

of a surface. B-splines can also be parameterised on their degree d and on the

number and position of the knots (Equation 3.4). The B-spline basis of degree

d with knots ξi is constructed in such a way that the approximated function has

d continuous derivatives, except at a knot, where it has d − 1. B-splines can be

constructed recursively (Equation 3.7) starting with indicator functions over the

intervals defined by the knots. A key feature of B-splines is that, through careful

placement of the knots, particular differentiability constraints can be achieved.

By the repetition of knots at the endpoints of an interval the Runge effect [87],

can be avoided. The polynomial approximation is constrained to be linear at

the edges; the B-spline curve will pass through its last control point and have a

tangent that interpolates its final two control points.

For the modelling of the protein binding micro-arrays, various numbers of

basis knots and different degrees, d, were investigated in order to find a surface

that models the spatial artefacts in a helpful way. Methods that involve penalising

parameters were used (Section 3.2.2.4).

The d knots in equation 3.4, at either end of the range, take the same values,

ξ0 on the left and ξN−1 on the right, enforcing linearity at the end points, these

knots are denoted using τ .

τ0, τ1, . . . , τd, ξ0, ξ1, . . . , ξN−1, τN , . . . , τN+d−1 (3.4)

τ0, . . . , τd = ξ0 (3.5)

τN , . . . , τN+d−1 = ξN−1 (3.6)
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The recursive definition of the basis functions is as follows,

B0,i(x) = 1[ξi,ξi+1)(x) (3.7)

B1,i(x) =
x− ξi
ξi+1 − ξi

B0,i(x) +
ξi+2 − x
ξi+2 − ξi+1

B0,i+1(x) (3.8)

Br,i(x) =
x− ξr
ξi+r − ξi

Br−1,i(x) +
ξi+r+1 − x
ξi+r+2 − ξi+1

Br−1,i+1(x) (3.9)

By allowing a knot for every data point it is possible to obtain a smoothing

spline [88]. In this case either an L2 or L1 penalty applied to the parameter vector

offer regularisation and sparsity.

3.2.2.4 B-spline surface fitting

The B-spline surface is fitted to the protein binding micro-array data by using

the product basis (Equation 3.10).

f(x, y) =

I,J∑
i=0,j=0

βijhi(x)kj(y) (3.10)

In this case we have I B-spline basis functions hi in the x-axis direction and J

B-spline basis functions kj in the y-axis direction. The parameters βij are to be

obtained by optimising an error function, such as least squares.

The number of control points can be selected and their positions are also in-

dependently positionable. For instance if there is a missing data value, or values,

then corresponding control points can be omitted. To model a hexagonal grid

rather than a rectangular one the control points could be placed in a hexagonal

grid. The latter was not attempted and would be an interesting further exper-

iment; a possible hexagonal pattern was sometimes observed on fitted surfaces

(Figure 3.9).

When fitting fewer control points than array probes a standard linear regres-

sion was used to obtain values for the control points. In the case where a greater

number of control points than array probes were fitted, then both ridge regres-

sion and lasso were used. Ridge regression penalises control points that bias them

towards being zero. This is helpful to avoid probes being overfitted as well as
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Figure 3.9: Example of a possible hexagonal lattice pattern in a B-spline surface.

regularising an otherwise over-parametrised model. The lasso regularises but also

obtains sparsity, if we have a prior belief that most of the probes should not have

their intensities corrected, then this seems a valid option.

To fit the 2D B-spline surface, rendered in 3D space, we require a row in

the model matrix for every pair of values, (x, y), at which the surface is to be

evaluated. There are 4× 4 non-zero weights for this ‘patch’, there will therefore

be 16 non-zero weights in each row of the model matrix. The protein binding

micro-array grid layout gives us 85 values in the x direction and 478 in the y

direction meaning that the model matrix will have 40630 columns. A sparse

matrix representation is efficient in terms of memory requirements and worked

well in practice.

It is easier to understand what the effects of data smoothing are when we are

able to visualise its effects in 3D (Figures??). In some cases it is clear that data

would be better flagged and excluded rather than corrected with a surface fitting
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Figure 3.10: 3D view of protein binding micro-array. In this image the data
has been overfitted. In particular, the surface tangent, at the edges, at the rear
right, can be seen to vary quite wildly. The blue plane shows the grand mean of
the data.
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Figure 3.11: 3D view of Sox14 protein binding micro-array with data seen as a
point cloud. Spatial artefacts are detectable with this representation.
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Figure 3.12: 3D view of Sox14 protein binding micro-array. A B-spline surface
models uneven spatial distribution of intensities. The data and the surface are
plotted together here.

Figure 3.13: 3D view of Sox14 protein binding micro-array. This view gives a
sense of the relative importance of the spatial artefacts to the data. In this case it
is clear that probes in the vicinity of the spatial artefact have a strong distortion
on their intensity reading.
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procedure1. In other cases, particularly the edges, it is important to be able to

see that the smoothing is working as planned and not introducing artefacts of its

own (Figure 3.10). Figure 3.14 offers a strong impression of the balance that needs

to be struck between overfitting vs. correcting spatial aberration. Figure 3.15

shows a B-spline surface that has been fitted to the data with fewer knots, i.e. 10

along the narrow edge of the array and 60 along the long edge. Smaller spatial

artefacts are perhaps less easily corrected on this scale. Figures 3.16 and 3.17

give good examples of the physical intuition that one can obtain of the data using

the 3D visualisation of the data and the B-spline surface fitting. It is instantly

clear that the data have a good dynamic range compared to other arrays and also

compared to the surface that is fitted to the spatial artefacts. But it is also clear

that the data are saturated at the highest intensity level. There is good utility

of being able to view the data in this way. The sparse matrix representation

of a B-spline smoother is easily manageable when using a control point for every

array spot. The thin plate spline does not afford this sparse representation and

is therefore more computationally challenging.

There are a potentially large number of parameters involved in the surface

fitting process, i.e. for every knot there can be a single parameter and the degree

of the B-spline basis can also be chosen. It would be easy to overfit the data,

the result of such overfitting is reduced predictive performance since ‘signal’ is

removed from the data before the learner has a chance to use it.

Different methods have been tried to avoid this overfitting including reducing

the number of knots, and therefore the number of parameters, directly and also

using a regularised regression for parameter estimation. The sparse parameter

selection method, employed later to fit model parameters, the lasso, was also

tested for its utility in fitting the surface without overfitting.

Having every data point drawn as an individual vertex is easily achievable

using OpenGL and scales to a million data points or more with current, non-

expensive hardware, e.g. 2009 Apple Mac Book Pro. Tricks involving textures

1Cubic splines are an optimal fit to the data subject to a constraint on the second derivative

of the fitted function [88]. If a region of our data has a step difference in intensity as compared

to the neighbouring data then our prior belief that the second derivative should be small is

violated. Clearly this is the case for ‘clouds’ of disjoint data such as those observed in figure 3.7

67



3. PBM DATA NORMALISATION

Figure 3.14: Three B-spline surfaces that have a knot for every data point and
penalised control points. From the top picture to bottom picture the penalty is
increased, leading to a smoother surface and therefore smaller corrections to the
data. The rough surface at the top leads to greater corrections of the data and
therefore smoother data. In the bottom right hand corner of each picture, where
there is missing data, the combination of penalised control points and repeated
knots, at the edges of the array, results in the surfaces tangent to being flat.
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Figure 3.15: This surface has fewer knots, 10 across and 60 up. It can be seen
that the control points near the missing data, in the bottom right corner, have
been moved considerably.

Figure 3.16: 3D view of Gmeb2 protein binding micro-array showing fitted
surface.

Figure 3.17: 3D view of Gmeb2 protein binding micro-array showing large
dynamic range of data and also saturation at highest intensity.
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allow the rendering of surfaces with far fewer resources and data transfer but

preclude the interactive filtering and full 3D exploration of the data that has been

achieved here. The software written to draw, filter and normalise the data has all

been in the C++ language apart from the GUI that uses the OSX Cocoa API.

C++ bindings to the Apple implementation of OpenGL were written to create

an easy interface to the Eigen linear algebra library [81]. The Eigen library offers

both sparse and dense matrix APIs and also matrix decompositions and solvers

used in the surface fitting. A conjugate gradient solver was used for the ridge

regression fits but the FORTRAN language glmnet algorithm was used for the

lasso fits [89].

3.2.3 Methods to mitigate probe signal saturation

The histogram (Figure 3.21) of a protein binding micro-array for Egr2 shows a

probe intensity distribution spike at the log2 value of 16. This corresponds to a

16 bit digital value being saturated. Also, the point cloud image for the Gmeb2

micro-array (Figure 3.17) shows an excellent dynamic range but saturation at the

highest intensity level that the image sensor can record, i.e. 16 given as log base

2.

We might believe that the highest intensity readings for an array correspond

to probes that have the most significant binding sites for a transcription factor.

Differences in the binding specificities to probes with the highest signals may

contain some of the most interesting information. It is of value therefore to have

methods that can recover some of the signals lost in the saturated data.

3.2.3.1 All array quantile normalisation

In Annala et al. [70], a quantile normalisation across all the protein binding

micro-arrays in the DREAM5 data-set was made. The authors comment that an

assumption implicit when making this transformation is that the distributions

of probe intensities, for each array, is the same. Array quantile normalisation

is a much used method for the pre-processing of gene expression arrays [90].

The method used is to calculate a consensus distribution (Figure 3.18) across

all micro-arrays. Each probe, according to its rank, is given the intensity of a
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probe, with the same rank, in the consensus distribution. The authors comment

Figure 3.18: The consensus distribution for the 172 protein binding micro-
arrays in the DREAM5 data-set. Clearly the consensus looks nothing like any
individual array distribution.

that an assumption of equal distributions is ‘subject to debate’. The authors

suggest that the improvement in predictor performance achieved by this all array

quantile normalisation is likely due to its positive impact on the most saturated

arrays. It is clear, and potentially of relevance biologically, that the distributions

of intensities for different transcription factors are, in fact, not equal. Figure 3.19

illustrates some of these points.

3.2.3.2 Quantile normalisation with background data

In Annala et al. [70] it is suggested that a slightly more discriminating approach,

rather than performing all array normalisation, would be to select only those
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Figure 3.19: Distributions of intensity signals for two pairs of protein binding
micro-array experiments. On the top row, distributions for the transcription
factor Gmeb2 are observed, with a distinctive shape, that is different to those on
the bottom row, which are for the transcription factor Prdm11. Each row shows
the distribution of intensities for a pair of experiments, i.e. one on each of the
array designs, HK and ME. It is of note that the ME array, for the transcription
factor Gmeb2, has a significantly saturated signal at the highest intensities.
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arrays that have a non-saturated signal to form the consensus distribution.

An even more selective alternative is to quantile normalise the foreground

probe intensity information with the background probe intensities for a single

experiment. This is only possible where background probe intensity information

is available of course. The histograms for Irf2’s foreground and background

signals (Figure 3.20) over two experiments, show a case where the signals are

saturated in the foreground but not in the background. The idea then, is to use

the information in the background signal to separate those foreground signals

that have been ‘squashed together’ at the saturated peak. If we believe that the

background signals contain less information than the foreground signals then we

would like to keep the good information in the foreground signals whilst using the

background signals to ‘correct’ the saturated signals in the foreground. Consider-

ing figure 3.23 it seems likely that we can recover some of the correct shape of the

distorted distribution of high intensity signals using the background distribution.

In figure 3.21 a similar set of foreground and background signals for a pair of

experiments is seen. In this case the background distributions do not have such

a similar appearance to the foreground distributions.

3.2.4 Implementation details

Data for every array is stored in an Sqlite database and is mapped using the

object relational mapping software ODB. It is possible to pull in all necessary

information on any array in less than a second. For example 40000 intensity

readings and their grid references are pulled in and rendered in under a second.

The database is approximately 0.5GB in size, depending slightly on how many

summary statistics are calculated and stored therein.

The implementation of a B-spline curve is greatly simplified when one is able

to use regularly spaced knots. A single (d + 1) × (d + 1) sized matrix can be

used to calculate weights for every control point. The boundary conditions add

an extra complication.

Basis functions for B-splines are calculated on the CPU and control points

are then optimised for using either a normal linear regression, a penalised linear

regression or the elastic net algorithm.
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Figure 3.20: Intensity distributions for the transcription factor Irf2. Each his-
togram in the top row shows the distribution of intensities for a different array
design. The HK array, to the left, shows a small amount of saturation at the high-
est signal. Whilst the array to the right, the ME array, shows several hundreds
of probes saturated at the highest intensities. In each case it can be seen that
the shape of the background distribution closely follows that of the foreground
distribution.
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Figure 3.21: Intensity distributions for the transcription factor Egr2. Each
histogram in the top row shows the distribution of intensities for a different
array design. The HK array, to the left, shows a small amount of saturation at
the highest signal. Whilst the array to the right, the ME array, shows several
hundreds of probes saturated at the highest intensities. It is not clear what the
bump to the right of the Egr2 background distribution is.
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Figure 3.22: Scatterplots showing the relationship between foreground and
background intensities for a selection of transcription factors. The plots on the top
left, middle right and bottom right show arrays that have saturated foreground
signal intensity. In each case, there is a good correlation between the background
and foreground signals and the background signals are not saturated. It is not
clear what the ‘twin clouds’, at low intensities, in the Gmeb2 plots are.
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Figure 3.23: Histograms showing the foreground and background intensity dis-
tributions for half of the DREAM5 arrays. The red bars show the locations of the
highest intensities that are otherwise hard to observe in the histogram. The blue
histograms show the foreground intensities and the green show the background
intensities.
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Once vertices and their positions have been calculated they are shifted to the

GPU for rendering using the OpenGL 3.3 API.

3.3 Results

We wanted to evaluate possible improvements made by spacial normalisation and

distributional normalisation of the probe intensities. Prior to this evaluation,

flagging of outlier probes was carried out using the GUI tool for each of the

arrays (Section 3.2.1) with flags stored in a database and used to exclude the

data for all following steps. One approach to measure success in the correction of

spatial and saturation artefacts is to measure our ability to predict the measured

probe signals on a counterpart array1.

The prediction method is to be discussed in detail in chapter 5, for this demon-

stration a vanilla set of parameters will be fixed in all cases. The predictor will be

referred to as the lasso predictor. The rationale for this approach to measuring

efficacy of spatial and saturation corrections is that any spatial and saturation

corrections that enable us to better predict an independent array are improving

the signal to noise ratio on the training array.

Pearson correlation between predicted and true values was measured before

and after making the spatial and background corrections. The same set of 66

arrays were chosen that were the arrays initially part of the DREAM5 challenge.

This helps with comparisons to previously published results.

3.3.1 Spatial normalisation results

Figures 3.24, 3.25 and 3.26 show the small differences caused by surface nor-

malisation on lasso predictions for a subset of the protein binding micro-arrays.

Table 3.2 has an overall comparison. Both the median window method and the B-

spline method, with 10×60 knots, are comparable. The latter does slightly better

1Here, a counterpart array is a second protein binding micro-array with a different de Bruijn

sequence and the same DNA binding protein. In the DREAM5 data-set every transcription

factor was added to two arrays, one HK design array and one ME design array. These two

arrays are described as counterparts.
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over-all. The penalised B-spline method improved upon no spatial normalisation

but comes in behind the other methods.

In Annala et al. [70] improvements afforded by spatial corrections were noted

as roughly a 0.003 mean improvement in Pearson correlation. The same median

method implemented here, and assessed via its effect on the lasso predictor, is very

slightly improved. The 10 × 60 knot B-spline surface smooth slightly improves

the predictor performance again.

Table 3.2: Comparison of spatial artefact correction reported in Annala et al.
[70], a similar method re-implemented here and also the B-spline approach im-
plemented here. Before and after Pearson correlations are given and the relative
changes.

Annala et al predictor Lasso predictor
Smooth Type Median Median B-Spline, 10× 60
Uncorrected .6094 .6866 .6866
Corrected .6119 .6899 .6904
Change .0025 .0033 .0038

Given the results in table 3.2, in the following work described in this thesis,

the data-set used to build predictive models is all based upon data normalised

with the B-spline spatial artefact correction using lasso penalisation of surface

parameters.

3.3.2 Saturation normalisation results

Figures 3.27 and 3.28 show the effects on the lasso predictor’s performance of

the quantile normalisation of foreground intensities to background intensities on

a subset of the protein binding micro-arrays. Changes in predictor performance

are observable in both directions and sometimes, in contrast to the spatial cor-

rections, these changes can be substantial. For this reason it is better to apply

this normalisation selectively to arrays that clearly show saturation.

Three transcription factors that have clear saturation artefacts are shown in

figures 3.19, 3.20 and 3.21, Egr2 on the HK array, Irf2 on the ME array and Gmeb2

on the ME array. Table 3.3 shows that quantile normalisation with background

signals consistently offers an improvement on this hand picked selection of arrays.

79



3. PBM DATA NORMALISATION

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ar

Dbp
Foxo6
Klf12
Klf8
Klf9
Mlx

Mzf1
Mzf1
Nfil3

Nr2f6
Nr4a2

Pou2f1

Mypop
Pou1f1

Prdm11
Rorb

Sox10
Sox3
Sox6

Srebf1
Tbx2

Figure 3.24: Bar chart showing correlations of predicted values with true values
after different types of surface normalisation,

• 10× 60 knot B-spline

• penalised B-spline

• median window

• None

This chart shows the first 22 of the 66 DREAM5 challenge arrays, these arrays
are all of the HK design.
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0.4 0.5 0.6 0.7 0.8 0.9
Tbx20
Tbx4
Tbx5
Tcfec

Xbp1
Zfp202
Zfp263

Zfp3
Zfx

Zkscan1
Zscan10

Ahctf1
Atf3
Atf4

Dnajc21
Dmrtc2

Egr3
Esrrb

Esrrg
Foxc2

Foxg1
Gata4

Figure 3.25: Bar chart showing correlations of predicted values with true values
after different types of surface normalisation,

• 10× 60 knot B-spline

• penalised B-spline

• median window

• None

This chart shows the second 22 of the 66 DREAM5 challenge arrays, the first 11
of these arrays are of the HK design the second 11 are of the ME design.
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Figure 3.26: Bar chart showing correlations of predicted values with true values
after different types of surface normalisation,

• 10× 60 knot B-spline

• penalised B-spline

• median window

• None

This chart shows the third 22 of the 66 DREAM5 challenge arrays, these arrays
are all of the ME design.
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Figure 3.27: Effect of saturation correction on 33 HK arrays.

• No saturation correction

• Background quantile correction
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Figure 3.28: Effect of saturation correction on 33 ME arrays.

• No saturation correction

• Background quantile correction
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It is easy to make this selection by visual inspection of a foreground intensity

histogram (Figure 3.23).

Table 3.3 shows that the all array quantile normalisation has caused a de-

crease in predictive performance on the array Irf2 in the previously published

results from Annala et al. [70]. On the other the normalisation with background

intensities developed here improves predictive perfomance in all the examples

shown.

Table 3.3: Comparison of all array quantile normalisation used in Annala et
al. [70] against quantile normalisation used only with background signals. The
Pearson correlation coefficient is given in each case.

Annala et al predictor Lasso predictor
No QN QN No QN QN

Egr2 .763 .801 .808 .827
Gmeb2 .629 .775 .952 .953
Irf2 .677 .640 .810 .814

Given the results in the table 3.3, in the following work described in this thesis,

the data-set used to build predictive models has had saturation normalisation

applied to arrays selected by visual inspection to have significant foreground

saturation.

3.4 Conclusions

In this chapter, some measurements on the effects of normalisation procedures are

shown. A tool was produced that allows the easy exploration of the heterogenous

data and the building of an intuition about the data. This is described further

in appendix A. A number of methods were evaluated through their effects on

predictor performance. The most effective were selected and applied to create a

cleaned and normalised data-set that is used throughout the rest of this thesis.

Most of the differences observed in the overall improvement of correlation are

small, for both spatial and saturation corrections. Useful questions to ask are,

• What is the purpose of optimising overall correlation?
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• How might the corrective measures applied here have improved other met-

rics?

For the latter, measurements have not been made in this thesis to address these

matters adequately. The size of corrections made to individual probe intensities

is large in many cases when compared to the dynamic range of the data. If we

want to compare the intensity readings of a pair of probes to make a quantitative

statement about their relative binding affinity then the corrections made could

indeed be significant.

It seems that the protein binding micro-array platform could be used for

more quantitative modelling of protein DNA interactions. This would involve

many replicate experiments with the same transcription factor on the same array

design, then several replicates at different concentrations, and then replicates

with different de Bruijn sequences. This subject is expanded in the conclusions

to this thesis.
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Chapter 4

Probe Analysis and Model

Matrix Construction

This chapter turns to the investigation of the protein binding micro-array probes

and the construction of the ‘model matrix’ used in subsequent parts of this thesis.

In section 4.1.1.1 there is a summary of the probe sequences as published for

the DREAM5 competition. After this look at the data there is an introduction to

de-Bruijn sequences (Section 4.1.1.2). An understanding of de-Bruijn sequences

is necessary to properly appreciate the HK and ME array designs, background

on each of these designs is given in sections 4.1.1.3 and 4.1.1.4.

Armed with our understanding of the composition of the probes and their

statistical properties we go about the important task of feature selection and

model matrix construction, background on this is given in section 4.1.2.

The methods section is split into methods used in the analysis of the probes

and their underlying de-Bruijn sequences (Section 4.2.1) and methods used in the

construction of the model matrix (Section 4.2.2).

The results section is split in a similar way. Firstly results on the analysis

of the array designs are given (Section 4.3.1) and secondly empirical results on

properties of the model matrix (Section 4.3.2).

As part of the careful investigation into the properties of the HK and ME

array designs the following techniques, whose application to this domain is novel,

were developed,
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• A method to calculate the generating polynomial of the HK array design is

described and used to retrieve it. This adaptation of the Berlekamp-Massey

algorithm is used to show the probes on the array have been modified in

certain positions compared to the generated sequence.

• The published method for the construction of the ME design is shown to be

missing some key information. This observation was the subject of Oren-

stein & Shamir [69], published during the writing of this thesis.

Conclusions for this chapter are found in section 4.4.

4.1 Background

4.1.1 Array Probe Analysis

4.1.1.1 Description of a protein binding micro-array’s probes

The sequences that are used on the HK and ME arrays1 are different, though they

have important properties in common. Each design has probes that are segments

from sequences that compactly represent all possible 10-tuples, each sequence is

produced by a different method and has different properties. Descriptions of these

methods are given in sections 4.1.1.3 and 4.1.1.4. Implications for the modelling

and analysis of the protein binding micro-arrays are discussed.

Figure 4.1 is a sample of the probe information from the HK array design as

given in a data file provided by the organisers of the DREAM5 challenge. These

are 35 base pair sequences that correspond to the template strands of the double

stranded DNA probes that are attached to the glass slides of the protein binding

micro-arrays. The linker sequence that connects the 35bp sequence to the array,

which is itself 25bp long, is omitted here.

1Each of the DREAM5 protein binding micro-arrays has probes from one of two designs;

these designs are referred to as HK and ME.
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Figure 4.1: A sample of the probes described in a data file for the HK array
design.

probe_id probe_sequence

HK00001 TAAAAGTCAAGGATAAGTTTCCGGCACCGCAAATA

HK00002 CCGCAAATATGGGATTAGCCATAGTCTTGCATAGC

HK00003 TTGCATAGCAAAAATGCATGTGTGCTCGATGAAAA

HK00004 CGCAGATCATTCCCCGCGGGACGGAGTTTTCATCG

HK00005 TGATCTGCGCTGTCATGCAAAGCAAGCATAATAGT

Figure 4.2: A segment of a de Bruijn sequence obtained by aligning the probes
from figure 4.1. The ellipses are for the central segments, of each probe, omitted
here to facilitate display.

TAAAAGTCA...ACCGCAAATA

CCGCAAATAT...CTTGCATAGC

TTGCATAGCA...TCGATGAAAA

CGATGAAAAC...ATGATCTGCG

TGATCTGCGC...

Concatenating these 35bp sequences in the given order, with a nine base

pair overlap, gives us the alignment in figure 4.2, but with one complication.

The sequence in red, HK00004 in figure 4.1, has to be reverse complemented to

enable the sequences HK00003, HK00004 and HK00005 to be aligned as shown

in figure 4.2. The reverse complement of probe HK00004 is shown in green in

this alignment. By using reverse complements where necessary it is possible to

concatenate all probe sequences in the data file into a single sequence of length

410 + 10 − 1. This is the de Bruijn sequence, from which the probes are taken,

for the HK design.

In the case of the ME array design a concatenated sequence can be produced

in the same way. Though in this case, the sequence has approximately half the

length due to the redundancy of reverse complements having been removed, this

is discussed in more detail in section 4.1.1.3.
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4.1.1.2 Introduction to de Bruijn Sequences

De Bruijn sequences are very well studied as mathematical objects in their own

right. They also have several important applications such as position sensing [91],

functional magnetic resonance imaging (fMRI) [92], DNA sequence assembly [93]

and DNA synthesis for synthetic biology applications [94]. Their properties are

needed for the construction of protein binding micro-arrays since they offer the

most efficient way to represent all possible 10-tuples. An appreciation of the

properties of de Bruijn sequences gives us an understanding of the statistics of the

sub-sequences contained within an array’s probes. Efficient methods to generate

and analyse the sequences are afforded by an appreciation of the mathematics

behind them, hence the somewhat detailed investigation that follows.

A de Bruijn sequence is a maximally compact representation of all possible

strings of symbols of a given length from a finite alphabet. Of particular interest

to us is the alphabet {A,C,G, T} and strings of a length that might correspond

to a transcription factor recognition site. A de Bruijn sequence over an alphabet

of c characters, with every possible length u string contained therein, will be

described as a ‘c-ary de Bruijn sequence of span u’. By ‘maximally compact’

what is meant is that, in a c-ary de Bruijn sequence of span u, each length u

sub-string will occur exactly once. For example, given the alphabet of nucleotide

bases, {A,C,G, T}, and nucleotide sequences of length 10, we would speak of a

4-ary de Bruijn sequence of span 10. This 4-ary de Bruijn sequence will have 410

elements when viewed as a periodic sequence or 410 + 9 elements when taken as

a linear sequence.

It may not seem immediately obvious that a de Bruijn sequence will necessarily

exist for any given span and alphabet size. In fact, such sequences exist for all

sizes of alphabet and all spans. Moreover, the number of such sequences is very

large. One way to demonstrate that such sequences exist is through the properties

of a de Bruijn graph (Figure 4.3).

General de Bruijn sequences can be obtained from a graph traversal. The

nodes on the graph are the set of possible length u strings from an alphabet of size

c and directed edges from a node x (Equation 4.1) to y (Equation 4.2) whenever
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the last u− 1 symbols of x overlap the first u− 1 members of y (Equation 4.3).

x = x0x1 . . . xu−1 (4.1)

y = y0y1 . . . yu−1 (4.2)

x→ y ⇐⇒ x1x2 . . . xu−1 = y0y1 . . . yu−2 (4.3)

A de Bruijn sequence can be represented as a circular or periodic sequence (Fig-

ure 4.5). A linear representation of a span u de Bruijn sequence requires extra

elements added to the end in order to contain every possible length u sub-string.

For a 2-ary de Bruijn sequence of span 3 the following demonstrates this detail;

between any pair of colons the sub-string 001 is missing but is present when taken

as a periodic or circular sequence.

...00:010111000:010111000:010111000:01...

This need to ‘add back’ extra elements to ensure all sequences are represented

is important to appreciate in the construction of the protein binding micro-array

probes. Each probe is a short segment of a larger sequence and so extra elements

have to be ‘added back’ to the end of each probe to make sure that every 10bp

sequence is represented, unbroken, on some probe of the array.1

1This does mean that a 9bp sequence that is a suffix of a probe will be repeated as a prefix

of the next probe. This could provide an interesting method to test the importance of probe

position on 9bp sequences.
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Figure 4.3: A binary de Bruijn graph of span 3. Any Hamiltonian cycle through
this graph, i.e. a cycle visiting each node exactly once, will describe a binary de
Bruijn sequence of span 3. The sequence can be read off by overlapping successive
nodes on the Hamiltonian cycle, the last two bits are overlapped with the first
two of the next node. The overlap is also described by the blue labels, a bit
is left shifted into the least significant bit when traveling between nodes. E.g.
000→ 001 is labelled with a blue 1 since a one is shifted into the binary 3-tuple
from the right. The existence of an Eulerian cycle, i.e. visiting each edge exactly
once, is guaranteed by the even in-degree and even out-degree of each vertex. An
Eulerian cycle on this graph describes a de Bruijn sequence of span 4. In this
case the sequence is read as the sequence of blue labels as the Eulerian cycle is
followed.
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Figure 4.4: A binary de Bruijn graph of span 4. Any Hamiltonian cycle through
this graph will describe a binary de Bruijn sequence of span 4. This graph can be
formed from the line graph of the graph in figure 4.3. The line graph of a graph
is the new graph created by taking edges from the original graph as nodes in the
new graph. E.g. the node 000 in figure 4.3 has an outward edge labelled with
a 0 and an outward edge labelled with 1. These edges become, respectively, the
nodes 0000 and 0001 in the graph below. Edges between these nodes are then
added whenever a single node in the old graph separated the edges from the old
graph that have become nodes in the new graph.
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A de Bruijn sequence over the alphabet {A,C,G, T} that contains all possible

u-tuples will have length,

4u (4.4)

if viewed as a periodic sequence (Figure 4.5) or

4u + u− 1 (4.5)

when taken as a linear sequence. This follows from the Eulerian tour traversal of

the de Bruijn graph,

• the traversal is known to exist since the out-degree equals the in-degree for

every node

• the Eulerian tour formulation has cu−1 nodes and c out-edges for every node,

hence there are cu edges and the same number of symbols produced by a

Eulerian tour traversal

Figure 4.5: The 42 symbols of a de Bruijn sequence covering all di-nucleotides.
Each pair of nucleotides appears exactly once in the circular sequence. To repre-
sent each pair of symbols independently would require 2× 42 new symbols. The
saving is greater for de Bruijn sequences of greater span.
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The total number of such sequences grows very quickly with the span of the

sequence. The number of de Bruijn sequences over an alphabet of c symbols
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with every u-tuple represented was determined by van Aardenne-Ehrenfest & de

Bruijn [95] and is given by the formula,

(c!)c
u−1

cu
(4.6)

The number of c-ary de Bruijn sequences of span u that can be generated by a

linear feedback shift register1 are the same as the number of primitive polynomials

of degree u over the finite field with c elements,

φ(cu − 1)

u
(4.7)

where φ is Euler’s totient function [96]. For a protein binding micro-array con-

taining all DNA u-tuples the ME array design (Section 4.1.1.3) uses a four letter

alphabet and an algorithm on a span u−1 de Bruijn graph to construct its probes.

The HK array design (Section 4.1.1.4) uses a binary alphabet and a span 2 × u
de Bruijn sequence, generated by a linear feedback shift register, to construct its

probes. Table 4.1 illustrates the double exponential growth in the number of both

general and linear feedback shift register type de Bruijn sequences. Properties

of the binary linear feedback shift register type sequences that are of biological

interest are discussed in Philippakis et al. [97]. These properties include that

their sequences represent all ‘gapped u-mers’. The authors in Philippakis et al.

[97] argue that this constrained set of de Bruijn sequences are just the right set

of sequences for the protein binding micro-array experiment. This point will be

raised again in section 4.1.1.4.

1A linear feedback shift register over an alphabet can be pictured as an array, (register),

of characters that, at each step are shifted one space over, (to the left say). The character

that is shifted ‘off the end’ to the left is the output of the step. The character that is added

to the right is determined by adding a fixed subset of the characters in the array. The fact

that the characters are added determines that the register is of ‘linear’ type, i.e. if they were

multiplied this would not be a non-linear shift register. When we speak of adding characters

what is understood is that the characters are elements of a finite field. In our case the field with

2 elements or the field with 4 elements. The latter being identified with nucleotide alphabet.
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4.1.1.3 The ME array design

The ME array design [68] has probes that are a compact representation of every

possible 10-mer. The sequence used on the protein binding micro-array is not a

de Bruijn sequence in the strict sense but contains either a 10-mer or its reverse

complement exactly once. A 10-mer that is its own reverse complement occurs

exactly once in the constructed sequence. The sequence is obtained by following

a pseudo-Eulerian cycle on a de Bruijn graph whose vertices represent all possible

9-mers. By ‘pseudo-Eulerian cycle’ what is meant is that each time an edge is

traversed its reverse complement edge is eliminated from the de Bruijn graph

(Figure 4.6).

This approach requires only 20264 probes of length 35 according to Mintseris

& Eisen [68] and therefore is a more compact representation of all 10-tuples than

the HK design. The oligonucleotide arrays used in the DREAM5 data set allow

40630 probes and so the reverse of the pseudo-Eulerian sequence is also included

on an array.1 A meta-data file for the ME design protein binding micro-array, in

the DREAM5 data-set, gives a template for each of the probes. By taking these

probe templates it is possible to re-assemble a contiguous sequence. It appears

that randomisation has been used in deciding whether a particular segment or

its reverse complement is used as the template in each case. Because of this it

is necessary to reverse complement about half the time when aligning the probes

to re-assemble the sequence.

Empirically, for the DREAM5, ME design data, it is also observable that

several 10-tuples are duplicated within the template sequences. This is contrary

to the design specification. For instance, there are 788 duplicated 10-tuples on

each of the forward and reverse sequences on the ME array design. It was initially

unclear why this occurs. It is problematic when designing algorithms working

with the sequences. It indicates that an optimally compact sequence, if such a

construction is possible, has not been achieved in this case.

As it appears on the DREAM5 arrays, and compared to the HK design, a

key difference for the ME design is that a DNA word of length 10 and its reverse

1Given twice the number of probes, i.e. 81260, the ME design would allow every 11-tuple

to be represented on the array
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Figure 4.6: Steps in the construction of a pair of pseudo-Eulerian tours
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complement will not appear on the template strand. For example, if the 10 letter

nucleotide word AAAAAAAAAA appears on the template strand of the ME array

design then we know that TTTTTTTTTT will not appear on the template strand

anywhere on the array1. This is in contrast to the HK array where every 10-

mer appears on the template strand. This has implications for the modelling

1Since the reverse of the pseudo de Bruijn sequence is included on the ME array design.

In this case no 10-tuple in the template side of the reverse sequence will provide the reverse

complement of AAAAAAAAAA because TTTTTTTTTT is still in the non-template strand.
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Figure 4.8: Figure showing a pair of pseudo-Hamiltonian tours for DNA two-
tuples, i.e. the blue tour and the red tour. The graph, including the red, blue and
grey lines, is a de Bruijn graph for all DNA two-tuples. Each of the two-tuples
that is its own reverse complement, (the four central nodes), is visited on both
of the tours. Otherwise each node is visited exactly once on exclusively the blue
tour or the red tour.
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and prediction of an ME design protein binding micro-array and also for possible

asymmetry in representation of binding sites caused by the incomplete double

stranding of array probes (Section 3.1.1.3).

4.1.1.4 The HK array design

The HK array design [97] has probes that are the output of a linear feedback shift

register.

When using a linear feedback shift register over the binary alphabet we must

use a register of length 2× u if we wish to obtain all span u de Bruijn sequences

over the 4-ary alphabet. Also, the 4-ary sequence must be read from each reading

frame of the binary sequence. Since the length of the output from a linear feedback

shift register, over the binary alphabet, always has odd period, this works in a

natural way (Figure 4.9).
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Figure 4.9: The HK array design approach to probe construction. In this
example picture, taken from Philippakis et al. [97], we see binary pairs translated
from each reading frame when using the output of a linear feedback shift register.
Note the absence of the sequence 0000. This is not a valid state of the LFSR.
Its omission guarantees the binary sequence will be odd in length and therefore
that reading through both frames occurs naturally as shown. The missing ‘a’
nucleotide is added back afterwards to either the left or right of any existing ‘a’
in the constructed sequence.

Each possible 10-mer occurs exactly once in the de Bruijn sequence. This

means that each 10-mer occurs exactly twice on the protein binding micro-array

since the reverse complement is also present in each case. A 10-mer that is its

own reverse complement should therefore occur 4 times on this design of protein

binding micro-array.

The template strand probes are given in a meta-data file and from these it

is possible to stitch back together the de-Bruijn sequence from which the probes
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have been cut. 3481 of the probes have been reverse complemented from their

original orientation in the de Bruijn sequence from which they have been taken.

It appears that this has been done to avoid runs of 4 or more consecutive guanine

residues in the template strand. Obviously this is not possible in all cases. The

algorithm used has not been published.

In Philippakis et al. [97] it is shown that a maximal number of ‘gapped 10-

tuples’ is present in a de Bruijn sequence generated in this way. This means

that every 11-tuple, with some unspecified base at any internal position, will be

present on the array. Another way of describing this is that for every 10-tuple

there will be 9 11-tuples on the array that match with a single ‘insertion’.

4.1.2 Feature Selection and the Model Matrix

Feature selection is done to obtain a set of probe sub-sequences that represent the

content of any given probe. Features that describe the positions of sub-sequences

within probes are also used.

The model matrix is used when learning parameters and predicting both probe

intensities and genomic binding sites. The term ‘model matrix’ is taken from the

standard expression for a linear model in statistics, i.e. the X in the following

expression,

Y = Xβ + ε (4.8)

There is further discussion of this and similar linear models in section 5.2.3.2.

The matrix is designed using only the probe sequences, this is independent of

any protein binding experiment results, hence the description finds itself in this

chapter. Mathematical and computational methods for its construction are given

in section 4.2.2. The results of some benchmarks and other investigations of this

model matrix are given in section 4.3.2.1.
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4.2 Methods

4.2.1 Array Probe Analysis

4.2.1.1 De-Bruijn sequence retrieval from probes

The probes for each design were analysed to gain a more complete understanding

of their sequence content. The method used to reconstruct the de-Bruijn sequence

from the probes is described in the introduction section 4.1.1.1.

4.2.1.2 Retrieval of generating polynomial

The Berlekamp-Massey algorithm was used to reverse engineer the generating

polynomial representation of the de-Bruijn sequence of the HK array design. This

was after transforming the DNA sequence to its binary form (Section 4.1.1.4).

4.2.2 Model matrix construction

The method used to form the model of the binding specificity to a probe is to

split the probe into ‘nucleotide words’ of various lengths and then find weights for

these words using a least squares penalty. This procedure, and some extensions,

are described next.

4.2.2.1 Decomposing protein binding micro-array probes

Each probe is split into a number of features, let’s call these features ‘nucleotide

words’. A toy example of a probe is used here to aid description. Consider the

example probe,

AACGGTTT

We first split this probe into single nucleotides,

AACGGTTT

A A C G G T T T

then into di-nucleotides,
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AACGGTTT

AA AC CG GG GT TT TT

then into tri-nucleotides,

AACGGTTT

AAC ACG CGG GGT GTT TTT

fours,

AACGGTTT

AACG ACGG CGGT GGTT GTTT

and so on,

...

The actual probes on the arrays have 35bp of variable sequence and a constant

25bp linker sequence. Different amounts of the linker sequence were included

in decompositions. Since a protein could bind partly to the variable sequence

and partly to the linker sequence it made sense to try incorporating part of the

linker sequence into the model. If the longest DNA word being incorporated into

the model is 10bp then we allow 9bp of linker sequence to be included in our

decomposition since at least 1bp will be variable, and therefore provide useful

information to the regression.
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4.2.2.2 Encoding the presence of DNA words within probes

Each nucleotide word can be encoded as an integer using the lexicographical

ordering,

A = 0

C = 1

G = 2

T = 3

AA = 4

AC = 5

...

TG = 18

TT = 19

...

(4.9)

The inverse function, from DNA strings to integers, is easily computed allow-

ing the recovery of a unique nucleotide word from an integer index, which is also

the index of the word’s column in the model matrix.

Each probe on the protein binding micro-array is described by a row of the

model matrix. If a probe contains a particular nucleotide word then an entry

will be made in the column of the model matrix corresponding to the nucleotides

word’s index. The particular entry that is made is a parameter that can be chosen

from,

• the digit one, for one or more occurrence of the word within the probe

• the number of occurrences of the word within the probe

• in addition to the above, an entry in the column of the nucleotide word’s

reverse complement can be made

105



4. PROBE ANALYSIS AND MODEL MATRIX CONSTRUCTION

4.2.2.3 Model matrix implementation

The number of columns is calculated as,

4m + 4m+1 + · · ·+ 4M =
4M+1 − 4m

3
(4.10)

where M is the longest DNA word used in the model and m is the shortest. The

algorithm that converts the probe sequences into the model matrix takes a pair

of parameters to select which features to include. A typical range, and one that

often returned good results, was for m = 3 and M = 8.

The model matrix will have a nominal number of columns of ≈ 65000. The

number of rows in the model matrix is the same as the number of probes, i.e.

≈ 40000. We see from this that a naive implementation would create a matrix

with ≈ 2.6 × 109 elements. Taking 4 byte floats as elements we see that this

pushes the limits of what can be done in RAM on a typical workstation.

The C++ language, linear algebra library Eigen [81] is used extensively through-

out the data analysis presented in this thesis. An efficient, performant and con-

venient sparse matrix API is included. It is also convenient to interface with the

FORTRAN language optimisation routines discussed later.

Construction of the model matrix from probe sequences is done at runtime

by decomposing one probe at a time and looping over all the probes in an array.

Storing the sparse matrix representation as a text format file is possible but this

takes 100s of MB of storage. It turns out that the loading of the sequence probes

from an sqlite database and on the fly sparse matrix construction can be done

in about a second and this approach is adopted instead. Many variations of

model matrices have been tried and the number of stored files quickly becomes

unwieldy and hard to track using the former approach. Because probes can

be flagged the number of rows in the model matrix varies between each array.

Loading a serialised sparse matrix from file and removing unnecessary rows is

also expensive and more complex than selecting the desired probes from the sqlite

database. Some benchmark numbers for the settled upon approach are given in

the results (Section 4.3).
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4.2.2.4 Encoding a word’s position within a probe

There is evidence that the location of a DNA word within a probe affects the

intensity of the fluorescent signal for that word. In Berger et al. [80] it is claimed

that increased intensity is recorded for a DNA word when it appears towards the

end of the probe, i.e. furthest from the glass slide.

The model matrix appears to be of full rank for models including all 8bp DNA

words (Section 4.3.2.2). Nevertheless further basis expansion seems to improve

predictor performance. This might be interpreted in terms of offering the learning

algorithm more relevant features to select from. The lasso predictor is not a

linear function of the data and this must be a key ingredient since a simple linear

regression could not be improved by adding extra columns to a matrix of full

rank.

In order to pass information on word location to the learning algorithm, e.g.

the lasso, it must be somehow encoded in the model matrix. One way to do this

is to add a column for every possible DNA word and for every possible probe

position. This would result in a model matrix consuming roughly 30 times more

memory (Section 4.3.2.1) than the matrix that encodes only the presence, and

possibly multiplicity, of a DNA word. Another approach is to add one extra

column to the model matrix for each DNA word, but in this column add a value

that encodes the feature’s position within the probe. The latter approach is

complicated by the fact that, particularly for shorter features, a DNA word may

appear more than once in any given probe. In this case it must be decided

which copy of the DNA word should have its positional information encoded.

One approach is to accumulate the positional information by adding the values.

Another approach would be to pick the location closest to one end, or the other, of

the probe. Several functions have been tried to encode the positional information

and these are described next (Figures 4.10, 4.11, 4.12 and 4.13). Which of these

techniques is best will be addressed in the following chapter (Section 5.4.2). For

each of the functions it needs to be decided what to do for features that occur

multiple times in a single probe, simply adding the values is one approach.

Linear function of distance from probe end
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Figure 4.10: A simple linear function of probe position. A prior belief in using
this function is that there is a linear decrease or increase binding propensity as
one moves from one end of a probe to the other.

Tanh function of distance from probe end
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Figure 4.11: A hyperbolic tangent function of probe position. A refinement
of the linear function, a prior belief in using this function would be that the
location most critical at the line x = 30 and less important towards either end of
the probe. As with the linear function, it assumes that one end of the probe has
the opposite effect to the other.

Log of distance from probe end
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Figure 4.12: A log function of probe position. This function can be reflected
in the line x = 30 to yield another candidate position encoding that was experi-
mented with. The prior belief is that one end of the probe has the opposite effect
to the other. Here though, the position changes are more important at one end
than the other.

Triangle function of distance from probe end
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Figure 4.13: The triangle shown here is symmetric and centered at x = 30,
asymmetric triangle functions, centred at other probe positions were also tried.
This function allows that there might be a ‘sweet spot’ somewhere on a probe for
a binding site to occur. The prior belief could be that positions close to the array
are sub optimal due to steric hindrance and positions at end of the probe furthest
from the array are also sub-optimal for binding due to the increased probability
that a probe has not been successfully double stranded.1
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4.2.2.5 Locating word positions

During analysis and visualisation of protein binding micro-array data a mapping

between individual DNA words and their containing probes, and vice versa, was

frequently wanted. A way to select all intensities corresponding to a particular

DNA word is available through the model matrix (Section 4.2.2). Essentially, one

can travel down a column of the sparse matrix and find all the non-zero rows.

These rows correspond to the probes in which the DNA word appears. This does

not give information on the position within the probe though.

A way to find the position of a DNA word within its containing probes is

a ‘decoding’ of the de Bruijn sequence. What is meant by decoding in this

context is the ability to efficiently locate a DNA word in the de Bruijn sequence,

and therefore within any of its containing probes. Efficient methods exist to

decode de Bruijn sequences generated from linear feedback shift registers [98]. A

description of the particular shift register used in the HK design was calculated

and this is given in the results (Section 4.3.1.2). This method was not used but

its potential utility is interesting to note and could be useful in building a more

complex model.

Alternatively, we can keep a mapping from every possible DNA word of a

given length to its locations on the protein binding micro-array. If we encode

all 10bp DNA words in this way then we require a 32bit integer for every word

and integers for each location of the word on the micro-array. Using an efficient

data-structure it is possible to store such information in a few MB of RAM. In

contrast to the LFSR decoding approach, this approach works for the ME array

design as well. Storing the locations of shorter words presents a different problem;

a typical 3bp word might appear in a large proportion of probes. In this case we

need to keep lists of 10s of thousands of probes and their locations within probes

for every 3bp sequence.

1In LeProust [77] the yield of full length cDNA probes is given as 80%. In this case, fewer

than 80% of double stranded DNA probes on a protein binding micro-array will have a double

stranded binding site fully formed at the probe end most distant from the array.
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Table 4.1: The number of de Bruijn sequences for alphabet sizes 2 and 4, for
general and linear feedback shift register types, for a selection of spans.

DNA word length linear general linear general
span |Σ| = 4 |Σ| = 4 span |Σ| = 2 |Σ| = 2

1 1 2 6 2 1 1
2 2 4 20736 4 2 16
3 3 12 ≈ 1020 6 6 67108864
8 8 4096 ≈ 1022000 16 2048 ≈ 109800

9 9 15552 ≈ 1090000 18 7776 ≈ 1039000

10 10 48000 ≈ 10360000 20 24000 ≈ 10157000

4.3 Results

4.3.1 Probe Analysis

4.3.1.1 Comparison of number of de-Bruijn sequences for each array

design

These quantities are calculated for alphabets of size four and two using equa-

tions 4.6 and 4.7. A point of interest (Table 4.1) is that the number of relevant

de Bruijn sequences that can be obtained via doubling the binary alphabet is

smaller than that that can be obtained using the 4-ary alphabet. The number

of linear feedback shift register type sequences is constrained further. The se-

quence space for the binary linear feedback shift register de Bruijn sequences is

relatively small compared to that of the more general 4-ary sequences. It may be

that the de Bruijn sequences available from the binary linear feedback shift reg-

ister construction are sufficient to represent the biologically significant sequence

information on the micro-array platform.

4.3.1.2 HK design LFSR recovery

One of the results of this chapter is the ‘stitching together’ of the sequences of

the HK and ME designs as described in the introduction (Section 4.1.1.1). For

the HK design this allowed the creation of a single circular sequence that was

the de Bruijn sequence used in the HK array construction, apart from the reverse

complemented probes. It was not possible to predict when a probe would be
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reverse complemented apart from those cases that had poly-guanine sequences.

These were always reverse complemented to contain a poly-cytosine instead. An

algorithm for this has not been published. It also seems that some arbitrary

decisions have to be made, e.g. what happens if a probe sequence has a poly-

guanine at the beginning of the probe and a poly-cytosine at the end? Taking

the reverse complement results in another poly-guanine.

The fact that efficient algorithms are available for decoding shift register gen-

erated sequences is stated in section 4.1.1.2. Running the Berlekamp-Massey

algorithm [99] on the sequence obtained from the data file, and assuming the

binary scheme of encoding, the following characteristic polynomial was obtained,

x21 + x13 + x11 + 1 (4.11)

This shift register successfully reconstructs the HK de Bruijn sequence, up to the

reverse complemented probes. Establishing this LFSR description of the HK de

Bruijn sequence was partly verification of the sequence content of the HK array

and was in itself a worthwhile task. The utility1 of having the LFSR available

has not been exploited any further in this thesis though.

4.3.1.3 ME sequence type construction

An effort was made to construct this type of ‘pseudo de Bruijn sequence’ following

the specification of the ME design [68].

If we require all 10bp nucleotide sequences to be represented in a sequence

exactly once, allowing for reverse complements, then the number required is as

follows,

410 = 1048576 (4.12)

45 = 1024 (4.13)

(1048576− 1024)/2 + 1024 = 524800 (4.14)

i.e. we divide all the 10-tuples that are not their own reverse complements by 2.

1This information is sufficient to construct the mapping from DNA words to probe location

in a compact and efficient manner [98].
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We then add back all those that are their own reverse complement. This gives a

total sequence length of 524800. With 26 independent base pairs on a probe this

would require 524800/26 = 20185 probes.

The following observations were made,

• This number is less than what is stated by the authors in Mintseris & Eisen

[68].

• There are several 10bp words that appear more than once on the ME array

design.

The authors in Mintseris & Eisen [68] do not give a complete description of

their algorithm. There seems to be some confusion between Eulerian cycles and

Hamiltonian cycles and the construction is incorrectly stated to contain each k-

mer1 exactly once. Whilst writing this thesis a paper that addresses the ambiguity

in Mintseris & Eisen [68] was published [69]. The authors give accurate bounds

for the efficiency of the ‘psuedo Eulerian’ construction and a description of an

optimal algorithm.

As part of earlier investigations into this matter explorative scripts were writ-

ten that generate ME type sequences along the lines of the description given in

figure 4.6. Basic components of the algorithm,

• Depth first graph traversal

• Tests for connectedness

• Tests for strongly connected components

• Counting connected components

• Eulerian tour detection

were all implemented. The development of this code was suspended when it was

found that the description in Mintseris & Eisen [68] was ambiguous and essentially

not possible to implement as stated.

1k being 10 in our case.
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4.3.2 Model Matrix

4.3.2.1 The sparse model matrix

Figure 4.14 gives a visual representation of one of the sparse model matrices.

This is, in fact, just the top left corner of a matrix but it does give the correct

impression for the entire matrix. Each column of white dots corresponds to a

DNA word contained in the array’s probes, each probe being represented as a

row. For example, the first and most dense columns represent the presence of

DNA 2-tuples in each probe. It is a nearly solid block of white pixels but not

entirely; in any given probe all DNA 2-tuples will not necessarily be present. This

is a consideration when making a model; if multiplicities of DNA 2-tuples are not

counted then many probes will have the same DNA 2-tuple description from the

perspective of the regression. On the other hand, if we record the numbers of each

DNA 2-tuple, in each probe, in the model matrix then each probe is more likely

to have a distinct 2-tuple description. The amount of memory used to construct

a model matrix depends upon the number of non-zero elements in the matrix.

The memory requirements for a model matrix also depends upon whether it uses

column major or row-major storage to a small extent.

Assuming 45bp of each probe word is decomposed into each row of the model

matrix we will have 4 possible non-zero entries for 1bp features, 16 non-zeros for

2bp words, up to 43 non-zero entries for 3bp words, 42 for 4bp words and so

on, up to 36 non-zero entries for 10bp words. Due to the properties of the de

Bruijn sequences we know that there will be 36 distinct entries for 10bp words.

On the other hand we might not have 43 distinct 3bp words in any given probe

and so will have fewer non-zero elements in the corresponding row of the matrix.

If we include all 4bp words through to 10bp words then a maximum number of

non-zeros per row is,

43 + 42 + 41 + 40 + 39 + 38 + 37 + 36 = 316 (4.15)

For 40000 probes this would imply 12640000 non-zero entries. Upon construction

of a model matrix for a typical array the empirical numbers of non-zero elements

are given in the second column of table 4.2. The memory requirements in table 4.2
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Figure 4.14: Sparse matrix representation. Each non-zero entry in the matrix is
represented as a white dot. The diagonal lines that can be observed are an artefact
of the probe sequences being sorted lexicographically before being decomposed
into the model matrix.

Word sizes Non-zeros Memory used Time to construct
4-8 7 700 000 92MB 1.1s
4-9 9 200 000 111MB 1.38s
4-10 10 600 000 127MB 1.4s

Table 4.2: Data structure characteristics of a typical model matrix for a selection
of contained features’ sizes.
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are calculated as the number of non-zero elements multiplied by 12 bytes. The

12 bytes consist of 8 bytes for the value and 4 bytes for the value pointer. The

row pointers have been disregarded since they are a relatively small component1.

4.3.2.2 Observations on model matrix rank

An important consideration is the rank of the model matrix. Since we are working

with a regularised linear model it is not a problem that the number of columns

is greater than the number of rows, ‘n < p’. Repeated, identical columns are

also not a problem for the algorithm in the same way they would be in a typical

‘n ≥ p’ linear regression setup.

If we include long enough word lengths then the matrix will have full rank

and we will be able to obtain a zero-residual error solution to the problem. e.g.

if we allowed all 10bp DNA words, then each probe would be ‘labelled’ uniquely

by some 10bp word and the weight for each of these 10bp words can be allowed

to equal the corresponding intensity. Another way to picture this is that, taking

the matrix in figure 4.14, under some permutation of rows we would see a ≈
40000× 40000 identity matrix appear within the larger matrix.

On the other hand, it is possible to have many more columns in the model

matrix than rows and yet still not obtain a zero residual. This is caused by the

matrix having a column space of dimension less than the number of rows.

Model matrices were constructed that included all 10bp DNA words, this

required 410 columns in the model matrix and ≈ 40000 rows. Because this matrix

is sparse it was handled with relative ease.

The SuiteSparse QR matrix decomposition library [100] was used to obtain

the ranks of some typical model matrices. The actual rank of a matrix can depend

upon how many flagged probes there are for an array. The calculated ranks shown

in table 4.3 show that the rank of the matrix for a model including all 7bp DNA

words has rank less than that of the number of columns/DNA words, but only

by 20.

The rank of the matrix for 1-8bp matrix is equal to the number of rows for

1The sparse matrix representation is the standard setup with an array for values, a same

sized array for value indices and a third array giving row or column indices.
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Word lengths included Number of words Matrix rank
1-6 5460 5460
1-7 21844 21824
1-8 87380 39754

Table 4.3: Ranks of model matrices for a selection of contained features.

this array, i.e. there are 39754 unflagged probes on the array from which this

matrix was built. For a standard linear regression we would be able to fit the

data with zero residual error in this case.

4.3.2.3 Data retrieval performance

The sequence data and intensity data are stored in normalised sqlite database

tables. The ODB object relational mapping translates between the database

tables and the retrieved objects. The sequences are retrieved into STL1 vectors

of strings and the intensities are retrieved into STL vectors of doubles. The

intensities are being pulled from an indexed table of approximately 7 million

rows.

• Retrieval of the filtered probe sequences for a pair of arrays takes about

0.3s

• Retrieval of a set of ≈ 40000 intensities from the table of 7 million takes

about 0.15s

• This rate of data retrieval allows interactive exploration.

4.4 Conclusion

In this chapter a description of the probes from two protein binding micro-array

designs has been given. Some measurements of their properties have been made

that have not been explicitly stated elsewhere. A comparison of the two sequence

designs is also made in more detail here than elsewhere.

1Standard Template Library of the C++ programming language.
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A way of modelling the probe sequences is introduced that will be used in

chapters 5 and 6. The sparse model matrix, as described above, could be extended

to allow this model to be implemented, using reasonable compute resources, for

greater DNA word lengths if a protein binding micro-array with greater DNA

word lengths were developed.

The adding of extra columns to the model matrix that ‘encode positional

information’ is also described. This is found to have a positive effect on the

performance of a predictor built from this model. The prediction is the topic of

chapter 5.

The HK designed array has desirable properties that make it the favourite of

the author. These properties include a very concise description (Section 4.3.1.2)

and the availability of efficient decoding algorithms.

The development of an algorithm to efficiently navigate the de Bruijn sequence

of the HK array design using a ‘decoding method’ was not completed. This would

have been useful in creating a more detailed, yet efficient, model of probe position

effects and would have utility in drawing visualisations of the data. The remaining

work to be done is to implement the decoding algorithm described in Paterson

[98] whilst accounting for the idiosyncratic ‘flipping’ of probes in this data-set.

The algorithm for the design of the ME type array has been more clearly

described in Orenstein & Shamir [69]. The source code for this software is not

available, only a Java binary that the authors claim produces such sequences.

Writing an efficient, open-source, implementation in C would be an interesting

and useful extension of the Python code described at the end of section 4.3.1.3.
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Chapter 5

Model Fitting and Array

Prediction

In this chapter we use the model matrix (Section 4.2.2) and the data-set published

as part of the DREAM5 competition (Section 5.2.1) to fit parameters and predict

held back data. We compare the performance of our predictor to others from

DREAM5. We also look at sets of DNA words selected in some of the models

and comment on what we might infer on DNA binding behaviour. Models with

enforced sparsity are demonstrated to provide interesting perspectives on the

data (Section 5.4.2.2).

In this chapter there is also a demonstration of a simple alignment approach (Sec-

tion 5.4.1) that gives us a feel for the data and what can and cannot be achieved

before resorting to more complicated methods.

5.1 Chapter Outline

In the background section of this chapter (Section 5.2.1) there is a presentation of

the results of the DREAM5 challenge. There is a brief discussion of an algorithm

that was used to make an entry to the competition, this will be referred to

as ‘the RVM entry’. Following this (Section 5.2.3) is some background on the

lasso algorithm that was used in the model fitting procedure and in making the

predictions that are the subject of the rest of this chapter.
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5. PROBE INTENSITY PREDICTION

In the methods (Section 5.3) details of the use of the lasso optimisation routine

are given along with its use for prediction. There is a brief discussion of the

methods used to do the multiple sequence alignment.

In the results section there is a presentation of the simple alignment approach

to finding significant subsequences in protein binding micro-array probes (Sec-

tion 5.4.1). Following this are a number of representations of the output of the

lasso predictor (Section 5.4.2).

In the conclusions a review of the results of the lasso predictor is made (Sec-

tion 5.5).

5.2 Background

5.2.1 DREAM5 protein binding micro-array prediction

challenge results

The DREAM5 data-set was released as part of a prediction challenge. The data-

set was originally released as a set of 20 pairs of protein binding micro-arrays

for training purposes. These arrays were for each of 20 proteins on an array of

each design, (counterpart arrays). A further 66 arrays were provided with the

identity of each array’s protein concealed and the intensity readings for one of

the counterparts concealed. The 66 arrays were 33 of the HK design and 33 of

the ME design (Sections 4.1.1.3 and 4.1.1.4). Teams submitted predictions for

each of the 66 arrays, each probe having to be assigned its predicted intensity.

Predictions were ranked according to the following metrics,

• Pearson correlation of predicted intensity against true value

• Pearson correlation of predicted log intensity against true value

• Spearman correlation of intensity against true value

• 8mer area under precision recall curve

• 8mer area under receiver operator curve
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Team Aggregate Probe Probe Probe 8mers 8mers
Rank Evaluation Evaluation Evaluation Evaluation Evaluation

Pearson Spearman PearsonLOG AUPR AUROC

696 1 0.6413 0.6394 0.6742 0.6997 0.9942

824 2 0.6103 0.6555 0.6732 0.5446 0.9764

690 3 0.6375 0.6735 0.6936 0.5223 0.9524

863 4 0.5728 0.5735 0.6207 0.6739 0.9942

662 5 0.6117 0.6227 0.65 0.5244 0.9649

689 6 0.5814 0.6921 0.6475 0.306 0.9395

853 7 0.4688 0.3669 0.4171 0.6759 0.9906

763 7 0.5177 0.4837 0.5227 0.5304 0.9747

755 9 0.4973 0.5617 0.575 0.2484 0.9405

775 10 0.5335 0.431 0.4605 0.5837 0.9246

873 11 0.4612 0.5313 0.5402 0.1559 0.9304

872 12 0.4611 0.5382 0.5438 0.1503 0.9293

730 13 0.2667 0.1003 0.189 0.4617 0.8908

71 14 -0.0002 0.0004 0.0004 0.003 0.487

Table 5.1: Results for the 14 entries to the DREAM5 challenge

The last two metrics were based upon a ‘gold standard set of 8mers’ that it was

deemed should be predicted. These gold standard sets were of varying sizes for

each array and had an unknown provenance. Due to the apparent arbitrariness of

this metric it will not be discussed much further here. It has been observed, here

and elsewhere, that PWM models fare worse under these metrics than models

based on dictionaries of DNA words [71]. The lasso model, presented later (Sec-

tion 5.2.3.2), predicts these gold standard sets better than other models as well

as out-performing other methods in the correlation metrics.

Table 5.1 gives the results, as reported, for the original challenge. The rel-

evance vector machine (RVM) entry is team 755 and the winning entry, team

696 is that of Annala et al. [70]. The winning entry to the challenge was that

described in Annala et al. [70]. This model is discussed further in section 5.2.3.1.

5.2.2 Background to the RVM algorithm

An entry to the competition was made using the machine learning software de-

scribed in Down [101]. The relevance vector machine uses a combination of

position weight matrices, learned with the NestedMICA motif finding tool [65,
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5. PROBE INTENSITY PREDICTION

102] and statistics of sequence composition, such as di-nucleotide counts. A

background model is trained in advance and the algorithm optimises over the

parameters in the matrices.

This approach was very computationally expensive; it took 48 hours for the

algorithm to run to completion on some arrays. Problems such as the Java virtual

machine running out of memory or mysteriously aborting on certain compute farm

nodes made the process somewhat laborious and hard to parametrise and test.

The predictor’s performance was also not particularly good and hence was

not pursued any further.

5.2.3 Background to lasso algorithm

5.2.3.1 The linear model of Annala et. al.

The winning entry to the DREAM5 protein binding micro-array prediction chal-

lenge was that of Annala et al. [70]. The regularisation method used by this

group was to include only 7bp and 8bp words with the highest median intensities

averaged across their containing probes. As stated by the authors, an assump-

tion in this approach is that the probes with the highest signals are the “most

informative in terms of protein binding”. This is a natural assumption, though

the alternative point of view, i.e. that we might learn something about protein

binding from the particular set of probes that have low intensity, is also an in-

teresting question. All 4, 5 and 6bp words were included in their model. The

authors suggest that the lasso would be an alternative regularisation method but

that it could not be made to “run in a practical amount of time for a system of

this scale”, although this is contrary to the findings presented in section 5.2.3.2.

5.2.3.2 Lasso model

The lasso linear model shares some similarities with the linear model described

in section 5.2.3.1. This model is obtained by optimising the objective function in

equation 5.1. This is the usual least squares objective function. Provided that

the model matrix X is of full rank the parameter vector β can be obtained by

solving a linear matrix equation.
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5. PROBE INTENSITY PREDICTION

In the following the L1 norm, ‖.‖1, is given by Σ|xi| and the L2 norm, ‖.‖2, is

given by (Σ|xi|2)1/2. In each of the objective functions Y is the vector of probe

intensities and X is the model matrix.

‖Y −Xβ‖2
2 (5.1)

In application to our protein binding micro-arrays, if it is desired to obtain a

weight for all possible octomers, then the model matrix will not have full rank;

for an experiment with 40 000 measurements/probes there would be 48 = 65536

parameters to fit. This is often referred to as the case p � n. Methods to

overcome this problem are collectively known as regularisation.

Ridge regression (Equation 5.2) is a technique used for the purpose of regular-

isation. It does not offer sparsity, e.g. all octomers would have non-zero weights,

but it has the benefit of resolving to a linear matrix equation (Equation 5.1).

‖Y −Xβ‖2
2 + λ‖β‖2

2 (5.2)

The lasso [103] offers regularisation and also sparsity to the parameter vector,

β, in the objective function (Equation 5.3). The difference between lasso regres-

sion and ridge regression is that the penalty on the parameters is the L1 norm,

rather than the L2.

‖Y −Xβ‖2
2 + λ‖β‖1 (5.3)

The objective function (Equation 5.4) is the elastic net penalty [104]. It

combines the ridge penalty and lasso penalty via an extra parameter α. With α

set to zero we have the lasso model.

‖Y −Xβ‖2
2 + λ(α‖β‖2

2 + (1− α)‖β‖1) (5.4)

The lasso will set one of a pair of linearly related variables to zero, giving a

non-zero weight to only one. Making the α parameter positive can mitigate this

behaviour if it is thought undesirable. Whilst this option has been extensively

tested, no clear conclusions on its utility have been made and the data presented

in this report should be assumed to have the α parameter set to zero.
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The λ parameter in equations 5.2, 5.3 and 5.4 is a ‘tuning’ parameter that

allows control of the penalty imposed on the parameter vector β. This is obtained

by cross-validation, the usual 10-fold scheme was used here, as described in Hastie

et al. [88]. In our case this means taking the approximately 40000 probes on an

array, select 36000 to train with and predicting the remaining 4000 probes with

varying values λ. In fact the glmnet algorithm1 fits a range of values of λ by

default and so it is more a case of selecting the best value of λ from those [89].

5.3 Methods

5.3.1 Alignment methods

A simple approach that we can take to explore the array data is to perform align-

ments. This adds an interesting perspective to the data, two different methods

of increasing complexity are used,

• alignment of entire probes

• alignment of words from probes

A description of the algorithms for these two approaches is given next. The

alignments themselves perhaps give a clearer picture of the methods and these

are given in the results (Section 5.4.1).

For the first approach we select the 10 probes with the highest intensities and

pass them to the alignment algorithm.

For the second approach we take every possible 8bp word2, find all the probes

in which it occurs, and then calculate the mean score for the word. We select the

8bp words with the highest scores and do a multiple alignment upon these words.

1‘glmnet’ is the name given to the algorithm that optimises the objective function in equa-

tion 5.4 by its authors.
2We might assume that how much a protein binds to a probe depends upon whether a

particular 8bp sequence is present in that probe.
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5.3.2 lasso methods

An efficient, FORTRAN language, implementation of this procedure is avail-

able [89]. This computes the lasso path solution in a few seconds for each micro-

array.

The algorithm computes a sequence of models of decreasing sparsity using

a cyclical coordinate descent. The Intel ifort FORTRAN compiler was used to

compile the source which was linked with a C++ wrapper. The original code is

written in MORTRAN rather than FORTRAN. MORTRAN has FORTRAN as

a compile target and appears to offer some syntactic sugar to FORTRAN. The

FORTRAN code was linked against the C++ wrapper relying on the GCC ABI

surrounding argument passing and symbol name mangling.

The same model matrix design that is used to model the probes on the train-

ing array is used to predict the probe intensities on the counterpart array. For

instance if the training model matrix contains columns for positional information

then the model matrix for prediction will have these columns too. The probes on

the counterpart array are decomposed as described in section 4.2.2.1. The model

matrix obtained in this way is then multiplied by the parameter vector, fitted

using the training array, to predict the counterpart intensities.

Probes that are flagged are not used in the construction of the model matrix

and so the model matrix will have fewer rows if the training array has flagged

probes.

When doing cross validation the probes on a training array are split in to 10

randomly assigned groups. For each of the groups the probes are predicted by

training a model on the 9 other groups. In this way we estimate the performance

of the predictor on the counterpart array and, importantly, select the amount of

sparsity that is best to avoid over-fitting.

5.4 Results

5.4.1 Alignment results

The objective of the presentation is to show a very simple and intuitive way of

looking at the data. The data presented in this section is limited to that of
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TGACGTCA 19.147

ATGACTCA 18.8728

TGAGTCAT 18.8267

TGACTCAC 18.8084

GATGACGT 18.8003

TTACGTCA 18.7382

ATGAGTCA 18.7301

TGACGTAA 18.6948

TGACTCAT 18.6944

ATGACGTA 18.6578

CLUSTAL 2.1 multiple sequence alignment

3 --TGAC-TCAC 8

8 --TGAC-TCAT 8

1 -ATGAC-TCA- 8

2 --TGAG-TCAT 8

6 -ATGAG-TCA- 8

0 --TGACGTCA- 8

5 --TTACGTCA- 8

4 GATGACGT--- 8

9 -ATGACGTA-- 8

7 --TGACGTAA- 8

* * *

Figure 5.1: Alignment of the highest scoring 8bp sequences for the Jundm2
transcription factor.

a single protein. This was the first thing done in the investigation of the data.

Hundreds of similar examples were created and could be given here but this single

example gives a fair idea of what can and cannot be done using this approach.

Figure 5.1 shows the highest scoring 8bp sequences for the transcription factor

Jundm2 taken from PBM data published in Badis et al. [105].

Figure 5.2 shows a multiple alignment of the 10 probes with the highest in-

tensity readings for the same transcription factor. We see that most of the 10

highest scoring probes on this array contain the 8bp sequence, or a single substi-

tute thereof, that we might have expected from figure 5.1. It would be reasonable

to assume that such an alignment would not be possible, based upon the assump-
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CGTATGACGTCACTTTGAATGTCCGGCGAGCCGTA 19.9169

CTTCATGTGACCGTGACGTCACGCCATCTCTCTCA 19.9111

CACAATGACGTCATAAATGAGGTGACATAGAGCTG 19.9108

ATTGATGACGTCAGGGGATACGTATTCGCTCACAC 19.9101

GTCATTACGTCACCTGCCCGACTGGGAGGATGATT 19.896

TAGTGAGATGACGTAATTGGGACCATTCAGCGTGT 19.8826

TGTCGATGATGTCACAAGATTTGAGTATCTTTTCG 19.8652

ACCTTGGAGATGAGTCATCCTGACTCCCTCAAGCC 19.8297

CACGCAGAAGTCTTACGTCATCCACCGTGCAGTCC 19.8155

CCAGGCATGATGTCATTTCCCTGGACGTCTCCCAC 19.812

CLUSTAL 2.1 multiple sequence alignment

0 --------CGTA------TGACGTCACTT---TGAATGTC-CGGC---GAGCCGTA--- 35

2 --------CACAA-----TGACGTCA------TAAATGAGGTGACATAGAGCTG----- 35

4 ---------GTCA-----TTACGTCACCTGCCCGACTGGGAGGAT---GATT------- 35

1 CTTCATGTGACCG-----TGACGTCAC-----GCCATCT-----------CTCTCA--- 35

6 -------TGTCGA-----TGATGTCAC-----AAGATTTGAGTAT----CTTTTCG--- 35

3 --------ATTGA-----TGACGTCAG-----GGGATACGTATTC----GCTCACAC-- 35

8 ------CACGCAGAAGTCTTACGTCAT---------CCA----CCGTGCAGTCC----- 35

9 -----CCAGGCA------TGATGTCAT---------TTC----CCTGGACGTCTCCCAC 35

7 ----ACCTTGGAGA----TGA-GTCAT---------CCTGACTCCCTCAAGCC------ 35

5 ------TAGTGAGA----TGACGTAAT---------TGGGA--CCATTCAGCGTGT--- 35

* * ** *

Figure 5.2: Alignment of the 10 highest scoring probes for the Jundm2 tran-
scription factor.
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tion that the distribution of the position of high scoring features within a probe

would be uniform. What we observe though is that the 9bp sequence appears

towards the left hand end of the probe sequence. This is the end of the probe

furthest from the array.

This could be evidence that the position of a feature within a probe is in

fact important to the relative binding efficiency of this DNA binding protein.

There are hundreds of protein binding micro-array data-sets available from the

UniPROBE database [106]. Similar alignments were made for many of these pro-

tein binding micro-array experiments and in many cases a similar effect can be

seen. In many cases, any alignment made between the highest scoring probes

is less clear (Figure 5.3). This is the same DNA-binding protein but with mea-

surements made on a counterpart array. This is illustrative of the noisiness and

lack of reproducibility of protein binding micro-array experiments. It shows that

making general statements about this type of data is difficult, especially when

replication of experiments is limited to a few or none. A point of interest with the

transcription factor Jundm2 is that, as claimed in Badis et al. [105], it appears

to recognise the motifs TGACTCA and TGACGTCA. This is referred to as a ‘variable

spacer length’. Jundm2 is a di-meric leucine zipper type protein (Figure 1.3).

It can be speculated that flexibility in the angle between the di-mers allows the

possibility of an extra inserted base. This example shows that ‘interesting effects’

can be seen using this very simple method. We should be honest in assessing what

is gained by using more sophisticated machinery.

5.4.2 Lasso results

The lasso algorithm was run thousands of times with hundreds of different pa-

rameters. For each run a path of solutions is generated1. What is presented here

is a selection of representative results.

1The path is created as the parameters are fitted during a cyclical coordinate descent.
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ATGCATAATGACGATCCACGCAGCAAAACGTTACA 19.4652

GGCGGCTAAGGCAAGCCAGGTGACGTCACAGCCCA 18.8871

ATCATTATGCTGTGACGTCATCTAGTAAAATACGG 18.7715

AGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGG 18.7432

GCCGGTTGCTTGAAAGCCTGACGTCACCCGGTCTG 18.6248

TTTGGTTACCCGTTCGATTACGTCATCCTGTGCGT 18.6231

GGAAGCTGGCAATGACGTCACTATTATTCAGCCGT 18.5334

GCGGAGAGACGTAACTTGATGACGTCAGCGCGTTG 18.4948

CAGGAAAGTCTGCTTGTCCGTGATGTCACCTGTAC 18.4686

TGTTCCGCACACATGACGTCATGCGAGTACATGAA 18.4057

CLUSTAL 2.1 multiple sequence alignment

0 ------------ATGCATAATG---ACGAT-CCACGC-AGCAAAACGTTACA- 35

2 ------------AT-CATTATGCT-GTGACGTCATCT-AGTAAAA---TACGG 35

9 -----------TGTTCCGCACAC--ATGACGTCATGCGAGTACA----TGAA- 35

5 --------TTTGGTTACCCGTTCG-ATTACGTCATCC-TGTGCGT-------- 35

8 CAGGAAAGTCTGCTTGTCCGT--G-AT---GTCA-CC-TGTAC---------- 35

4 --GCCG------GTTGCTTGAAAGCCTGACGTCACCC-GGTCTG--------- 35

7 --GCGGAGAGACGTAACTTGA-----TGACGTCAGCG-CGT-TG--------- 35

6 -----------GGAAGCTGGCA---ATGACGTCACTATTATTCAGCCGT---- 35

1 --GGCGGCTAAGGCAAGCCAGG----TGACGTCAC---AGCCCA--------- 35

3 ---------AGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGG--------- 35

*

Figure 5.3: Alignment of the 10 highest scoring probes for the Jundm2 tran-
scription factor from a counterpart array.
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5.4.2.1 Cross-validation prediction compared to counterpart array pre-

diction

In order to select a model from a lasso path that is likely to be the best predictor

a cross validation process is used. Ten fold cross validation was performed. The

model that gives the best predicted performance on kept back data is used to

predict the counterpart array. A comparison of the performance of the predictor

on counterpart arrays compared to the cross-validation performance is shown in

figures 5.4, 5.5 and 5.6.

The following points are observed,

• In most cases the kept-back data is predicted with a Pearson correlation of

above 0.7 and in many cases is above 0.8.

• In some cases the counterpart array is predicted poorly as compared to

kept-back data on the training array.

• In some cases the counterpart array is predicted slightly better than the

kept back data, though only by a small amount.

It is unclear why some counterpart arrays are predicted poorly compared to

kept back data on the training array. It seems plausible that this is due to

experimental artefacts, e.g. poorly controlled experiments.

5.4.2.2 Predicting with very sparse models

The lasso algorithm returns a path of solutions. Each of these solutions can

be used to obtain predictions of the counterpart array. The solutions are of

decreasing sparsity. This means the first few solutions of the path are very sparse,

i.e. they consist of only a handful of weighted DNA words.

With a small number of weighted features in the model, the plot of predicted

probe intensities against actual probe intensities shows a banding pattern (Fig-

ures 5.7, 5.8, 5.9 and 5.10). The banding is explained by multiplicities of the

features occurring within probes. This gives clear and quantitative evidence of

multiple TF binding events for most probes. For example, in figure 5.7 the two
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Figure 5.4: Cross-validation prediction versus counterpart array prediction. The
blue bars are the counterpart correlations and red bars are the cross-validation
prediction correlations. These arrays were the training arrays for the DREAM5
challenge. These arrays alternate in design, HK to ME.
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Figure 5.5: Cross-validation prediction versus counterpart prediction. The blue
bars are counterpart correlations and red bars are the cross-validation correla-
tions. The top 33 arrays are of the ME design in this picture, the bottom are of
the HK design. Training was done on the original challenge arrays.
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Figure 5.6: Cross-validation prediction versus counterpart array prediction. The
blue bars are the counterpart correlations and red bars are the cross-validation
prediction correlations. The top 33 arrays are of the HK design in this picture,
the bottom are of the ME design. Prediction was done on the original challenge
arrays. 133
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TF 2bp 2-9bp
Sdccag8 0.7076 0.8199
Foxp2 0.7065 0.7170
Foxc2 0.6915 0.7739
Dmrtc2 0.6894 0.7078
Zfp637 0.6798 0.7357
Mecp2 0.6719 0.7817
Foxo6 0.6619 0.7538
Foxo3 0.6605 0.6927
Dmrtc2 0.6595 0.7078
Pou1f1 0.6524 0.7851

Table 5.2: The proteins most predictable using only 2bp DNA words. The
correlation of a 2-9bp model is shown for comparison. This is the same data as
table 5.3 but organised to show the most predictable proteins using a 2bp model.

DNA words, ACG and CGT can be seen to offer a correlation of 0.7147 between

actual and predicted values.

o

In figure 5.8 we see a correlation of 0.7515 provided by a predictor using only 4

DNA words. All of these words are short and there is, similar to figure 5.7, a

positive relationship between the number of occurrences of such words and the

intensity recorded. Similar effects are observed for the very sparse models of

prdm11 in figures 5.10 and 5.9.

This is strong evidence in favour of multiple binding events on each probe and

also a surprisingly strong predictive performance for such sparse models.

5.4.2.3 Some arrays can be predicted well with only 2-mers

Table 5.2 shows a selection of lasso models that were restricted to contain only

2bp DNA words. It is interesting to observe that relatively good predictive per-

formance is achieved in these cases. All of the possible 16 2bp words were given

positive weights in these models. See table 5.3 for the performance of each model

ranked by the improvement made by including more features. Table 5.3 shows

that some arrays are very dependent on longer features for predictability.
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Figure 5.7: Predictions for the Gmeb2 protein using a model built on the HK
array and predicting probes on the ME array. This model uses only 2 features
and provided a correlation of 0.7147. Looking at the weights of the features in
the table below we can see that the lowest pair of horizontal lines of points in
the plot correspond to probes that have ACG for the lower line and CGT for the
higher. The triple of horizontal lines that appear above are explained by probes
that have two copies of ACG for the lowest line, one copy of ACG and one copy
of CGT for the line of points in the middle and two copies of CGT for the line
above.

Feature Weight
ACG 0.4013
CGT 0.4336
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Figure 5.8: Predictions for the Gmeb2 protein using a model built on the HK
array and predicting probes on the ME array. This model uses only 4 features
and achieved an overall correlation of 0.7515. The banding pattern in this plot
has an analagous explanation to that given in figure 5.7

Feature Weight
ACG 0.4827
ACGT 0.1263
ACG 0.0924
CGT 0.5368

136



5. PROBE INTENSITY PREDICTION

Figure 5.9: Predictions for the Prdm11 protein using a model built on the HK
array and predicting probes on the ME array. This model uses only 2 features
and achieved and overall correlation of 0.5669. The banding pattern in this plot
has an analagous explanation to that given in figure 5.7

Feature Weight
CGCA 0.3175
TGCG 0.6392
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Figure 5.10: Predictions for the Prdm11 protein using a model built on the HK
array and predicting probes on the ME array. This model uses only 4 features
and achieved an overall correlation of 0.6013. The banding pattern in this plot
has an analagous explanation to that given in figure 5.7

Feature Weight
CGCA 0.4427
TAGCG 0.1663
TGCG 0.7320
TTGCG 0.1513
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TF 2bp 2bp-9bp difference
Nr2f6 0.2103 0.7549 0.5446
Rorb 0.1835 0.6961 0.5125
Esrrg 0.1961 0.6880 0.4919
Rarg 0.2921 0.7670 0.4748
Nr2f1 0.3177 0.7694 0.4516
Tcf3 0.1969 0.6017 0.4048
Prdm11 0.4716 0.8676 0.3960
Mybl2 0.4219 0.8169 0.3949
Nr2e1 0.3606 0.7312 0.3706
Esr1 0.2442 0.5905 0.3463
Snai1 0.4684 0.8005 0.3321
Zfx 0.3172 0.6477 0.3304
Tbx20 0.3724 0.6934 0.3210
Nkx2-9 0.4983 0.8082 0.3099
Rfx7 0.3769 0.6648 0.2878
Gmeb2 0.6296 0.9116 0.2820
Egr3 0.4667 0.7463 0.2795
Egr2 0.4896 0.7690 0.2794
Mlx 0.4777 0.7509 0.2732
Foxo1 0.5044 0.7767 0.2723
Nr2c1 0.2975 0.5674 0.2699
Klf8 0.4307 0.6875 0.2568
Pou2f1 0.5635 0.8095 0.2459
Cebpb 0.5393 0.7794 0.2401
Foxo4 0.5956 0.8337 0.2381
Irf2 0.5733 0.7906 0.2172
Tbx2 0.4774 0.6891 0.2116
Rora 0.4686 0.6772 0.2086
Gata4 0.5965 0.7998 0.2032
Zic5 0.2455 0.4409 0.1954
Zfp740 0.4994 0.6945 0.1951
Tcfec 0.5361 0.7214 0.1853
Zfp202 0.5045 0.6847 0.1802
Nr4a2 0.5433 0.7140 0.1707
Tbx3 0.4791 0.6476 0.1685
Foxp1 0.5956 0.7543 0.1587
Xbp1 0.5600 0.7092 0.1491
Klf12 0.4386 0.5866 0.1480
Tbx5 0.2972 0.4414 0.1442
Pou1f1 0.6410 0.7851 0.1441
Sox6 0.5551 0.6938 0.1387

TF 2bp 2bp-9bp difference
Sp1 0.5160 0.6529 0.1369
Pou3f1 0.5771 0.7072 0.1300
Sox10 0.6121 0.7389 0.1267
Srebf1 0.5732 0.6922 0.1189
Foxj2 0.5838 0.7025 0.1186
Nr5a2 0.5388 0.6559 0.1170
Zfp263 0.4673 0.5839 0.1165
Sdccag8 0.7060 0.8199 0.1138
Mecp2 0.6688 0.7817 0.1129
Tbx4 0.4421 0.5531 0.1110
Dbp 0.6016 0.7116 0.1099
Sox3 0.6407 0.7485 0.1078
Nfil3 0.5797 0.6807 0.1009
Mypop 0.5842 0.6847 0.1004
Zbtb1 0.5743 0.6740 0.0997
Foxo6 0.6565 0.7538 0.0973
Sox14 0.6257 0.7213 0.0955
Zscan10 0.5325 0.6279 0.0954
Foxc2 0.6794 0.7739 0.0945
Zfp3 0.4800 0.5655 0.0855
Esrrb 0.5333 0.6185 0.0852
Zkscan1 0.6370 0.7207 0.0836
Atf3 0.5022 0.5828 0.0806
Foxg1 0.6338 0.7118 0.0779
Mzf1 0.5029 0.5693 0.0663
Nhlh2 0.5421 0.6084 0.0662
Ar 0.4637 0.5284 0.0647
Zfp300 0.5837 0.6439 0.0602
Dnajc21 0.6063 0.6656 0.0592
Zfp637 0.6780 0.7357 0.0576
Sp140 0.6428 0.6907 0.0478
Foxo3 0.6526 0.6927 0.0401
Atf4 0.5689 0.6090 0.0400
Zkscan5 0.5385 0.5722 0.0337
Klf9 0.5904 0.6219 0.0314
Dmrtc2 0.6877 0.7078 0.0200
Junb 0.5847 0.6033 0.0186
Foxp2 0.7032 0.7170 0.0138
Ahctf1 0.5478 0.5585 0.0107
Zscan20 0.4154 0.4211 0.0057
Tbx1 0.6272 0.6178 -0.0093

Table 5.3: Predictability using models with only 2bp DNA words compared to
models with all 2bp-9bp words.
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5.4.2.4 Almost all protein binding micro-array probes are predictable

to some extent

Perhaps one of the most surprising aspects of the analysis of the DREAM5 chal-

lenge data is that most PBM probes are distinguishable in their propensity to

bind a given protein. A null hypothesis might have been that a subset of probes

would bind specifically and the majority would have the same non-specific affinity

to the protein, i.e. the latter group would be non-predictable, but this is clearly

not the case.

Figures 5.11 and 5.12 show that almost all probes have a systematically vari-

able affinity for the protein of the array experiment, which is predictable.

5.4.2.5 Overall performance of lasso method compares well

The overall performance of the lasso method does well when compared to the

results of the other methods (Section 5.2.1).

The lasso has been trained on log intensities throughout. Predictions are

made using log intensities. This is the log Pearson’s column in the tables below.

The ‘Pearson’s’ column is calculated in the obvious way by taking exponentials.

The author believes that the log Pearson’s statistic and the Spearman’s statistic

are the most interesting ones. On the exponential scale the correlation coefficient

estimator is heavily influenced by a few large data points. On the other hand, an

x-y plot is far more interesting than any single number.

The results in tables 5.4 and 5.5 were obtained after applying a B-spline

smooth for normalisation, using all 3bp to 8bp words and probe position infor-

mation in the model.

• The worst predictor performance was probably for the protein Mzf1, it is

notable that the lasso made its best predictions using only 9 features in

this case. The Spearman’s correlation coefficient was particularly low in

one case, 0.22.

• The best Spearman’s correlation was for Nr2f1 at 0.83.

• The number of weights that have been introduced into the model is several

thousand in most cases, many of the weights are very small and an experi-
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Figure 5.11: Predictions for the Gmeb2 protein using a model built on the HK
array and predicting probes on the ME array. The correlation here is 0.9221 and
617 features were selected, see the table below for the features with the largest
weights.

Feature Weight
TTACG 0.6401
GCGTAGG 0.6414
CCGTACGG 0.6631
TGCGT 0.7439
AACGT 0.9000
ACGCA 0.9859
TACGT 1.1362
GACGT 1.3101
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Figure 5.12: Predictions for the Prdm11 protein using a model built on the HK
array and predicting probes on the ME array. The correlation here is 0.8504 and
950 features were selected, see the table below for the features with the largest
weights.

Feature Weight
ATTGCG 0.5892
CGCTAA 0.6044
CCGCA 0.6875
TTGCG 0.7944
TTTGCG 0.8462
TTAGCG 0.8597
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ment where some of these were manually set to zero did not have significant

impact on the predictor.

The last point is interpreted as the lasso path algorithm deciding to remove

features that had been, at first, introduced. In practice the weights do not return

to zero exactly but do get very small. In section 5.4.2.4 it is shown that models

with excluded ‘small’ weights can be more sparse.

Models and predictions have been made for all 172 arrays but for brevity and

easy comparison only the subset of 66 from the original DREAM5 challenge are

shown here. The aggregate statistics for the 66 arrays are given in table 5.6.

Several arrays benefit from a process of quantile normalisation with their back-

ground distributions, as discussed in section 3.3.2. An improvement in aggregate

correlation can be achieved in this way. All training and predictions are done on

the log-scale and the Pearson’s correlation numbers are obtained by simple expo-

nentiation. If we wanted to display improved Pearson’s correlation numbers we

could scale the data prior to exponentiation to ensure that exponentiated values

did not exceed the 216 maximum value. It has been verified that this procedure

improves the Pearson’s correlation, though it was not used in the production of

the results shown here.

5.5 Conclusions

5.5.1 Predictive models have diverse characteristics

The results presented in this section are for a small subset of arrays that are

exemplars of particular behaviour, e.g.

• Very good correlation over all probes, e.g. Gmeb2 with a correlation coef-

ficient greater than 0.9 (Figure 5.11).

• Arrays predictable with only a few features (Figures 5.7 and 5.9).

• Arrays predictable with only 2bp words (Table 5.2).

143



5. PROBE INTENSITY PREDICTION

Protein Pearson’s log Pearson’s Spearman’s # features

Ar 0.5644 0.5895 0.5740 4057

Dbp 0.6868 0.7151 0.7032 5896

Foxo6 0.7435 0.7236 0.6713 6677

Klf12 0.5679 0.6566 0.6672 1714

Klf8 0.7675 0.7922 0.7432 4018

Klf9 0.5110 0.6582 0.6848 4308

Mlx 0.8095 0.7020 0.5964 7406

Mzf1 0.5321 0.3967 0.2247 9

Mzf1 0.5373 0.5154 0.4861 3143

Nfil3 0.7425 0.7328 0.7164 4398

Nr2f6 0.8794 0.8594 0.6472 3592

Nr4a2 0.7781 0.7681 0.7840 3851

Pou2f1 0.7338 0.7743 0.6815 5230

Mypop 0.7052 0.6840 0.6340 7635

Pou1f1 0.6798 0.6777 0.6012 5445

Prdm11 0.8120 0.8708 0.8236 3466

Rorb 0.6945 0.7537 0.6604 6322

Sox10 0.7490 0.7720 0.7398 3265

Sox3 0.6402 0.7133 0.7003 4775

Sox6 0.6305 0.6562 0.5999 4141

Srebf1 0.6842 0.7265 0.7109 3020

Tbx2 0.7791 0.7468 0.6657 8945

Tbx20 0.6998 0.6475 0.5284 6731

Tbx4 0.5435 0.5704 0.5834 6561

Tbx5 0.5375 0.4716 0.4239 4674

Tcfec 0.6849 0.7515 0.7168 4285

Xbp1 0.6691 0.7002 0.6728 5663

Zfp202 0.6916 0.6846 0.6282 3424

Zfp263 0.6504 0.6586 0.6513 4194

Zfp3 0.4730 0.5346 0.5218 4671

Zfx 0.8147 0.8332 0.7786 1490

Zkscan1 0.7489 0.7861 0.7816 3785

Zscan10 0.6888 0.6963 0.6794 4843

Mean 0.6798 0.6916 0.6450 4595

Table 5.4: Performance of lasso predictor trained on HK design arrays.
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Protein Pearson’s log Pearson’s Spearman’s # features

Ahctf1 0.6110 0.6228 0.6102 1845

Atf3 0.6093 0.6046 0.5758 3671

Atf4 0.6143 0.6454 0.6378 3534

Dnajc21 0.5007 0.4741 0.5008 9321

Dmrtc2 0.7344 0.7477 0.7453 1993

Egr3 0.7073 0.7803 0.7128 5584

Esrrb 0.5554 0.5697 0.5579 5364

Esrrg 0.6079 0.7007 0.5498 6951

Foxc2 0.7173 0.8127 0.8043 3468

Foxg1 0.7127 0.7402 0.7423 4124

Gata4 0.7537 0.8246 0.7647 6074

Mybl2 0.7458 0.8468 0.7752 6784

Nhlh2 0.6777 0.7184 0.6945 2373

Nkx2-9 0.7646 0.8404 0.8314 9513

Nr2e1 0.7502 0.7578 0.7324 7923

Nr2f1 0.7390 0.8700 0.8285 6468

Nr5a2 0.7640 0.6992 0.6864 4336

Pou1f1 0.7351 0.8119 0.7548 6345

Rarg 0.8283 0.7981 0.7169 6000

Rfx7 0.6519 0.6988 0.6645 5885

Rora 0.7529 0.7362 0.6846 2349

Sdccag8 0.8466 0.8422 0.8141 2334

Snai1 0.7732 0.7777 0.6254 4298

Sp140 0.6746 0.6912 0.6962 2188

Tbx1 0.6310 0.6607 0.6850 559

Zbtb1 0.5997 0.6963 0.6867 5264

Zfp300 0.6482 0.6798 0.6699 3582

Zfp637 0.7582 0.7914 0.7778 1648

Zic5 0.5920 0.5713 0.5125 7035

Zkscan5 0.5622 0.6032 0.5877 4422

Zfp740 0.8348 0.6581 0.5651 2967

Zscan10 0.5608 0.6088 0.5837 3109

Zscan10 0.6202 0.6590 0.6570 4985

Mean 0.6860 0.7134 0.6798 4615

Table 5.5: Performance of lasso predictor trained on ME design arrays.

Pearson’s log Pearson’s Spearman’s # features

0.6829 0.7025 0.6624 4605

Table 5.6: Overall performance of the lasso predictor.
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There are arrays that have opposing characteristics in each case though. There

are some arrays that are not very predictable at all, i.e. the intensity data appears

to be noise with no sequence dependence.

Offering a single number, e.g. correlation, to demonstrate the properties of a

predictive model is dissatisfying because a correlation plot shows us much more.

A set of correlation plots for models of decreasing sparsity is even more informa-

tive (Figures 5.7, 5.8, 5.9 and 5.10).

Taking an average of correlations over a set of tens of arrays and reporting

that as an output is even worse than doing it for individual arrays. Nevertheless,

single numbers are sometimes wanted.

5.5.2 Observations made with the lasso predictor models

Using the lasso method it is possible to predict the intensities of new probes at

least as well as with any other method. The lasso method also gives a relatively

simple model of probe intensity, i.e. a few hundred to a thousand weights can

differentiate between 40000 previously unseen PBM probes with surprising accu-

racy (Figures 5.11 and 5.12). If we had the null hypothesis that proteins bound

specifically to a particular, small subset of 8bp sequences, and non-specifically to

all other DNA sequences then these results would evidence against. Some protein

binding micro-array probes can be predicted relatively well using only a handful

of short DNA words, this appears to depend upon significant additive effects from

features on the same probe, sometimes the same feature. This is in contrast to

the situation where a probe obtains nearly all of its weight from a single, longer,

and more unusual feature.

It is not clear what the actual reasons are for the observed behaviour. A

plausible argument for what is happening is the conformation of the DNA is

being differentiated between rather than a typical, ‘sequence-specific’, binding

sequence. It is plausible that probes are being parametrised by a small collection

of DNA words in some cases because a probe’s propensity for in situ double

stranding is being modelled. If single vs. double strandedness determines protein

binding then we could imagine that DNA melting temperature is being modelled

by a small collection of short DNA words. Another possibility is that parts of
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dimeric or tetrameric proteins could be binding in multiplicities to individual

probes due to attraction to short DNA words at several positions.
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Chapter 6

Genomic Binding Prediction

6.1 Background

In this chapter a comparison is made between predictions of transcription factor

binding sites using existing position weight matrix models, (PWM), and the word

models developed earlier on. ChIP-seq data from the ENCODE project [107] is

used as the ‘gold standard’ to judge the predictions.

A characterisation of the distribution of scores from PWMs compared to DNA

word predictors is shown. The DNA words models are seen to have a better signal

to noise ratio than the PWM models when looking at the distribution of scores

over the genome. However the prediction of ChIP-seq peaks is not conclusively

better or worse.

6.1.1 Scanning the Genome

How we search the genome looking for potential binding sites reflects our model

of how a gene regulating, DNA binding, protein performs its function.

We can imagine a DNA binding protein diffusing through the nucleus, ‘scan-

ning’ the DNA looking for its recognition site. This could be a one dimensional

movement along the double helix or three dimensional diffusion throughout the

nucleus. The feasibility of the search mechanism was discussed in Berg et al. [108]

and more recently in Hammar et al. [73]. In Bauer et al. [109] a complex picture

is drawn involving multiple modes of motion and DNA binding affinity.
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It seems likely that the protein will, in fact, have a very restricted search

space based upon chromatin structure and the steric availability of its preferred

binding location. Multi-protein complexes that guide other proteins to their

positions, e.g. through bending DNA into loops, could ‘place’ a DNA binding

protein into a precise functional location, (or within a few base pairs), leaving

the ‘search problem’ to be rather different than a ‘genome wide scan’. That is to

say, perhaps a protein’s DNA affinity serves the purpose of keeping it where it is

put rather than differentiating between all the places it might end up. Perhaps

a protein only has to bind to a region of DNA rather that a precise genomic

locus to perform its function. It is possible that a protein could be localised to a

region via an affinity to one of its surfaces and it could be ‘bound’ by a ‘sequence

specific’ binding domain on another surface. This is just speculation but given

that, as mentioned above, at least in eukaryotes, the ‘blind genome search’ seems

not tenable, we should not be surprised if the search dynamics are significantly

more complicated.

The ChIP-seq data we use in this chapter as the gold standard tells us the

location of binding sites that have been determined in vivo, reflecting the bio-

logical realities described above. In contrast, when we try to predict the binding

sites using our simplistic search of the entire genome we do not reflect an actual

transcription factor’s search process and therefore our expectations are limited.

This applies to both the PWM and word models.

6.1.2 Matrix models for prediction

There are many many algorithms that have been developed to find transcription

factor binding sites [57, 62], some of which are described in section 1.5. Many

methods use position weight matrices as their description of protein binding prob-

ability when doing prediction [110].

The position weight matrices used in this chapter were derived from the PPMs

available in the JASPAR database [111]. This database has matrices derived

from ChIP-seq, SELEX and PBM experiments. Three matrices are used to score

individual nucleotides for mouse chromosome 19, each of which was derived from

ChIP-seq data. These are described in section 6.2.1. Scans using these existing
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PWMs provide a reference computational prediction of binding sites to compare

against the word model based predictors developed in this thesis.

The notation for matrix models was described in chapter 2. Similar mathe-

matical notations will be used here. Throughout this chapter the terms ‘motif’

and ‘position weight matrix’ will be used interchangeably. This is justified since

the position weight matrices discussed here are simply log transformed probabil-

ities,1 i.e. there is no normalisation for genomic distribution of nucleotides.

6.1.3 Word models for prediction

The word models described in chapter 5 provide descriptions of proteins’ affinities

to arbitrary DNA sequences of up to a certain length. These models can be used to

give a score to every genomic position in the same way as can be done for position

weight matrices. Scores are generated for every base pair of mouse chromosome

19. Variations on the application of the word models to prediction were tried

including the use of smoothing and the scoring of reverse compliments.

6.1.4 Background Sequence Model

When predicting binding sites with PWMs it is often decided to use a back-

ground sequence model that incorporates the distribution of nucleotides in the

genome [65]. Models of natural stochastic variation in genetic sequences lead to

some simple predictions of the numbers of occurrences of DNA substrings within

the genome. e.g. for a 10bp sequence we know that there are 410 possibilities. To

a first approximation we might say that each of these will appear in the genome

with equal likelihood and therefore in any 410 ≈ 1 million, base pairs we would

expect to see each of these sequences once by chance alone. For a more refined

approximation we might use a more complex stochastic model of genomic se-

quence, perhaps taking actual frequencies of nucleotides rather than uniformly

distributed frequencies. Is this any better? We know that there are great dif-

ferences in the distribution of nucleotides as we move along a chromosome and

so having a static model for any particular chromosome seems as likely to be

1or normalised frequencies
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misleading as improving over the unbiased approach of uniform nucleotide prob-

abilities. For example if the greatest binding affinity of a protein model is for

a nucleotide sequence that happens to be a likely sample from the genomic fre-

quency distribution, then the number of expected chance occurrences is larger. If

the protein binds to regions where the local single nucleotide frequency statistics

are ‘distant’ from those of the genome’s mono-nucleotide frequencies we will have

added a bias in the opposite direction.

In the absence of any good motivation the principle of least information leads

us to use the mono-nucleotide model over a uniform distribution in the rest of

this chapter. This applies to both PWM and word models.

6.2 Methods

6.2.1 Available Overlapping Data

The total number of proteins for which the ENCODE project has published mouse

ChIP-seq data is, at the time of writing, 55. The total number of word models

we have for distinct proteins is 81.

The analysis that follows is restricted to transcription factors that have all

three of the following representations available,

1. Matrix model

2. Word model

3. ChIP-seq data

At the time of writing this limits us to the following transcription factors,

• gata4 [112]

• cebpb [113]

• tcf3 [114]
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6.2.2 Genomic Sequence Data

We will restrict binding site prediction to a single chromosome. Mouse chromo-

some 19 was chosen as a typical example of mouse genomic sequence. Whilst

results from scanning the entire genome would be more complete we assume this

to be a large enough sample of genomic sequence to accurately generate the pre-

diction performance statistics we are interested in.

The mouse chromosome 19 sequence data was as found in the following file

obtained from http://www.ensembl.org.

Mus_musculus.NCBIM37.67.dna.chromosome.19.fa

6.2.3 ChIP-seq Data

The ChIP-seq peak data was downloaded via the ENCODE project web site,

http://www.encodeproject.org [107]. Peaks had been derived from short read

data via the MACS algorithm [115], which is based on read depth and reflect

regions of high read depth. These peaks are taken to contain the locations of

in vivo transcription factor binding sites and for this reason they are our gold

standard.

Different file formats are provided by different labs; the peak files are in either

bigbed, narrowpeak or bed6 format. Different procedures were written to handle

each. An introduction to the peaks is shown in the distributions of peak widths in

figure 6.1. Later in the methods section the means of these distributions will be

referenced when segmenting the genome. It is interesting to note the distribution

of gata4 peak widths being quite different to that of cebpb and tcf3. The reason

for this is unclear.
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Figure 6.1: This figure shows the distribution of peak widths for gata4 in red,
cebpb in blue and tcf3 in green. In the case of gata4 and cebpb the peaks are
pooled from the separate data.

The following IDs identify the data used and are from the ENCODE project

site. Three datasets are available from experiments on mouse cells and these are

described next.
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6.2.3.1 gata4

The gata4 experimental data came from the lab of Ross Hardison at Penn State.

There are two biological replicates for mouse liver cells:

ENCFF002ADR

ENCFF002ADS

The number of peaks for ENCFF002ADR was 179. The total number of base pairs

covered was 125147. The number of peaks for ENCFF002ADS was 152. The total

number of base pairs covered was 33819.

6.2.3.2 cebpb

Three different sets of peaks were available for this protein. The data were pro-

vided by the lab of Barbera Wold at Caltech. The first two peak sets are biological

replicates for mouse myocyte cells:

ENCFF001XUR

ENCFF001XUS

The number of peaks for ENCFF001XUR was 230. The total number of base pairs

covered was 68962. The number of peaks for ENCFF001XUS was 220. The total

number of base pairs covered was 78428.

A second experiment of myocyte cells differentiated for 60 hours was also

available:

ENCFF001XUT

The number of peaks for ENCFF001XUT was 350. The total number of base pairs

covered was 122486.

6.2.3.3 tcf3

The tcf3 data was also from the lab of Barbara Wold at Caltech is for mouse

C2C12 myocyte cells differentiated for 5 days:

ENCFF001XVM

The number of peaks for ENCFF001XVM was 321. The total number of base pairs

covered was 108692.
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6.2.4 Matrix Data

The position weight matrices used to score each position of mouse chromosome

19 are given below1, and were taken from the JASPAR data-set [111]. Each of the

matrices were normalised such that each column was a probability distribution,

the zero values were made positive and small for computational convenience prior

to taking the logarithm of each value.

All of these PWMs have been derived from ChIP-seq experiments.

6.2.4.1 gata4

>113MA0482.1 Gata4

10 0 0 0 2707 0 0 547 0 601 386

1039 2165 89 0 39 0 2746 0 1240 1004 929

374 306 0 0 0 0 0 0 940 157 682

1323 275 2657 2746 0 2746 0 2199 566 984 749

6.2.4.2 cebpb

>97MA0466.1 CEBPB

13006 75198 0 0 4556 0 74715 8654 60151 99494 0

10026 5868 0 0 0 99494 5478 51954 39343 0 36038

33617 18428 0 0 75531 0 10015 0 0 0 2043

42845 0 99494 99494 19407 0 9286 38886 0 0 61413

6.2.4.3 tcf3

>152MA0522.1 Tcf3

2717 8100 0 17261 0 0 0 0 0 6957 2351

8489 6433 17261 0 4101 16850 0 0 12529 4204 4115

4689 1756 0 0 12403 411 0 17261 3397 96 6625

1366 972 0 0 757 0 17261 0 1335 6004 4170

1Here, as elsewhere the term position weight matrix is used loosely to denote something

that has a canonical transformation into a position weight matrix.

155



6. CHIP SEQ COMPARISON

6.2.5 Obtaining scores for a matrix model

Scoring with a matrix model is done in the usual way; each locus i of the genome

is given the score that corresponds to lining up the matrix starting at locus i.

As before, let Si+n−1
i be the n bp sequence starting at position i in the genome.

Let sk ∈ {A,C,G, T} be the kth element of Si+n−1
i , let vk be the score given to

locus k in the genome, let mij be the ijth element of the matrix. Let l be the

length of the matrix,

vk = Σk+l−1
i=k msii (6.1)

where si is interpreted as 0, 1, 2, 3 according to its value A,C,G, T .

Software that scans sequences classifying them as bound or unbound is avail-

able, e.g. FIMO was determined to perform well at this task [116]. The simple

approach used here is justified since we will vary the classification threshold our-

selves in order to generate a RoC analysis.

6.2.6 Obtaining scores for a word model

As described in chapter 4 the word models are lists of features with weights; the

models are trained by using linear combinations to predict probe sequences with

intensity labels.

When predicting the intensity of a probe on a micro-array every feature that

appeared in a probe had its weight added to obtain an overall score for that 60bp

sequence.

To scan the genome we take each base pair and add together the scores for

all features that begin at that position. If we decide that each 60bp sequence of

the genome should receive a score in analogy to the protein binding micro-array

probes then we can, afterwards, smooth the data using a 60bp sliding window.

It will be useful to refer to the weight given to a particular sequence, d say, via

a function, w say. The weight associated with sequence, (or feature), d, is then

w(d).

It should be noted that when scoring protein binding micro-array probes some

features would be excluded from contributing to the last n positions of a probe
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due to being longer than n bp. For this reason, scoring in the genome per base

pair, then smoothing with a 60bp window, is not exactly the same as giving the

score to each 60bp region of the genome. One could argue that a 60bp probe

constraint is encoded into the word model, perhaps via its use of shorter features,

and that for this reason we should score each 60bp sequence of the genome as

if it were a probe. This argument only really holds weight if we believe that we

are predicting affinity to 60bp sequences rather than some subsequence thereof.

Whilst it seems likely that measuring affinity to longer nucleotide sequences might

be a valid and fruitful endeavour there is no evidence that it makes any systematic

difference given the current paucity of data.

Formally, the method that will be used is described as follows. Let sk ∈
{A,C,G, T} be the nucleotide at position k in the genome. Let Si+n−1

i be the n

bp sequence starting at position i and ending at i + n − 1. Let vk be the score

given to position k in the genome. Let Dl be the set of all features of length l.

For each d of length l ∈ Dl let w(d) be the weight of d.

vk = Σl Σd∈Dl: d=Sk+l
k

w(d) (6.2)

where l ranges over values, in our case, between 2 and 8. The weight function

returns values that have a mean of zero, this means that the natural thing to do

when a value is not available for a genomic sequence, either because it is an n, or

because the sequence or no part thereof appears as a word in the word model, is

to assign the value of zero.

6.2.7 Comparison between matrix and word models

In this section a review of the ROC curve method for signal detection analysis is

given in the context of this chapter’s data. There are some obvious limitations

to this approach in the context of our data and these will be discussed. A way to

make the ROC analysis more relevant to our data will be presented.

In order to assess the matrix and word models we look for overlap with ChIP-

seq peaks. The genomic positions under the peaks will be referred to as condition

positives and the genomic positions not under ChIP-seq peaks will be referred to

as condition negatives.
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6. CHIP SEQ COMPARISON

condition positive condition negative
test positive true positive false positive
test negative false negative true negative

Table 6.1: ROC definitions

condition positive condition negative
test positive 40 60 100
test negative 10 890 900

50 950

Table 6.2: Example ROC calculation

The ChIP-seq peaks that are available are a few hundred base pairs long.

Each base pair inside these peaks are thought of as ‘bound’ and those outside as

‘unbound’. Presumably, given the width of the binding protein, these regions are

not, in fact, entirely bound.

Our approach is to define each base pair in the genome as a matrix or word

model positive or negative.

This is done by choosing a cut-off and labelling the positions with scores above

the cut-off as ‘test positive’ and those below as ‘test negative’.

We can then describe a matrix or word model as having good sensitivity if

it correctly labels ‘bound’ positions as matrix or word ‘test positives’ and good

specificity if it labels ‘unbound’ positions as ‘test negatives’.

Taking these meanings of ‘test positive’, ‘test negative’, ‘condition positive’

and ‘condition negative’ we can, for a given cut-off, produce a contingency table,

(sometimes also called a confusion matrix).

For example, let us suppose a genome of 1000bp and ChIP-seq peaks that

cover 50bp of the genome. Also suppose that a matrix or word model, at some

cut-off, selects 100bp of the genome as positive, (and the rest as negative). We

might have the following numbers.

The false positive rate is defined to be,

false positives

true negative + false positives
(6.3)
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The true positive rate is defined to be,

true positives

true positive + false negatives
(6.4)

In this example the false positive rate is, 60/950, the true positive rate is, 40/50.

6.2.8 An improved ROC calculation procedure

The obvious limitation with the straight forward approach described above is that

we are labelling base pairs as positive or negative when we are using ChIP-seq

peak regions hundreds of base pairs long as the ‘bound’ input. We do not believe

that entire peak regions are actually bound and therefore we create spurious

false negatives in cases where a peak does have a significant word or matrix ‘test

positive’ label.

An approach to mitigating this is to segment the genome in a way that makes

a ChIP-seq peak a single segment and then segment the remaining genome in a

consistent way.

The method used is as follows, take each ChIP-seq peak as a single segment

and divide the remainder of the genome into segments with the same size as the

mean of the distribution of ChIP-seq peak sizes. Each of the latter, ‘condition

negative’, segments will, similarly, be called as test negatives or test positives.

The ROC procedure is then performed as before but counting segments rather

than base pairs.

There are possible variations on whether to call a segment as a test positive

or test negative. We can do this based upon whether there is a single contained

base pair with a score above a cut-off or whether the mean of the contained base

pairs’ scores is above a cut-off.

6.2.9 Smoothing

Smoothing of the scores for matrices or word models is done using a simple

moving window. i.e. for a window of length n starting at position i the scores

vi, vi+1, . . . , vi+n−1 are added and divided by n.
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6.2.9.1 Motivation for Smoothing

Our aim is to annotate each base pair of the genome with a score that expresses

our belief as to whether a protein will bind at that position. An obvious objection

to this is that a protein’s interacting surface would, typically, be larger than the

‘length’ of a single base pair in the genome; what does it mean to give a score to

a single position in the genome? Perhaps we have in our minds that it would be

the ‘center’, or the ‘beginning’, of the interaction between protein and DNA.

If a matrix model has been obtained in a manner similar to that described in

the second chapter of this thesis then the correspondence between the position of

the protein and matrix is somewhat clearer, i.e. if we score a sequence starting

at locus i then the score represents the affinity for that sequence binding to a

protein ‘starting’ at that position.

If the matrix has been obtained from a statistical inference on collections of

sequences hundreds of base pairs long then this view is less compelling, though

not necessarily wrong.

In the case of the word models we learnt a collection of ‘features’ that predict

the binding of proteins to 60bp sequences attached to arrays. On one extreme

we may have a set of nearly identical 8bp features in a word model that best

predicted protein binding micro-array intensities. In this case we might assume

that these features, when found in the genome, predict the position of the protein

on the DNA in a way similar to the first of the matrix models described above.

6.3 Results

Figures 6.2, 6.3 and 6.4 show scores for the matrix and word models plotted in

the dalliance genome browser [56].

Something that can be immediately seen is the difference in appearance be-

tween the profiles of the word model scores and those of the matrices; the word

models look like they are giving a better signal to noise ratio (Figures 6.2, 6.3 and 6.4).
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Figure 6.2: Scores for two word models and a matrix model shown together
with ChIP-seq peaks for cebpb. The top track with the blue bars show ChIP-seq
peaks, the next two tracks are for word models. The bottom track is for the
PWM model. Note that PWM scores have been attributed to the first nucleotide
position of each sequence being scored.

Figure 6.3: The top track in this browser view shows a gene annotation, the
next track shows the scores derived from the PWM model and the next two tracks
show scores for two word models. The blue bars for the bottom track are ChIP-
seq peaks. Note that PWM scores have been attributed to the first nucleotide
position of each sequence being scored.
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Figure 6.4: Scores for two word models and a matrix model shown together
with ChIP-seq peaks for tcf3. The top two tracks are the word models, followed
by the PWM model scores with the blue bar of a ChIP-seq peak at the bottom.
Note that PWM scores have been attributed to the first nucleotide position of
each sequence being scored.

Figures 6.5, 6.6 and 6.7 show the distributions of scores for the different mod-

els. The bold lines show the distribution of scores from scanning the genomic

sequence and the dotted lines show the distributions of possible scores, i.e. scores

from all possible 10mers.

The PWM models produce scores that follow a Gaussian distribution. The

Gaussian distribution is characterised by tails that fall off quickly. In contrast,

the distributions of scores for the word models have long tails to the right hand

side that separate a wide range of the higher scores. This is the reason that we see

the better ‘signal to noise ratio’ in the genome browser (Figures 6.2, 6.3 and 6.4).

The long tails of the word models separates the values of high scoring sequences,

for a Gaussian distribution this separation is less. The ranks of sequences will be

less robust in the Gaussian case, being more susceptible to modelling error and

measurement error.

The distributions of sequences in the genome is not a uniform distribution of

all possible 10mers but we know this is an approximation. It is interesting to

compare the histograms of scores obtained from this actual uniform distribution

over 10mers to the actual genomic distribution.
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The PWM distribution show a clear over-representation of higher scores in

the scanned data. This can be probably be explained by their being trained on

ChIP-seq data which has a background of genomic sequence statistics.

The word models do not have a clear over or under-representation of higher

scores and this could, similarly, be attributed to their being trained on un-biased

sequence data.

Figure 6.5: The x-axis gives normalised scores. The y-axis is the probability of
sequences having a given score.
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Figure 6.6: The x-axis gives normalised scores. The y-axis is the probability of
sequences having a given score.

164



6. CHIP SEQ COMPARISON

Figure 6.7: The x-axis gives normalised scores. The y-axis is the probability of
sequences having a given score.

Figures 6.8, 6.9 and 6.10 show the ROC curves for the segmented chromosome (Sec-

tion 6.2.8). In all of the figures the word models are the red and yellow lines,

(those starting with a ‘w’ prefix in the legend), the matrix models have blue lines

and these are labelled with an ‘m’ prefix. For the tcf3 transcription factor the ma-

trix model appears to dominate the word models. But for the other transcription

factors, cebpb and gata4 it is less clear. With such a small number of overlap-

ping data-sets we should probably refrain from making any conclusive remarks.

The word models are appealing for their sparsity and significantly different dis-

tribution of possible scores when compared to PWMs, e.g. their ability to create

the better signal to noise ratio observed in the genome browser. However, we

have been unable to produce a better predictor of ChIP-seq peaks using the word

models as defined by the ROC analysis.
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Figure 6.8: This plot shows ROC curves for each of the three sets of peaks
available for the cebpb transcription factor. From top to bottom these are
ENCFF001XUR, ENCFF001XUS and ENCFF001XUT.
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Figure 6.9: This plot shows ROC curves for each of the two sets of peaks
available for the gata4 transcription factor. From top to bottom these are
ENCFF002ADR, ENCFF002ADS.
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Figure 6.10: This plot shows ROC curves for the peaks set available for the
tcf3 transcription factor, ie. ENCFF001XUT.

6.4 Conclusion

Our approach in this chapter has been to scan an entire chromosome looking for

the loci that give the highest score for binding affinity according to our models.

Our objective was to compare the performance of PWM models as predictors with

the word models trained on protein binding micro-arrays. There weren’t enough

overlapping data-sets (Section 6.2.1) to allow us to make any conclusive remarks

on the relative performance of the matrix and word models. However, for the

three examples where there was overlapping data, it is impressive that the word

models, trained on PBM data, are able to compete with matrix models, trained

on ChIP-seq data, i.e. the data source of the gold standard. It is also interesting

to observe the substantial difference in the distributions of scores between the

matrix and word models.

We have observed word models where a set of 16 weighted 2bp features predict

protein bind micro-array intensities very well (Section 5.4.2.3). If we were to score
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genomic sequences using such a model we might ask the question whether we are

predicting a well defined, static, position for a protein attached to DNA or the

probability that a protein will be in a certain ‘neighbourhood’ of the genome.

Unfortunately the lack of data prevents us from doing this experiment, i.e. we

do not have ChIP-seq data for the transcription factors in question.
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Chapter 7

Conclusions

In this final chapter we review the previous chapters and make some suggestions

for further investigation.

The first chapter of this thesis is an introduction to transcription factors,

including historical context.

In the second chapter an improved energy matrix model is fitted to some ‘phys-

ical’ measurements of dissociation constants made using a micro-fluidic platform.

An extra parameter allows a better fit than that originally offered in the paper

that accompanied the data’s publication.

In the third chapter, efforts to visualise and correct spatial artefacts observed

in protein binding micro-array data are presented. The utility of this work is

limited when measured via its ability to improve correlations of ‘all probe’ pre-

dictions. Nonetheless the tools that were developed allowed spatial artefacts to

be removed in a visually verifiable way. The graphical representation of the data

using a 3D point cloud, the surface modelling with B-splines and the visual cut-

ting plane method for data-exclusion offered a clear improvement in handling this

noisy data-set.

In the fourth chapter are descriptions and comparisons of the make up of probe

sequences on the protein binding micro arrays and the presentation of the model

with which transcription factor binding to protein binding micro-array probes is

based. A careful description of the mathematics behind the sequences is given

since it is important to understand the statistical and compositional properties

of the sequences if we are to sample from them. The model and computational
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approach described is efficient and can be scaled to ‘larger’ problems than thought

possible by previous experimenters.

In the fifth chapter is the presentation of predictors built using the protein

binding micro-array data and the probe models described in the previous chap-

ter. Nested models of decreasing sparsity show interesting features. The protein

binding micro-array platform offers many, unbiased measurements of the same

protein’s interactions but further data could improve its scope in this author’s

opinion.

In the sixth chapter the predictors learnt in the fifth chapter are applied to

scanning genomic sequences. Genomic sequences are scored using the predictors

and a comparison is made with ChIP-seq peaks, as a gold standard. An appropri-

ate ROC calculation is devised and the performance of the predictors is compared

to PWMs via ROC curves.

In this thesis, we set out to investigate whether it is possible to develop an

improved method to predict genomic transcription factor binding sites using a

new data type, i.e. protein binding micro-arrays, and a new machine learning

method, which produces sparse models over a set of DNA words. While we were

able to present novel and interesting models, our predictions against the gold

standard available were not significantly different.

Further Directions

’Tis much better to do a little with certainty, and leave the rest for others that

come after you, than to explain all things by conjecture without making sure of

any thing.’ Newton, 1704

Prediction of transcription factor binding sites is an important problem how-

ever the ROC plots (Figures 6.8, 6.9 and 6.10) show the limited accuracy of

existing methods. We now consider future work that might improve prediction

methods.

The quality of the data with which we train models can ultimately limit what

can be achieved by improving the models themselves. Given small data-sets we

can use constrained models, such as PWMs, but are then faced with the associated
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biases. Adding extra parameters can remove biases but high-dimensional models

require vast amounts of data to be fitted.

The protein binding micro-arrays offer large amounts of data, though, at

present this data appears to be noisy and possibly biased to the in vitro con-

ditions where it is measured. One opportunity is to improve the quantity and

fidelity of the protein binding micro-arrays. Another opportunity is to incorpo-

rate information from other data-sets, such as epigenetics.

Data to allow modelling of epigenetic state

We would like data to describe the entire epigenetic state of the cell. This would

include chromatin modifications in addition to methylation information. This

information could give us a proxy to the steric availibility of binding sites and

the effect of other, cooperative, regulatory mechanisms (Section 6.1.1).

To fully assess the impact of epigenetic modification on transcription factor

binding requires ChIP-seq experiments and entire genome DNase and methylation

data-sets for the same transcription factors and cell type [117].

There are no complete epigenetic datasets for any of the three transcription

factors with PBM datasets discussed in the previous chapter, however a single

DNase I hypersensitivity data-set was available for the gata4 protein which was

briefly investigated.

The processed ENCODE DNase I dataset ENCFF001YRK contained 7,010

hypersensitive regions on mouse chromosome 19, containing 3,061,224 bases and

corresponding to 4.9% of the chromosome. DNase I hypersensitive regions of a

chromosome identify DNA that is more accessible to binding proteins and as ex-

pected most of the ChIP-seq peaks identifying gata4 binding sites were contained

within these regions (78%). To test whether the PWB or PBM based prediction

methods behaved differently in these regions, the intersection of ChIP-seq peaks

with hypersensitive regions provided a new gold standard with which the ROC

procedure was repeated, see the dotted lines in figure ??. We can see that the

ROC curves are not obviously improved. The low false positive rate region is

highlighted in figure ??. It might be tempting to suggest that the DNase data

has improved our predictions in the latter case, but more data is required to have

any confidence.
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Figure 7.1: Dotted lines have been added to show the ROC curves using a
gold standard created from the intersection of the ChIP-seq peaks, described in
the previous chapter, and a DNase I hypersensitivity data-set ENCSR000CNJ
(ENCODE). The top curve is for the ENCFF002ADR peaks, and the bottom
curve is for the ENCFF002ADS peaks.
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Figure 7.2: The same to the previous figure but showing only the part of the
curve related to false positive rates below 0.1.
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One avenue of future work would be to collect complete data-sets for cell types

where transcription factors of interest are active. This should help us understand

whether the addition of epigenetic data can be used to improve predictive models.

However based on the single experiment described above, it seems unlikely

that any improvement will be large. This suggests that taking steric availability

into account, by incorporating epigenetic data, is unlikely to explain most of the

poor performance of transcript factor binding site prediction algorithms. A better

strategy may, therefore, be to improve transcription factor binding models.

Protein binding micro-array improvements

The protein binding micro-arrays are in many cases noisy and different experi-

ments have diverging characteristics. Reporting average correlation statistics for

a set of 172 of these arrays, over 82 different proteins, is not necessarily a useful ex-

ercise. It seems that the experiments are potentially very informative, providing

a rich characterisation of the properties of both the array bound oligonucleotides

and the protein constructs measured with them. Though the lack of repetition of

experiments, the precision of measurements, and availability of all possible data

is frustrating. Improving on these issues seems like the obvious way to improve

investigations in this area.

One protein1, Zscan10, was measured on 6 arrays. Data for three experiments

on the HK design array and three experiments on the ME array are available.

See figure 7.4 for the intensity distributions and figure 7.3 through for correlation

plots for the probes on each pair of Zscan10 arrays of the same design. These

plots suggest a lack of reproducibility that would certainly guide our attempts at

prediction.

After finding a probe’s intensity an obvious next question is, what is the mea-

surement’s error distribution? Inspecting figure 7.4 we see that the distributions

appear to have different locations and scales. It would be interesting to try and

parameterise these distributions with location and scale parameters. We could

then normalise them and estimate error distributions for the intensity measure-

1Another protein, Mzf1, was measured on 4 arrays, twice on an HK array and twice on an
ME array. All other proteins were measured only once on an HK array and once on an ME
array.
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ments. Relevant questions are,

• what is this distribution of signal intensities?

• how does it arise?

• why do these distributions differ between replicate experiments?

• why do these distributions differ between proteins?

To answer these questions more data is required.

Considering figure 7.3 shows us that, even with a perfect model of probe

sequence content, we may still find prediction difficult.

In the absence of economic constraints we might like to see significant amounts

of data on the properties of dsDNA micro-arrays alone. This data should be pro-

duced in the absence of confounding factors. For example, we might want to see

100s of protein binding micro-arrays produced and measured for cy3 incorpora-

tion. e.g. 10 arrays done on 10 different days in several different labs. One could

then repeat this under various regimes of temperature, salt concentrations and

equilibrating times.

Once a ‘noise model’ of the arrays was well understood protein binding ex-

periments could be done yielding a potentially much greater amount of useful

information.

Several replicates per protein allow us to use the central limit theorem ef-

fectively, i.e. the variance of the estimator of the mean tends towards a normal

distribution with variance σ√
n

where n is the number of replicates and σ is the

standard error of the data. This convergence depends upon the distribution of

the underlying data. We do know that the data are non-Gaussian but cannot

make any general statements about these distributions.

With replicate experiments an understanding of error distributions could be

obtained, then we could determine how many replicates are needed for a particular

purpose.

For the same protein, parameters such as

• protein representation, (domain or whole protein)

• alternative protein orthologues/paralogues
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Figure 7.3: Correlations between probes for each array type and for each Zs-
can10 array
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Figure 7.4: Intensity distributions for the protein Zscan10. These 6 histograms
show the signal intensities for the protein Zscan10 as measured on 6 arrays of
each design.
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• a range of protein concentrations

• a range of salt concentrations

• a range of temperatures

• experiments with and without cofactors

• experiments using arrays generated different de Bruijn sequences, (this mit-

igates a number of experimental biases)

• several replicates of each experiment to compensate for the significant noise

for each set of parameters

could all be varied in order to obtain greater depth of understanding.

An example of the utility of having replicate experiments with different pro-

tein concentrations is described in chapter 2, namely the potential to derive a

disassociation constant for non-specific binding.

To begin to capture effects of cooperative binding, data-sets could be gen-

erated for all of the above conditions measuring multiple proteins in tandem.

This would help answer questions about the validity of predicting the binding of

individual factors. Obviously the number of experiments required is very large,

and a high degree of automation would likely be needed in order to face such a

challenge.

Final words

As a general summary, finding transcription factor binding sites in genomic se-

quences remains a difficult problem, nevertheless it is also an important one. It

should be possible to find these sites computationally using sequence informa-

tion but more work is required. PWMs are much used and can be useful but

they have very poor specificity. These models are built from incomplete binding

affinity data, e.g. chemical activities are not considered. Proteins in vivo will

bind based upon conditions that we may not have measured and that perhaps go

beyond what is currently, reliably, measurable, e.g. all epigenetic states.
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Appendix A

As part of chapter 3 a surface fitting method was described. The B-spline algo-

rithms, parameter fitting and drawing of resulting surfaces were implemented as

a tool from basic, high performance components.

• A custom C++ B-spline implementation

• Numerical optimisation with the Eigen linear algebra library

• Native OpenGL for rendering of surfaces

• The Lightweight, ODB, object relational mapping layer over database

• Sqlite3 database for data storage and organisation

Some screen grabs of the GUI that was made are shown in this appendix.
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APPENDIX A - ARRAY VIEWER

Figure A.1: On the left hand side is a list of experiments that can be ordered by
index, name or array type. The table view is populated from an Sqlite3 database
that is specified by its filename. Grid references and intensity values for every
probe are pulled from the database and drawn in less than 1 second. This allows
easy and rapid comparisons between experiments.
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Figure A.2: Using the ‘Surface Fit’ a B-spline surface is drawn using the four
parameters to the right of the button. The first is the smoothing penalty and the
second and third are the number of equally spaced knots in the x and y directions.
After fitting the surface the difference between the surface and the global mean
can be subtracted from the data, these normalised values can be added to a
column in the ‘Intensity’ table of the database by clicking the ‘Commit’ button.
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Figure A.3: In this screen grab we can see some outlying data that we wish to
exclude. The ability to move around the data in 3D allows us to see the spatial
artefact in detail.
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Figure A.4: By using the slider between the table-view and the graphics window
the red plane can be raised to a desired height. By using the ‘Low Pass Filter’
button, any data below the red plane is flagged in the database and will be
excluded from further analysis.

184



APPENDIX A - ARRAY VIEWER

Figure A.5: It is possible to inadvertently clip data when making a low pass
filter. Being able to move around the data enables us to spot potential problems
such as this.
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